
From Data to Decisions: Development of Surrogate Models for Process Optimization

by

Bianca Williams

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 6, 2022

Keywords: surrogate models, optimization, random forests, multivariate adaptive regression
splines

Copyright 2022 by Bianca Williams

Approved by

Selen Cremaschi, Chair, B. Redd & Susan W. Redd Professor of Chemical Engineering
Mark Carpenter, Professor of Mathematics and Statistics
Peter He, Associate Professor of Chemical Engineering

Elizabeth Lipke, Mary and John H. Sanders Professor of Chemical Engineering

 2

To my first teacher, Ms. Karen Saxton,

you always believed in me.

To my first research advisor, Dr. Elizabeth Lipke,

you started me on the journey.

To my first best friend, Amber Hicks,

you helped me see it through.

 3

Abstract

Surrogate models are used to map input data to output data when the actual relationship

between the two is unknown or computationally expensive to evaluate (Han & Zhang, 2012).

Surrogate models can also be constructed for use in surrogate-based optimization when a closed

analytical form of the relationship between input data and output data does not exist or is not

conducive for use in traditional gradient based optimization methods. The overall goal of this

dissertation is to comprehensively investigate and compare the performance of several different

surrogate modeling techniques for both approximating functional relationships and surrogate-

based optimization, and to link that performance to the characteristics of the data involved in the

application. Using the results of the performance comparisons, surrogate modeling techniques are

incorporated into a derivative-free optimization framework to use in the application of surrogate-

based optimization of chemical processes.

The research activities described here focused on comparison of the performance of eight

different surrogate modeling techniques on a collection of generated datasets and construction of

a tool to provide recommendations for the appropriate modeling techniques for the datasets based

only on the characteristics of the data being modeled. The surrogate modeling techniques include

multivariate adaptive regression splines (MARS), random forests (RF), single hidden layer feed

forward artificial neural networks (ANN), extreme learning machines (ELM), Gaussian process

regression (GP), support vector machines (SVM), Automated Learning of Algebraic Models using

Optimization (ALAMO), and radial basis function networks (RBFN). In general, multivariate

adaptive regression splines (MARS), artificial neural networks (ANN), and Gaussian process

regression (GP) provide the most accurate predictions for approximation, and RF models locate

the optimum of a dataset most often. Several of the surrogate modeling techniques were applied

 4

to the prediction of the outcomes of cardiac differentiation experiments. RF and GP models were

found to provide the most accurate predictions of those outcomes. With feature selection and data-

driven modeling using the surrogate modeling techniques, we were able to build models that could

predict insufficient yield for a bioreactor differentiation on day seven (out of 10) of the

differentiation protocol with up to a 90% accuracy and a 90% precision, using only 16% of the

collected bioreactor features.

Based on the results of the surrogate model comparison study, we identified attributes of

datasets appropriate for selecting surrogate models for both surface approximation and surrogate-

based optimization. Using these attributes, a recommendation tool, PRESTO, was constructed to

recommend surrogate modeling techniques for approximating a dataset with 91% accuracy and

90% precision and for performing surrogate based-optimization with 98% accuracy and 99%

precision. A surrogate-based, derivative-free optimization algorithm, pyBOUND, was developed

for the solution of expensive black-box optimization problems. pyBOUND combines the

capabilities of random forest models to accurately locate the optima of a wide variety of problems

with MARS models’ high accuracy for making predictions.

 5

Acknowledgements

First, I thank my major professor, Dr. Selen Cremaschi for her belief in me from day one

and for her unending support, encouragement, and patience over the last five years. Throughout

the many challenges I have experienced over this process, Selen has been unwavering in her belief

in me and her support. I am a better researcher and better overall because of her guidance.

Additionally, I thank the other members of my committee: Dr. Elizabeth Lipke, who first

introduced me to research and the associated possibilities many years ago and has maintained a

mentoring presence in my life since then, Dr. Peter He and Dr. Mark Carpenter who have provided

input and advice throughout my dissertation process, and Dr. Cheryl Seals for serving as my

university reader and giving valuable input on my dissertation.

I would like to give special thanks to my aunt, Tracy Williams, who has been my biggest

supporter throughout this process in every way. Graduate school can be a large financial burden,

and she has never let me starve or be homeless. I thank my mother and father for their support

throughout this process. I thank my brother and sister, Tony and Brea Williams, for being my

biggest cheerleaders and never letting me dwell on the stress of research for too long and for always

showing up for me.

I also give special thanks to Dr. Logan Dawson, Dr. Benita Bamgbade, and Dr. Stacey

Jackson, my doctor friends. Graduate school can be challenging for all, but there are additional,

unique challenges and struggles associated with being African American. I greatly appreciate them

for being a support system and for showing me that finishing out the degree is possible under any

circumstances. Special shout out as well to the Auburn Mocha Doc crew for struggling with me.

One of the people I dedicated this work to is my dearest friend, Amber Hicks, who forced

me to start interacting with other people in high school. She has been my greatest source of

 6

motivation over these last five years. Although she is no longer with me, I can still hear her

encouragement and feel her smile on me. I know she is proud of me somewhere and will be the

loudest one yelling when I walk across the stage. I would also like to acknowledge her parents

LaWanda and Jeff Hicks for their continued support and encouragement for me throughout the

years and for sharing Amber with me while she was here.

Lastly, I would like to thank the large host of extended family, aunts, uncles, cousins,

godparents, church members, friends and everyone else that has played a role in my life throughout

the years. I would not have made it to this milestone without their continued prayers and support.

It has been quite a ride.

 7

Table of Contents

Abstract ... 3

Acknowledgements ... 5

List of Tables .. 11

List of Figures ... 12

List of Abbreviations .. 16

Chapter 1 - Introduction .. 17

1.1 Objectives ... 18

1.2 Organization .. 19

Chapter 2 – Literature Review .. 21

2.1 Surrogate Model Construction .. 21

2.1.1 Sampling Methods for Surrogate Model Construction .. 22

2.2 Surrogate Modeling Techniques Considered .. 24

2.2.1 Automated Learning of Algebraic Models for Optimization (ALAMO) 24

2.2.2 Artificial Neural Networks .. 25

2.2.3 Gaussian Process Regression (GPR) ... 26

2.2.4 Multivariate adaptive regression splines (MARS) ... 26

2.2.5 Random Forests (RF) ... 27

2.2.6 Support Vector Machine Regression (SVR) .. 28

2.3 Comparison and Selection of Surrogate Modeling Techniques ... 28

2.4 Derivative-Free Optimization using Surrogate Models .. 29

Chapter 3 - Data-Driven Surrogate Model Development for Cardiomyocyte Production

Experimental Outcome Prediction .. 33

3.1 Computational Experiments and Theory ... 35

3.1.1 Experimental Data Collection .. 35

3.1.2 Feature Engineering ... 36

3.1.3 Feature Selection Methods ... 37

3.2 Cardiomyocyte Content Classification ... 40

3.2.1 Classification model performance metrics ... 41

3.3 Results and Discussion .. 43

3.3.1 Feature Selection Results ... 43

 8

3.3.2 Classification Model Results ... 45

3.4 Conclusions and Future Work ... 52

Chapter 4 - Comparison of Surrogate Modeling Techniques for Surface Approximation and

Surrogate-Based Optimization .. 54

4.1 Test Functions ... 54

4.2 Computation Experiments ... 57

4.2.1 Surrogate Model Construction ... 57

4.2.2 Evaluation of Surface Approximation and Surrogate-Based Optimization Performance

... 58

4.2.3 Surface Approximation Performance Metrics ... 59

4.2.4 Surrogate-Based Optimization Performance Metrics .. 61

4.3 Results and Discussion .. 61

4.3.1 Effect of Sampling Method and Sample Size .. 61

4.3.2 Comparison of surrogate modeling technique performance for surface approximation

... 65

4.3.4 Selection of Surrogate Modeling Technique for Surface Approximation by Adjusted-R2

... 65

4.3.5 Effect of Underlying Function Input Dimension and Function Shape on Surface

Approximation Performance ... 69

4.3.6 Comparison of surrogate modeling technique performance for surrogate-based

optimization .. 75

4.3.7 Computational Efficiency of Solving the Resulting Optimization Problems 80

4.3.8 Functions for Which None of the Surrogate Modeling Techniques were Accurate 85

4.4 Conclusions and Future Directions ... 86

Chapter 5 – Development of PRESTO (Predictive REcommendation of Surrogate models to

approximate and Optimize)... 88

5.1 PRESTO Construction Data and Surrogate Model Training 89

5.2 Feature Engineering and Attribute Extraction for Training PRESTO 90

5.2.1 Input Related Attributes ... 92

5.2.2 Gradient-Based Attributes ... 93

5.2.3 Response (Output)-Based Attributes ... 95

 9

5.2.4 Other Attributes ... 96

5.3 PRESTO Framework Construction .. 99

5.4 PRESTO Performance Evaluation Criteria ... 101

5.5 Application Dependent PRESTO Attributes for Surrogate Modeling Techniques.. 103

5.6 Performance Evaluation of PRESTO for a Chemical Engineering Application -

Cumene Production Case Study .. 109

5.6.1 Process and Simulation Description for Cumene Production 110

5.7 Results and Discussion .. 112

5.7.1 PRESTO Recommendation Classification Results .. 112

5.7.2 Cumene Case Study Performance Results ... 112

5.8 Conclusions and Future Work ... 117

Chapter 6 – Surrogate-Based Optimization Using Random Forests .. 118

6.1 Random Forest Structure and MILP Formulation .. 119

6.2 Computational Experiments.. 123

6.2.1 Test Functions .. 123

6.2.2 Surrogate-Based Optimization with Random Forest Models 124

6.3 Results and Discussion ... 125

6.3.1 Effect of Random Forest Model Size on Surface Approximation Performance 125

6.3.2 Effect of Random Forest Model Size on Surrogate-Based Optimization Performance

... 129

6.3.3 Computational Efficiency of Solving the Random Forest MILP 132

6.4. Conclusions and Future Work ... 136

Chapter 7 – Derivative Free Optimization with pyBOUND (PYthon-based Black box Optimization

Using raNDom forests) ... 137

7.1 Optimization Problem Formulation .. 137

7.2 pyBOUND Stage 1: Generation of Decision Variable Bounds with Random Forest

Models .. 140

7.2.1 Selection of Decision Variable Bounds ... 140

7.2.2 Selection of Adaptive Sampling Methods for Updating RF Model 142

7.2.3 Results for Bounds Cutting and Sampling Methods .. 143

 10

7.3 pyBOUND Stage 2: Refinement of Solution with Multivariate Adaptive Regression

Splines (MARS) Models ... 148

7.3 Computational Experiments .. 149

7.3.1 DFO Algorithms for Comparison .. 149

7.3.2 Performance Metrics .. 150

7.4 Results and Discussion .. 151

7.4.1 Results for Original Test Functions ... 151

7.5 Conclusions and Future Directions ... 155

Chapter 8 – Conclusions and Recommendations for Future Work .. 157

8.1 Systematic Selection of Surrogate Modeling Techniques for Surface Approximation and

Surrogate-Based Optimization .. 157

8.2 Surrogate-Based Optimization Using Random-Forests .. 157

8.3 pyBound (PYthon-based Black box Optimization Using raNDom forests) 158

References ... 159

Appendix A – Supplementary Data for Cardiomyocyte Feature Selection 170

Appendix B – PRESTO Training Data ... 181

Appendix C – pyBOUND Test Problems ... 234

 11

List of Tables

Table 3.1. Classification model performance (calculated with LOO cross-validation) for models
trained with features from Feature Set 1 ..48

Table 3.2 - Classification model performance (calculated with LOO cross-validation) for models
trained with features from Feature Set 2 ..48

Table 3.3 – Selected features from GPR-FS1 ..49

Table 3.4 – Model performance on test data ..51

Table 3.5 - Model performance with constant IWP2 time...52

Table 4.1 – Software implemenations used for surrogate model training58

Table 4.2 - Summary of findings for surrogate modeling technique performance77

Table 4.3 - Solvers and solution times for surrogate-based optimization
(NLP = Non-linear program, MINLP = Mixed integer non-linear program,
MILP = Mixed integer linear program) ...80

Table 5.1 - Number of attributes selected for recommendation predictions103

Table 5.2 - Five highest important attributes selected for surface approximation.......................105

Table 5.3 - Five highest important attributes selected for surrogate-based optimization107

Table 5.4 - PRESTO case study performance comparison ..113

Table 5.5 - Cumene data performance by cosine similarity score ...115

Table 6.1 - Average Size of Random Forest MILP ...133

 12

List of Figures

Figure 2.1 - Sequential sampling method for constructing a surrogate model 23

Figure 2.2 - General derivative-free optimization framework ... 31

Figure 3.1 – Cardiomyocyte study summary ... 35

Figure 3.2 - Classification confusion matrix (TP = True Positive, FP = False Positive, TN = True

Negative, FN = False Negative) ... 41

Figure 3.3 - Feature selection results for (A) FS1 and (B) FS2 ... 45

Figure 3.4 - Classification results were based on four metrics including accuracy, precision, recall,

and MCC for selected features of FS1 and FS2. For accuracy, precision, and recall the values are

categorized as follows: (---) for values < 0.3, (--) for 0.3 ≤ values < 0.6, (-) for 0.6 ≤ values < 0.7,

(+) for 0.7 ≤ values < 0.8, (++) for 0.8 ≤ values < 0.9, and (+++) for value ≥ 0.9. Moreover, for the

MCC metric, the categorization was done as: (---) for values < 0, (--) for 0 ≤ values < 0.1, (-) for

0.1 ≤ values < 0.3, (+) for 0.3 ≤ values < 0.7, (++) for 0.7 ≤ values < 0.9, and (+++) for value ≥

0.9.. 46

Figure 4.1 - Shape categories for test functions ... 56

Figure 4.2 - (a) MARS performance for different sampling methods as a function of sample size

for average nRMSE on all 127 test functions. (b) Average Doptvs. sample size for RF models. (c)

Average Doptvs. sample size for RBFN models. Error bars represent 90% confidence intervals on

the averages. .. 64

Figure 4.3 - Percentage of datasets grouped by input dimension for which each surrogate modeling

technique had the highest adjusted-R2 for sample sizes: (a) 50 and (b) 1600. Percentage of datasets

grouped function shape for which each surrogate modeling technique had the highest adjusted-R2

for sample sizes: (c) 50 and (d) 1600. ... 68

 13

Figure 4.4 - (a) nRMSE and (b) adjusted-R2 for datasets grouped by underlying function

dimension .. 71

Figure 4.5 - Adjusted-R2 for models trained with sample sizes of (a) 400 and (b) 1600 72

Figure 4.6 - Adjusted R2 for models trained with sample sizes of (a) 400 and (b) 1600 group by

underlying function shape. N values below the function dimensions indicate the number of test

functions used for each shape category .. 74

Figure 4.7 - Fraction of datasets with Dopt less than 5% grouped by input dimension for sample

size (a) 50 and (b) 400 .. 82

Figure 4.8 - Fraction of datasets with (a) Dopt and (b) Gopt less than threshold grouped by input

dimension for sample size of 1600 ... 83

Figure 4.9 - Fraction of datasets with (a) Dopt and (b) Gopt less than threshold grouped by

function shape for sample size of 1600. N values below the function dimensions indicate the

number of test functions used for that input dimension .. 84

Figure 4.10 - Functions that could not be approximated by any of the surrogate models (a) – (c)

or for which the optimum could not be located (d) – (f). (a) Eggholder function (multi local

minima-shaped) (b) Rastrigin Function (multi local minima-shaped) (c) Ackley function (multi

local minima-shaped) (d) Perm function (bowl-shaped) (e) Rosenbrock function (valley-shaped)

(f) Zakharov function (plate-shaped) .. 86

Figure 5.1 - Steps for generating neighborhoods for convex difference calculations 98

Figure 5.2 - Summary of PRESTO construction (FS = Feature Selection, Approx = Surface

Approximation, Opt = Surrogate-based optimization, PM = Classification Performance Metrics)

... 101

 14

Figure 5.3 - Classification confusion matrix (TP = true positive, TN = true negative, FP = false

positive, FN = false negative) ... 102

Figure 5.4 - Summary of PRESTO performance evaluation ... 103

Figure 5.5 - Flowsheet for cumene production case study .. 111

Figure 5.6 – Histogram of cosine similarity scores for PRESTO training data 116

Figure 6.1 – Random forest decision tree structure ... 120

Figure 6.2 - Random forest model approximation of the function, z = x1 + x2. Orange boxes

indicate test or leaf nodes that are selected (x1 = 2 and x2 = 4.5). ... 121

Figure 6.3 - Effect of increasing leaf nodes on random forest surface approximation performance

(CI = confidence interval) ... 127

Figure 6.4 - Effect of increasing tree size on random forest surface approximation performance

(CI = confidence interval) ... 128

Figure 6.5 - Average value of Dopt for all 99 test functions vs (a) maximum number of leaf nodes

and (b) number of trees in random forest model ... 130

Figure 6.6 - Dopt vs. number of random forest trees for (a) Ellipsoid function, (b) Power Sum

function, and (c) Zakharov function ... 131

Figure 6.7 - Average time required for the solution of RF MILPs as a function of the number of

trees in the random forest model ... 133

Figure 6.8 - Fraction of datasets with Dopt less than (a) 5% and (b) 1% grouped by input

dimension for RF models trained with cross validation, 50 trees, and 100 trees. N values below the

function dimensions indicate the number of test functions used for that input dimension (CV =

cross validation) .. 135

Figure 7.1 - General pyBOUND Framework... 139

 15

Figure 7.2– Decision variable bounds cutting methods ... 141

Figure 7.3 - Fraction of test functions with infeasible models for RF stage of pyBOUND 144

Figure 7.4 - Fraction of test functions with no reduction in decision variables bounds for RF stage

of pyBOUND .. 145

Figure 7.5 - Fraction of test functions with the actual location cut out of the reduced search space

vs the fraction of the original search space volume removed (“Wide”) 146

Figure 7.6 - Random forest (RF) model bounds generation step. (ODIN = Optimization Directed

INcremental sampling).. 147

Figure 7.7 - Fraction of original test problems solved with gnorm less than 0.00001 151

Figure 7.8 - Fraction of original test problems solves with dnorm less than 0.01 152

Figure 7.9 - Fraction of new test problems solved with gnorm less than 0.00001 for (a) all test

problems and (b) test problems with input dimensions greater than 5 154

Figure 7.10 - Fraction of new test problems solves with dnorm less than 0.01........................ 155

 16

List of Abbreviations

Abbreviation Full Name
ALAMO Automated Learning of Algebraic Models for Optimization
ANN Single Layer Feed Forward Artificial Neural Network
CM Cardiomyocyte
CVD Cardiovascular diseases
dd Differentiation day
DFO Derivative Free Optimization
EI Expected improvement function
ELM Extreme Learning Machine
FN False negative
FP False positive
FS Feature set
GP Gaussian Process Regression
hiPSCs Human induced pluripotent stem cells
LOO Leave one out
MARS Multivariate Adaptive Regression Splines
MAS Mixed adaptive sampling
MC Monte Carlo
MCC Matthews correlation coefficient
MILP Mixed integer linear problem
MINLP Mixed integer nonlinear problem
NLP Nonlinear problem
nRMSE Normalized root mean squared error
ODIN Optimization directed incremental sampling
PC Principal component
PCA Principal component analysis
PRESTO Predictive Recommendation of Surrogate Models to Approximate and Optimize
pyBOUND Python-Based Black Box Optimization using Random Forests
RBFN Radial Basis Function Network
RF Random Forest
SSE Sum of Squared Errors
SVR Support Vector Regression
TN True negative
TP True positive

 17

Chapter 1 - Introduction

 Surrogate models, also known as response surfaces, black-box models, metamodels, or

emulators, are simplified approximations of more complex, higher order models (C. Wang et al.,

2014). These models are used to map input data to output data when the actual relationship between

the two is unknown or computationally expensive to evaluate (Han & Zhang, 2012). Surrogate

models can also be constructed for use in surrogate-based optimization when a closed analytical

form of the relationship between input data and output data does not exist or is not conducive for

use in traditional gradient based optimization methods. Surrogate modeling techniques are of

particular interest where high-fidelity, thus expensive, simulations are used (Han and Zhang,

2012), for example, in computational fluid dynamics (CFD) or computational structural dynamics

(CSD). Surrogates are also of interest when the fundamental relationship between design variables

and output variables is not well understood, such as in the design of cell or tissue manufacturing

processes (Du et al., 2016; Sokolov et al., 2017; Williams, Lobel, et al., 2020).

Surrogate modeling techniques have been receiving increasing attention in a wide range of

applications, for example, in the optimization of process design, scheduling, and control (Burnak

et al., 2019). They have successfully been used for both regression and classification tasks.

Surrogate models have been used in several recent applications in process systems engineering

and the manufacturing industry, including for optimization of a sulfur recovery unit (Rahman et

al., 2019), fault detection (Quiroz et al., 2018; Zhang et al., 2018), and surrogate-based

optimization of energy consumption in carbon fiber production line (Golkarnarenji et al., 2018).

Although several machine learning and regression techniques have been developed for

surrogate model construction, there has been little work on how to best select the appropriate model

for a particular application for either surface approximation or optimization. Surface

 18

approximation refers to the application of using a surrogate model to mimic the overall behavior

or response of an underlying model. In surrogate-based optimization, a surrogate model can be

constructed to represent the objective function or any constraints that may be computationally

expensive to evaluate or are unavailable in analytical form. The constructed surrogate can be used

as a closed functional form in traditional gradient-based optimization methods.

With all the surrogate modeling techniques currently available, there is a need for a

systematic method of selecting the appropriate technique for a given application. The overall goal

of this research is to comprehensively investigate and compare the performance of several different

surrogate modeling techniques for both approximating functional relationships and surrogate-

based optimization, and to link that performance to the characteristics of the data involved in the

application. Using the results of the performance comparisons, surrogate modeling techniques are

incorporated into a derivative-free optimization framework to use in the application of surrogate-

based optimization.

1.1 Objectives

This dissertation will:

(1) Explore and compare the effects of data characteristics on performance of several surrogate

modeling techniques.

(2) Develop a tool for systematic recommendation of surrogate modeling techniques for the

purposes of surface approximation and surrogate-based approximation.

(3) Develop a derivative-free optimization framework incorporating surrogate modeling

techniques.

 19

1.2 Organization

The dissertation is organized as follows. In Chapter 2, Sections 2.1 and 2.2 present background

information about selected surrogate modeling techniques and their construction and relevant

practical applications. Section 2.3 provides a literature review on derivative-free optimization

(DFO) algorithms. Chapter 3 describes work on development of surrogate models for the

prediction of the outcomes of cardiac stem cell differentiation experiments. Section 3.1 provides

relevant background information on cardiac differentiation and a literature review of previous

applications of machine learning in other cell and protein production applications. Sections 3.2,

3.3, and 3.4 present the computational experiments performed for the cardiac study and their

results.

In Chapter 4, results are presented for a comparison of the performance of the eight surrogate

modeling techniques on a variety of test functions. Section 4.1 gives a detailed description of the

test functions generated and used here and throughout the dissertation. Section 4.2 documents the

computation methods used in the comparison study, and comparison performance results are

presented in section 4.3. Chapter 5 presents the development of PRESTO (Predictive

Recommendation of Surrogate models TO approximate and optimize), a framework that provides

recommendations for surrogate modeling techniques to use based on dataset characteristics.

Section 5.2 defines the dataset characteristics, or attributes, used to describe datasets. Section 5.3

focuses on the construction and training of the PRESTO framework, and Section 5.4 defines the

criteria used to evaluate the quality of the model selections made by PRESTO. Section 5.5

discusses the data attributes determined to be relevant in selecting surrogates for the study. A case

study is described in Section 5.6, and results for PRESTO’s model selection performance for the

training and case studies are provided in Section 5.7. Section 5.7 also includes a discussion of a

 20

similarity metric that can be used for determining if a set of data is appropriate for use with

PRESTO.

Chapter 6 describes a study applying the random forest surrogate modeling technique for

surrogate-based optimization. Section 6.1 describes the unique structure of random forest models

and their resulting optimization problem structure. Section 6.2 describes the computational

experiments carried out for the optimization study, and results are presented in Section 6.3. Chapter

7 describes the development and performance evaluation of pyBOUND (PYthon-based Black box

Optimization Using raNDom forests), a surrogate-based derivative-free optimization algorithm.

Note that parts of the contributions described in this dissertation have been previously

published in three journal papers (Williams & Cremaschi, 2021b; Williams, Lobel, et al., 2020;

Williams et al., 2021) and three conference papers (Williams & Cremaschi, 2019, 2021a;

Williams, Halloin, et al., 2020).

 21

Chapter 2 – Literature Review

Surrogate modeling techniques have been receiving increasing attention in a wide range of

applications, for example, in the optimization of process design, scheduling, and control (Burnak

et al., 2019). They have successfully been used for both regression and classification tasks.

Surrogate models have been used in several recent applications in process systems engineering

and the manufacturing industry, including for optimization of a sulfur recovery unit (Rahman et

al., 2019), fault detection (Quiroz et al., 2018; Zhang et al., 2018), and surrogate-based

optimization of energy consumption in carbon fiber production line (Golkarnarenji et al., 2018).

2.1 Surrogate Model Construction

Construction of a surrogate model is comprised of three steps: (1) selection of the sample

points, (2) optimization or "training" of the model parameters, and (3) evaluation of the accuracy

of the surrogate model (C. Wang et al., 2014). Although several machine learning and regression

techniques have been developed for surrogate model construction, there has been little work on

how to select the appropriate model for a particular application for either surface approximation

or surrogate-based optimization. Surface approximation refers to the application of using a

surrogate model to mimic the overall behavior or response of an underlying model. In surrogate-

based optimization, a surrogate model can be constructed to represent the objective function or

any constraints that may be computationally expensive to evaluate or are unavailable in analytical

form. The constructed surrogate can be used as a closed functional form in traditional gradient-

based optimization methods.

Selection of an appropriate number of sample points and sampling method to generate

those samples is a critical step in the construction of a surrogate model. In general, a higher number

of sample points offers more information about the underlying model being approximated,

 22

although with a higher computational expense. For low-order functions, after reaching a certain

sample size, increasing the number of sample points does not contribute much to the approximation

accuracy (G. G. Wang & Shan, 2007). Previous studies have investigated the effects of sample

size and sampling method on some of the surrogate modeling techniques being studied

specifically, including Gaussian process regression (Afzal et al., 2017; Burnaev & Zaytsev, 2015;

Iooss et al., 2010) and radial basis function networks (Afzal et al., 2017), as well as on surrogate

modeling accuracy in general (Davis et al., 2017). The results of these studies indicate that the

accuracy of a surrogate model is dependent upon the number and distribution of samples used in

its construction.

2.1.1 Sampling Methods for Surrogate Model Construction

In general, sampling methods can be categorized into two types: one-shot sampling and

sequential sampling. In one-shot experimental design, all the experimental points for building a

model are generated prior to the execution of the experimental design for the model construction.

Examples of one-shot sampling methods include Latin Hypercube sampling (Mckay, 1992) and

full factorial design (Das & Dewanjee, 2018). Although these one-shot techniques are very

commonly used, they can result in under/oversampling and thus, poor system approximations

(Crombecq et al., 2011; Garud et al., 2017b). Sequential sampling attempts to use the minimum

number of sample points necessary by starting with a small number of samples and slowly

increasing the sample size until the performance of the surrogate model reaches some desired level

of a performance metric (Eason & Cremaschi, 2014). Fewer samples translate to decreased

computational time required for data collection.

 23

Figure 2.1 - Sequential sampling method for constructing a surrogate model

 Figure 2.1 gives an example of a general sequential sampling algorithm. First, an initial

set of inputs are generated, usually with a space-filling experimental design, and the experimental

output to be modeled is evaluated at those points to generate an initial sample set. Next, additional

sample points are selected based on a criterion, and the output is evaluated at these new points.

The new points are added to the existing sample set, and a surrogate model is constructed. A

performance metric, 𝛼𝛼, that quantifies the improvement of the surrogate model from the previous

iteration is checked against a target value, 𝜀𝜀. When α falls below ε, then the sample size is deemed

to be sufficient, and the sampling is terminated.

The performance of a sequential sampling algorithm is dependent on selecting appropriate

sample locations. Two search strategies may be used for determining the locations of new samples:

1. New samples should be located far enough away from existing ones to avoid redundant samples

and adequately fill the design space (exploration) and 2. New samples should be placed in regions

of the design space that capture nonlinearities or other deviations from the typical behavior of the

 24

underlying black-box model (exploitation). The contrast between these two approaches is known

as the exploration vs. exploitation problem (Crombecq et al., 2011). Several methods have been

developed to address this issue of balancing the trade-off between exploration and exploitation,

adaptively adding samples to improve the surrogate model performance (Eason & Cremaschi,

2014; Garud et al., 2017b; Hu et al., 2018; Nentwich & Engell, 2019).

2.2 Surrogate Modeling Techniques Considered

 Eight commonly used surrogate modeling techniques were chosen for consideration for

this work. These techniques include Automated Learning of Algebraic Models using Optimization

(ALAMO), single hidden layer feed-forward Artificial Neural Networks (ANN), Extreme

Learning Machines (ELM), Gaussian Process Regression (GPR), Multivariate Adaptive

Regression Splines (MARS), Radial Basis Function Networks (RBFN), Random Forests (RF), and

Support Vector Machine Regression (SVR).

2.2.1 Automated Learning of Algebraic Models for Optimization (ALAMO)

Automated learning of algebraic models (ALAMO) uses a linear summation of nonlinear

transformations of the input data to predict output values. Possible nonlinear transformations

include polynomial, exponential, logarithmic, ratio, and trigonometric functions (Cozad et al.,

2014). The nonlinear transformations allowed for ALAMO models trained for this work were sine,

cosine, exponential, logarithmic, polynomial functions. Given a dataset, the approach begins by

building a low-complexity, linear model composed of explicit nonlinear transformations of the

input variables. Then, the method iteratively refines the model by solving an optimization problem

at each iteration to minimize (or maximize) a user-designated error metric. It should be noted that

the adaptive sampling scheme of ALAMO is not used in this study. ALAMO is one of the few

surrogate modeling techniques developed directly by the chemical engineering community.

 25

2.2.2 Artificial Neural Networks

Artificial neural networks attempt to mimic the behavior of neurons in the brain. The

models consist of an input and an output layer that are connected by a number of hidden layers in

between. The artificial neurons have weights and biases that create a network between the layers,

with the activation function in the hidden layer determining whether or not a neuron will "fire" and

produce a signal (Haykin, 2009). Training of a neural network refers to the process that identifies

the values of the weights and biases. Three different types of artificial neural networks are

considered here, all with a single hidden layer: a feed-forward artificial neural network with a

hyperbolic tangent activation function (ANN), an extreme learning machine (ELM), and a radial

basis function network (RBFN). In an ELM, the weights between the input layer and hidden layer

are randomly assigned, and the weights between the hidden layer and the output layer are fit using

linear regression or other regression techniques (Huang et al., 2006). The activation function used

in both the ANN and ELM models is a hyperbolic tangent function. An RBFN is a neural network

with a radial basis function as the activation function in the hidden layer (Gomm & Yu, 2000).

First, the network calculates the Euclidean distance between the input weights and input values.

Then it passes those distances through the Gaussian radial basis activation function. The form of

the radial basis function is shown in Eqs. (2.1) and (2.2),

𝑟𝑟 = ‖𝑥𝑥 − 𝑥𝑥′‖ (2.1)

𝜑𝜑(𝑟𝑟) = 𝑒𝑒−(𝜀𝜀𝜀𝜀)2 (2.2)

where the Euclidean distance, 𝑟𝑟, between points 𝑥𝑥 and 𝑥𝑥′, is used to calculate the radial basis

function, 𝜑𝜑(𝑟𝑟), with the shape tuning parameter 𝜀𝜀.

Artificial neural networks have been widely developed and used in a variety of chemical

engineering applications. For example, ANNs have been used to estimate the thermodynamic

 26

properties of four binary refrigerant systems (Nikkholgh et al., 2010), and at a larger scale, to heat

generated in commercial electric vehicle battery packs (Arora et al., 2017). ELMs have been used

to develop soft sensors for chemical processes (He et al., 2016).

2.2.3 Gaussian Process Regression (GPR)

 Gaussian process regression (GPR) is a method of interpolation for which the interpolated

values are modeled by a Gaussian process governed by prior covariances. Under suitable

assumptions on the priors, GPR gives the best linear unbiased prediction of the intermediate values

(Rasmussen & Nickisch, 2010). GPR uses a kernel function as measure of similarity between

points to predict the value for an unseen point from the training data (Rasmussen & Williams,

2005). GPR is widely used in chemical engineering applications, including modeling and

monitoring batch chemical reactors (Masampally et al., 2018; L. Zhou et al., 2015), and uncertainty

estimations in erosion rate predictions (Dai et al., 2019). The radial basis function (Eqs. (2.1) and

(2.2)) is used as the kernel function for all GP models trained for this work.

2.2.4 Multivariate adaptive regression splines (MARS)

 Multivariate adaptive regression spline (MARS) models are made up of a linear summation

of basis functions. The three types of possible basis functions are a constant, a hinge function (or

“spline”), or a product of two or more hinge functions. The training of a MARS model starts with

an initial model that is a basis function equal to the mean of the data outputs. On the first pass, the

model overfits to the data, adding basis functions to reduce the sum of the squared errors (SSE)

between the given and predicted outputs. Then, a backward, pruning pass is performed to remove

terms that have little effect on the SSE until the best model is identified based on cross validation

criteria (Friedman, 1991). Recently, MARS models have been used in process systems applications

 27

including optimization of a sulfur recovery unit (Rahman et al., 2019) and surrogate-based

sensitivity analysis of a wastewater treatment plant (Al et al., 2019). MARS models have also been

successfully implemented in medical applications (Bhat et al., 2013).

2.2.5 Random Forests (RF)

 Random forests are machine learning models that make output predictions by combining

outcomes from a sequence of regression decision trees, called forests. Each tree is constructed

independently and depends on a random vector sampled from the input data, with all the trees in

the forest having the same distribution. The predictions from the forests are averaged using

bootstrap aggregation and random feature selection (Breiman, 2001). The value that is output for

a tree for given inputs is the value of the final leaf node reached, and the output value for the entire

RF model is the average value of the outputs for every decision tree in the forest.

 Random forests have successfully been used for both regression and classification tasks,

performing with high prediction accuracy for both small sample sizes and high dimensional data.

They are capable of fitting non-linear data with a minimal number of parameters to tune (Biau &

Scornet, 2016). The models have been used in several recent applications in the manufacturing

industry, including for fault detection (Puggini et al., 2015; Quiroz et al., 2018; Zhang et al., 2018),

prediction of mechanical failures (Wu et al., 2017), and prediction of manufacturing product

properties (Maudes et al., 2017). Other areas of research where random forest models have been

employed for approximation include development of new pharmaceutical molecules (Svetnik et

al., 2004) and thermodynamic property estimation (Palmer et al., 2007).

 28

2.2.6 Support Vector Machine Regression (SVR)

 Support vector machine regression transforms input data into m-dimensional space and

attempts to construct a set of hyperplanes so that the distance from it to the nearest data point on

each side of the plane is maximized using kernel functions (Drucker et al., 2002). The kernel

functions transform the data into a higher dimensional feature space to make it possible to perform

the linear separation. A recent example of an application of SVM models is using them for

surrogate-based optimization of energy consumption in carbon fiber production line

(Golkarnarenji et al., 2018).

2.3 Comparison and Selection of Surrogate Modeling Techniques

The current common practice for choosing a model form from the many available

techniques relies on process-specific expertise or expensive trial-and-error methods. When

selecting a surrogate model with user expertise, only a small subset of the many possible

techniques that the user is most familiar with may be considered as candidates. This selection

method, as well as trial and error, which is limited by computational resources, may fail to exploit

the large pool of surrogate modeling techniques available and lead to a sub-optimal model

selection. A systematic, automated procedure for selecting the appropriate surrogate model for a

given application would avoid this issue.

Recent advances in automating the surrogate model selection process include the

development of the tool Concurrent Surrogate Model Selection (COSMOS), which uses a genetic

search algorithm with sequential k-fold cross-validation to identify the best model for an

application (Mehmani et al., 2018). While this method allows users to explore a wide range of

candidate surrogates to select the best one, it still involves a considerable computational expense

for training multiple models. Progress has been made in recent works in generalizing the process

 29

for selecting a surrogate model to approximate a surface by using meta-learning approaches to

build selection frameworks, avoiding expensive trial-and-error methods (Cui et al., 2016; Garud

et al., 2018). These meta-learning approaches rely on the knowledge pyramid, where the selection

framework learns how to best select surrogate models based on past modeling computational

experiments results (Vilalta & Drissi, 2002). These frameworks provide “best” recommendations

for surrogate modeling techniques based on characteristics, or attributes, calculated from the

modeled data. Furthermore, the framework developed by Garud et al. (2018) gives a ranking of all

the considered surrogate models based on the predicted accuracy of the model. However, neither

framework takes model complexity into account, which can lead to overfitting, or considers that

multiple models might perform similarly to the one identified as best in terms of their accuracies.

The selection of surrogate models for surrogate-based optimization remains an open challenge.

2.4 Derivative-Free Optimization using Surrogate Models

Optimization is required for several chemical engineering applications, including process

design and process synthesis, operations, and supply chain management. These applications

usually involve complex, high-fidelity simulations and/or physical experiments, which can both

require significant resources in terms of cost and time, as well as a large computational expense to

collect data. Optimization using traditional gradient-based methods is impractical for these

applications because gradient information is not readily available, and approximating gradients is

infeasible due to the required expense for multiple simulation evaluations or experiments. In

addition, the direct use of deterministic global optimization methods is restrictive in these cases

because the computational cost for obtaining data limits the total number of model runs necessary

to optimize the system efficiently (Conn et al., 2009; Forrester et al., 2008). To overcome these

challenges, derivative-free optimization methods can be employed.

 30

Derivative-Free Optimization (DFO) algorithms rely on search heuristics based around

improving the current best set of decision variables (Conn et al., 2009). The general framework of

a DFO algorithm is illustrated in Figure 2.2. Each algorithm begins by using an initial sampling

strategy to generate an initial set of decision variables. From there, the variable sets are passed to

the problem, model, or simulation, which is treated as a black-box model, and the objective

function value corresponding to those decision variables is evaluated. The objective function

values are then passed back to the DFO algorithm, where the algorithm-specific search heuristic

begins. The search heuristic uses the input-output pairs of the evaluated decision variable sets and

corresponding objective function values to then determine the next set(s) of decision variables to

evaluate. This process is iterated until a termination criterion has been reached. There are several

termination criteria that can be evaluated for a DFO algorithm, including a maximum number of

black-box evaluations, a minimum search step size, or exceeding a specified wall time (Rios &

Sahinidis, 2013). Comprehensive reviews and comparisons of available DFO algorithms can be

found in Kolda et al. (2003), Rios and Sahinidis (2013), and Boukouvala et al. (2016).

 31

Figure 2.2 - General derivative-free optimization framework

 DFO algorithms can be separated into categories based on the method they use to search

the design space of the problem (direct-search or model-based) and on whether they search the

entire design space (global search) or a local sub-region of it (local search) (Boukouvala et al.,

2016). Model-based searches employ the use of surrogate models to assist in the search for optimal

decision variables. Examples of model-based search DFO algorithms include the development of

a kriging (Boukouvala & Ierapetritou, 2014) and radial basis function (Le Thi et al., 2012) based

DFO algorithms for optimization of expensive constrained problems.

There has been considerable progress in developing approaches for derivative-free

optimization by using surrogate models to approximate any explicitly unknown relationships in

the systems of interest (Bajaj et al., 2018; Boukouvala et al., 2017; Rios & Sahinidis, 2013). The

aim of the surrogate approximations is to guide the search toward the optimum of the original

model. Existing literature on model-based DFO algorithms predominantly employs local

optimization methods for the optimization of the formed surrogate approximations (Conn et al.,

 32

2009). In addition, they can be difficult to scale to solve problems with high dimensions (Bhosekar

& Ierapetritou, 2018b; Qian et al., 2016b).

 33

Chapter 3 - Data-Driven Surrogate Model Development for

Cardiomyocyte Production Experimental Outcome Prediction

Cardiovascular diseases (CVD) are the leading cause of death worldwide, meaning there

are more deaths annually due to CVD than any other cause (Roth et al., 2020). These diseases can

lead to heart attacks, which can result in the loss of more than one billion heart cells, leading to

congestive heart failure (Kempf, Andree, et al., 2016). Patients who suffer from advanced stages

of heart failure have a poor prognosis for survival, and the large disparity between numbers of

donors and recipients leaves few viable treatments. Artificial prosthetic hearts and heart assist

devices have demonstrated some success in prolonging the lives of patients receiving treatment,

but their development is slow and clinical trials have been limited. Due to the nature of heart

transplants and the stigma surrounding artificial organs, engineered heart tissue may provide an

encompassing treatment for heart failure (Kempf, Andree, et al., 2016).

Mature cardiomyocytes, the contracting cells in the heart, are some of the least regenerative

cells in the body. This characteristic carries over into the laboratory environment and thus limits

in vitro expansion capabilities of cardiomyocytes. Difficulties in direct culture of cardiomyocytes

can be overcome by differentiation from human pluripotent stem cells (hiPSCs) (Kempf, Andree,

et al., 2016). The indefinite turnover potential of pluripotent cells allows for the expansion of large

quantities for differentiation into therapeutic engineered tissues. However, the differentiation of

hiPSCs into specific cell types is a highly complex and costly process that is sensitive to the impact

of a high number of factors (Gaspari et al., 2018), and significant difficulties exist in reliably and

consistently producing the large number of cardiomyocytes needed for therapeutic purposes

(Kempf, Andree, et al., 2016).

