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Abstract 

Surrogate models are used to map input data to output data when the actual relationship 

between the two is unknown or computationally expensive to evaluate (Han & Zhang, 2012). 

Surrogate models can also be constructed for use in surrogate-based optimization when a closed 

analytical form of the relationship between input data and output data does not exist or is not 

conducive for use in traditional gradient based optimization methods. The overall goal of this 

dissertation is to comprehensively investigate and compare the performance of several different 

surrogate modeling techniques for both approximating functional relationships and surrogate-

based optimization, and to link that performance to the characteristics of the data involved in the 

application. Using the results of the performance comparisons, surrogate modeling techniques are 

incorporated into a derivative-free optimization framework to use in the application of surrogate-

based optimization of chemical processes. 

The research activities described here focused on comparison of the performance of eight 

different surrogate modeling techniques on a collection of generated datasets and construction of 

a tool to provide recommendations for the appropriate modeling techniques for the datasets based 

only on the characteristics of the data being modeled. The surrogate modeling techniques include 

multivariate adaptive regression splines (MARS), random forests (RF), single hidden layer feed 

forward artificial neural networks (ANN), extreme learning machines (ELM), Gaussian process 

regression (GP), support vector machines (SVM), Automated Learning of Algebraic Models using 

Optimization (ALAMO), and radial basis function networks (RBFN). In general, multivariate 

adaptive regression splines (MARS), artificial neural networks (ANN), and Gaussian process 

regression (GP) provide the most accurate predictions for approximation, and RF models locate 

the optimum of a dataset most often. Several of the surrogate modeling techniques were applied 
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to the prediction of the outcomes of cardiac differentiation experiments. RF and GP models were 

found to provide the most accurate predictions of those outcomes. With feature selection and data-

driven modeling using the surrogate modeling techniques, we were able to build models that could 

predict insufficient yield for a bioreactor differentiation on day seven (out of 10) of the 

differentiation protocol with up to a 90% accuracy and a 90% precision, using only 16% of the 

collected bioreactor features. 

Based on the results of the surrogate model comparison study, we identified attributes of 

datasets appropriate for selecting surrogate models for both surface approximation and surrogate-

based optimization. Using these attributes, a recommendation tool, PRESTO, was constructed to 

recommend surrogate modeling techniques for approximating a dataset with 91% accuracy and 

90% precision and for performing surrogate based-optimization with 98% accuracy and 99% 

precision. A surrogate-based, derivative-free optimization algorithm, pyBOUND, was developed 

for the solution of expensive black-box optimization problems. pyBOUND combines the 

capabilities of random forest models to accurately locate the optima of a wide variety of problems 

with MARS models’ high accuracy for making predictions. 
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Chapter 1 - Introduction 

 Surrogate models, also known as response surfaces, black-box models, metamodels, or 

emulators, are simplified approximations of more complex, higher order models (C. Wang et al., 

2014). These models are used to map input data to output data when the actual relationship between 

the two is unknown or computationally expensive to evaluate (Han & Zhang, 2012). Surrogate 

models can also be constructed for use in surrogate-based optimization when a closed analytical 

form of the relationship between input data and output data does not exist or is not conducive for 

use in traditional gradient based optimization methods.  Surrogate modeling techniques are of 

particular interest where high-fidelity, thus expensive, simulations are used (Han and Zhang, 

2012), for example, in computational fluid dynamics (CFD) or computational structural dynamics 

(CSD). Surrogates are also of interest when the fundamental relationship between design variables 

and output variables is not well understood, such as in the design of cell or tissue manufacturing 

processes (Du et al., 2016; Sokolov et al., 2017; Williams, Lobel, et al., 2020). 

Surrogate modeling techniques have been receiving increasing attention in a wide range of 

applications, for example, in the optimization of process design, scheduling, and control (Burnak 

et al., 2019). They have successfully been used for both regression and classification tasks. 

Surrogate models have been used in several recent applications in process systems engineering 

and the manufacturing industry, including for optimization of a sulfur recovery unit (Rahman et 

al., 2019), fault detection (Quiroz et al., 2018; Zhang et al., 2018), and surrogate-based 

optimization of energy consumption in carbon fiber production line (Golkarnarenji et al., 2018). 

Although several machine learning and regression techniques have been developed for 

surrogate model construction, there has been little work on how to best select the appropriate model 

for a particular application for either surface approximation or optimization. Surface 
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approximation refers to the application of using a surrogate model to mimic the overall behavior 

or response of an underlying model. In surrogate-based optimization, a surrogate model can be 

constructed to represent the objective function or any constraints that may be computationally 

expensive to evaluate or are unavailable in analytical form. The constructed surrogate can be used 

as a closed functional form in traditional gradient-based optimization methods. 

With all the surrogate modeling techniques currently available, there is a need for a 

systematic method of selecting the appropriate technique for a given application. The overall goal 

of this research is to comprehensively investigate and compare the performance of several different 

surrogate modeling techniques for both approximating functional relationships and surrogate-

based optimization, and to link that performance to the characteristics of the data involved in the 

application. Using the results of the performance comparisons, surrogate modeling techniques are 

incorporated into a derivative-free optimization framework to use in the application of surrogate-

based optimization. 

1.1 Objectives  

This dissertation will: 

(1) Explore and compare the effects of data characteristics on performance of several surrogate 

modeling techniques. 

(2) Develop a tool for systematic recommendation of surrogate modeling techniques for the 

purposes of surface approximation and surrogate-based approximation. 

(3) Develop a derivative-free optimization framework incorporating surrogate modeling 

techniques. 
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1.2 Organization 

The dissertation is organized as follows. In Chapter 2, Sections 2.1 and 2.2 present background 

information about selected surrogate modeling techniques and their construction and relevant 

practical applications. Section 2.3 provides a literature review on derivative-free optimization 

(DFO) algorithms. Chapter 3 describes work on development of surrogate models for the 

prediction of the outcomes of cardiac stem cell differentiation experiments. Section 3.1 provides 

relevant background information on cardiac differentiation and a literature review of previous 

applications of machine learning in other cell and protein production applications. Sections 3.2, 

3.3, and 3.4 present the computational experiments performed for the cardiac study and their 

results.  

In Chapter 4, results are presented for a comparison of the performance of the eight surrogate 

modeling techniques on a variety of test functions. Section 4.1 gives a detailed description of the 

test functions generated and used here and throughout the dissertation. Section 4.2 documents the 

computation methods used in the comparison study, and comparison performance results are 

presented in section 4.3. Chapter 5 presents the development of PRESTO (Predictive 

Recommendation of Surrogate models TO approximate and optimize), a framework that provides 

recommendations for surrogate modeling techniques to use based on dataset characteristics. 

Section 5.2 defines the dataset characteristics, or attributes, used to describe datasets. Section 5.3 

focuses on the construction and training of the PRESTO framework, and Section 5.4 defines the 

criteria used to evaluate the quality of the model selections made by PRESTO. Section 5.5 

discusses the data attributes determined to be relevant in selecting surrogates for the study. A case 

study is described in Section 5.6, and results for PRESTO’s model selection performance for the 

training and case studies are provided in Section 5.7. Section 5.7 also includes a discussion of a 
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similarity metric that can be used for determining if a set of data is appropriate for use with 

PRESTO. 

Chapter 6 describes a study applying the random forest surrogate modeling technique for 

surrogate-based optimization. Section 6.1 describes the unique structure of random forest models 

and their resulting optimization problem structure. Section 6.2 describes the computational 

experiments carried out for the optimization study, and results are presented in Section 6.3. Chapter 

7 describes the development and performance evaluation of pyBOUND (PYthon-based Black box 

Optimization Using raNDom forests), a surrogate-based derivative-free optimization algorithm. 

Note that parts of the contributions described in this dissertation have been previously 

published in three journal papers (Williams & Cremaschi, 2021b; Williams, Lobel, et al., 2020; 

Williams et al., 2021) and three conference papers (Williams & Cremaschi, 2019, 2021a; 

Williams, Halloin, et al., 2020). 
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Chapter 2 – Literature Review 

Surrogate modeling techniques have been receiving increasing attention in a wide range of 

applications, for example, in the optimization of process design, scheduling, and control (Burnak 

et al., 2019). They have successfully been used for both regression and classification tasks. 

Surrogate models have been used in several recent applications in process systems engineering 

and the manufacturing industry, including for optimization of a sulfur recovery unit (Rahman et 

al., 2019), fault detection (Quiroz et al., 2018; Zhang et al., 2018), and surrogate-based 

optimization of energy consumption in carbon fiber production line (Golkarnarenji et al., 2018). 

2.1 Surrogate Model Construction 

Construction of a surrogate model is comprised of three steps: (1) selection of the sample 

points, (2) optimization or "training" of the model parameters, and (3) evaluation of the accuracy 

of the surrogate model (C. Wang et al., 2014). Although several machine learning and regression 

techniques have been developed for surrogate model construction, there has been little work on 

how to select the appropriate model for a particular application for either surface approximation 

or surrogate-based optimization. Surface approximation refers to the application of using a 

surrogate model to mimic the overall behavior or response of an underlying model. In surrogate-

based optimization, a surrogate model can be constructed to represent the objective function or 

any constraints that may be computationally expensive to evaluate or are unavailable in analytical 

form. The constructed surrogate can be used as a closed functional form in traditional gradient-

based optimization methods.  

Selection of an appropriate number of sample points and sampling method to generate 

those samples is a critical step in the construction of a surrogate model. In general, a higher number 

of sample points offers more information about the underlying model being approximated, 
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although with a higher computational expense. For low-order functions, after reaching a certain 

sample size, increasing the number of sample points does not contribute much to the approximation 

accuracy (G. G. Wang & Shan, 2007). Previous studies have investigated the effects of sample 

size and sampling method on some of the surrogate modeling techniques being studied 

specifically, including Gaussian process regression (Afzal et al., 2017; Burnaev & Zaytsev, 2015; 

Iooss et al., 2010) and radial basis function networks (Afzal et al., 2017), as well as on surrogate 

modeling accuracy in general (Davis et al., 2017). The results of these studies indicate that the 

accuracy of a surrogate model is dependent upon the number and distribution of samples used in 

its construction. 

2.1.1 Sampling Methods for Surrogate Model Construction 

In general, sampling methods can be categorized into two types: one-shot sampling and 

sequential sampling. In one-shot experimental design, all the experimental points for building a 

model are generated prior to the execution of the experimental design for the model construction. 

Examples of one-shot sampling methods include Latin Hypercube sampling (Mckay, 1992) and 

full factorial design (Das & Dewanjee, 2018). Although these one-shot techniques are very 

commonly used, they can result in under/oversampling and thus, poor system approximations 

(Crombecq et al., 2011; Garud et al., 2017b). Sequential sampling attempts to use the minimum 

number of sample points necessary by starting with a small number of samples and slowly 

increasing the sample size until the performance of the surrogate model reaches some desired level 

of a performance metric (Eason & Cremaschi, 2014). Fewer samples translate to decreased 

computational time required for data collection. 
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Figure 2.1 - Sequential sampling method for constructing a surrogate model 

   Figure 2.1 gives an example of a general sequential sampling algorithm. First, an initial 

set of inputs are generated, usually with a space-filling experimental design, and the experimental 

output to be modeled is evaluated at those points to generate an initial sample set. Next, additional 

sample points are selected based on a criterion, and the output is evaluated at these new points. 

The new points are added to the existing sample set, and a surrogate model is constructed. A 

performance metric, 𝛼𝛼, that quantifies the improvement of the surrogate model from the previous 

iteration is checked against a target value, 𝜀𝜀. When α falls below ε, then the sample size is deemed 

to be sufficient, and the sampling is terminated. 

The performance of a sequential sampling algorithm is dependent on selecting appropriate 

sample locations. Two search strategies may be used for determining the locations of new samples: 

1. New samples should be located far enough away from existing ones to avoid redundant samples 

and adequately fill the design space (exploration) and 2. New samples should be placed in regions 

of the design space that capture nonlinearities or other deviations from the typical behavior of the 
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underlying black-box model (exploitation). The contrast between these two approaches is known 

as the exploration vs. exploitation problem (Crombecq et al., 2011). Several methods have been 

developed to address this issue of balancing the trade-off between exploration and exploitation, 

adaptively adding samples to improve the surrogate model performance (Eason & Cremaschi, 

2014; Garud et al., 2017b; Hu et al., 2018; Nentwich & Engell, 2019). 

2.2 Surrogate Modeling Techniques Considered 

 Eight commonly used surrogate modeling techniques were chosen for consideration for 

this work. These techniques include Automated Learning of Algebraic Models using Optimization 

(ALAMO), single hidden layer feed-forward Artificial Neural Networks (ANN), Extreme 

Learning Machines (ELM), Gaussian Process Regression (GPR), Multivariate Adaptive 

Regression Splines (MARS), Radial Basis Function Networks (RBFN), Random Forests (RF), and 

Support Vector Machine Regression (SVR). 

2.2.1 Automated Learning of Algebraic Models for Optimization (ALAMO) 

Automated learning of algebraic models (ALAMO) uses a linear summation of nonlinear 

transformations of the input data to predict output values. Possible nonlinear transformations 

include polynomial, exponential, logarithmic, ratio, and trigonometric functions (Cozad et al., 

2014). The nonlinear transformations allowed for ALAMO models trained for this work were sine, 

cosine, exponential, logarithmic, polynomial functions. Given a dataset, the approach begins by 

building a low-complexity, linear model composed of explicit nonlinear transformations of the 

input variables. Then, the method iteratively refines the model by solving an optimization problem 

at each iteration to minimize (or maximize) a user-designated error metric. It should be noted that 

the adaptive sampling scheme of ALAMO is not used in this study. ALAMO is one of the few 

surrogate modeling techniques developed directly by the chemical engineering community. 
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2.2.2 Artificial Neural Networks 

Artificial neural networks attempt to mimic the behavior of neurons in the brain. The 

models consist of an input and an output layer that are connected by a number of hidden layers in 

between. The artificial neurons have weights and biases that create a network between the layers, 

with the activation function in the hidden layer determining whether or not a neuron will "fire" and 

produce a signal (Haykin, 2009). Training of a neural network refers to the process that identifies 

the values of the weights and biases. Three different types of artificial neural networks are 

considered here, all with a single hidden layer: a feed-forward artificial neural network with a 

hyperbolic tangent activation function (ANN), an extreme learning machine (ELM), and a radial 

basis function network (RBFN). In an ELM, the weights between the input layer and hidden layer 

are randomly assigned, and the weights between the hidden layer and the output layer are fit using 

linear regression or other regression techniques (Huang et al., 2006). The activation function used 

in both the ANN and ELM models is a hyperbolic tangent function. An RBFN is a neural network 

with a radial basis function as the activation function in the hidden layer (Gomm & Yu, 2000). 

First, the network calculates the Euclidean distance between the input weights and input values. 

Then it passes those distances through the Gaussian radial basis activation function. The form of 

the radial basis function is shown in Eqs. (2.1) and (2.2), 

𝑟𝑟 = ‖𝑥𝑥 − 𝑥𝑥′‖ (2.1) 

𝜑𝜑(𝑟𝑟) = 𝑒𝑒−(𝜀𝜀𝜀𝜀)2 (2.2) 

where the Euclidean distance, 𝑟𝑟, between points 𝑥𝑥 and 𝑥𝑥′, is used to calculate the radial basis 

function, 𝜑𝜑(𝑟𝑟), with the shape tuning parameter 𝜀𝜀. 

Artificial neural networks have been widely developed and used in a variety of chemical 

engineering applications. For example, ANNs have been used to estimate the thermodynamic 
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properties of four binary refrigerant systems (Nikkholgh et al., 2010), and at a larger scale, to heat 

generated in commercial electric vehicle battery packs (Arora et al., 2017). ELMs have been used 

to develop soft sensors for chemical processes (He et al., 2016). 

2.2.3 Gaussian Process Regression (GPR) 

 Gaussian process regression (GPR) is a method of interpolation for which the interpolated 

values are modeled by a Gaussian process governed by prior covariances. Under suitable 

assumptions on the priors, GPR gives the best linear unbiased prediction of the intermediate values 

(Rasmussen & Nickisch, 2010). GPR uses a kernel function as measure of similarity between 

points to predict the value for an unseen point from the training data (Rasmussen & Williams, 

2005). GPR is widely used in chemical engineering applications, including modeling and 

monitoring batch chemical reactors (Masampally et al., 2018; L. Zhou et al., 2015), and uncertainty 

estimations in erosion rate predictions (Dai et al., 2019).  The radial basis function (Eqs. (2.1) and 

(2.2)) is used as the kernel function for all GP models trained for this work. 

2.2.4 Multivariate adaptive regression splines (MARS) 

 Multivariate adaptive regression spline (MARS) models are made up of a linear summation 

of basis functions. The three types of possible basis functions are a constant, a hinge function (or 

“spline”), or a product of two or more hinge functions. The training of a MARS model starts with 

an initial model that is a basis function equal to the mean of the data outputs. On the first pass, the 

model overfits to the data, adding basis functions to reduce the sum of the squared errors (SSE) 

between the given and predicted outputs. Then, a backward, pruning pass is performed to remove 

terms that have little effect on the SSE until the best model is identified based on cross validation 

criteria (Friedman, 1991). Recently, MARS models have been used in process systems applications 
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including optimization of a sulfur recovery unit (Rahman et al., 2019) and surrogate-based 

sensitivity analysis of a wastewater treatment plant (Al et al., 2019). MARS models have also been 

successfully implemented in medical applications (Bhat et al., 2013). 

2.2.5 Random Forests (RF) 

 Random forests are machine learning models that make output predictions by combining 

outcomes from a sequence of regression decision trees, called forests. Each tree is constructed 

independently and depends on a random vector sampled from the input data, with all the trees in 

the forest having the same distribution. The predictions from the forests are averaged using 

bootstrap aggregation and random feature selection (Breiman, 2001). The value that is output for 

a tree for given inputs is the value of the final leaf node reached, and the output value for the entire 

RF model is the average value of the outputs for every decision tree in the forest. 

 Random forests have successfully been used for both regression and classification tasks, 

performing with high prediction accuracy for both small sample sizes and high dimensional data. 

They are capable of fitting non-linear data with a minimal number of parameters to tune (Biau & 

Scornet, 2016). The models have been used in several recent applications in the manufacturing 

industry, including for fault detection (Puggini et al., 2015; Quiroz et al., 2018; Zhang et al., 2018), 

prediction of mechanical failures (Wu et al., 2017), and prediction of manufacturing product 

properties (Maudes et al., 2017). Other areas of research where random forest models have been 

employed for approximation include development of new pharmaceutical molecules (Svetnik et 

al., 2004) and thermodynamic property estimation (Palmer et al., 2007). 
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2.2.6 Support Vector Machine Regression (SVR) 

 Support vector machine regression transforms input data into m-dimensional space and 

attempts to construct a set of hyperplanes so that the distance from it to the nearest data point on 

each side of the plane is maximized using kernel functions (Drucker et al., 2002). The kernel 

functions transform the data into a higher dimensional feature space to make it possible to perform 

the linear separation. A recent example of an application of SVM models is using them for 

surrogate-based optimization of energy consumption in carbon fiber production line 

(Golkarnarenji et al., 2018). 

2.3 Comparison and Selection of Surrogate Modeling Techniques 

The current common practice for choosing a model form from the many available 

techniques relies on process-specific expertise or expensive trial-and-error methods. When 

selecting a surrogate model with user expertise, only a small subset of the many possible 

techniques that the user is most familiar with may be considered as candidates. This selection 

method, as well as trial and error, which is limited by computational resources, may fail to exploit 

the large pool of surrogate modeling techniques available and lead to a sub-optimal model 

selection. A systematic, automated procedure for selecting the appropriate surrogate model for a 

given application would avoid this issue.  

Recent advances in automating the surrogate model selection process include the 

development of the tool Concurrent Surrogate Model Selection (COSMOS), which uses a genetic 

search algorithm with sequential k-fold cross-validation to identify the best model for an 

application (Mehmani et al., 2018). While this method allows users to explore a wide range of 

candidate surrogates to select the best one, it still involves a considerable computational expense 

for training multiple models. Progress has been made in recent works in generalizing the process 
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for selecting a surrogate model to approximate a surface by using meta-learning approaches to 

build selection frameworks, avoiding expensive trial-and-error methods (Cui et al., 2016; Garud 

et al., 2018). These meta-learning approaches rely on the knowledge pyramid, where the selection 

framework learns how to best select surrogate models based on past modeling computational 

experiments results (Vilalta & Drissi, 2002). These frameworks provide “best” recommendations 

for surrogate modeling techniques based on characteristics, or attributes, calculated from the 

modeled data. Furthermore, the framework developed by Garud et al. (2018) gives a ranking of all 

the considered surrogate models based on the predicted accuracy of the model. However, neither 

framework takes model complexity into account, which can lead to overfitting, or considers that 

multiple models might perform similarly to the one identified as best in terms of their accuracies. 

The selection of surrogate models for surrogate-based optimization remains an open challenge. 

2.4 Derivative-Free Optimization using Surrogate Models 

Optimization is required for several chemical engineering applications, including process 

design and process synthesis, operations, and supply chain management. These applications 

usually involve complex, high-fidelity simulations and/or physical experiments, which can both 

require significant resources in terms of cost and time, as well as a large computational expense to 

collect data. Optimization using traditional gradient-based methods is impractical for these 

applications because gradient information is not readily available, and approximating gradients is 

infeasible due to the required expense for multiple simulation evaluations or experiments. In 

addition, the direct use of deterministic global optimization methods is restrictive in these cases 

because the computational cost for obtaining data limits the total number of model runs necessary 

to optimize the system efficiently (Conn et al., 2009; Forrester et al., 2008). To overcome these 

challenges, derivative-free optimization methods can be employed. 
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Derivative-Free Optimization (DFO) algorithms rely on search heuristics based around 

improving the current best set of decision variables (Conn et al., 2009). The general framework of 

a DFO algorithm is illustrated in Figure 2.2. Each algorithm begins by using an initial sampling 

strategy to generate an initial set of decision variables. From there, the variable sets are passed to 

the problem, model, or simulation, which is treated as a black-box model, and the objective 

function value corresponding to those decision variables is evaluated. The objective function 

values are then passed back to the DFO algorithm, where the algorithm-specific search heuristic 

begins. The search heuristic uses the input-output pairs of the evaluated decision variable sets and 

corresponding objective function values to then determine the next set(s) of decision variables to 

evaluate. This process is iterated until a termination criterion has been reached. There are several 

termination criteria that can be evaluated for a DFO algorithm, including a maximum number of 

black-box evaluations, a minimum search step size, or exceeding a specified wall time (Rios & 

Sahinidis, 2013). Comprehensive reviews and comparisons of available DFO algorithms can be 

found in Kolda et al. (2003), Rios and Sahinidis (2013), and Boukouvala et al. (2016). 
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Figure 2.2 - General derivative-free optimization framework 

 DFO algorithms can be separated into categories based on the method they use to search 

the design space of the problem (direct-search or model-based) and on whether they search the 

entire design space (global search) or a local sub-region of it (local search) (Boukouvala et al., 

2016). Model-based searches employ the use of surrogate models to assist in the search for optimal 

decision variables. Examples of model-based search DFO algorithms include the development of 

a kriging (Boukouvala & Ierapetritou, 2014) and radial basis function (Le Thi et al., 2012) based 

DFO algorithms for optimization of expensive constrained problems. 

There has been considerable progress in developing approaches for derivative-free 

optimization by using surrogate models to approximate any explicitly unknown relationships in 

the systems of interest (Bajaj et al., 2018; Boukouvala et al., 2017; Rios & Sahinidis, 2013). The 

aim of the surrogate approximations is to guide the search toward the optimum of the original 

model. Existing literature on model-based DFO algorithms predominantly employs local 

optimization methods for the optimization of the formed surrogate approximations (Conn et al., 
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2009). In addition, they can be difficult to scale to solve problems with high dimensions (Bhosekar 

& Ierapetritou, 2018b; Qian et al., 2016b). 
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Chapter 3 - Data-Driven Surrogate Model Development for 

Cardiomyocyte Production Experimental Outcome Prediction 

Cardiovascular diseases (CVD) are the leading cause of death worldwide, meaning there 

are more deaths annually due to CVD than any other cause (Roth et al., 2020). These diseases can 

lead to heart attacks, which can result in the loss of more than one billion heart cells, leading to 

congestive heart failure (Kempf, Andree, et al., 2016). Patients who suffer from advanced stages 

of heart failure have a poor prognosis for survival, and the large disparity between numbers of 

donors and recipients leaves few viable treatments.  Artificial prosthetic hearts and heart assist 

devices have demonstrated some success in prolonging the lives of patients receiving treatment, 

but their development is slow and clinical trials have been limited.  Due to the nature of heart 

transplants and the stigma surrounding artificial organs, engineered heart tissue may provide an 

encompassing treatment for heart failure (Kempf, Andree, et al., 2016).   

Mature cardiomyocytes, the contracting cells in the heart, are some of the least regenerative 

cells in the body. This characteristic carries over into the laboratory environment and thus limits 

in vitro expansion capabilities of cardiomyocytes. Difficulties in direct culture of cardiomyocytes 

can be overcome by differentiation from human pluripotent stem cells (hiPSCs) (Kempf, Andree, 

et al., 2016). The indefinite turnover potential of pluripotent cells allows for the expansion of large 

quantities for differentiation into therapeutic engineered tissues. However, the differentiation of 

hiPSCs into specific cell types is a highly complex and costly process that is sensitive to the impact 

of a high number of factors (Gaspari et al., 2018), and significant difficulties exist in reliably and 

consistently producing the large number of cardiomyocytes needed for therapeutic purposes 

(Kempf, Andree, et al., 2016). 
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Data-driven modeling with machine learning techniques has the potential to identify factors 

and patterns that most significantly affect the outcomes of these differentiation experiments. 

Previously, machine learning techniques have successfully been used to identify key factors and 

assist in the optimization of the production of several proteins and cell lines (Sokolov et al., 2017; 

Y. Zhou et al., 2018). The goal of this work is to use machine learning techniques to identify key 

process parameters to be used in predictive modeling of bioreactor cardiac differentiation 

outcomes. The high number of experimental factors influencing the differentiation results in a 

large set of possible inputs to be considered for modeling. This high data dimensionality, in 

addition to the low number of data points due to the time-consuming nature of these experiments, 

represents significant challenges for modeling the differentiation process. The specific aim is to 

use machine learning models to predict whether or not the cardiomyocyte content at the end of 

differentiation process will be sufficiently high. We define insufficient production as having a 

cardiomyocyte content on the tenth day of differentiation (dd10) that is less than 90%, meaning 

less than 90% of the cells produced at the end of the differentiation are cardiomyocytes. Predicting 

if the cardiomyocyte content will be insufficient before the end of the differentiation will provide 

cost and time savings, as each day the differentiation continues requires significant resources. 

Using existing data from bioreactor experiments, we have applied feature selection 

techniques, including correlations, principal component analysis, and built-in feature selection 

method in machine learning models, to identify the conditions in the bioreactor, which we define 

as bioreactor features, that are most influential and predictive of the cardiomyocyte content. 

Bioreactor features considered include values related to the cell concentration, size of cell 

aggregates, pH, dissolved oxygen concentration, and concentrations and timings of certain 

nutrients, such as glucose, and small molecules known to direct the differentiation. We then used 
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the identified features as inputs to build models to classify the resulting cardiomyocyte content of 

a particular bioreactor run as being sufficient or insufficient to justify continuing with the 

differentiation. The general process for this study is summarized in Fig 3.1. 

 

Figure 3.1 – Cardiomyocyte study summary 

3.1 Computational Experiments and Theory 

3.1.1 Experimental Data Collection 

Experimental data were generated and collected from 58 cardiac differentiation 

experiments (Halloin et al., 2019). The differentiation experiments were carried out in chemically 

defined conditions in stirred tank bioreactors. Details of the experiments are described in Halloin 

et al. (2019). The set of independent variables includes experimental conditions such as the rotation 

speed in the bioreactor and measurements such as differentiation day dependent cell densities and 

aggregate sizes, and continuous time measurements of dissolved oxygen (DO) concentration and 

pH. The set of independent variables measured from the experiments was expanded to include 
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engineered features such as estimated gradients in cell densities and DO concentrations, resulting 

in a total of 101 variables, which we refer to as bioreactor features. The dependent variable is the 

percentage of the cells in the bioreactor that have differentiated into cardiomyocytes, or the 

cardiomyocyte content, on the last day of the differentiation experiment, dd10. Data from 42 of 

the experiments were designated as training data and used for feature selection and classification 

model construction. The remaining experiments were reserved as test data for testing the 

classification models. 

3.1.2 Feature Engineering 

Experimental data used in computational analysis and model development were collected 

from 58 cardiac differentiation processes in bioreactors; notably, all processes performed in the 

relevant experimental setup were included in the study without any type of pre-selection procedure 

to explicitly exclude any investigator-dependent bias. Each of the differentiation processes 

represents a single experimental datapoint to be used for model construction. In the first step, data 

sets from 42 of these processes were randomly chosen and used for constructing predictive models, 

while data sets from the remaining 16 processes were reserved for testing the models' performance. 

From the data, a set of potential input variables, which we refer to as "bioprocess features", 

for use in predictive models was generated with the goal of this set fully describing the 

experimental conditions over the entire differentiation process. For model construction using 

machine learning, a feature is an individual measurable or derived (using measured properties) 

property of the system that is being modeled. Available experimental conditions included the 

rotation speed in the bioreactor and measurements such as differentiation day (dd) dependent cell 

densities, aggregate sizes, and nutrient concentrations, and measurements of DO concentration and 

pH over the course of the experiment.  
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The DO concentration and pH measurements were included as features by averaging their 

values over each day of the differentiation. Additional features were engineered from this data, as 

well as other time-dependent measurements, to capture how the conditions in the bioreactor were 

changing over time. These additional features were generated by estimating time gradients and 

second derivatives for the cell density, aggregate size, DO concentration, and pH measurements, 

resulting in a final set of 101 potential bioprocess features. The full list of bioprocess features is 

provided in Appendix A. Time gradients and second derivatives were estimated using Eqs. (3.1) 

and (3.2), 

𝑔𝑔𝑡𝑡𝑖𝑖 =
𝑦𝑦𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑡𝑡𝑖𝑖−1
𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1

 (3.1) 

ℎ𝑡𝑡𝑖𝑖 =
𝑔𝑔𝑡𝑡𝑖𝑖−𝑔𝑔𝑡𝑡𝑖𝑖−1
𝑡𝑡𝑖𝑖−𝑡𝑡𝑖𝑖−1

   (3.2) 

 

where 𝑔𝑔𝑡𝑡𝑖𝑖 and ℎ𝑡𝑡𝑖𝑖 are the gradient and second derivative, respectively, of bioreactor condition 𝑦𝑦 at 

timepoint 𝑡𝑡𝑖𝑖. 

3.1.3 Feature Selection Methods 

Because of the large number of features (101) compared to the number of experimental 

data points (58), feature selection was performed on the available data to discover which of the 

bioprocess features were most influential and predictive of the cardiomyocyte content on dd10. 

The feature selection methods employed include correlation coefficients, PCA, and the built-in 

feature selection capabilities of the machine learning techniques investigated for predictive 

modeling. Two sets of features, Feature Set 1 and Feature Set 2, were considered, each with 

bioprocess features measured at earlier points in the differentiation process. Feature Set 1 consists 
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of all the collected bioprocess features measured up until the seventh differentiation day 7 (dd7). 

Feature Set 2 consists of bioprocess features measured up until the fifth differentiation day 5 (dd5).  

The dd7 and dd5 timepoints were chosen in order to use as much data as possible without 

using any data near the endpoint of the differentiation, such as dd9. Preliminary proof-of-concept 

studies revealed that classification was possible using data collected up to and including dd7, 

initiating analysis investigating the possibility of earlier predictions. Based on this analysis, dd5 

was chosen as the earliest possible timepoint, as classification using data from earlier points in the 

differentiation did not yield satisfactory predictive capabilities. 

3.1.3.1 Correlations 

Pearson correlation coefficient 

The Pearson correlation coefficient measures the linear relationship between two variables. 

Its value ranges from -1 to 1. A value of -1 corresponds to a perfect negative linear relationship 

between the variables, while a value of 1 indicates a positive linear relationship. A value of 0 

demonstrates no linear correlation between the variables (Soper et al., 1915). 

Spearman correlation coefficient 

The Spearman correlation coefficient measures the strength and direction of a monotonic 

relationship between two variables. Its value ranges from -1 to 1. A value of 0 indicates no 

correlation between the variables. Values of -1 or 1 indicate a perfect negative or positive 

correlation, respectively (Spearman, 1904). 

3.1.3.2 Principal component analysis (PCA) 

The principal component analysis is a statistical dimension reduction tool. The method 

transforms a set of possibly correlated variables into uncorrelated principal components (PCs). It 
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identifies a new set of orthogonal axes in the direction of the highest variance of the data. Each of 

the axes, which is a linear combination of original axes, represents a PC. Principal components are 

assigned in ordinal format, with the first PC explaining the highest percentage of the variance and 

the last PC the least. The PCs with the lower ranks are generally not considered in further analysis 

reducing the number of dimensions while preserving much of the original variance (Hotelling, 

1933). 

3.1.3.3 Machine learning techniques 

Multivariate adaptive regression splines (MARS) models are nonparametric statistical 

models that consist of a linear summation of basis functions (Friedman, 1991). In general, basis 

functions are either a constant, a hinge function, or the product of two or more hinge functions. 

For the MARS models trained in this study, the Sci-Kit Learn pyEarth software package was used 

(Pedregosa et al., 2011). Detailed information on MARS models and the other machine learning 

techniques described in this section are provided in Chapter 2. 

Random forests (RFs) are a machine learning method that utilizes a set of decision trees 

for predicting an output based on input data. Each tree is built independently based on a random 

subspace of the training data. The final output of a random forest model is determined by averaging 

the output value of every tree in the forest (Breiman, 2001). The features are selected according to 

the importance level calculated by the random forest model. The importance level is based on the 

impact of a feature on improving the separation of the data in each decision node of the tree. For 

the RF models trained in this study, the Sci-Kit Learn RandomForestRegressor software package 

was used to train forests with 5 trees (Pedregosa et al., 2011). 

Gaussian process regression (GPR) is a nonparametric machine learning method where the 

prediction of the output corresponding to an unknown input is calculated based on a weighted 
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average of outputs for known inputs using a similarity metric: the kernel function (Rasmussen and 

Williams, 2005). The kernel function used for all GPR models in this paper is a radial basis 

function. 

GPR can be used for feature selection with its built-in automatic relevance determination 

(ARD) method. Further sensitivity analysis (Eq. (4)) on the ARD results (Blix and Eltoft, 2018) 

provides an even greater separation of the features for selection. For the GPR models trained in 

this study, the Sci-Kit Learn GaussianProcessRegressor software package was used (Pedregosa et 

al., 2011). 

3.2 Cardiomyocyte Content Classification 

A binary process classification based on the CM content (%) at process endpoint (dd10) 

was applied, and the two classes defined were: “sufficient” for CM content equal to and above 

90%, and "insufficient" for CM content below 90%. A binary classification model was chosen 

after an initial analysis with a multiclass model revealed that the available bioprocess data was not 

rich enough to train a multiclass model at this time.  

To enable CM content prediction based on early process data, two regression models using 

MARS and GPR were built, and the data points were assigned to their classes (i.e., sufficient or 

insufficient) based on this predicted CM content value. For RFs, the classification is conducted 

directly using the classifier models constructed by the RF. 

To evaluate and compare the performances of the classification models, four metrics were 

considered: accuracy, precision, recall, and the Matthews correlation coefficient (MCC). The range 

for the first three metrics is zero to one, and MCC is between -1 and 1. These metrics are calculated 

based on the confusion matrix (Sokolova and Lapalme, 2009), which is illustrated in Fig. 3.2. The 
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confusion matrix describes the performance of a classification model (algorithm). In this section, 

we assign the insufficient CM content class as the positive class and the sufficient class as the 

negative one. The error of the predictions is broken down for each class using the confusion matrix. 

The four cells of the confusion matrix correspond to true positive, false negative, false positive, 

and true negative. The values associated with each of the components give information about how 

many of the positive/negative classification results were correctly predicted by the model. 

 

Figure 3.2 - Classification confusion matrix (TP = True Positive, FP = False Positive, TN = True 

Negative, FN = False Negative) 

3.2.1 Classification model performance metrics 

Accuracy: Accuracy calculates the proportion of correct classifications (Sokolova & Lapalme, 

2009). According to Eq. (3.3), accuracy is the number of all true positives and negatives compared 

to all prediction results. Accuracy of one indicates that the classification has been conducted 

accurately and that all the points with sufficient or insufficient CM content have been included in 

the right class (𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 = 0). Zero accuracy defines a totally wrong classification model, which 

is not able to predict the label of the points correctly. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴𝑦𝑦 =  
(𝑇𝑇𝐹𝐹 + 𝑇𝑇𝐹𝐹)

(𝑇𝑇𝐹𝐹 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹) (3.3) 
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Precision: Precision (Eq. (3.4)) gives information about the proportion of the times the points 

identified as positive were truly positive (Sokolova & Lapalme, 2009). Precision of one means that 

all the positive results are actually positive outcomes. When a classifier model with precision of 

one predicts insufficient CM content for a point, it is supposed to have insufficient CM content in 

practice. Value of zero for precision indicates that all the identified positive outcomes are false. 

𝐹𝐹𝑟𝑟𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝐹𝐹

(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)
 (3.4) 

Recall: Recall, Eq. (3.5), is the proportion of actual positive results which were identified as 

positives (Sokolova & Lapalme, 2009). The value of one for recall demonstrated that the model is 

able to classify all the actual positive results as positive. In CM content case, all the insufficient 

points would be identified as insufficient using a model with recall equal to one. When all the 

positive classes are falsely identified negative, the value of recall equals zero.  

𝑅𝑅𝑒𝑒𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒 =  
𝑇𝑇𝐹𝐹

(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)
 (3.5) 

Matthews's correlation coefficient (MCC): Matthews's correlation coefficient (Eq. (3.6)) defines the 

correlation between the predicted and actual classifications for all data points (Matthews, 1975). 

Value of one for MCC means there is a strong correlation between the predicted results and the 

actual values, indicating that the predicted label is correct for all the points. Value of -1 for MCC 

metric demonstrates a strong inverse correlation. Value of zero for MCC corresponds to no 

correlation between the predicted and actual results.  

𝑀𝑀𝑀𝑀𝑀𝑀 =  
(𝑇𝑇𝐹𝐹 × 𝑇𝑇𝐹𝐹) − (𝐹𝐹𝐹𝐹 × 𝐹𝐹𝐹𝐹)

�(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹)
 

(3.6) 
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The classification model performance metrics, accuracy, precision, recall, and MCC, were 

calculated using two different cross-validation techniques: (1) leave one out (LOO) cross-

validation and (2) Monte Carlo (MC) cross-validation. Cross-validation is a tool for assessing how 

well a model can be generalized to new data, which the model has never seen. In MC cross-

validation, a set of data is selected randomly to be excluded for validation, and this data set is 

called the validation set. The model is built using the remaining data, and the model is used to 

predict the classes for the validation set (Burman, 1989). These predictions are used to calculate 

performance metrics. In LOO cross-validation, a single data point is set aside (i.e., left out) for 

validation. The model is built using the remaining data points, and a prediction is obtained for the 

data point that was left out. This process is repeated for each data point, resulting in a prediction 

for each. 

3.3 Results and Discussion 

3.3.1 Feature Selection Results 

Two different sets of features were considered for building the classification models. 

Feature Set 1 contained all potential bioprocess features measured through dd7. Feature Set 2 

contained all features measured through dd5. Feature selection was performed on each feature set 

separately to identify potential features for predicting CM content class on dd10. Classification 

models were then built using these potential feature sets. We employed PCA, and built-in 

capabilities of MARS, RFs, and GPR for feature selection. Feature selection resulted in eight 

potential feature sets for classifying the CM content on dd10. A visual summary of the feature 

selection results is provided in Fig. 3.3. 

PCA yielded five principal components (FS1-PCA) that explained 94% of the variance in 

the input data for Feature Set 1 (Fig. 3.3A) and yielded four principal components (FS2-PCA) that 
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explained 94% of the variance for Feature Set 2 (Fig. 3.3B). None of the principal components or 

bioprocess features strongly correlated with the CM content. The strongest linear correlation 

between a feature and the CM content was -0.51, and that feature was the time that the 

differentiation media was supplemented with WNT inhibitor IWP2. This lack of correlation 

indicates that none of the individual bioprocess features alone suffices to make a prediction on the 

CM content and that other means, such as machine learning techniques, are necessary to 

investigate the relationship.  

The number of features selected by each machine learning technique is provided in Fig. 

3.3. Common features that were selected as significant include the cell densities and their gradients 

during the first two days of the differentiation protocol (dd0 and dd1). This selection agrees with 

previous experimental studies concluding that cell density during early differentiation influences 

differentiation into specific cell lineages (Kempf, Olmer, et al., 2016). A list of features selected 

by each method is available in Appendix A in Table A1. 
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Figure 3.3 - Feature selection results for (A) FS1 and (B) FS2 

3.3.2 Classification Model Results 

Classification models were constructed for predicting the outcome of the bioreactor 

experiments on dd10 using features measured up to dd7 and up to dd5, using each of the machine 

learning techniques described in Section 3.1.3.3. The models were built using the bioprocess 
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features selected from Feature Set 1 (for predicting using features measured until dd7) and Feature 

Set 2 (for predicting using features measured until dd5). Results for classification model 

performance for each of the eight feature sets from the feature selection are summarized in Tables 

3.1 and 3.2. Results were obtained using LOO cross-validation and are presented for both the 

bioprocess features selected by the built-in feature selection for each model, as well as for the PCs 

obtained from PCA. Both feature sets contained 42 data points chosen from the original set of 58 

experiments for training. A visual summary of the results for each classification method with its 

associated feature sets is depicted in Fig. 3.4.  

 

Figure 3.4 - Classification results were based on four metrics including accuracy, precision, 

recall, and MCC for selected features of FS1 and FS2. For accuracy, precision, and recall the 

values are categorized as follows: (---) for values < 0.3, (--) for 0.3 ≤ values < 0.6, (-) for 0.6 ≤ 

values < 0.7, (+) for 0.7 ≤ values < 0.8, (++) for 0.8 ≤ values < 0.9, and (+++) for value ≥ 0.9. 

Moreover, for the MCC metric, the categorization was done as: (---) for values < 0, (--) for 0 ≤ 

values < 0.1, (-) for 0.1 ≤ values < 0.3, (+) for 0.3 ≤ values < 0.7, (++) for 0.7 ≤ values < 0.9, and 

(+++) for value ≥ 0.9 
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For all of the feature sets generated from Feature Set 1, for all of the techniques 

investigated, classification using the model-selected features always had a better performance than 

the principal components from PCA. Only two classification model-feature set combinations 

achieved favorable results for all four of the performance metrics, which is illustrated in Fig. 3.4. 

RFs trained with feature set FS1-RF and GPR trained with FS1-GPR perform similarly for 

predicting if CM content will be insufficient for continuing the experiment. Both methods obtained 

accuracies of 90% and precisions around 90%, meaning that if a model predicts the CM content 

will be insufficient, there is a 90% probability that it is insufficient.  

Similar to those generated from Feature Set 1, the model-selected feature sets for Feature 

Set 2 resulted in a better performance than the PCs. This indicates that while the PCs successfully 

explain the variance in the data, they fail to accurately characterize the relationship between the 

features and the cardiomyocyte content. When only the features up to dd5 are considered, RFs 

most successfully predict if the CM content will be sufficient. The decrease in the performance of 

GPR models is possibly due to the removal of the dd7 average value of the DO concentration 

gradient. This dd7 feature was identified as relevant for predicting dd10 CM content using a GPR 

and could be an indicator of levels of cell metabolism. 
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Table 3.1. Classification model performance (calculated with LOO cross-validation) for models 

trained with features from Feature Set 1. 

 MARS RFs GPR 

 FS1-MARS FS1-PCA FS1-RF FS1-PCA FS1-GPR FS1-PCA 

Accuracy 0.74 0.64 0.90 0.74 0.90 0.67 

Precision 0.81 0.66 0.90 0.74 0.93 0.67 

Recall 0.93 0.96 0.96 0.93 0.93 1.0 

MCC 0.55 -0.11 0.78 0.36 0.79 0 

 

Table 3.2 -  Classification model performance (calculated with LOO cross-validation) for models 

trained with features from Feature Set 2. 

 MARS RFs GPR 

 FS2-MARS FS2-PCA FS2-RF FS2-PCA FS2-GPR FS2-PCA 

Accuracy 0.62 0.67 0.84 0.67 0.69 0.67 

Precision 0.68 0.68 0.82 0.73 0.70 0.67 

Recall 0.82 0.93 0.96 0.79 0.93 1.0 

MCC 0.04 0.11 0.62 0.22 0.23 0 

 

Table 3.3 contains examples of bioreactor experiments and the predictions for those 

experiments given by GPR models using FS1-GPR, as well as the values of the bioprocess features 

indicated by the GPR model to be relevant. For some of the experiments with different prediction 

types, the feature values are quite similar, for example, the “preculture time” of experiments 36 

and 28. However, for some experiments with the same prediction, the features have a wide range 
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of values, for example, the “dd2 cell density normalized DO gradient” of experiments 16 and 28. 

These disparities indicate that the individual features alone are not sufficient to determine what 

will make a good or bad prediction and that all the selected features need to be considered as a 

whole. 

Table 3.3 – Selected features from GPR-FS1 

 

For model selection purposes, the MCC gives the most important information about how 

the models perform, as it gives a measure of the correlation between the predicted and actual 

classes, similar to an R2 coefficient for a regression model. The other performance metrics should 

be assessed for their importance based on what the experimental goal of the bioprocess is. For 

example, if the differentiation process is being studied primarily for data collection and evaluating 

the outcomes, then maximizing the number of experimental datapoints being retained becomes 

more important, meaning that the precision of the model needs to be prioritized. However, for 

another application, such as an in vivo study, it would be more beneficial to stop unsuccessful 

experiments and start over, meaning that recall and accuracy of the model in identifying which 

experiments would not produce high CM contents would be prioritized. RF and GPR models were 
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confirmed to be the most predictive of the dd10 cardiomyocyte content because their MCC values 

(around 0.80) and their accuracy and precisions of about 90% were higher than the other models 

investigated. 

After testing how the models performed on the original dataset, their performance was 

evaluated using the test data. The test data consisted of data from the 16 processes that were not 

used for feature selection and model construction. The values of the selected features from those 

16 "control processes" were used as inputs to make predictions of the final CM classification 

employing the trained models, and those predictions were compared to the actual classifications 

from the process data. Since MARS had the worst performance for both feature sets, it was 

excluded from the analysis. The results are presented in Table 3.4. RFs and GPR had similar 

performance for the test data for feature set FS1-GPR, both with an accuracy of 89%, precision 

and recall near 90%, and MCC values of 0.72. However, for the sets selected from feature set 2, 

RFs outperformed GPR. The results obtained for the test data are comparable to those for the data 

the models were trained on with LOO cross-validation, indicating that the models accurately 

captured the relationship between the features and the CM content necessary to make the 

classifications while avoiding overfitting. 
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Table 3.4 – Model performance on test data 

 RFs GPR 

 FS1-RF FS2-RF FS1-GPR FS2-GPR 

Accuracy 0.89 0.83 0.89 0.72 

Precision 0.92 0.81 0.87 0.72 

Recall 0.92 1.0 1.0 1 

MCC 0.72 0.57 0.72 0.11 

 

The "IWP2 treatment time" feature was consistently chosen as having high importance for 

the prediction of the CM content. This feature describes the amount of time that the IWP2 molecule 

was allowed to remain in the bioreactor system, i.e., impact the differentiation process. However, 

this feature was only modulated for a fraction of the process runs and held constant at exactly 48 

hours for the rest. To evaluate if our models were able to classify the CM content without using 

that feature, an additional dataset was constructed. This data set was thus exclusively derived from 

the original set of 58 processes using only those process runs where the time of IWP2 presence 

was held constant at 48 hours, and the "IWP2 treatment time" feature was excluded in the analysis. 

Since RFs performed well for all the previously considered feature sets, the performance was only 

evaluated using this model. LOO cross-validation and Monte Carlo cross-validation were used to 

calculate the performance metrics. The Monte Carlo cross-validation used a test set size of 5 and 

40 Monte Carlo trials. The results are summarized in Table 3.5. It is thus worth highlighting that 
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when the IWP2 feature is removed, RFs still successfully predict insufficient CM content with 

comparable performances for both LOO and Monte Carlo cross-validation for all the feature sets. 

Table 3.5 - Model performance with constant IWP2 time. 

  FS1-RF FS2-RF 

 LOO Monte Carlo LOO Monte Carlo 

Accuracy 0.90 0.90 0.92 0.85 

Precision 0.91 0.90 0.91 0.86 

Recall 1.0 0.93 0.95 0.93 

MCC 0.90 0.82 0.84 0.75 

 

3.4 Conclusions and Future Work 

This chapter describes the construction of data-driven models for predicting the CM 

content on dd10 of hPSC differentiation processes, using existing data sets from bioreactor-based 

experiments. Using features up to dd7, we were able to identify if an experiment would have an 

insufficient final CM content of less than 90% with 90% accuracy and >90% precision with both 

RF and GPR models. Furthermore, we were able to identify if an experiment would have an 

insufficient final CM content on dd5 with 84% accuracy with a RF model. Through feature 

selection methods, these predictions used less than 16% of the collected data, potentially reducing 

the amount of resource-intense manual collection of data.  

Although these models can accurately and precisely predict final CM content, they do not 

provide any insight into the overall quantity of CMs produced or the resulting functionality and 

maturity of these cells. In addition, the prediction models were only constructed using a small set 

of data with limited ranges of all the features. However, the ability to model the outcome of 
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differentiation experiments at an early stage of differentiation, enables the timely interruption of 

failing experiments, providing savings in both time and resources.  

A trial-and-error method was utilized to select surrogate modeling techniques for building 

the classification models, which required training multiple models, incurring unnecessary time and 

computational expense. Although successful models were obtained, this work indicates that a 

systematic selection of models may provide a more efficient means of outcome prediction 

modeling. These systematic selection methods will be explored in the following chapters. 
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Chapter 4 - Comparison of Surrogate Modeling Techniques for Surface 

Approximation and Surrogate-Based Optimization 

The objectives of this work are to comprehensively investigate and compare the 

performance of several different surrogate modeling techniques for both approximating functional 

relationships and surrogate-based optimization and to link that performance to the characteristics 

of the data involved in the application. The results of this analysis are used to develop general 

"rules of thumb" for selecting an appropriate surrogate modeling technique based on the 

characteristics of the data being modeled and the desired application. Data sets for training 

surrogate models are generated from a suite of optimization test functions with different features, 

such as function shape and number of inputs. 

The specific data characteristics being investigated in this study are the shape of the 

underlying function being modeled, the number of input dimensions, the sampling method used to 

select sample points to be used in the model training, and the number of sample points. The 

surrogate modeling techniques considered include Automated Learning of Algebraic Models using 

Optimization (ALAMO), Artificial Neural Networks (ANN), Extreme Learning Machines (ELM), 

Gaussian Process Regression (GP), Multivariate Adaptive Regression Splines (MARS), Radial 

Basis Function Networks (RBFN), Random Forests (RF), and Support Vector Machine Regression 

(SVR). The following sections contain descriptions of the sampling methods used to select the 

training data sets and the test function sets. Then, the computational experiments and the results 

are presented, followed by conclusions and future directions. 