 34

Data-driven modeling with machine learning techniques has the potential to identify factors

and patterns that most significantly affect the outcomes of these differentiation experiments.

Previously, machine learning techniques have successfully been used to identify key factors and

assist in the optimization of the production of several proteins and cell lines (Sokolov et al., 2017;

Y. Zhou et al., 2018). The goal of this work is to use machine learning techniques to identify key

process parameters to be used in predictive modeling of bioreactor cardiac differentiation

outcomes. The high number of experimental factors influencing the differentiation results in a

large set of possible inputs to be considered for modeling. This high data dimensionality, in

addition to the low number of data points due to the time-consuming nature of these experiments,

represents significant challenges for modeling the differentiation process. The specific aim is to

use machine learning models to predict whether or not the cardiomyocyte content at the end of

differentiation process will be sufficiently high. We define insufficient production as having a

cardiomyocyte content on the tenth day of differentiation (dd10) that is less than 90%, meaning

less than 90% of the cells produced at the end of the differentiation are cardiomyocytes. Predicting

if the cardiomyocyte content will be insufficient before the end of the differentiation will provide

cost and time savings, as each day the differentiation continues requires significant resources.

Using existing data from bioreactor experiments, we have applied feature selection

techniques, including correlations, principal component analysis, and built-in feature selection

method in machine learning models, to identify the conditions in the bioreactor, which we define

as bioreactor features, that are most influential and predictive of the cardiomyocyte content.

Bioreactor features considered include values related to the cell concentration, size of cell

aggregates, pH, dissolved oxygen concentration, and concentrations and timings of certain

nutrients, such as glucose, and small molecules known to direct the differentiation. We then used

 35

the identified features as inputs to build models to classify the resulting cardiomyocyte content of

a particular bioreactor run as being sufficient or insufficient to justify continuing with the

differentiation. The general process for this study is summarized in Fig 3.1.

Figure 3.1 – Cardiomyocyte study summary

3.1 Computational Experiments and Theory

3.1.1 Experimental Data Collection

Experimental data were generated and collected from 58 cardiac differentiation

experiments (Halloin et al., 2019). The differentiation experiments were carried out in chemically

defined conditions in stirred tank bioreactors. Details of the experiments are described in Halloin

et al. (2019). The set of independent variables includes experimental conditions such as the rotation

speed in the bioreactor and measurements such as differentiation day dependent cell densities and

aggregate sizes, and continuous time measurements of dissolved oxygen (DO) concentration and

pH. The set of independent variables measured from the experiments was expanded to include

 36

engineered features such as estimated gradients in cell densities and DO concentrations, resulting

in a total of 101 variables, which we refer to as bioreactor features. The dependent variable is the

percentage of the cells in the bioreactor that have differentiated into cardiomyocytes, or the

cardiomyocyte content, on the last day of the differentiation experiment, dd10. Data from 42 of

the experiments were designated as training data and used for feature selection and classification

model construction. The remaining experiments were reserved as test data for testing the

classification models.

3.1.2 Feature Engineering

Experimental data used in computational analysis and model development were collected

from 58 cardiac differentiation processes in bioreactors; notably, all processes performed in the

relevant experimental setup were included in the study without any type of pre-selection procedure

to explicitly exclude any investigator-dependent bias. Each of the differentiation processes

represents a single experimental datapoint to be used for model construction. In the first step, data

sets from 42 of these processes were randomly chosen and used for constructing predictive models,

while data sets from the remaining 16 processes were reserved for testing the models' performance.

From the data, a set of potential input variables, which we refer to as "bioprocess features",

for use in predictive models was generated with the goal of this set fully describing the

experimental conditions over the entire differentiation process. For model construction using

machine learning, a feature is an individual measurable or derived (using measured properties)

property of the system that is being modeled. Available experimental conditions included the

rotation speed in the bioreactor and measurements such as differentiation day (dd) dependent cell

densities, aggregate sizes, and nutrient concentrations, and measurements of DO concentration and

pH over the course of the experiment.

 37

The DO concentration and pH measurements were included as features by averaging their

values over each day of the differentiation. Additional features were engineered from this data, as

well as other time-dependent measurements, to capture how the conditions in the bioreactor were

changing over time. These additional features were generated by estimating time gradients and

second derivatives for the cell density, aggregate size, DO concentration, and pH measurements,

resulting in a final set of 101 potential bioprocess features. The full list of bioprocess features is

provided in Appendix A. Time gradients and second derivatives were estimated using Eqs. (3.1)

and (3.2),

𝑔𝑔𝑡𝑡𝑖𝑖 =
𝑦𝑦𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑡𝑡𝑖𝑖−1
𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1

 (3.1)

ℎ𝑡𝑡𝑖𝑖 =
𝑔𝑔𝑡𝑡𝑖𝑖−𝑔𝑔𝑡𝑡𝑖𝑖−1
𝑡𝑡𝑖𝑖−𝑡𝑡𝑖𝑖−1

 (3.2)

where 𝑔𝑔𝑡𝑡𝑖𝑖 and ℎ𝑡𝑡𝑖𝑖 are the gradient and second derivative, respectively, of bioreactor condition 𝑦𝑦 at

timepoint 𝑡𝑡𝑖𝑖.

3.1.3 Feature Selection Methods

Because of the large number of features (101) compared to the number of experimental

data points (58), feature selection was performed on the available data to discover which of the

bioprocess features were most influential and predictive of the cardiomyocyte content on dd10.

The feature selection methods employed include correlation coefficients, PCA, and the built-in

feature selection capabilities of the machine learning techniques investigated for predictive

modeling. Two sets of features, Feature Set 1 and Feature Set 2, were considered, each with

bioprocess features measured at earlier points in the differentiation process. Feature Set 1 consists

 38

of all the collected bioprocess features measured up until the seventh differentiation day 7 (dd7).

Feature Set 2 consists of bioprocess features measured up until the fifth differentiation day 5 (dd5).

The dd7 and dd5 timepoints were chosen in order to use as much data as possible without

using any data near the endpoint of the differentiation, such as dd9. Preliminary proof-of-concept

studies revealed that classification was possible using data collected up to and including dd7,

initiating analysis investigating the possibility of earlier predictions. Based on this analysis, dd5

was chosen as the earliest possible timepoint, as classification using data from earlier points in the

differentiation did not yield satisfactory predictive capabilities.

3.1.3.1 Correlations

Pearson correlation coefficient

The Pearson correlation coefficient measures the linear relationship between two variables.

Its value ranges from -1 to 1. A value of -1 corresponds to a perfect negative linear relationship

between the variables, while a value of 1 indicates a positive linear relationship. A value of 0

demonstrates no linear correlation between the variables (Soper et al., 1915).

Spearman correlation coefficient

The Spearman correlation coefficient measures the strength and direction of a monotonic

relationship between two variables. Its value ranges from -1 to 1. A value of 0 indicates no

correlation between the variables. Values of -1 or 1 indicate a perfect negative or positive

correlation, respectively (Spearman, 1904).

3.1.3.2 Principal component analysis (PCA)

The principal component analysis is a statistical dimension reduction tool. The method

transforms a set of possibly correlated variables into uncorrelated principal components (PCs). It

 39

identifies a new set of orthogonal axes in the direction of the highest variance of the data. Each of

the axes, which is a linear combination of original axes, represents a PC. Principal components are

assigned in ordinal format, with the first PC explaining the highest percentage of the variance and

the last PC the least. The PCs with the lower ranks are generally not considered in further analysis

reducing the number of dimensions while preserving much of the original variance (Hotelling,

1933).

3.1.3.3 Machine learning techniques

Multivariate adaptive regression splines (MARS) models are nonparametric statistical

models that consist of a linear summation of basis functions (Friedman, 1991). In general, basis

functions are either a constant, a hinge function, or the product of two or more hinge functions.

For the MARS models trained in this study, the Sci-Kit Learn pyEarth software package was used

(Pedregosa et al., 2011). Detailed information on MARS models and the other machine learning

techniques described in this section are provided in Chapter 2.

Random forests (RFs) are a machine learning method that utilizes a set of decision trees

for predicting an output based on input data. Each tree is built independently based on a random

subspace of the training data. The final output of a random forest model is determined by averaging

the output value of every tree in the forest (Breiman, 2001). The features are selected according to

the importance level calculated by the random forest model. The importance level is based on the

impact of a feature on improving the separation of the data in each decision node of the tree. For

the RF models trained in this study, the Sci-Kit Learn RandomForestRegressor software package

was used to train forests with 5 trees (Pedregosa et al., 2011).

Gaussian process regression (GPR) is a nonparametric machine learning method where the

prediction of the output corresponding to an unknown input is calculated based on a weighted

 40

average of outputs for known inputs using a similarity metric: the kernel function (Rasmussen and

Williams, 2005). The kernel function used for all GPR models in this paper is a radial basis

function.

GPR can be used for feature selection with its built-in automatic relevance determination

(ARD) method. Further sensitivity analysis (Eq. (4)) on the ARD results (Blix and Eltoft, 2018)

provides an even greater separation of the features for selection. For the GPR models trained in

this study, the Sci-Kit Learn GaussianProcessRegressor software package was used (Pedregosa et

al., 2011).

3.2 Cardiomyocyte Content Classification

A binary process classification based on the CM content (%) at process endpoint (dd10)

was applied, and the two classes defined were: “sufficient” for CM content equal to and above

90%, and "insufficient" for CM content below 90%. A binary classification model was chosen

after an initial analysis with a multiclass model revealed that the available bioprocess data was not

rich enough to train a multiclass model at this time.

To enable CM content prediction based on early process data, two regression models using

MARS and GPR were built, and the data points were assigned to their classes (i.e., sufficient or

insufficient) based on this predicted CM content value. For RFs, the classification is conducted

directly using the classifier models constructed by the RF.

To evaluate and compare the performances of the classification models, four metrics were

considered: accuracy, precision, recall, and the Matthews correlation coefficient (MCC). The range

for the first three metrics is zero to one, and MCC is between -1 and 1. These metrics are calculated

based on the confusion matrix (Sokolova and Lapalme, 2009), which is illustrated in Fig. 3.2. The

 41

confusion matrix describes the performance of a classification model (algorithm). In this section,

we assign the insufficient CM content class as the positive class and the sufficient class as the

negative one. The error of the predictions is broken down for each class using the confusion matrix.

The four cells of the confusion matrix correspond to true positive, false negative, false positive,

and true negative. The values associated with each of the components give information about how

many of the positive/negative classification results were correctly predicted by the model.

Figure 3.2 - Classification confusion matrix (TP = True Positive, FP = False Positive, TN = True

Negative, FN = False Negative)

3.2.1 Classification model performance metrics

Accuracy: Accuracy calculates the proportion of correct classifications (Sokolova & Lapalme,

2009). According to Eq. (3.3), accuracy is the number of all true positives and negatives compared

to all prediction results. Accuracy of one indicates that the classification has been conducted

accurately and that all the points with sufficient or insufficient CM content have been included in

the right class (𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 = 0). Zero accuracy defines a totally wrong classification model, which

is not able to predict the label of the points correctly.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴𝑦𝑦 =
(𝑇𝑇𝐹𝐹 + 𝑇𝑇𝐹𝐹)

(𝑇𝑇𝐹𝐹 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹) (3.3)

 42

Precision: Precision (Eq. (3.4)) gives information about the proportion of the times the points

identified as positive were truly positive (Sokolova & Lapalme, 2009). Precision of one means that

all the positive results are actually positive outcomes. When a classifier model with precision of

one predicts insufficient CM content for a point, it is supposed to have insufficient CM content in

practice. Value of zero for precision indicates that all the identified positive outcomes are false.

𝐹𝐹𝑟𝑟𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝐹𝐹

(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)
 (3.4)

Recall: Recall, Eq. (3.5), is the proportion of actual positive results which were identified as

positives (Sokolova & Lapalme, 2009). The value of one for recall demonstrated that the model is

able to classify all the actual positive results as positive. In CM content case, all the insufficient

points would be identified as insufficient using a model with recall equal to one. When all the

positive classes are falsely identified negative, the value of recall equals zero.

𝑅𝑅𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒 =
𝑇𝑇𝐹𝐹

(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)
 (3.5)

Matthews's correlation coefficient (MCC): Matthews's correlation coefficient (Eq. (3.6)) defines the

correlation between the predicted and actual classifications for all data points (Matthews, 1975).

Value of one for MCC means there is a strong correlation between the predicted results and the

actual values, indicating that the predicted label is correct for all the points. Value of -1 for MCC

metric demonstrates a strong inverse correlation. Value of zero for MCC corresponds to no

correlation between the predicted and actual results.

𝑀𝑀𝑀𝑀𝑀𝑀 =
(𝑇𝑇𝐹𝐹 × 𝑇𝑇𝐹𝐹) − (𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹)

�(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)

(3.6)

 43

The classification model performance metrics, accuracy, precision, recall, and MCC, were

calculated using two different cross-validation techniques: (1) leave one out (LOO) cross-

validation and (2) Monte Carlo (MC) cross-validation. Cross-validation is a tool for assessing how

well a model can be generalized to new data, which the model has never seen. In MC cross-

validation, a set of data is selected randomly to be excluded for validation, and this data set is

called the validation set. The model is built using the remaining data, and the model is used to

predict the classes for the validation set (Burman, 1989). These predictions are used to calculate

performance metrics. In LOO cross-validation, a single data point is set aside (i.e., left out) for

validation. The model is built using the remaining data points, and a prediction is obtained for the

data point that was left out. This process is repeated for each data point, resulting in a prediction

for each.

3.3 Results and Discussion

3.3.1 Feature Selection Results

Two different sets of features were considered for building the classification models.

Feature Set 1 contained all potential bioprocess features measured through dd7. Feature Set 2

contained all features measured through dd5. Feature selection was performed on each feature set

separately to identify potential features for predicting CM content class on dd10. Classification

models were then built using these potential feature sets. We employed PCA, and built-in

capabilities of MARS, RFs, and GPR for feature selection. Feature selection resulted in eight

potential feature sets for classifying the CM content on dd10. A visual summary of the feature

selection results is provided in Fig. 3.3.

PCA yielded five principal components (FS1-PCA) that explained 94% of the variance in

the input data for Feature Set 1 (Fig. 3.3A) and yielded four principal components (FS2-PCA) that

 44

explained 94% of the variance for Feature Set 2 (Fig. 3.3B). None of the principal components or

bioprocess features strongly correlated with the CM content. The strongest linear correlation

between a feature and the CM content was -0.51, and that feature was the time that the

differentiation media was supplemented with WNT inhibitor IWP2. This lack of correlation

indicates that none of the individual bioprocess features alone suffices to make a prediction on the

CM content and that other means, such as machine learning techniques, are necessary to

investigate the relationship.

The number of features selected by each machine learning technique is provided in Fig.

3.3. Common features that were selected as significant include the cell densities and their gradients

during the first two days of the differentiation protocol (dd0 and dd1). This selection agrees with

previous experimental studies concluding that cell density during early differentiation influences

differentiation into specific cell lineages (Kempf, Olmer, et al., 2016). A list of features selected

by each method is available in Appendix A in Table A1.

 45

Figure 3.3 - Feature selection results for (A) FS1 and (B) FS2

3.3.2 Classification Model Results

Classification models were constructed for predicting the outcome of the bioreactor

experiments on dd10 using features measured up to dd7 and up to dd5, using each of the machine

learning techniques described in Section 3.1.3.3. The models were built using the bioprocess

 46

features selected from Feature Set 1 (for predicting using features measured until dd7) and Feature

Set 2 (for predicting using features measured until dd5). Results for classification model

performance for each of the eight feature sets from the feature selection are summarized in Tables

3.1 and 3.2. Results were obtained using LOO cross-validation and are presented for both the

bioprocess features selected by the built-in feature selection for each model, as well as for the PCs

obtained from PCA. Both feature sets contained 42 data points chosen from the original set of 58

experiments for training. A visual summary of the results for each classification method with its

associated feature sets is depicted in Fig. 3.4.

Figure 3.4 - Classification results were based on four metrics including accuracy, precision,

recall, and MCC for selected features of FS1 and FS2. For accuracy, precision, and recall the

values are categorized as follows: (---) for values < 0.3, (--) for 0.3 ≤ values < 0.6, (-) for 0.6 ≤

values < 0.7, (+) for 0.7 ≤ values < 0.8, (++) for 0.8 ≤ values < 0.9, and (+++) for value ≥ 0.9.

Moreover, for the MCC metric, the categorization was done as: (---) for values < 0, (--) for 0 ≤

values < 0.1, (-) for 0.1 ≤ values < 0.3, (+) for 0.3 ≤ values < 0.7, (++) for 0.7 ≤ values < 0.9, and

(+++) for value ≥ 0.9

 47

For all of the feature sets generated from Feature Set 1, for all of the techniques

investigated, classification using the model-selected features always had a better performance than

the principal components from PCA. Only two classification model-feature set combinations

achieved favorable results for all four of the performance metrics, which is illustrated in Fig. 3.4.

RFs trained with feature set FS1-RF and GPR trained with FS1-GPR perform similarly for

predicting if CM content will be insufficient for continuing the experiment. Both methods obtained

accuracies of 90% and precisions around 90%, meaning that if a model predicts the CM content

will be insufficient, there is a 90% probability that it is insufficient.

Similar to those generated from Feature Set 1, the model-selected feature sets for Feature

Set 2 resulted in a better performance than the PCs. This indicates that while the PCs successfully

explain the variance in the data, they fail to accurately characterize the relationship between the

features and the cardiomyocyte content. When only the features up to dd5 are considered, RFs

most successfully predict if the CM content will be sufficient. The decrease in the performance of

GPR models is possibly due to the removal of the dd7 average value of the DO concentration

gradient. This dd7 feature was identified as relevant for predicting dd10 CM content using a GPR

and could be an indicator of levels of cell metabolism.

 48

Table 3.1. Classification model performance (calculated with LOO cross-validation) for models

trained with features from Feature Set 1.

 MARS RFs GPR

 FS1-MARS FS1-PCA FS1-RF FS1-PCA FS1-GPR FS1-PCA

Accuracy 0.74 0.64 0.90 0.74 0.90 0.67

Precision 0.81 0.66 0.90 0.74 0.93 0.67

Recall 0.93 0.96 0.96 0.93 0.93 1.0

MCC 0.55 -0.11 0.78 0.36 0.79 0

Table 3.2 - Classification model performance (calculated with LOO cross-validation) for models

trained with features from Feature Set 2.

 MARS RFs GPR

 FS2-MARS FS2-PCA FS2-RF FS2-PCA FS2-GPR FS2-PCA

Accuracy 0.62 0.67 0.84 0.67 0.69 0.67

Precision 0.68 0.68 0.82 0.73 0.70 0.67

Recall 0.82 0.93 0.96 0.79 0.93 1.0

MCC 0.04 0.11 0.62 0.22 0.23 0

Table 3.3 contains examples of bioreactor experiments and the predictions for those

experiments given by GPR models using FS1-GPR, as well as the values of the bioprocess features

indicated by the GPR model to be relevant. For some of the experiments with different prediction

types, the feature values are quite similar, for example, the “preculture time” of experiments 36

and 28. However, for some experiments with the same prediction, the features have a wide range

 49

of values, for example, the “dd2 cell density normalized DO gradient” of experiments 16 and 28.

These disparities indicate that the individual features alone are not sufficient to determine what

will make a good or bad prediction and that all the selected features need to be considered as a

whole.

Table 3.3 – Selected features from GPR-FS1

For model selection purposes, the MCC gives the most important information about how

the models perform, as it gives a measure of the correlation between the predicted and actual

classes, similar to an R2 coefficient for a regression model. The other performance metrics should

be assessed for their importance based on what the experimental goal of the bioprocess is. For

example, if the differentiation process is being studied primarily for data collection and evaluating

the outcomes, then maximizing the number of experimental datapoints being retained becomes

more important, meaning that the precision of the model needs to be prioritized. However, for

another application, such as an in vivo study, it would be more beneficial to stop unsuccessful

experiments and start over, meaning that recall and accuracy of the model in identifying which

experiments would not produce high CM contents would be prioritized. RF and GPR models were

 50

confirmed to be the most predictive of the dd10 cardiomyocyte content because their MCC values

(around 0.80) and their accuracy and precisions of about 90% were higher than the other models

investigated.

After testing how the models performed on the original dataset, their performance was

evaluated using the test data. The test data consisted of data from the 16 processes that were not

used for feature selection and model construction. The values of the selected features from those

16 "control processes" were used as inputs to make predictions of the final CM classification

employing the trained models, and those predictions were compared to the actual classifications

from the process data. Since MARS had the worst performance for both feature sets, it was

excluded from the analysis. The results are presented in Table 3.4. RFs and GPR had similar

performance for the test data for feature set FS1-GPR, both with an accuracy of 89%, precision

and recall near 90%, and MCC values of 0.72. However, for the sets selected from feature set 2,

RFs outperformed GPR. The results obtained for the test data are comparable to those for the data

the models were trained on with LOO cross-validation, indicating that the models accurately

captured the relationship between the features and the CM content necessary to make the

classifications while avoiding overfitting.

 51

Table 3.4 – Model performance on test data

 RFs GPR

 FS1-RF FS2-RF FS1-GPR FS2-GPR

Accuracy 0.89 0.83 0.89 0.72

Precision 0.92 0.81 0.87 0.72

Recall 0.92 1.0 1.0 1

MCC 0.72 0.57 0.72 0.11

The "IWP2 treatment time" feature was consistently chosen as having high importance for

the prediction of the CM content. This feature describes the amount of time that the IWP2 molecule

was allowed to remain in the bioreactor system, i.e., impact the differentiation process. However,

this feature was only modulated for a fraction of the process runs and held constant at exactly 48

hours for the rest. To evaluate if our models were able to classify the CM content without using

that feature, an additional dataset was constructed. This data set was thus exclusively derived from

the original set of 58 processes using only those process runs where the time of IWP2 presence

was held constant at 48 hours, and the "IWP2 treatment time" feature was excluded in the analysis.

Since RFs performed well for all the previously considered feature sets, the performance was only

evaluated using this model. LOO cross-validation and Monte Carlo cross-validation were used to

calculate the performance metrics. The Monte Carlo cross-validation used a test set size of 5 and

40 Monte Carlo trials. The results are summarized in Table 3.5. It is thus worth highlighting that

 52

when the IWP2 feature is removed, RFs still successfully predict insufficient CM content with

comparable performances for both LOO and Monte Carlo cross-validation for all the feature sets.

Table 3.5 - Model performance with constant IWP2 time.

 FS1-RF FS2-RF

 LOO Monte Carlo LOO Monte Carlo

Accuracy 0.90 0.90 0.92 0.85

Precision 0.91 0.90 0.91 0.86

Recall 1.0 0.93 0.95 0.93

MCC 0.90 0.82 0.84 0.75

3.4 Conclusions and Future Work

This chapter describes the construction of data-driven models for predicting the CM

content on dd10 of hPSC differentiation processes, using existing data sets from bioreactor-based

experiments. Using features up to dd7, we were able to identify if an experiment would have an

insufficient final CM content of less than 90% with 90% accuracy and >90% precision with both

RF and GPR models. Furthermore, we were able to identify if an experiment would have an

insufficient final CM content on dd5 with 84% accuracy with a RF model. Through feature

selection methods, these predictions used less than 16% of the collected data, potentially reducing

the amount of resource-intense manual collection of data.

Although these models can accurately and precisely predict final CM content, they do not

provide any insight into the overall quantity of CMs produced or the resulting functionality and

maturity of these cells. In addition, the prediction models were only constructed using a small set

of data with limited ranges of all the features. However, the ability to model the outcome of

 53

differentiation experiments at an early stage of differentiation, enables the timely interruption of

failing experiments, providing savings in both time and resources.

A trial-and-error method was utilized to select surrogate modeling techniques for building

the classification models, which required training multiple models, incurring unnecessary time and

computational expense. Although successful models were obtained, this work indicates that a

systematic selection of models may provide a more efficient means of outcome prediction

modeling. These systematic selection methods will be explored in the following chapters.

 54

Chapter 4 - Comparison of Surrogate Modeling Techniques for Surface

Approximation and Surrogate-Based Optimization

The objectives of this work are to comprehensively investigate and compare the

performance of several different surrogate modeling techniques for both approximating functional

relationships and surrogate-based optimization and to link that performance to the characteristics

of the data involved in the application. The results of this analysis are used to develop general

"rules of thumb" for selecting an appropriate surrogate modeling technique based on the

characteristics of the data being modeled and the desired application. Data sets for training

surrogate models are generated from a suite of optimization test functions with different features,

such as function shape and number of inputs.

The specific data characteristics being investigated in this study are the shape of the

underlying function being modeled, the number of input dimensions, the sampling method used to

select sample points to be used in the model training, and the number of sample points. The

surrogate modeling techniques considered include Automated Learning of Algebraic Models using

Optimization (ALAMO), Artificial Neural Networks (ANN), Extreme Learning Machines (ELM),

Gaussian Process Regression (GP), Multivariate Adaptive Regression Splines (MARS), Radial

Basis Function Networks (RBFN), Random Forests (RF), and Support Vector Machine Regression

(SVR). The following sections contain descriptions of the sampling methods used to select the

training data sets and the test function sets. Then, the computational experiments and the results

are presented, followed by conclusions and future directions.

4.1 Test Functions

The test functions used to generate data for constructing the surrogate models are from the

Virtual Library of Simulation Experiments optimization test suite (Surjanovic & Bingham, 2013).

 55

These test functions are benchmarking optimization problems presented in the form of analytic

functions (Hussain et al., 2017). These test functions are used for analysis throughout the rest of

the dissertation. Functions with two, four, six, eight, ten, fifteen, and twenty input dimensions were

used in evaluations, resulting in a total of 127 test functions. The functions are divided by their

shapes, which include the categories: multi-local minima with 39 functions, bowl-shaped with 41

functions, plate-shaped with 11 functions, valley-shaped with 16 functions, and other-shaped with

20 functions that do not fit into the other four categories. Example functions from each shape

category are provided in Fig. 4.1.

The shape categories are defined by multiple characteristics of the test functions, including

modality, basins, and valleys, which describe the resulting surface. Modality refers to the number

of peaks on the surface. Multimodal functions have many local solutions but one global one,

making the global solution difficult to identify as algorithms may become trapped in local

solutions. A basin is a relatively steep decline surrounding a large area. These basin regions can

severely obstruct optimization algorithms due to a lack of information to direct the search toward

the optimum (Jamil & Yang, 2013). A valley occurs when a narrow area of little change is

surrounded by regions of steep descent. The progress of an optimization algorithm may be

hampered significantly on the floor of the valley (Hussain et al., 2017).

 56

Figure 4.1 - Shape categories for test functions

The bowl-shaped functions are unimodal, convex surfaces that can represent applications

where changes in inputs produce smooth, regular changes in output values. The multi-local minima

functions are multimodal and nonconvex and more representative of real data applications with

significant noise in the output. The plate-shaped functions contain large basin regions. The plate-

shape function may be representative of processes where several values of the process inputs or a

large section of the design space give a constant value for outputs, creating difficulties with

optimization searches. Valley-shaped functions have valleys, which may be applicable to processes

where small changes in input values produce very large variations in output values. Both the plate-

and valley-shaped categories contain unimodal and multimodal functions. The other-shaped

functions contain combinations of the characteristics of the other categories and non-smooth

functional behavior, which could encompass several processes where the shape of the output

surface is not well-known.

Bowl Plate Other

Valley Multi Local Minima

 57

4.2 Computation Experiments

4.2.1 Surrogate Model Construction

For evaluating the performances of surrogate modeling techniques, input-output pairs were

generated from each test function using three different sampling methods at seven different sample

sizes (50, 100, 400, 800, 1200, and 1600 samples). The sample sizes were chosen in order to give

a range of values for the ratio of sample size to input dimension for each input dimension being

studied. In general, a sample size to input dimension ratio of 10 is considered an adequate number

of samples for most regression techniques (Harrell et al., 1984). Any ratio smaller than 10 can be

considered to be a small sample size, with large sample sizes being any ratio of sample size to

input dimension larger than 10. Surrogate models were trained using these pairs with each of the

surrogate modeling techniques for each generated dataset. This process resulted in a total of 18,984

trained models. Each of the techniques has unique hyperparameters that were optimized in training

the models for each dataset to construct the best possible surrogate without overfitting the model.

For the MARS models, the number of hinge functions that could be multiplied together was limited

to two to avoid overfitting with higher-order hinge functions. The numbers of ANN, ELM, and

RBFN nodes, as well as the number of trees in the RF models, were increased until the root mean

squared error of a validation dataset stopped improving. For these models, the validation error was

estimated using ten-fold cross-validation on the training set. The number of nodes (or trees) was

increased until the average value of the last five validation errors either began to increase or

changed by less than 1%.

All of the surrogate modeling techniques except ALAMO and RBFN were implemented

in Python with the Sci-Kit Learn library version 0.32.2 (Pedregosa et al., 2011). RBFN models

were implemented with MATLAB 2017b, and ALAMO has its own software for model

 58

construction (Cozad et al., 2014). All of the training options except for the ones discussed were set

to the default values indicated by the implementation packages. The specific implementation

package used for each technique is listed in Table 4.1.

Table 4.1 – Software implementations for surrogate model training

Surrogate Model Implementation
MARS py-Earth

RF Scikit-learn RandomForestRegressor
ANN Scikit-learn MLPRegressor
ELM Scikit-learn ELMRegressor
GP Scikit-learn GaussianProcessRegressor

SVM Scikit-learn SVR
ALAMO ALAMO

RBFN MATLAB newrb

The three sampling methods used were Halton Sequence Sampling (Halton), Latin

Hypercube Sampling (LHS), and Sobol Sequence Sampling (Sobol). LHS partitions the domain

of each input variable into N subsets to be sampled from, where N is the number of sampling points

(Mckay, 1992). Both Halton and Sobol sequence sampling are quasi-random, low discrepancy

sequences that attempt to distribute the sampling points uniformly across the sample space (Halton

& Smith, 1964; Joe & Kuo, 2008). These sampling methods were chosen because they have been

shown to sample input space uniformly for functions up to ten dimensions (Diwekar, 2003; Garud

et al., 2017a).

4.2.2 Evaluation of Surface Approximation and Surrogate-Based Optimization Performance

After the surrogate models were trained for each dataset, sample size, and sampling

method, a densely sampled set of 100,000 input-output pairs were generated as test dataset for

assessing the accuracy of the models. Because there was no significant difference between the

 59

samples or results obtained from any of the sampling methods at this large size, only results for

the dense set produced using Sobol sequence sampling are presented here. The root mean squared

error, adjusted R2 value, and the maximum percent error were calculated for each dataset-surrogate

model combination based on the difference between the outputs of the given function and the

outputs predicted by the surrogate model.

The global minimum of each test function was estimated using the trained surrogate

models. The mathematical programs for estimating the minima were constructed in Pyomo

(version 5.6) (Hart et al., 2017; Hart et al., 2011), a Python-based optimization language. The

estimated minimum location and value are compared to the actual global minimum and value of

each function for accuracy to provide some insight into the effectiveness of each surrogate

modeling technique for surrogate-based optimization. Computations were carried out on the

Auburn University Hopper HPC Cluster (Lenovo System X HPC Cluster) using Intel E5-2650 V3,

2.3 GHz 20 core processors and implemented in Python 3.5 and MATLAB 2017b (for RBFN

surrogate models).

4.2.3 Surface Approximation Performance Metrics

Two performance metrics were used for evaluating the surface approximation ability of the

surrogate models: normalized root mean square error (nRMSE) and adjusted-R2. The adjusted-R2

(Miles, 2014) takes into account both the surrogate model accuracy and the size, or complexity, of

the model. Balancing the complexity of the model with the sample size is essential in ensuring that

the model is not overfit, as overfit models do not generalize well to new conditions. However,

adjusted-R2 can unfairly penalize some of the surrogate models that are larger by nature of their

structure, for example, Random Forests, which need to grow larger because of their decision tree

framework. The nRMSE metric was chosen to assess how well the surrogates approximated the

 60

test function without penalizing them for their size. The formula for (nRMSE) is given in Eq. (4.1).

The nRMSE value for each dataset-surrogate model combination is normalized by the range of

output values for easier comparison across datasets with a variety of ranges for output values.

𝑃𝑃𝑅𝑅𝑀𝑀𝑛𝑛𝑛𝑛 = �∑ (𝑦𝑦�𝑛𝑛 − 𝑦𝑦𝑛𝑛)2𝑁𝑁
𝑛𝑛=1

𝐹𝐹
(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛)�

(4.1)

In Eq. (4.1), 𝑦𝑦𝑛𝑛 is the output for point 𝑃𝑃 for a dataset, 𝑦𝑦�𝑛𝑛 is the output predicted by a surrogate

model for point 𝑃𝑃, 𝐹𝐹 is the total number of sample points in the dataset, and 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 are

the maximum and minimum output values in a dataset, respectively.

The formula for calculating adjusted-R2 (𝑅𝑅�2) is shown in Eq. (4.2).

𝑅𝑅�2 = 1 − (1 − 𝑅𝑅2) �
𝐹𝐹 − 1

𝐹𝐹 − (𝑘𝑘 + 1)� (4.2)

In Eq. (4.2), 𝑅𝑅2 is the R-squared regression coefficient, 𝐹𝐹 is the number of data points in the

training set, and 𝑘𝑘 is the number of model parameters (or hyperparameters). 𝑅𝑅2 values typically

fall between zero and one, with an 𝑅𝑅2 of one indicating a perfect fit. However, with the adjustment

for model size, adjusted-R2 values can become negative. The number of model hyperparameters,

𝑘𝑘, was estimated as the number of nodes in the trained ANN, RBFN, and ELM models. For MARS

models, 𝑘𝑘 was estimated as the total number of hinge functions. The 𝑘𝑘 for the ALAMO models

was estimated as the number of nonlinear transformation terms in the final model. The 𝑘𝑘 for SVR

models was estimated as the number of support vectors in the trained model. For GP models, 𝑘𝑘

was estimated as the number of input dimensions, which corresponds to the number of

hyperparameters that are fit for the length scale used in the radial basis function (the kernel function

used in the GP models). For RF models, 𝑘𝑘 was estimated as the average number of decision

threshold values per tree in the forest.

 61

The nRMSE and adjusted-R2 metrics were calculated using the densely sampled 100,000

point test sets generated using Sobol Sequence sampling. One-way analysis of variance (ANOVA)

was applied to determine which dataset characteristics had a statistically significant effect on the

surrogate model performance metrics at a 95% confidence level.

4.2.4 Surrogate-Based Optimization Performance Metrics

We define 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 as the Mahalanobis distance, 𝐷𝐷𝑀𝑀, (De Maesschalck et al., 2000) between

the location of the global minimum of a test function, 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, and the location estimated using a

trained surrogate model, 𝑥𝑥�𝑜𝑜𝑜𝑜𝑡𝑡. This value is normalized by the maximum Mahalanobis distance

between any two points (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) in the dataset (Eq. 4.3),

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 =
𝐷𝐷𝑀𝑀�𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, 𝑥𝑥�𝑜𝑜𝑜𝑜𝑡𝑡�
𝑚𝑚𝐴𝐴𝑥𝑥
𝑖𝑖,𝑗𝑗

𝐷𝐷𝑀𝑀�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�

(4.3)

where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 are points in the domain space of the dataset.

We define 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡, Eq. (4.4), as the normalized gap between the global minimum value and

the estimated one. This value is normalized by the range of output values in the dataset.

𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 =
𝑦𝑦𝑜𝑜𝑜𝑜𝑡𝑡 − 𝑦𝑦�𝑜𝑜𝑜𝑜𝑡𝑡
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛

(4.4)

In Eq. (4.4), 𝑦𝑦𝑜𝑜𝑜𝑜𝑡𝑡 is the actual global minimum value, 𝑦𝑦�𝑜𝑜𝑜𝑜𝑡𝑡 is the one calculated by the surrogate

model, and 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 are the maximum and minimum output values in a dataset, respectively.

4.3 Results and Discussion

4.3.1 Effect of Sampling Method and Sample Size

 The surface approximation performance for MARS models is shown in Fig. 4.2a as a

function of both sample size and sampling method. The average value of the performance metrics

for all 127 test functions is given as a function of the sample size for models trained with datasets

 62

generated from each of the three sample methods tested. Similar to previous studies, the results

here show a general trend of improving performance with the addition of more sample points for

training the surrogate model. Surface approximation performance for all the surrogate modeling

techniques showed a comparable behavior to that of the MARS models. The 90% confidence

interval error bars for the sampling methods have some overlap at all of the sample sizes. From

this result, there does not appear to be any significant difference in the surrogate modeling

performance among the three sampling methods investigated. ANOVA analysis did not indicate

any statistically significant difference in surface approximation performance for any of the

surrogate modeling techniques with changing sampling methods (p > 0.05). The selection of the

space-filling sampling method does not appear to have any effect on the approximation

performance.

 For surrogate-based optimization, only RF and RBFN models showed any statistically

significant differences in the surrogate model performance among the three sampling methods.

The other six surrogate modeling techniques’ performance was not significantly affected by the

choice of the sampling method. The average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 value for RF and RBFN models as a function of

the training set sample size is shown in Fig. 4.2b and Fig. 4.2c for Sobol, Halton, and LHS

sampling. For RF models (Fig. 4.2b), the 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 values for models trained with Sobol sequence

sampling data tend to be in general lower than those of models trained with data generated from

the other two sampling methods, meaning that the optimum locations predicted by RF models

trained with Sobol samples are on average closer than those given by other sampling methods.

ANOVA analysis further confirmed that the models trained using Sobol sequence samples had

statistically significantly lower values for 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 at each of the sample sizes investigated. The models

trained using Sobol sequence samples also had statistically lower values of 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 for RBFN models

 63

(Fig. 4.2c) at a sample size of 50 (p = 0.002). These results indicate that while the sampling method

does not affect surface approximation performance, for some surrogate modeling techniques, the

choice of sampling method can have a substantial impact on the performance of the model for

surrogate-based optimization, especially at lower sample sizes.

 64

Figure 4.2 - (a) MARS performance for different sampling methods as a function of sample size for average
nRMSE on all 127 test functions. (b) Average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡vs. sample size for RF models. (c) Average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡vs. sample

size for RBFN models. Error bars represent 90% confidence intervals on the averages.

(a)

(c)

(b)

 65

4.3.2 Comparison of surrogate modeling technique performance for surface approximation

 There was no significant difference in the surface approximation performance of the

surrogate models trained using the sample points generated using Sobol and Halton sequences and

LHS. Therefore, results presented in this section only include surrogate models trained with

datasets generated via Sobol sequence sampling. Results are presented in this section for three

selected sample sizes. The surface approximation performance metric results are presented in

violin plot format. The shape of each violin represents the probability density distribution of the

data values. The top and bottom of the violin represent minimum and maximum values, with the

black bar within each violin representing the interquartile range of the values. Median values are

indicated on each violin by a white circle.

4.3.4 Selection of Surrogate Modeling Technique for Surface Approximation by Adjusted-R2

Results obtained based on the adjusted-R2 are summarized in Fig. 4.3. The adjusted-R2 was

used to take into account the model size and complexity in addition to its accuracy (Miles, 2014).

This metric can be used to select a “best” model to use for approximation while controlling for

overfitting by selecting the technique that provides the highest value of adjusted-R2. Adjusted-R2

values were calculated for all the trained surrogate models for each dataset. For each dataset

category (either input dimension or shape), the number of times each surrogate modeling technique

was selected as best (had the highest adjusted-R2) was tabulated for the datasets in that category.

These tabulated values were divided by the total number of datasets in the category to calculate

the fraction of datasets for which each surrogate modeling technique was selected as best

performing. The number of datasets included in each category is given below the x-axis for Fig.

4.3.

 66

Figure 4.3 shows which surrogate modeling techniques are selected most frequently when

the datasets are grouped by their input dimension and function shape. Although at the smallest

sample size tested, RBFN models give the highest adjusted-R2 more frequently at the higher input

dimensions, ALAMO provides the highest adjusted-R2, and thus the closest approximation, the

highest percentage of the time at low input dimension. The superior approximation performance

of RBFN models is not observed at higher sample sizes when considering selecting the “best”

model by the adjusted-R2. In general, ALAMO provides the most robust performance for yielding

the highest adjusted-R2. However, as the dimension and sample size increase, GP and MARS

models begin to perform as well or better than ALAMO models.

At the largest sample size (Fig. 4.3b), GP and MARS models demonstrate opposite trends

with increasing input dimension until eight inputs. The selection frequency of GP models as having

the highest adjusted-R2 (Fig. 4.5b) deteriorates while that of MARS improves. At input dimensions

higher than eight, both GP and MARS models have decreasing selection frequencies. GP models

use interpolation between the given training points to estimate outputs at new input conditions. As

the number of input dimensions increases, GP models require a higher number of training points

to more accurately capture a surface’s behavior in a region for interpolating to new conditions.

This may explain why MARS models begin to outperform GP models at higher dimensions, as the

hinge functions of the MARS models are not dependent on interpolation.

Figs. 4.3c and 4.3d show which surrogate modeling techniques are selected most frequently

when the datasets are grouped by function shape. When the datasets are grouped by the function

shape, different techniques yield the best adjusted-R2 values at different sample sizes. For bowl

and multi-local minima shaped functions, MARS and ALAMO models give the highest values for

the largest percentage of the datasets at smaller sample sizes. The hinge functions of the MARS

 67

models and the several available nonlinear transformations of ALAMO models may make them

particularly suitable for mimicking the convex behavior of the bowl-shaped functions and for

approximating the somewhat “noisy” surface of the multi-local minima functions. When the

sample size grows, GP models also begin to perform well for multi-local minima functions as they

gain more information for more accurate interpolations. When the sample size grows, GP models

also begin to perform well for multi-local minima functions. Also, GP models are selected the most

frequently at all sample sizes for the other functions, which do not fit into any of the other four

defined shape categories. ANN models provide the best models for plate-shaped functions with

smaller samples but are outperformed as sample size increases. The model selection for valley

functions is spread fairly evenly among a few modeling techniques, which may suggest that

additional characteristics should be considered when selecting a surrogate model for a similar

dataset.