4.1 Test Functions 

The test functions used to generate data for constructing the surrogate models are from the 

Virtual Library of Simulation Experiments optimization test suite (Surjanovic & Bingham, 2013). 
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These test functions are benchmarking optimization problems presented in the form of analytic 

functions (Hussain et al., 2017). These test functions are used for analysis throughout the rest of 

the dissertation. Functions with two, four, six, eight, ten, fifteen, and twenty input dimensions were 

used in evaluations, resulting in a total of 127 test functions. The functions are divided by their 

shapes, which include the categories: multi-local minima with 39 functions, bowl-shaped with 41 

functions, plate-shaped with 11 functions, valley-shaped with 16 functions, and other-shaped with 

20 functions that do not fit into the other four categories. Example functions from each shape 

category are provided in Fig. 4.1.  

The shape categories are defined by multiple characteristics of the test functions, including 

modality, basins, and valleys, which describe the resulting surface. Modality refers to the number 

of peaks on the surface. Multimodal functions have many local solutions but one global one, 

making the global solution difficult to identify as algorithms may become trapped in local 

solutions. A basin is a relatively steep decline surrounding a large area. These basin regions can 

severely obstruct optimization algorithms due to a lack of information to direct the search toward 

the optimum (Jamil & Yang, 2013). A valley occurs when a narrow area of little change is 

surrounded by regions of steep descent. The progress of an optimization algorithm may be 

hampered significantly on the floor of the valley (Hussain et al., 2017).  
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Figure 4.1 - Shape categories for test functions 

The bowl-shaped functions are unimodal, convex surfaces that can represent applications 

where changes in inputs produce smooth, regular changes in output values. The multi-local minima 

functions are multimodal and nonconvex and more representative of real data applications with 

significant noise in the output. The plate-shaped functions contain large basin regions. The plate-

shape function may be representative of processes where several values of the process inputs or a 

large section of the design space give a constant value for outputs, creating difficulties with 

optimization searches. Valley-shaped functions have valleys, which may be applicable to processes 

where small changes in input values produce very large variations in output values. Both the plate- 

and valley-shaped categories contain unimodal and multimodal functions. The other-shaped 

functions contain combinations of the characteristics of the other categories and non-smooth 

functional behavior, which could encompass several processes where the shape of the output 

surface is not well-known. 

  

 

Bowl Plate Other 

    

Valley Multi Local Minima 
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4.2 Computation Experiments 

4.2.1 Surrogate Model Construction 

For evaluating the performances of surrogate modeling techniques, input-output pairs were 

generated from each test function using three different sampling methods at seven different sample 

sizes (50, 100, 400, 800, 1200, and 1600 samples). The sample sizes were chosen in order to give 

a range of values for the ratio of sample size to input dimension for each input dimension being 

studied. In general, a sample size to input dimension ratio of 10 is considered an adequate number 

of samples for most regression techniques (Harrell et al., 1984). Any ratio smaller than 10 can be 

considered to be a small sample size, with large sample sizes being any ratio of sample size to 

input dimension larger than 10. Surrogate models were trained using these pairs with each of the 

surrogate modeling techniques for each generated dataset. This process resulted in a total of 18,984 

trained models. Each of the techniques has unique hyperparameters that were optimized in training 

the models for each dataset to construct the best possible surrogate without overfitting the model. 

For the MARS models, the number of hinge functions that could be multiplied together was limited 

to two to avoid overfitting with higher-order hinge functions. The numbers of ANN, ELM, and 

RBFN nodes, as well as the number of trees in the RF models, were increased until the root mean 

squared error of a validation dataset stopped improving. For these models, the validation error was 

estimated using ten-fold cross-validation on the training set. The number of nodes (or trees) was 

increased until the average value of the last five validation errors either began to increase or 

changed by less than 1%. 

All of the surrogate modeling techniques except ALAMO and RBFN were implemented 

in Python with the Sci-Kit Learn library version 0.32.2 (Pedregosa et al., 2011). RBFN models 

were implemented with MATLAB 2017b, and ALAMO has its own software for model 
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construction (Cozad et al., 2014). All of the training options except for the ones discussed were set 

to the default values indicated by the implementation packages. The specific implementation 

package used for each technique is listed in Table 4.1. 

Table 4.1 – Software implementations for surrogate model training 

Surrogate Model Implementation 
MARS py-Earth 

RF Scikit-learn RandomForestRegressor 
ANN Scikit-learn MLPRegressor 
ELM Scikit-learn ELMRegressor 
GP Scikit-learn GaussianProcessRegressor 

SVM Scikit-learn SVR 
ALAMO ALAMO 

RBFN MATLAB newrb 
 

The three sampling methods used were Halton Sequence Sampling (Halton), Latin 

Hypercube Sampling (LHS), and Sobol Sequence Sampling (Sobol). LHS partitions the domain 

of each input variable into N subsets to be sampled from, where N is the number of sampling points 

(Mckay, 1992). Both Halton and Sobol sequence sampling are quasi-random, low discrepancy 

sequences that attempt to distribute the sampling points uniformly across the sample space (Halton 

& Smith, 1964; Joe & Kuo, 2008). These sampling methods were chosen because they have been 

shown to sample input space uniformly for functions up to ten dimensions (Diwekar, 2003; Garud 

et al., 2017a). 

4.2.2 Evaluation of Surface Approximation and Surrogate-Based Optimization Performance 

After the surrogate models were trained for each dataset, sample size, and sampling 

method, a densely sampled set of 100,000 input-output pairs were generated as test dataset for 

assessing the accuracy of the models. Because there was no significant difference between the 
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samples or results obtained from any of the sampling methods at this large size, only results for 

the dense set produced using Sobol sequence sampling are presented here. The root mean squared 

error, adjusted R2 value, and the maximum percent error were calculated for each dataset-surrogate 

model combination based on the difference between the outputs of the given function and the 

outputs predicted by the surrogate model.  

The global minimum of each test function was estimated using the trained surrogate 

models. The mathematical programs for estimating the minima were constructed in Pyomo 

(version 5.6) (Hart et al., 2017; Hart et al., 2011), a Python-based optimization language. The 

estimated minimum location and value are compared to the actual global minimum and value of 

each function for accuracy to provide some insight into the effectiveness of each surrogate 

modeling technique for surrogate-based optimization. Computations were carried out on the 

Auburn University Hopper HPC Cluster (Lenovo System X HPC Cluster) using Intel E5-2650 V3, 

2.3 GHz 20 core processors and implemented in Python 3.5 and MATLAB 2017b (for RBFN 

surrogate models). 

4.2.3 Surface Approximation Performance Metrics 

Two performance metrics were used for evaluating the surface approximation ability of the 

surrogate models: normalized root mean square error (nRMSE) and adjusted-R2. The adjusted-R2 

(Miles, 2014) takes into account both the surrogate model accuracy and the size, or complexity, of 

the model. Balancing the complexity of the model with the sample size is essential in ensuring that 

the model is not overfit, as overfit models do not generalize well to new conditions.  However, 

adjusted-R2 can unfairly penalize some of the surrogate models that are larger by nature of their 

structure, for example, Random Forests, which need to grow larger because of their decision tree 

framework. The nRMSE metric was chosen to assess how well the surrogates approximated the 
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test function without penalizing them for their size. The formula for (nRMSE) is given in Eq. (4.1). 

The nRMSE value for each dataset-surrogate model combination is normalized by the range of 

output values for easier comparison across datasets with a variety of ranges for output values. 

𝑃𝑃𝑅𝑅𝑀𝑀𝑛𝑛𝑛𝑛 = �∑ (𝑦𝑦�𝑛𝑛 − 𝑦𝑦𝑛𝑛)2𝑁𝑁
𝑛𝑛=1

𝐹𝐹
(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛)�  

(4.1) 

In Eq. (4.1), 𝑦𝑦𝑛𝑛 is the output for point 𝑃𝑃 for a dataset, 𝑦𝑦�𝑛𝑛 is the output predicted by a surrogate 

model for point 𝑃𝑃, 𝐹𝐹 is the total number of sample points in the dataset, and 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 are 

the maximum and minimum output values in a dataset, respectively.  

The formula for calculating adjusted-R2 (𝑅𝑅�2) is shown in Eq. (4.2). 

𝑅𝑅�2 = 1 − (1 − 𝑅𝑅2) �
𝐹𝐹 − 1

𝐹𝐹 − (𝑘𝑘 + 1)� (4.2) 

In Eq. (4.2), 𝑅𝑅2 is the R-squared regression coefficient, 𝐹𝐹 is the number of data points in the 

training set, and 𝑘𝑘 is the number of model parameters (or hyperparameters). 𝑅𝑅2 values typically 

fall between zero and one, with an 𝑅𝑅2 of one indicating a perfect fit. However, with the adjustment 

for model size, adjusted-R2 values can become negative.  The number of model hyperparameters, 

𝑘𝑘, was estimated as the number of nodes in the trained ANN, RBFN, and ELM models. For MARS 

models, 𝑘𝑘 was estimated as the total number of hinge functions. The 𝑘𝑘 for the ALAMO models 

was estimated as the number of nonlinear transformation terms in the final model. The 𝑘𝑘 for SVR 

models was estimated as the number of support vectors in the trained model. For GP models,  𝑘𝑘 

was estimated as the number of input dimensions, which corresponds to the number of 

hyperparameters that are fit for the length scale used in the radial basis function (the kernel function 

used in the GP models). For RF models, 𝑘𝑘 was estimated as the average number of decision 

threshold values per tree in the forest.  
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The nRMSE and adjusted-R2 metrics were calculated using the densely sampled 100,000 

point test sets generated using Sobol Sequence sampling. One-way analysis of variance (ANOVA) 

was applied to determine which dataset characteristics had a statistically significant effect on the 

surrogate model performance metrics at a 95% confidence level. 

4.2.4 Surrogate-Based Optimization Performance Metrics 

We define 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 as the Mahalanobis distance, 𝐷𝐷𝑀𝑀, (De Maesschalck et al., 2000) between 

the location of the global minimum of a test function, 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, and the location estimated using a 

trained surrogate model, 𝑥𝑥�𝑜𝑜𝑜𝑜𝑡𝑡. This value is normalized by the maximum Mahalanobis distance 

between any two points (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) in the dataset (Eq. 4.3), 

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 =
𝐷𝐷𝑀𝑀�𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, 𝑥𝑥�𝑜𝑜𝑜𝑜𝑡𝑡�
𝑚𝑚𝐴𝐴𝑥𝑥
𝑖𝑖,𝑗𝑗

𝐷𝐷𝑀𝑀�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�
 

(4.3) 

where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 are points in the domain space of the dataset. 

We define 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡, Eq. (4.4), as the normalized gap between the global minimum value and 

the estimated one. This value is normalized by the range of output values in the dataset. 

𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 =
𝑦𝑦𝑜𝑜𝑜𝑜𝑡𝑡 − 𝑦𝑦�𝑜𝑜𝑜𝑜𝑡𝑡
𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛

 
(4.4) 

In Eq. (4.4), 𝑦𝑦𝑜𝑜𝑜𝑜𝑡𝑡 is the actual global minimum value, 𝑦𝑦�𝑜𝑜𝑜𝑜𝑡𝑡 is the one calculated by the surrogate 

model, and 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑦𝑦𝑚𝑚𝑖𝑖𝑛𝑛 are the maximum and minimum output values in a dataset, respectively. 

4.3 Results and Discussion  

4.3.1 Effect of Sampling Method and Sample Size 

 The surface approximation performance for MARS models is shown in Fig. 4.2a as a 

function of both sample size and sampling method. The average value of the performance metrics 

for all 127 test functions is given as a function of the sample size for models trained with datasets 
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generated from each of the three sample methods tested. Similar to previous studies, the results 

here show a general trend of improving performance with the addition of more sample points for 

training the surrogate model. Surface approximation performance for all the surrogate modeling 

techniques showed a comparable behavior to that of the MARS models. The 90% confidence 

interval error bars for the sampling methods have some overlap at all of the sample sizes. From 

this result, there does not appear to be any significant difference in the surrogate modeling 

performance among the three sampling methods investigated. ANOVA analysis did not indicate 

any statistically significant difference in surface approximation performance for any of the 

surrogate modeling techniques with changing sampling methods (p > 0.05). The selection of the 

space-filling sampling method does not appear to have any effect on the approximation 

performance.  

 For surrogate-based optimization, only RF and RBFN models showed any statistically 

significant differences in the surrogate model performance among the three sampling methods. 

The other six surrogate modeling techniques’ performance was not significantly affected by the 

choice of the sampling method. The average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 value for RF and RBFN models as a function of 

the training set sample size is shown in Fig. 4.2b and Fig. 4.2c for Sobol, Halton, and LHS 

sampling. For RF models (Fig. 4.2b), the 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 values for models trained with Sobol sequence 

sampling data tend to be in general lower than those of models trained with data generated from 

the other two sampling methods, meaning that the optimum locations predicted by RF models 

trained with Sobol samples are on average closer than those given by other sampling methods. 

ANOVA analysis further confirmed that the models trained using Sobol sequence samples had 

statistically significantly lower values for 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 at each of the sample sizes investigated. The models 

trained using Sobol sequence samples also had statistically lower values of 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 for RBFN models 
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(Fig. 4.2c) at a sample size of 50 (p = 0.002). These results indicate that while the sampling method 

does not affect surface approximation performance, for some surrogate modeling techniques, the 

choice of sampling method can have a substantial impact on the performance of the model for 

surrogate-based optimization, especially at lower sample sizes.
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Figure 4.2 - (a) MARS performance for different sampling methods as a function of sample size for average 
nRMSE on all 127 test functions. (b) Average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡vs. sample size for RF models. (c) Average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡vs. sample 

size for RBFN models. Error bars represent 90% confidence intervals on the averages. 
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4.3.2 Comparison of surrogate modeling technique performance for surface approximation 

 There was no significant difference in the surface approximation performance of the 

surrogate models trained using the sample points generated using Sobol and Halton sequences and 

LHS. Therefore, results presented in this section only include surrogate models trained with 

datasets generated via Sobol sequence sampling. Results are presented in this section for three 

selected sample sizes. The surface approximation performance metric results are presented in 

violin plot format. The shape of each violin represents the probability density distribution of the 

data values. The top and bottom of the violin represent minimum and maximum values, with the 

black bar within each violin representing the interquartile range of the values. Median values are 

indicated on each violin by a white circle. 

4.3.4 Selection of Surrogate Modeling Technique for Surface Approximation by Adjusted-R2 

Results obtained based on the adjusted-R2 are summarized in Fig. 4.3. The adjusted-R2 was 

used to take into account the model size and complexity in addition to its accuracy (Miles, 2014). 

This metric can be used to select a “best” model to use for approximation while controlling for 

overfitting by selecting the technique that provides the highest value of adjusted-R2. Adjusted-R2 

values were calculated for all the trained surrogate models for each dataset. For each dataset 

category (either input dimension or shape), the number of times each surrogate modeling technique 

was selected as best (had the highest adjusted-R2) was tabulated for the datasets in that category. 

These tabulated values were divided by the total number of datasets in the category to calculate 

the fraction of datasets for which each surrogate modeling technique was selected as best 

performing. The number of datasets included in each category is given below the x-axis for Fig. 

4.3. 
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Figure 4.3 shows which surrogate modeling techniques are selected most frequently when 

the datasets are grouped by their input dimension and function shape. Although at the smallest 

sample size tested, RBFN models give the highest adjusted-R2 more frequently at the higher input 

dimensions, ALAMO provides the highest adjusted-R2, and thus the closest approximation, the 

highest percentage of the time at low input dimension. The superior approximation performance 

of RBFN models is not observed at higher sample sizes when considering selecting the “best” 

model by the adjusted-R2. In general, ALAMO provides the most robust performance for yielding 

the highest adjusted-R2. However, as the dimension and sample size increase, GP and MARS 

models begin to perform as well or better than ALAMO models.  

At the largest sample size (Fig. 4.3b), GP and MARS models demonstrate opposite trends 

with increasing input dimension until eight inputs. The selection frequency of GP models as having 

the highest adjusted-R2 (Fig. 4.5b) deteriorates while that of MARS improves. At input dimensions 

higher than eight, both GP and MARS models have decreasing selection frequencies. GP models 

use interpolation between the given training points to estimate outputs at new input conditions. As 

the number of input dimensions increases, GP models require a higher number of training points 

to more accurately capture a surface’s behavior in a region for interpolating to new conditions. 

This may explain why MARS models begin to outperform GP models at higher dimensions, as the 

hinge functions of the MARS models are not dependent on interpolation. 

Figs. 4.3c and 4.3d show which surrogate modeling techniques are selected most frequently 

when the datasets are grouped by function shape. When the datasets are grouped by the function 

shape, different techniques yield the best adjusted-R2 values at different sample sizes. For bowl 

and multi-local minima shaped functions, MARS and ALAMO models give the highest values for 

the largest percentage of the datasets at smaller sample sizes. The hinge functions of the MARS 
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models and the several available nonlinear transformations of ALAMO models may make them 

particularly suitable for mimicking the convex behavior of the bowl-shaped functions and for 

approximating the somewhat “noisy” surface of the multi-local minima functions. When the 

sample size grows, GP models also begin to perform well for multi-local minima functions as they 

gain more information for more accurate interpolations. When the sample size grows, GP models 

also begin to perform well for multi-local minima functions. Also, GP models are selected the most 

frequently at all sample sizes for the other functions, which do not fit into any of the other four 

defined shape categories. ANN models provide the best models for plate-shaped functions with 

smaller samples but are outperformed as sample size increases. The model selection for valley 

functions is spread fairly evenly among a few modeling techniques, which may suggest that 

additional characteristics should be considered when selecting a surrogate model for a similar 

dataset. 

RF models did not perform the best for any of the datasets considered. SVR performed best 

for very few, indicating that if adjusted-R2 is the performance metric of interest, these models may 

not be suitable choices. These results indicate that there is some dependence of the surrogate model 

surface approximation performance on the overall shape of the function the dataset was generated 

from, the input dimension, and the sample size, especially when all these factors are considered 

together.  
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Figure 4.3 - Percentage of datasets grouped by input dimension for which each surrogate modeling technique had the highest 
adjusted-R2 for sample sizes: (a) 50 and (b) 1600. Percentage of datasets grouped function shape for which each surrogate modeling 

technique had the highest adjusted-R2 for sample sizes: (c) 50 and (d) 1600. 
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4.3.5 Effect of Underlying Function Input Dimension and Function Shape on Surface 

Approximation Performance 

Results obtained for the effect of input dimension of the test function (and resulting training 

dataset) on the nRMSE and adjusted-R2 for each surrogate modeling technique at a sample size of 

50 are summarized in Fig. 4.4. RBFN and MARS models have better performance than the other 

techniques at the smaller sample sizes tested. Although many of the techniques appear to perform 

comparably for approximation based on their nRMSEs, the performance metric values deteriorate 

when adjusted for the model size with the adjusted-R2. This indicates that while many of the 

techniques can capture the general surface of the test functions at small sample sizes, they do so at 

the expense of overfitting. This overfitting trend is particularly apparent for ELM and ANN 

models, for example. With increasing sample sizes, the adjusted-R2 values and nRMSE follow 

similar trends, as increased sample sizes allow for larger models that can still avoid overfitting.  

The results for adjusted-R2 are summarized for sample sizes of 400 and 1600 in Fig. 4.5. 

In general, at these larger sample sizes, MARS models perform the most robustly with respect to 

the input dimensions. ANOVA analysis confirms this robust behavior with respect to dimensions 

for MARS models, revealing no significant difference between the nRMSE values of each 

dimension (p = 0.43). MARS and GP models at lower input dimensions yield higher values, close 

to one, of adjusted-R2. However, the GP model performance worsens as the dimension increases, 

which matches the trend from the results for model selection (Fig. 4.3b), illustrating the 

dependence of model performance on dimension. The robust performance of MARS models may 

be due to their effective partitioning of the design space with the hinge functions and the accurate 

modeling of nonlinearities in these partitions by the products of hinge functions. Input dimension 

has different levels of effects on the surrogate modeling technique performance at larger sample 
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sizes. RF and RBFN model performance becomes progressively worse with increasing 

dimensions, while ALAMO model performance does not change much at different input 

dimensions. ALAMO’s robust approximation performance with respect to input dimension may 

be due to its ability to perform multiple nonlinear transformations for each input dimension 

separately. 

While the selection of a modeling form by adjusted-R2 can be useful, selecting a single 

surrogate model as the best for a dataset may be misleading, as multiple models may perform 

almost identically for the same dataset. For example, although ALAMO models are selected most 

frequently as best for bowl-shaped test functions (Fig. 4.3c and Fig. 4.3d), MARS and GP models 

are selected most frequently as second-best when ALAMO models are the best performing. 

However, statistical analysis revealed that, on average, MARS models give higher adjusted-R2 

values than ALAMO for bowl-shaped functions, and GP model performance was not significantly 

different from that of ALAMO (at a significant level of 0.05). Furthermore, ANN models were 

selected as best (with the highest adjusted-R2) for plate-shaped functions most frequently (Fig. 3b 

and Fig. 3c), but their adjusted-R2 values (Fig. 4.5b) were only significantly different from RF, 

SVR, and ELM models for that shape category. Based on these results, multiple surrogate 

modeling techniques can be successfully applied to a dataset to produce similarly accurate 

approximations, and one may not need to rely on a single best choice.
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Figure 4.4 - (a) nRMSE and (b) adjusted-R2 for datasets grouped by underlying function dimension 
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Figure 4.5 - Adjusted-R2 for models trained with sample sizes of (a) 400 and (b) 1600  
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 Results for the effects of the underlying function shape on the performance of the surrogate 

models for surface approximation are summarized in Fig. 4.6. All of the surrogate models had poor 

approximation performance and a high level of overfitting, indicated by negative adjusted-R2 

values, with respect to the function shape at sample sizes less than 200. Therefore, adjusted-R2 

results for sample sizes of 400 and 1600 are presented. GP and MARS models provide the most 

robust performance when considering the test function shape, though none of the techniques 

perform well overall for the test functions with multi-local minima shape.  

The function shape does have an impact on the surrogate models’ performance for some of 

the other techniques. Although overall, GP and MARS models give significantly lower values of 

nRMSE than the other techniques (p < 0.05), when considering only bowl-shaped functions, 

ALAMO models provided the lowest nRMSE values and best performance (p < 0.05). In addition, 

while ELMs have poor performance in general for bowl and valley-shaped functions, they perform 

very well in approximating plate-shaped functions, with adjusted-R2 values close to one. Both 

ANN and ELM models demonstrate improved performance for plate-shaped functions in 

comparison to the other shape categories. The on-or-off nature of the nodes and activation 

functions in these model types may make them especially suitable to approximate the flat or nearly 

so portions of the plate-shaped surfaces. Results for surface approximation suggest that for datasets 

where specific characteristics are not available, a MARS or GP model would be appropriate to 

select as a general guideline. However, if characteristics are available, other models might provide 

a better approximation. 
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Figure 4.6 - Adjusted R2 for models trained with sample sizes of (a) 400 and (b) 1600 group by 

underlying function shape. N values below the function dimensions indicate the number of test 

functions used for each shape category 
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4.3.6 Comparison of surrogate modeling technique performance for surrogate-based optimization 

The computational experiments for surrogate-based optimization were executed by using 

each surrogate model to estimate the minimum of each function and the location of the minimum. 

Then, these results were compared to the global minimum and its true location using two metrics, 

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 (Eq. 4.3) and 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 (Eq. 4.4). Results are summarized in Figs. 4.7, 4.8 and 4.9, where we 

define a model as having located the optimum when it obtains a 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 or 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 value less than a 

threshold. The thresholds for 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 and 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 are 5% and 0.01%, respectively. Threshold for 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 

was selected in terms of how close the estimate needed to be to still get a reasonable estimate of 

the optimum value with the predicted location (within 1% error of the output range) and to also 

yield a reasonable separation in the performance of models. The 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 threshold was selected using 

1% of the output range as a measure of a good model fit.  

Figure 4.7 shows the results for how well the surrogate models locate the global minimum 

of each test function when they are grouped by the function dimension for sample sizes of 50 (Fig. 

4.7a) and 400 (Fig. 4.7b). Surrogate-based optimization performance with respect to underlying 

function shape did not differ significantly with sample size, so only results for 1600 samples are 

presented here (Figs. 4.8 and 4.9). RF and SVR models, in general, locate the minima for the 

highest fraction of the datasets when datasets are grouped by both shape (Fig. 4.9a) and input 

dimension (Fig. 4.8a). ANOVA analysis on the mean 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 of those two techniques versus that of 

the others indicates that the locations given by SVR and RF values are significantly lower (p < 

0.05). Contrastingly, both techniques had some of the worst performances for approximating the 

design space, with higher values for nRMSE and lower values of adjusted-R2.  

While the RF models perform well in capturing the overall curvature of the underlying 

function in each dataset, they perform poorly for predicting the actual output values. This may be 
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due to their utilization of decision trees. The “rules” of the decision trees that determine movement 

between nodes provide less accurate, more noisy predictions for outputs but may be effective in 

dividing the domain of the dataset in a way that allows the solver to pinpoint the location of the 

minimum accurately. The support vectors in SVR models may serve a similar function to the 

decision tree rules in RF models. GP models perform most robustly in estimating the actual global 

minima values, in general, with respect to both shape and dimension, which may be related to their 

ability to approximate the surfaces for the datasets accurately.  

Both function input dimension and function shape impacted the surrogate models’ 

estimation of optimum values. While ANN models only identify the optimum value for about 25% 

of the bowl-shaped test functions (Fig. 4.9b), they can identify close to 80% of the optimum values 

for the plate-shaped functions. On the other hand, ALAMO models can identify optimum values 

much more accurately for bowl-shaped functions than for plate-shaped ones.  The optimum value 

estimation seems to be more closely linked to the approximation performance than is the 

estimation of the optimum location, as ALAMO models were more accurate in approximating 

bowl-shaped functions and ANN models were more accurate for plate-shaped ones. At the higher 

input dimensions of 10 and 15, the optimization problems of the many surrogate models were not 

solved to 0.001% optimality gap within 48 hours (wall time). Specifically, none of the optimization 

problems for GP, ELM or RBFN models and very few of the SVR and ANN models could be 

solved within the allotted computational time. In contrast, the optimization problems constructed 

using RF, MARS, and ALAMO models were solved to optimality within 72 hours (wall time) for 

all test functions at high input dimensions. Therefore, our computational test results recommend 

using only those three techniques for surrogate-based optimization at input dimensions higher than 
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10. A summary of these findings for surrogate-based optimization, as well as those for surface 

approximation, is provided in Table 4.2.
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Table 4.2 - Summary of findings for surrogate modeling technique performance 

Model Advantages Disadvantages 

ALAMO -Accurate for approximation and optimization of convex 

(“bowl”-shaped functions) 

-Relatively short optimization solution times 

 

ANN -Accurate approximation and optimization of plate-

shaped functions 

-Requires a relatively large number of samples for 

approximating several function types accurately 

-High computational time for optimization solutions, 

particularly at high input dimension 

ELM -Accurate approximation of plate-shaped functions 

-Relatively short model training times 

-Requires a relatively large number of samples for 

approximating several function types accurately 

-High computational time for optimization solutions, 

particularly at high input dimension 

GP -Accurate approximation of several function types -High computational time for optimization solutions, 

particularly at high input dimension 

-High model training times 
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MARS -Accurate approximation of several function types 

-Optimization problems remain tractable, even at high 

input dimension 

-Not as accurate for optimization of test functions 

RBFN -More accurate than other techniques for optimization at 

smaller sample sizes 

-High computational time for optimization solutions, 

particularly at high input dimension 

RF -MILP structure of optimization problem provides 

accurate optimization solutions with relatively low 

solution times 

-Less accurate than other techniques for approximation 

surfaces in general 

SVR -Relatively short model training times 

-Accurate optimization of several function types, 

particularly at small sample sizes 

-Less accurate than other techniques for approximation 

surfaces in general 

-High computational time for optimization solutions, 

particularly at high input dimension 
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4.3.7 Computational Efficiency of Solving the Resulting Optimization Problems 

The solvers used for optimization are provided in Table 4.3. For each modeling technique, 

the selected solver was the most appropriate for the resulting optimization model (Table 4.3). The 

average computational times required for solving the optimization problems to estimate the global 

minima of the test functions for each surrogate modeling technique are also included in Table 4.3. 

The average solution times reported in Table 4.3 are for the optimization problems that were solved 

to optimality within 48 hours. The solution time is dependent on final model size and structure, 

with larger, more complex models taking a much longer time to solve than linear models or models 

with fewer parameters.  

GP models have the highest average solution times because the radial basis kernel function 

used and the interpolation of the model based on the training data points result in a large, highly 

nonlinear optimization model. The high degree of nonlinearity and number of parameters in the 

optimization problems of ANN, ELM, RBFN, and SVR models also presented difficulties, with a 

large proportion of the problems not being solved within 48 hours (wall time). The range of 

optimality gaps for the models that did not reach a gap of 0.001% within the set time limit were 

1% - 10% for ANN, 0.5% - 14% for ELM, 0.009% - 1x107 % for GP, 4% - 1x103 % for RBFN, 

and 0.14% to 195% for SVR. 

Although they are some of the more accurate models for locating optima and the resulting 

optimization models do not, in general, become computationally intractable, the optimization 

problems of RF models have the highest average value for the solution time. The solution time for 

RF-based optimization problems may be reduced by developing specialized algorithms that exploit 

the special structure of RF model MILPs as RF models were successful in pinpointing the location 
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of the minimum. While MARS models had relatively low optimization solution times, the 

solutions given by MARS models were less accurate than those of other methods. 

 

Table 4.3 - Solvers and solution times for surrogate-based optimization (NLP = Non-linear 

program, MINLP = Mixed integer non-linear program, MILP = Mixed integer linear program). 

Surrogate 

Model 

Resulting 

Optimization 

Model 

Solver 
Average Solution 

Time (min) 

ALAMO NLP BARON 4.4 

ANN NLP BARON 664 

ELM NLP BARON 9.4 

GP NLP BARON 2169 

MARS MINLP ANTIGONE 7.9 

RBFN NLP BARON 33 

RF MILP CPLEX 27 

SVR NLP BARON 288 

 



 82 

 

 
Figure 4.7 - Fraction of datasets with 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 less than 5% grouped by input dimension for sample size (a) 50 and (b) 400 
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Figure 4.8 - Fraction of datasets with (a) 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 and (b) 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 less than threshold grouped by input dimension for sample size of 1600 
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Figure 4.9 - Fraction of datasets with (a) 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 and (b) 𝐺𝐺𝑜𝑜𝑜𝑜𝑡𝑡 less than threshold grouped by 

function shape for sample size of 1600. N values below the function dimensions indicate the 

number of test functions used for that input dimension 
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4.3.8 Functions for Which None of the Surrogate Modeling Techniques were Accurate 

 For both the surface approximation and surrogate-based optimization applications, there 

were some test functions for which none of the surrogate modeling techniques investigated were 

able to achieve accurate estimates, even at the largest sample size. The two-dimensional 

projections of the three functions that none of the surrogate modeling techniques were able to fit 

with an adjusted-R2 of at least 0.90 are shown in Fig. 4.10(a) – (c). These functions all come from 

the multi-local minima shape category. The frequency of these functions’ peaks may make the 

surfaces too noisy for approximating with any of the techniques, and other modeling approaches 

may be necessary to get an accurate approximation.  

The two-dimensional projections of a selection of the functions that none of the surrogate 

modeling techniques located the optimum within a 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 value of 5% are shown in Fig. 4.10(d) – 

(f). There were seven of these functions. When compared to the rest of the test functions, these 

seven had a range of output values that were several orders of magnitude higher, which may have 

given the solvers used difficulty in locating the optimum point. Most came from the plate and 

valley-shaped function categories. The large flat segments of these surfaces could have caused 

difficulty in locating the optimums, causing the solvers to get trapped in them. There was no 

overlap between the functions that were not modeled accurately for approximation and the 

functions whose optimum locations could not be found, further indicating that selection of a 

surrogate model for the two different applications may be unrelated. Although there were some 

common characteristics for the functions that could not be adequately modeled using these 

approaches, further work is needed on the specific characteristics of a dataset that may make it an 

inappropriate candidate for these traditional surrogate modeling methods. 
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Figure 4.10 - Functions that could not be approximated by any of the surrogate models (a) – (c) 

or for which the optimum could not be located (d) – (f). (a) Eggholder function (multi local 

minima-shaped) (b) Rastrigin Function (multi local minima-shaped) (c) Ackley function (multi 

local minima-shaped) (d) Perm function (bowl-shaped) (e) Rosenbrock function (valley-shaped) 

(f) Zakharov function (plate-shaped) 

4.4 Conclusions and Future Directions 

The selection of the appropriate surrogate modeling technique depends on both the desired 

application of the surrogate model and the characteristics of the dataset being modeled. Although 

surface approximation using surrogate models is not significantly impacted by the choice of space-

filling sampling method, the quality of solutions obtained from surrogate-based optimization can 

be dependent upon the sampling method, particularly at small sample sizes. For general selection 

rules, MARS and GP models give the most accurate predictions for design space approximation, 

and RF, SVR, and GP models give the most accurate estimations for surrogate-based optimization. 
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The main limitation of this study is that the analysis was carried out only on relatively 

smooth functions (with the exception of a few) with only continuous outputs. The results may not 

be applicable to more noisy data or to data that has binary or integer inputs and/or outputs. In 

addition, the “shape” data characteristic is not one that can readily be applied to other data in 

determining which surrogate modeling technique might be the most appropriate. Next chapter of 

this dissertation focuses on developing specific, quantifiable data characteristics related to the 

shape that can be calculated based only on available inputs and outputs and capturing the overall 

data behavior to make the recommendations for surrogate modeling selection more generalizable 

to other data. 
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Chapter 5 – Development of PRESTO (Predictive REcommendation of 

Surrogate models to approximate and Optimize) 

Various techniques have been developed for constructing surrogate models for both 

regression and classification tasks (Breiman, 2001; Cozad et al., 2014; Drucker et al., 2002; 

Rasmussen & Williams, 2005). The current common practice for choosing a model form from the 

many available techniques relies on process-specific expertise or expensive trial-and-error 

methods. When selecting a surrogate model with user expertise, only a small subset of the many 

possible techniques that the user is most familiar with may be considered as candidates. This 

selection method, as well as trial and error, which is limited by computational resources, may fail 

to exploit the large pool of surrogate modeling techniques available and lead to a sub-optimal 

model selection. A systematic, automated procedure for selecting the appropriate surrogate model 

for a given application would avoid this issue.  

 This work aims to develop a framework to automatically select the set of surrogate models 

that will perform the best for a particular set of data based on the characteristics of the data and 

the application that the surrogate model would be used for. Our work comparing surrogate model 

performance demonstrated that there is a link between the characteristics of the dataset and how 

well different surrogate modeling techniques will perform for it for both surface approximation 

and surrogate-based optimization (Williams & Cremaschi, 2021b). To achieve this aim, we 

developed PRESTO (Predictive REcommendation of Surrogate models to approximate and 

Optimize), a random forest-based surrogate model selection tool. Given a set of data, PRESTO 

classifies each surrogate modeling technique in a set of candidate models as either recommended 

or not recommended based on the application, surface approximation or surrogate-based 
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optimization. The set of candidate surrogate modeling techniques considered by PRESTO includes 

Automated Learning of Algebraic Models using Optimization (ALAMO), single hidden layer 

feed-forward Artificial Neural Networks (ANN), Extreme Learning Machines (ELM), Gaussian 

Process Regression (GPR), Multivariate Adaptive Regression Splines (MARS), Radial Basis 

Function Networks (RBFN), Random Forests (RF), and Support Vector Machine Regression 

(SVR). The tool provides these recommendations without training any of the models, avoiding 

much computational expense. 

5.1 PRESTO Construction Data and Surrogate Model Training 

Datasets were generated for training surrogate models from a suite of optimization test 

functions (Surjanovic & Bingham, 2013). The functions with two, four, six, eight, ten, fifteen, and 

twenty input dimensions were utilized, resulting in 127 test functions. The test functions are 

grouped by their underlying functional shape. In this analysis, we have considered five shape 

categories: bowl-shaped, plate-shaped, valley-shaped, multi-local-minima-shaped, and other-

shaped. Full descriptions of the characteristics of each shape category are provided in Williams 

and Cremaschi (2021). Input-output pairs were generated from each test function to create datasets 

at seven different sample sizes (50, 100, 400, 800, 1200, and 1600 samples) using Sobol sequence 

sampling (Joe & Kuo, 2008), a quasi-random low discrepancy sequence, and resulting in 791 

generated datasets. Detailed information on the choice of sample sizes and sampling methods is 

described in Section 4.2. 

A model was trained using each of the eight surrogate modeling techniques for each of the 

generated datasets, resulting in 6328 trained models. Each technique has a unique set of 

hyperparameters that was optimized while training the models for each dataset to construct the 

best possible surrogate model without overfitting. After the models were trained for each dataset 
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and sampling method, 100,000 input-output pairs were generated from the test functions using the 

Sobol sequence sampling method to test the accuracy of the surrogate models’ predictions. To 

evaluate the performance of the surrogate models for surrogate-based optimization, the 

optimization models to determine the global minimum of each trained surrogate model were 

constructed in Pyomo (version 5.6), a Python-based optimization language (Hart et al., 2017; Hart 

et al., 2011). The resulting optimization problems were solved with a global solver most 

appropriate for the form of the problem (MINLP, MILP, or NLP) (Williams & Cremaschi, 2021b). 

Computations were carried out on the Auburn University Hopper HPC Cluster (Lenovo System X 

HPC Cluster) using Intel E5-2650 V3, 2.3 GHz 20 core processors and implemented in Python 3.7 

and MATLAB 2017b (for RBFN surrogate models). 

5.2 Feature Engineering and Attribute Extraction for Training PRESTO 

 Attributes calculated based only on the input and output values of each dataset were used 

as inputs for PRESTO’s surrogate model recommendation classification. For surface 

approximation, the performance metric used to determine if a model would be considered 

recommended or not is the estimated adjusted R-squared for the model (Eq. 5.1). The adjustments 

used for each surrogate modeling technique are listed in Section 4.2. The performance metric used 

to make recommendations for surrogate-based optimization is the normalized Mahalanobis 

distance between the optimum point(s) estimated by the surrogate models and the actual optimum 

location of the underlying test function used to generate the model (Eq. 5.2). 

𝑅𝑅�2 = 1 − (1 − 𝑅𝑅2) �
𝐹𝐹 − 1

𝐹𝐹 − (𝑘𝑘 + 1)� (5.1) 

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 =
𝑀𝑀�𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, 𝑥𝑥�𝑜𝑜𝑜𝑜𝑡𝑡�
𝑚𝑚𝐴𝐴𝑥𝑥
𝑖𝑖,𝑗𝑗

𝑀𝑀�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�
 (5.2) 
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In Eq. (5.1), 𝑅𝑅2 is the R-squared regression coefficient, 𝐹𝐹 is the number of data points in 

the training set, and 𝑘𝑘 is the number of model parameters (or hyperparameters). In Eq. (5.2), 𝑥𝑥𝑖𝑖 

and 𝑥𝑥𝑗𝑗 are points in the domain space of the dataset, 𝑀𝑀 is the Mahalanobis distance (De 

Maesschalck et al., 2000) between the location of the global minimum of a test function, 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, and 

the location estimated using a trained surrogate model, 𝑥𝑥�𝑜𝑜𝑜𝑜𝑡𝑡. 𝑀𝑀 is normalized by the maximum 

Mahalanobis distance between any two points (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) in the dataset (Eq. 5.3). Mahalanobis 

distance is the distance between two points in multivariate space. This distance between two 

objects, 𝑥𝑥 and 𝑦𝑦, can be calculated as 

𝑀𝑀(𝑥𝑥,𝑦𝑦) = �(𝑥𝑥 − 𝑦𝑦)𝑇𝑇𝑀𝑀−1(𝑥𝑥 − 𝑦𝑦) (5.3) 

where 𝑀𝑀−1 is the sample covariance matrix. It has an advantage over Euclidean distance as it 

considers correlations in the dataset, and large scaling differences between the dimensions, 

because the distances are normalized with variance. The Mahalanobis distance is thus unitless and 

scale-invariant (De Maesschalck et al., 2000). 

The attributes are used to capture the overall behavior of the datasets using numeric 

measures. A total of 38 attributes were defined for the datasets. Twenty of the attributes were 

previously defined and described in detail in Garud et al. (2018). These include attributes related 

to estimated gradients and curvatures, attributes related to the distribution of the outputs (such as 

the first four moments of the output value distribution), and attributes related to the dataset’s 

extreme minimum and maximum values. 

An additional 18 new attributes are defined in this work. LEAPS2, the model selection 

framework described in (Garud et al., 2018), was only trained to select models for surface 

approximation. In addition, there were no attributes directly related to the distributions of the 
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inputs in the dataset. These additional attributes were constructed to include information about the 

arrangement of the inputs for the datasets and provide characteristics of the data that may have a 

larger effect on the optimization performance.  

5.2.1 Input Related Attributes 

In Eqs. (5.4) – (5.6), M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� is the Mahalanobis distance between any two points 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 in 

the domain space. Let 𝐷𝐷 be equal to the number of input dimensions in the dataset and 𝐹𝐹 be equal 

to the total number of data points. 

Minimum Mahalanobis distance: This is the minimum Mahalanobis distance between any two 

points in the input space (Eq. 5.4). 

𝑀𝑀𝑚𝑚𝑖𝑖𝑛𝑛 = min
𝑖𝑖,𝑗𝑗

M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� 
(5.4) 

Maximum Mahalanobis distance: This is the maximum Mahalanobis distance between any two 

points in the input space (Eq. 5.5). 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖,𝑗𝑗

M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� (5.5) 

Average Mahalanobis distance: This is the average Mahalanobis distance between any two 

points in the input space (Eq. 5.6). 

𝑀𝑀𝑚𝑚𝑎𝑎𝑔𝑔 =
1
𝐹𝐹2�M�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗� (5.6) 

 

Euclidean to Mahalanobis distance ratio: This ratio of the average pairwise Euclidean distance 

to the average Mahalanobis distance estimates the level of correlation, if any, between the dataset 

inputs and the magnitude of variance. When there is no correlation between the variables, the 

covariance matrix used to calculate the Mahalanobis distance becomes the identity covariance 
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matrix, and the Euclidean and Mahalanobis distances become equal to each other, which makes 

the value of this ratio one. The average Euclidean distance is calculated as  

𝑛𝑛𝑚𝑚𝑎𝑎𝑔𝑔 =
1
𝐹𝐹2��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� (5.7) 

The Euclidean to Mahalanobis distance ratio can then be estimated by 

𝑅𝑅𝐸𝐸/𝑀𝑀 =
𝑛𝑛𝑚𝑚𝑎𝑎𝑔𝑔
𝑀𝑀𝑚𝑚𝑎𝑎𝑔𝑔

 
(5.8) 

5.2.2 Gradient-Based Attributes 

From Garud et al. (2018), for any point in the data set, 𝑥𝑥(𝑖𝑖), let 𝑥𝑥(𝑗𝑗) be its nearest neighbor based 

on the Euclidean distance and 𝑦𝑦(𝑖𝑖) be its response. Then, the gradient vector of the response, 𝑔𝑔(𝑖𝑖), 

at 𝑥𝑥(𝑖𝑖) can be estimated using Eq. (5.9), where 𝑥𝑥𝑑𝑑
(𝑖𝑖) is the value of input dimension 𝑑𝑑 for point 𝑥𝑥(𝑖𝑖), 

and 𝑒𝑒 is a small number related to the precision of the numbers in the dataset. These gradient-based 

attributes were added to the attribute set because the gradients indicate the overall shape of the 

surface, and our studies have shown that surrogate-based optimization performance is dependent 

on the underlying shape of the surface being modeled (Williams & Cremaschi, 2021b). 

𝑔𝑔(𝑖𝑖) = �𝑔𝑔𝑑𝑑
(𝑖𝑖) =

�𝑦𝑦(𝑖𝑖) − 𝑦𝑦(𝑗𝑗)� 𝑃𝑃𝑃𝑃𝑔𝑔𝑃𝑃 �𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗)�

𝑚𝑚𝐴𝐴𝑥𝑥 �𝑒𝑒, �𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗)��
� 𝑑𝑑 = 1,2, … ,𝐷𝐷� 

(5.9) 

In Eq. (5.9), the sign function is defined as 

𝑃𝑃𝑃𝑃𝑔𝑔𝑃𝑃 �𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗)� = �1, 𝑃𝑃𝑖𝑖 𝑥𝑥𝑑𝑑
(𝑖𝑖) − 𝑥𝑥𝑑𝑑

(𝑗𝑗) ≥ 0
−1,                  𝑃𝑃𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑃𝑃𝑃𝑃𝑒𝑒 

 
(5.10) 

Average magnitude of gradient vector: This attribute (Eq. 5.11), which is the average value of 

the magnitude of the gradient vector 𝑔𝑔(𝑖𝑖), across all sample points, aims to provide a measure of 

the average steepness of the surface being modeled.  
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𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔 =
1
𝐹𝐹
��𝑔𝑔(𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

 
(5.11) 

Standard deviation of gradient vector magnitudes: The standard deviation of the magnitude of 

the gradient vector 𝑔𝑔(𝑖𝑖)  across all sample points gives an estimate of the non-linearity of the 

surface (Eq. 5.12).   

𝑔𝑔𝑠𝑠𝑡𝑡𝑑𝑑 = �
1

𝐹𝐹 − 1
��|𝑔𝑔(𝑖𝑖)| − 𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔�

2
𝑁𝑁

𝑖𝑖=1

 

(5.12) 

Minimum and maximum gradient vector magnitudes: These attributes describe the minimum 

(Eq. 5.13) and maximum (Eq. 5.14) values for the magnitudes of the gradient vectors for sample 

points in the data set.  

𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛 = min
𝑁𝑁

𝑔𝑔(𝑖𝑖) (5.13) 

𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑁𝑁

𝑔𝑔(𝑖𝑖) (5.14) 

Ratios of gradient vector magnitudes: These attributes aim to capture the average “bumpiness” 

or noisiness of the surface by measuring how sharply the gradients change on average throughout 

the surface (Eqs. 5.15-5.17). Higher values of these ratios indicate a noisier surface. 

𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔,𝑚𝑚𝑖𝑖𝑛𝑛 =
𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔
𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛

 (5.15) 

𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔,𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔
𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚

 (5.16) 

𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑖𝑖𝑛𝑛 =
𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛

 (5.17) 

Skewness of gradient vector magnitudes: The skewness of the gradient magnitudes estimates a 

measure of the asymmetry of the distribution of the gradient vector magnitudes (Eq. 18). 
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𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
∑ ��𝑔𝑔(𝑖𝑖)� − 𝑔𝑔𝑚𝑚𝑎𝑎𝑔𝑔�

3𝑁𝑁
𝑖𝑖=1

𝐹𝐹(𝑔𝑔𝑠𝑠𝑡𝑡𝑑𝑑)3  (5.18) 

5.2.3 Response (Output)-Based Attributes 

These response-based attributes were developed and added to the attribute set to provide insights 

into how concentrated (or sparse) the output values are distributed at the extreme high and low 

output values. Data that is concentrated in certain areas and not well-distributed over the entire 

possible output space may produce models whose predictions do not generalize well over the 

space. However, if data is concentrated at extreme values, a trained model may be better able to 

closely locate the optimum for the dataset. 

Upper and lower tail average: These attributes calculate the average value of the response values 

in the top 5% and bottom 5% of responses.  

Upper and lower tail relative size: This is the ratio of the number of output responses in the top 

(Eq. 5.19) and bottom (Eq. 5.20) 5% of values to the total number of data points. These attributes 

aim to estimate how well distributed the response values are over the range of responses. In Eqs. 

(5.19) and (5.20), 𝐹𝐹𝑢𝑢 and 𝐹𝐹𝑙𝑙  represent the number of output responses in the top 5% and bottom 

5% of values, respectively. 

𝐴𝐴𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 =
𝐹𝐹𝑢𝑢
𝐹𝐹

 (5.19) 

𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 =
𝐹𝐹𝑙𝑙
𝐹𝐹

 (5.20) 

Ratio of lower to upper tail size: This ratio (Eq. 5.21) describes how evenly the output responses 

are distributed between the upper and lower extremes of the output values. 
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𝑟𝑟𝑙𝑙/𝑢𝑢 =
𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
𝐴𝐴𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

 (5.21) 

5.2.4 Other Attributes 

Average local convex deviation: This deviation (Eq. 5.27) aims to estimate the convexity of the 

function from which the input-output data was generated. We hypothesize that this metric may be 

important for determining the appropriate surrogate modeling technique for surrogate-based 

optimization. 

Let 𝐴𝐴(𝑚𝑚),𝑚𝑚 = 1,2, … ,𝑀𝑀 be some sample points generated on the input domain of the dataset using 

Latin hypercube sampling. 

𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 = min
𝑚𝑚≠𝑛𝑛

�𝐴𝐴(𝑚𝑚) − 𝐴𝐴(𝑛𝑛)� (5.22) 

We can construct a hypersphere of diameter 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 (Eq. 5.22) around each point 𝐴𝐴(𝑚𝑚) to create a 

local “neighborhood” of dataset points 𝑥𝑥(𝑖𝑖) around each center, where 𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 is the minimum 

distance between 𝐴𝐴(𝑚𝑚) and any other generated sample point, 𝐴𝐴(𝑛𝑛). Then, we define the convex 

difference for each point in the neighborhood as in Eq. (5.23),  

𝑀𝑀𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑
(𝑖𝑖),(𝑚𝑚) = �𝑦𝑦(𝑖𝑖) − 𝑦𝑦𝑐𝑐𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑚𝑚

(𝑖𝑖) � (5.23) 

and the average convex difference in the neighborhood is given in Eq. (5.24),  

𝑀𝑀�̅�𝑑𝑖𝑖𝑑𝑑𝑑𝑑
(𝑚𝑚) =

1
𝐾𝐾
�𝑀𝑀𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑

(𝑖𝑖),(𝑚𝑚)
𝐾𝐾

𝑖𝑖=1

 
(5.24) 

where 𝑦𝑦𝑐𝑐𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑚𝑚
(𝑖𝑖)  is the response of a known convex function (Eq. (25)) 

𝑦𝑦𝑐𝑐𝑜𝑜𝑛𝑛𝑎𝑎𝑠𝑠𝑚𝑚
(𝑖𝑖) = 0.1�𝑥𝑥(𝑖𝑖)�

4
 (5.25) 

for the input 𝑥𝑥(𝑖𝑖). Figure 5.1 illustrates the process for calculating 𝑀𝑀𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑
(𝑖𝑖),(𝑚𝑚). 
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The local convex deviation in each neighborhood can then be calculated as in Eq. (5.26) 

𝑀𝑀𝑑𝑑𝑠𝑠𝑎𝑎
(𝑚𝑚) = �

1
𝐾𝐾 − 1

��𝑀𝑀𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑
(𝑖𝑖),(𝑚𝑚) − 𝑀𝑀�̅�𝑑𝑖𝑖𝑑𝑑𝑑𝑑

(𝑚𝑚) �
2

𝐾𝐾

𝑖𝑖=1

 

(5.26) 

where 𝐾𝐾 is the number of points from the dataset in the neighborhood 𝑚𝑚. The average local convex 

deviation is given in Eq. (5.27). 

𝑀𝑀�̅�𝑑𝑠𝑠𝑎𝑎 =
1
𝑀𝑀
�𝑀𝑀𝑑𝑑𝑠𝑠𝑎𝑎

(𝑚𝑚)
𝑀𝑀

𝑖𝑖=1

 
(5.27) 
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Figure 5.1 - Steps for generating neighborhoods for convex difference calculations 
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5.3 PRESTO Framework Construction 

Random forest classification models were trained for each surrogate modeling technique 

to predict whether the surrogate should be recommended or not recommended for a dataset. 