RF models did not perform the best for any of the datasets considered. SVR performed best

for very few, indicating that if adjusted-R2 is the performance metric of interest, these models may

not be suitable choices. These results indicate that there is some dependence of the surrogate model

surface approximation performance on the overall shape of the function the dataset was generated

from, the input dimension, and the sample size, especially when all these factors are considered

together.

 68

Figure 4.3 - Percentage of datasets grouped by input dimension for which each surrogate modeling technique had the highest
adjusted-R2 for sample sizes: (a) 50 and (b) 1600. Percentage of datasets grouped function shape for which each surrogate modeling

technique had the highest adjusted-R2 for sample sizes: (c) 50 and (d) 1600.

(a) (b)

(c)

 69

4.3.5 Effect of Underlying Function Input Dimension and Function Shape on Surface

Approximation Performance

Results obtained for the effect of input dimension of the test function (and resulting training

dataset) on the nRMSE and adjusted-R2 for each surrogate modeling technique at a sample size of

50 are summarized in Fig. 4.4. RBFN and MARS models have better performance than the other

techniques at the smaller sample sizes tested. Although many of the techniques appear to perform

comparably for approximation based on their nRMSEs, the performance metric values deteriorate

when adjusted for the model size with the adjusted-R2. This indicates that while many of the

techniques can capture the general surface of the test functions at small sample sizes, they do so at

the expense of overfitting. This overfitting trend is particularly apparent for ELM and ANN

models, for example. With increasing sample sizes, the adjusted-R2 values and nRMSE follow

similar trends, as increased sample sizes allow for larger models that can still avoid overfitting.

The results for adjusted-R2 are summarized for sample sizes of 400 and 1600 in Fig. 4.5.

In general, at these larger sample sizes, MARS models perform the most robustly with respect to

the input dimensions. ANOVA analysis confirms this robust behavior with respect to dimensions

for MARS models, revealing no significant difference between the nRMSE values of each

dimension (p = 0.43). MARS and GP models at lower input dimensions yield higher values, close

to one, of adjusted-R2. However, the GP model performance worsens as the dimension increases,

which matches the trend from the results for model selection (Fig. 4.3b), illustrating the

dependence of model performance on dimension. The robust performance of MARS models may

be due to their effective partitioning of the design space with the hinge functions and the accurate

modeling of nonlinearities in these partitions by the products of hinge functions. Input dimension

has different levels of effects on the surrogate modeling technique performance at larger sample

 70

sizes. RF and RBFN model performance becomes progressively worse with increasing

dimensions, while ALAMO model performance does not change much at different input

dimensions. ALAMO’s robust approximation performance with respect to input dimension may

be due to its ability to perform multiple nonlinear transformations for each input dimension

separately.

While the selection of a modeling form by adjusted-R2 can be useful, selecting a single

surrogate model as the best for a dataset may be misleading, as multiple models may perform

almost identically for the same dataset. For example, although ALAMO models are selected most

frequently as best for bowl-shaped test functions (Fig. 4.3c and Fig. 4.3d), MARS and GP models

are selected most frequently as second-best when ALAMO models are the best performing.

However, statistical analysis revealed that, on average, MARS models give higher adjusted-R2

values than ALAMO for bowl-shaped functions, and GP model performance was not significantly

different from that of ALAMO (at a significant level of 0.05). Furthermore, ANN models were

selected as best (with the highest adjusted-R2) for plate-shaped functions most frequently (Fig. 3b

and Fig. 3c), but their adjusted-R2 values (Fig. 4.5b) were only significantly different from RF,

SVR, and ELM models for that shape category. Based on these results, multiple surrogate

modeling techniques can be successfully applied to a dataset to produce similarly accurate

approximations, and one may not need to rely on a single best choice.

 71

Figure 4.4 - (a) nRMSE and (b) adjusted-R2 for datasets grouped by underlying function dimension

(a)

(b)

 72

Figure 4.5 - Adjusted-R2 for models trained with sample sizes of (a) 400 and (b) 1600

(a)

(b)

 73

 Results for the effects of the underlying function shape on the performance of the surrogate

models for surface approximation are summarized in Fig. 4.6. All of the surrogate models had poor

approximation performance and a high level of overfitting, indicated by negative adjusted-R2

values, with respect to the function shape at sample sizes less than 200. Therefore, adjusted-R2

results for sample sizes of 400 and 1600 are presented. GP and MARS models provide the most

robust performance when considering the test function shape, though none of the techniques

perform well overall for the test functions with multi-local minima shape.

The function shape does have an impact on the surrogate models’ performance for some of

the other techniques. Although overall, GP and MARS models give significantly lower values of

nRMSE than the other techniques (p < 0.05), when considering only bowl-shaped functions,

ALAMO models provided the lowest nRMSE values and best performance (p < 0.05). In addition,

while ELMs have poor performance in general for bowl and valley-shaped functions, they perform

very well in approximating plate-shaped functions, with adjusted-R2 values close to one. Both

ANN and ELM models demonstrate improved performance for plate-shaped functions in

comparison to the other shape categories. The on-or-off nature of the nodes and activation

functions in these model types may make them especially suitable to approximate the flat or nearly

so portions of the plate-shaped surfaces. Results for surface approximation suggest that for datasets

where specific characteristics are not available, a MARS or GP model would be appropriate to

select as a general guideline. However, if characteristics are available, other models might provide

a better approximation.

 74

Figure 4.6 - Adjusted R2 for models trained with sample sizes of (a) 400 and (b) 1600 group by

underlying function shape. N values below the function dimensions indicate the number of test

functions used for each shape category

 75

4.3.6 Comparison of surrogate modeling technique performance for surrogate-based optimization

The computational experiments for surrogate-based optimization were executed by using

each surrogate model to estimate the minimum of each function and the location of the minimum.

Then, these results were compared to the global minimum and its true location using two metrics,

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 (Eq. 4.3) and 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 (Eq. 4.4). Results are summarized in Figs. 4.7, 4.8 and 4.9, where we

define a model as having located the optimum when it obtains a 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 or 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 value less than a

threshold. The thresholds for 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 and 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 are 5% and 0.01%, respectively. Threshold for 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡

was selected in terms of how close the estimate needed to be to still get a reasonable estimate of

the optimum value with the predicted location (within 1% error of the output range) and to also

yield a reasonable separation in the performance of models. The 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 threshold was selected using

1% of the output range as a measure of a good model fit.

Figure 4.7 shows the results for how well the surrogate models locate the global minimum

of each test function when they are grouped by the function dimension for sample sizes of 50 (Fig.

4.7a) and 400 (Fig. 4.7b). Surrogate-based optimization performance with respect to underlying

function shape did not differ significantly with sample size, so only results for 1600 samples are

presented here (Figs. 4.8 and 4.9). RF and SVR models, in general, locate the minima for the

highest fraction of the datasets when datasets are grouped by both shape (Fig. 4.9a) and input

dimension (Fig. 4.8a). ANOVA analysis on the mean 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 of those two techniques versus that of

the others indicates that the locations given by SVR and RF values are significantly lower (p <

0.05). Contrastingly, both techniques had some of the worst performances for approximating the

design space, with higher values for nRMSE and lower values of adjusted-R2.

While the RF models perform well in capturing the overall curvature of the underlying

function in each dataset, they perform poorly for predicting the actual output values. This may be

 76

due to their utilization of decision trees. The “rules” of the decision trees that determine movement

between nodes provide less accurate, more noisy predictions for outputs but may be effective in

dividing the domain of the dataset in a way that allows the solver to pinpoint the location of the

minimum accurately. The support vectors in SVR models may serve a similar function to the

decision tree rules in RF models. GP models perform most robustly in estimating the actual global

minima values, in general, with respect to both shape and dimension, which may be related to their

ability to approximate the surfaces for the datasets accurately.

Both function input dimension and function shape impacted the surrogate models’

estimation of optimum values. While ANN models only identify the optimum value for about 25%

of the bowl-shaped test functions (Fig. 4.9b), they can identify close to 80% of the optimum values

for the plate-shaped functions. On the other hand, ALAMO models can identify optimum values

much more accurately for bowl-shaped functions than for plate-shaped ones. The optimum value

estimation seems to be more closely linked to the approximation performance than is the

estimation of the optimum location, as ALAMO models were more accurate in approximating

bowl-shaped functions and ANN models were more accurate for plate-shaped ones. At the higher

input dimensions of 10 and 15, the optimization problems of the many surrogate models were not

solved to 0.001% optimality gap within 48 hours (wall time). Specifically, none of the optimization

problems for GP, ELM or RBFN models and very few of the SVR and ANN models could be

solved within the allotted computational time. In contrast, the optimization problems constructed

using RF, MARS, and ALAMO models were solved to optimality within 72 hours (wall time) for

all test functions at high input dimensions. Therefore, our computational test results recommend

using only those three techniques for surrogate-based optimization at input dimensions higher than

 77

10. A summary of these findings for surrogate-based optimization, as well as those for surface

approximation, is provided in Table 4.2.

 78

Table 4.2 - Summary of findings for surrogate modeling technique performance

Model Advantages Disadvantages

ALAMO -Accurate for approximation and optimization of convex

(“bowl”-shaped functions)

-Relatively short optimization solution times

ANN -Accurate approximation and optimization of plate-

shaped functions

-Requires a relatively large number of samples for

approximating several function types accurately

-High computational time for optimization solutions,

particularly at high input dimension

ELM -Accurate approximation of plate-shaped functions

-Relatively short model training times

-Requires a relatively large number of samples for

approximating several function types accurately

-High computational time for optimization solutions,

particularly at high input dimension

GP -Accurate approximation of several function types -High computational time for optimization solutions,

particularly at high input dimension

-High model training times

 79

MARS -Accurate approximation of several function types

-Optimization problems remain tractable, even at high

input dimension

-Not as accurate for optimization of test functions

RBFN -More accurate than other techniques for optimization at

smaller sample sizes

-High computational time for optimization solutions,

particularly at high input dimension

RF -MILP structure of optimization problem provides

accurate optimization solutions with relatively low

solution times

-Less accurate than other techniques for approximation

surfaces in general

SVR -Relatively short model training times

-Accurate optimization of several function types,

particularly at small sample sizes

-Less accurate than other techniques for approximation

surfaces in general

-High computational time for optimization solutions,

particularly at high input dimension

 80

4.3.7 Computational Efficiency of Solving the Resulting Optimization Problems

The solvers used for optimization are provided in Table 4.3. For each modeling technique,

the selected solver was the most appropriate for the resulting optimization model (Table 4.3). The

average computational times required for solving the optimization problems to estimate the global

minima of the test functions for each surrogate modeling technique are also included in Table 4.3.

The average solution times reported in Table 4.3 are for the optimization problems that were solved

to optimality within 48 hours. The solution time is dependent on final model size and structure,

with larger, more complex models taking a much longer time to solve than linear models or models

with fewer parameters.

GP models have the highest average solution times because the radial basis kernel function

used and the interpolation of the model based on the training data points result in a large, highly

nonlinear optimization model. The high degree of nonlinearity and number of parameters in the

optimization problems of ANN, ELM, RBFN, and SVR models also presented difficulties, with a

large proportion of the problems not being solved within 48 hours (wall time). The range of

optimality gaps for the models that did not reach a gap of 0.001% within the set time limit were

1% - 10% for ANN, 0.5% - 14% for ELM, 0.009% - 1x107 % for GP, 4% - 1x103 % for RBFN,

and 0.14% to 195% for SVR.

Although they are some of the more accurate models for locating optima and the resulting

optimization models do not, in general, become computationally intractable, the optimization

problems of RF models have the highest average value for the solution time. The solution time for

RF-based optimization problems may be reduced by developing specialized algorithms that exploit

the special structure of RF model MILPs as RF models were successful in pinpointing the location

 81

of the minimum. While MARS models had relatively low optimization solution times, the

solutions given by MARS models were less accurate than those of other methods.

Table 4.3 - Solvers and solution times for surrogate-based optimization (NLP = Non-linear

program, MINLP = Mixed integer non-linear program, MILP = Mixed integer linear program).

Surrogate

Model

Resulting

Optimization

Model

Solver
Average Solution

Time (min)

ALAMO NLP BARON 4.4

ANN NLP BARON 664

ELM NLP BARON 9.4

GP NLP BARON 2169

MARS MINLP ANTIGONE 7.9

RBFN NLP BARON 33

RF MILP CPLEX 27

SVR NLP BARON 288

 82

Figure 4.7 - Fraction of datasets with 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 less than 5% grouped by input dimension for sample size (a) 50 and (b) 400

(a)

(b)

 83

Figure 4.8 - Fraction of datasets with (a) 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 and (b) 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 less than threshold grouped by input dimension for sample size of 1600

(a)

(b)

 84

Figure 4.9 - Fraction of datasets with (a) 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 and (b) 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 less than threshold grouped by

function shape for sample size of 1600. N values below the function dimensions indicate the

number of test functions used for that input dimension

(a)

(b)

 85

4.3.8 Functions for Which None of the Surrogate Modeling Techniques were Accurate

 For both the surface approximation and surrogate-based optimization applications, there

were some test functions for which none of the surrogate modeling techniques investigated were

able to achieve accurate estimates, even at the largest sample size. The two-dimensional

projections of the three functions that none of the surrogate modeling techniques were able to fit

with an adjusted-R2 of at least 0.90 are shown in Fig. 4.10(a) – (c). These functions all come from

the multi-local minima shape category. The frequency of these functions’ peaks may make the

surfaces too noisy for approximating with any of the techniques, and other modeling approaches

may be necessary to get an accurate approximation.

The two-dimensional projections of a selection of the functions that none of the surrogate

modeling techniques located the optimum within a 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 value of 5% are shown in Fig. 4.10(d) –

(f). There were seven of these functions. When compared to the rest of the test functions, these

seven had a range of output values that were several orders of magnitude higher, which may have

given the solvers used difficulty in locating the optimum point. Most came from the plate and

valley-shaped function categories. The large flat segments of these surfaces could have caused

difficulty in locating the optimums, causing the solvers to get trapped in them. There was no

overlap between the functions that were not modeled accurately for approximation and the

functions whose optimum locations could not be found, further indicating that selection of a

surrogate model for the two different applications may be unrelated. Although there were some

common characteristics for the functions that could not be adequately modeled using these

approaches, further work is needed on the specific characteristics of a dataset that may make it an

inappropriate candidate for these traditional surrogate modeling methods.

 86

Figure 4.10 - Functions that could not be approximated by any of the surrogate models (a) – (c)

or for which the optimum could not be located (d) – (f). (a) Eggholder function (multi local

minima-shaped) (b) Rastrigin Function (multi local minima-shaped) (c) Ackley function (multi

local minima-shaped) (d) Perm function (bowl-shaped) (e) Rosenbrock function (valley-shaped)

(f) Zakharov function (plate-shaped)

4.4 Conclusions and Future Directions

The selection of the appropriate surrogate modeling technique depends on both the desired

application of the surrogate model and the characteristics of the dataset being modeled. Although

surface approximation using surrogate models is not significantly impacted by the choice of space-

filling sampling method, the quality of solutions obtained from surrogate-based optimization can

be dependent upon the sampling method, particularly at small sample sizes. For general selection

rules, MARS and GP models give the most accurate predictions for design space approximation,

and RF, SVR, and GP models give the most accurate estimations for surrogate-based optimization.

(e)

(b) (a)

(f) (d)

(c)

 87

The main limitation of this study is that the analysis was carried out only on relatively

smooth functions (with the exception of a few) with only continuous outputs. The results may not

be applicable to more noisy data or to data that has binary or integer inputs and/or outputs. In

addition, the “shape” data characteristic is not one that can readily be applied to other data in

determining which surrogate modeling technique might be the most appropriate. Next chapter of

this dissertation focuses on developing specific, quantifiable data characteristics related to the

shape that can be calculated based only on available inputs and outputs and capturing the overall

data behavior to make the recommendations for surrogate modeling selection more generalizable

to other data.

 88

Chapter 5 – Development of PRESTO (Predictive REcommendation of

Surrogate models to approximate and Optimize)

Various techniques have been developed for constructing surrogate models for both

regression and classification tasks (Breiman, 2001; Cozad et al., 2014; Drucker et al., 2002;

Rasmussen & Williams, 2005). The current common practice for choosing a model form from the

many available techniques relies on process-specific expertise or expensive trial-and-error

methods. When selecting a surrogate model with user expertise, only a small subset of the many

possible techniques that the user is most familiar with may be considered as candidates. This

selection method, as well as trial and error, which is limited by computational resources, may fail

to exploit the large pool of surrogate modeling techniques available and lead to a sub-optimal

model selection. A systematic, automated procedure for selecting the appropriate surrogate model

for a given application would avoid this issue.

 This work aims to develop a framework to automatically select the set of surrogate models

that will perform the best for a particular set of data based on the characteristics of the data and

the application that the surrogate model would be used for. Our work comparing surrogate model

performance demonstrated that there is a link between the characteristics of the dataset and how

well different surrogate modeling techniques will perform for it for both surface approximation

and surrogate-based optimization (Williams & Cremaschi, 2021b). To achieve this aim, we

developed PRESTO (Predictive REcommendation of Surrogate models to approximate and

Optimize), a random forest-based surrogate model selection tool. Given a set of data, PRESTO

classifies each surrogate modeling technique in a set of candidate models as either recommended

or not recommended based on the application, surface approximation or surrogate-based

 89

optimization. The set of candidate surrogate modeling techniques considered by PRESTO includes

Automated Learning of Algebraic Models using Optimization (ALAMO), single hidden layer

feed-forward Artificial Neural Networks (ANN), Extreme Learning Machines (ELM), Gaussian

Process Regression (GPR), Multivariate Adaptive Regression Splines (MARS), Radial Basis

Function Networks (RBFN), Random Forests (RF), and Support Vector Machine Regression

(SVR). The tool provides these recommendations without training any of the models, avoiding

much computational expense.

5.1 PRESTO Construction Data and Surrogate Model Training

Datasets were generated for training surrogate models from a suite of optimization test

functions (Surjanovic & Bingham, 2013). The functions with two, four, six, eight, ten, fifteen, and

twenty input dimensions were utilized, resulting in 127 test functions. The test functions are

grouped by their underlying functional shape. In this analysis, we have considered five shape

categories: bowl-shaped, plate-shaped, valley-shaped, multi-local-minima-shaped, and other-

shaped. Full descriptions of the characteristics of each shape category are provided in Williams

and Cremaschi (2021). Input-output pairs were generated from each test function to create datasets

at seven different sample sizes (50, 100, 400, 800, 1200, and 1600 samples) using Sobol sequence

sampling (Joe & Kuo, 2008), a quasi-random low discrepancy sequence, and resulting in 791

generated datasets. Detailed information on the choice of sample sizes and sampling methods is

described in Section 4.2.

A model was trained using each of the eight surrogate modeling techniques for each of the

generated datasets, resulting in 6328 trained models. Each technique has a unique set of

hyperparameters that was optimized while training the models for each dataset to construct the

best possible surrogate model without overfitting. After the models were trained for each dataset

 90

and sampling method, 100,000 input-output pairs were generated from the test functions using the

Sobol sequence sampling method to test the accuracy of the surrogate models’ predictions. To

evaluate the performance of the surrogate models for surrogate-based optimization, the

optimization models to determine the global minimum of each trained surrogate model were

constructed in Pyomo (version 5.6), a Python-based optimization language (Hart et al., 2017; Hart

et al., 2011). The resulting optimization problems were solved with a global solver most

appropriate for the form of the problem (MINLP, MILP, or NLP) (Williams & Cremaschi, 2021b).

Computations were carried out on the Auburn University Hopper HPC Cluster (Lenovo System X

HPC Cluster) using Intel E5-2650 V3, 2.3 GHz 20 core processors and implemented in Python 3.7

and MATLAB 2017b (for RBFN surrogate models).

5.2 Feature Engineering and Attribute Extraction for Training PRESTO

 Attributes calculated based only on the input and output values of each dataset were used

as inputs for PRESTO’s surrogate model recommendation classification. For surface

approximation, the performance metric used to determine if a model would be considered

recommended or not is the estimated adjusted R-squared for the model (Eq. 5.1). The adjustments

used for each surrogate modeling technique are listed in Section 4.2. The performance metric used

to make recommendations for surrogate-based optimization is the normalized Mahalanobis

distance between the optimum point(s) estimated by the surrogate models and the actual optimum

location of the underlying test function used to generate the model (Eq. 5.2).

𝑅𝑅�2 = 1 − (1 − 𝑅𝑅2) �
𝐹𝐹 − 1

𝐹𝐹 − (𝑘𝑘 + 1)� (5.1)

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 =
𝑀𝑀�𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, 𝑥𝑥�𝑜𝑜𝑜𝑜𝑡𝑡�
𝑚𝑚𝐴𝐴𝑥𝑥
𝑖𝑖,𝑗𝑗

𝑀𝑀�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�
 (5.2)

 91

In Eq. (5.1), 𝑅𝑅2 is the R-squared regression coefficient, 𝐹𝐹 is the number of data points in

the training set, and 𝑘𝑘 is the number of model parameters (or hyperparameters). In Eq. (5.2), 𝑥𝑥𝑖𝑖

and 𝑥𝑥𝑗𝑗 are points in the domain space of the dataset, 𝑀𝑀 is the Mahalanobis distance (De

Maesschalck et al., 2000) between the location of the global minimum of a test function, 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, and

the location estimated using a trained surrogate model, 𝑥𝑥�𝑜𝑜𝑜𝑜𝑡𝑡. 𝑀𝑀 is normalized by the maximum

Mahalanobis distance between any two points (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) in the dataset (Eq. 5.3). Mahalanobis

distance is the distance between two points in multivariate space. This distance between two

objects, 𝑥𝑥 and 𝑦𝑦, can be calculated as

𝑀𝑀(𝑥𝑥,𝑦𝑦) = �(𝑥𝑥 − 𝑦𝑦)𝑇𝑇𝑀𝑀−1(𝑥𝑥 − 𝑦𝑦) (5.3)

where 𝑀𝑀−1 is the sample covariance matrix. It has an advantage over Euclidean distance as it

considers correlations in the dataset, and large scaling differences between the dimensions,

because the distances are normalized with variance. The Mahalanobis distance is thus unitless and

scale-invariant (De Maesschalck et al., 2000).

The attributes are used to capture the overall behavior of the datasets using numeric

measures. A total of 38 attributes were defined for the datasets. Twenty of the attributes were

previously defined and described in detail in Garud et al. (2018). These include attributes related

to estimated gradients and curvatures, attributes related to the distribution of the outputs (such as

the first four moments of the output value distribution), and attributes related to the dataset’s

extreme minimum and maximum values.

An additional 18 new attributes are defined in this work. LEAPS2, the model selection

framework described in (Garud et al., 2018), was only trained to select models for surface

approximation. In addition, there were no attributes directly related to the distributions of the

 92

inputs in the dataset. These additional attributes were constructed to include information about the

arrangement of the inputs for the datasets and provide characteristics of the data that may have a

larger effect on the optimization performance.

5.2.1 Input Related Attributes

In Eqs. (5.4) – (5.6), M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� is the Mahalanobis distance between any two points 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 in

the domain space. Let 𝐷𝐷 be equal to the number of input dimensions in the dataset and 𝐹𝐹 be equal

to the total number of data points.

Minimum Mahalanobis distance: This is the minimum Mahalanobis distance between any two

points in the input space (Eq. 5.4).

𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 = min
𝑖𝑖,𝑗𝑗

M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�
(5.4)

Maximum Mahalanobis distance: This is the maximum Mahalanobis distance between any two

points in the input space (Eq. 5.5).

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖,𝑗𝑗

M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� (5.5)

Average Mahalanobis distance: This is the average Mahalanobis distance between any two

points in the input space (Eq. 5.6).

𝑀𝑀𝑚𝑚𝑎𝑎𝑔𝑔 =
1
𝐹𝐹2�M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� (5.6)

Euclidean to Mahalanobis distance ratio: This ratio of the average pairwise Euclidean distance

to the average Mahalanobis distance estimates the level of correlation, if any, between the dataset

inputs and the magnitude of variance. When there is no correlation between the variables, the

covariance matrix used to calculate the Mahalanobis distance becomes the identity covariance

 93

matrix, and the Euclidean and Mahalanobis distances become equal to each other, which makes

the value of this ratio one. The average Euclidean distance is calculated as

𝑛𝑛𝑚𝑚𝑎𝑎𝑔𝑔 =
1
𝐹𝐹2��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� (5.7)

The Euclidean to Mahalanobis distance ratio can then be estimated by

𝑅𝑅𝐸𝐸/𝑀𝑀 =
𝑛𝑛𝑚𝑚𝑎𝑎𝑔𝑔
𝑀𝑀𝑚𝑚𝑎𝑎𝑔𝑔

(5.8)

5.2.2 Gradient-Based Attributes

From Garud et al. (2018), for any point in the data set, 𝑥𝑥(𝑖𝑖), let 𝑥𝑥(𝑗𝑗) be its nearest neighbor based

on the Euclidean distance and 𝑦𝑦(𝑖𝑖) be its response. Then, the gradient vector of the response, 𝑔𝑔(𝑖𝑖),

at 𝑥𝑥(𝑖𝑖) can be estimated using Eq. (5.9), where 𝑥𝑥𝑑𝑑
(𝑖𝑖) is the value of input dimension 𝑑𝑑 for point 𝑥𝑥(𝑖𝑖),

and 𝑒𝑒 is a small number related to the precision of the numbers in the dataset. These gradient-based

attributes were added to the attribute set because the gradients indicate the overall shape of the

surface, and our studies have shown that surrogate-based optimization performance is dependent

on the underlying shape of the surface being modeled (Williams & Cremaschi, 2021b).

𝑔𝑔(𝑖𝑖) = �𝑔𝑔𝑑𝑑
(𝑖𝑖) =

�𝑦𝑦(𝑖𝑖) − 𝑦𝑦(𝑗𝑗)� 𝑃𝑃𝑃𝑃𝑔𝑔𝑃𝑃 �𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗)�

𝑚𝑚𝐴𝐴𝑥𝑥 �𝑒𝑒, �𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗)��
� 𝑑𝑑 = 1,2, … ,𝐷𝐷�

(5.9)

In Eq. (5.9), the sign function is defined as

𝑃𝑃𝑃𝑃𝑔𝑔𝑃𝑃 �𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗)� = �1, 𝑃𝑃𝑖𝑖 𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗) ≥ 0
−1, 𝑃𝑃𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑃𝑃𝑃𝑃𝑒𝑒

(5.10)

Average magnitude of gradient vector: This attribute (Eq. 5.11), which is the average value of

the magnitude of the gradient vector 𝑔𝑔(𝑖𝑖), across all sample points, aims to provide a measure of

the average steepness of the surface being modeled.

 94

𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔 =
1
𝐹𝐹
��𝑔𝑔(𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

(5.11)

Standard deviation of gradient vector magnitudes: The standard deviation of the magnitude of

the gradient vector 𝑔𝑔(𝑖𝑖) across all sample points gives an estimate of the non-linearity of the

surface (Eq. 5.12).

𝑔𝑔𝑠𝑠𝑡𝑡𝑑𝑑 = �
1

𝐹𝐹 − 1
��|𝑔𝑔(𝑖𝑖)| − 𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔�

2
𝑁𝑁

𝑖𝑖=1

(5.12)

Minimum and maximum gradient vector magnitudes: These attributes describe the minimum

(Eq. 5.13) and maximum (Eq. 5.14) values for the magnitudes of the gradient vectors for sample

points in the data set.

𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛 = min
𝑁𝑁

𝑔𝑔(𝑖𝑖) (5.13)

𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑁𝑁

𝑔𝑔(𝑖𝑖) (5.14)

Ratios of gradient vector magnitudes: These attributes aim to capture the average “bumpiness”

or noisiness of the surface by measuring how sharply the gradients change on average throughout

the surface (Eqs. 5.15-5.17). Higher values of these ratios indicate a noisier surface.

𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔,𝑚𝑚𝑖𝑖𝑛𝑛 =
𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔
𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛

 (5.15)

𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔
𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚

 (5.16)

𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑖𝑖𝑛𝑛 =
𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛

 (5.17)

Skewness of gradient vector magnitudes: The skewness of the gradient magnitudes estimates a

measure of the asymmetry of the distribution of the gradient vector magnitudes (Eq. 18).

 95

𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
∑ ��𝑔𝑔(𝑖𝑖)� − 𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔�

3𝑁𝑁
𝑖𝑖=1

𝐹𝐹(𝑔𝑔𝑠𝑠𝑡𝑡𝑑𝑑)3 (5.18)

5.2.3 Response (Output)-Based Attributes

These response-based attributes were developed and added to the attribute set to provide insights

into how concentrated (or sparse) the output values are distributed at the extreme high and low

output values. Data that is concentrated in certain areas and not well-distributed over the entire

possible output space may produce models whose predictions do not generalize well over the

space. However, if data is concentrated at extreme values, a trained model may be better able to

closely locate the optimum for the dataset.

Upper and lower tail average: These attributes calculate the average value of the response values

in the top 5% and bottom 5% of responses.

Upper and lower tail relative size: This is the ratio of the number of output responses in the top

(Eq. 5.19) and bottom (Eq. 5.20) 5% of values to the total number of data points. These attributes

aim to estimate how well distributed the response values are over the range of responses. In Eqs.

(5.19) and (5.20), 𝐹𝐹𝑢𝑢 and 𝐹𝐹𝑙𝑙 represent the number of output responses in the top 5% and bottom

5% of values, respectively.

𝐴𝐴𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 =
𝐹𝐹𝑢𝑢
𝐹𝐹

 (5.19)

𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 =
𝐹𝐹𝑙𝑙
𝐹𝐹

 (5.20)

Ratio of lower to upper tail size: This ratio (Eq. 5.21) describes how evenly the output responses

are distributed between the upper and lower extremes of the output values.

 96

𝑟𝑟𝑙𝑙/𝑢𝑢 =
𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
𝐴𝐴𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

 (5.21)

5.2.4 Other Attributes

Average local convex deviation: This deviation (Eq. 5.27) aims to estimate the convexity of the

function from which the input-output data was generated. We hypothesize that this metric may be

important for determining the appropriate surrogate modeling technique for surrogate-based

optimization.

Let 𝐴𝐴(𝑚𝑚),𝑚𝑚 = 1,2, … ,𝑀𝑀 be some sample points generated on the input domain of the dataset using

Latin hypercube sampling.

𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = min
𝑚𝑚≠𝑛𝑛

�𝐴𝐴(𝑚𝑚) − 𝐴𝐴(𝑛𝑛)� (5.22)

We can construct a hypersphere of diameter 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 (Eq. 5.22) around each point 𝐴𝐴(𝑚𝑚) to create a

local “neighborhood” of dataset points 𝑥𝑥(𝑖𝑖) around each center, where 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 is the minimum

distance between 𝐴𝐴(𝑚𝑚) and any other generated sample point, 𝐴𝐴(𝑛𝑛). Then, we define the convex

difference for each point in the neighborhood as in Eq. (5.23),

𝑀𝑀𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑
(𝑖𝑖),(𝑚𝑚) = �𝑦𝑦(𝑖𝑖) − 𝑦𝑦𝑐𝑐𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑚𝑚

(𝑖𝑖) � (5.23)

and the average convex difference in the neighborhood is given in Eq. (5.24),

𝑀𝑀�̅�𝑑𝑖𝑖𝑑𝑑𝑑𝑑
(𝑚𝑚) =

1
𝐾𝐾
�𝑀𝑀𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑

(𝑖𝑖),(𝑚𝑚)
𝐾𝐾

𝑖𝑖=1

(5.24)

where 𝑦𝑦𝑐𝑐𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑚𝑚
(𝑖𝑖) is the response of a known convex function (Eq. (25))

𝑦𝑦𝑐𝑐𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑚𝑚
(𝑖𝑖) = 0.1�𝑥𝑥(𝑖𝑖)�

4
 (5.25)

for the input 𝑥𝑥(𝑖𝑖). Figure 5.1 illustrates the process for calculating 𝑀𝑀𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑
(𝑖𝑖),(𝑚𝑚).

 97

The local convex deviation in each neighborhood can then be calculated as in Eq. (5.26)

𝑀𝑀𝑑𝑑𝑠𝑠𝑎𝑎
(𝑚𝑚) = �

1
𝐾𝐾 − 1

��𝑀𝑀𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑
(𝑖𝑖),(𝑚𝑚) − 𝑀𝑀�̅�𝑑𝑖𝑖𝑑𝑑𝑑𝑑

(𝑚𝑚) �
2

𝐾𝐾

𝑖𝑖=1

(5.26)

where 𝐾𝐾 is the number of points from the dataset in the neighborhood 𝑚𝑚. The average local convex

deviation is given in Eq. (5.27).

𝑀𝑀�̅�𝑑𝑠𝑠𝑎𝑎 =
1
𝑀𝑀
�𝑀𝑀𝑑𝑑𝑠𝑠𝑎𝑎

(𝑚𝑚)
𝑀𝑀

𝑖𝑖=1

(5.27)

 98

Figure 5.1 - Steps for generating neighborhoods for convex difference calculations

 99

5.3 PRESTO Framework Construction

Random forest classification models were trained for each surrogate modeling technique

to predict whether the surrogate should be recommended or not recommended for a dataset.

Random forests are surrogate models that make output predictions based on inputs by combining

predictions from a collection of decision trees. Each tree in a random forest model is constructed

independently and depends on a random vector sampled from the input data, with all the trees in

the forest having the same distribution (Brieman, 2001). Random forests have successfully been

used for both regression and classification tasks, performing with high prediction accuracy for both

small sample sizes and high dimensional data.

Separate classification models were trained for surface approximation and surrogate-based

optimization. The calculated attributes were used as inputs, and the assigned recommendation

classes (“recommended” or “not recommended”) were used as outputs. To assign recommendation

classes for a dataset, the highest or lowest value out of all the eight surrogate techniques for 𝑅𝑅�2

and 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡, respectively, were assigned as “recommended”, as they had the “best” performance for

that dataset. Then, surrogate models with performance metric values within 1% of those best

values were also assigned as “recommended.” Any surrogate models with metric values outside of

the 1% range were assigned a recommendation class of “not recommended.”

The built-in feature selection method of random forest models was performed to determine

which attributes had the most influence on the predicted recommendation class for each surrogate

modeling technique. Input features are assigned an importance value in random forest models

based on how much they reduce the Gini impurity (Menze et al., 2009) at each decision node in

the forest. The Gini impurity measures how well the decision threshold separates the training

samples into the two classes at a particular node (Menze et al., 2009). The feature importances of

 100

all the input features (in this case, the attributes) sum to 100%. Attributes were ranked from highest

to lowest feature importance. The attributes were added to the input feature set starting with the

highest importance up to a sum of 90% of the total importance to reduce the attribute set for the

classification model for each surrogate modeling technique. Here, the goal is to consider the

attributes with the highest impact on the classification model outcome in the random forest

classifier model. The remaining features in the lower 10% of the importance sum were discarded.

Figure 5.2 summarizes the PRESTO construction steps. PRESTO is available for testing in the

Cremaschi research group GitHub repository (https://github.com/CremaschiLab/PRESTO).

https://github.com/CremaschiLab/PRESTO

 101

Figure 5.2 - Summary of PRESTO construction (FS = Feature Selection, Approx = Surface

Approximation, Opt = Surrogate-based optimization, PM = Classification Performance Metrics)

5.4 PRESTO Performance Evaluation Criteria

 The performance of PRESTO was evaluated using three performance metrics: accuracy,

precision, and hit ratio. These metrics are calculated based on the classification confusion matrix

(Sokolova & Lapalme, 2009) (Figure 5.3), which describes the quality of classifications made by

a classification model.

 102

Figure 5.3 - Classification confusion matrix (TP = true positive, TN = true negative, FP = false

positive, FN = false negative)

The accuracy (Eq. 5.28) measures the percentage of recommendation classifications made

by PRESTO that is correct. The precision (Eq. 5.29) is the probability that a model classified as

recommended should actually be recommended and will perform well for a dataset. The hit ratio

(Eq. 30) is the percentage of models that will perform well for a dataset that PRESTO is

recommending.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴𝑦𝑦 =
𝑇𝑇𝐹𝐹 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (5.28)

𝐹𝐹𝑟𝑟𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (5.29)

𝐻𝐻𝑃𝑃𝑡𝑡 𝑟𝑟𝐴𝐴𝑡𝑡𝑃𝑃𝑃𝑃 =
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (5.30)

Figure 5.4 provides a flowchart depicting how the performance metrics were calculated for

evaluating PRESTO’s performance. The first step is similar to how a user would use PRESTO,

where input-output data is generated and passed to PRESTO. PRESTO then provides

recommendations for which surrogate modeling techniques to employ. For the second step in the

 103

analysis, all eight of the candidate surrogate modeling techniques were used to train models, and

their performance metrics were calculated. These metrics of actual performance were compared to

the recommendations for models PRESTO predicted would perform well for the data to evaluate

the quality of PRESTO’s recommendations. Training all of the models as was done in this analysis

is not necessary for a PRESTO user. In practice, a user could train as few or as many of the

recommended models as desired.

Figure 5.4 - Summary of PRESTO performance evaluation

5.5 Application Dependent PRESTO Attributes for Surrogate Modeling Techniques

 The numbers of attributes selected for classifying the eight candidate surrogate modeling

techniques as being recommended or not recommended for surface approximation and surrogate-

based optimization are given in Table 5.1. For example, for surface approximation, 21 attributes

out of the initial set of 38 were selected as inputs for the classifier trained to make predictions

regarding ALAMO. Based on these results, the random forest classifier required approximately 39

 104

- 55% of the attributes for making recommendations. There were no significant differences

between the number of attributes selected for each surrogate modeling technique or application.

Table 5.1 - Number of attributes selected for recommendation predictions

 Attributes Selected

 Surface

Approximation

Surrogate-Based

Optimization

ALAMO 21 21

ANN 20 19

ELM 19 20

GPR 21 20

MARS 21 20

RBFN 20 20

RF 15 21

SVR 21 21

 Tables 5.2 and 5.3 list the five highest important attributes selected for surface

approximation and surrogate-based optimization, respectively. Attributes related to the dataset

inputs, including the average, minimum, and maximum Mahalanobis distances between input data

points, were selected frequently for the majority of the surrogate modeling techniques for both

surface approximation and surrogate-based optimization performance predictions. Other

commonly selected features include those related to the distributions of output values, specifically

the relative size of the output distribution tails and the output distribution skewness and kurtosis.

These results suggest that the distribution and location of the sample points and the relative

steepness and smoothness of the surface significantly influence how well each of the surrogate

models can approximate that surface and locate the optimum of the underlying function.

 105

Attributes related to the distributions of the input and output locations were commonly

selected among all of the candidate techniques. These attributes may affect surface approximation

performance as having data unevenly concentrated (or sparse) at the extreme values may skew

models to predict more accurately in areas of data concentration and less so for other areas of the

design space. For example, in the case of RF models, uneven tails could cause decision nodes in

the model trees to split more frequently at the extremes of the output values while more finely split

partitions were really needed elsewhere, such as where the gradients were steep. For the neural

network-based models, the on-off nature of the hidden layer nodes may make them more suitable

for making accurate predictions for surfaces where large areas of the design space have similar

output values, creating flat or nearly flat areas, similar to the plate-shaped functions.

For surface approximation, the attributes of the empirical mean of fractional local

fluctuations and the empirical standard deviation in fractional local fluctuations were also

frequently selected in the top five attributes. These attributes measure the average bumpiness and

non-linearity variations, respectively, of the surface being modeled (Garud et al., 2018) and can

be considered to give a measure of the noisiness of the surface. The noise level has a significant

effect on some models’ ability to fit a surface. For example, for SVR model performance, the

support vectors fitted in the model construction can easily become sensitive to noise as they are

only dependent on a small set of the data used to train the model (Sabzekar et al., 2011).