Random forests are surrogate models that make output predictions based on inputs by combining 

predictions from a collection of decision trees. Each tree in a random forest model is constructed 

independently and depends on a random vector sampled from the input data, with all the trees in 

the forest having the same distribution (Brieman, 2001). Random forests have successfully been 

used for both regression and classification tasks, performing with high prediction accuracy for both 

small sample sizes and high dimensional data.  

Separate classification models were trained for surface approximation and surrogate-based 

optimization. The calculated attributes were used as inputs, and the assigned recommendation 

classes (“recommended” or “not recommended”) were used as outputs. To assign recommendation 

classes for a dataset, the highest or lowest value out of all the eight surrogate techniques for 𝑅𝑅�2 

and 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡, respectively, were assigned as “recommended”, as they had the “best” performance for 

that dataset. Then, surrogate models with performance metric values within 1% of those best 

values were also assigned as “recommended.” Any surrogate models with metric values outside of 

the 1% range were assigned a recommendation class of “not recommended.” 

The built-in feature selection method of random forest models was performed to determine 

which attributes had the most influence on the predicted recommendation class for each surrogate 

modeling technique. Input features are assigned an importance value in random forest models 

based on how much they reduce the Gini impurity (Menze et al., 2009) at each decision node in 

the forest. The Gini impurity measures how well the decision threshold separates the training 

samples into the two classes at a particular node (Menze et al., 2009). The feature importances of 
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all the input features (in this case, the attributes) sum to 100%. Attributes were ranked from highest 

to lowest feature importance. The attributes were added to the input feature set starting with the 

highest importance up to a sum of 90% of the total importance to reduce the attribute set for the 

classification model for each surrogate modeling technique. Here, the goal is to consider the 

attributes with the highest impact on the classification model outcome in the random forest 

classifier model. The remaining features in the lower 10% of the importance sum were discarded. 

Figure 5.2 summarizes the PRESTO construction steps. PRESTO is available for testing in the 

Cremaschi research group GitHub repository (https://github.com/CremaschiLab/PRESTO).

https://github.com/CremaschiLab/PRESTO
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Figure 5.2 - Summary of PRESTO construction (FS = Feature Selection, Approx = Surface 

Approximation, Opt = Surrogate-based optimization, PM = Classification Performance Metrics)  

5.4 PRESTO Performance Evaluation Criteria 

 The performance of PRESTO was evaluated using three performance metrics: accuracy, 

precision, and hit ratio. These metrics are calculated based on the classification confusion matrix 

(Sokolova & Lapalme, 2009) (Figure 5.3), which describes the quality of classifications made by 

a classification model. 
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Figure 5.3 - Classification confusion matrix (TP = true positive, TN = true negative, FP = false 

positive, FN = false negative) 

The accuracy (Eq. 5.28) measures the percentage of recommendation classifications made 

by PRESTO that is correct. The precision (Eq. 5.29) is the probability that a model classified as 

recommended should actually be recommended and will perform well for a dataset. The hit ratio 

(Eq. 30) is the percentage of models that will perform well for a dataset that PRESTO is 

recommending. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴𝑦𝑦 =
𝑇𝑇𝐹𝐹 + 𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (5.28) 

𝐹𝐹𝑟𝑟𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (5.29) 

𝐻𝐻𝑃𝑃𝑡𝑡 𝑟𝑟𝐴𝐴𝑡𝑡𝑃𝑃𝑃𝑃 =
𝑇𝑇𝐹𝐹

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝐹𝐹
 (5.30) 

 

Figure 5.4 provides a flowchart depicting how the performance metrics were calculated for 

evaluating PRESTO’s performance. The first step is similar to how a user would use PRESTO, 

where input-output data is generated and passed to PRESTO. PRESTO then provides 

recommendations for which surrogate modeling techniques to employ. For the second step in the 
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analysis, all eight of the candidate surrogate modeling techniques were used to train models, and 

their performance metrics were calculated. These metrics of actual performance were compared to 

the recommendations for models PRESTO predicted would perform well for the data to evaluate 

the quality of PRESTO’s recommendations. Training all of the models as was done in this analysis 

is not necessary for a PRESTO user. In practice, a user could train as few or as many of the 

recommended models as desired. 

 

Figure 5.4 - Summary of PRESTO performance evaluation 

5.5 Application Dependent PRESTO Attributes for Surrogate Modeling Techniques  

 The numbers of attributes selected for classifying the eight candidate surrogate modeling 

techniques as being recommended or not recommended for surface approximation and surrogate-

based optimization are given in Table 5.1. For example, for surface approximation, 21 attributes 

out of the initial set of 38 were selected as inputs for the classifier trained to make predictions 

regarding ALAMO. Based on these results, the random forest classifier required approximately 39 
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- 55% of the attributes for making recommendations. There were no significant differences 

between the number of attributes selected for each surrogate modeling technique or application. 

Table 5.1 - Number of attributes selected for recommendation predictions 

 Attributes Selected 

 Surface 

Approximation 

Surrogate-Based 

Optimization 

ALAMO 21 21 

ANN 20 19 

ELM 19 20 

GPR 21 20 

MARS 21 20 

RBFN 20 20 

RF 15 21 

SVR 21 21 

 Tables 5.2 and 5.3 list the five highest important attributes selected for surface 

approximation and surrogate-based optimization, respectively. Attributes related to the dataset 

inputs, including the average, minimum, and maximum Mahalanobis distances between input data 

points, were selected frequently for the majority of the surrogate modeling techniques for both 

surface approximation and surrogate-based optimization performance predictions. Other 

commonly selected features include those related to the distributions of output values, specifically 

the relative size of the output distribution tails and the output distribution skewness and kurtosis. 

These results suggest that the distribution and location of the sample points and the relative 

steepness and smoothness of the surface significantly influence how well each of the surrogate 

models can approximate that surface and locate the optimum of the underlying function. 



 105 

Attributes related to the distributions of the input and output locations were commonly 

selected among all of the candidate techniques. These attributes may affect surface approximation 

performance as having data unevenly concentrated (or sparse) at the extreme values may skew 

models to predict more accurately in areas of data concentration and less so for other areas of the 

design space. For example, in the case of RF models, uneven tails could cause decision nodes in 

the model trees to split more frequently at the extremes of the output values while more finely split 

partitions were really needed elsewhere, such as where the gradients were steep. For the neural 

network-based models, the on-off nature of the hidden layer nodes may make them more suitable 

for making accurate predictions for surfaces where large areas of the design space have similar 

output values, creating flat or nearly flat areas, similar to the plate-shaped functions. 

For surface approximation, the attributes of the empirical mean of fractional local 

fluctuations and the empirical standard deviation in fractional local fluctuations were also 

frequently selected in the top five attributes. These attributes measure the average bumpiness and 

non-linearity variations, respectively, of the surface being modeled (Garud et al., 2018) and can 

be considered to give a measure of the noisiness of the surface. The noise level has a significant 

effect on some models’ ability to fit a surface. For example, for SVR model performance, the 

support vectors fitted in the model construction can easily become sensitive to noise as they are 

only dependent on a small set of the data used to train the model (Sabzekar et al., 2011).  
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Table 5.2 - Five highest important attributes selected for surface approximation 

ALAMO 

Attribute Importance 

Euclidean to Mahalanobis ratio 11.1% 

Skewness of outputs 8.7% 

Kurtosis of outputs 7.2% 

Upper tail average 5.8% 

Coefficient of variation of outputs 5.4% 
 

ANN 

Attribute Importance 

Coefficient of variation of outputs 10.4% 

Upper tail average 9.3% 

Average Mahalanobis distance 6.6% 

Average gradient cosine direction 6.0% 

Kurtosis of outputs 5.5% 
 

ELM 

Attribute Importance 

Average Mahalanobis distance 12.2% 

Minimum Mahalanobis distance 12.0% 

Input dimensions 9.7% 

Empirical standard deviation in 

fractional local fluctuations 8.9% 

Kurtosis of outputs 6.6% 

 

 

 

 

GPR 

Attribute Importance 

Upper tail average 7.6% 

Coefficient of variation of outputs 7.6% 

Empirical mean of fractional local 

fluctuations 6.4% 

Skewness of outputs 6.3% 

Empirical standard deviation in 

fractional local fluctuations 5.7% 
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MARS 

Attribute Importance 

Kurtosis of outputs 11.5% 

Empirical standard deviation in 

fractional local fluctuations 7.6% 

Skewness of outputs 7.1% 

Relative size of upper tail 6.7% 

Upper tail average 5.0% 
 

 

RBFN 

Attribute Importance 

Average Mahalanobis distance 10.4% 

Minimum Mahalanobis distance 9.2% 

Empirical mean of fractional local 

fluctuations 7.0% 

Empirical standard deviation in 

fractional local fluctuations 7.0% 

Skewness of outputs 5.5% 
 

RF 

Attribute Importance 

Empirical standard deviation in 

fractional local fluctuations 21.3% 

Empirical mean of fractional local 

fluctuations 15.6% 

Coefficient of variation of 

gradient magnitudes 7.3% 

Average Mahalanobis distance 7.1% 

Minimum Mahalanobis distance 7.0% 
 

SVR 

Attribute Importance 

Skewness of outputs 8.0% 

Empirical mean of fractional local 

fluctuations 7.7% 

Kurtosis of outputs 6.3% 

Empirical standard deviation in 

fractional local fluctuations 5.7% 

Skewness of gradient magnitudes 5.1% 
 

 

 

 

Table 5.3 - Five highest important attributes selected for surrogate-based optimization 

Table 5.2 cont’d. - Five highest important attributes selected for surface approximation 
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ALAMO 

Attribute Importance 

Upper tail average 9.3% 

Coefficient of variation of outputs 9.2% 

Skewness of outputs 8.0% 

Lower tail relative size 6.2% 

Average Mahalanobis distance 5.8% 
 

ANN 

Attribute Importance 

Input dimensions 12.3% 

Average Mahalanobis distance 12.1% 

Maximum Mahalanobis distance 9.3% 

Minimum Mahalanobis distance 7.7% 

Kurtosis of outputs 7.7% 
 

ELM 

Attribute Importance 

Average Mahalanobis distance 18.6% 

Maximum Mahalanobis distance 12.9% 

Minimum Mahalanobis distance 10.7% 

Input dimensions 10.0% 

Coefficient of variation of outputs 4.4% 
 

GPR 

Attribute Importance 

Input dimensions 9.5% 

Average Mahalanobis distance 9.1% 

Coefficient of variation of outputs 7.0% 

Maximum Mahalanobis distance 6.6% 

Skewness of outputs 6.5% 
 

MARS 

Attribute Importance 

Input dimensions 13.8% 

Average Mahalanobis distance 13.0% 

Minimum Mahalanobis distance 8.0% 

Maximum Mahalanobis distance 6.2% 

Kurtosis of outputs 5.2% 
 

RBFN 

Attribute Importance 

Minimum Mahalanobis distance 13.9% 

Average Mahalanobis distance 10.4% 

Input dimensions 10.3% 

Maximum Mahalanobis distance 6.6% 

Skewness of outputs 4.8% 
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RF 

Attribute Importance 

Average Mahalanobis distance 8.8% 

Minimum Mahalanobis distance 6.4% 

Input dimensions 6.3% 

Maximum Mahalanobis distance 5.7% 

Euclidean to Mahalanobis ratio 5.6% 
 

SVR 

Attribute Importance 

Skewness of outputs 11.0% 

Upper tail average 8.8% 

Coefficient of variation of outputs 8.0% 

Average Mahalanobis distance 5.3% 

Kurtosis of outputs 5.2% 
 

 

For surrogate-based optimization, although not selected as one of the top five important 

attributes, the average local convex deviation, and attributes related to the estimated gradients were 

selected frequently in the set of important attributes. The convexity of a model has a significant 

effect on the relative “ease” of finding its global minimum. Gradient information is also crucial in 

the application of gradient-based methods for optimization. The complete listing of all attributes 

selected is available in Appendix B.  

5.6 Performance Evaluation of PRESTO for a Chemical Engineering Application - Cumene 

Production Case Study 

 A simulation model of the cumene production process was employed to test the 

performance of PRESTO’s recommendations for a chemical engineering application and on 

datasets that were not used for its training. The entire process for cumene production was simulated 

in gPROMS Process. Input-output datasets were generated for a subset of the unit operations in 

the flowsheet, using the gPROMS Global System Analysis capabilities. PRESTO was used to 

provide surrogate modeling technique recommendations to predict each output for surface 

approximation. Then, surrogate models were trained for each output using the eight candidate 
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surrogate modeling techniques, and the corresponding adjusted R-squared values were calculated 

using Monte Carlo cross-validation (Xu et al., 2004) with a test set size of 20% of the dataset and 

50 Monte Carlo trials. The adjusted R-squared results were compared to the recommendation 

classifications made by PRESTO for surface approximation.  

5.6.1 Process and Simulation Description for Cumene Production 

 The production of cumene, a petrochemical used in the production of several chemicals, 

involves the reaction of benzene with propylene to form cumene and the undesirable reaction of 

cumene with propylene to form p-diisopropyl benzene (PDIB) (Luyben, 2011). The flowsheet for 

the process is given in Figure 5.5. The case study focuses on the cooled tubular reactor (Reactor) 

and two distillation columns (C1 and C2). These are the three most complex unit-level models in 

the overall flowsheet, meaning that replacing them with surrogate models will have the greatest 

impact on improving computational speed. In the process, the liquid fresh feed streams are 

combined with a benzene recycle stream, vaporized, preheated to 360 °C, and fed to the cooled 

tubular reactor. The first distillation column, C1, produces a mostly benzene distillate, which is 

recycled back to the reactor. This recycle stream is necessary to keep benzene from exiting in the 

bottoms product and affecting the purity of the cumene product in the distillate of the second 

column, C2. Column C2 is designed to attain high-purity cumene in the distillate and minimize 

the loss of cumene in the bottoms (Luyben, 2011). 
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Figure 5.5 - Flowsheet for cumene production case study 

The entire process was simulated in gPROMS Process, where the data for the three complex unit 

operations was generated. Data were generated for a total of 27 outputs, with seven outputs for the 

reactor, 11 outputs for the first distillation column (C1), and nine outputs for the second distillation 

column (C2). Outputs for the distillation columns include heat duties and top and bottoms product 

compositions. Outputs for the reactor include outlet temperatures and reaction product 

compositions. For each output, data was randomly selected at four different sample sizes (100, 

300, 1000, and 3000 samples) for a total of 108 case study datasets for evaluating PRESTO’s 

performance. The input values for each dataset are operating specifications for a fixed design of 

the respective unit operations, such as inlet temperatures and inlet compositions.  
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5.7 Results and Discussion 

5.7.1 PRESTO Recommendation Classification Results 

The selected attributes were used as inputs to train random forest classification models for 

the eight techniques to classify each technique as being “recommended” or “not recommended” 

for a given dataset. Separate classifiers were trained for surface approximation and surrogate-based 

optimization. This recommendation scheme allows for multiple similarly performing surrogate 

modeling techniques to be suggested for use. The performance metrics were calculated using 

Monte Carlo cross-validation with 75 Monte Carlo trials. Each trial had a test set size of 20% of 

the total dataset. 

PRESTO identified which techniques should be recommended for the simulated datasets 

for surface approximation with an accuracy of 91%. The precision, or the probability that a 

recommended technique should actually be recommended, was 90%. The hit ratio, the percentage 

of the surrogate models that should have been recommended for surface approximation that 

PRESTO successfully captured, was 87%.  

For surrogate-based optimization, PRESTO recommended surrogate modeling techniques 

with an accuracy of 98% and a precision of 99%. This result indicates that if PRESTO identifies a 

model as being recommended for a dataset, there is a 99% probability that the model will 

accurately locate the global optimum of the underlying model for the dataset. The hit ratio for 

surrogate-based optimization was 98%. 

5.7.2 Cumene Case Study Performance Results 

 Table 5.4 lists the performance metrics for PRESTO on the case study data compared to 

the metrics for the data that PRESTO was trained on, or the PRESTO data. Performance metrics 
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were calculated for both to compare how well PRESTO performed on the simulated data from the 

test functions to how it performed on data from a real-world application. PRESTO’s performance 

on the cumene case study data was similar to that of the tool training data for accuracy and 

precision. However, the hit ratio was slightly lower. The lower hit ratio for the case study data 

indicates that PRESTO was not identifying all the possible models that could be recommended, 

only a subset of them, which also resulted in a higher precision. These results suggest that PRESTO 

may successfully identify a set of surrogate models that will perform well for approximating the 

behavior of a data set for some relevant cases without the need for expensive trial-and-error 

methods. 

The lower hit ratio may be due to the fact that the values for the Mahalanobis distances 

between the data points for the case study data were outside the ranges of the distances for the data 

that the tool was trained on. For example, the maximum value for the PRESTO data for the 

maximum Mahalanobis distance between data points is approximately 6.7, while both the average 

and maximum value of that same attribute for the case study data are higher at 6.8 and 7.1, 

respectively. The simulated data was generated using the same space-filling method, while the 

inputs for the case study data were generated randomly. We can conclude that the position of the 

sample points, or the distances between them, are critical in providing accurate recommendations 

as features related to the Mahalanobis distances were selected as important for almost all of the 

classification models that were trained. The performance of PRESTO could be improved by adding 

datasets that use a variety of sampling methods in order to provide better ranges for the attributes 

related to data point distribution.  

In addition, all of the datasets in the PRESTO data were created using relatively smooth, 

continuous functions. Data from real applications may not share the same characteristics. An 
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example of this difference in behavior can be seen in the average local convex deviation attribute. 

The average value for this attribute is 2.66x106 for the PRESTO data and several orders of 

magnitude higher for the case study data at 9.1x1012. The recommendations of PRESTO for real 

data could be enhanced by the addition of real datasets to the PRESTO training data. However, 

with a 94% precision for the case study data, PRESTO’s predictions for which surrogate models 

to use are still accurate. All of the compiled results for adjusted R-squared and recommended 

models for the case study data are available in the supplementary materials for Williams et al. 

(2021). 

Table 5.4 - PRESTO case study performance comparison 

 Case Study 

Data 

PRESTO  

Data 

Accuracy 89% 91% 

Precision 94% 90% 

Hit Ratio 76% 87% 

 

 PRESTO did not recommend any candidate surrogate models for two process outputs: the 

bottom product temperature and top liquid recovery of cumene. These classifications of “not 

recommended” for all the surrogates were correct, as when the models were trained, none of the 

techniques could successfully approximate these outputs with an adjusted R-squared above 0.7. 

Our work demonstrated that there are some test functions that were used to train PRESTO, for 

which none of the surrogate modeling techniques were able to approximate the surface (Williams 

& Cremaschi, 2021b). In these instances, alternative modeling strategies, such as ensemble 

modeling, deep learning algorithms, or another surrogate modeling technique not included in the 
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candidate set, may be considered. It should be noted that when PRESTO does not recommend any 

surrogate modeling techniques, it could also indicate that the current data set size is too small for 

the techniques to model the input-output relationship accurately. We observed that for some 

datasets, increasing its size also increased the number of recommended models. Hence, we also 

recommend increasing the dataset size and re-running PRESTO. The case study results reveal that 

PRESTO can capture the qualities of datasets that would make them unsuitable for modeling with 

the eight candidate techniques studied. 

5.7.2.1 PRESTO Cosine Similarity Analysis 

In order to further analyze the discrepancy in PRESTO’s performance on the cumene case 

study data, the calculated dataset attributes of the cumene data were compared to the attributes of 

the PRESTO training data using the cosine similarity (Eq. 5.31). The cosine similarity between 

two vectors of dataset attributes 𝑋𝑋 and 𝑌𝑌 falls between values of -1 and 1, with similarity values 

closer to 1 indicating a higher measure of similarity 

cos(𝑋𝑋,𝑌𝑌) =
𝑋𝑋 ∙ 𝑌𝑌

‖𝑋𝑋‖‖𝑌𝑌‖
 (5.31) 

and for vector 𝑋𝑋 = 〈𝑥𝑥1, 𝑥𝑥2, … . . , 𝑥𝑥𝑛𝑛〉 

‖𝑋𝑋‖ = ��𝑥𝑥𝑖𝑖2
𝑛𝑛

;=1

 

(5.32). 

 When calculating the pairwise cosine similarity between each of the 791 datasets used to 

construct PRESTO, their average similarity was 0.805, indicating that there is a high degree of 

similarity between the PRESTO training datasets. Figure 5.6 shows the frequency distribution of 

the cosine similarities for the PRESTO training data. For comparison of the cumene case study 
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data to the PRESTO training data, the cosine similarity for cumene data set to each of the PRESTO 

datasets was calculated, and the average was taken. This calculation was repeated for each of the 

cumene datasets. Table 5.5 lists the performance metric values for the cumene datasets when 

separated by those that had a negative or positive average cosine similarity to the PRESTO data. 

 

Figure 5.6 – Histogram of cosine similarity scores for PRESTO training data 

Table 5.5 - Cumene data performance by cosine similarity score 

 Cumene Data 
PRESTO 

Data 
Negative Average 

Cosine Similarity 

Positive Average 

Cosine Similarity 

Accuracy 86% 92% 91% 

Precision 86% 94% 90% 

Hit Ratio 67% 85% 87% 

The performance metrics of the cumene datasets with positive average cosine similarity to the 

PRESTO training data were higher than those of the datasets with negative average similarity and 
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more comparable to the cross-validation performance of the PRESTO training data (Table 5.5). 

This analysis provides some indication that datasets with negative similarity to the PRESTO 

training data may not be suitable for use with PRESTO to make surrogate modeling 

recommendations. Prescreening data with this similarity metric may provide some insight into 

PRESTO’s potential accuracy in selecting surrogates for a data set. 

5.8 Conclusions and Future Work 

 Selecting an appropriate surrogate modeling technique depends on the characteristics of 

the dataset being modeled and the application domain of the surrogate model, surface 

approximation vs. optimization. We identified attributes of datasets appropriate for selecting 

surrogate models for both surface approximation and surrogate-based optimization. Using these 

attributes, a recommendation tool, PRESTO, was constructed to recommend surrogate modeling 

techniques for approximating a dataset with 91% accuracy and 90% precision and for performing 

surrogate based-optimization with 98% accuracy and 99% precision. Although PRESTO could not 

capture the full set of models that could be recommended on a set of test data generated from a 

cumene production process simulation, the recommended models did provide higher values of 

adjusted R-squared and better predictions for the outputs. Future work on PRESTO will include 

adding more real datasets to the training data for the tool, focusing on using a wider variety of 

sampling methods, not just space-filling ones, and incorporating the impact of noisy data. 
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Chapter 6 – Surrogate-Based Optimization Using Random Forests 

 Random forests (RFs) are surrogate models that make output predictions based on inputs 

by combining predictions from a collection of decision trees. Surrogate models are used to 

approximate the relationship between input and output data when the actual one between the two 

is unknown or computationally expensive to evaluate (C. Wang et al., 2014). These models can 

also be used in surrogate-based optimization approaches to approximate the objective function 

and/or constraints when they are not available in closed, analytical form or are not conducive for 

use in traditional gradient-based optimization methods, for example, if gradient information is not 

available. Each tree in a RF model is constructed independently and depends on a random vector 

sampled from the input data. (Breiman, 2001).   

 Random forests have successfully been used for regression and classification tasks, 

performing with high prediction accuracy for both small sample sizes and high dimensional data 

(Biau & Scornet, 2016). They can fit nonlinear data with a minimal number of parameters to tune 

(Biau & Scornet, 2016). The models have been used in several recent applications in the 

manufacturing industry, including for fault detection (Puggini et al., 2015; Quiroz et al., 2018; 

Zhang et al., 2018), prediction of mechanical failures (Wu et al., 2017), and prediction of 

manufacturing product properties (Maudes et al., 2017). Other areas of research where RF models 

have been employed for approximation include the development of new pharmaceutical molecules 

(Svetnik et al., 2004) and thermodynamic property estimation (Palmer et al., 2007). 

 Because of their prediction accuracy for a wide array of applications, RFs could represent 

an exceptional candidate for a surrogate model to approximate the objective function for surrogate-

based optimization approaches. The RF decision tree structure allows it to be formulated as a 

mixed-integer linear program (MILP), which can be readily solved using existing commercial 
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solvers. However, fully trained models can result in large-scale MILPs that may become 

computationally intractable. Biggs and Hariss (2018) propose a method for optimizing RF 

objective functions by using Benders' decomposition (Benders, 1962) on only a subset of the 

decision trees in the RF. While they can successfully optimize RF objective functions with their 

approach, employing their solution method requires a significant amount of input on expertise on 

the part of the user, as do other developed techniques for optimizing decision-tree based models 

(Bertsimas & Dunn, 2017; Robertson et al., 2017). This drawback could represent an obstacle to 

using these models for optimization in practical applications.  

To address this obstacle, this chapter introduces a MILP formulation corresponding to a 

RF model of an objective function and describes a Python library that can be used to construct this 

MILP formulation and solve it automatically. This code is available in the Cremaschi Research 

Group Github repository (https://github.com/CremaschiLab/Random-Forest-Optimization). The 

chapter is organized as follows. Section 6.1 presents the general structure of a RF model and the 

MILP formulation. Section 6.2 describes computational experiments carried out to test the 

performance of the RF objective function approximation. Section 6.3 presents how the RF 

objective function approximation performs for locating the global minimum of several test 

functions and the results for several solution approaches designed to reduce the solution time for 

the RF model MILPs. Conclusions are drawn in Section 6.4. 

6.1 Random Forest Structure and MILP Formulation 

 Each RF model comprises several trees with a series of decision nodes. The decision node 

consists of a parent, or test, node, with a left child node and a right child node. If the indicated 

input value is less than or equal to a threshold value for the given test node, then the left child node 

is selected; otherwise, the right child node is selected. Decisions are made at each branch in a tree 
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until a final node, or leaf node, is reached. An example of a simple decision tree structure is 

illustrated in Figure 6.1. The output value for a tree for given inputs is the value of the final leaf 

node reached, and the output value for the entire RF model is the average value of the outputs for 

every decision tree in the forest. 