 106

Table 5.2 - Five highest important attributes selected for surface approximation

ALAMO

Attribute Importance

Euclidean to Mahalanobis ratio 11.1%

Skewness of outputs 8.7%

Kurtosis of outputs 7.2%

Upper tail average 5.8%

Coefficient of variation of outputs 5.4%

ANN

Attribute Importance

Coefficient of variation of outputs 10.4%

Upper tail average 9.3%

Average Mahalanobis distance 6.6%

Average gradient cosine direction 6.0%

Kurtosis of outputs 5.5%

ELM

Attribute Importance

Average Mahalanobis distance 12.2%

Minimum Mahalanobis distance 12.0%

Input dimensions 9.7%

Empirical standard deviation in

fractional local fluctuations 8.9%

Kurtosis of outputs 6.6%

GPR

Attribute Importance

Upper tail average 7.6%

Coefficient of variation of outputs 7.6%

Empirical mean of fractional local

fluctuations 6.4%

Skewness of outputs 6.3%

Empirical standard deviation in

fractional local fluctuations 5.7%

 107

MARS

Attribute Importance

Kurtosis of outputs 11.5%

Empirical standard deviation in

fractional local fluctuations 7.6%

Skewness of outputs 7.1%

Relative size of upper tail 6.7%

Upper tail average 5.0%

RBFN

Attribute Importance

Average Mahalanobis distance 10.4%

Minimum Mahalanobis distance 9.2%

Empirical mean of fractional local

fluctuations 7.0%

Empirical standard deviation in

fractional local fluctuations 7.0%

Skewness of outputs 5.5%

RF

Attribute Importance

Empirical standard deviation in

fractional local fluctuations 21.3%

Empirical mean of fractional local

fluctuations 15.6%

Coefficient of variation of

gradient magnitudes 7.3%

Average Mahalanobis distance 7.1%

Minimum Mahalanobis distance 7.0%

SVR

Attribute Importance

Skewness of outputs 8.0%

Empirical mean of fractional local

fluctuations 7.7%

Kurtosis of outputs 6.3%

Empirical standard deviation in

fractional local fluctuations 5.7%

Skewness of gradient magnitudes 5.1%

Table 5.3 - Five highest important attributes selected for surrogate-based optimization

Table 5.2 cont’d. - Five highest important attributes selected for surface approximation

 108

ALAMO

Attribute Importance

Upper tail average 9.3%

Coefficient of variation of outputs 9.2%

Skewness of outputs 8.0%

Lower tail relative size 6.2%

Average Mahalanobis distance 5.8%

ANN

Attribute Importance

Input dimensions 12.3%

Average Mahalanobis distance 12.1%

Maximum Mahalanobis distance 9.3%

Minimum Mahalanobis distance 7.7%

Kurtosis of outputs 7.7%

ELM

Attribute Importance

Average Mahalanobis distance 18.6%

Maximum Mahalanobis distance 12.9%

Minimum Mahalanobis distance 10.7%

Input dimensions 10.0%

Coefficient of variation of outputs 4.4%

GPR

Attribute Importance

Input dimensions 9.5%

Average Mahalanobis distance 9.1%

Coefficient of variation of outputs 7.0%

Maximum Mahalanobis distance 6.6%

Skewness of outputs 6.5%

MARS

Attribute Importance

Input dimensions 13.8%

Average Mahalanobis distance 13.0%

Minimum Mahalanobis distance 8.0%

Maximum Mahalanobis distance 6.2%

Kurtosis of outputs 5.2%

RBFN

Attribute Importance

Minimum Mahalanobis distance 13.9%

Average Mahalanobis distance 10.4%

Input dimensions 10.3%

Maximum Mahalanobis distance 6.6%

Skewness of outputs 4.8%

 109

RF

Attribute Importance

Average Mahalanobis distance 8.8%

Minimum Mahalanobis distance 6.4%

Input dimensions 6.3%

Maximum Mahalanobis distance 5.7%

Euclidean to Mahalanobis ratio 5.6%

SVR

Attribute Importance

Skewness of outputs 11.0%

Upper tail average 8.8%

Coefficient of variation of outputs 8.0%

Average Mahalanobis distance 5.3%

Kurtosis of outputs 5.2%

For surrogate-based optimization, although not selected as one of the top five important

attributes, the average local convex deviation, and attributes related to the estimated gradients were

selected frequently in the set of important attributes. The convexity of a model has a significant

effect on the relative “ease” of finding its global minimum. Gradient information is also crucial in

the application of gradient-based methods for optimization. The complete listing of all attributes

selected is available in Appendix B.

5.6 Performance Evaluation of PRESTO for a Chemical Engineering Application - Cumene

Production Case Study

 A simulation model of the cumene production process was employed to test the

performance of PRESTO’s recommendations for a chemical engineering application and on

datasets that were not used for its training. The entire process for cumene production was simulated

in gPROMS Process. Input-output datasets were generated for a subset of the unit operations in

the flowsheet, using the gPROMS Global System Analysis capabilities. PRESTO was used to

provide surrogate modeling technique recommendations to predict each output for surface

approximation. Then, surrogate models were trained for each output using the eight candidate

 110

surrogate modeling techniques, and the corresponding adjusted R-squared values were calculated

using Monte Carlo cross-validation (Xu et al., 2004) with a test set size of 20% of the dataset and

50 Monte Carlo trials. The adjusted R-squared results were compared to the recommendation

classifications made by PRESTO for surface approximation.

5.6.1 Process and Simulation Description for Cumene Production

 The production of cumene, a petrochemical used in the production of several chemicals,

involves the reaction of benzene with propylene to form cumene and the undesirable reaction of

cumene with propylene to form p-diisopropyl benzene (PDIB) (Luyben, 2011). The flowsheet for

the process is given in Figure 5.5. The case study focuses on the cooled tubular reactor (Reactor)

and two distillation columns (C1 and C2). These are the three most complex unit-level models in

the overall flowsheet, meaning that replacing them with surrogate models will have the greatest

impact on improving computational speed. In the process, the liquid fresh feed streams are

combined with a benzene recycle stream, vaporized, preheated to 360 °C, and fed to the cooled

tubular reactor. The first distillation column, C1, produces a mostly benzene distillate, which is

recycled back to the reactor. This recycle stream is necessary to keep benzene from exiting in the

bottoms product and affecting the purity of the cumene product in the distillate of the second

column, C2. Column C2 is designed to attain high-purity cumene in the distillate and minimize

the loss of cumene in the bottoms (Luyben, 2011).

 111

Figure 5.5 - Flowsheet for cumene production case study

The entire process was simulated in gPROMS Process, where the data for the three complex unit

operations was generated. Data were generated for a total of 27 outputs, with seven outputs for the

reactor, 11 outputs for the first distillation column (C1), and nine outputs for the second distillation

column (C2). Outputs for the distillation columns include heat duties and top and bottoms product

compositions. Outputs for the reactor include outlet temperatures and reaction product

compositions. For each output, data was randomly selected at four different sample sizes (100,

300, 1000, and 3000 samples) for a total of 108 case study datasets for evaluating PRESTO’s

performance. The input values for each dataset are operating specifications for a fixed design of

the respective unit operations, such as inlet temperatures and inlet compositions.

 112

5.7 Results and Discussion

5.7.1 PRESTO Recommendation Classification Results

The selected attributes were used as inputs to train random forest classification models for

the eight techniques to classify each technique as being “recommended” or “not recommended”

for a given dataset. Separate classifiers were trained for surface approximation and surrogate-based

optimization. This recommendation scheme allows for multiple similarly performing surrogate

modeling techniques to be suggested for use. The performance metrics were calculated using

Monte Carlo cross-validation with 75 Monte Carlo trials. Each trial had a test set size of 20% of

the total dataset.

PRESTO identified which techniques should be recommended for the simulated datasets

for surface approximation with an accuracy of 91%. The precision, or the probability that a

recommended technique should actually be recommended, was 90%. The hit ratio, the percentage

of the surrogate models that should have been recommended for surface approximation that

PRESTO successfully captured, was 87%.

For surrogate-based optimization, PRESTO recommended surrogate modeling techniques

with an accuracy of 98% and a precision of 99%. This result indicates that if PRESTO identifies a

model as being recommended for a dataset, there is a 99% probability that the model will

accurately locate the global optimum of the underlying model for the dataset. The hit ratio for

surrogate-based optimization was 98%.

5.7.2 Cumene Case Study Performance Results

 Table 5.4 lists the performance metrics for PRESTO on the case study data compared to

the metrics for the data that PRESTO was trained on, or the PRESTO data. Performance metrics

 113

were calculated for both to compare how well PRESTO performed on the simulated data from the

test functions to how it performed on data from a real-world application. PRESTO’s performance

on the cumene case study data was similar to that of the tool training data for accuracy and

precision. However, the hit ratio was slightly lower. The lower hit ratio for the case study data

indicates that PRESTO was not identifying all the possible models that could be recommended,

only a subset of them, which also resulted in a higher precision. These results suggest that PRESTO

may successfully identify a set of surrogate models that will perform well for approximating the

behavior of a data set for some relevant cases without the need for expensive trial-and-error

methods.

The lower hit ratio may be due to the fact that the values for the Mahalanobis distances

between the data points for the case study data were outside the ranges of the distances for the data

that the tool was trained on. For example, the maximum value for the PRESTO data for the

maximum Mahalanobis distance between data points is approximately 6.7, while both the average

and maximum value of that same attribute for the case study data are higher at 6.8 and 7.1,

respectively. The simulated data was generated using the same space-filling method, while the

inputs for the case study data were generated randomly. We can conclude that the position of the

sample points, or the distances between them, are critical in providing accurate recommendations

as features related to the Mahalanobis distances were selected as important for almost all of the

classification models that were trained. The performance of PRESTO could be improved by adding

datasets that use a variety of sampling methods in order to provide better ranges for the attributes

related to data point distribution.

In addition, all of the datasets in the PRESTO data were created using relatively smooth,

continuous functions. Data from real applications may not share the same characteristics. An

 114

example of this difference in behavior can be seen in the average local convex deviation attribute.

The average value for this attribute is 2.66x106 for the PRESTO data and several orders of

magnitude higher for the case study data at 9.1x1012. The recommendations of PRESTO for real

data could be enhanced by the addition of real datasets to the PRESTO training data. However,

with a 94% precision for the case study data, PRESTO’s predictions for which surrogate models

to use are still accurate. All of the compiled results for adjusted R-squared and recommended

models for the case study data are available in the supplementary materials for Williams et al.

(2021).

Table 5.4 - PRESTO case study performance comparison

 Case Study

Data

PRESTO

Data

Accuracy 89% 91%

Precision 94% 90%

Hit Ratio 76% 87%

 PRESTO did not recommend any candidate surrogate models for two process outputs: the

bottom product temperature and top liquid recovery of cumene. These classifications of “not

recommended” for all the surrogates were correct, as when the models were trained, none of the

techniques could successfully approximate these outputs with an adjusted R-squared above 0.7.

Our work demonstrated that there are some test functions that were used to train PRESTO, for

which none of the surrogate modeling techniques were able to approximate the surface (Williams

& Cremaschi, 2021b). In these instances, alternative modeling strategies, such as ensemble

modeling, deep learning algorithms, or another surrogate modeling technique not included in the

 115

candidate set, may be considered. It should be noted that when PRESTO does not recommend any

surrogate modeling techniques, it could also indicate that the current data set size is too small for

the techniques to model the input-output relationship accurately. We observed that for some

datasets, increasing its size also increased the number of recommended models. Hence, we also

recommend increasing the dataset size and re-running PRESTO. The case study results reveal that

PRESTO can capture the qualities of datasets that would make them unsuitable for modeling with

the eight candidate techniques studied.

5.7.2.1 PRESTO Cosine Similarity Analysis

In order to further analyze the discrepancy in PRESTO’s performance on the cumene case

study data, the calculated dataset attributes of the cumene data were compared to the attributes of

the PRESTO training data using the cosine similarity (Eq. 5.31). The cosine similarity between

two vectors of dataset attributes 𝑋𝑋 and 𝑌𝑌 falls between values of -1 and 1, with similarity values

closer to 1 indicating a higher measure of similarity

cos(𝑋𝑋,𝑌𝑌) =
𝑋𝑋 ∙ 𝑌𝑌

‖𝑋𝑋‖‖𝑌𝑌‖
 (5.31)

and for vector 𝑋𝑋 = 〈𝑥𝑥1, 𝑥𝑥2, … . . , 𝑥𝑥𝑛𝑛〉

‖𝑋𝑋‖ = ��𝑥𝑥𝑖𝑖2
𝑛𝑛

;=1

(5.32).

 When calculating the pairwise cosine similarity between each of the 791 datasets used to

construct PRESTO, their average similarity was 0.805, indicating that there is a high degree of

similarity between the PRESTO training datasets. Figure 5.6 shows the frequency distribution of

the cosine similarities for the PRESTO training data. For comparison of the cumene case study

 116

data to the PRESTO training data, the cosine similarity for cumene data set to each of the PRESTO

datasets was calculated, and the average was taken. This calculation was repeated for each of the

cumene datasets. Table 5.5 lists the performance metric values for the cumene datasets when

separated by those that had a negative or positive average cosine similarity to the PRESTO data.

Figure 5.6 – Histogram of cosine similarity scores for PRESTO training data

Table 5.5 - Cumene data performance by cosine similarity score

 Cumene Data
PRESTO

Data
Negative Average

Cosine Similarity

Positive Average

Cosine Similarity

Accuracy 86% 92% 91%

Precision 86% 94% 90%

Hit Ratio 67% 85% 87%

The performance metrics of the cumene datasets with positive average cosine similarity to the

PRESTO training data were higher than those of the datasets with negative average similarity and

 117

more comparable to the cross-validation performance of the PRESTO training data (Table 5.5).

This analysis provides some indication that datasets with negative similarity to the PRESTO

training data may not be suitable for use with PRESTO to make surrogate modeling

recommendations. Prescreening data with this similarity metric may provide some insight into

PRESTO’s potential accuracy in selecting surrogates for a data set.

5.8 Conclusions and Future Work

 Selecting an appropriate surrogate modeling technique depends on the characteristics of

the dataset being modeled and the application domain of the surrogate model, surface

approximation vs. optimization. We identified attributes of datasets appropriate for selecting

surrogate models for both surface approximation and surrogate-based optimization. Using these

attributes, a recommendation tool, PRESTO, was constructed to recommend surrogate modeling

techniques for approximating a dataset with 91% accuracy and 90% precision and for performing

surrogate based-optimization with 98% accuracy and 99% precision. Although PRESTO could not

capture the full set of models that could be recommended on a set of test data generated from a

cumene production process simulation, the recommended models did provide higher values of

adjusted R-squared and better predictions for the outputs. Future work on PRESTO will include

adding more real datasets to the training data for the tool, focusing on using a wider variety of

sampling methods, not just space-filling ones, and incorporating the impact of noisy data.

 118

Chapter 6 – Surrogate-Based Optimization Using Random Forests

 Random forests (RFs) are surrogate models that make output predictions based on inputs

by combining predictions from a collection of decision trees. Surrogate models are used to

approximate the relationship between input and output data when the actual one between the two

is unknown or computationally expensive to evaluate (C. Wang et al., 2014). These models can

also be used in surrogate-based optimization approaches to approximate the objective function

and/or constraints when they are not available in closed, analytical form or are not conducive for

use in traditional gradient-based optimization methods, for example, if gradient information is not

available. Each tree in a RF model is constructed independently and depends on a random vector

sampled from the input data. (Breiman, 2001).

 Random forests have successfully been used for regression and classification tasks,

performing with high prediction accuracy for both small sample sizes and high dimensional data

(Biau & Scornet, 2016). They can fit nonlinear data with a minimal number of parameters to tune

(Biau & Scornet, 2016). The models have been used in several recent applications in the

manufacturing industry, including for fault detection (Puggini et al., 2015; Quiroz et al., 2018;

Zhang et al., 2018), prediction of mechanical failures (Wu et al., 2017), and prediction of

manufacturing product properties (Maudes et al., 2017). Other areas of research where RF models

have been employed for approximation include the development of new pharmaceutical molecules

(Svetnik et al., 2004) and thermodynamic property estimation (Palmer et al., 2007).

 Because of their prediction accuracy for a wide array of applications, RFs could represent

an exceptional candidate for a surrogate model to approximate the objective function for surrogate-

based optimization approaches. The RF decision tree structure allows it to be formulated as a

mixed-integer linear program (MILP), which can be readily solved using existing commercial

 119

solvers. However, fully trained models can result in large-scale MILPs that may become

computationally intractable. Biggs and Hariss (2018) propose a method for optimizing RF

objective functions by using Benders' decomposition (Benders, 1962) on only a subset of the

decision trees in the RF. While they can successfully optimize RF objective functions with their

approach, employing their solution method requires a significant amount of input on expertise on

the part of the user, as do other developed techniques for optimizing decision-tree based models

(Bertsimas & Dunn, 2017; Robertson et al., 2017). This drawback could represent an obstacle to

using these models for optimization in practical applications.

To address this obstacle, this chapter introduces a MILP formulation corresponding to a

RF model of an objective function and describes a Python library that can be used to construct this

MILP formulation and solve it automatically. This code is available in the Cremaschi Research

Group Github repository (https://github.com/CremaschiLab/Random-Forest-Optimization). The

chapter is organized as follows. Section 6.1 presents the general structure of a RF model and the

MILP formulation. Section 6.2 describes computational experiments carried out to test the

performance of the RF objective function approximation. Section 6.3 presents how the RF

objective function approximation performs for locating the global minimum of several test

functions and the results for several solution approaches designed to reduce the solution time for

the RF model MILPs. Conclusions are drawn in Section 6.4.

6.1 Random Forest Structure and MILP Formulation

 Each RF model comprises several trees with a series of decision nodes. The decision node

consists of a parent, or test, node, with a left child node and a right child node. If the indicated

input value is less than or equal to a threshold value for the given test node, then the left child node

is selected; otherwise, the right child node is selected. Decisions are made at each branch in a tree

 120

until a final node, or leaf node, is reached. An example of a simple decision tree structure is

illustrated in Figure 6.1. The output value for a tree for given inputs is the value of the final leaf

node reached, and the output value for the entire RF model is the average value of the outputs for

every decision tree in the forest.

Figure 6.1 – Random forest decision tree structure

Figure 6.2 illustrates a simplified example of a RF model constructed to approximate the

function

𝑧𝑧 = 𝑥𝑥1 + 𝑥𝑥2 (6.1)

where 𝑥𝑥1 and 𝑥𝑥2 are input values restricted to the range [0, 5]. For the example shown, 𝑥𝑥1 = 2 and

𝑥𝑥2 = 4.5. The output for the RF model will be equal to the average value of the selected leaf nodes:

𝐴𝐴1,7, 𝐴𝐴2,5, and 𝐴𝐴3,5. The RF estimates the value of 𝑧𝑧 at 𝑥𝑥1 = 2 and 𝑥𝑥2 = 4.5 to be equal to 6.11,

which is a close approximation of its actual value of 6.5.

 121

Figure 6.2 - Random forest model approximation of the function, 𝑧𝑧 = 𝑥𝑥1 + 𝑥𝑥2. Orange boxes

indicate test or leaf nodes that are selected (𝑥𝑥1 = 2 and 𝑥𝑥2 = 4.5).

 122

The optimization problem for the RF objective function is formulated as follows:

min
𝑚𝑚

1

𝐹𝐹𝑡𝑡𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠
��𝐴𝐴𝑡𝑡,𝑙𝑙𝑦𝑦𝑡𝑡,𝑙𝑙

𝐿𝐿

𝑙𝑙

𝑇𝑇

𝑡𝑡

 (6.2)

s.t. 𝑦𝑦𝑡𝑡,1 = 1 ∀ 𝑡𝑡 ∈ 𝑇𝑇 (6.3)

 𝑦𝑦𝑡𝑡,𝑙𝑙𝑐𝑐 + 𝑦𝑦𝑡𝑡,𝜀𝜀𝑐𝑐 = 𝑦𝑦𝑡𝑡,𝑜𝑜 ∀ (𝑡𝑡,𝑝𝑝, 𝑒𝑒𝐴𝐴, 𝑟𝑟𝐴𝐴, 𝑃𝑃) ∈ 𝐹𝐹 (6.4)

 𝑥𝑥𝑖𝑖 ≥ 𝐻𝐻𝑜𝑜 −𝑀𝑀�1 − 𝑦𝑦𝑡𝑡,𝜀𝜀𝑐𝑐� − 𝑀𝑀�1 − 𝑦𝑦𝑡𝑡,𝑜𝑜� + 𝐹𝐹𝑦𝑦𝑡𝑡,𝜀𝜀𝑐𝑐 ∀ (𝑡𝑡,𝑝𝑝, 𝑒𝑒𝐴𝐴, 𝑟𝑟𝐴𝐴, 𝑃𝑃) ∈ 𝐹𝐹 (6.5)

 𝑥𝑥𝑖𝑖 ≤ 𝐻𝐻𝑃𝑃 + 𝑀𝑀𝑦𝑦𝑡𝑡,𝜀𝜀𝑐𝑐 + 𝑀𝑀�1 − 𝑦𝑦𝑡𝑡,𝑜𝑜� ∀ (𝑡𝑡, 𝑝𝑝, 𝑒𝑒𝐴𝐴, 𝑟𝑟𝐴𝐴, 𝑃𝑃) ∈ 𝐹𝐹 (6.6)

 𝑥𝑥𝑖𝑖 ∈ [𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] (6.7)

The objective function, Eq. (6.2), of the formulated optimization problem is the model's output,

which is the average value of the final leaf nodes selected by the model. In the formulation, 𝐴𝐴𝑡𝑡,𝑙𝑙 is

the value of a leaf node l in tree t, 𝑦𝑦𝑡𝑡,𝑙𝑙 is a binary decision variable with a value of 1 if leaf node 𝑒𝑒

is selected and 0 otherwise. 𝐻𝐻𝑜𝑜 is the threshold value for parent node 𝑝𝑝, 𝑀𝑀 and 𝐹𝐹 are constants

specific to the dataset, and each 𝑥𝑥𝑖𝑖 is a continuous decision variable within a range specific to the

dataset representing an input to the RF model. The index 𝑃𝑃 for 𝑥𝑥𝑖𝑖 indicates the input dimension.

For example, 𝑥𝑥1 is the input value for the first input to the model. 𝑇𝑇 is the set of trees in the RF,

and 𝐿𝐿 is the set of every leaf node in the RF. 𝐹𝐹 is the set of all groupings for tree, parent node, left

child, right child, input value combination for every tree. Sets 𝑇𝑇, 𝐿𝐿, and 𝐹𝐹 are constructed using the

decision tree structure of each tree in the RF model.

 Equation (6.3) forces the first node in every tree to be selected, ensuring that each tree in

the model contributes to the RF model output and objective function value. Equation (6.4) enforces

a constraint on the number of child nodes that can be selected for a parent node, with only one

 123

child being chosen if the parent node is selected and neither being selected if the parent node is

not. Equations (6.5) and (6.6) represent constraints that determine whether a left child node or right

child node is selected based on the threshold value for their respective parent node. The value of

𝑀𝑀 in each of these constraints ensures that the threshold constraint will not be enforced if the parent

node for that threshold is not selected. A recommended 𝑀𝑀 value would be to set it equal to the

range of 𝑥𝑥 values (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛) the RF model is defined over.

6.2 Computational Experiments

 Using RF models in surrogate-based optimization requires training an RF model to

approximate a function. Based on the final structure of the model, an optimization problem is

formulated with the output of the RF model as the objective function. This optimization problem

is outlined in Section 6.1.

6.2.1 Test Functions

To evaluate the performance of the RF surrogate models for locating an optimum, datasets

were generated from a set of test functions from an optimization test suite described in Section 4.2

(Surjanovic & Bingham, 2013). Functions with input dimensions of two, four, six, eight, and ten

were used in evaluations.

One thousand input-output pairs were generated for each test function using Sobol

sequence sampling (Joe & Kuo, 2008) to sample input values and obtain the function outputs for

the given inputs, resulting in 99 total datasets. A RF model was trained for each dataset employing

the generated pairs using the Sci-kit learn RandomForestRegressor implementation (Pedregosa et

al., 2011). A densely sampled test set of 100,000 data points for each test function was generated

using Sobol sequence sampling to analyze how well the RF models approximated the test

 124

functions. The output predictions for the 100,000 test points by the trained models were compared

to the actual outputs, and the normalized root mean square error (nRMSE), Eq. (6.8), for the model

was calculated to quantify the performance. The nRMSE value for each dataset-surrogate model

combination is normalized by the range of output values for easier comparison across datasets with

various ranges for output values.

𝑃𝑃𝑅𝑅𝑀𝑀𝑛𝑛𝑛𝑛 = �∑ (�̂�𝑧𝑛𝑛 − 𝑧𝑧𝑛𝑛)2𝑁𝑁
𝑛𝑛=1

𝐹𝐹
(𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑖𝑖𝑛𝑛)�

(6.8)

In Eq. (6.8), 𝑧𝑧𝑛𝑛 is the output for point 𝑃𝑃 for a dataset, �̂�𝑧𝑛𝑛 is the output predicted by the RF model

for point 𝑃𝑃, 𝐹𝐹 is the total number of sample points in the dataset, and 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑧𝑧𝑚𝑚𝑖𝑖𝑛𝑛 are the

maximum and minimum output values in a dataset, respectively.

6.2.2 Surrogate-Based Optimization with Random Forest Models

 The global minimum of the underlying function used to produce each dataset was estimated

using the trained RF models by solving the MILP model given in Section 6.1. The mathematical

programs were constructed in Pyomo (version 5.6) (Hart et al., 2017; Hart et al., 2011), a Python-

based optimization modeling language. The estimated minima were compared to the actual global

minima for accuracy using a performance metric, 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 (Eq. 6.9), we define as:

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 =
𝐷𝐷𝑀𝑀�𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡,𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡′�
𝑚𝑚𝐴𝐴𝑥𝑥
𝑖𝑖,𝑗𝑗

𝐷𝐷𝑀𝑀�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�

(6.9)

where 𝐷𝐷𝑀𝑀�𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡′� is the Mahalanobis distance (De Maesschalck et al., 2000) between the

location of the actual global minimum of the function, 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, and the location estimated using the

surrogate-based optimization, 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡′. This value is normalized by the maximum Mahalanobis

 125

distance between any two points (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) in the dataset. Computations for solving the MILPs were

carried out with CPLEX on the Auburn University HPC Cluster (Lenovo System X HPC Cluster)

using Intel E5-2650 V3, 2.3 GHz 20 core processors and implemented in Python 3.6.

6.3 Results and Discussion

6.3.1 Effect of Random Forest Model Size on Surface Approximation Performance

 Each RF model has two tunable hyperparameters, the depth of each tree and the number of

trees in the forest. To investigate how the RF prediction performance changed with the tree depth,

we constructed RF models for each generated dataset with a maximum of 50, 100, 200, 300, 400,

600, 700, and 800 leaf nodes allowed in the model. Each of these models contained 100 trees. For

investigating the effect of the number of trees, models with trees ranging from 1 to 100 trees were

trained for each test dataset. The leaf nodes in these models were allowed to expand until all the

test nodes in each tree were determined to be "pure." Purity is determined during the RF regression

model training according to the mean squared error (Pedregosa et al., 2011). The RF training

algorithm attempts to minimize the impurity at each decision node in building the model. For the

models with "pure" test nodes, the mean squared error at each decision node is minimized.

Example results for how well the RF models approximated the test functions are

summarized in Figs. 6.3 and 6.4. The nRMSE was calculated for each trained model to predict the

densely sampled 100,000 point test set and the training data set. In addition, 50-fold cross-

validation was used to calculate an average validation nRMSE, as well as a 95% confidence

interval on that average. Figures 6.3 and 6.4 illustrate trends observed among the test functions for

how the nRMSE changes with an increase in the number of leaf nodes and trees. Behavior for both

increasing the number of leaf nodes and the number of trees in the RF models exhibit similar

trends. The nRMSE for the training data set is always the lowest value for both increasing numbers

 126

of leaf nodes and trees. When increasing the number of leaf nodes in the model, the nRMSE error

for the dense sample set falls either within (Fig 6.3a) or below (Fig. 6.3b) the 95% confidence

interval for the validation error. However, the nRMSE for the dense sample set with increases in

the number of trees at a fixed number of leaf nodes has three different trends: it is either above the

95% confidence interval for the validation error (Fig. 6.4a), within the interval (Fig. 6.4b), or below

it (Fig. 6.4c).

The test functions fall into one of these three categories of behavior for surface

approximation performance. All of the cases follow a general trend of a sharp decrease in the error

with increasing model size at low numbers of trees (or leaf nodes), followed by an eventual

leveling off in the error value after a certain threshold number of trees (or leaf nodes) is reached.

This threshold value is different for each test function. These results for the effect of the model

size on the approximation performance indicate that allowing the RF models to expand to "pure"

leaf nodes will not significantly increase overfitting. This assessment is valid, especially for

models with higher numbers of trees as the nRMSE for the training data, densely sampled data,

and validation data remain relatively evenly separated from each other for the same test function

as the numbers of leaf nodes increase.

 127

Figure 6.3 - Effect of increasing leaf nodes on random forest surface approximation performance

(CI = confidence interval)

 128

Figure 6.4 - Effect of increasing tree size on random forest surface approximation performance (CI = confidence interval)

(a) (b)

(c)

 129

6.3.2 Effect of Random Forest Model Size on Surrogate-Based Optimization Performance

 Results for the effects of increasing the maximum numbers of leaf nodes and trees on

locating the optimum points on average for all test functions are summarized in Fig. 6.5. The

surrogate-based optimization performance was assessed by calculating the normalized

Mahalanobis distance from the actual minimum point of each test function to the one predicted by

the trained RF models, 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡. The average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 values in Fig. 6.5 are separated by the number of

input dimensions of the test functions.

In general, the average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 decreases with increasing number of leaf nodes for all input

dimensions investigated (Fig. 6.5a), suggesting that the predicted optimum locations move closer

to the actual ones with increases in the number of leaf nodes allowed in the models. Similarly,

when leaf nodes are allowed to expand until they are “pure” and the number of trees is increased,

the average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 decreases, particularly at higher input dimensions (Fig. 6.5b). While the average

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 value reaches a minimum value after 600 maximum leaf nodes for each of the input

dimensions tested, the average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 does not level off to a minimum value after the addition of

100 trees for the higher input dimensions (Fig. 6.5b.) This result suggests that lower values of

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡, and thus, locations closer to the actual minimum locations of the test functions can be

achieved by allowing the trees to expand to a maximum number of leaf nodes that produces "pure"

trees with an increased number of trees in the forest (above 100). However, the resulting

optimization problems may become too computationally expensive.

 Figure 6.6 shows three trends for how the estimated optimum locations were affected by

an increasing number of trees when the forests were allowed to expand until all leaf nodes were

“pure”. The majority of the test functions had an overall decrease in the 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 as the number of

 130

trees in the RF model increased, eventually settling to a minimum 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 after a certain number of

trees is reached (Fig. 6.6a).

Figure 6.5 - Average value of 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 for all 99 test functions vs (a) maximum number of leaf

nodes and (b) number of trees in random forest model

(a)

(b)

 131

Figure 6.6 - 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 vs. number of random forest trees for (a) Ellipsoid function, (b) Power Sum function, and (c) Zakharov function

(a) (b)

(c)

 132

Three of the test functions reached a minimum 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 value at a certain number of trees and then

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 began increasing once that number of trees was surpassed (one such function was Power Sum

function, whose plot is in Fig. 6.6b). For some of the test functions, the 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 did not decrease even

when the RF model included 100 trees, and the RF failed to accurately capture the optimum of the

functions (Fig. 6.6c). However, allowing more trees in the model could lead to more accurate

solutions at the risk of the resulting optimization problem becoming intractable. The behavior of

the majority of the test functions with increasing the number of trees in the RF model suggests

that, in general, a higher number of trees results in lower 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡, and thus, a closer, more accurate

estimate of the optimum location, albeit at a higher computational expense.

6.3.3 Computational Efficiency of Solving the Random Forest MILP

 The average computational time required for solving the RF MILP to estimate the global

minima of the test functions for the number of input dimensions investigated is plotted in Fig. 6.7

as a function of the number of trees in the forest. The average sizes of the MILPs for the test

functions are given in Table 6.1. Although the size of the problem (the number of constraints and

variables) increases linearly with the number of trees (Table 6.1), the solution time begins to

increase exponentially beyond approximately 40 trees (Fig. 6.7). This increase in solution time is

distinctly apparent at higher input dimensions.

 133

Table 6.1 - Average Size of Random Forest MILP

Average

Trees

Solution

Time (sec) Constraints

Binary

Variables

Total

Variables

2 1.0 3778 2519 2525

4 1.6 7635 5091 5097

8 5.5 15286 10192 10199

16 9.0 30404 20274 20280

32 35 60650 40443 40450

64 447 121166 80798 80804

100 10967 198226 126183 126189

Figure 6.7 - Average time required for the solution of RF MILPs as a function of the number of

trees in the random forest model

 134

6.3.4 Performance Profiles for Surrogate-Based Optimization with Random Forests

To determine if a higher number of trees in the model results in overall better estimates of the

optimum location, the fraction of the test functions for which the optimum was located is compared

for RF models trained with 50 trees, 100 trees, and models where the number of trees was

determined using cross-validation. The number of trees was increased from 40 to 100 until the

RMSE of a validation dataset stopped improving during cross-validation. For these models, the

validation error was estimated using ten-fold cross-validation on the training set. The number of

trees was increased until the average value of the last five validation errors either began to increase

or changed by less than 1%. This cross-validation prevented the RF models, and hence, the

resulting MILPs, from becoming unnecessarily large, with a maximum solution time for the

models of about two hours of computational time. We define a model as having located the

optimum when it obtains a 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 value less than a threshold. Results are presented in Fig. 6.8.

 Both the models trained with 50 and 100 trees located the majority of the optima for the

test functions at low input dimension, i.e., number of decision variables, within 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 values of

0.05 (Fig. 6.8a) and 0.01 (Fig. 6.8b). At higher input dimensions, the cross validation-trained RF

models and the RF models trained with 100 trees perform comparably for the 5% threshold (Fig.

6.8a), locating about the same fraction of the optima for the test functions. However, when the

threshold for locating the optimum is lowered to 1%, the RF models trained with 100 trees exhibit

superior performance to the other models at higher input dimensions, as they locate the optimum

for a much higher fraction of the test functions (Fig 6.8b). These results indicate that more trees

may be required for RF models if a closer, or more accurate, estimate of the location of the

optimum point is required, especially at higher input dimensions. The exponential increase in

solution time at higher numbers of RF model trees presents a barrier to using larger RF models for

 135

optimization purposes. An investigation of decomposition approaches to exploit the unique MILP

structure of RF models to reduce solution times is explored and described in detail in Zeng (2020).

Figure 6.8 - Fraction of datasets with 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 less than (a) 5% and (b) 1% grouped by input

dimension for RF models trained with cross validation, 50 trees, and 100 trees. N values below

(a)

(b)

 136

the function dimensions indicate the number of test functions used for that input dimension (CV

= cross validation)

6.4. Conclusions and Future Work

 We have developed a method for automatically generating and solving an optimization

problem using a RF model to approximate the objective function. This method can be used for

surrogate-based optimization of complex models using only input-output data from those models.

While the resulting MILPs provide accurate estimates for the location of the optimum points for a

large proportion of the test functions investigated, the large solution times required provide a

significant obstacle for solving the necessary models to achieve in an accurate location in some

cases. Decomposition solution approaches are being investigated in order to decrease the solution

time required for larger RF models.

 137

Chapter 7 – Derivative Free Optimization with pyBOUND (PYthon-

based Black box Optimization Using raNDom forests)

Optimization is required for several chemical engineering applications, including process

design and synthesis, operations, and supply chain management. These applications usually

involve complex, high-fidelity simulations and/or physical experiments, which can both require

significant resources in terms of cost and time, as well as a large computational expense to collect

data. Optimization using traditional gradient-based methods is impractical for these applications

because gradient information is not readily available, and approximating gradients may be

infeasible due to the required expense for multiple simulation evaluations or experiments. In

addition, the direct use of deterministic global optimization methods is restrictive in these cases

because the computational cost for obtaining data limits the total number of model runs necessary

to optimize the system efficiently (Conn et al., 2009; Forrester et al., 2008).

To overcome these challenges, derivative-free optimization methods can be employed.

Here, a derivative-free optimization (DFO) algorithm is developed using surrogate-based

optimization, where a surrogate model can be constructed to represent an objective function that

may be computationally expensive to evaluate or are unavailable in analytical form. The

constructed surrogate can be used as a closed functional form in traditional gradient-based

optimization methods.

7.1 Optimization Problem Formulation

Motivated by the recent progress on surrogate-based optimization of black-box problems,

the proposed algorithm uses a surrogate-based approach to solving a constrained black-box

 138

optimization problem. We consider black-box optimization problems of the form given in Eqs.

(7.1) and (7.2),

min
𝒙𝒙

 𝑖𝑖(𝑥𝑥) (7.1)

s.t. 𝑥𝑥𝑖𝑖 ∈ [𝑥𝑥𝑖𝑖𝐿𝐿 , 𝑥𝑥𝑖𝑖𝑈𝑈] ∀ 𝑃𝑃 ∈ {1,2, … …𝐷𝐷} (7.2)

where the objective function, 𝑖𝑖(𝑥𝑥), represents a black-box simulation model. It is assumed that

the black-box model is expensive to evaluate and/or its derivative information is not available, so

traditional gradient-based optimization methods would not be practical for use. 𝐷𝐷 represents the

number of continuous input variables in the model with known finite bounds [𝑥𝑥𝑖𝑖𝐿𝐿, 𝑥𝑥𝑖𝑖𝑈𝑈].

7.2 General pyBOUND Framework

There has been considerable progress in developing approaches for derivative-free

optimization by using surrogate models to approximate any explicitly unknown relationships in

the systems of interest (Boukouvala et al., 2016; Rios & Sahinidis, 2013). The surrogate

approximations aim to guide the search towards the optimum of the original model. However,

these algorithms can be difficult to scale to problems with high dimensionality (Bhosekar &

Ierapetritou, 2018b; Qian et al., 2016a). To address this dimensionality issue, we have developed

pyBOUND (PYthon-based Black box Optimization Using raNDom forests), a two-tiered approach

for surrogate-based optimization. The first stage aims to shrink the search space through a global

search with random forests, and the second stage aims to locate the optimum via a local search

within the reduced space using MARS models. The following sections provide information on the

algorithmic steps of pyBOUND and results for comparing pyBOUND’s performance on a set of

test problems to the performance of several common DFO algorithms. A general framework for

the pyBOUND algorithm is provided in Fig 7.1.

 139

Figure 7.1 - General pyBOUND Framework

 140

7.3 pyBOUND Stage 1: Generation of Decision Variable Bounds with Random Forest Models

 In the first stage of pyBOUND, the algorithm reduces the size of the search space by

solving a series of global deterministic subproblems using random forest (RF) models (Breiman,

2001). A single iteration of this stage consists of sampling, construction of a RF model surrogate

approximation, global optimization of the constrained approximation problem that employs the

RF model, and collection of new sampling points. The iterations repeat the entire procedure until

certain termination criteria are met. Termination criteria for stage 1 include a maximum number

of black box evaluations and a maximum amount of reduction of the original search space.

The initial step for the algorithm for both the global exploration and the trust region

framework generates N sample points to construct the surrogate model. Initially, a set of samples

is generated using a Sobol sequence design. The overall constrained approximation model, which

consists of the RF model objective equation, the RF model constraints, and any original constraints

and variable bounds, is solved to optimality using deterministic global optimization methods

(Misener & Floudas, 2014; Sahinidis, 1996). We previously developed a method of automatically

constructing a RF model and formulating its resulting optimization problem given a set of input-

output values. A full discussion of the method and its results can be found in Chapter 6. If the

model does not include any original nonlinear constraints, the constrained approximation models

with the RF models are MILPs, which are solved with CPLEX (version 12.10.0), in this study.

7.3.1 Approaches for Reducing Decision Variable Bounds

RF models consist of a collection of decision trees, with the final output for the model

being the average of the predicted output for each tree in the forest (Breiman, 2001). Bounds can

be generated for the decision variables from the optimal variables found by solving the constrained

approximation optimization problem using the thresholds given by the decision tree rules for every

 141

tree in the forest. However, each tree in the RF model has its own decision rules and yields its own

bounds. The algorithm must determine a single set of bounds based on the threshold bounds given

by every RF tree. Three methods for reducing the decision variable bounds, or cutting methods,

were investigated for the stage 1 bounds reduction: using the widest bounds set of bounds (Wide),

including bounds where at least two trees intersect each other (Intersection), and averaging the

bounds given by each tree for a single set of bounds (Average). Figure 7.2 provides an illustrative

example of the three methods. The three colored rectangles in Fig. 7.2 represent bounds given by

three separate trees in a RF model for two input dimensions (or decision variables). The new,

reduced bounds determined by the cutting methods are highlighted in yellow.

Figure 7.2– Decision variable bounds cutting methods

 142

7.3.2 Adaptive Sampling Methods for Updating RF Model

Based on the solution of the constrained optimization problem that employs the RF

surrogate model, the algorithm determines whether to continue by increasing the size of the sample

set used to construct the surrogate model or proceed to second stage of pyBOUND with the bounds

determined by the current solution. Four adaptive sampling methods for adding new samples

points were considered at each iteration of stage 1. These methods include Mixed Adaptive

Sampling (MAS), Optimization Directed INcremental (ODIN) sampling, ODIN-MAS, and the

maximization of the expected improvement (EI) function. For each of these methods, a set of

candidate sampling points is randomly generated. Then, a score designating the quality of each

candidate point is calculated based on the objectives of the adaptive sampling method. The RF

model training set is updated with the candidate points with the highest scores.

The Mixed Adaptive Sampling (MAS) algorithm was developed using a combination of

space-filling and adaptive sampling methods (Eason & Cremaschi, 2014). The sample point score

for MAS is based on maximizing the Euclidean distance between the candidate point and the

nearest neighbor point in the existing sample set, as well as maximizing the estimated variance of

the surrogate model at the candidate point. Optimization Directed INcremental (ODIN) sampling

adds new sample points based on a space-filling criterion and by exploiting the regions around the

previously identified best solution (Smith, 2015). The ODIN sample point score is based on

maximizing the nearest neighbor distance to the existing sample set and minimizing the distance

between the candidate sample point and the current best solution for the optimum location of the

optimization problem. ODIN-MAS is a hybrid approach combining the MAS and ODIN sampling

methods. The sample point score for ODIN-MAS is based on maximizing the nearest neighbor

 143

distance and the estimated variance of the surrogate model at the candidate point while minimizing

the distance to the current best solution (Smith, 2015).

The expected improvement (EI) function (Eq. 7.3) is considered to be a robust global

optimizer (Kleijnen et al., 2012). The sample point score for the EI sampling method is based on

maximizing the value of the EI function (Bhosekar & Ierapetritou, 2018a).

𝑛𝑛𝐸𝐸𝑛𝑛(𝑥𝑥) = ∆𝑛𝑛(𝑥𝑥) + 𝜎𝜎𝑛𝑛(𝑥𝑥)𝜑𝜑�−
|∆𝑛𝑛(𝑥𝑥)|
𝜎𝜎𝑛𝑛(𝑥𝑥) � −

|∆𝑛𝑛(𝑥𝑥)|𝜙𝜙�−
|∆𝑛𝑛(𝑥𝑥)|
𝜎𝜎𝑛𝑛(𝑥𝑥) � (7.3)

In Eq. (7.3), φ and ϕ, are the normal cumulative distribution function and probability distribution

function, respectively, 𝜎𝜎𝑛𝑛(𝑥𝑥) is the model variance at the set of decision variables, 𝑥𝑥, and ∆𝑛𝑛(𝑥𝑥)

is the difference between the model estimate of 𝑖𝑖(𝑥𝑥) and the best value of 𝑖𝑖(.) observed thus far

(Jones et al., 1998).

7.3.3 Results for Bounds Cutting and Sampling Methods

 Decisions were made for the structure of pyBOUND using the suite of 127 test functions

described in Section 4.1. Results used for selecting the bounds cutting method, the adaptive

sampling method, and the termination criteria for stage 1 of the algorithm are presented in Figs.

7.3, 7.4, and 7.5. Figures 7.3 and 7.4 show the fraction of the test functions for which each of the

cutting methods (Wide, Intersection, Average) resulted in an infeasible constrained approximation

model and for which each cutting method resulted in no reduction in the decision variable bounds

at the end of the RF bounds reduction stage. Each of the four potential sampling methods was

applied with all three cutting methods.

The “Average” cutting method resulted in the highest fraction of infeasible models (Fig.

7.3). The majority of these infeasibilities occurred for test functions with lower input dimensions

(less than 10). Although the “Wide” cutting method resulted in infeasible runs for a small fraction

 144

of the test functions with only one of the potential sampling methods, it had the highest fraction of

test functions for which stage 1 was not able to provide any reduction to the search space (Fig.

7.4). For both the “Wide” and “Intersection” cutting methods, the majority of the functions that

did not achieve any reduction in the search space were also at lower input dimensions. Based on

these results, the “Intersection” cutting method was selected for optimization problems with less

than 10 input dimensions, and the “Average” cutting method was selected and implemented for

problems with 10 or more input dimensions.

Figure 7.3 - Fraction of test functions with infeasible models for RF stage of pyBOUND

 145

Figure 7.4 - Fraction of test functions with no reduction in decision variables bounds for RF

stage of pyBOUND

 Figure 7.5 depicts the fraction of the test functions for which the true optimum of the

function was cut out of the reduced search space during the RF bounds reduction stage as a function

of the fraction of the original search space that is reduced. These results were obtained using the

“Wide” cutting method. In general, the ODIN sampling method resulted in the lowest fraction of

the true optima being cut out of the search space with increasing search space reduction, with no

cutting for any of the functions occurring until 80% of the original search space had been removed

by the algorithm. Based on these results, the ODIN sampling method was selected for updating

the RF model training set with a termination criterion of an input dimension dependent maximum

amount of reduction in the search space. This termination criterion was applied to avoid removing

the true solution of the optimization problem from the search space. The final configuration for

the RF stage of the algorithm is summarized in Fig. 7.6.

 146

Figure 7.5 - Fraction of test functions with the actual location cut out of the reduced search

space vs the fraction of the original search space volume removed (“Wide”)

 147

Figure 7.6 - Random forest (RF) model bounds generation step. (ODIN = Optimization Directed

INcremental sampling)

 148

7.4 pyBOUND Stage 2: Refinement of Solution with Multivariate Adaptive Regression

Splines (MARS) Models

 Once a suitable reduction of the search space is achieved from Stage 1, the next step in the

pyBOUND algorithm is to refine that solution with a local search in the now reduced search space.

MARS models were chosen for this stage of the algorithm as previous results have indictaed that

MARS models are able to make accurate predictions for a variety of functional forms (Williams

& Cremaschi, 2021b). Similar to the first stage, a surrogate model is constructed and iteratively

improved with adaptive sampling. Based on the final form of the trained MARS surrogate model,

a deterministic optimization problem is formulated and solved to refine the solution. MARS

models result in MINLP optimization models, which are solved with ANTIGONE (Misener &

Floudas, 2014). ANTIGONE was selected because specific relaxations are incorporated into its

solution algorithm to effectively handle the bilinear terms of the MARS MINLP (Misener &

Floudas, 2014).

New sample points are added in the second stage using adaptive sampling based on a hybrid

of the ODIN sampling method and Mixed Adaptive Sampling (MAS) Eason and Cremaschi

(2014), referred to here as ODIN-MAS. The hybrid algorithm was developed by Smith (2015) on

the assumption that combining the exploitation advantages of the ODIN sampling algorithm with

those of the MAS algorithm would perform better than the individual algorithms. This hybrid

algorithm was chosen as the sampling method for the second stage because MARS models have

been observed to exhibit poor approximation performance along the edges of the decision variable

boundaries (Williams & Cremaschi, 2021b). The variance-reducing capability of the MAS

algorithm is hypothesized to mitigate the edge effects of the MARS models.

 149

ODIN-MAS requires an estimate of the MARS model variance. Currently, pyBOUND

utilizes jackknife resampling (Berger, 2007) to estimate MARS model variance. In jackknife

resampling, the variance is estimated by using a leave-one-out (LOO) strategy (Wong, 2015). With

this method, a single data point is set aside (i.e., left out) for validation. The surrogate model is

trained using the remaining data points, and a prediction is obtained for the data point for which

the variance is being estimated. This process is repeated for each data point in the training set,

resulting in a prediction for each. The model variance is then estimated as the variance of the

aggregated LOO predictions.

Termination criteria for the second stage include a maximum number of function

evaluations and a maximum accuracy of the MARS model. The accuracy of the MARS models is

assessed in the algorithm by calculating the R-squared regression coefficient.

7.5 Computational Experiments

 Fifty-four test problems were taken from a suite of optimization test functions in order to

assess and compare the performance of pyBOUND for the minimization of black box models. The

number of input dimensions of these functions varied from two up to 20 inputs. None of the test

problems were used to make any of the decisions in designing the pyBOUND algorithm. Each test

problem was used as a black box model for function evaluations in pyBOUND to estimate the

global minimum of the test function. All of the test problems were implemented in Python 3.8. A

table of the test problems and their related minimum values and optimum locations is provided in

Appendix C.

7.5.1 DFO Algorithms for Comparison

 The optimization capabilities of pyBOUND were compared to three commonly used DFO

algorithms: Stable Noisy Optimization by Branch and Fit (SNOBFIT; (Huyer & Neumaier, 2008)),

 150

Nonlinear optimization with the Mesh Adaptive Search (MADS) Algorithm (NOMAD; (Le

Digabel, 2011)), and Implicit Filtering (ImFil; (Kelley, 2011)). SNOBFIT combines a branching

strategy to enhance the chance of finding a global minimum with a sequential quadratic

programming method based on fitted quadratic models to have good local properties (Huyer &

Neumaier, 2008). ImFil is a steepest descent search algorithm that builds a local surrogate of the

objective function using a quasi-Newton method to explore the search space for the optimization

problem solution. Gradients are approximated for the objective function using interpolation

(Gilmore & Kelley, 1995). SNOBFIT and ImFil were implemented using the Scikit-quant package.

NOMAD is a direct-search algorithm that generates a series of meshes with varying sizes. At every

iteration, the goal of the algorithm is to generate a trial point on each mesh that improves the

current best solution. If this goal is not achieved, a finer mesh is generated on the next iteration.

NOMAD was implemented using the NOMAD software’s built-in Python interface. Computations

were carried out on the Auburn University Easley HPC Cluster (Lenovo System X HPC Cluster)

in Python 3.8.

7.5.2 Performance Metrics

 Two performance metrics were used for evaluating the quality of the optimization solutions

obtained by each of the DFO methods: the normalized optimum gap, 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq. 7.4), and the

optimum distance, 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq. 7.5), between the scaled optimum location found by the DFO

algorithm (�̅�𝑥𝑜𝑜𝑜𝑜𝑡𝑡′) and the scaled actual optimum location of the test function (�̅�𝑥𝑜𝑜𝑜𝑜𝑡𝑡). In Eq. 7.5, the

actual and predicted optimum decision variables are scaled to a value between 0 and 1 using the

original decision variable bounds designated for the test problem.

𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 =
𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚𝑙𝑙𝑔𝑔𝑜𝑜 − 𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚𝑐𝑐𝑡𝑡𝑢𝑢𝑚𝑚𝑙𝑙

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑖𝑖𝑛𝑛
 (7.4)

 151

𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 = ��̅�𝑥𝑜𝑜𝑜𝑜𝑡𝑡 − �̅�𝑥𝑜𝑜𝑜𝑜𝑡𝑡′ � (7.5)

In Eq. 7.5, �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� is the Euclidean distance between any two points 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗.

7.6 Results and Discussion

7.6.1 Results for Original Test Functions

Figures 7.7 and 7.8 show results for the fraction of the original set of 127 test problems

described in Section 4.1 for which pyBOUND was able to obtain 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq. 7.4) and 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq.

7.5) values, respectively, below certain thresholds. The thresholds for 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 and 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 are

0.00001 and 0.01, respectively. pyBOUND solved about 80% of the test functions for the objective

function value (Fig 7.7) and solved about 60% of the test functions for the true optimum location

(Fig 7.8).

Figure 7.7 - Fraction of original test problems solved with 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 less than 0.00001

 152

Figure 7.8 - Fraction of original test problems solves with 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 less than 0.01

7.6.2 Results for New Test Problems

The computational experiments for the DFO algorithm performance comparisons were

executed using each algorithm (pyBOUND, ImFil, NOMAD, SNOBFIT) to estimate the minimum

value of the new set of problems and the location of the global minimum with an increasing number

of function evaluations. These new optimization problems were not used in the construction of

pyBOUND. Then, these results were compared to the global minimum and its true location using

two metrics 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq. 7.4) and 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq. 7.5). Results are summarized in Figs. 7.8 and 7.9,

where we define a model as having located the optimum when it obtains a 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 or 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 value

less than a threshold. The thresholds for 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 and 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 are 0.00001 and 0.01, respectively.

Figure 7.9 shows results for how well each of the DFO algorithms estimates the minimum

test function values for all the test problems (Fig 7.9a) and for only the test problems with higher

input dimensions, greater than five (Fig 7.9b). When considering all test problems, pyBOUND

 153

solves a lower fraction of the problems than both NOMAD and ImFil at less than 1000 function

evaluations. However, when function evaluations are allowed to increase to the maximum allowed

number of 2000, pyBOUND solves a higher fraction of the problems than any other method,

yielding the minimum value of about 80% of the test problems (Fig 7.9a). This value is similar to

the fraction of the test problems pyBOUND estimated the minimum function value. When

considering test problems with high input dimensions, pyBOUND outperforms the other three

algorithms even at lower numbers of function evaluations, estimating the highest fraction of the

test problem optimum values. These results indicate that, in general, pyBOUND can successfully

find the optimum values for black-box problems with a similar level of performance to existing

algorithms. Results for test problems with higher input dimensions may indicate that pyBOUND

performs better than existing algorithms for black-box optimization problems with a high

dimensionality.

 154

Figure 7.9 - Fraction of new test problems solved with 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 less than 0.00001 for (a) all test

problems and (b) test problems with input dimensions greater than 5

(a)

(b)

 155

Figure 7.10 - Fraction of new test problems solves with 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 less than 0.01

 Figure 7.10 shows results for how well each of the DFO algorithms locates the true

optimum decision variable values for the 54 test problems. Overall, pyBOUND is able to estimate

the true optimum for the highest fraction of the test problems out of any of the methods tested.

While the three comparison algorithms performed comparably to pyBOUND for estimating the

minimum objective function value, they did not perform as well for locating the optimum decision

variable values. These results may indicate that the comparison algorithms became trapped in local

optima a larger fraction of the time than pyBOUND, and, thus, were still able to estimate objective

function values in close approximation to the true minimum value but not the true optimum

decision variable values. In general, pyBOUND outperformed the existing algorithms for locating

the true optimum decision variable values for these 54 test problems.

7.7 Conclusions and Future Directions

 Derivative-free optimization of black-box problems using surrogate-based optimization

has been successfully applied in many algorithms. The proposed algorithm, pyBOUND, was

 156

developed to address the difficulty in scaling DFO methods to high dimensionality problems. The

results for the performance of pyBOUND demonstrate that the algorithm is able to estimate

optimum values with similar performance to three commonly used DFO algorithms and provide

evidence that pyBOUND may exhibit improved performance to existing algorithms for both high

dimensionality problems and for locating the true optimal decision variable values. Future work

on pyBOUND will focus on further refinement of the MARS stage of the algorithm, in order to

reduce the amount of time for both solution of the MARS models and estimation of the model

variance.

 157

Chapter 8 – Conclusions and Recommendations for Future Work

 In this dissertation, we developed surrogate models for optimization of processes as well

as a surrogate-based optimization algorithm for derivative-free optimization of expensive black-

box simulations.

8.1 Systematic Selection of Surrogate Modeling Techniques for Surface Approximation and

Surrogate-Based Optimization

 In Chapter 4, we comprehensively investigate and compare the performance of several

different surrogate modeling techniques for both approximating functional relationships and

surrogate-based optimization, and to link that performance to the characteristics of the data

involved in the application. The results of the study provided general ‘rules of thumb’ for selecting

modeling techniques. We used the results of Chapter 4’s study to construct PRESTO (described in

Chapter 5). PRESTO recommends surrogate modeling techniques for approximating a dataset with

91% accuracy and 90% precision and for performing surrogate based-optimization with 98%

accuracy and 99% precision.

 Recommendations for extending the surrogate modeling selection work include adding

more real datasets to the training data for the PRESTO and focusing on using a wider variety of

sampling methods, not just space-filling ones. Future work can also focus on including noisy data

in the analysis, as all the test data used in this study were taken from smooth, continuous functions.

8.2 Surrogate-Based Optimization Using Random-Forests

 In Chapter 6, we developed a method for automatically generating and solving an

optimization problem using a RF model to approximate the objective function. This method can

be used for surrogate-based optimization of complex models using only input-output data from

 158

those models. While the resulting MILPs provide accurate estimates for the location of the

optimum points for a large proportion of the test functions investigated, the large solution times

required provide a significant obstacle for solving the necessary models to achieve in an accurate

location in some cases. Future work can focus on decomposition solution approaches in order to

decrease the solution time required for larger RF models.

8.3 pyBound (PYthon-based Black box Optimization Using raNDom forests)

 Chapter 7 describes the development of pyBOUND (PYthon-based Black box

Optimization Using raNDom forests). The performance analysis of pyBOUND demonstrated that

the algorithm could estimate optimum values with similar performance to three commonly used

DFO algorithms. The analysis also provides evidence that pyBOUND may exhibit improved

performance to existing algorithms for both high dimensionality problems and for locating the true

optimal decision variable values. Recommendations for future work on pyBOUND include further

refinement of the MARS stage of the algorithm to reduce the amount of time required to solve the

MARS optimization problems and estimate the model variance. The current jackknife resampling

method for estimating the MARS variance involves a leave-one-out strategy for estimating the

model variance. This strategy requires training a high number of MARS models, which can

become computationally expensive. Improvements to the algorithm could focus on the

development of less expensive estimates of MARS variance. Developing decomposition

approaches for the MARS model MINLP could reduce the algorithm solution time. Additional

recommendations include testing the algorithm against a wider range of DFO algorithms with more

test problems at higher input dimensions. Further investigation into pyBOUNDS’s performance

for high dimensionality problems would provide value to its performance.

 159

References

Afzal, A., Kim, K., & Seo, J. (2017). Effects of Latin hypercube sampling on surrogate modeling

and optimization. International Journal of Fluid Machinery and Systems, 10, 240-253.

Al, R., Behera, C. R., Zubov, A., Gernaey, K. V., & Sin, G. (2019). Meta-modeling based efficient

global sensitivity analysis for wastewater treatment plants - An application to the BSM2

model. Computers & Chemical Engineering, 127, 233-246.

Arora, S., Shen, W. X., & Kapoor, A. (2017). Neural network based computational model for

estimation of heat generation in LiFePO4 pouch cells of different nominal capacities.

Computers & Chemical Engineering, 101, 81-94.

Bajaj, I., Iyer, S. S., & Hasan, M. M. F. (2018). A trust region-based two phase algorithm for

constrained black-box and grey-box optimization with infeasible initial point. Computers

& Chemical Engineering, 116, 306-321.

Benders, J. (1962). Partitioning procedures for solving mixed-variables programming problems.

Numerische Mathematik, 4, 238-252.

Berger, Y. G. (2007). A jackknife variance estimator for unistage stratified samples with unequal

probabilities. Biometrika, 94, 953-964.

Bertsimas, D., & Dunn, J. (2017). Optimal classification trees. Machine Learning, 106, 1039-1082.

Bhat, G., Spratt, H., Tamayo, E., Saade, G., & Menon, R. (2013). Multivariate adaptive regression

splines analysis to predict biomarkers of spontaneous preterm birth. American Journal of

Obstetrics and Gynecology, 208, S210-S210.

Bhosekar, A., & Ierapetritou, M. (2018a). Advances in surrogate based modeling, feasibility

analysis, and optimization: A review. Computers & Chemical Engineering, 108, 250-267.

 160

Bhosekar, A., & Ierapetritou, M. (2018b). Space mapping based derivative-free optimization

framework for supply chain optimization. Computer Aided Chemical Engineering, 44,

985-990.

Biau, G., & Scornet, E. (2016). Rejoinder on: A random forest guided tour. Test, 25, 264-268.

Biggs, M., & Hariss, R. (2018). Optimizing Objective Functions Determined from Random

Forests. Social Science Research Network, 1-49.

Boukouvala, F., Hasan, M. M. F., & Floudas, C. A. (2017). Global optimization of general

constrained grey-box models: new method and its application to constrained PDEs for

pressure swing adsorption. Journal of Global Optimization, 67, 3-42.

Boukouvala, F., & Ierapetritou, M. G. (2014). Derivative-free optimization for expensive

constrained problems using a novel expected improvement objective function. Aiche

Journal, 60, 2462-2474.

Boukouvala, F., Misener, R., & Floudas, C. A. (2016). Global optimization advances in Mixed-

Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization,

CDFO. European Journal of Operational Research, 252, 701-727.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.

Burman, P. (1989). A Comparative-Study of Ordinary Cross-Validation, Nu-Fold Cross-

Validation and the Repeated Learning-Testing Methods. Biometrika, 76, 503-514.

Burnaev, E. V., & Zaytsev, A. A. (2015). Surrogate modeling of multifidelity data for large

samples. Journal of Communications Technology and Electronics, 60, 1348-1355.

Burnak, B., Diangelakis, N. A., Katz, J., & Pistikopoulos, E. N. (2019). Integrated process design,

scheduling, and control using multiparametric programming. Computers & Chemical

Engineering, 125, 164-184.

Conn, A., Scheinberg, K., & Vicente, L. (2009). Introduction to Derivative-Free Optimization

(Vol. 8). Philadelphia, PA, USA: SIAM.

 161

Cozad, A., Sahinidis, N. V., & Miller, D. C. (2014). Learning surrogate models for simulation-

based optimization. Aiche Journal, 60, 2211-2227.

Crombecq, K., Laermans, E., & Dhaene, T. (2011). Efficient space-filling and non-collapsing

sequential design strategies for simulation-based modeling. European Journal of

Operational Research, 214, 683-696.

Cui, C., Hu, M. Q., Weir, J. D., & Wu, T. (2016). A recommendation system for meta-modeling:

A meta-learning based approach. Expert Systems with Applications, 46, 33-44.

Dai, W., Cremaschi, S., Subramani, H. J., & Gao, H. J. (2019). Estimation of data uncertainty in

the absence of replicate experiments. Chemical Engineering Research & Design, 147, 187-

199.

Das, A. K., & Dewanjee, S. (2018). Optimization of Extraction Using Mathematical Models and

Computation. Computational Phytochemistry, 75-106.

Davis, S., Cremaschi, S., & Eden, M. (2017). Efficient Surrogate Model Development: Optimum

Model Form Based on Input Function Characteristics. In A. Espuna, M. Graells & L.

Puigjaner (Eds.), 27th European Symposium on Computer Aided Process Engineering

(ESCAPE 27) (Vol. 40, pp. 457-462). Barcelona, Spain: Elsevier.

De Maesschalck, R., Jouan-Rimbaud, D., & Massart, D. L. (2000). The Mahalanobis distance.

Chemometrics and Intelligent Laboratory Systems, 50, 1-18.

Diwekar, U. M. (2003). A novel sampling approach to combinatorial optimization under

uncertainty. Computational Optimization and Applications, 24, 335-371.

Drucker, H., Shahrary, B., & Gibbon, D. C. (2002). Support vector machines: relevance feedback

and information retrieval. Information Processing & Management, 38, 305-323.

Du, D., Yang, H., Ednie, A. R., & Bennett, E. S. (2016). Statistical Metamodeling and Sequential

Design of Computer Experiments to Model Glyco-Altered Gating of Sodium Channels in

Cardiac Myocytes. IEEE J Biomed Health Inform, 20, 1439-1452.

 162

Eason, J., & Cremaschi, S. (2014). Adaptive sequential sampling for surrogate model generation

with artificial neural networks. Computers & Chemical Engineering, 68, 220-232.

Forrester, A., Sobester, A., & Keane, A. (2008). Engineering Design via Surrogate Modeling - A

Practical Guide. Chichester: Wiley.

Garud, S. S., Karimi, I. A., & Kraft, M. (2017a). Design of computer experiments: A review.

Computers & Chemical Engineering, 106, 71-95.

Garud, S. S., Karimi, I. A., & Kraft, M. (2017b). Smart Sampling Algorithm for Surrogate Model

Development. Computers & Chemical Engineering, 96, 103-114.

Garud, S. S., Karimi, I. A., & Kraft, M. (2018). LEAPS2: Learning based Evolutionary Assistive

Paradigm for Surrogate Selection. Computers & Chemical Engineering, 119, 352-370.

Gaspari, E., Franke, A., Robles-Diaz, D., Zweigerdt, R., Roeder, I., Zerjatke, T., & Kempf, H.

(2018). Paracrine mechanisms in early differentiation of human pluripotent stem cells:

Insights from a mathematical model. Stem Cell Res, 32, 1-7.

Gilmore, P., & Kelley, C. T. (1995). An Implicit Filtering Algorithm for Optimization of Functions

with Many Local Minima. Siam Journal on Optimization, 5, 269-285.

Golkarnarenji, G., Naebe, M., Badii, K., Milani, A. S., Jazar, R. N., & Khayyam, H. (2018).

Support vector regression modelling and optimization of energy consumption in carbon

fiber production line. Computers & Chemical Engineering, 109, 276-288.

Gomm, J. B., & Yu, D. L. (2000). Selecting radial basis function network centers with recursive

orthogonal least squares training. Ieee Transactions on Neural Networks, 11, 306-314.

Halloin, C., Schwanke, K., Lobel, W., Franke, A., Szepes, M., Biswanath, S., Wunderlich, S.,

Merkert, S., Weber, N., Osten, F., de la Roche, J., Polten, F., Wollert, K., Kraft, T., Fischer,

M., Martin, U., Gruh, I., Kempf, H., & Zweigerdt, R. (2019). Continuous WNT Control

Enables Advanced hPSC Cardiac Processing and Prognostic Surface Marker Identification

in Chemically Defined Suspension Culture. Stem Cell Reports.

 163

Halton, J. H., & Smith, G. B. (1964). Algorithm-247 - Radical-Inverse Quasi-Random Point

Sequence [G5]. Communications of the Acm, 7, 701-702.

Han, Z., & Zhang, K. (2012). Surrogate-Based Optimization. In O. Roeva (Ed.), Real-World

Applications of Genetic Algorithms (pp. 343-362). Rijeka, Croatia: InTech Open.

Harrell, F. E., Lee, K. L., Califf, R. M., Pryor, D. B., & Rosati, R. A. (1984). Regression Modeling

Strategies for Improved Prognostic Prediction. Statistics in Medicine, 3, 143-152.

Hart, W. E., Laird, C. D., Watson, J.-P., Woodruff, D., L., Hackebail, G. A., Nicholson, B. L., &

Siirola, J. D. (2017). Pyomo - Optimization Modeling in Python (2 ed. Vol. 67). Boston,

MA: Springer.

Hart, W. E., Watson, J.-P., & Woodruff, D. L. (2011). Pyomo: modeling and solving mathematical

programs in Python. Mathematical Programming Computation, 3, 219 - 260.

Haykin, S. (2009). Neural Networks and Learning Machines (3rd ed.). Upper Saddle River, New

Jersey: Pearson Education, Inc.

He, Y. L., Geng, Z. Q., & Zhu, Q. X. (2016). Soft sensor development for the key variables of

complex chemical processes using a novel robust bagging nonlinear model integrating

improved extreme learning machine with partial least square. Chemometrics and

Intelligent Laboratory Systems, 151, 78-88.

Hu, J. X., Zhou, Q., Jiang, P., Shao, X. Y., & Xie, T. L. (2018). An adaptive sampling method for

variable-fidelity surrogate models using improved hierarchical kriging. Engineering

Optimization, 50, 145-163.

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and

applications. Neurocomputing, 70, 489-501.

Hussain, K., Salleh, M. N. M., Cheng, S., & Naseem, R. (2017). Common Benchmark Functions

for Metaheuristic Evaluation: A Review. International Journal of Informatics

Visualization, 1, 218-223.

 164

Huyer, W., & Neumaier, A. (2008). SNOBFIT - Stable noisy optimization by branch and fit. Acm

Transactions on Mathematical Software, 35.

Iooss, B., Boussouf, L., Feuillard, V., & Marrel, A. (2010). Numerical studies of the metamodel

fitting and validation process. International Journal of Advances in Systems and

Measurements, 3, 11-21.

Jamil, M., & Yang, X.-S. (2013). A Literature Survey of Benchmark Functions for Global

Optimization Prolems. International Journal of Mathematical Modelling and Numerical

Optimization, 4, 150-194.

Joe, S., & Kuo, F. Y. (2008). Constructing Sobol' Sequences with Better Two-Dimensional

Projections. Siam Journal on Scientific Computing, 30, 2635-2654.

Kelley, C. T. (2011). Implicit Filtering. Implicit Filtering, 23, 3-+.

Kempf, H., Andree, B., & Zweigerdt, R. (2016). Large-scale production of human pluripotent stem

cell derived cardiomyocytes. Advanced Drug Delivery Reviews, 96, 18-30.

Kempf, H., Olmer, R., Haase, A., Franke, A., Bolesani, E., Schwanke, K., Robles-Diaz, D., Coffee,

M., Gohring, G., Drager, G., Potz, O., Joos, T., Martinez-Hackert, E., Haverich, A.,

Buettner, F. F. R., Martin, U., & Zweigerdt, R. (2016). Bulk cell density and Wnt/TGFbeta

signalling regulate mesendodermal patterning of human pluripotent stem cells. Nature

Communications, 7.

Kleijnen, J. P. C., van Beers, W., & van Nieuwenhuyse, I. (2012). Expected improvement in

efficient global optimization through bootstrapped kriging. Journal of Global

Optimization, 54, 59-73.

Kolda, T. G., Lewis, R. M., & Torczon, V. (2003). Optimization by direct search: New

perspectives on some classical and modern methods. Siam Review, 45, 385-482.

Le Digabel, S. (2011). Algorithm 909: NOMAD: Nonlinear Optimization with the MADS

Algorithm. Acm Transactions on Mathematical Software, 37.

 165

Le Thi, H. A., Vaz, A. I. F., & Vicente, L. N. (2012). Optimizing radial basis functions by d.c.

programming and its use in direct search for global derivative-free optimization. Top, 20,

190-214.

Luyben, W. (2011). Design and Control of the Cumene Process. In Principles and Case Studies

of Simultaneous Design (pp. 135-158). Hoboken, NJ: John Wiley & Sons, Inc.

Masampally, V., Pareek, A., & Runkana, V. (2018). Cascade Gaussian Process Regression

Framework for Biomass Prediction in a Fed-batch Reactor. In IEEE Symposium Series on

Computation Intelligence (SSCI '18) (pp. 129-135).

Matthews, B. W. (1975). Comparison of Predicted and Observed Secondary Structure of T4 Phage

Lysozyme. Biochimica Et Biophysica Acta, 405, 442-451.

Maudes, J., Bustillo, A., Guerra, A. J., & Ciurana, J. (2017). Random Forest ensemble prediction

of stent dimensions in microfabrication processes. International Journal of Advanced

Manufacturing Technology, 91, 879-893.

Mckay, M. D. (1992). Latin Hypercube Sampling as a Tool in Uncertainty Analysis of Computer-

Models. 1992 Winter Simulation Conference Proceedings, 557-564.

Mehmani, A., Chowdhury, S., Meinrenken, C., & Messac, A. (2018). Concurrent surrogate model

selection (COSMOS): optimizing model type, kernel function, and hyper-parameters.

Structural and Multidisciplinary Optimization, 57, 1093-1114.

Menze, B. H., Kelm, B. M., Masuch, R., Himmelreich, U., Bachert, P., Petrich, W., & Hamprecht,

F. A. (2009). A comparison of random forest and its Gini importance with standard

chemometric methods for the feature selection and classification of spectral data. Bmc

Bioinformatics, 10.

Misener, R., & Floudas, C. A. (2014). ANTIGONE: Algorithms for coNTinuous/Integer Global

Optimization of Nonlinear Equations. Journal of Global Optimization, 59, 503-526.

Nentwich, C., & Engell, S. (2019). Surrogate modeling of phase equilibrium calculations using

adaptive sampling. Computers & Chemical Engineering, 126, 204-217.

 166

Nikkholgh, M. R., Moghadassi, A. R., Parvizian, F., & Hosseini, S. M. (2010). ESTIMATION OF

VAPOUR-LIQUID EQUILIBRIUM DATA FOR BINARY REFRIGERANT SYSTEMS

CONTAINING 1,1,1,2,3,3,3-HEPTAFLUOROPROPANE (R227ea) BY USING

ARTIFICIAL NEURAL NETWORKS. Canadian Journal of Chemical Engineering, 88,

200-207.

Palmer, D. S., O'Boyle, N. M., Glen, R. C., & Mitchell, J. B. O. (2007). Random forest models to

predict aqueous solubility. Journal of Chemical Information and Modeling, 47, 150-158.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in

Python. Journal of Machine Learning Research, 12, 2825-2830.

Puggini, L., Doyle, J., & McLoone, S. (2015). Fault Detection using Random Forest Similarity

Distance. IFAC-PapersOnLine, 48, 583-588.

Qian, H., Hu, Y., & Yu, Y. (2016a). Derivative-free optimization of high-dimensional non-convex

functions by sequential random embeddings. In G. Brewka (Ed.), Twenty-Fifth

International Joint Conference on Artificial Intelligence (IJCAI '16) (pp. 1946-1952). New

York, NY: AAAI Press.

Qian, H., Hu, Y., & Yu, Y. (2016b). Derivative-Freee Optimization of High-Dimensional Non-

Convex Functions by Sequential Random Embeddings. In S. Kambhampati (Ed.), Twenty-

Fifth International Joint Conference on Artificial Intelligence. New York City, NY, USA:

AAAI Press.

Quiroz, J. C., Mariun, N., Mehrjou, M. R., Izadi, M., Misron, N., & Radzi, M. A. M. (2018). Fault

detection of broken rotor bar in LS-PMSM using random forests. Measurement, 116, 273-

280.

Rahman, R. K., Ibrahim, S., & Raj, A. (2019). Multi-objective optimization of sulfur recovery

units using a detailed reaction mechanism to reduce energy consumption and destruct feed

contaminants. Computers & Chemical Engineering, 128, 21-34.

 167

Rasmussen, C. E., & Nickisch, H. (2010). Gaussian Processes for Machine Learning (GPML)

Toolbox. Journal of Machine Learning Research, 11, 3011-3015.

Rasmussen, C. E., & Williams, C. K. I. (2005). Gaussian Processes for Machine Learning.

Adaptive Computation and Machine Learning, 1-247.

Rios, L. M., & Sahinidis, N. V. (2013). Derivative-free optimization: a review of algorithms and

comparison of software implementations. Journal of Global Optimization, 56, 1247-1293.

Robertson, B. L., Price, C. J., & Reale, M. (2017). Stochastic global optimization using random

forests. In G. Syme, D. Hatton MacDonald, B. Fulton & J. Piantadosi (Eds.),

MODSIM2017, 22nd International Confress on Modelling and Simulation (pp. 784-789).

Hobart, Tasmania, Australia: Modelling and Simulation Society of Australia and New

Zealand.

Roth, G. A., Mensah, G. A., & Fuster, V. (2020). The Global Burden of Cardiovascular Diseases

and Risks A Compass for Global Action. Journal of the American College of Cardiology,

76, 2980-2981.

Sabzekar, M., Yazdi, H. S., & Naghibzadeh, M. (2011). Relaxed constraints support vector

machines for noisy data. Neural Computing & Applications, 20, 671-685.

Sahinidis, N. V. (1996). BARON: A general purpose global optimization software package.

Journal of Global Optimization, 8, 201-205.

Smith, J. (2015). Computationally Assisted Biofuel Production: Hydrodynamics, Optimization,

and Heuristics. University of Tulsa, Tulsa, OK.

Sokolov, M., Ritscher, J., MacKinnon, N., Souquet, J., Broly, H., Morbidelli, M., & Butte, A.

(2017). Enhanced process understanding and multivariate prediction of the relationship

between cell culture process and monoclonal antibody quality. Biotechnol Prog, 33, 1368-

1380.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for

classification tasks. Information Processing & Management, 45, 427-437.

 168

Surjanovic, S., & Bingham, D. (2013). Virtual Library of Simulation Experiments. In (Vol. 2018).

Simon Fraser University.

Svetnik, V., Liaw, A., Tong, C., & Wang, T. (2004). Application of Breiman's random forest to

modeling structure-activity relationships of pharmaceutical molecules. Multiple Classifier

Systems, Proceedings, 3077, 334-343.

Vilalta, R., & Drissi, Y. (2002). A perspective view and survey of meta-learning. Artificial

Intelligence Review, 18, 77-95.

Wang, C., Duan, Q. Y., Gong, W., Ye, A. Z., Di, Z. H., & Miao, C. Y. (2014). An evaluation of

adaptive surrogate modeling based optimization with two benchmark problems.

Environmental Modelling & Software, 60, 167-179.

Wang, G. G., & Shan, S. (2007). Review of metamodeling techniques in support of engineering

design optimization. Journal of Mechanical Design, 129, 370-380.

Williams, B., & Cremaschi, S. (2019). Surrogate Model Selection for Design-Space

Approximation and Surrogate-Based Optimization. In S. Munoz, C. Laird & M. Realff

(Eds.), Ninth International Conference on Foundations of Computer-Aided Process Design

(FOCAPD-19) (pp. 353-358). Copper Mountain, CO, USA: Elsevier B.V.

Williams, B., & Cremaschi, S. (2021a). Novel Tool for Selecting Surrogate Modeling Technqiues

for Surface Approximation. 31st European Symposium on Computer Aided Process

Engineering, Pts a-C, 49, 451-456.

Williams, B., & Cremaschi, S. (2021b). Selection of surrogate modeling techniques for surface

approximation and surrogate-based optimization. Chemical Engineering Research &

Design, 170, 76-89.

Williams, B., Halloin, C., Lobel, W., Finklea, F., Lipke, E., Zweigerdt, R., & Cremaschi, S. (2020).

Data-Driven Model Development for Cardiomyocyte Production Experimental Failure

Prediction. 30th European Symposium on Computer Aided Process Engineering, Pts a-C,

48, 1639-1644.

 169

Williams, B., Lobel, W., Finklea, F., Halloin, C., Ritzenhoff, K., Manstein, F., Mohammadi, S.,

Hashemi, M., Zweigerdt, R., Lipke, E., & Cremaschi, S. (2020). Prediction of Human

Induced Pluripotent Stem Cell Cardiac Differentiation Outcome by Multifactorial Process

Modeling. Front Bioeng Biotechnol, 8, 851.

Williams, B., Otashu, J., Leyland, S., Eden, M. R., & Cremaschi, S. (2021). PRESTO: Predictive

REcommendation of Surrogate models To approximate and Optimize. Chemical

Engineering Science, 249, 117360.

Wong, T. T. (2015). Performance evaluation of classification algorithms by k-fold and leave-one-

out cross validation. Pattern Recognition, 48, 2839-2846.

Wu, D. Z., Jennings, C., Terpenny, J., Gao, R. X., & Kumara, S. (2017). A Comparative Study on

Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using

Random Forests. Journal of Manufacturing Science and Engineering-Transactions of the

Asme, 139.

Xu, Q. S., Liang, Y. Z., & Du, Y. P. (2004). Monte Carlo cross-validation for selecting a model

and estimating the prediction error in multivariate calibration. Journal of Chemometrics,

18, 112-120.

Zeng, Z. (2020). Models and Solution Approaches for Large-Scale Multistage Stochastic Programs

with Endogenous and Exogenous Uncertainty. Auburn University, Auburn, AL.

Zhang, D. H., Qian, L. Y., Mao, B. J., Huang, C., Huang, B., & Si, Y. L. (2018). A Data-Driven

Design for Fault Detection of Wind Turbines Using Random Forests and XGboost. Ieee

Access, 6, 21020-21031.

Zhou, L., Chen, J. H., & Song, Z. H. (2015). Recursive Gaussian Process Regression Model for

Adaptive Quality Monitoring in Batch Processes. Mathematical Problems in Engineering.

Zhou, Y., Li, G., Dong, J., Xing, X. H., Dai, J., & Zhang, C. (2018). MiYA, an efficient machine-

learning workflow in conjunction with the YeastFab assembly strategy for combinatorial

optimization of heterologous metabolic pathways in Saccharomyces cerevisiae. Metab

Eng, 47, 294-302.

 170

Appendix A – Supplementary Data for Cardiomyocyte Feature Selection

Table A1. Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum

and maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte

content is given.

Feature Minimum Maximum Pearson Spearman

FS1-

PCA

FS1-

MARS

FS1-

RF

FS1-

GPR

dd0 Cell Density 0.30 1.28 0.05 0.04 X

dd0-dd1 Cell Density

Gradient -0.76 2.63 0.13 0.28
 X

dd1 Cell Density 0.29 1.36 0.50 0.54 X

dd1-dd2 Cell Density

Gradient 0.03 3.57 -0.37 -0.01

dd2 Cell Density 0.35 2.40 0.06 0.24

dd2-dd3 Cell Density

Gradient -0.46 4.13 -0.30 -0.18

dd3 Cell Density 0.69 3.00 -0.18 -0.07

dd3-dd5 Cell Density

Gradient -0.49 0.81 0.38 0.31
 X

dd5 Cell Density 0.68 3.06 0.31 0.25

dd5-dd7 Cell Density

Gradient -0.79 0.40 0.17 0.22

dd7 Cell Density 0.16 3.05 0.44 0.54 X

 171

dd0 Aggregate Size 71.49 148.91 0.37 0.05 X X

dd0-dd1 Aggregate

Size Gradient -0.03 0.65 -0.51 -0.38

dd1 Aggregate Size 79.61 199.12 0.05 -0.06 X

dd1-dd2 Aggregate

Size Gradient -0.19 0.52 -0.05 0.06

dd2 Aggregate Size 121.07 177.55 0.12 0.15 X

dd2-dd3 Aggregate

Size Gradient -0.25 0.46 -0.13 -0.18

dd3 Aggregate Size 114.85 219.12 -0.08 -0.16 X

dd3-dd5 Aggregate

Size Gradient -0.22 3.26 -0.20 0.08

dd5 Aggregate Size 115.77 754.75 -0.23 -0.02 X

dd7 Aggregate Size 106.29 439.52 0.03 0.21 X

dd5-dd7 Aggregate

Size Gradient -0.55 0.50 0.35 0.29
 X

Preculture Time [h] 45.00 56.00 -0.18 -0.17 X

Table A1.1. Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum and

maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte content

is given.

Feature Minimum Maximum Pearson Spearman

FS1-

PCA

FS1-

MARS

FS1-

RF

FS1-

GPR

 172

Start Preculture

Perfusion [h after inoc]

d1-d2 25.00 28.50 -0.51 -0.65

 X

IWP2 Treatment Time

[h] 43.00 54.00 0.09 0.34
 X X

Average DO

concentration d0 19.40 155.99 0.07 0.18
X

Average DO

concentration d1 20.01 146.91 0.07 0.27
X

Average DO

concentration dd0 19.97 144.99 0.06 0.18
X X

Average DO

concentration dd1 19.89 143.00 0.12 0.23
X

Average DO

concentration dd2 27.27 117.99 -0.09 -0.12
X X

Average DO

concentration dd3 19.68 126.34 0.01 0.00
X

Average DO

concentration dd4 19.94 197.68 0.14 0.14
X

Average DO

concentration dd5 19.03 237.49 0.03 -0.05
X

Average DO

concentration dd6 22.74 237.25 -0.17 -0.38
X

Average DO

concentration dd7 14.14 214.26 -0.23 -0.45
X

 173

Average DO

concentration time

gradient d0 -355.00 238.56 0.31 0.40

X X

Average DO

concentration time

gradient d1 -12.36 69.65 0.07 -0.04

X

Average DO

concentration time

gradient dd0 -5.80 2.76 0.00 0.03

Average DO

concentration time

gradient dd1 -7.14 3.15 0.01 -0.01

Average DO

concentration time

gradient dd2 -80.07 14.37 -0.14 -0.32

Average DO

concentration time

gradient dd3 -4.23 8.50 0.14 0.11

X

Table A1.1. Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum and

maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte content

is given.

 174

Average DO

concentration time

gradient dd4 -52.10 3.47 -0.28 -0.34

 X

Average DO

concentration time

gradient dd5 -28.23 3.96 -0.03 -0.20

X

Average DO

concentration time

gradient dd6 -38.29 -2.38 0.02 -0.04

X X

Average DO

concentration time

gradient dd7 -6.51 9.61 -0.17 0.11

X X

Cell density normalized

DO concentration dd0 26.10 325.81 -0.25 -0.27
X

Cell density normalized

DO concentration dd1 21.51 242.12 -0.27 -0.26
X

Cell density normalized

DO concentration dd2 21.77 110.53 -0.14 -0.11
X

Cell density normalized

DO concentration dd3 15.29 95.74 -0.05 0.02
X

Cell density normalized

DO concentration dd5 11.07 236.31 -0.16 -0.33
X

Cell density normalized

DO concentration dd7 6.69 325.13 -0.16 -0.58
X X

 175

Average cell density

normalized DO

gradient dd0 -5.66 3.10 0.09 0.05

Average cell density

normalized DO

gradient dd1 -5.00 3.59 0.10 0.08

Average cell density

normalized DO

gradient dd2 -47.24 7.00 -0.10 -0.21

 X X

Average cell density

normalized DO

gradient dd3 -3.82 7.20 0.07 0.10

X

Average cell density

normalized DO

gradient dd5 -17.33 3.73 0.13 -0.15

X X

Table A1.1. Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum and

maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte content

is given.