 

 

Figure 6.1 – Random forest decision tree structure 

Figure 6.2 illustrates a simplified example of a RF model constructed to approximate the 

function 

𝑧𝑧 = 𝑥𝑥1 + 𝑥𝑥2 (6.1) 

where 𝑥𝑥1 and 𝑥𝑥2 are input values restricted to the range [0, 5]. For the example shown, 𝑥𝑥1 = 2 and 

𝑥𝑥2 = 4.5. The output for the RF model will be equal to the average value of the selected leaf nodes: 

𝐴𝐴1,7, 𝐴𝐴2,5, and 𝐴𝐴3,5. The RF estimates the value of 𝑧𝑧 at 𝑥𝑥1 = 2 and 𝑥𝑥2 = 4.5 to be equal to 6.11, 

which is a close approximation of its actual value of 6.5. 
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Figure 6.2 - Random forest model approximation of the function, 𝑧𝑧 = 𝑥𝑥1 + 𝑥𝑥2. Orange boxes 

indicate test or leaf nodes that are selected (𝑥𝑥1 = 2 and 𝑥𝑥2 = 4.5). 
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The optimization problem for the RF objective function is formulated as follows: 

min
𝑚𝑚

 
1

𝐹𝐹𝑡𝑡𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠
��𝐴𝐴𝑡𝑡,𝑙𝑙𝑦𝑦𝑡𝑡,𝑙𝑙

𝐿𝐿

𝑙𝑙

𝑇𝑇

𝑡𝑡

  (6.2) 

s.t. 𝑦𝑦𝑡𝑡,1 = 1 ∀ 𝑡𝑡 ∈ 𝑇𝑇 (6.3) 

 𝑦𝑦𝑡𝑡,𝑙𝑙𝑐𝑐 + 𝑦𝑦𝑡𝑡,𝜀𝜀𝑐𝑐 = 𝑦𝑦𝑡𝑡,𝑜𝑜 ∀ (𝑡𝑡,𝑝𝑝, 𝑒𝑒𝐴𝐴, 𝑟𝑟𝐴𝐴, 𝑃𝑃)  ∈  𝐹𝐹 (6.4) 

 𝑥𝑥𝑖𝑖 ≥ 𝐻𝐻𝑜𝑜 −𝑀𝑀�1 − 𝑦𝑦𝑡𝑡,𝜀𝜀𝑐𝑐� − 𝑀𝑀�1 − 𝑦𝑦𝑡𝑡,𝑜𝑜� + 𝐹𝐹𝑦𝑦𝑡𝑡,𝜀𝜀𝑐𝑐 ∀ (𝑡𝑡,𝑝𝑝, 𝑒𝑒𝐴𝐴, 𝑟𝑟𝐴𝐴, 𝑃𝑃)  ∈  𝐹𝐹 (6.5) 

 𝑥𝑥𝑖𝑖 ≤ 𝐻𝐻𝑃𝑃 + 𝑀𝑀𝑦𝑦𝑡𝑡,𝜀𝜀𝑐𝑐 + 𝑀𝑀�1 − 𝑦𝑦𝑡𝑡,𝑜𝑜� ∀ (𝑡𝑡, 𝑝𝑝, 𝑒𝑒𝐴𝐴, 𝑟𝑟𝐴𝐴, 𝑃𝑃)  ∈  𝐹𝐹 (6.6) 

 𝑥𝑥𝑖𝑖 ∈ [𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚]  (6.7) 

The objective function, Eq. (6.2), of the formulated optimization problem is the model's output, 

which is the average value of the final leaf nodes selected by the model. In the formulation, 𝐴𝐴𝑡𝑡,𝑙𝑙 is 

the value of a leaf node l in tree t, 𝑦𝑦𝑡𝑡,𝑙𝑙 is a binary decision variable with a value of 1 if leaf node 𝑒𝑒 

is selected and 0 otherwise. 𝐻𝐻𝑜𝑜 is the threshold value for parent node 𝑝𝑝, 𝑀𝑀 and 𝐹𝐹 are constants 

specific to the dataset, and each 𝑥𝑥𝑖𝑖 is a continuous decision variable within a range specific to the 

dataset representing an input to the RF model. The index 𝑃𝑃 for 𝑥𝑥𝑖𝑖 indicates the input dimension. 

For example, 𝑥𝑥1 is the input value for the first input to the model. 𝑇𝑇 is the set of trees in the RF, 

and 𝐿𝐿 is the set of every leaf node in the RF. 𝐹𝐹 is the set of all groupings for tree, parent node, left 

child, right child, input value combination for every tree. Sets 𝑇𝑇, 𝐿𝐿, and 𝐹𝐹 are constructed using the 

decision tree structure of each tree in the RF model. 

 Equation (6.3) forces the first node in every tree to be selected, ensuring that each tree in 

the model contributes to the RF model output and objective function value. Equation (6.4) enforces 

a constraint on the number of child nodes that can be selected for a parent node, with only one 
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child being chosen if the parent node is selected and neither being selected if the parent node is 

not. Equations (6.5) and (6.6) represent constraints that determine whether a left child node or right 

child node is selected based on the threshold value for their respective parent node. The value of 

𝑀𝑀 in each of these constraints ensures that the threshold constraint will not be enforced if the parent 

node for that threshold is not selected. A recommended 𝑀𝑀 value would be to set it equal to the 

range of 𝑥𝑥 values (𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛) the RF model is defined over. 

6.2 Computational Experiments 

 Using RF models in surrogate-based optimization requires training an RF model to 

approximate a function. Based on the final structure of the model, an optimization problem is 

formulated with the output of the RF model as the objective function. This optimization problem 

is outlined in Section 6.1. 

6.2.1 Test Functions 

To evaluate the performance of the RF surrogate models for locating an optimum, datasets 

were generated from a set of test functions from an optimization test suite described in Section 4.2 

(Surjanovic & Bingham, 2013). Functions with input dimensions of two, four, six, eight, and ten 

were used in evaluations.  

One thousand input-output pairs were generated for each test function using Sobol 

sequence sampling (Joe & Kuo, 2008) to sample input values and obtain the function outputs for 

the given inputs, resulting in 99 total datasets. A RF model was trained for each dataset employing 

the generated pairs using the Sci-kit learn RandomForestRegressor implementation (Pedregosa et 

al., 2011). A densely sampled test set of 100,000 data points for each test function was generated 

using Sobol sequence sampling to analyze how well the RF models approximated the test 



 124 

functions. The output predictions for the 100,000 test points by the trained models were compared 

to the actual outputs, and the normalized root mean square error (nRMSE), Eq. (6.8), for the model 

was calculated to quantify the performance. The nRMSE value for each dataset-surrogate model 

combination is normalized by the range of output values for easier comparison across datasets with 

various ranges for output values. 

𝑃𝑃𝑅𝑅𝑀𝑀𝑛𝑛𝑛𝑛 = �∑ (�̂�𝑧𝑛𝑛 − 𝑧𝑧𝑛𝑛)2𝑁𝑁
𝑛𝑛=1

𝐹𝐹
(𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑖𝑖𝑛𝑛)�  

(6.8) 

In Eq. (6.8), 𝑧𝑧𝑛𝑛 is the output for point 𝑃𝑃 for a dataset, �̂�𝑧𝑛𝑛 is the output predicted by the RF model 

for point 𝑃𝑃, 𝐹𝐹 is the total number of sample points in the dataset, and 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑧𝑧𝑚𝑚𝑖𝑖𝑛𝑛 are the 

maximum and minimum output values in a dataset, respectively.  

6.2.2 Surrogate-Based Optimization with Random Forest Models 

 The global minimum of the underlying function used to produce each dataset was estimated 

using the trained RF models by solving the MILP model given in Section 6.1. The mathematical 

programs were constructed in Pyomo (version 5.6) (Hart et al., 2017; Hart et al., 2011), a Python-

based optimization modeling language. The estimated minima were compared to the actual global 

minima for accuracy using a performance metric, 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 (Eq. 6.9), we define as: 

 

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 =
𝐷𝐷𝑀𝑀�𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡,𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡′�
𝑚𝑚𝐴𝐴𝑥𝑥
𝑖𝑖,𝑗𝑗

𝐷𝐷𝑀𝑀�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗�
 

(6.9) 

 

where 𝐷𝐷𝑀𝑀�𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡′� is the Mahalanobis distance (De Maesschalck et al., 2000) between the 

location of the actual global minimum of the function, 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡, and the location estimated using the 

surrogate-based optimization, 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡′. This value is normalized by the maximum Mahalanobis 
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distance between any two points (𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) in the dataset. Computations for solving the MILPs were 

carried out with CPLEX on the Auburn University HPC Cluster (Lenovo System X HPC Cluster) 

using Intel E5-2650 V3, 2.3 GHz 20 core processors and implemented in Python 3.6. 

6.3 Results and Discussion 

6.3.1 Effect of Random Forest Model Size on Surface Approximation Performance 

 Each RF model has two tunable hyperparameters, the depth of each tree and the number of 

trees in the forest. To investigate how the RF prediction performance changed with the tree depth, 

we constructed RF models for each generated dataset with a maximum of 50, 100, 200, 300, 400, 

600, 700, and 800 leaf nodes allowed in the model. Each of these models contained 100 trees. For 

investigating the effect of the number of trees, models with trees ranging from 1 to 100 trees were 

trained for each test dataset. The leaf nodes in these models were allowed to expand until all the 

test nodes in each tree were determined to be "pure." Purity is determined during the RF regression 

model training according to the mean squared error (Pedregosa et al., 2011). The RF training 

algorithm attempts to minimize the impurity at each decision node in building the model. For the 

models with "pure" test nodes, the mean squared error at each decision node is minimized. 

Example results for how well the RF models approximated the test functions are 

summarized in Figs. 6.3 and 6.4. The nRMSE was calculated for each trained model to predict the 

densely sampled 100,000 point test set and the training data set. In addition, 50-fold cross-

validation was used to calculate an average validation nRMSE, as well as a 95% confidence 

interval on that average. Figures 6.3 and 6.4 illustrate trends observed among the test functions for 

how the nRMSE changes with an increase in the number of leaf nodes and trees. Behavior for both 

increasing the number of leaf nodes and the number of trees in the RF models exhibit similar 

trends. The nRMSE for the training data set is always the lowest value for both increasing numbers 



 126 

of leaf nodes and trees. When increasing the number of leaf nodes in the model, the nRMSE error 

for the dense sample set falls either within (Fig 6.3a) or below (Fig. 6.3b) the 95% confidence 

interval for the validation error. However, the nRMSE for the dense sample set with increases in 

the number of trees at a fixed number of leaf nodes has three different trends: it is either above the 

95% confidence interval for the validation error (Fig. 6.4a), within the interval (Fig. 6.4b), or below 

it (Fig. 6.4c). 

The test functions fall into one of these three categories of behavior for surface 

approximation performance.  All of the cases follow a general trend of a sharp decrease in the error 

with increasing model size at low numbers of trees (or leaf nodes), followed by an eventual 

leveling off in the error value after a certain threshold number of trees (or leaf nodes) is reached. 

This threshold value is different for each test function. These results for the effect of the model 

size on the approximation performance indicate that allowing the RF models to expand to "pure" 

leaf nodes will not significantly increase overfitting. This assessment is valid, especially for 

models with higher numbers of trees as the nRMSE for the training data, densely sampled data, 

and validation data remain relatively evenly separated from each other for the same test function 

as the numbers of leaf nodes increase. 
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Figure 6.3 - Effect of increasing leaf nodes on random forest surface approximation performance 

(CI = confidence interval) 
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Figure 6.4 - Effect of increasing tree size on random forest surface approximation performance (CI = confidence interval) 

 

  

 

 

(a) (b) 

(c) 
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6.3.2 Effect of Random Forest Model Size on Surrogate-Based Optimization Performance 

 Results for the effects of increasing the maximum numbers of leaf nodes and trees on 

locating the optimum points on average for all test functions are summarized in Fig. 6.5. The 

surrogate-based optimization performance was assessed by calculating the normalized 

Mahalanobis distance from the actual minimum point of each test function to the one predicted by 

the trained RF models, 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡. The average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 values in Fig. 6.5 are separated by the number of 

input dimensions of the test functions. 

In general, the average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 decreases with increasing number of leaf nodes for all input 

dimensions investigated (Fig. 6.5a), suggesting that the predicted optimum locations move closer 

to the actual ones with increases in the number of leaf nodes allowed in the models. Similarly, 

when leaf nodes are allowed to expand until they are “pure” and the number of trees is increased, 

the average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 decreases, particularly at higher input dimensions (Fig. 6.5b). While the average 

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 value reaches a minimum value after 600 maximum leaf nodes for each of the input 

dimensions tested, the average 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 does not level off to a minimum value after the addition of 

100 trees for the higher input dimensions (Fig. 6.5b.) This result suggests that lower values of 

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡, and thus, locations closer to the actual minimum locations of the test functions can be 

achieved by allowing the trees to expand to a maximum number of leaf nodes that produces "pure" 

trees with an increased number of trees in the forest (above 100). However, the resulting 

optimization problems may become too computationally expensive. 

 Figure 6.6 shows three trends for how the estimated optimum locations were affected by 

an increasing number of trees when the forests were allowed to expand until all leaf nodes were 

“pure”. The majority of the test functions had an overall decrease in the 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 as the number of 



 130 

trees in the RF model increased, eventually settling to a minimum 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 after a certain number of 

trees is reached (Fig. 6.6a).

 

Figure 6.5 - Average value of 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 for all 99 test functions vs (a) maximum number of leaf 

nodes and (b) number of trees in random forest model 

 

 

 
 

(a) 

(b) 
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Figure 6.6 - 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 vs. number of random forest trees for (a) Ellipsoid function, (b) Power Sum function, and (c) Zakharov function 

 

  

 
 

(a) (b) 

(c) 
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Three of the test functions reached a minimum 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 value at a certain number of trees and then 

𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 began increasing once that number of trees was surpassed (one such function was Power Sum 

function, whose plot is in Fig. 6.6b). For some of the test functions, the 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 did not decrease even 

when the RF model included 100 trees, and the RF failed to accurately capture the optimum of the 

functions (Fig. 6.6c). However, allowing more trees in the model could lead to more accurate 

solutions at the risk of the resulting optimization problem becoming intractable. The behavior of 

the majority of the test functions with increasing the number of trees in the RF model suggests 

that, in general, a higher number of trees results in lower 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡, and thus, a closer, more accurate 

estimate of the optimum location, albeit at a higher computational expense. 

6.3.3 Computational Efficiency of Solving the Random Forest MILP 

 The average computational time required for solving the RF MILP to estimate the global 

minima of the test functions for the number of input dimensions investigated is plotted in Fig. 6.7 

as a function of the number of trees in the forest. The average sizes of the MILPs for the test 

functions are given in Table 6.1. Although the size of the problem (the number of constraints and 

variables) increases linearly with the number of trees (Table 6.1), the solution time begins to 

increase exponentially beyond approximately 40 trees (Fig. 6.7). This increase in solution time is 

distinctly apparent at higher input dimensions. 
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Table 6.1 - Average Size of Random Forest MILP 

 
Average 

Trees 

Solution 

Time (sec) Constraints 

Binary 

Variables 

Total 

Variables 

2 1.0 3778 2519 2525 

4 1.6 7635 5091 5097 

8 5.5 15286 10192 10199 

16 9.0 30404 20274 20280 

32 35 60650 40443 40450 

64 447 121166 80798 80804 

100 10967 198226 126183 126189 

 

 

 

Figure 6.7 - Average time required for the solution of RF MILPs as a function of the number of 

trees in the random forest model 
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6.3.4 Performance Profiles for Surrogate-Based Optimization with Random Forests 

To determine if a higher number of trees in the model results in overall better estimates of the 

optimum location, the fraction of the test functions for which the optimum was located is compared 

for RF models trained with 50 trees, 100 trees, and models where the number of trees was 

determined using cross-validation. The number of trees was increased from 40 to 100 until the 

RMSE of a validation dataset stopped improving during cross-validation. For these models, the 

validation error was estimated using ten-fold cross-validation on the training set. The number of 

trees was increased until the average value of the last five validation errors either began to increase 

or changed by less than 1%. This cross-validation prevented the RF models, and hence, the 

resulting MILPs, from becoming unnecessarily large, with a maximum solution time for the 

models of about two hours of computational time. We define a model as having located the 

optimum when it obtains a 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 value less than a threshold. Results are presented in Fig. 6.8. 

 Both the models trained with 50 and 100 trees located the majority of the optima for the 

test functions at low input dimension, i.e., number of decision variables, within  𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 values of 

0.05 (Fig. 6.8a) and 0.01 (Fig. 6.8b). At higher input dimensions, the cross validation-trained RF 

models and the RF models trained with 100 trees perform comparably for the 5% threshold (Fig. 

6.8a), locating about the same fraction of the optima for the test functions. However, when the 

threshold for locating the optimum is lowered to 1%, the RF models trained with 100 trees exhibit 

superior performance to the other models at higher input dimensions, as they locate the optimum 

for a much higher fraction of the test functions (Fig 6.8b). These results indicate that more trees 

may be required for RF models if a closer, or more accurate, estimate of the location of the 

optimum point is required, especially at higher input dimensions. The exponential increase in 

solution time at higher numbers of RF model trees presents a barrier to using larger RF models for 
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optimization purposes. An investigation of decomposition approaches to exploit the unique MILP 

structure of RF models to reduce solution times is explored and described in detail in Zeng (2020). 

 

Figure 6.8 - Fraction of datasets with 𝐷𝐷𝑜𝑜𝑜𝑜𝑡𝑡 less than (a) 5% and (b) 1% grouped by input 

dimension for RF models trained with cross validation, 50 trees, and 100 trees. N values below 
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the function dimensions indicate the number of test functions used for that input dimension (CV 

= cross validation) 

6.4. Conclusions and Future Work 

 We have developed a method for automatically generating and solving an optimization 

problem using a RF model to approximate the objective function. This method can be used for 

surrogate-based optimization of complex models using only input-output data from those models. 

While the resulting MILPs provide accurate estimates for the location of the optimum points for a 

large proportion of the test functions investigated, the large solution times required provide a 

significant obstacle for solving the necessary models to achieve in an accurate location in some 

cases. Decomposition solution approaches are being investigated in order to decrease the solution 

time required for larger RF models. 
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Chapter 7 – Derivative Free Optimization with pyBOUND (PYthon-

based Black box Optimization Using raNDom forests) 

Optimization is required for several chemical engineering applications, including process 

design and synthesis, operations, and supply chain management. These applications usually 

involve complex, high-fidelity simulations and/or physical experiments, which can both require 

significant resources in terms of cost and time, as well as a large computational expense to collect 

data. Optimization using traditional gradient-based methods is impractical for these applications 

because gradient information is not readily available, and approximating gradients may be 

infeasible due to the required expense for multiple simulation evaluations or experiments. In 

addition, the direct use of deterministic global optimization methods is restrictive in these cases 

because the computational cost for obtaining data limits the total number of model runs necessary 

to optimize the system efficiently (Conn et al., 2009; Forrester et al., 2008).  

To overcome these challenges, derivative-free optimization methods can be employed. 

Here, a derivative-free optimization (DFO) algorithm is developed using surrogate-based 

optimization, where a surrogate model can be constructed to represent an objective function that 

may be computationally expensive to evaluate or are unavailable in analytical form. The 

constructed surrogate can be used as a closed functional form in traditional gradient-based 

optimization methods. 

7.1 Optimization Problem Formulation 

Motivated by the recent progress on surrogate-based optimization of black-box problems, 

the proposed algorithm uses a surrogate-based approach to solving a constrained black-box 
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optimization problem. We consider black-box optimization problems of the form given in Eqs. 

(7.1) and (7.2), 

min
𝒙𝒙

 𝑖𝑖(𝑥𝑥)  (7.1) 

s.t. 𝑥𝑥𝑖𝑖 ∈ [𝑥𝑥𝑖𝑖𝐿𝐿 , 𝑥𝑥𝑖𝑖𝑈𝑈] ∀ 𝑃𝑃 ∈ {1,2, … …𝐷𝐷} (7.2) 

where the objective function, 𝑖𝑖(𝑥𝑥), represents a black-box simulation model. It is assumed that 

the black-box model is expensive to evaluate and/or its derivative information is not available, so 

traditional gradient-based optimization methods would not be practical for use. 𝐷𝐷 represents the 

number of continuous input variables in the model with known finite bounds [𝑥𝑥𝑖𝑖𝐿𝐿, 𝑥𝑥𝑖𝑖𝑈𝑈]. 

7.2 General pyBOUND Framework 

There has been considerable progress in developing approaches for derivative-free 

optimization by using surrogate models to approximate any explicitly unknown relationships in 

the systems of interest (Boukouvala et al., 2016; Rios & Sahinidis, 2013). The surrogate 

approximations aim to guide the search towards the optimum of the original model. However, 

these algorithms can be difficult to scale to problems with high dimensionality (Bhosekar & 

Ierapetritou, 2018b; Qian et al., 2016a). To address this dimensionality issue, we have developed 

pyBOUND (PYthon-based Black box Optimization Using raNDom forests), a two-tiered approach 

for surrogate-based optimization. The first stage aims to shrink the search space through a global 

search with random forests, and the second stage aims to locate the optimum via a local search 

within the reduced space using MARS models. The following sections provide information on the 

algorithmic steps of pyBOUND and results for comparing pyBOUND’s performance on a set of 

test problems to the performance of several common DFO algorithms. A general framework for 

the pyBOUND algorithm is provided in Fig 7.1. 
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Figure 7.1 - General pyBOUND Framework 
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7.3 pyBOUND Stage 1: Generation of Decision Variable Bounds with Random Forest Models 

 In the first stage of pyBOUND, the algorithm reduces the size of the search space by 

solving a series of global deterministic subproblems using random forest (RF) models (Breiman, 

2001). A single iteration of this stage consists of sampling, construction of a RF model surrogate 

approximation, global optimization of the constrained approximation problem that employs the 

RF model, and collection of new sampling points. The iterations repeat the entire procedure until 

certain termination criteria are met. Termination criteria for stage 1 include a maximum number 

of black box evaluations and a maximum amount of reduction of the original search space. 

The initial step for the algorithm for both the global exploration and the trust region 

framework generates N sample points to construct the surrogate model. Initially, a set of samples 

is generated using a Sobol sequence design. The overall constrained approximation model, which 

consists of the RF model objective equation, the RF model constraints, and any original constraints 

and variable bounds, is solved to optimality using deterministic global optimization methods 

(Misener & Floudas, 2014; Sahinidis, 1996). We previously developed a method of automatically 

constructing a RF model and formulating its resulting optimization problem given a set of input-

output values. A full discussion of the method and its results can be found in Chapter 6. If the 

model does not include any original nonlinear constraints, the constrained approximation models 

with the RF models are MILPs, which are solved with CPLEX (version 12.10.0), in this study.  

7.3.1 Approaches for Reducing Decision Variable Bounds  

RF models consist of a collection of decision trees, with the final output for the model 

being the average of the predicted output for each tree in the forest (Breiman, 2001). Bounds can 

be generated for the decision variables from the optimal variables found by solving the constrained 

approximation optimization problem using the thresholds given by the decision tree rules for every 
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tree in the forest. However, each tree in the RF model has its own decision rules and yields its own 

bounds. The algorithm must determine a single set of bounds based on the threshold bounds given 

by every RF tree. Three methods for reducing the decision variable bounds, or cutting methods, 

were investigated for the stage 1 bounds reduction: using the widest bounds set of bounds (Wide), 

including bounds where at least two trees intersect each other (Intersection), and averaging the 

bounds given by each tree for a single set of bounds (Average). Figure 7.2 provides an illustrative 

example of the three methods. The three colored rectangles in Fig. 7.2 represent bounds given by 

three separate trees in a RF model for two input dimensions (or decision variables). The new, 

reduced bounds determined by the cutting methods are highlighted in yellow. 

 

Figure 7.2– Decision variable bounds cutting methods 
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7.3.2 Adaptive Sampling Methods for Updating RF Model 

Based on the solution of the constrained optimization problem that employs the RF 

surrogate model, the algorithm determines whether to continue by increasing the size of the sample 

set used to construct the surrogate model or proceed to second stage of pyBOUND with the bounds 

determined by the current solution. Four adaptive sampling methods for adding new samples 

points were considered at each iteration of stage 1. These methods include Mixed Adaptive 

Sampling (MAS), Optimization Directed INcremental (ODIN) sampling, ODIN-MAS, and the 

maximization of the expected improvement (EI) function. For each of these methods, a set of 

candidate sampling points is randomly generated. Then, a score designating the quality of each 

candidate point is calculated based on the objectives of the adaptive sampling method. The RF 

model training set is updated with the candidate points with the highest scores. 

The Mixed Adaptive Sampling (MAS) algorithm was developed using a combination of 

space-filling and adaptive sampling methods (Eason & Cremaschi, 2014). The sample point score 

for MAS is based on maximizing the Euclidean distance between the candidate point and the 

nearest neighbor point in the existing sample set, as well as maximizing the estimated variance of 

the surrogate model at the candidate point. Optimization Directed INcremental (ODIN) sampling 

adds new sample points based on a space-filling criterion and by exploiting the regions around the 

previously identified best solution (Smith, 2015). The ODIN sample point score is based on 

maximizing the nearest neighbor distance to the existing sample set and minimizing the distance 

between the candidate sample point and the current best solution for the optimum location of the 

optimization problem. ODIN-MAS is a hybrid approach combining the MAS and ODIN sampling 

methods. The sample point score for ODIN-MAS is based on maximizing the nearest neighbor 
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distance and the estimated variance of the surrogate model at the candidate point while minimizing 

the distance to the current best solution (Smith, 2015). 