Average cell density

normalized DO

gradient dd7 -7.23 18.30 -0.12 0.13

X X

dd0 Average

acceleration of DO

gradient -2114.51 1270.22 -0.19 -0.30

X

 176

dd1 Average

acceleration of DO

gradient -548.72 159.65 -0.26 -0.23

X

dd2 Average

acceleration of DO

gradient -717.88 569.36 -0.15 -0.13

X

dd3 Average

acceleration of DO

gradient -1403.97 6.14 -0.16 -0.26

X

dd5 Average

acceleration of DO

gradient -408.35 1810.40 0.18 0.12

X

dd7 Average

acceleration of DO

gradient -727.09 281.59 -0.19 -0.10

X

dd0 Average

acceleration of cell

density normalized DO

gradient -3410.50 2190.03 -0.14 -0.37

X X

dd1 Average

acceleration of cell

density normalized DO

gradient -518.56 190.06 -0.25 -0.21

X

dd2 Average

acceleration of cell -487.08 353.64 -0.14 -0.11
X

 177

density normalized DO

gradient

dd3 Average

acceleration of cell

density normalized DO

gradient -684.86 8.96 -0.14 -0.26

X

dd5 Average

acceleration of cell

density normalized DO

gradient -296.53 1149.46 0.19 0.11

X

dd7 Average

acceleration of cell

density normalized DO

gradient -635.01 268.18 -0.19 -0.10

X

Overall Average pH 6.57 7.23 -0.14 -0.05

Table A1.1. Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum and

maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte content

is given.

Overall density

gradient -0.80 4.65 0.24 0.37
 X

Overall aggregate size

gradient -0.03 2.99 -0.19 0.07

d0 Average pH 6.86 7.26 0.04 -0.14

 178

d0 Average pH

Gradient -0.18 0.01 0.21 -0.06
 X

d1 Average pH 6.46 7.86 -0.12 -0.21

d1 Average pH

Gradient -0.21 0.01 -0.09 -0.01
 X X

dd0 Average pH 6.37 7.73 0.16 0.26

dd0 Average pH

Gradient -0.23 0.08 -0.17 -0.25

dd1 Average pH 5.15 7.87 -0.09 -0.11 X

dd1 Average pH

Gradient -0.26 0.26 0.20 -0.02

dd2 Average pH 5.99 7.31 -0.42 -0.46 X X

dd2 Average pH

Gradient -0.18 0.01 0.51 0.49

dd3 Average pH 6.50 7.36 -0.27 -0.16

dd3 Average pH

Gradient -0.17 0.02 0.25 0.12
 X

dd4 Average pH 6.09 7.24 -0.12 0.06

dd4 Average pH

Gradient -0.18 0.01 0.26 0.24

dd5 Average pH 6.56 8.25 0.09 0.10

dd5 Average pH

Gradient -0.29 0.02 0.15 0.10
 X

dd6 Average pH 6.39 7.25 -0.23 -0.12

 179

dd6 Average pH

Gradient -0.11 0.02 -0.02 0.21

dd7 Average pH 6.74 7.31 0.23 0.20

dd7 Average pH

Gradient -0.16 0.02 0.34 0.08

dd0 Lactate

Concentration 11.59 15.83 0.31 0.33

dd1 Lactate

Concentration 9.05 19.59 0.10 0.19
X

dd3 Lactate

Concentration 1.00 18.73 0.07 0.19

dd5 Lactate

Concentration 10.46 20.38 0.10 0.04
X

dd7 Lactate

Concentration 5.94 20.59 -0.02 -0.03

Table A1.1. Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum and

maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte content

is given.

dd0 Glucose

Concentration 7.14 11.95 -0.24 -0.16

dd1 Glucose

Concentration 0.60 6.20 0.20 0.10

dd3 Glucose

Concentration 0.00 10.27 -0.08 -0.21

 180

dd5 Glucose

Concentration 0.00 6.91 0.03 0.05

dd7 Glucose

Concentration 0.00 8.33 -0.14 -0.23

 181

Appendix B – PRESTO Training Data

Test Function ALAMO ANN ELM GP MARS RBFN RF SVM

Sphere_2D_50 1 0.991883 0.998527 0.999891 0.984819 0.995412 0.567829 0.972371

Sphere_4D_50 1 0.679355 0.374345 0.999743 0.938708 0.885513 -0.20604 0.896715

Sphere_6D_50 1 -0.32103 -1.38109 0.584517 0.6797 0.704757 -0.5477 0.773264

Sphere_8D_50 1 -1.5 -0.99898 0.461843 -0.01391 0.533775 -0.82552 0.411296

Sphere_10D_50 -1.5 -1.5 -1.5 0.212904 0.029458 0.340699 -1.2602 0.302759

Ellipsoid_2D_50 1 0.999386 0.998998 0.999886 0.991959 0.982831 0.647666 0.975139

Ellipsoid_4D_50 1 0.972754 0.095487 0.999729 0.934743 0.796317 0.063112 0.923058

Ellipsoid_6D_50 1 0.012355 -0.24285 0.757335 0.906734 0.572044 -0.25715 0.755811

Ellipsoid_8D_50 1 -1.5 -0.89361 0.610191 0.83531 0.40496 -0.62792 0.106989

Ellipsoid_10D_50 1 -1.5 -1.07773 0.476375 0.636184 0.259156 -0.84942 -0.14107

Sum of Different

Powers_2D_50 0.998417 0.96248 0.99683 0.999323 0.983367 0.962979 0.531638 0.975553

Sum of Different

Powers_4D_50 -1.5 0.158583 -0.57195 0.749224 0.846154 0.713696 -0.25444 0.811213

 182

Sum of Different

Powers_6D_50 -1.5 -1.5 -0.23581 0.412089 0.055331 0.523253 -0.48272 -0.12269

Sum of Different

Powers_8D_50 -1.5 -0.88385 -1.5 0.258848 -0.26474 0.444601 -0.75403 -1.05526

Sum of Different

Powers_10D_50 -1.5 -0.96565 -1.5 0.077975 -0.18174 0.262125 -1.08251 -0.88772

Sum of Squares_2D_50 1 0.99464 0.998302 0.99989 0.993516 0.963265 0.644871 0.97896

Sum of Squares_4D_50 1 0.891122 0.03013 0.999644 0.928025 0.805632 0.043647 0.928945

Sum of Squares_6D_50 1 -0.86844 -0.40176 0.826707 0.805668 0.611637 -0.37288 0.810521

Sum of Squares_8D_50 1 -1.24093 -1.00597 0.666572 0.840446 0.430393 -0.92552 -0.12561

Sum of Squares_10D_50 -1.5 -1.37587 -1.5 0.346557 0.477318 0.355969 -0.70161 -0.64066

Trid_2D_50 1 0.999703 0.998419 0.999911 0.977877 0.997463 0.713511 0.911079

Trid_4D_50 1 0.88689 0.423573 0.998636 0.756335 0.799795 -0.64207 0.873351

Trid_6D_50 1 -0.63838 -0.41016 0.848318 -0.06127 0.453277 -1.11443 0.716932

Trid_8D_50 -1.5 -1.02606 -0.86796 0.687593 -0.10428 0.293276 -1.41487 0.290363

Trid_10D_50 -1.5 -0.98551 -1.5 0.28193 -0.04517 0.170072 -1.43021 -0.32451

Perm_2D_50 0.999975 0.366541 0.999529 0.999869 1 0.996878 0.752834 0.932505

Perm_4D_50 0.998425 -0.63391 0.435027 -0.10269 0.629348 0.620584 -0.69051 -1.5

 183

Perm_6D_50 -1.5 -0.81575 -0.09012 -1.5 0.066267 0.088246 -1.21029 -1.5

Perm_8D_50 -1.5 -0.64246 -1.5 -1.5 -0.46226 -0.1336 -1.47073 -1.5

Perm_10D_50 -1.5 -0.63198 -1.5 -1.5 -0.48879 -0.20345 -1.63527 -1.5

Bohachevsky_2D_50 1 0.998606 0.9983 0.999891 0.993516 0.963269 0.636029 0.978971

Dixon_Price_2D_50 0.932253 0.998433 0.991308 0.998778 0.98754 0.899464 0.836493 0.776174

Dixon_Price_4D_50 0.567243 0.412705 -0.04346 0.821688 0.948822 0.624614 0.208551 0.770469

Dixon_Price_6D_50 -1.5 -0.31957 -0.45331 0.597333 0.583042 0.4606 -0.22687 0.529303

Dixon_Price_8D_50 -1.5 -1.10185 -0.58201 0.47543 0.502895 0.362318 -0.83221 0.011865

Dixon_Price_10D_50 -1.5 -1.08656 -1.5 -0.0153 0.037613 0.23744 -0.61435 -1.5

Rosenbrock_2D_50 0.992232 0.999572 0.994771 0.999501 0.997448 0.965528 0.944532 0.833608

Rosenbrock_4D_50 0.973538 0.699565 -0.76041 0.949872 0.959903 0.650476 0.509064 0.176287

Rosenbrock_6D_50 -1.5 0.071869 0.002001 0.718071 0.921816 0.51107 0.311985 -0.1023

Rosenbrock_8D_50 -1.5 -0.61521 -0.59402 0.60082 0.868788 0.497417 -0.03383 -0.05657

Rosenbrock_10D_50 -1.5 -0.77959 -1.30608 0.380086 -0.15048 0.257544 -0.41694 -0.12439

3Hump_2D_50 0.990801 0.998725 0.634506 0.997668 0.992859 0.89648 0.810089 0.163489

6Hump_2D_50 0.894824 0.928145 0.715906 0.931298 0.909716 0.744162 0.528215 0.248031

Booth_2D_50 1 0.997037 0.998949 0.999275 0.996986 0.992131 0.635283 0.860427

Matyas_2D_50 1 0.998969 0.997691 0.999909 0.993636 0.994159 0.218241 0.971831

 184

McCormick_2D_50 0.989584 0.992434 0.998515 0.998813 0.983295 0.98368 0.363914 0.884559

Zakharov_2D_50 0.974013 0.998206 0.999339 0.995958 0.980524 0.988421 0.467876 0.777433

Zakharov_4D_50 0.766549 0.987558 0.37432 0.929132 0.697904 0.401263 -0.80022 0.264688

Zakharov_6D_50 -1.5 0.953243 0.376145 0.872863 0.693764 -0.08837 -1.08565 -0.02681

Zakharov_8D_50 -1.5 0.792505 -1.5 0.730693 0.251604 -0.13102 -1.01908 -0.56637

Zakharov_10D_50 -1.5 0.969553 -1.5 0.507132 0.169522 -0.20514 -1.39108 -1.1121

PowerSum_4D_50 0.753261 0.523696 0.268972 0.736593 0.651823 0.353438 -0.26695 0.353632

Beale_2D_50 0.883135 0.379235 0.757562 0.838555 0.533899 0.598431 -0.38028 0.310821

Branin_2D_50 0.902476 0.987024 0.989747 0.995485 0.956918 0.896405 0.436637 -1.5

GoldsteinPrice_2D_50 0.753127 0.935189 0.875279 0.93931 0.901397 0.772101 0.260905 0.676832

StyblinskiTang_2D_50 0.990015 0.477489 0.932555 0.969359 0.921375 0.539851 0.486645 -1.29549

StyblinskiTang_4D_50 0.965141 -0.8427 -0.59956 -0.00381 0.333815 -0.13993 -0.11531 -1.5

StyblinskiTang_6D_50 -1.5 -1.5 -1.5 -0.12084 -0.5768 -0.21063 -0.88605 -1.5

StyblinskiTang_8D_50 -1.5 -0.87544 -1.5 -0.37897 -0.70479 -0.05296 -0.95974 -1.5

StyblinskiTang_10D_50 -1.5 -1.5 -1.5 -0.54389 -0.55778 -0.13132 -1.13684 -1.5

Perm_db_2D_50 0.9826 0.985744 0.998268 0.989014 0.958297 0.929078 0.775503 0.838194

Perm_db_4D_50 0.937618 0.931542 -0.54661 0.932948 0.915928 0.243678 0.45696 0.114804

Perm_db_6D_50 0.770769 -0.64473 -1.5 0.865451 0.805461 -0.1296 0.194415 -1.32697

 185

Perm_db_8D_50 0.485347 -0.40476 -1.5 0.795058 -1.5 -0.20775 -0.23886 -1.41371

Perm_db_10D_50 -1.5 -0.19721 -1.5 -0.01216 -0.61029 -0.23808 -0.52584 -0.34579

Shekel_4D_50 -0.08537 -1.02119 -1.37698 -0.10286 -0.02331 0.323784 -0.99064 -1.5

Colville_4D_50 0.676627 0.111371 -0.41437 0.781178 0.946919 0.529135 0.346001 0.661308

Powell_4D_50 0.7188 0.510888 0.39547 0.954988 0.827737 0.54731 -0.51499 0.793735

Powell_8D_50 -1.5 -0.26491 -1.14723 0.705512 -0.04561 0.064764 -1.04633 0.129459

Hartmann_6D_50 0.035418 -0.11686 -1.20856 0.265293 -0.14614 -0.06027 -1.34079 -0.10586

Ackley_2D_50 0.361025 -0.021 0.081351 -1.5 0.067319 0.146373 -0.04714 0.500436

Ackley_4D_50 -0.03556 -0.03498 -1.07313 -1.5 -0.00648 -1.5 -2.26317 -0.05641

Ackley_6D_50 -0.02439 -1.5 -1.5 -1.5 -0.07574 -1.5 -4.88074 -1.5

Ackley_8D_50 -0.06612 -0.18937 -1.5 -1.5 -0.09281 -1.5 -6.71234 -1.5

Ackley_10D_50 -0.13747 -0.36433 -1.5 -1.5 -0.18032 -1.5 -7.76696 -1.5

Griewank_2D_50 0.999813 0.999208 0.999 0.999718 0.984617 0.995271 0.581613 0.974332

Griewank_4D_50 0.99997 0.038515 0.372949 0.999764 0.950531 0.885808 -0.24061 0.899717

Griewank_6D_50 0.999877 -0.46188 -0.37019 0.585474 0.679556 0.706134 -0.53773 0.77306

Griewank_8D_50 0.999954 -1.5 -1.5 0.461365 -0.01397 0.535432 -1.05924 0.411178

Griewank_10D_50 0.782419 -1.5 -1.5 0.211298 -0.00474 0.342059 -1.2862 0.303024

Schwefel_2D_50 0.096824 0.018579 -0.17047 0.060478 0.017776 -0.16663 -0.2473 -1.5

 186

Schwefel_4D_50 -0.02777 -1.5 -0.46668 -0.30795 -0.14429 -0.42285 -0.85269 -1.5

Schwefel_6D_50 -0.52967 -0.76992 -0.67431 -0.35197 -0.30092 -0.34188 -1.19393 -1.03563

Schwefel_8D_50 -1.06399 -1.5 -1.5 -0.6703 -0.25881 -0.30694 -1.2439 -1.5

Schwefel_10D_50 -1.5 -1.5 -1.5 -0.82853 -0.59806 -0.32616 -1.21411 -1.41275

Rastrigin_2D_50 0.208071 0.187672 -0.29457 0.125208 0.384824 0.143072 -0.19374 -1.08402

Rastrigin_4D_50 0.104287 -0.40768 -0.56606 -0.09094 -0.01708 0.019158 -0.73407 -0.71862

Rastrigin_6D_50 -1.5 -0.51239 -0.47901 -0.41388 -0.24162 0.049814 -1.10641 -1.5

Rastrigin_8D_50 -1.5 -1.5 -1.5 -0.91548 -0.00235 0.111212 -1.14611 -1.5

Rastrigin_10D_50 -1.5 -1.5 -1.31349 -0.98443 -0.21492 0.116979 -1.33907 -1.34839

Levy_2D_50 0.536222 0.306399 0.397654 0.979847 0.460678 0.408935 0.471569 -0.10023

Levy_4D_50 0.267984 -0.00247 -0.1784 -0.15818 0.244106 0.213374 -0.64872 -0.66246

Levy_6D_50 0.237066 -0.37611 -1.5 0.116743 -0.19761 0.229232 -0.96031 -1.04134

Levy_8D_50 -1.5 -1.5 -1.5 -0.1159 -0.49646 0.265537 -1.33308 -1.2973

Levy_10D_50 -1.5 -1.05914 -1.5 -0.31045 -0.41203 0.181455 -1.42015 -1.5

Cross_IT_2D_50 -0.022 -1.5 -0.17428 -0.72824 -0.02877 -0.09398 -0.73056 -1.5

Drop_Wave_2D_50 0.109282 -0.66164 -0.1551 -1.5 0.107558 0.008478 -1.24592 -0.85612

Eggholder_2D_50 -0.07513 -1.5 -0.3907 -0.12616 -0.00036 -0.42873 -2.15016 -1.5

Holder_2D_50 0.152205 0.260596 0.105227 0.18093 0.276957 0.176985 -0.42813 -0.20458

 187

Sphere_15D_50 -179.711 -9.8657 -2.04612 -0.62386 -0.57402 -0.14315 -1.39023 0.05799

Sphere_20D_50 -1023.52 -6.94551 -2.10197 -0.99494 -0.51106 -0.3626 -1.38987 -0.00863

Sum of Squares_15D_50 -273.808 -4.48563 -1.66883 0.073638 0.037495 -0.07413 -1.55792 -0.17834

Sum of Squares_20D_50 -12423.4 -5.27736 -2.99793 -0.39559 0.023466 -0.25744 -1.35164 -0.66812

Sum of Different

Powers_15D_50 -491.756 -2.30014 -4.31176 -0.76535 -0.847 -0.15915 -1.47174 -0.98963

Sum of Different

Powers_20D_50 -1921.03 -3.785 -2.65157 -0.79926 -1.39439 -0.28044 -1.61379 -0.93145

Trid_15D_50 -1154.78 -4.24324 -1.85249 -0.04945 -0.06158 -0.20677 -1.66054 -0.5681

Trid_20D_50 -19720.6 -4.35131 -2.30716 -0.81235 -1.34902 -0.3887 -1.77885 -0.90441

Zakharov_15D_50 -81.0491 -0.74462 -12.4229 0.357708 -0.79621 -0.34399 -1.42689 -0.66751

Zakharov_20D_50 -100.768 -2.43007 -51.4726 -0.03045 -0.42692 -0.36265 -1.45078 -0.55664

StyblinskiTang_15D_50 -1874.33 -2.60192 -3.88406 -1.81399 -1.07426 -7.98944 -1.53839 -7.97376

StyblinskiTang_20D_50 -8421.55 -4.07232 -1.81361 -1.58494 -0.36025 -11.0167 -1.67938 -2.42728

Ackley_15D_50 -0.37482 -1461.6 -349.337 -366.021 -0.39687 -0.64413 -8.1502 -40.6806

Ackley_20D_50 -0.6389 -3341.96 -774.914 -1069.69 -0.71247 -3.71819 -12.4876 -19.9989

Levy_15D_50 -900.773 -3.55876 -1.75725 -0.57354 -0.59877 -0.15819 -1.6137 -0.7892

Levy_20D_50 -1289.68 -6.13656 -1.96066 -1.08188 -1.02164 -0.26444 -1.80867 -1.35183

 188

Griewank_15D_50 -20393.8 -9.96287 -1.26968 -0.62846 -0.49188 -0.14246 -1.44313 0.058305

Griewank_20D_50 -4549.34 -10.4029 -2.10484 -0.89054 -0.51384 -0.36233 -1.38469 -0.00836

Schwefel_15D_50 -360.005 -1.55833 -1.84166 -0.88437 -1.64773 -0.49821 -1.48415 -0.75612

Schwefel_20D_50 -975.97 -1.17584 -4.39523 -1.69883 -1.39663 -0.49422 -1.48156 -0.69417

Rastrigin_15D_50 -1606.7 -18.8848 -3.29329 -2.39242 -0.0058 -0.18398 -1.5193 -1.10371

Rastrigin_20D_50 -1549.54 -45.6624 -5.20567 -6.08304 -0.00687 -0.39529 -1.35988 -1.22331

Ellipsoid_15D_50 -23340.3 -5.51581 -1.22467 -0.07337 -0.30575 -0.0926 -1.21187 -0.06556

Ellipsoid_20D_50 -573.937 -5.17341 -1.62009 -1.1181 -0.88182 -0.27916 -1.36751 -0.08129

Rosenbrock_15D_50 -520.629 -1.99403 -3.95239 -0.29097 -0.36454 -0.23029 -0.48699 -0.41526

Rosenbrock_20D_50 -2506.72 -3.20402 -1.48249 -0.86472 -0.68147 -0.3882 -0.83075 -0.77982

Dixon_Price_15D_50 -424.303 -4.30997 -2.28008 -0.10867 -0.43866 -0.147 -1.37387 -0.52721

Dixon_Price_20D_50 -1286.49 -6.4999 -2.37561 -0.51435 -40.4408 -0.31098 -1.34138 -1.8528

Sphere_2D_100 1 0.99965 0.999666 0.999969 1 0.997929 0.80736 0.982342

Sphere_4D_100 1 0.981112 0.717242 0.999956 0.981313 0.902683 0.100553 0.956661

Sphere_6D_100 1 0.927373 -0.04109 0.999821 0.956236 0.777296 -0.27995 0.886685

Sphere_8D_100 1 -0.16667 -0.55563 0.999466 0.921064 0.6317 -0.56573 0.78665

Sphere_10D_100 1 -0.16258 -0.43226 0.412037 0.876366 0.402262 -0.83289 0.5819

Ellipsoid_2D_100 1 0.99982 0.999772 0.999972 1 0.9982 0.784364 0.974431

 189

Ellipsoid_4D_100 1 0.993186 0.865404 0.999956 0.99719 0.917747 0.396185 0.96394

Ellipsoid_6D_100 1 0.941299 -0.01079 0.999786 0.98161 0.730255 0.054482 0.886975

Ellipsoid_8D_100 1 -0.23135 -0.48541 0.953564 0.966779 0.493607 -0.28148 0.816487

Ellipsoid_10D_100 1 -0.38757 -0.4214 0.758963 0.945661 0.343529 -0.46984 0.552875

Sum of Different

Powers_2D_100 0.964339 0.999726 0.999159 0.999856 0.999216 0.998201 0.784405 0.980066

Sum of Different

Powers_4D_100 -0.8705 0.351187 0.701029 0.980536 0.971888 0.824231 0.213477 0.90923

Sum of Different

Powers_6D_100 -1.5 -1.05405 0.006733 0.633103 0.882001 0.624486 -0.23639 0.756212

Sum of Different

Powers_8D_100 -1.5 -1.5 -0.38393 0.481344 0.681914 0.550618 -0.35191 0.540724

Sum of Different

Powers_10D_100 -1.5 -1.5 -0.49091 0.244909 0.271795 0.409834 -0.59584 -0.352

Sum of Squares_2D_100 1 0.997403 0.999615 0.999971 1 0.997465 0.799499 0.974431

Sum of Squares_4D_100 1 0.991355 0.84042 0.999952 0.993305 0.88549 0.383976 0.95756

Sum of Squares_6D_100 1 0.918967 -1.38269 0.999735 0.978326 0.757515 0.119054 0.914608

Sum of Squares_8D_100 1 0.199777 -0.34657 0.991573 0.927089 0.575758 -0.41417 0.819993

 190

Sum of Squares_10D_100 1 -1.2358 -1.5 0.805907 0.961139 0.420671 -0.64533 0.008161

Trid_2D_100 1 0.999862 0.998768 0.999971 1 0.998915 0.882016 0.953138

Trid_4D_100 1 0.99392 0.765222 0.999968 0.946347 0.950204 0.100484 0.923903

Trid_6D_100 1 0.91078 -0.40977 0.999851 0.86273 0.819821 -0.42306 0.916463

Trid_8D_100 1 -0.353 -1.45304 0.999146 0.534371 0.500224 -0.78055 0.850779

Trid_10D_100 1 -0.76942 -0.51227 0.810362 -0.57863 0.379894 -1.00689 0.662435

Perm_2D_100 0.999977 0.354091 0.999767 0.999977 0.99957 0.998208 0.911485 0.966209

Perm_4D_100 0.998969 -0.5962 0.871317 -0.03338 0.996971 0.884642 -0.14143 -1.5

Perm_6D_100 0.999747 -0.63426 0.660174 -1.5 0.716814 0.539328 -0.65706 -1.5

Perm_8D_100 0.99968 -0.69584 -0.06751 -1.5 -0.51805 -0.03305 -1.23201 0.61802

Perm_10D_100 -1.5 -0.58043 -1.5 -1.5 -0.08866 -0.1162 -1.70249 0.54859

Bohachevsky_2D_100 1 0.99955 0.999615 0.999971 1 0.997465 0.798219 0.974427

Dixon_Price_2D_100 0.962144 0.999376 0.999505 0.999708 0.998908 0.991053 0.9432 0.797246

Dixon_Price_4D_100 0.942686 0.906834 0.571424 0.975191 0.985931 0.734701 0.433498 0.833402

Dixon_Price_6D_100 0.896997 -0.496 -0.31681 0.752149 0.949484 0.668013 0.146407 0.803235

Dixon_Price_8D_100 0.87422 -0.373 -0.31058 0.675906 0.844348 0.539473 -0.25009 0.605305

Dixon_Price_10D_100 -1.5 -0.60645 -0.41276 0.558593 0.75461 0.403837 -0.4097 0.220653

Rosenbrock_2D_100 0.99338 0.998946 0.999183 0.999674 0.998255 0.998734 0.953702 0.937547

 191

Rosenbrock_4D_100 0.98977 0.994866 0.748634 0.989613 0.966956 0.802436 0.789707 0.763109

Rosenbrock_6D_100 0.983894 0.14025 0.468232 0.867305 0.969937 0.649575 0.526087 0.427453

Rosenbrock_8D_100 0.926319 -0.29036 0.083712 0.688164 0.903634 0.561604 0.389686 0.332927

Rosenbrock_10D_100 0.405181 -0.48691 0.00463 0.6338 0.864206 0.412254 0.056163 0.258153

3Hump_2D_100 0.992026 0.999273 0.997813 0.999372 0.998238 0.949417 0.94009 0.586264

6Hump_2D_100 0.808768 0.987471 0.99506 0.994517 0.99115 0.889815 0.76585 0.33991

Booth_2D_100 1 0.999339 0.996546 0.999911 0.999056 0.997493 0.845422 0.912401

Matyas_2D_100 1 0.999711 0.998958 0.999968 0.999052 0.998752 0.776753 0.971712

McCormick_2D_100 0.993771 0.99954 0.998953 0.99898 0.992643 0.997725 0.850223 0.935825

Zakharov_2D_100 0.976602 0.999248 0.999783 0.99962 0.98898 0.996763 0.798448 0.876816

Zakharov_4D_100 0.871351 0.942508 0.822502 0.963485 0.875454 0.699907 0.042634 0.490279

Zakharov_6D_100 0.834467 0.991816 0.380813 0.931822 0.632164 0.178995 -0.38604 0.151404

Zakharov_8D_100 0.541029 0.966513 -0.30276 0.90437 0.414211 0.019252 -1.2343 -0.1179

Zakharov_10D_100 -1.5 0.991791 -1.24256 0.812326 0.387415 -0.13516 -1.20447 -0.97747

PowerSum_4D_100 0.701677 0.926294 0.484722 0.923678 0.737328 0.683421 0.103222 0.450718

Beale_2D_100 0.890003 0.828599 0.890697 0.934007 0.619134 0.873895 -0.30611 0.497737

Branin_2D_100 0.965501 0.996191 0.991954 0.999137 0.987719 0.984671 0.75726 -1.5

GoldsteinPrice_2D_100 0.763113 0.978624 0.979587 0.986968 0.925294 0.968991 0.641087 0.815855

 192

StyblinskiTang_2D_100 0.992399 0.6237 0.9892 0.996846 0.976875 0.983588 0.715191 -0.38387

StyblinskiTang_4D_100 0.984849 0.185946 -0.04802 0.360619 0.909603 -0.01087 0.226074 -1.10544

StyblinskiTang_6D_100 0.961058 -0.53195 -0.18489 0.035917 0.709176 -0.01325 -0.37195 -1.5

StyblinskiTang_8D_100 -1.5 -0.69141 -0.32279 -0.10375 0.364614 0.03226 -0.33692 -1.5

StyblinskiTang_10D_100 -1.5 -1.42988 -1.5 -0.22812 0.057046 -0.01888 -0.6637 -1.27769

Perm_db_2D_100 0.964041 0.992518 0.998844 0.997823 0.946315 0.997372 0.89644 0.9262

Perm_db_4D_100 0.937608 0.937164 -0.17734 0.970156 0.907385 0.244771 0.788168 -0.28141

Perm_db_6D_100 0.858219 -0.36116 -1.20282 0.93014 0.747633 -0.13163 0.608378 -0.58496

Perm_db_8D_100 0.710783 -0.66132 -0.72571 0.934984 0.809493 -0.22716 0.418545 -0.64362

Perm_db_10D_100 -1.5 -1.5 -0.98414 0.907809 0.687365 -0.21244 0.225983 -0.95269

Shekel_4D_100 -0.02928 0.125881 0.11039 0.164864 0.14177 0.404813 -0.32742 -1.5

Colville_4D_100 0.942485 0.867208 -0.03021 0.995901 0.985041 0.702282 0.639157 0.781973

Powell_4D_100 0.90228 0.957928 -0.4955 0.993968 0.846287 0.629944 -0.04009 0.825404

Powell_8D_100 0.732423 0.001133 -1.0269 0.821976 0.530489 0.156038 -0.59074 0.599838

Hartmann_6D_100 0.227834 0.251753 -0.68461 0.366989 0.108299 0.171043 -0.91136 -0.38435

Ackley_2D_100 0.425334 0.70875 0.510033 -1.44669 0.239919 0.643927 0.264013 0.644505

Ackley_4D_100 -0.35862 -1.5 -0.13132 -1.5 -0.93236 -0.5471 -2.08849 0.17329

Ackley_6D_100 -0.01372 -1.5 -1.5 -1.5 -1.5 -1.5 -3.98183 -0.66062

 193

Ackley_8D_100 -0.05502 -1.5 -1.5 -1.5 -0.06417 -1.5 -4.46719 -1.5

Ackley_10D_100 -0.12562 -0.18864 -1.5 -1.5 -0.11932 -1.5 -7.77997 -1.5

Griewank_2D_100 0.999819 0.999631 0.999184 0.99979 0.999766 0.997979 0.794496 0.985984

Griewank_4D_100 0.999973 0.985266 0.870127 0.999928 0.969005 0.902469 0.098762 0.957777

Griewank_6D_100 0.999995 0.861048 0.10676 0.999833 0.943022 0.777748 -0.29115 0.889373

Griewank_8D_100 0.999997 -0.79957 -0.37811 0.99951 0.919213 0.632642 -0.63683 0.785604

Griewank_10D_100 0.999997 -1.5 -0.83193 0.410631 0.88907 0.427149 -0.8356 0.584749

Schwefel_2D_100 0.144511 0.024465 -0.01052 0.225827 0.289089 -0.16029 0.061892 -1.5

Schwefel_4D_100 0.065354 -0.05743 -0.10954 0.013203 -0.07005 -0.21493 -0.6459 -1.5

Schwefel_6D_100 0.037441 -0.03025 -0.24414 -0.04356 -0.20329 -0.47031 -0.98137 -1.5

Schwefel_8D_100 -0.47708 -1.14267 -0.78339 -0.44473 -0.03922 -0.43071 -1.07352 -1.5

Schwefel_10D_100 -1.03086 -0.7016 -0.56705 -0.48638 -0.30925 -0.35524 -1.09425 -1.5

Rastrigin_2D_100 0.344002 -0.04728 0.257224 0.170687 0.479212 0.122237 0.081978 -1.5

Rastrigin_4D_100 0.225433 -0.03575 0.009374 -0.01592 0.276753 -0.15787 -0.65448 -0.48445

Rastrigin_6D_100 -0.13438 -1.5 -0.38352 -0.01314 0.059962 -0.02456 -0.9365 -0.57165

Rastrigin_8D_100 -0.98236 -1.5 -0.75364 -0.30245 -0.2052 0.029005 -1.13397 -1.34883

Rastrigin_10D_100 -1.17346 -1.5 -0.59062 -0.53266 -0.64684 0.113615 -1.23337 -1.22309

Levy_2D_100 0.678392 0.649477 0.077183 0.991821 0.943592 0.471336 0.812526 0.177742

 194

Levy_4D_100 0.508912 0.171952 -0.02092 0.364377 0.548382 0.303737 0.042945 -0.42958

Levy_6D_100 0.373461 -0.82096 -0.24866 0.185089 0.313556 0.240446 -0.40888 -0.7518

Levy_8D_100 -0.17147 -1.097 -0.69295 0.122398 -0.03262 0.288655 -0.63977 -0.85862

Levy_10D_100 -1.5 -1.5 -0.30288 0.09767 -0.19465 0.218847 -1.08598 -0.52653

Cross_IT_2D_100 0.355755 0.226267 0.266149 -0.55916 0.051767 0.15522 -0.05831 -0.56527

Drop_Wave_2D_100 0.228013 0.208136 0.125932 -1.5 0.150408 0.1039 -0.98652 -0.79842

Eggholder_2D_100 -0.02658 -0.32071 -0.32999 0.342489 -0.06172 -0.80445 -1.88996 -1.5

Holder_2D_100 0.377521 0.300838 0.114274 0.399522 0.376571 0.125071 -0.38402 -0.20563

Sphere_15D_100 1 -4.61891 -0.76974 -0.07296 0.318527 -0.06355 -1.20445 0.380956

Sphere_20D_100 -135633 -6.65182 -0.82295 -0.39472 -0.31862 -0.29499 -1.28239 0.175048

Sum of Squares_15D_100 1 -3.32874 -0.49349 0.343819 0.458818 0.021935 -0.87706 -0.18465

Sum of Squares_20D_100 -1633.07 -5.26714 -1.02498 0.050193 -30.2109 -0.21613 -1.0208 -0.06819

Sum of Different

Powers_15D_100 -370266 -1.66984 -0.68563 -0.04739 -0.07944 -0.06124 -1.0003 -0.64449

Sum of Different

Powers_20D_100 -10074.5 -2.86243 -0.92506 -0.24678 -0.18088 -0.2572 -1.24724 -0.82174

Trid_15D_100 -413.514 -2.01178 -0.56875 0.213448 -0.3442 -0.13084 -1.22784 -0.35138

Trid_20D_100 -939602 -3.68791 -1.78983 -0.08366 -0.77087 -0.38906 -1.49069 -0.59027

 195

Zakharov_15D_100 -391.276 0.124606 -5.39704 0.694233 -0.7969 -0.317 -1.16995 -0.66209

Zakharov_20D_100 -431.496 -0.56637 -16.083 0.540396 -0.16921 -0.33212 -1.02751 -0.62253

StyblinskiTang_15D_100 -170.639 -2.51585 -0.70288 -0.62874 -0.78387 -8.33725 -1.05208 -1.6366

StyblinskiTang_20D_100 -5286.51 -2.48305 -0.49842 -0.84771 -0.6966 -11.4528 -1.35812 -2.46108

Ackley_15D_100 -0.3605 -838.892 -153.952 -76.6771 -0.24146 -2.72688 -6.0916 -10.797

Ackley_20D_100 -0.62184 -1920.41 -326.582 -651.912 -0.40764 -1.57843 -7.22221 -13.7508

Levy_15D_100 -530.085 -2.66509 -1.22043 -0.17959 -0.68693 -0.07477 -1.34705 -0.90935

Levy_20D_100 -35768.1 -3.74071 -0.75929 -0.18584 -0.78689 -0.2388 -1.54952 -0.50568

Griewank_15D_100 0.993283 -4.64028 -0.5374 -0.07431 0.385209 -0.0629 -1.23211 0.380775

Griewank_20D_100 0.87662 -7.50464 -0.82432 -0.40076 -0.28119 -0.29473 -1.30121 0.175041

Schwefel_15D_100 -674.401 -1.21062 -1.04949 -0.66133 -1.20287 -0.4779 -1.42391 -0.65559

Schwefel_20D_100 -882.447 -2.21223 -3.08766 -1.07284 -1.04636 -0.54277 -1.46753 -1.23604

Rastrigin_15D_100 -1349.92 -6.80422 -1.13365 -1.24732 -0.26674 -0.17617 -1.48785 -0.30097

Rastrigin_20D_100 -2682.37 -17.3632 -1.41755 -1.89806 -408.412 -0.38405 -1.45162 -0.34758

Ellipsoid_15D_100 1 -3.9619 -1.55759 0.326778 0.849871 -0.02959 -0.83311 0.055438

Ellipsoid_20D_100 1 -6.2128 -0.47332 -0.20845 -0.29098 -0.24084 -1.18017 -0.15193

Rosenbrock_15D_100 -390.441 -0.40476 -0.12977 0.592427 0.284645 -0.10759 -0.24556 0.016212

Rosenbrock_20D_100 -1109.34 -1.3916 -0.49045 0.249173 -0.30072 -0.37114 -0.63169 -0.16587

 196

Dixon_Price_15D_100 -628.462 -1.62503 -0.61525 0.40711 0.143907 -0.07602 -0.88208 -0.66442

Dixon_Price_20D_100 -12405 -3.7154 -0.89822 0.062394 -67.4029 -0.25691 -1.00926 -0.92123

Sphere_2D_200 1 0.999818 0.99983 0.999977 1 0.99959 0.896055 0.983602

Sphere_4D_200 1 0.992352 0.878889 0.999981 1 0.978514 0.418393 0.971384

Sphere_6D_200 1 0.985016 0.632009 0.999953 0.998001 0.827003 -0.00538 0.951962

Sphere_8D_200 1 0.639883 0.051673 0.999892 0.96563 0.73601 -0.23206 0.918747

Sphere_10D_200 1 -1.5 -0.2005 0.999677 0.958004 0.573536 -0.49236 0.843856

Ellipsoid_2D_200 1 0.99989 0.999883 0.999978 1 0.998617 0.844945 0.975094

Ellipsoid_4D_200 1 0.997384 0.983302 0.999981 0.999218 0.971204 0.562183 0.970839

Ellipsoid_6D_200 1 0.973605 0.492198 0.999948 0.999715 0.845852 0.299883 0.95285

Ellipsoid_8D_200 1 0.892473 -0.03616 0.994167 0.992324 0.658037 0.056029 0.924889

Ellipsoid_10D_200 1 -0.01884 -0.08647 0.980247 0.955159 0.524508 -0.17972 0.8411

Sum of Different

Powers_2D_200 0.965078 0.99976 0.999343 0.999892 0.998936 0.997917 0.851457 0.975448

Sum of Different

Powers_4D_200 0.723677 0.423029 0.862193 0.996386 0.998446 0.876706 0.451397 0.923519

Sum of Different

Powers_6D_200 -1.5 0.76884 0.394734 0.75132 0.982926 0.694949 0.098486 0.831234

 197

Sum of Different

Powers_8D_200 -1.5 -0.1117 0.021265 0.620664 0.901513 0.631853 -0.16226 0.700068

Sum of Different

Powers_10D_200 -1.5 -0.90163 -0.08803 0.483529 0.810007 0.501085 -0.39864 0.408003

Sum of Squares_2D_200 1 0.999186 0.999806 0.999978 1 0.998696 0.871759 0.975094

Sum of Squares_4D_200 1 0.99688 0.977416 0.99998 0.999198 0.979738 0.601109 0.973801

Sum of Squares_6D_200 1 0.965016 0.665232 0.999941 0.998623 0.813232 0.289942 0.962057

Sum of Squares_8D_200 1 0.955805 0.02825 0.993986 0.996697 0.74067 0.073749 0.926106

Sum of Squares_10D_200 1 0.376399 -0.19035 0.99625 0.975702 0.551819 -0.15301 0.860892

Trid_2D_200 1 0.99943 0.999066 0.99999 1 0.999442 0.947466 0.954512

Trid_4D_200 1 0.994666 0.990421 0.999989 0.993572 0.984814 0.401353 0.943189

Trid_6D_200 1 0.957988 0.784977 0.999959 0.97316 0.882979 -0.15961 0.938718

Trid_8D_200 1 0.957383 0.321243 0.999898 0.921074 0.780188 -0.52382 0.900433

Trid_10D_200 1 0.293496 0.05587 0.999724 0.853658 0.571388 -0.94069 0.86727

Perm_2D_200 0.999978 0.433105 0.999818 0.999994 1 0.999277 0.967012 0.983126

Perm_4D_200 0.999135 -0.57932 0.984532 0.005877 0.999229 0.963326 0.270847 0.03539

Perm_6D_200 0.999822 -0.62142 0.842975 -1.5 0.752068 0.716287 -0.42759 -1.5

Perm_8D_200 0.999872 -0.61487 0.300041 -1.5 0.563159 0.300169 -1.02087 0.76686

 198

Perm_10D_200 0.999922 -0.55692 -0.92345 -1.5 -0.14928 -0.03254 -1.57566 0.853605

Bohachevsky_2D_200 1 0.999387 0.999806 0.999978 1 0.998696 0.869326 0.974771

Dixon_Price_2D_200 0.966565 0.999637 0.999702 0.999897 0.999024 0.998887 0.968579 0.929645

Dixon_Price_4D_200 0.956467 0.980038 0.743902 0.996741 0.989611 0.808083 0.661836 0.86546