The expected improvement (EI) function (Eq. 7.3) is considered to be a robust global 

optimizer (Kleijnen et al., 2012). The sample point score for the EI sampling method is based on 

maximizing the value of the EI function (Bhosekar & Ierapetritou, 2018a). 

𝑛𝑛𝐸𝐸𝑛𝑛(𝑥𝑥) = ∆𝑛𝑛(𝑥𝑥) + 𝜎𝜎𝑛𝑛(𝑥𝑥)𝜑𝜑�−
|∆𝑛𝑛(𝑥𝑥)|
𝜎𝜎𝑛𝑛(𝑥𝑥) � −

|∆𝑛𝑛(𝑥𝑥)|𝜙𝜙�−
|∆𝑛𝑛(𝑥𝑥)|
𝜎𝜎𝑛𝑛(𝑥𝑥) � (7.3) 

In Eq. (7.3), φ and ϕ, are the normal cumulative distribution function and probability distribution 

function, respectively, 𝜎𝜎𝑛𝑛(𝑥𝑥) is the model variance at the set of decision variables, 𝑥𝑥, and ∆𝑛𝑛(𝑥𝑥) 

is the difference between the model estimate of 𝑖𝑖(𝑥𝑥) and the best value of 𝑖𝑖(. ) observed thus far 

(Jones et al., 1998). 

7.3.3 Results for Bounds Cutting and Sampling Methods 

 Decisions were made for the structure of pyBOUND using the suite of 127 test functions 

described in Section 4.1. Results used for selecting the bounds cutting method, the adaptive 

sampling method, and the termination criteria for stage 1 of the algorithm are presented in Figs. 

7.3, 7.4, and 7.5. Figures 7.3 and 7.4 show the fraction of the test functions for which each of the 

cutting methods (Wide, Intersection, Average) resulted in an infeasible constrained approximation 

model and for which each cutting method resulted in no reduction in the decision variable bounds 

at the end of the RF bounds reduction stage. Each of the four potential sampling methods was 

applied with all three cutting methods.  

The “Average” cutting method resulted in the highest fraction of infeasible models (Fig. 

7.3). The majority of these infeasibilities occurred for test functions with lower input dimensions 

(less than 10). Although the “Wide” cutting method resulted in infeasible runs for a small fraction 
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of the test functions with only one of the potential sampling methods, it had the highest fraction of 

test functions for which stage 1 was not able to provide any reduction to the search space (Fig. 

7.4). For both the “Wide” and “Intersection” cutting methods, the majority of the functions that 

did not achieve any reduction in the search space were also at lower input dimensions. Based on 

these results, the “Intersection” cutting method was selected for optimization problems with less 

than 10 input dimensions, and the “Average” cutting method was selected and implemented for 

problems with 10 or more input dimensions. 

 
Figure 7.3 - Fraction of test functions with infeasible models for RF stage of pyBOUND 
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Figure 7.4 - Fraction of test functions with no reduction in decision variables bounds for RF 

stage of pyBOUND 

 Figure 7.5 depicts the fraction of the test functions for which the true optimum of the 

function was cut out of the reduced search space during the RF bounds reduction stage as a function 

of the fraction of the original search space that is reduced. These results were obtained using the 

“Wide” cutting method. In general, the ODIN sampling method resulted in the lowest fraction of 

the true optima being cut out of the search space with increasing search space reduction, with no 

cutting for any of the functions occurring until 80% of the original search space had been removed 

by the algorithm. Based on these results, the ODIN sampling method was selected for updating 

the RF model training set with a termination criterion of an input dimension dependent maximum 

amount of reduction in the search space. This termination criterion was applied to avoid removing 

the true solution of the optimization problem from the search space. The final configuration for 

the RF stage of the algorithm is summarized in Fig. 7.6. 
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Figure 7.5 - Fraction of test functions with the actual location cut out of the reduced search 

space vs the fraction of the original search space volume removed (“Wide”) 
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Figure 7.6 - Random forest (RF) model bounds generation step. (ODIN = Optimization Directed 

INcremental sampling) 
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7.4 pyBOUND Stage 2: Refinement of Solution with Multivariate Adaptive Regression 

Splines (MARS) Models 

 Once a suitable reduction of the search space is achieved from Stage 1, the next step in the 

pyBOUND algorithm is to refine that solution with a local search in the now reduced search space. 

MARS models were chosen for this stage of the algorithm as previous results have indictaed that 

MARS models are able to make accurate predictions for a variety of functional forms (Williams 

& Cremaschi, 2021b). Similar to the first stage, a surrogate model is constructed and iteratively 

improved with adaptive sampling. Based on the final form of the trained MARS surrogate model, 

a deterministic optimization problem is formulated and solved to refine the solution. MARS 

models result in MINLP optimization models, which are solved with ANTIGONE (Misener & 

Floudas, 2014). ANTIGONE was selected because specific relaxations are incorporated into its 

solution algorithm to effectively handle the bilinear terms of the MARS MINLP (Misener & 

Floudas, 2014). 

New sample points are added in the second stage using adaptive sampling based on a hybrid 

of the ODIN sampling method and Mixed Adaptive Sampling (MAS) Eason and Cremaschi 

(2014), referred to here as ODIN-MAS. The hybrid algorithm was developed by Smith (2015) on 

the assumption that combining the exploitation advantages of the ODIN sampling algorithm with 

those of the MAS algorithm would perform better than the individual algorithms. This hybrid 

algorithm was chosen as the sampling method for the second stage because MARS models have 

been observed to exhibit poor approximation performance along the edges of the decision variable 

boundaries (Williams & Cremaschi, 2021b). The variance-reducing capability of the MAS 

algorithm is hypothesized to mitigate the edge effects of the MARS models.  
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ODIN-MAS requires an estimate of the MARS model variance. Currently, pyBOUND 

utilizes jackknife resampling (Berger, 2007) to estimate MARS model variance. In jackknife 

resampling, the variance is estimated by using a leave-one-out (LOO) strategy (Wong, 2015). With 

this method, a single data point is set aside (i.e., left out) for validation. The surrogate model is 

trained using the remaining data points, and a prediction is obtained for the data point for which 

the variance is being estimated. This process is repeated for each data point in the training set, 

resulting in a prediction for each. The model variance is then estimated as the variance of the 

aggregated LOO predictions. 

Termination criteria for the second stage include a maximum number of function 

evaluations and a maximum accuracy of the MARS model. The accuracy of the MARS models is 

assessed in the algorithm by calculating the R-squared regression coefficient. 

7.5 Computational Experiments 

 Fifty-four test problems were taken from a suite of optimization test functions in order to 

assess and compare the performance of pyBOUND for the minimization of black box models. The 

number of input dimensions of these functions varied from two up to 20 inputs. None of the test 

problems were used to make any of the decisions in designing the pyBOUND algorithm. Each test 

problem was used as a black box model for function evaluations in pyBOUND to estimate the 

global minimum of the test function. All of the test problems were implemented in Python 3.8. A 

table of the test problems and their related minimum values and optimum locations is provided in 

Appendix C. 

7.5.1 DFO Algorithms for Comparison 

 The optimization capabilities of pyBOUND were compared to three commonly used DFO 

algorithms: Stable Noisy Optimization by Branch and Fit (SNOBFIT; (Huyer & Neumaier, 2008)), 
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Nonlinear optimization with the Mesh Adaptive Search (MADS) Algorithm (NOMAD; (Le 

Digabel, 2011)), and Implicit Filtering (ImFil; (Kelley, 2011)). SNOBFIT combines a branching 

strategy to enhance the chance of finding a global minimum with a sequential quadratic 

programming method based on fitted quadratic models to have good local properties (Huyer & 

Neumaier, 2008). ImFil is a steepest descent search algorithm that builds a local surrogate of the 

objective function using a quasi-Newton method to explore the search space for the optimization 

problem solution. Gradients are approximated for the objective function using interpolation 

(Gilmore & Kelley, 1995). SNOBFIT and ImFil were implemented using the Scikit-quant package. 

NOMAD is a direct-search algorithm that generates a series of meshes with varying sizes. At every 

iteration, the goal of the algorithm is to generate a trial point on each mesh that improves the 

current best solution. If this goal is not achieved, a finer mesh is generated on the next iteration. 

NOMAD was implemented using the NOMAD software’s built-in Python interface. Computations 

were carried out on the Auburn University Easley HPC Cluster (Lenovo System X HPC Cluster) 

in Python 3.8. 

7.5.2 Performance Metrics 

 Two performance metrics were used for evaluating the quality of the optimization solutions 

obtained by each of the DFO methods: the normalized optimum gap, 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq. 7.4), and the 

optimum distance, 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq. 7.5), between the scaled optimum location found by the DFO 

algorithm (�̅�𝑥𝑜𝑜𝑜𝑜𝑡𝑡′ ) and the scaled actual optimum location of the test function (�̅�𝑥𝑜𝑜𝑜𝑜𝑡𝑡). In Eq. 7.5, the 

actual and predicted optimum decision variables are scaled to a value between 0 and 1 using the 

original decision variable bounds designated for the test problem. 

𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 =
𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚𝑙𝑙𝑔𝑔𝑜𝑜 − 𝑚𝑚𝑃𝑃𝑃𝑃𝑚𝑚𝑐𝑐𝑡𝑡𝑢𝑢𝑚𝑚𝑙𝑙

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑖𝑖𝑛𝑛
 (7.4) 
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𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 = ��̅�𝑥𝑜𝑜𝑜𝑜𝑡𝑡 − �̅�𝑥𝑜𝑜𝑜𝑜𝑡𝑡′ � (7.5) 

In Eq. 7.5, �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗� is the Euclidean distance between any two points 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗. 

7.6 Results and Discussion 

7.6.1 Results for Original Test Functions 

Figures 7.7 and 7.8 show results for the fraction of the original set of 127 test problems 

described in Section 4.1 for which pyBOUND was able to obtain 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq. 7.4) and 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq. 

7.5) values, respectively, below certain thresholds. The thresholds for 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 and 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 are 

0.00001 and 0.01, respectively. pyBOUND solved about 80% of the test functions for the objective 

function value (Fig 7.7) and solved about 60% of the test functions for the true optimum location 

(Fig 7.8). 

 

Figure 7.7 - Fraction of original test problems solved with 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 less than 0.00001 
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Figure 7.8 - Fraction of original test problems solves with 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 less than 0.01  

7.6.2 Results for New Test Problems 

The computational experiments for the DFO algorithm performance comparisons were 

executed using each algorithm (pyBOUND, ImFil, NOMAD, SNOBFIT) to estimate the minimum 

value of the new set of problems and the location of the global minimum with an increasing number 

of function evaluations. These new optimization problems were not used in the construction of 

pyBOUND. Then, these results were compared to the global minimum and its true location using 

two metrics 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq. 7.4) and 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 (Eq. 7.5). Results are summarized in Figs. 7.8 and 7.9, 

where we define a model as having located the optimum when it obtains a 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 or 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 value 

less than a threshold. The thresholds for 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 and 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 are 0.00001 and 0.01, respectively. 

Figure 7.9 shows results for how well each of the DFO algorithms estimates the minimum 

test function values for all the test problems (Fig 7.9a) and for only the test problems with higher 

input dimensions, greater than five (Fig 7.9b). When considering all test problems, pyBOUND 
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solves a lower fraction of the problems than both NOMAD and ImFil at less than 1000 function 

evaluations. However, when function evaluations are allowed to increase to the maximum allowed 

number of 2000, pyBOUND solves a higher fraction of the problems than any other method, 

yielding the minimum value of about 80% of the test problems (Fig 7.9a). This value is similar to 

the fraction of the test problems pyBOUND estimated the minimum function value. When 

considering test problems with high input dimensions, pyBOUND outperforms the other three 

algorithms even at lower numbers of function evaluations, estimating the highest fraction of the 

test problem optimum values. These results indicate that, in general, pyBOUND can successfully 

find the optimum values for black-box problems with a similar level of performance to existing 

algorithms. Results for test problems with higher input dimensions may indicate that pyBOUND 

performs better than existing algorithms for black-box optimization problems with a high 

dimensionality.  
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Figure 7.9 - Fraction of new test problems solved with 𝑔𝑔𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 less than 0.00001 for (a) all test 

problems and (b) test problems with input dimensions greater than 5 

 

 

 

 

(a) 

(b) 
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Figure 7.10 - Fraction of new test problems solves with 𝑑𝑑𝑛𝑛𝑜𝑜𝜀𝜀𝑚𝑚 less than 0.01 

 

 Figure 7.10 shows results for how well each of the DFO algorithms locates the true 

optimum decision variable values for the 54 test problems. Overall, pyBOUND is able to estimate 

the true optimum for the highest fraction of the test problems out of any of the methods tested. 

While the three comparison algorithms performed comparably to pyBOUND for estimating the 

minimum objective function value, they did not perform as well for locating the optimum decision 

variable values. These results may indicate that the comparison algorithms became trapped in local 

optima a larger fraction of the time than pyBOUND, and, thus, were still able to estimate objective 

function values in close approximation to the true minimum value but not the true optimum 

decision variable values. In general, pyBOUND outperformed the existing algorithms for locating 

the true optimum decision variable values for these 54 test problems. 

7.7 Conclusions and Future Directions 

 Derivative-free optimization of black-box problems using surrogate-based optimization 

has been successfully applied in many algorithms. The proposed algorithm, pyBOUND, was 
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developed to address the difficulty in scaling DFO methods to high dimensionality problems. The 

results for the performance of pyBOUND demonstrate that the algorithm is able to estimate 

optimum values with similar performance to three commonly used DFO algorithms and provide 

evidence that pyBOUND may exhibit improved performance to existing algorithms for both high 

dimensionality problems and for locating the true optimal decision variable values. Future work 

on pyBOUND will focus on further refinement of the MARS stage of the algorithm, in order to 

reduce the amount of time for both solution of the MARS models and estimation of the model 

variance. 
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Chapter 8 – Conclusions and Recommendations for Future Work 

 In this dissertation, we developed surrogate models for optimization of processes as well 

as a surrogate-based optimization algorithm for derivative-free optimization of expensive black-

box simulations. 

8.1 Systematic Selection of Surrogate Modeling Techniques for Surface Approximation and 

Surrogate-Based Optimization 

 In Chapter 4, we comprehensively investigate and compare the performance of several 

different surrogate modeling techniques for both approximating functional relationships and 

surrogate-based optimization, and to link that performance to the characteristics of the data 

involved in the application. The results of the study provided general ‘rules of thumb’ for selecting 

modeling techniques. We used the results of Chapter 4’s study to construct PRESTO (described in 

Chapter 5). PRESTO recommends surrogate modeling techniques for approximating a dataset with 

91% accuracy and 90% precision and for performing surrogate based-optimization with 98% 

accuracy and 99% precision. 

 Recommendations for extending the surrogate modeling selection work include adding 

more real datasets to the training data for the PRESTO and focusing on using a wider variety of 

sampling methods, not just space-filling ones. Future work can also focus on including noisy data 

in the analysis, as all the test data used in this study were taken from smooth, continuous functions. 

8.2 Surrogate-Based Optimization Using Random-Forests 

 In Chapter 6, we developed a method for automatically generating and solving an 

optimization problem using a RF model to approximate the objective function. This method can 

be used for surrogate-based optimization of complex models using only input-output data from 
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those models. While the resulting MILPs provide accurate estimates for the location of the 

optimum points for a large proportion of the test functions investigated, the large solution times 

required provide a significant obstacle for solving the necessary models to achieve in an accurate 

location in some cases. Future work can focus on decomposition solution approaches in order to 

decrease the solution time required for larger RF models. 

8.3 pyBound (PYthon-based Black box Optimization Using raNDom forests) 

 Chapter 7 describes the development of pyBOUND (PYthon-based Black box 

Optimization Using raNDom forests). The performance analysis of pyBOUND demonstrated that 

the algorithm could estimate optimum values with similar performance to three commonly used 

DFO algorithms. The analysis also provides evidence that pyBOUND may exhibit improved 

performance to existing algorithms for both high dimensionality problems and for locating the true 

optimal decision variable values. Recommendations for future work on pyBOUND include further 

refinement of the MARS stage of the algorithm to reduce the amount of time required to solve the 

MARS optimization problems and estimate the model variance. The current jackknife resampling 

method for estimating the MARS variance involves a leave-one-out strategy for estimating the 

model variance. This strategy requires training a high number of MARS models, which can 

become computationally expensive. Improvements to the algorithm could focus on the 

development of less expensive estimates of MARS variance. Developing decomposition 

approaches for the MARS model MINLP could reduce the algorithm solution time. Additional 

recommendations include testing the algorithm against a wider range of DFO algorithms with more 

test problems at higher input dimensions. Further investigation into pyBOUNDS’s performance 

for high dimensionality problems would provide value to its performance. 
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Appendix A – Supplementary Data for Cardiomyocyte Feature Selection 

Table A1.  Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum 

and maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte 

content is given. 

Feature Minimum Maximum Pearson Spearman 

FS1-

PCA 

FS1-

MARS 

FS1-

RF 

FS1-

GPR 

dd0 Cell Density 0.30 1.28 0.05 0.04  X   

dd0-dd1 Cell Density 

Gradient -0.76 2.63 0.13 0.28 
   X 

dd1 Cell Density 0.29 1.36 0.50 0.54   X  

dd1-dd2 Cell Density 

Gradient 0.03 3.57 -0.37 -0.01 
    

dd2 Cell Density 0.35 2.40 0.06 0.24     

dd2-dd3 Cell Density 

Gradient -0.46 4.13 -0.30 -0.18 
    

dd3 Cell Density  0.69 3.00 -0.18 -0.07     

dd3-dd5 Cell Density 

Gradient -0.49 0.81 0.38 0.31 
 X   

dd5 Cell Density 0.68 3.06 0.31 0.25     

dd5-dd7 Cell Density 

Gradient -0.79 0.40 0.17 0.22 
    

dd7 Cell Density 0.16 3.05 0.44 0.54   X  
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dd0 Aggregate Size 71.49 148.91 0.37 0.05 X X   

dd0-dd1 Aggregate 

Size Gradient -0.03 0.65 -0.51 -0.38 
    

dd1 Aggregate Size  79.61 199.12 0.05 -0.06 X    

dd1-dd2 Aggregate 

Size Gradient -0.19 0.52 -0.05 0.06 
    

dd2 Aggregate Size  121.07 177.55 0.12 0.15 X    

dd2-dd3 Aggregate 

Size Gradient -0.25 0.46 -0.13 -0.18 
    

dd3 Aggregate Size  114.85 219.12 -0.08 -0.16 X    

dd3-dd5 Aggregate 

Size Gradient -0.22 3.26 -0.20 0.08 
    

dd5 Aggregate Size  115.77 754.75 -0.23 -0.02 X    

dd7 Aggregate Size  106.29 439.52 0.03 0.21 X    

dd5-dd7 Aggregate 

Size Gradient -0.55 0.50 0.35 0.29 
  X  

Preculture Time [h] 45.00 56.00 -0.18 -0.17    X 

Table A1.1.  Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum and 

maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte content 

is given. 

 

Feature Minimum Maximum Pearson Spearman 

FS1-

PCA 

FS1-

MARS 

FS1-

RF 

FS1-

GPR 
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Start Preculture 

Perfusion [h after inoc] 

d1-d2 25.00 28.50 -0.51 -0.65 

   X 

IWP2 Treatment Time 

[h] 43.00 54.00 0.09 0.34 
 X  X 

Average DO 

concentration d0 19.40 155.99 0.07 0.18 
X    

Average DO 

concentration d1 20.01 146.91 0.07 0.27 
X    

Average DO 

concentration dd0 19.97 144.99 0.06 0.18 
X  X  

Average DO 

concentration dd1 19.89 143.00 0.12 0.23 
X    

Average DO 

concentration dd2 27.27 117.99 -0.09 -0.12 
X X   

Average DO 

concentration dd3 19.68 126.34 0.01 0.00 
X    

Average DO 

concentration dd4 19.94 197.68 0.14 0.14 
X    

Average DO 

concentration dd5 19.03 237.49 0.03 -0.05 
X    

Average DO 

concentration dd6 22.74 237.25 -0.17 -0.38 
X    

Average DO 

concentration dd7 14.14 214.26 -0.23 -0.45 
X    
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Average DO 

concentration time 

gradient d0 -355.00 238.56 0.31 0.40 

X  X  

Average DO 

concentration time 

gradient d1 -12.36 69.65 0.07 -0.04 

X    

Average DO 

concentration time 

gradient dd0 -5.80 2.76 0.00 0.03 

    

Average DO 

concentration time 

gradient dd1 -7.14 3.15 0.01 -0.01 

    

Average DO 

concentration time 

gradient dd2 -80.07 14.37 -0.14 -0.32 

    

Average DO 

concentration time 

gradient dd3 -4.23 8.50 0.14 0.11 

X    

Table A1.1.  Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum and 

maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte content 

is given. 
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Average DO 

concentration time 

gradient dd4 -52.10 3.47 -0.28 -0.34 

 X   

Average DO 

concentration time 

gradient dd5 -28.23 3.96 -0.03 -0.20 

X    

Average DO 

concentration time 

gradient dd6 -38.29 -2.38 0.02 -0.04 

X  X  

Average DO 

concentration time 

gradient dd7 -6.51 9.61 -0.17 0.11 

X   X 

Cell density normalized 

DO concentration dd0 26.10 325.81 -0.25 -0.27 
X    

Cell density normalized 

DO concentration dd1 21.51 242.12 -0.27 -0.26 
X    

Cell density normalized 

DO concentration dd2 21.77 110.53 -0.14 -0.11 
X    

Cell density normalized 

DO concentration dd3 15.29 95.74 -0.05 0.02 
X    

Cell density normalized 

DO concentration dd5 11.07 236.31 -0.16 -0.33 
X    

Cell density normalized 

DO concentration dd7 6.69 325.13 -0.16 -0.58 
X  X  



 175 

Average cell density 

normalized DO 

gradient dd0 -5.66 3.10 0.09 0.05 

    

Average cell density 

normalized DO 

gradient dd1 -5.00 3.59 0.10 0.08 

    

Average cell density 

normalized DO 

gradient dd2 -47.24 7.00 -0.10 -0.21 

  X X 

Average cell density 

normalized DO 

gradient dd3 -3.82 7.20 0.07 0.10 

X    

Average cell density 

normalized DO 

gradient dd5 -17.33 3.73 0.13 -0.15 

X   X 

Table A1.1.  Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum and 

maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte content 

is given. 

 

Average cell density 

normalized DO 

gradient dd7 -7.23 18.30 -0.12 0.13 

X  X  

dd0 Average 

acceleration of DO 

gradient -2114.51 1270.22 -0.19 -0.30 

X    
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dd1 Average 

acceleration of DO 

gradient -548.72 159.65 -0.26 -0.23 

X    

dd2 Average 

acceleration of DO 

gradient -717.88 569.36 -0.15 -0.13 

X    

dd3 Average 

acceleration of DO 

gradient -1403.97 6.14 -0.16 -0.26 

X    

dd5 Average 

acceleration of DO 

gradient -408.35 1810.40 0.18 0.12 

X    

dd7 Average 

acceleration of DO 

gradient -727.09 281.59 -0.19 -0.10 

X    

dd0 Average 

acceleration of cell 

density normalized DO 

gradient -3410.50 2190.03 -0.14 -0.37 

X  X  

dd1 Average 

acceleration of cell 

density normalized DO 

gradient -518.56 190.06 -0.25 -0.21 

X    

dd2 Average 

acceleration of cell -487.08 353.64 -0.14 -0.11 
X    
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density normalized DO 

gradient 

dd3 Average 

acceleration of cell 

density normalized DO 

gradient -684.86 8.96 -0.14 -0.26 

X    

dd5 Average 

acceleration of cell 

density normalized DO 

gradient -296.53 1149.46 0.19 0.11 

X    

dd7 Average 

acceleration of cell 

density normalized DO 

gradient -635.01 268.18 -0.19 -0.10 

X    

Overall Average pH 6.57 7.23 -0.14 -0.05     

Table A1.1.  Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum and 

maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte content 

is given. 

 

Overall density 

gradient -0.80 4.65 0.24 0.37 
 X   

Overall aggregate size 

gradient -0.03 2.99 -0.19 0.07 
    

d0 Average pH 6.86 7.26 0.04 -0.14     
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d0 Average pH 

Gradient -0.18 0.01 0.21 -0.06 
  X  

d1 Average pH 6.46 7.86 -0.12 -0.21     

d1 Average pH 

Gradient -0.21 0.01 -0.09 -0.01 
 X  X 

dd0 Average pH 6.37 7.73 0.16 0.26     

dd0 Average pH 

Gradient -0.23 0.08 -0.17 -0.25 
    

dd1 Average pH 5.15 7.87 -0.09 -0.11  X   

dd1 Average pH 

Gradient -0.26 0.26 0.20 -0.02 
    

dd2 Average pH 5.99 7.31 -0.42 -0.46  X X  

dd2 Average pH 

Gradient -0.18 0.01 0.51 0.49 
    

dd3 Average pH 6.50 7.36 -0.27 -0.16     

dd3 Average pH 

Gradient -0.17 0.02 0.25 0.12 
  X  

dd4 Average pH 6.09 7.24 -0.12 0.06     

dd4 Average pH 

Gradient -0.18 0.01 0.26 0.24 
    

dd5 Average pH 6.56 8.25 0.09 0.10     

dd5 Average pH 

Gradient -0.29 0.02 0.15 0.10 
   X 

dd6 Average pH 6.39 7.25 -0.23 -0.12     
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dd6 Average pH 

Gradient -0.11 0.02 -0.02 0.21 
    

dd7 Average pH 6.74 7.31 0.23 0.20     

dd7 Average pH 

Gradient -0.16 0.02 0.34 0.08 
    

dd0 Lactate 

Concentration 11.59 15.83 0.31 0.33 
    

dd1 Lactate 

Concentration 9.05 19.59 0.10 0.19 
X    

dd3 Lactate 

Concentration 1.00 18.73 0.07 0.19 
    

dd5 Lactate 

Concentration 10.46 20.38 0.10 0.04 
X    

dd7 Lactate 

Concentration 5.94 20.59 -0.02 -0.03 
    

Table A1.1.  Summary of Feature Selection Results for Feature Set 1 (X = selected). The minimum and 

maximum value as well as the Pearson and Spearman correlation with the dd10 cardiomyocyte content 

is given. 