Dixon_Price_6D_200 0.943106 0.744308 0.332012 0.950206 0.99005 0.735041 0.333325 0.854972

Dixon_Price_8D_200 0.949429 0.004946 0.051139 0.769367 0.970354 0.670239 0.085456 0.815164

Dixon_Price_10D_200 0.916377 0.485476 -0.41575 0.703027 0.917587 0.533467 -0.02653 0.722816

Rosenbrock_2D_200 0.995028 0.999036 0.999501 0.9999 0.999579 0.998472 0.985012 0.955934

Rosenbrock_4D_200 0.993392 0.997879 0.909323 0.997595 0.993458 0.940803 0.872683 0.845712

Rosenbrock_6D_200 0.990655 0.978474 0.578007 0.974566 0.991723 0.732214 0.627812 0.685778

Rosenbrock_8D_200 0.987478 0.437981 0.388264 0.819124 0.977928 0.645638 0.458684 0.561884

Rosenbrock_10D_200 0.97955 0.347104 0.380649 0.710717 0.968348 0.572787 0.261818 0.516381

3Hump_2D_200 0.989037 0.999141 0.999416 0.999603 0.998821 0.996371 0.989557 0.768982

6Hump_2D_200 0.672994 0.956045 0.998738 0.998826 0.999012 0.994254 0.838314 0.782116

Booth_2D_200 1 0.999631 0.999558 0.999977 1 0.998794 0.949072 0.938488

Matyas_2D_200 1 0.999832 0.999349 0.999988 1 0.99822 0.913293 0.972474

McCormick_2D_200 0.994541 0.999484 0.999142 0.99927 0.99292 0.997904 0.928821 0.945781

Zakharov_2D_200 0.977709 0.999693 0.997582 0.999826 0.991445 0.998108 0.945739 0.893762

 199

Zakharov_4D_200 0.916217 0.993713 0.989421 0.994302 0.895699 0.956234 0.446596 0.781601

Zakharov_6D_200 0.882411 0.994098 0.834732 0.963392 0.815855 0.360756 0.077539 0.503316

Zakharov_8D_200 0.838451 0.997028 0.455427 0.957258 0.436355 0.166781 -0.56145 0.129526

Zakharov_10D_200 0.78002 0.992723 -0.68585 0.876926 0.485268 -0.00617 -0.66176 -0.23254

PowerSum_4D_200 0.943419 0.786341 0.838609 0.964849 0.876552 0.892585 0.357408 0.649295

Beale_2D_200 0.899173 0.947187 0.996983 0.993066 0.303733 0.981536 -0.66078 0.695728

Branin_2D_200 0.972976 0.998292 0.999166 0.999661 0.993968 0.997903 0.903917 -1.5

GoldsteinPrice_2D_200 0.787703 0.938125 0.997334 0.99733 0.972962 0.993561 0.836872 0.877464

StyblinskiTang_2D_200 0.994238 0.666087 0.998323 0.998586 0.994841 0.998531 0.733281 -0.21106

StyblinskiTang_4D_200 0.991802 0.264073 0.143279 0.985166 0.978323 0.280935 0.336063 -0.50997

StyblinskiTang_6D_200 0.985479 -0.39652 -0.17671 0.304134 0.949769 0.064957 0.11936 -0.84185

StyblinskiTang_8D_200 0.985361 -0.19044 -0.21085 0.231946 0.808326 0.063083 -0.16754 -0.96863

StyblinskiTang_10D_200 0.984592 -0.28757 -0.35884 0.059154 0.724754 0.016931 -0.44823 -1.45684

Perm_db_2D_200 0.968134 0.997902 0.999226 0.99924 0.957421 0.997422 0.952989 0.946884

Perm_db_4D_200 0.946653 0.949768 0.325678 0.98258 0.941125 0.351398 0.87463 0.242627

Perm_db_6D_200 0.914079 0.94552 -0.09466 0.96457 0.940424 -0.04198 0.863859 0.108007

Perm_db_8D_200 0.790035 0.17447 -0.38519 0.963132 0.925096 -0.19855 0.783105 -0.06803

Perm_db_10D_200 0.63291 0.369778 -1.16754 0.957299 0.909499 -0.20046 0.672092 -0.30095

 200

Shekel_4D_200 0.417063 0.033955 0.390318 0.320211 0.389425 0.585199 -0.12365 -1.5

Colville_4D_200 0.949572 0.998708 0.765646 0.999031 0.991599 0.797875 0.730587 0.798635

Powell_4D_200 0.922037 0.95819 0.779326 0.998152 0.950146 0.898562 0.212824 0.864881

Powell_8D_200 0.882435 0.198146 -0.09135 0.891319 0.818271 0.427284 -0.04207 0.805865

Hartmann_6D_200 0.329122 0.223876 0.106812 0.641357 0.285149 0.352589 -0.6833 0.457387

Ackley_2D_200 0.493708 0.80172 0.736576 0.857395 0.376523 0.617753 0.265979 0.705883

Ackley_4D_200 0.407019 -1.5 0.29503 -1.5 -0.69921 0.212316 -0.97231 0.273438

Ackley_6D_200 0.103835 -0.02729 -0.51483 -1.5 -0.9343 -0.87327 -1.7859 -0.33636

Ackley_8D_200 -0.04964 -1.5 -1.5 -1.5 -0.0354 -1.01 -2.7704 -1.5

Ackley_10D_200 -0.11988 -1.5 -1.5 -1.5 -1.5 -1.5 -3.86258 -1.5

Griewank_2D_200 0.999822 0.999577 0.999601 0.999802 0.999798 0.999404 0.896036 0.986915

Griewank_4D_200 0.999978 0.996132 0.975012 0.999957 0.999888 0.979562 0.410807 0.970943

Griewank_6D_200 0.999996 0.958977 0.608579 0.999953 0.990021 0.827324 0.010822 0.951963

Griewank_8D_200 0.999998 -0.53794 -0.055 0.999898 0.962566 0.736309 -0.26132 0.918594

Griewank_10D_200 0.999999 -1.5 -0.20168 0.99969 0.964544 0.574013 -0.50294 0.843237

Schwefel_2D_200 0.157636 0.161605 0.249702 0.159997 0.773878 0.353142 0.547145 -1.5

Schwefel_4D_200 0.128724 -1.5 0.014504 0.084389 0.261998 -0.31978 -0.32484 -1.5

Schwefel_6D_200 0.115043 -0.0617 0.014838 -0.04853 0.140859 -0.39478 -0.63846 -1.5

 201

Schwefel_8D_200 0.038252 -0.43704 -0.18768 -0.25101 -0.12761 -0.45651 -0.83624 -1.5

Schwefel_10D_200 0.011067 -0.34575 -0.18644 -0.35639 -0.40137 -0.33184 -1.03906 -1.5

Rastrigin_2D_200 0.504087 0.490546 0.485987 0.501632 0.486768 0.19725 0.372325 -1.5

Rastrigin_4D_200 0.369426 0.320015 0.191642 0.059452 0.360863 0.140567 -0.46681 -0.4099

Rastrigin_6D_200 0.297453 -0.04104 0.008786 -0.06146 0.379445 0.140009 -0.70525 -0.26962

Rastrigin_8D_200 0.243487 -0.27912 -0.2752 -0.087 0.178034 0.10258 -0.91924 -0.36923

Rastrigin_10D_200 0.047222 -0.22323 -0.41667 -0.22127 0.054926 0.102172 -1.03388 -0.17789

Levy_2D_200 0.685197 0.665926 0.574143 0.993064 0.98647 0.63668 0.935363 0.175422

Levy_4D_200 0.546534 0.300702 0.267294 0.406376 0.852546 0.334979 0.457725 -0.2586

Levy_6D_200 0.529975 -0.14428 0.023929 0.401692 0.679021 0.275967 0.006299 -0.27814

Levy_8D_200 0.472022 -0.06115 -0.07859 0.244809 0.627604 0.312658 -0.31273 -0.51179

Levy_10D_200 0.402505 -0.27931 -0.21296 0.229599 0.324578 0.273611 -0.70559 -0.5306

Cross_IT_2D_200 0.399461 0.202927 0.358555 -0.18468 0.469212 0.11974 0.310156 -0.52542

Drop_Wave_2D_200 0.260811 0.25545 0.189965 -0.8102 0.112988 0.075107 -0.98535 -0.85436

Eggholder_2D_200 -0.03686 -0.01009 -0.07603 0.599 -0.00106 -0.15554 -1.39607 -1.5

Holder_2D_200 0.411098 0.473432 0.408782 0.729855 0.438439 0.395668 -0.32582 -0.19592

Sphere_15D_200 1 -1.10596 -0.18012 0.103611 0.885795 0.009449 -0.79551 0.609669

Sphere_20D_200 1 -2.94319 -0.58441 -0.07959 0.806231 -0.25571 -1.03455 0.536625

 202

Sum of Squares_15D_200 1 -1.60616 -0.13131 0.853978 0.908208 0.081034 -0.55054 0.153405

Sum of Squares_20D_200 1 -2.64931 -0.50699 0.553723 0.723246 -0.17554 -0.76779 0.27881

Sum of Different

Powers_15D_200 -6.11834 -1.35967 -0.19991 0.314967 0.414152 0.05269 -0.67896 -0.3395

Sum of Different

Powers_20D_200 -16997.5 -1.49528 -0.89793 0.175209 0.049481 -0.26377 -0.89108 -0.53989

Trid_15D_200 1 -1.1554 -0.32189 0.72585 -0.03593 0.028136 -1.07258 0.57528

Trid_20D_200 -8.94887 -1.48695 -0.41392 0.31508 -0.12746 -0.3015 -1.29148 -0.09315

Zakharov_15D_200 -1.5917 0.767038 -3.12102 0.889578 0.271402 -0.2764 -0.88782 -0.16009

Zakharov_20D_200 -1.09594 -0.25067 -7.55503 0.755626 0.302948 -0.33 -0.90208 -0.66452

StyblinskiTang_15D_200 0.778489 -2.21122 -0.36875 -0.24801 0.100488 -8.42738 -0.698 -1.17408

StyblinskiTang_20D_200 0.248396 -1.9166 -0.36496 -0.31676 -0.19603 -11.5435 -0.83135 -1.08219

Ackley_15D_200 -0.35356 -712.02 -78.6763 -63.8104 -0.10715 -2.23492 -3.45269 -8.69487

Ackley_20D_200 -0.61356 -11.8529 -144.962 -1062.87 -0.16098 0.070974 -5.36489 -12.0536

Levy_15D_200 0.050259 -1.0422 -0.28584 0.193641 -0.23163 0.005206 -0.96598 -0.36653

Levy_20D_200 -4.27687 -2.57086 -0.49569 0.039353 -0.48955 -0.2251 -1.23707 -0.47902

Griewank_15D_200 0.999998 -1.09822 -0.18208 0.102262 0.8984 0.010028 -0.79658 0.611477

Griewank_20D_200 0.999997 -3.4306 -0.32981 -0.0731 0.81817 -0.25546 -1.04434 0.536445

 203

Schwefel_15D_200 -0.35354 -1.24923 -0.63553 -0.45386 -0.18729 -0.50494 -1.26614 -1.00282

Schwefel_20D_200 -11.5228 -1.2842 -1.19632 -0.73198 -1.12964 -0.53657 -1.33332 -0.85648

Rastrigin_15D_200 -1.1761 -5.33882 -0.44525 -0.61836 -0.40686 -0.18305 -1.18889 -0.09932

Rastrigin_20D_200 -14.0494 -7.76826 -1.40439 -1.0837 -612.801 -0.35365 -1.28682 -0.1821

Ellipsoid_15D_200 1 -1.20502 -0.23038 0.798292 0.868753 0.087065 -0.54179 0.305774

Ellipsoid_20D_200 1 -1.18086 -0.21676 0.504959 0.790475 -0.18597 -0.84286 0.219933

Rosenbrock_15D_200 0.550824 -0.41237 0.227697 0.643653 0.886534 0.06032 -0.113 0.358381

Rosenbrock_20D_200 0.168131 -0.53004 0.004604 0.593593 0.789566 -0.31194 -0.34811 0.304644

Dixon_Price_15D_200 0.676807 -0.98356 -0.21912 0.511586 0.836783 0.055484 -0.43084 -0.16074

Dixon_Price_20D_200 -1.79887 -1.82254 -0.41316 0.36561 0.7026 -0.23679 -0.69579 -0.3843

Sphere_2D_400 1 0.999696 0.999852 0.999981 1 0.999398 0.958331 0.983727

Sphere_4D_400 1 0.990807 0.997655 0.999987 1 0.994541 0.624083 0.97561

Sphere_6D_400 1 0.974552 0.787676 0.999984 1 0.943437 0.248207 0.965773

Sphere_8D_400 1 0.931611 0.456962 0.999966 0.999438 0.812765 -0.05483 0.954387

Sphere_10D_400 1 -0.01913 0.04905 0.999927 0.999304 0.687485 -0.25671 0.923238

Ellipsoid_2D_400 1 0.999675 0.999898 0.999982 1 0.998506 0.959942 0.976304

Ellipsoid_4D_400 1 0.99092 0.998921 0.999987 0.999126 0.990759 0.740812 0.975165

Ellipsoid_6D_400 1 0.985747 0.690979 0.999981 0.999192 0.927103 0.484208 0.967774

 204

Ellipsoid_8D_400 1 0.979106 0.124041 0.999955 0.999266 0.774351 0.253268 0.958376

Ellipsoid_10D_400 1 0.949353 0.061668 0.996781 0.997227 0.666721 0.056368 0.941112

Sum of Different

Powers_2D_400 0.965434 0.99972 0.999457 0.999908 0.999348 0.99916 0.949303 0.976871

Sum of Different

Powers_4D_400 0.238831 0.908122 0.876977 0.998709 0.999153 0.979588 0.635574 0.930242

Sum of Different

Powers_6D_400 -1.5 0.812363 0.62638 0.980641 0.996563 0.790557 0.303425 0.850679

Sum of Different

Powers_8D_400 -1.5 0.724127 0.256014 0.698747 0.994067 0.670084 0.051733 0.750378

Sum of Different

Powers_10D_400 -1.5 0.131086 0.057524 0.596232 0.990881 0.586906 -0.19008 0.622271

Sum of Squares_2D_400 1 0.998844 0.999831 0.999982 1 0.998905 0.959102 0.976068

Sum of Squares_4D_400 1 0.992556 0.992203 0.999987 0.998947 0.992331 0.731073 0.973699

Sum of Squares_6D_400 1 0.989861 0.697368 0.999981 0.999161 0.942406 0.477936 0.969618

Sum of Squares_8D_400 1 0.972782 0.2991 0.999951 0.999211 0.810689 0.218584 0.960407

Sum of Squares_10D_400 1 0.425936 0.041325 0.997051 0.998038 0.661833 0.042835 0.933858

Trid_2D_400 1 0.999432 0.999278 0.999994 1 0.999051 0.981543 0.963012

 205

Trid_4D_400 1 0.990563 0.997581 0.999994 1 0.992804 0.639202 0.953992

Trid_6D_400 1 0.976504 0.847151 0.999987 0.999175 0.938965 0.174085 0.954467

Trid_8D_400 1 0.948949 0.500943 0.999969 0.999806 0.869218 -0.20218 0.942358

Trid_10D_400 1 0.917109 0.166941 0.999938 0.983842 0.751921 -0.53797 0.924982

Perm_2D_400 0.999978 0.348701 0.999846 0.999998 1 0.999565 0.985618 0.98505

Perm_4D_400 0.999205 -0.57087 0.99074 0.036406 0.99738 0.988854 0.54944 0.95127

Perm_6D_400 0.99978 -0.57686 0.874437 -1.5 0.998085 0.891335 -0.14072 0.076109

Perm_8D_400 0.999892 -0.58205 0.483222 -1.5 0.862808 0.553419 -0.81752 -1.5

Perm_10D_400 0.999943 -0.54654 0.242635 -1.5 0.775111 0.201629 -1.17368 0.895034

Bohachevsky_2D_400 1 0.999698 0.999831 0.999982 1 0.998905 0.958898 0.976274

Dixon_Price_2D_400 0.967389 0.999638 0.999789 0.999956 0.998725 0.998876 0.989791 0.958183

Dixon_Price_4D_400 0.964108 0.931252 0.837907 0.998917 0.992059 0.960689 0.771996 0.870512

Dixon_Price_6D_400 0.962117 0.822754 0.694676 0.982879 0.993315 0.786632 0.523054 0.864853

Dixon_Price_8D_400 0.960931 0.816301 0.338609 0.964569 0.990662 0.719541 0.287782 0.850422

Dixon_Price_10D_400 0.955984 0.360551 0.076941 0.798305 0.987988 0.643162 0.127146 0.832585

Rosenbrock_2D_400 0.995389 0.998358 0.999598 0.999948 0.998516 0.998756 0.994422 0.965431

Rosenbrock_4D_400 0.994281 0.996107 0.955987 0.999499 0.998044 0.985081 0.923099 0.913496

Rosenbrock_6D_400 0.99386 0.977201 0.732678 0.99091 0.995534 0.870376 0.804882 0.834822

 206

Rosenbrock_8D_400 0.993231 0.963305 0.544857 0.979199 0.991135 0.730189 0.652874 0.735973

Rosenbrock_10D_400 0.991593 0.528498 0.429493 0.928389 0.982797 0.647834 0.466107 0.658344

3Hump_2D_400 0.991984 0.999284 0.999748 0.999683 0.998908 0.997991 0.997243 0.871867

6Hump_2D_400 0.647121 0.994537 0.994531 0.999387 0.998766 0.997446 0.901497 0.858026

Booth_2D_400 1 0.995523 0.999631 0.999991 1 0.998763 0.978486 0.946271

Matyas_2D_400 1 0.999219 0.999169 0.999992 1 0.999188 0.979341 0.972613

McCormick_2D_400 0.99477 0.998466 0.999285 0.99968 0.993858 0.998102 0.980557 0.946033

Zakharov_2D_400 0.979281 0.997563 0.997779 0.999882 0.993772 0.996988 0.978953 0.907078

Zakharov_4D_400 0.933203 0.99793 0.997297 0.996932 0.91102 0.982551 0.705563 0.839914

Zakharov_6D_400 0.898846 0.998627 0.905664 0.992169 0.851709 0.84628 0.336519 0.677488

Zakharov_8D_400 0.887197 0.989913 0.652272 0.97726 0.778605 0.531191 -0.01653 0.579384

Zakharov_10D_400 0.87287 0.993593 -0.30346 0.935007 0.570934 0.215758 -0.4233 -0.0788

PowerSum_4D_400 0.810685 0.882191 0.910182 0.98436 0.97293 0.955725 0.594382 0.755086

Beale_2D_400 0.915509 0.858335 0.997936 0.998449 0.653778 0.993924 0.635997 0.780049

Branin_2D_400 0.974496 0.996422 0.998411 0.999857 0.996614 0.997532 0.954371 -1.5

GoldsteinPrice_2D_400 0.80186 0.982137 0.997497 0.998944 0.972649 0.996983 0.924842 0.93824

StyblinskiTang_2D_400 0.991106 0.996601 0.998205 0.999223 0.999041 0.997211 0.832956 -0.069

StyblinskiTang_4D_400 0.991186 0.337742 0.177536 0.996256 0.996011 0.879504 0.506128 0.301686

 207

StyblinskiTang_6D_400 0.987347 0.091775 0.170285 0.449357 0.987379 0.153848 0.20412 -0.56928

StyblinskiTang_8D_400 0.990072 0.036754 0.070966 0.327905 0.975825 0.124625 -0.03458 -0.62417

StyblinskiTang_10D_400 0.981687 0.049363 -0.04194 0.207912 0.957876 0.084627 -0.2459 -0.96057

Perm_db_2D_400 0.964197 0.922989 0.998373 0.999778 0.971939 0.998264 0.977431 0.95407

Perm_db_4D_400 0.961591 0.946405 0.343505 0.990606 0.96908 0.761173 0.906623 0.27649

Perm_db_6D_400 0.912716 0.946242 0.129327 0.971718 0.968993 0.048516 0.917208 0.124472

Perm_db_8D_400 0.795347 -0.01084 -0.0783 0.966607 0.958703 -0.12859 0.892649 0.057008

Perm_db_10D_400 0.716282 0.234653 -0.34817 0.962708 0.954217 -0.20351 0.850869 -0.00896

Shekel_4D_400 0.457505 0.487617 0.627718 0.477724 0.511997 0.62046 -0.02087 -1.5

Colville_4D_400 0.953732 0.999028 0.930896 0.999636 0.997799 0.96063 0.843357 0.815367

Powell_4D_400 0.930099 0.968926 0.972259 0.9991 0.961439 0.968332 0.817657 0.871711

Powell_8D_400 0.917297 0.804403 0.315575 0.975794 0.908758 0.580675 0.342768 0.836212

Hartmann_6D_400 0.417395 0.508502 0.43962 0.879648 0.437493 0.7125 -0.23017 0.630687

Ackley_2D_400 0.469666 0.79908 0.811102 0.901217 0.438699 0.850266 0.75906 0.751401

Ackley_4D_400 0.51339 0.236607 0.482497 -0.46963 0.199572 0.527553 0.141093 0.577106

Ackley_6D_400 0.090669 0.342441 0.189507 -1.5 -0.25624 -0.31729 -0.87297 0.076698

Ackley_8D_400 -0.20073 -0.01684 -1.5 -1.5 -1.5 -0.6906 -1.22147 -1.01751

Ackley_10D_400 -0.63751 -0.08892 -1.5 -1.5 -0.01415 -0.87486 -1.64499 -1.5

 208

Griewank_2D_400 0.999824 0.999576 0.999662 0.999806 0.999814 0.999218 0.956695 0.987014

Griewank_4D_400 0.999978 0.98972 0.961691 0.999965 0.999976 0.993969 0.623304 0.97528

Griewank_6D_400 0.999996 0.97934 0.907866 0.999981 0.999615 0.943389 0.240772 0.966034

Griewank_8D_400 0.999999 0.272142 0.5455 0.999966 0.999146 0.830183 -0.06476 0.954368

Griewank_10D_400 1 -0.0191 0.04848 0.999929 0.98357 0.688482 -0.24661 0.92293

Schwefel_2D_400 0.165454 0.098348 0.17238 0.233023 0.978788 -0.30804 0.638808 -1.5

Schwefel_4D_400 0.161326 0.09383 0.079074 0.108493 0.662241 -0.32523 -0.03218 -1.5

Schwefel_6D_400 0.123198 0.058277 0.015877 0.034737 0.423985 -0.48978 -0.38049 -1.45821

Schwefel_8D_400 0.10546 0.090216 -0.03006 -0.17917 0.22287 -0.42893 -0.60447 -1.5

Schwefel_10D_400 0.086154 0.027753 -0.03709 -0.2343 -0.0906 -0.35884 -0.87152 -1.5

Rastrigin_2D_400 0.507857 0.501167 0.503043 0.507221 0.617343 0.191664 0.464774 -1.5

Rastrigin_4D_400 0.49367 0.483028 0.339621 0.26294 0.519471 0.236068 -0.20046 -0.4138

Rastrigin_6D_400 0.431782 0.203334 0.218506 -0.07496 0.405164 0.172878 -0.48635 -0.17929

Rastrigin_8D_400 0.331033 0.021847 -0.01861 -0.04221 0.319855 0.100079 -0.70487 -0.21937

Rastrigin_10D_400 0.323102 -0.13889 -0.11536 -0.11257 -0.32541 0.062619 -0.83206 -0.20476

Levy_2D_400 0.706053 0.591572 0.595593 0.995062 0.99394 0.850909 0.960002 0.190561

Levy_4D_400 0.668564 0.377159 0.405573 0.696856 0.98156 0.343301 0.596688 -0.02285

Levy_6D_400 0.636065 0.33969 0.279651 0.427 0.940845 0.301091 0.228069 -0.06933

 209

Levy_8D_400 0.615938 0.192437 0.115524 0.390323 0.868198 0.308734 -0.04128 -0.10048

Levy_10D_400 0.610527 0.008512 0.041721 0.366779 0.724048 0.316246 -0.31395 -0.37539

Cross_IT_2D_400 0.426827 0.413657 0.243922 0.301718 0.81305 0.046041 0.429405 -0.40655

Drop_Wave_2D_400 0.310639 0.277461 0.274684 -0.68116 0.109621 0.025943 -0.84986 -0.79106

Eggholder_2D_400 -0.02089 -0.01866 -0.04154 0.769137 -0.02665 0.019367 -0.97831 -1.5

Holder_2D_400 0.426774 0.390387 0.417275 0.839348 0.613788 0.297453 -0.01575 -0.12281

Sphere_15D_400 1 -0.39515 -0.17359 0.999563 0.982789 0.142356 -0.66016 0.808444

Sphere_20D_400 1 -1.71286 -0.17757 0.764135 0.938563 -0.18741 -0.91913 0.650408

Sum of Squares_15D_400 1 -0.35178 -0.07159 0.985503 0.990151 0.179028 -0.30923 0.820917

Sum of Squares_20D_400 1 -1.42163 -0.12987 0.885886 0.922274 -0.13659 -0.60212 0.490962

Sum of Different

Powers_15D_400 -25.5107 -0.83696 -0.07621 0.466401 0.951628 0.215312 -0.53003 0.145991

Sum of Different

Powers_20D_400 -10.3584 -0.8304 -0.17332 0.351022 0.676435 -0.21671 -0.734 -0.25291

Trid_15D_400 1 0.46039 -0.14092 0.999646 0.971349 0.231814 -0.91808 0.842893

Trid_20D_400 1 -0.3656 -0.20582 0.996348 0.84833 -0.21211 -1.10528 0.678411

Zakharov_15D_400 0.888379 0.909721 -0.40636 0.924166 0.588008 -0.1957 -0.48322 0.274553

Zakharov_20D_400 0.834273 0.72447 -2.31618 0.815123 0.524755 -0.30904 -0.66483 -0.34217

 210

StyblinskiTang_15D_400 0.989324 -1.63732 -0.09849 0.057818 0.935918 -8.38842 -0.50927 -0.90577

StyblinskiTang_20D_400 0.985883 -1.30034 -0.11558 -0.04851 0.562885 -11.5143 -0.73165 -0.57459

Ackley_15D_400 -0.35014 -3.76164 -36.41 -42.3464 -1.43489 -1.22365 -2.47968 -6.93365

Ackley_20D_400 -0.60949 -505.883 -81.8248 -166.815 -3.26805 0.140794 -3.39421 -9.09875

Levy_15D_400 0.530301 -1.03987 -0.06584 0.295718 0.344053 0.114607 -0.75986 -0.43323

Levy_20D_400 0.342689 -0.8057 -0.14717 0.198511 0.18219 -0.18206 -1.02348 -0.34723

Griewank_15D_400 1 -0.22538 -0.08968 0.999571 0.971593 0.128699 -0.66465 0.808057

Griewank_20D_400 1 -0.73509 -0.16961 0.764257 0.937457 -0.18754 -0.91938 0.652847

Schwefel_15D_400 -0.0411 -2.55782 -0.46389 -0.38843 -0.3911 -0.57183 -1.09658 -1.38973

Schwefel_20D_400 -0.12279 -1.93537 -0.67033 -0.64494 -0.83667 -0.5575 -1.20491 -1.04756

Rastrigin_15D_400 0.235833 -1.82491 -0.41566 -0.10557 0.04382 -0.24307 -1.13971 -0.11993

Rastrigin_20D_400 0.079399 -7.66259 -0.66893 -0.40423 -84.2518 -0.36489 -1.26429 -0.0328

Ellipsoid_15D_400 1 -0.09739 -0.03702 0.984169 0.99273 0.207683 -0.31201 0.855834

Ellipsoid_20D_400 1 -0.72592 -0.11263 0.888534 0.985395 -0.13196 -0.60202 0.444602

Rosenbrock_15D_400 0.990396 -0.13268 0.323862 0.710937 0.966199 0.274336 0.041192 0.588158

Rosenbrock_20D_400 0.983713 -0.0262 0.288651 0.658235 0.952656 -0.21321 -0.27961 0.483032

Dixon_Price_15D_400 0.935346 -0.53432 -0.08887 0.657532 0.962118 0.24154 -0.20369 0.719995

Dixon_Price_20D_400 0.923226 -0.76939 -0.10763 0.497107 0.885766 -0.17818 -0.50379 0.140447

 211

Sphere_2D_800 1 0.999649 0.999866 0.999984 1 0.999315 0.984919 0.983788

Sphere_4D_800 1 0.996345 0.918534 0.99999 1 0.996347 0.751833 0.977834

Sphere_6D_800 1 0.980497 0.778497 0.999991 1 0.989753 0.416637 0.976285

Sphere_8D_800 1 0.976502 0.523603 0.999987 1 0.921055 0.164623 0.963548

Sphere_10D_800 1 0.204806 0.160379 0.999977 1 0.806904 -0.07972 0.951555

Ellipsoid_2D_800 1 0.999633 0.999014 0.999985 1 0.999388 0.98744 0.976562

Ellipsoid_4D_800 1 0.997953 0.993742 0.99999 1 0.995478 0.820686 0.973825

Ellipsoid_6D_800 1 0.991022 0.755987 0.999991 0.999237 0.972368 0.619715 0.973765

Ellipsoid_8D_800 1 0.986339 0.492432 0.999984 0.999008 0.892048 0.425179 0.968309

Ellipsoid_10D_800 1 0.973478 0.185328 0.999965 0.998374 0.785316 0.241614 0.95789

Sum of Different

Powers_2D_800 0.951177 0.99975 0.999489 0.999937 0.999017 0.998792 0.983815 0.977919

Sum of Different

Powers_4D_800 -1.5 0.920497 0.844831 0.999233 0.998934 0.994941 0.752265 0.931517

Sum of Different

Powers_6D_800 -1.5 0.843011 0.614043 0.992755 0.997736 0.873551 0.470851 0.850297

Sum of Different

Powers_8D_800 -1.5 0.773035 0.436766 0.946521 0.995418 0.730218 0.236796 0.778148

 212

Sum of Different

Powers_10D_800 -1.5 0.235275 0.136504 0.651668 0.992843 0.610035 0.01198 0.687467

Sum of Squares_2D_800 1 0.999786 0.999847 0.999985 1 0.998468 0.987544 0.976567

Sum of Squares_4D_800 1 0.995003 0.998564 0.99999 1 0.996243 0.821441 0.97387

Sum of Squares_6D_800 1 0.987831 0.810437 0.99999 0.999247 0.971531 0.604048 0.974823

Sum of Squares_8D_800 1 0.985817 0.713596 0.999983 0.999145 0.908686 0.41664 0.967683

Sum of Squares_10D_800 1 0.971476 0.130568 0.999967 0.997438 0.799755 0.206827 0.955905

Trid_2D_800 1 0.998968 0.99932 0.999995 1 0.99934 0.992541 0.963655

Trid_4D_800 1 0.991945 0.984181 0.999996 1 0.993921 0.769476 0.959917

Trid_6D_800 1 0.98723 0.863952 0.999995 1 0.98217 0.406439 0.964588

Trid_8D_800 1 0.97361 0.590462 0.99999 0.998814 0.917003 0.090491 0.95372

Trid_10D_800 1 0.954639 0.400673 0.999982 0.993139 0.849136 -0.19266 0.947025

Perm_2D_800 0.999979 0.442545 0.999857 0.999998 0.998741 0.999656 0.995313 0.983808

Perm_4D_800 0.999234 -0.56722 0.996109 0.073024 0.997185 0.993667 0.741489 0.993635

Perm_6D_800 0.999845 -0.55994 0.922299 -1.5 0.997573 0.969982 0.148309 0.856017

Perm_8D_800 0.9999 -0.55049 0.780588 -1.5 0.996436 0.756681 -0.44806 -0.89604

Perm_10D_800 0.99995 -0.54103 0.624652 -1.5 0.991392 0.403884 -0.80881 -1.5

Bohachevsky_2D_800 1 0.999489 0.999847 0.999985 1 0.998468 0.987237 0.976496

 213

Dixon_Price_2D_800 0.967807 0.9996 0.999558 0.999982 0.999104 0.998743 0.995589 0.969316

Dixon_Price_4D_800 0.966971 0.993729 0.746143 0.999776 0.993336 0.992959 0.862137 0.91106

Dixon_Price_6D_800 0.964688 0.864249 0.759508 0.995155 0.994732 0.867803 0.654457 0.871128

Dixon_Price_8D_800 0.964339 0.516214 0.450108 0.983799 0.991433 0.767606 0.487711 0.871072

Dixon_Price_10D_800 0.962498 0.791912 0.222745 0.967677 0.991298 0.715531 0.229437 0.865168

Rosenbrock_2D_800 0.995449 0.99886 0.999624 0.999974 0.998529 0.999159 0.997393 0.96862

Rosenbrock_4D_800 0.994908 0.996075 0.992708 0.999845 0.998479 0.99437 0.951219 0.944801

Rosenbrock_6D_800 0.994665 0.99793 0.79573 0.998366 0.995673 0.943811 0.871725 0.898812

Rosenbrock_8D_800 0.994383 0.985404 0.653817 0.985677 0.994597 0.823199 0.759118 0.827876

Rosenbrock_10D_800 0.994109 0.869777 0.541963 0.978959 0.992862 0.718157 0.599103 0.750844

3Hump_2D_800 0.993678 0.999317 0.999068 0.999713 0.998962 0.998874 0.998771 0.914966

6Hump_2D_800 0.945907 0.994543 0.999638 0.99991 0.998572 0.99732 0.954047 0.889285

Booth_2D_800 1 0.999143 0.999656 0.999997 1 0.999309 0.993461 0.949362

Matyas_2D_800 1 0.999405 0.999209 0.999993 1 0.998246 0.99189 0.972682

McCormick_2D_800 0.994816 0.998712 0.999342 0.999935 0.997025 0.998119 0.992583 0.95088

Zakharov_2D_800 0.980455 0.997141 0.997844 0.999934 0.993693 0.997958 0.990282 0.91859

Zakharov_4D_800 0.93612 0.997385 0.991192 0.998921 0.938258 0.988117 0.823905 0.872591

Zakharov_6D_800 0.91605 0.994979 0.949221 0.995432 0.906441 0.927555 0.588111 0.765993

 214

Zakharov_8D_800 0.905471 0.989738 0.865079 0.986733 0.836814 0.779639 0.286487 0.673273

Zakharov_10D_800 0.905084 0.997025 0.216994 0.971029 0.750692 0.384723 0.016597 0.25278

PowerSum_4D_800 0.883708 0.967326 0.973294 0.992953 0.982277 0.977945 0.755931 0.849352

Beale_2D_800 0.920123 0.859493 0.998492 0.999484 0.955586 0.994087 0.926688 0.823584

Branin_2D_800 0.968544 0.996435 0.998522 0.999937 0.996403 0.997771 0.984677 -1.5

GoldsteinPrice_2D_800 0.797327 0.980308 0.997784 0.999493 0.971189 0.996138 0.970615 0.95344

StyblinskiTang_2D_800 0.990864 0.552167 0.99839 0.999484 0.997843 0.997702 0.931554 -0.02548

StyblinskiTang_4D_800 0.990898 0.378161 0.979697 0.998196 0.995545 0.973861 0.616359 0.68018

StyblinskiTang_6D_800 0.989185 0.250428 0.200768 0.993006 0.987903 0.371261 0.333382 -0.60406

StyblinskiTang_8D_800 0.990733 0.121192 0.108221 0.350386 0.984971 0.143272 0.129084 -0.55464

StyblinskiTang_10D_800 0.9896 0.056869 0.010532 0.273789 0.981113 0.109877 -0.07419 -0.73293

Perm_db_2D_800 0.997104 0.92452 0.998484 0.999905 0.995775 0.997797 0.992979 0.960585

Perm_db_4D_800 0.960004 0.963087 0.552993 0.994389 0.971292 0.868255 0.930373 0.535046

Perm_db_6D_800 0.934126 0.927128 0.222235 0.981746 0.970239 0.115384 0.917911 0.000391

Perm_db_8D_800 0.799285 0.298146 -0.05237 0.96935 0.962961 -0.14887 0.901609 0.093098

Perm_db_10D_800 0.724317 0.301476 -0.24882 0.96573 0.94425 -0.19475 0.880956 0.056266

Shekel_4D_800 0.475095 0.498823 0.684792 0.673321 0.581998 0.665099 0.219408 -1.5

Colville_4D_800 0.955943 0.9991 0.85155 0.999837 0.998253 0.991851 0.919449 0.906764

 215

Powell_4D_800 0.936447 0.963273 0.972347 0.999556 0.980454 0.987691 0.884117 0.873389

Powell_8D_800 0.932427 0.833492 0.489379 0.991214 0.969286 0.679701 0.53831 0.87178

Hartmann_6D_800 -1.5 0.594109 0.545069 0.950477 0.587196 0.843477 0.156089 0.741242

Ackley_2D_800 0.510976 0.810404 0.886919 0.907675 0.524786 0.880991 0.781902 0.781825

Ackley_4D_800 0.503167 0.49379 0.65753 0.666274 0.011839 0.671646 0.366706 0.647319

Ackley_6D_800 0.43699 0.125312 0.333463 -1.09956 0.098607 0.347601 -0.17981 0.208862

Ackley_8D_800 -0.44824 0.042349 -1.2773 -1.5 -0.1231 -0.25906 -0.77608 -0.56006

Ackley_10D_800 -0.77566 -0.05559 -1.5 -1.5 -0.53844 -0.18848 -1.18839 -1.5

Griewank_2D_800 0.999825 0.999486 0.999684 0.99981 0.999819 0.998891 0.984598 0.987063

Griewank_4D_800 0.999978 0.992434 0.998005 0.999968 0.999976 0.996316 0.754225 0.977581

Griewank_6D_800 0.999996 0.985688 0.778379 0.999988 0.999656 0.990015 0.415838 0.976309

Griewank_8D_800 0.999999 0.983252 0.546786 0.999986 0.999643 0.919572 0.161867 0.963344

Griewank_10D_800 1 0.950707 0.159794 0.999978 0.999738 0.804125 -0.08059 0.951326

Schwefel_2D_800 0.184496 0.101924 0.176116 0.99661 0.989143 0.804108 0.781915 -1.5

Schwefel_4D_800 0.168521 0.102634 0.09625 0.248259 0.975974 -0.29233 0.170337 -1.5

Schwefel_6D_800 0.153837 0.082935 0.044283 0.085539 0.92391 -0.36446 -0.21597 -1.23252

Schwefel_8D_800 0.125663 0.083474 0.023397 -0.0716 0.827114 -0.44375 -0.48915 -1.5

Schwefel_10D_800 0.131119 0.06051 0.021626 -0.17812 0.618073 -0.34306 -0.68799 -1.5

 216

Rastrigin_2D_800 0.510141 0.504614 0.505986 0.988263 0.981624 0.420917 0.521144 -0.99891

Rastrigin_4D_800 0.499892 0.499229 0.443242 0.345332 0.796458 0.232388 -0.09929 -0.2834

Rastrigin_6D_800 0.463228 0.447673 0.287806 0.172312 0.625954 0.133296 -0.40384 -0.16118

Rastrigin_8D_800 0.433782 0.167482 0.163565 0.065044 0.475903 0.157824 -0.55321 -0.07933

Rastrigin_10D_800 0.42862 0.122554 -0.03891 -0.03079 0.287762 0.110569 -0.69227 -0.06952

Levy_2D_800 0.712924 0.608963 0.686929 0.995738 0.994525 0.884631 0.972514 0.177774

Levy_4D_800 0.69841 0.576574 0.547446 0.733393 0.989743 0.417142 0.704943 0.037263

Levy_6D_800 0.682548 0.539384 0.377755 0.436707 0.985339 0.326949 0.387981 0.043375

Levy_8D_800 0.661423 0.49389 0.250213 0.421938 0.980663 0.319752 0.108836 -0.00803

Levy_10D_800 0.645834 0.044315 0.116493 0.399691 0.957476 0.322412 -0.14492 -0.06978

Cross_IT_2D_800 0.432157 0.421847 0.414561 0.359432 0.919904 0.318044 0.538974 -0.35785

Drop_Wave_2D_800 0.338852 0.314596 0.341525 -0.23341 0.072714 0.113093 -0.80949 -0.538

Eggholder_2D_800 -0.01377 -0.0094 -0.01471 0.885086 -0.06601 0.228336 -0.24962 -1.5

Holder_2D_800 0.495524 0.388077 0.426306 0.941644 0.805238 0.501174 0.590302 -0.27848

Sphere_15D_800 1 0.657866 -0.53982 0.999907 0.99246 0.305597 -0.43793 0.912988

Sphere_20D_800 1 -0.48043 -0.14448 0.999458 0.982466 -0.12448 -0.79721 0.803449

Sum of Squares_15D_800 1 0.673111 -0.21944 0.995407 0.993411 0.363532 -0.12227 0.919229

Sum of Squares_20D_800 1 -0.26976 -0.08094 0.987058 0.982568 -0.07073 -0.39439 0.826161

 217

Sum of Different

Powers_15D_800 -124.562 0.07512 -0.00308 0.535689 0.983834 0.368267 -0.32876 0.426821

Sum of Different

Powers_20D_800 -7.72661 -1.06627 -0.07526 0.476968 0.972813 -0.10266 -0.57496 0.050868

Trid_15D_800 1 0.770758 0.037977 0.999922 0.978469 0.455395 -0.65442 0.910437

Trid_20D_800 1 0.397929 -0.12871 0.999611 0.96426 -0.07005 -0.98298 0.846118

Zakharov_15D_800 0.914532 0.952146 0.270889 0.956584 0.834539 -0.0637 -0.2389 0.443411

Zakharov_20D_800 0.905478 0.875101 -0.76126 0.913099 0.747555 -0.2836 -0.4285 -0.00685

StyblinskiTang_15D_800 0.987926 -0.22326 0.012594 0.176881 0.968053 -8.24043 -0.38653 -0.65058

StyblinskiTang_20D_800 0.990988 -1.24321 -0.02038 0.115512 0.949897 -11.4952 -0.61884 -0.3529

Ackley_15D_800 -0.43246 -0.36789 -7.80535 0.368023 -2.30029 -0.40615 -1.96011 -3.94765

Ackley_20D_800 -1.6957 -1.1361 -23.2863 -0.04556 -61152.4 0.23526 -4.65759 -10.7803

Levy_15D_800 0.613834 -0.27823 0.004534 0.344671 0.931967 0.20466 -0.56141 -0.20426

Levy_20D_800 0.582987 -1.20076 -0.03931 0.284471 0.625852 -0.06963 -0.87478 -0.17611

Griewank_15D_800 1 0.599557 -0.11264 0.999908 0.999208 0.300506 -0.43802 0.912674

Griewank_20D_800 1 -0.47896 -0.14515 0.999462 0.961822 -0.12427 -0.79258 0.803182

Schwefel_15D_800 0.081031 -0.64209 -0.18778 -0.29424 0.394892 -0.54571 -0.96847 -1.25502

Schwefel_20D_800 0.057362 -1.58782 -0.34063 -0.39696 -0.20466 -0.5454 -1.13768 -1.1366

 218

Rastrigin_15D_800 0.344936 -0.45873 -0.27062 0.011878 0.264482 -0.2408 -0.98123 -0.13185

Rastrigin_20D_800 0.288826 -1.94727 -0.56312 -0.24276 -10658.4 -0.38467 -1.14618 -0.03046

Ellipsoid_15D_800 1 0.776812 -0.04454 0.995215 0.995794 0.331884 -0.09436 0.924636

Ellipsoid_20D_800 1 0.017878 -0.05659 0.993144 0.985905 -0.0623 -0.40292 0.845662

Rosenbrock_15D_800 0.994055 0.57657 0.440346 0.843398 0.978947 0.453325 0.236019 0.694309

Rosenbrock_20D_800 0.992139 -0.06995 0.305331 0.736882 0.964536 -0.04732 -0.027 0.653843

Dixon_Price_15D_800 0.957524 0.518144 0.029872 0.720863 0.984069 0.437569 -0.06128 0.833311

Dixon_Price_20D_800 0.945513 -0.53934 -0.06158 0.801769 0.98008 -0.0302 -0.29528 0.743968

Sphere_2D_1200 1 0.999804 0.999868 0.999986 1 0.99968 0.991896 0.983809

Sphere_4D_1200 1 0.995465 0.997863 0.999991 1 0.996857 0.789296 0.980703

Sphere_6D_1200 1 0.98862 0.957189 0.999993 1 0.992716 0.512863 0.978068

Sphere_8D_1200 1 0.983091 0.862573 0.999991 1 0.963926 0.250036 0.968389

Sphere_10D_1200 1 0.98138 0.166268 0.999987 1 0.86804 0.034364 0.961394

Ellipsoid_2D_1200 1 0.999379 0.999028 0.999987 1 0.998769 0.992952 0.976503

Ellipsoid_4D_1200 1 0.995257 0.998358 0.999991 1 0.99657 0.853445 0.975336

Ellipsoid_6D_1200 1 0.992173 0.762677 0.999993 0.999259 0.984398 0.674587 0.974657

Ellipsoid_8D_1200 1 0.98403 0.525662 0.99999 0.998998 0.920681 0.49189 0.969739

Ellipsoid_10D_1200 1 0.983116 0.243274 0.999982 0.998367 0.843771 0.323332 0.963591

 219

Sum of Different

Powers_2D_1200 0.951259 0.999754 0.999496 0.999955 0.999057 0.998504 0.991026 0.977813

Sum of Different

Powers_4D_1200 -1.5 0.902279 0.954952 0.999354 0.999007 0.9957 0.806664 0.948255

Sum of Different

Powers_6D_1200 -1.5 0.853277 0.694969 0.99425 0.996699 0.933423 0.54743 0.858081

Sum of Different

Powers_8D_1200 -1.5 0.787268 0.414135 0.968456 0.994856 0.748471 0.309538 0.789219

Sum of Different

Powers_10D_1200 -1.5 0.412786 0.195396 0.674248 0.992483 0.647988 0.12127 0.69653

Sum of Squares_2D_1200 1 0.999535 0.99985 0.999987 1 0.998769 0.992826 0.976493

Sum of Squares_4D_1200 1 0.997624 0.980627 0.999991 0.998844 0.996999 0.852476 0.969509

Sum of Squares_6D_1200 1 0.992021 0.779839 0.999993 0.999248 0.984304 0.662688 0.975558

Sum of Squares_8D_1200 1 0.986527 0.542723 0.999989 0.999077 0.931941 0.480943 0.968502

Sum of

Squares_10D_1200 1 0.984888 0.23892 0.999982 0.998214 0.850591 0.289929 0.963546

Trid_2D_1200 1 0.998956 0.999328 0.999995 1 0.999506 0.99547 0.964665

Trid_4D_1200 1 0.993322 0.99711 0.999996 1 0.994876 0.816749 0.960935

 220

Trid_6D_1200 1 0.991274 0.870457 0.999996 1 0.986977 0.473246 0.96949

Trid_8D_1200 1 0.984209 0.700002 0.999994 1 0.940813 0.172686 0.957454

Trid_10D_1200 1 0.963588 0.422292 0.99999 0.995352 0.881274 -0.06497 0.955147

Perm_2D_1200 0.999979 0.99973 0.999063 0.999998 1 0.999692 0.997454 0.964384

Perm_4D_1200 0.999243 0.988007 0.994869 0.097144 0.996865 0.994187 0.827253 0.998685

Perm_6D_1200 0.999792 -1.5 0.991689 -1.5 0.996703 0.982443 0.259953 0.991509

Perm_8D_1200 0.999902 -1.5 0.888386 -1.5 0.99738 0.86649 -0.25778 0.95744

Perm_10D_1200 0.999951 -1.5 0.605135 -1.5 0.978555 0.579159 -0.66151 0.883825

Bohachevsky_2D_1200 1 0.999535 0.99985 0.999987 1 0.998769 0.9928 0.976638

Dixon_Price_2D_1200 0.967951 0.999603 0.999566 0.99999 0.999112 0.999232 0.997864 0.974404

Dixon_Price_4D_1200 0.967535 0.993659 0.877039 0.999853 0.996448 0.995561 0.902566 0.933281

Dixon_Price_6D_1200 0.965313 0.861831 0.683022 0.995515 0.992993 0.927625 0.731914 0.875586

Dixon_Price_8D_1200 0.965089 0.844022 0.41486 0.985431 0.993031 0.787445 0.55962 0.879944

Dixon_Price_10D_1200 0.965538 0.817671 0.263543 0.972853 0.989621 0.742433 0.370267 0.875579

Rosenbrock_2D_1200 0.995513 0.998716 0.999629 0.999982 0.998522 0.999068 0.998507 0.969877

Rosenbrock_4D_1200 0.995018 0.997891 0.965676 0.999915 0.99856 0.995962 0.965422 0.955415

Rosenbrock_6D_1200 0.994695 0.977898 0.803876 0.999415 0.995348 0.964495 0.890636 0.926122

Rosenbrock_8D_1200 0.994611 0.716826 0.684812 0.99006 0.99426 0.885697 0.793471 0.870975

 221

Rosenbrock_10D_1200 0.994176 0.900713 0.551694 0.982928 0.989478 0.764321 0.660186 0.808826

3Hump_2D_1200 0.992013 0.999316 0.999123 0.999983 0.998954 0.998996 0.999113 0.929183

6Hump_2D_1200 0.946035 0.756748 0.99966 0.999941 0.998586 0.997728 0.973184 0.903182

Booth_2D_1200 1 0.998117 0.999661 0.999997 1 0.99848 0.99592 0.949864

Matyas_2D_1200 1 0.998422 0.999217 0.999993 1 0.99844 0.994777 0.972705

McCormick_2D_1200 0.994717 0.998643 0.999353 0.999966 0.993983 0.998596 0.995425 0.952243

Zakharov_2D_1200 0.980713 0.996609 0.997862 0.999955 0.9932 0.997275 0.994144 0.920567

Zakharov_4D_1200 0.9378 0.997344 0.950434 0.999292 0.934034 0.989806 0.872663 0.886163

Zakharov_6D_1200 0.919756 0.998479 0.972684 0.996705 0.904299 0.96092 0.64586 0.799109

Zakharov_8D_1200 0.9102 0.989169 0.710278 0.989787 0.897625 0.816559 0.347985 0.703315

Zakharov_10D_1200 0.913455 0.997323 0.556858 0.981744 0.877402 0.437224 0.262649 0.389651

PowerSum_4D_1200 0.958115 0.955246 0.944064 0.995228 0.97949 0.981907 0.79577 0.85777

Beale_2D_1200 0.923556 0.833494 0.998552 0.999631 0.845799 0.997399 0.95272 0.85231

Branin_2D_1200 0.963631 0.996936 0.998554 0.99996 0.995337 0.997825 0.990577 -1.5

GoldsteinPrice_2D_1200 0.792883 0.970379 0.997847 0.999663 0.971153 0.996823 0.985152 0.960373

StyblinskiTang_2D_1200 0.993619 0.546254 0.998436 0.999897 0.998909 0.51137 0.960765 0.251555

StyblinskiTang_4D_1200 0.989871 0.397985 0.980386 0.998755 0.996516 0.991143 0.681022 0.795022

StyblinskiTang_6D_1200 0.988307 0.369957 0.277 0.996554 0.996038 0.730671 0.454327 0.093897

 222

StyblinskiTang_8D_1200 0.986517 0.123046 0.190168 0.458691 0.984497 0.179468 0.228373 -0.45461

StyblinskiTang_10D_1200 0.991038 0.068462 0.072886 0.34547 0.978826 0.121122 0.055063 -0.5934

Perm_db_2D_1200 0.997656 0.989446 0.998508 0.99993 0.97425 0.997834 0.995487 0.963298

Perm_db_4D_1200 0.962984 0.962187 0.616974 0.995703 0.974212 0.959884 0.938935 0.629667

Perm_db_6D_1200 0.936889 0.92381 0.3082 0.988299 0.973339 0.378165 0.927315 0.149442

Perm_db_8D_1200 0.804331 0.658164 0.028068 0.971824 0.968977 -0.11364 0.914694 0.109094

Perm_db_10D_1200 0.730561 0.278253 -0.20555 0.968145 0.963613 -0.17891 0.901955 0.073579

Shekel_4D_1200 0.480465 0.468386 0.617649 0.698154 0.63936 0.678746 0.280929 -1.5

Colville_4D_1200 0.956407 0.999149 0.883472 0.999873 0.998195 0.995156 0.940176 0.93016

Powell_4D_1200 0.937058 0.975282 0.967716 0.999744 0.906455 0.991931 0.927013 0.906958

Powell_8D_1200 0.934814 0.885134 0.50485 0.996247 0.93189 0.755471 0.595892 0.874092

Hartmann_6D_1200 -1.5 0.553477 0.486336 0.968029 0.64439 0.901417 0.393026 0.781507

Ackley_2D_1200 0.517633 0.875124 0.906587 0.923063 0.670533 0.887768 0.813705 0.791955

Ackley_4D_1200 0.574568 0.502061 0.610009 0.767003 0.390493 0.696559 0.450808 0.666885

Ackley_6D_1200 0.610921 0.463932 0.482279 0.629409 0.288344 0.485581 -0.07236 0.23012

Ackley_8D_1200 0.540206 0.024194 0.116668 0.518813 -0.28374 0.009503 -0.55338 -0.52077

Ackley_10D_1200 -0.2229 0.105279 -1.5 0.257123 -0.89528 -0.10203 -0.8652 -1.39035

Griewank_2D_1200 0.999825 0.999622 0.999689 0.999812 0.999821 0.999504 0.991262 0.98708

 223

Griewank_4D_1200 0.999978 0.99287 0.998363 0.999969 0.999977 0.996601 0.790875 0.980748

Griewank_6D_1200 0.999996 0.988686 0.839765 0.99999 0.999996 0.992739 0.515443 0.978203

Griewank_8D_1200 0.999999 0.985109 0.575737 0.999991 0.999767 0.963938 0.245158 0.96822

Griewank_10D_1200 1 0.741827 0.116949 0.999988 1 0.862525 0.032799 0.96129

Schwefel_2D_1200 0.186711 0.103004 0.184327 0.998469 0.993704 0.771986 0.843496 -1.5

Schwefel_4D_1200 0.176148 0.10225 0.092047 0.286497 0.984236 -0.28688 0.250282 -1.48306

Schwefel_6D_1200 0.171342 0.098274 0.070012 0.104585 0.976188 -0.3935 -0.14133 -1.16865

Schwefel_8D_1200 0.166721 0.093453 0.045699 -0.03381 0.937153 -0.39026 -0.39148 -1.15338

Schwefel_10D_1200 0.164728 0.095537 0.013334 -0.14341 0.874635 -0.34476 -0.631 -1.5

Rastrigin_2D_1200 0.510756 0.506906 0.508642 0.998013 0.984083 0.431793 0.596395 -0.9254

Rastrigin_4D_1200 0.503941 0.497342 0.460745 0.351639 0.923752 0.231356 -0.00816 -0.28442

Rastrigin_6D_1200 0.478979 0.461771 0.359338 0.139169 0.694134 0.123802 -0.34836 -0.16263

Rastrigin_8D_1200 0.458138 0.174257 0.223343 0.13432 0.58387 0.159451 -0.49805 -0.04845

Rastrigin_10D_1200 0.439601 0.046008 -0.0133 0.045525 0.530829 0.130357 -0.63689 -0.07633

Levy_2D_1200 0.715123 0.61099 0.690448 0.995814 0.994877 0.887795 0.97932 0.197529

Levy_4D_1200 0.701008 0.572236 0.547986 0.719131 0.991957 0.47204 0.755537 0.068325

Levy_6D_1200 0.696474 0.550328 0.444852 0.524255 0.987626 0.349088 0.448391 0.054558

Levy_8D_1200 0.68212 0.245934 0.323118 0.431335 0.983495 0.331098 0.200383 0.04975

 224

Levy_10D_1200 0.673929 0.479089 0.119744 0.436947 0.980303 0.342399 -0.0451 0.000574

Cross_IT_2D_1200 0.431432 0.412344 0.41881 0.372231 0.948717 0.344142 0.638731 -0.29203

Drop_Wave_2D_1200 0.343684 0.318479 0.348519 0.132209 0.207065 0.151096 -0.67213 -0.558

Eggholder_2D_1200 -0.00538 -0.00557 0.037781 0.885452 0.044063 0.244573 0.152157 -1.5

Holder_2D_1200 0.501875 0.39992 0.528125 0.97222 0.7588 0.493249 0.694686 -0.30239

Sphere_15D_1200 1 0.855494 0.137155 0.999954 1 0.460865 -0.34434 0.933559

Sphere_20D_1200 1 0.199602 -0.07322 0.999822 0.998696 0.084377 -0.64844 0.871431

Sum of

Squares_15D_1200 1 0.915202 0.099506 0.999099 0.993978 0.491611 -0.01628 0.932133

Sum of

Squares_20D_1200 1 0.809993 -0.04535 0.994572 0.993782 0.095875 -0.29204 0.886374

Sum of Different

Powers_15D_1200 -14.5261 0.426108 0.062873 0.561389 0.986664 0.478143 -0.22905 0.466372

Sum of Different

Powers_20D_1200 -14.5264 -0.22127 2.1E-05 0.496044 0.980595 0.104495 -0.46923 0.142235

Trid_15D_1200 1 0.80782 0.113752 0.999961 0.978234 0.584562 -0.58254 0.92831

Trid_20D_1200 1 0.725437 -0.07804 0.999885 0.974946 0.129998 -0.88571 0.899299

Zakharov_15D_1200 0.919822 0.96337 0.372835 0.971757 0.80155 0.103194 -0.14881 0.558712

 225

Zakharov_20D_1200 0.913582 0.944549 -0.64348 0.936211 0.819971 -0.12497 -0.32238 0.147867

StyblinskiTang_15D_1200 0.990141 -0.01139 0.018484 0.222833 0.972978 -7.23099 -0.28803 -0.6335

StyblinskiTang_20D_1200 0.989557 -0.36905 0.01962 0.185759 0.971091 -10.0815 -0.52113 -0.40566

Ackley_15D_1200 0.317216 -0.40603 -6.0567 0.390101 -1.0037 0.007104 -2.34177 -3.57873

Ackley_20D_1200 -0.16331 -0.63947 -27.0515 -0.02801 -1.75898 0.364076 -2.75677 -9.85332

Levy_15D_1200 0.643462 0.097711 -0.0366 0.365 0.959871 0.318104 -0.4562 -0.23658

Levy_20D_1200 0.621659 -0.20776 -0.0166 0.32143 0.927098 0.096234 -0.75665 -0.13698

Griewank_15D_1200 1 0.855778 0.136854 0.999955 0.999157 0.465879 -0.34658 0.933584

Griewank_20D_1200 1 0.260972 -0.15638 0.999823 0.9868 0.07581 -0.64955 0.871268

Schwefel_15D_1200 0.12387 -0.34612 -0.11854 -0.27653 0.818164 -0.30441 -0.87241 -1.26346

Schwefel_20D_1200 0.084842 -0.739 -0.25684 -0.34648 0.173521 -0.28225 -1.01248 -1.15556

Rastrigin_15D_1200 0.400583 -0.0863 -0.18453 0.055653 -0.00479 -0.00963 -0.86386 -0.18179

Rastrigin_20D_1200 0.367451 -0.53631 -0.40856 0.101329 0.061813 -0.12125 -1.02063 -0.03264

Ellipsoid_15D_1200 1 0.961096 0.08432 0.999084 0.993827 0.489973 -0.00868 0.9405

Ellipsoid_20D_1200 1 0.495207 -0.03139 0.997564 0.993861 0.10559 -0.2552 0.896431

Rosenbrock_15D_1200 0.994454 0.768262 0.44624 0.913402 0.979099 0.569604 0.343784 0.728412

Rosenbrock_20D_1200 0.994096 0.35857 0.454618 0.815169 0.972966 0.171239 0.059372 0.718859

Dixon_Price_15D_1200 0.960611 0.734953 0.066343 0.906992 0.987618 0.546781 0.068516 0.855328

 226

Dixon_Price_20D_1200 0.955546 0.354477 0.004097 0.812559 0.98259 0.168942 -0.20382 0.806583

Sphere_2D_1600 1 0.999828 0.999868 0.999987 1 0.999686 0.994559 0.983819

Sphere_4D_1600 1 0.997931 0.922767 0.999992 1 0.997218 0.821381 0.981974

Sphere_6D_1600 1 0.982198 0.845435 0.999994 1 0.993855 0.567365 0.97938

Sphere_8D_1600 1 0.977923 0.587821 0.999993 1 0.974199 0.307969 0.972291

Sphere_10D_1600 1 0.62307 0.184512 0.999991 1 0.905131 0.108962 0.965735

Ellipsoid_2D_1600 1 0.999692 0.999032 0.999988 1 0.998771 0.99522 0.976265

Ellipsoid_4D_1600 1 0.998371 0.974529 0.999992 1 0.997159 0.873116 0.97462

Ellipsoid_6D_1600 1 0.994919 0.765862 0.999994 0.999271 0.988425 0.709443 0.973956

Ellipsoid_8D_1600 1 0.979219 0.599677 0.999992 0.999022 0.941663 0.539774 0.973505

Ellipsoid_10D_1600 1 0.976207 0.269139 0.999987 0.998326 0.862591 0.383907 0.967958

Sum of Different

Powers_2D_1600 0.9513 0.999779 0.9995 0.999965 0.999072 0.998576 0.993693 0.977268

Sum of Different

Powers_4D_1600 -1.5 0.922374 0.932503 0.99939 0.999136 0.995956 0.839934 0.954576

Sum of Different

Powers_6D_1600 -1.5 0.845503 0.700438 0.994947 0.998186 0.951579 0.611094 0.875177

 227

Sum of Different

Powers_8D_1600 -1.5 0.784877 0.472899 0.974915 0.996086 0.768785 0.379599 0.787604

Sum of Different

Powers_10D_1600 -1.5 0.726781 0.25746 0.857156 0.993469 0.67081 0.199673 0.704517

Sum of Squares_2D_1600 1 0.999565 0.99985 0.999988 1 0.998771 0.995481 0.976348

Sum of Squares_4D_1600 1 0.996087 0.998112 0.999992 1 0.997292 0.872337 0.974323

Sum of Squares_6D_1600 1 0.9969 0.784233 0.999994 0.999216 0.989284 0.705925 0.976262

Sum of Squares_8D_1600 1 0.98498 0.62337 0.999992 0.999171 0.945974 0.496388 0.969937

Sum of

Squares_10D_1600 1 0.981027 0.257619 0.999988 0.9983 0.879641 0.361293 0.966506

Trid_2D_1600 1 0.999064 0.999331 0.999995 1 0.999507 0.99697 0.965344

Trid_4D_1600 1 0.996125 0.997263 0.999997 1 0.995463 0.85134 0.95982

Trid_6D_1600 1 0.991991 0.872794 0.999997 1 0.988911 0.524246 0.970444

Trid_8D_1600 1 0.976739 0.674621 0.999996 1 0.959344 0.223598 0.962085

Trid_10D_1600 1 0.978083 0.532841 0.999993 0.999884 0.897638 0.017934 0.957893

Perm_2D_1600 0.999979 0.43648 0.99986 0.999998 0.998841 0.999647 0.998179 0.986919

Perm_4D_1600 0.999248 -0.56481 0.996957 0.117186 0.99653 0.994921 0.854886 0.998413

Perm_6D_1600 0.999848 -0.55488 0.9815 -1.5 0.996231 0.985217 0.320285 0.972447

 228

Perm_8D_1600 0.999903 -0.54437 0.934985 -1.5 0.996802 0.898284 -0.20284 0.844817

Perm_10D_1600 0.99995 -0.53766 0.609655 -1.5 0.987473 0.643735 -0.50347 0.270371

Bohachevsky_2D_1600 1 0.999565 0.99985 0.999988 1 0.998771 0.995445 0.976207

Dixon_Price_2D_1600 0.968049 0.999606 0.99957 0.999994 0.999263 0.999701 0.998575 0.976717

Dixon_Price_4D_1600 0.967643 0.997098 0.940762 0.999877 0.99544 0.995916 0.92346 0.943459

Dixon_Price_6D_1600 0.966214 0.918917 0.687876 0.999505 0.993812 0.954047 0.760728 0.875671

Dixon_Price_8D_1600 0.96669 0.83528 0.499048 0.992997 0.99439 0.804635 0.594675 0.879581

Dixon_Price_10D_1600 0.966456 0.840258 0.325223 0.983548 0.994273 0.762298 0.452424 0.87943

Rosenbrock_2D_1600 0.995522 0.998594 0.999631 0.999986 0.998493 0.998932 0.998866 0.970229

Rosenbrock_4D_1600 0.995043 0.996116 0.997547 0.999939 0.99859 0.996235 0.973441 0.959506

Rosenbrock_6D_1600 0.994871 0.934071 0.806998 0.999684 0.995513 0.978193 0.910565 0.938707

Rosenbrock_8D_1600 0.994741 0.960944 0.693027 0.994194 0.995276 0.907133 0.82646 0.890408

Rosenbrock_10D_1600 0.994473 0.919337 0.596711 0.984259 0.993329 0.802786 0.697253 0.844418

3Hump_2D_1600 0.992259 0.999349 0.99914 0.999989 0.998974 0.999041 0.999304 0.939343

6Hump_2D_1600 0.946501 0.993993 0.997881 0.999949 0.998577 0.997703 0.979618 0.913514

Booth_2D_1600 1 0.9997 0.999663 0.999998 1 0.998846 0.997241 0.950234

Matyas_2D_1600 1 0.998436 0.999221 0.999993 1 0.998429 0.996272 0.972716

McCormick_2D_1600 0.994725 0.999332 0.999355 0.999975 0.99403 0.998045 0.996977 0.954171

 229

Zakharov_2D_1600 0.980755 0.998827 0.99787 0.999966 0.993992 0.996832 0.995203 0.920387

Zakharov_4D_1600 0.93835 0.997566 0.993911 0.999635 0.934548 0.990842 0.891078 0.897161

Zakharov_6D_1600 0.920823 0.996505 0.94864 0.997877 0.915924 0.970389 0.695441 0.81893

Zakharov_8D_1600 0.913674 0.990619 0.724309 0.992372 0.89996 0.861584 0.450044 0.733163

Zakharov_10D_1600 0.915704 0.997007 0.209359 0.985178 0.700378 0.6006 0.336001 0.446459

PowerSum_4D_1600 0.981346 0.750991 0.926173 0.996565 0.974082 0.985866 0.848407 0.887386

Beale_2D_1600 0.916901 0.494464 0.998553 0.999677 0.847354 0.997279 0.960734 0.863616

Branin_2D_1600 0.962439 0.998116 0.998565 0.999969 0.992994 0.998784 0.993549 -1.5

GoldsteinPrice_2D_1600 0.793274 0.974704 0.997876 0.999756 0.973306 0.996041 0.991387 0.963329

StyblinskiTang_2D_1600 0.993611 0.997976 0.998454 0.99994 0.998124 0.998048 0.96811 0.004283

StyblinskiTang_4D_1600 0.99292 0.381793 0.995988 0.998914 0.997632 0.992376 0.733756 0.839561

StyblinskiTang_6D_1600 0.987111 0.379544 0.230659 0.997452 0.994942 0.829417 0.502352 0.291248

StyblinskiTang_8D_1600 0.99132 0.159382 0.135524 0.981831 0.983618 0.210068 0.299261 -0.47286

StyblinskiTang_10D_1600 0.98966 0.091858 0.091378 0.355035 0.979663 0.137505 0.135526 -0.52983

Perm_db_2D_1600 0.994346 0.990804 0.998513 0.999935 0.974976 0.997934 0.997029 0.963539

Perm_db_4D_1600 0.976529 0.963924 0.576453 0.99763 0.973071 0.977747 0.952705 0.683085

Perm_db_6D_1600 0.937524 0.951428 0.340628 0.990112 0.973433 0.500445 0.935321 0.135585

Perm_db_8D_1600 0.805749 0.78722 0.106371 0.974433 0.970717 -0.09388 0.920898 0.11344

 230

Perm_db_10D_1600 0.733381 0.292838 0.041721 0.966602 0.968385 -0.15861 0.906443 0.086711

Shekel_4D_1600 0.493072 0.510565 0.551382 0.71797 0.61829 0.685652 0.344164 -1.5

Colville_4D_1600 0.956388 0.865729 0.9549 0.999896 0.998575 0.996325 0.951837 0.942249

Powell_4D_1600 0.938107 0.968921 0.79249 0.999804 0.949139 0.992822 0.938953 0.914972

Powell_8D_1600 0.935955 0.837452 0.525128 0.997674 0.931742 0.815596 0.629576 0.874842

Hartmann_6D_1600 -1.5 0.619711 0.543734 0.973456 0.651593 0.914878 0.462117 0.811724

Ackley_2D_1600 0.518037 0.833376 0.897858 0.936409 0.555232 0.894789 0.854412 0.799454

Ackley_4D_1600 0.55065 0.490701 0.694313 0.796112 0.391323 0.697587 0.48952 0.685957

Ackley_6D_1600 0.644019 0.470064 0.448429 0.648907 -0.04238 0.519597 0.03528 0.283452

Ackley_8D_1600 0.58385 0.057882 -0.54151 0.493618 0.13989 0.203868 -0.36781 -0.43735

Ackley_10D_1600 -0.62817 -0.01582 -1.5 0.237318 -0.02828 -0.05504 -0.70117 -1.5

Griewank_2D_1600 0.999826 0.999649 0.99969 0.999813 0.999823 0.999511 0.993868 0.987088

Griewank_4D_1600 0.999978 0.997877 0.998443 0.99997 0.999977 0.997197 0.822975 0.983556

Griewank_6D_1600 0.999996 0.987767 0.872595 0.99999 0.999996 0.994125 0.56256 0.979573

Griewank_8D_1600 0.999999 0.987894 0.760094 0.999993 0.999999 0.973121 0.308186 0.972273

Griewank_10D_1600 1 0.264357 0.191931 0.999991 1 0.909567 0.098674 0.965722

Schwefel_2D_1600 0.187565 0.104978 0.187383 0.998864 0.991848 0.79858 0.871999 -1.5

Schwefel_4D_1600 0.18109 0.124823 0.136294 0.294608 0.987296 -0.29543 0.303803 -1.42619

 231

Schwefel_6D_1600 0.181784 0.097304 0.082097 0.154571 0.975387 -0.37517 -0.06622 -1.04575

Schwefel_8D_1600 0.171062 0.095345 0.059787 -0.04794 0.965929 -0.41774 -0.32048 -1.00114

Schwefel_10D_1600 0.175609 0.096785 0.054854 -0.1324 0.948622 -0.35813 -0.55673 -1.49876

Rastrigin_2D_1600 0.511063 0.507791 0.510814 0.999002 0.979163 0.434392 0.60158 -0.82894

Rastrigin_4D_1600 0.517995 0.505014 0.480923 0.356363 0.963429 0.266445 0.057881 -0.27123

Rastrigin_6D_1600 0.488256 0.472387 0.372965 0.190648 0.802082 0.108524 -0.27896 -0.15136

Rastrigin_8D_1600 0.464325 0.180177 0.24416 0.153086 0.701661 0.163321 -0.46584 -0.0367

Rastrigin_10D_1600 0.461392 0.103407 -0.00772 0.045149 0.628042 0.149596 -0.60067 -0.04954

Levy_2D_1600 0.715903 0.62385 0.904335 0.99586 0.995375 0.8904 0.9843 0.308814

Levy_4D_1600 0.70349 0.579495 0.572019 0.931599 0.993511 0.597885 0.779861 0.15483

Levy_6D_1600 0.699211 0.554867 0.413489 0.556914 0.987081 0.33627 0.512224 0.044948

Levy_8D_1600 0.696073 0.542386 0.296813 0.491928 0.981225 0.321157 0.262914 0.048386

Levy_10D_1600 0.689446 0.158008 0.158055 0.44029 0.981037 0.359537 0.03735 0.024425

Cross_IT_2D_1600 0.432628 0.42928 0.420614 0.72311 0.963486 0.344913 0.679322 -0.30257

Drop_Wave_2D_1600 0.357069 0.360002 0.362662 0.823681 0.289076 0.201776 -0.45744 -0.48614

Eggholder_2D_1600 -0.00428 -0.00165 0.024226 0.930592 0.126356 0.281104 0.310172 -1.5

Holder_2D_1600 0.502776 0.392856 0.461777 0.97788 0.792675 0.504639 0.743412 -0.02665

Sphere_15D_1600 1 0.901505 0.20175 0.999969 1 0.559725 -0.28168 0.943338

 232

Sphere_20D_1600 1 0.576528 -0.05209 0.999901 0.999906 0.186835 -0.54515 0.893752

Sum of

Squares_15D_1600 1 0.923974 0.16058 0.999121 0.994226 0.562176 0.041534 0.943499

Sum of

Squares_20D_1600 1 0.864634 -0.03381 0.998027 0.991448 0.1898 -0.20152 0.905749

Sum of Different

Powers_15D_1600 -22.2867 0.532569 0.074018 0.581916 0.98842 0.530873 -0.18027 0.484168

Sum of Different

Powers_20D_1600 -0.20763 0.095108 0.021095 0.531611 0.983104 0.197582 -0.40544 0.183406

Trid_15D_1600 1 0.917803 0.162417 0.999974 0.978065 0.641281 -0.57338 0.937721

Trid_20D_1600 1 0.823767 0.011106 0.999935 0.975215 0.223823 -0.82066 0.9183

Zakharov_15D_1600 0.923043 0.959522 0.490517 0.980954 0.850865 0.209839 -0.02704 0.623248

Zakharov_20D_1600 0.932479 0.964112 -0.30988 0.949076 0.84579 -0.05404 -0.20122 0.171923

StyblinskiTang_15D_1600 0.989944 0.03297 0.046734 0.245061 0.977066 -6.79218 -0.19647 -0.57231

StyblinskiTang_20D_1600 0.991372 -0.2237 0.003281 0.195755 0.970357 -9.46084 -0.45652 -0.35589

Ackley_15D_1600 0.466418 -0.15219 -5.4967 0.38639 -2.25907 0.124186 -1.66472 -3.3722

Ackley_20D_1600 0.296027 -0.4963 -18.9065 -0.01684 -0.9248 0.412572 -1.97712 -9.1835

Levy_15D_1600 0.657746 0.218874 0.050544 0.377196 0.968344 0.366444 -0.3843 -0.2493

 233

Levy_20D_1600 0.638234 -0.15514 0.022997 0.344354 0.956147 0.178694 -0.65011 -0.13486

Griewank_15D_1600 1 0.826225 -0.08963 0.99997 0.999867 0.555825 -0.28171 0.943276

Griewank_20D_1600 1 0.5767 -0.06968 0.999901 0.989234 0.186971 -0.54701 0.89341

Schwefel_15D_1600 0.153291 -0.08762 -0.05846 -0.23824 0.896725 -0.20392 -0.79758 -1.34205

Schwefel_20D_1600 0.102122 -0.28392 -0.17068 -0.35337 0.559899 -0.17865 -0.97228 -1.17021

Rastrigin_15D_1600 0.422804 0.112539 -0.30215 0.07256 0.372763 0.113301 -0.81729 0.017335

Rastrigin_20D_1600 0.40394 -0.34557 -0.2763 0.129919 0.265411 -0.00175 -0.9605 -0.00222

Ellipsoid_15D_1600 1 0.933372 0.15557 0.999097 0.99489 0.547912 0.04905 0.949877

Ellipsoid_20D_1600 1 0.87625 -0.03465 0.997726 0.989704 0.19704 -0.19764 0.914573

Rosenbrock_15D_1600 0.994576 0.799546 0.557017 0.955473 0.977751 0.614582 0.389156 0.751673

Rosenbrock_20D_1600 0.994323 0.52986 0.436496 0.846009 0.972027 0.265218 0.121412 0.739971

Dixon_Price_15D_1600 0.963182 0.780149 0.101105 0.940525 0.989112 0.604457 0.13765 0.866524

Dixon_Price_20D_1600 0.959964 0.638323 0.042476 0.845173 0.983526 0.264793 -0.12912 0.843491

 234

Appendix C – pyBOUND Test Problems

No
. Function Name

Dimension
s Bounds Minimum Value Minimum Location

1 Langermann 2 [0,10] -5.1621259 [2.00299219, 1.006096]
2 Easom N [-2π, 2π] -1 π

3 Bent_cigar N
[-100,
100] 0 0

4 Alπne1 N [-10, 10] 0 0
5 Alπne2 N [0, 10] 2.808^D 7.917052698
6 Brown N [-1, 4] 0 0
7 Spring N [0, 10] -1 5
8 Yang3 N [-2π, 2π] 0 0

9 Sargan N
[-100,
100] 0 0

10 Michalewicz 2 [0, π] -1.8013 [2.20, 1.57]
11 Holzman N [-10, 10] 0 0

12 Saloman N
[-100,
100] 0 0

13 Chichinadze 2 [-30, 30]
−42.9443870189909

8 [6.189866586965680, 0.5]

14 Leon 2
[-1.2,
1.2] 0 [1, 1]

15 Trig2 N
[-500,
500] 1 0.9

16 Mishra 3 [-10, 10] 0 [1, 2, 3]
17 Layeb02 N [-10, 10] 0 1

18 Layeb01 N
[-100,
100] 0 1

19 Biggs3 3 [0, 20] 0 [1, 10, 5]
20 Biggs4 4 [0, 20] 0 [1, 10, 1, 5]
21 Biggs5 5 [0, 20] 0 [1, 10, 1, 5, 4]
22 Biggs6 6 [-20, 20] 0 [1, 10, 1, 5, 4, 3]

23
Chung_Reynold
s N

[-100,
100] 0 0

24 Cube 2 [-10, 10] 0 [1, 1]

25 El_Attar 2
[-500,
500] 1.712780355

[3.4091868222,-
2.1714330361]

26 Hartmann3 3 [0, 1] -3.862782
[0.114614, 0.555649,
0.852547]

27 Himmelblau 2 [-5, 5] 0 [3, 2]

28 Pathological N
[-100,
100] 0 0

29 Periodic 2 [-10, 10] 0.9 [0, 0]
30 Quadratic 2 [-10, 10] -3873.7243 [0.19388, 0.48513]

 235

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Chapter 1 - Introduction
	1.1 Objectives
	1.2 Organization

	Chapter 2 – Literature Review
	2.1 Surrogate Model Construction
	2.1.1 Sampling Methods for Surrogate Model Construction

	2.2 Surrogate Modeling Techniques Considered
	2.2.1 Automated Learning of Algebraic Models for Optimization (ALAMO)
	2.2.2 Artificial Neural Networks
	2.2.3 Gaussian Process Regression (GPR)
	2.2.4 Multivariate adaptive regression splines (MARS)
	2.2.5 Random Forests (RF)
	2.2.6 Support Vector Machine Regression (SVR)

	2.3 Comparison and Selection of Surrogate Modeling Techniques
	2.4 Derivative-Free Optimization using Surrogate Models

	Chapter 3 - Data-Driven Surrogate Model Development for Cardiomyocyte Production Experimental Outcome Prediction
	3.1 Computational Experiments and Theory
	3.1.1 Experimental Data Collection
	3.1.2 Feature Engineering
	3.1.3 Feature Selection Methods
	3.1.3.1 Correlations
	3.1.3.2 Principal component analysis (PCA)
	3.1.3.3 Machine learning techniques

	3.2 Cardiomyocyte Content Classification
	3.2.1 Classification model performance metrics

	3.3 Results and Discussion
	3.3.1 Feature Selection Results
	3.3.2 Classification Model Results

	3.4 Conclusions and Future Work

	Chapter 4 - Comparison of Surrogate Modeling Techniques for Surface Approximation and Surrogate-Based Optimization
	4.1 Test Functions
	4.2 Computation Experiments
	4.2.1 Surrogate Model Construction
	4.2.2 Evaluation of Surface Approximation and Surrogate-Based Optimization Performance
	4.2.3 Surface Approximation Performance Metrics
	4.2.4 Surrogate-Based Optimization Performance Metrics

	4.3 Results and Discussion
	4.3.1 Effect of Sampling Method and Sample Size
	4.3.2 Comparison of surrogate modeling technique performance for surface approximation
	4.3.4 Selection of Surrogate Modeling Technique for Surface Approximation by Adjusted-R2
	4.3.5 Effect of Underlying Function Input Dimension and Function Shape on Surface Approximation Performance
	4.3.6 Comparison of surrogate modeling technique performance for surrogate-based optimization
	4.3.7 Computational Efficiency of Solving the Resulting Optimization Problems
	4.3.8 Functions for Which None of the Surrogate Modeling Techniques were Accurate

	4.4 Conclusions and Future Directions

	Chapter 5 – Development of PRESTO (Predictive REcommendation of Surrogate models to approximate and Optimize)
	5.1 PRESTO Construction Data and Surrogate Model Training
	5.2 Feature Engineering and Attribute Extraction for Training PRESTO
	5.2.1 Input Related Attributes
	5.2.2 Gradient-Based Attributes
	5.2.3 Response (Output)-Based Attributes
	5.2.4 Other Attributes

	5.3 PRESTO Framework Construction
	5.4 PRESTO Performance Evaluation Criteria
	5.5 Application Dependent PRESTO Attributes for Surrogate Modeling Techniques
	5.6 Performance Evaluation of PRESTO for a Chemical Engineering Application - Cumene Production Case Study
	5.6.1 Process and Simulation Description for Cumene Production

	5.7 Results and Discussion
	5.7.1 PRESTO Recommendation Classification Results
	5.7.2 Cumene Case Study Performance Results
	5.7.2.1 PRESTO Cosine Similarity Analysis

	5.8 Conclusions and Future Work

	Chapter 6 – Surrogate-Based Optimization Using Random Forests
	6.1 Random Forest Structure and MILP Formulation
	6.2 Computational Experiments
	6.2.1 Test Functions
	6.2.2 Surrogate-Based Optimization with Random Forest Models

	6.3 Results and Discussion
	6.3.1 Effect of Random Forest Model Size on Surface Approximation Performance
	6.3.2 Effect of Random Forest Model Size on Surrogate-Based Optimization Performance
	6.3.3 Computational Efficiency of Solving the Random Forest MILP

	6.4. Conclusions and Future Work

	Chapter 7 – Derivative Free Optimization with pyBOUND (PYthon-based Black box Optimization Using raNDom forests)
	7.1 Optimization Problem Formulation
	7.2 General pyBOUND Framework
	7.3 pyBOUND Stage 1: Generation of Decision Variable Bounds with Random Forest Models
	7.3.1 Approaches for Reducing Decision Variable Bounds
	7.3.2 Adaptive Sampling Methods for Updating RF Model
	7.3.3 Results for Bounds Cutting and Sampling Methods

	7.4 pyBOUND Stage 2: Refinement of Solution with Multivariate Adaptive Regression Splines (MARS) Models
	7.5 Computational Experiments
	7.5.1 DFO Algorithms for Comparison
	7.5.2 Performance Metrics

	7.6 Results and Discussion
	7.6.1 Results for Original Test Functions
	7.6.2 Results for New Test Problems

	7.7 Conclusions and Future Directions

	Chapter 8 – Conclusions and Recommendations for Future Work
	8.1 Systematic Selection of Surrogate Modeling Techniques for Surface Approximation and Surrogate-Based Optimization
	8.2 Surrogate-Based Optimization Using Random-Forests
	8.3 pyBound (PYthon-based Black box Optimization Using raNDom forests)

	References
	Appendix A – Supplementary Data for Cardiomyocyte Feature Selection
	Appendix B – PRESTO Training Data
	Appendix C – pyBOUND Test Problems