 

dd0 Glucose 

Concentration 7.14 11.95 -0.24 -0.16 
    

dd1 Glucose 

Concentration 0.60 6.20 0.20 0.10 
    

dd3 Glucose 

Concentration 0.00 10.27 -0.08 -0.21 
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dd5 Glucose 

Concentration 0.00 6.91 0.03 0.05 
    

dd7 Glucose 

Concentration 0.00 8.33 -0.14 -0.23 
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Appendix B – PRESTO Training Data 

 

Test Function ALAMO ANN ELM GP MARS RBFN RF SVM 

Sphere_2D_50 1 0.991883 0.998527 0.999891 0.984819 0.995412 0.567829 0.972371 

Sphere_4D_50 1 0.679355 0.374345 0.999743 0.938708 0.885513 -0.20604 0.896715 

Sphere_6D_50 1 -0.32103 -1.38109 0.584517 0.6797 0.704757 -0.5477 0.773264 

Sphere_8D_50 1 -1.5 -0.99898 0.461843 -0.01391 0.533775 -0.82552 0.411296 

Sphere_10D_50 -1.5 -1.5 -1.5 0.212904 0.029458 0.340699 -1.2602 0.302759 

Ellipsoid_2D_50 1 0.999386 0.998998 0.999886 0.991959 0.982831 0.647666 0.975139 

Ellipsoid_4D_50 1 0.972754 0.095487 0.999729 0.934743 0.796317 0.063112 0.923058 

Ellipsoid_6D_50 1 0.012355 -0.24285 0.757335 0.906734 0.572044 -0.25715 0.755811 

Ellipsoid_8D_50 1 -1.5 -0.89361 0.610191 0.83531 0.40496 -0.62792 0.106989 

Ellipsoid_10D_50 1 -1.5 -1.07773 0.476375 0.636184 0.259156 -0.84942 -0.14107 

Sum of Different 

Powers_2D_50 0.998417 0.96248 0.99683 0.999323 0.983367 0.962979 0.531638 0.975553 

Sum of Different 

Powers_4D_50 -1.5 0.158583 -0.57195 0.749224 0.846154 0.713696 -0.25444 0.811213 
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Sum of Different 

Powers_6D_50 -1.5 -1.5 -0.23581 0.412089 0.055331 0.523253 -0.48272 -0.12269 

Sum of Different 

Powers_8D_50 -1.5 -0.88385 -1.5 0.258848 -0.26474 0.444601 -0.75403 -1.05526 

Sum of Different 

Powers_10D_50 -1.5 -0.96565 -1.5 0.077975 -0.18174 0.262125 -1.08251 -0.88772 

Sum of Squares_2D_50 1 0.99464 0.998302 0.99989 0.993516 0.963265 0.644871 0.97896 

Sum of Squares_4D_50 1 0.891122 0.03013 0.999644 0.928025 0.805632 0.043647 0.928945 

Sum of Squares_6D_50 1 -0.86844 -0.40176 0.826707 0.805668 0.611637 -0.37288 0.810521 

Sum of Squares_8D_50 1 -1.24093 -1.00597 0.666572 0.840446 0.430393 -0.92552 -0.12561 

Sum of Squares_10D_50 -1.5 -1.37587 -1.5 0.346557 0.477318 0.355969 -0.70161 -0.64066 

Trid_2D_50 1 0.999703 0.998419 0.999911 0.977877 0.997463 0.713511 0.911079 

Trid_4D_50 1 0.88689 0.423573 0.998636 0.756335 0.799795 -0.64207 0.873351 

Trid_6D_50 1 -0.63838 -0.41016 0.848318 -0.06127 0.453277 -1.11443 0.716932 

Trid_8D_50 -1.5 -1.02606 -0.86796 0.687593 -0.10428 0.293276 -1.41487 0.290363 

Trid_10D_50 -1.5 -0.98551 -1.5 0.28193 -0.04517 0.170072 -1.43021 -0.32451 

Perm_2D_50 0.999975 0.366541 0.999529 0.999869 1 0.996878 0.752834 0.932505 

Perm_4D_50 0.998425 -0.63391 0.435027 -0.10269 0.629348 0.620584 -0.69051 -1.5 
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Perm_6D_50 -1.5 -0.81575 -0.09012 -1.5 0.066267 0.088246 -1.21029 -1.5 

Perm_8D_50 -1.5 -0.64246 -1.5 -1.5 -0.46226 -0.1336 -1.47073 -1.5 

Perm_10D_50 -1.5 -0.63198 -1.5 -1.5 -0.48879 -0.20345 -1.63527 -1.5 

Bohachevsky_2D_50 1 0.998606 0.9983 0.999891 0.993516 0.963269 0.636029 0.978971 

Dixon_Price_2D_50 0.932253 0.998433 0.991308 0.998778 0.98754 0.899464 0.836493 0.776174 

Dixon_Price_4D_50 0.567243 0.412705 -0.04346 0.821688 0.948822 0.624614 0.208551 0.770469 

Dixon_Price_6D_50 -1.5 -0.31957 -0.45331 0.597333 0.583042 0.4606 -0.22687 0.529303 

Dixon_Price_8D_50 -1.5 -1.10185 -0.58201 0.47543 0.502895 0.362318 -0.83221 0.011865 

Dixon_Price_10D_50 -1.5 -1.08656 -1.5 -0.0153 0.037613 0.23744 -0.61435 -1.5 

Rosenbrock_2D_50 0.992232 0.999572 0.994771 0.999501 0.997448 0.965528 0.944532 0.833608 

Rosenbrock_4D_50 0.973538 0.699565 -0.76041 0.949872 0.959903 0.650476 0.509064 0.176287 

Rosenbrock_6D_50 -1.5 0.071869 0.002001 0.718071 0.921816 0.51107 0.311985 -0.1023 

Rosenbrock_8D_50 -1.5 -0.61521 -0.59402 0.60082 0.868788 0.497417 -0.03383 -0.05657 

Rosenbrock_10D_50 -1.5 -0.77959 -1.30608 0.380086 -0.15048 0.257544 -0.41694 -0.12439 

3Hump_2D_50 0.990801 0.998725 0.634506 0.997668 0.992859 0.89648 0.810089 0.163489 

6Hump_2D_50 0.894824 0.928145 0.715906 0.931298 0.909716 0.744162 0.528215 0.248031 

Booth_2D_50 1 0.997037 0.998949 0.999275 0.996986 0.992131 0.635283 0.860427 

Matyas_2D_50 1 0.998969 0.997691 0.999909 0.993636 0.994159 0.218241 0.971831 
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McCormick_2D_50 0.989584 0.992434 0.998515 0.998813 0.983295 0.98368 0.363914 0.884559 

Zakharov_2D_50 0.974013 0.998206 0.999339 0.995958 0.980524 0.988421 0.467876 0.777433 

Zakharov_4D_50 0.766549 0.987558 0.37432 0.929132 0.697904 0.401263 -0.80022 0.264688 

Zakharov_6D_50 -1.5 0.953243 0.376145 0.872863 0.693764 -0.08837 -1.08565 -0.02681 

Zakharov_8D_50 -1.5 0.792505 -1.5 0.730693 0.251604 -0.13102 -1.01908 -0.56637 

Zakharov_10D_50 -1.5 0.969553 -1.5 0.507132 0.169522 -0.20514 -1.39108 -1.1121 

PowerSum_4D_50 0.753261 0.523696 0.268972 0.736593 0.651823 0.353438 -0.26695 0.353632 

Beale_2D_50 0.883135 0.379235 0.757562 0.838555 0.533899 0.598431 -0.38028 0.310821 

Branin_2D_50 0.902476 0.987024 0.989747 0.995485 0.956918 0.896405 0.436637 -1.5 

GoldsteinPrice_2D_50 0.753127 0.935189 0.875279 0.93931 0.901397 0.772101 0.260905 0.676832 

StyblinskiTang_2D_50 0.990015 0.477489 0.932555 0.969359 0.921375 0.539851 0.486645 -1.29549 

StyblinskiTang_4D_50 0.965141 -0.8427 -0.59956 -0.00381 0.333815 -0.13993 -0.11531 -1.5 

StyblinskiTang_6D_50 -1.5 -1.5 -1.5 -0.12084 -0.5768 -0.21063 -0.88605 -1.5 

StyblinskiTang_8D_50 -1.5 -0.87544 -1.5 -0.37897 -0.70479 -0.05296 -0.95974 -1.5 

StyblinskiTang_10D_50 -1.5 -1.5 -1.5 -0.54389 -0.55778 -0.13132 -1.13684 -1.5 

Perm_db_2D_50 0.9826 0.985744 0.998268 0.989014 0.958297 0.929078 0.775503 0.838194 

Perm_db_4D_50 0.937618 0.931542 -0.54661 0.932948 0.915928 0.243678 0.45696 0.114804 

Perm_db_6D_50 0.770769 -0.64473 -1.5 0.865451 0.805461 -0.1296 0.194415 -1.32697 
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Perm_db_8D_50 0.485347 -0.40476 -1.5 0.795058 -1.5 -0.20775 -0.23886 -1.41371 

Perm_db_10D_50 -1.5 -0.19721 -1.5 -0.01216 -0.61029 -0.23808 -0.52584 -0.34579 

Shekel_4D_50 -0.08537 -1.02119 -1.37698 -0.10286 -0.02331 0.323784 -0.99064 -1.5 

Colville_4D_50 0.676627 0.111371 -0.41437 0.781178 0.946919 0.529135 0.346001 0.661308 

Powell_4D_50 0.7188 0.510888 0.39547 0.954988 0.827737 0.54731 -0.51499 0.793735 

Powell_8D_50 -1.5 -0.26491 -1.14723 0.705512 -0.04561 0.064764 -1.04633 0.129459 

Hartmann_6D_50 0.035418 -0.11686 -1.20856 0.265293 -0.14614 -0.06027 -1.34079 -0.10586 

Ackley_2D_50 0.361025 -0.021 0.081351 -1.5 0.067319 0.146373 -0.04714 0.500436 

Ackley_4D_50 -0.03556 -0.03498 -1.07313 -1.5 -0.00648 -1.5 -2.26317 -0.05641 

Ackley_6D_50 -0.02439 -1.5 -1.5 -1.5 -0.07574 -1.5 -4.88074 -1.5 

Ackley_8D_50 -0.06612 -0.18937 -1.5 -1.5 -0.09281 -1.5 -6.71234 -1.5 

Ackley_10D_50 -0.13747 -0.36433 -1.5 -1.5 -0.18032 -1.5 -7.76696 -1.5 

Griewank_2D_50 0.999813 0.999208 0.999 0.999718 0.984617 0.995271 0.581613 0.974332 

Griewank_4D_50 0.99997 0.038515 0.372949 0.999764 0.950531 0.885808 -0.24061 0.899717 

Griewank_6D_50 0.999877 -0.46188 -0.37019 0.585474 0.679556 0.706134 -0.53773 0.77306 

Griewank_8D_50 0.999954 -1.5 -1.5 0.461365 -0.01397 0.535432 -1.05924 0.411178 

Griewank_10D_50 0.782419 -1.5 -1.5 0.211298 -0.00474 0.342059 -1.2862 0.303024 

Schwefel_2D_50 0.096824 0.018579 -0.17047 0.060478 0.017776 -0.16663 -0.2473 -1.5 
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Schwefel_4D_50 -0.02777 -1.5 -0.46668 -0.30795 -0.14429 -0.42285 -0.85269 -1.5 

Schwefel_6D_50 -0.52967 -0.76992 -0.67431 -0.35197 -0.30092 -0.34188 -1.19393 -1.03563 

Schwefel_8D_50 -1.06399 -1.5 -1.5 -0.6703 -0.25881 -0.30694 -1.2439 -1.5 

Schwefel_10D_50 -1.5 -1.5 -1.5 -0.82853 -0.59806 -0.32616 -1.21411 -1.41275 

Rastrigin_2D_50 0.208071 0.187672 -0.29457 0.125208 0.384824 0.143072 -0.19374 -1.08402 

Rastrigin_4D_50 0.104287 -0.40768 -0.56606 -0.09094 -0.01708 0.019158 -0.73407 -0.71862 

Rastrigin_6D_50 -1.5 -0.51239 -0.47901 -0.41388 -0.24162 0.049814 -1.10641 -1.5 

Rastrigin_8D_50 -1.5 -1.5 -1.5 -0.91548 -0.00235 0.111212 -1.14611 -1.5 

Rastrigin_10D_50 -1.5 -1.5 -1.31349 -0.98443 -0.21492 0.116979 -1.33907 -1.34839 

Levy_2D_50 0.536222 0.306399 0.397654 0.979847 0.460678 0.408935 0.471569 -0.10023 

Levy_4D_50 0.267984 -0.00247 -0.1784 -0.15818 0.244106 0.213374 -0.64872 -0.66246 

Levy_6D_50 0.237066 -0.37611 -1.5 0.116743 -0.19761 0.229232 -0.96031 -1.04134 

Levy_8D_50 -1.5 -1.5 -1.5 -0.1159 -0.49646 0.265537 -1.33308 -1.2973 

Levy_10D_50 -1.5 -1.05914 -1.5 -0.31045 -0.41203 0.181455 -1.42015 -1.5 

Cross_IT_2D_50 -0.022 -1.5 -0.17428 -0.72824 -0.02877 -0.09398 -0.73056 -1.5 

Drop_Wave_2D_50 0.109282 -0.66164 -0.1551 -1.5 0.107558 0.008478 -1.24592 -0.85612 

Eggholder_2D_50 -0.07513 -1.5 -0.3907 -0.12616 -0.00036 -0.42873 -2.15016 -1.5 

Holder_2D_50 0.152205 0.260596 0.105227 0.18093 0.276957 0.176985 -0.42813 -0.20458 
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Sphere_15D_50 -179.711 -9.8657 -2.04612 -0.62386 -0.57402 -0.14315 -1.39023 0.05799 

Sphere_20D_50 -1023.52 -6.94551 -2.10197 -0.99494 -0.51106 -0.3626 -1.38987 -0.00863 

Sum of Squares_15D_50 -273.808 -4.48563 -1.66883 0.073638 0.037495 -0.07413 -1.55792 -0.17834 

Sum of Squares_20D_50 -12423.4 -5.27736 -2.99793 -0.39559 0.023466 -0.25744 -1.35164 -0.66812 

Sum of Different 

Powers_15D_50 -491.756 -2.30014 -4.31176 -0.76535 -0.847 -0.15915 -1.47174 -0.98963 

Sum of Different 

Powers_20D_50 -1921.03 -3.785 -2.65157 -0.79926 -1.39439 -0.28044 -1.61379 -0.93145 

Trid_15D_50 -1154.78 -4.24324 -1.85249 -0.04945 -0.06158 -0.20677 -1.66054 -0.5681 

Trid_20D_50 -19720.6 -4.35131 -2.30716 -0.81235 -1.34902 -0.3887 -1.77885 -0.90441 

Zakharov_15D_50 -81.0491 -0.74462 -12.4229 0.357708 -0.79621 -0.34399 -1.42689 -0.66751 

Zakharov_20D_50 -100.768 -2.43007 -51.4726 -0.03045 -0.42692 -0.36265 -1.45078 -0.55664 

StyblinskiTang_15D_50 -1874.33 -2.60192 -3.88406 -1.81399 -1.07426 -7.98944 -1.53839 -7.97376 

StyblinskiTang_20D_50 -8421.55 -4.07232 -1.81361 -1.58494 -0.36025 -11.0167 -1.67938 -2.42728 

Ackley_15D_50 -0.37482 -1461.6 -349.337 -366.021 -0.39687 -0.64413 -8.1502 -40.6806 

Ackley_20D_50 -0.6389 -3341.96 -774.914 -1069.69 -0.71247 -3.71819 -12.4876 -19.9989 

Levy_15D_50 -900.773 -3.55876 -1.75725 -0.57354 -0.59877 -0.15819 -1.6137 -0.7892 

Levy_20D_50 -1289.68 -6.13656 -1.96066 -1.08188 -1.02164 -0.26444 -1.80867 -1.35183 
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Griewank_15D_50 -20393.8 -9.96287 -1.26968 -0.62846 -0.49188 -0.14246 -1.44313 0.058305 

Griewank_20D_50 -4549.34 -10.4029 -2.10484 -0.89054 -0.51384 -0.36233 -1.38469 -0.00836 

Schwefel_15D_50 -360.005 -1.55833 -1.84166 -0.88437 -1.64773 -0.49821 -1.48415 -0.75612 

Schwefel_20D_50 -975.97 -1.17584 -4.39523 -1.69883 -1.39663 -0.49422 -1.48156 -0.69417 

Rastrigin_15D_50 -1606.7 -18.8848 -3.29329 -2.39242 -0.0058 -0.18398 -1.5193 -1.10371 

Rastrigin_20D_50 -1549.54 -45.6624 -5.20567 -6.08304 -0.00687 -0.39529 -1.35988 -1.22331 

Ellipsoid_15D_50 -23340.3 -5.51581 -1.22467 -0.07337 -0.30575 -0.0926 -1.21187 -0.06556 

Ellipsoid_20D_50 -573.937 -5.17341 -1.62009 -1.1181 -0.88182 -0.27916 -1.36751 -0.08129 

Rosenbrock_15D_50 -520.629 -1.99403 -3.95239 -0.29097 -0.36454 -0.23029 -0.48699 -0.41526 

Rosenbrock_20D_50 -2506.72 -3.20402 -1.48249 -0.86472 -0.68147 -0.3882 -0.83075 -0.77982 

Dixon_Price_15D_50 -424.303 -4.30997 -2.28008 -0.10867 -0.43866 -0.147 -1.37387 -0.52721 

Dixon_Price_20D_50 -1286.49 -6.4999 -2.37561 -0.51435 -40.4408 -0.31098 -1.34138 -1.8528 

Sphere_2D_100 1 0.99965 0.999666 0.999969 1 0.997929 0.80736 0.982342 

Sphere_4D_100 1 0.981112 0.717242 0.999956 0.981313 0.902683 0.100553 0.956661 

Sphere_6D_100 1 0.927373 -0.04109 0.999821 0.956236 0.777296 -0.27995 0.886685 

Sphere_8D_100 1 -0.16667 -0.55563 0.999466 0.921064 0.6317 -0.56573 0.78665 

Sphere_10D_100 1 -0.16258 -0.43226 0.412037 0.876366 0.402262 -0.83289 0.5819 

Ellipsoid_2D_100 1 0.99982 0.999772 0.999972 1 0.9982 0.784364 0.974431 
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Ellipsoid_4D_100 1 0.993186 0.865404 0.999956 0.99719 0.917747 0.396185 0.96394 

Ellipsoid_6D_100 1 0.941299 -0.01079 0.999786 0.98161 0.730255 0.054482 0.886975 

Ellipsoid_8D_100 1 -0.23135 -0.48541 0.953564 0.966779 0.493607 -0.28148 0.816487 

Ellipsoid_10D_100 1 -0.38757 -0.4214 0.758963 0.945661 0.343529 -0.46984 0.552875 

Sum of Different 

Powers_2D_100 0.964339 0.999726 0.999159 0.999856 0.999216 0.998201 0.784405 0.980066 

Sum of Different 

Powers_4D_100 -0.8705 0.351187 0.701029 0.980536 0.971888 0.824231 0.213477 0.90923 

Sum of Different 

Powers_6D_100 -1.5 -1.05405 0.006733 0.633103 0.882001 0.624486 -0.23639 0.756212 

Sum of Different 

Powers_8D_100 -1.5 -1.5 -0.38393 0.481344 0.681914 0.550618 -0.35191 0.540724 

Sum of Different 

Powers_10D_100 -1.5 -1.5 -0.49091 0.244909 0.271795 0.409834 -0.59584 -0.352 

Sum of Squares_2D_100 1 0.997403 0.999615 0.999971 1 0.997465 0.799499 0.974431 

Sum of Squares_4D_100 1 0.991355 0.84042 0.999952 0.993305 0.88549 0.383976 0.95756 

Sum of Squares_6D_100 1 0.918967 -1.38269 0.999735 0.978326 0.757515 0.119054 0.914608 

Sum of Squares_8D_100 1 0.199777 -0.34657 0.991573 0.927089 0.575758 -0.41417 0.819993 
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Sum of Squares_10D_100 1 -1.2358 -1.5 0.805907 0.961139 0.420671 -0.64533 0.008161 

Trid_2D_100 1 0.999862 0.998768 0.999971 1 0.998915 0.882016 0.953138 

Trid_4D_100 1 0.99392 0.765222 0.999968 0.946347 0.950204 0.100484 0.923903 

Trid_6D_100 1 0.91078 -0.40977 0.999851 0.86273 0.819821 -0.42306 0.916463 

Trid_8D_100 1 -0.353 -1.45304 0.999146 0.534371 0.500224 -0.78055 0.850779 

Trid_10D_100 1 -0.76942 -0.51227 0.810362 -0.57863 0.379894 -1.00689 0.662435 

Perm_2D_100 0.999977 0.354091 0.999767 0.999977 0.99957 0.998208 0.911485 0.966209 

Perm_4D_100 0.998969 -0.5962 0.871317 -0.03338 0.996971 0.884642 -0.14143 -1.5 

Perm_6D_100 0.999747 -0.63426 0.660174 -1.5 0.716814 0.539328 -0.65706 -1.5 

Perm_8D_100 0.99968 -0.69584 -0.06751 -1.5 -0.51805 -0.03305 -1.23201 0.61802 

Perm_10D_100 -1.5 -0.58043 -1.5 -1.5 -0.08866 -0.1162 -1.70249 0.54859 

Bohachevsky_2D_100 1 0.99955 0.999615 0.999971 1 0.997465 0.798219 0.974427 

Dixon_Price_2D_100 0.962144 0.999376 0.999505 0.999708 0.998908 0.991053 0.9432 0.797246 

Dixon_Price_4D_100 0.942686 0.906834 0.571424 0.975191 0.985931 0.734701 0.433498 0.833402 

Dixon_Price_6D_100 0.896997 -0.496 -0.31681 0.752149 0.949484 0.668013 0.146407 0.803235 

Dixon_Price_8D_100 0.87422 -0.373 -0.31058 0.675906 0.844348 0.539473 -0.25009 0.605305 

Dixon_Price_10D_100 -1.5 -0.60645 -0.41276 0.558593 0.75461 0.403837 -0.4097 0.220653 

Rosenbrock_2D_100 0.99338 0.998946 0.999183 0.999674 0.998255 0.998734 0.953702 0.937547 
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Rosenbrock_4D_100 0.98977 0.994866 0.748634 0.989613 0.966956 0.802436 0.789707 0.763109 

Rosenbrock_6D_100 0.983894 0.14025 0.468232 0.867305 0.969937 0.649575 0.526087 0.427453 

Rosenbrock_8D_100 0.926319 -0.29036 0.083712 0.688164 0.903634 0.561604 0.389686 0.332927 

Rosenbrock_10D_100 0.405181 -0.48691 0.00463 0.6338 0.864206 0.412254 0.056163 0.258153 

3Hump_2D_100 0.992026 0.999273 0.997813 0.999372 0.998238 0.949417 0.94009 0.586264 

6Hump_2D_100 0.808768 0.987471 0.99506 0.994517 0.99115 0.889815 0.76585 0.33991 

Booth_2D_100 1 0.999339 0.996546 0.999911 0.999056 0.997493 0.845422 0.912401 

Matyas_2D_100 1 0.999711 0.998958 0.999968 0.999052 0.998752 0.776753 0.971712 

McCormick_2D_100 0.993771 0.99954 0.998953 0.99898 0.992643 0.997725 0.850223 0.935825 

Zakharov_2D_100 0.976602 0.999248 0.999783 0.99962 0.98898 0.996763 0.798448 0.876816 

Zakharov_4D_100 0.871351 0.942508 0.822502 0.963485 0.875454 0.699907 0.042634 0.490279 

Zakharov_6D_100 0.834467 0.991816 0.380813 0.931822 0.632164 0.178995 -0.38604 0.151404 

Zakharov_8D_100 0.541029 0.966513 -0.30276 0.90437 0.414211 0.019252 -1.2343 -0.1179 

Zakharov_10D_100 -1.5 0.991791 -1.24256 0.812326 0.387415 -0.13516 -1.20447 -0.97747 

PowerSum_4D_100 0.701677 0.926294 0.484722 0.923678 0.737328 0.683421 0.103222 0.450718 

Beale_2D_100 0.890003 0.828599 0.890697 0.934007 0.619134 0.873895 -0.30611 0.497737 

Branin_2D_100 0.965501 0.996191 0.991954 0.999137 0.987719 0.984671 0.75726 -1.5 

GoldsteinPrice_2D_100 0.763113 0.978624 0.979587 0.986968 0.925294 0.968991 0.641087 0.815855 
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StyblinskiTang_2D_100 0.992399 0.6237 0.9892 0.996846 0.976875 0.983588 0.715191 -0.38387 

StyblinskiTang_4D_100 0.984849 0.185946 -0.04802 0.360619 0.909603 -0.01087 0.226074 -1.10544 

StyblinskiTang_6D_100 0.961058 -0.53195 -0.18489 0.035917 0.709176 -0.01325 -0.37195 -1.5 

StyblinskiTang_8D_100 -1.5 -0.69141 -0.32279 -0.10375 0.364614 0.03226 -0.33692 -1.5 

StyblinskiTang_10D_100 -1.5 -1.42988 -1.5 -0.22812 0.057046 -0.01888 -0.6637 -1.27769 

Perm_db_2D_100 0.964041 0.992518 0.998844 0.997823 0.946315 0.997372 0.89644 0.9262 

Perm_db_4D_100 0.937608 0.937164 -0.17734 0.970156 0.907385 0.244771 0.788168 -0.28141 

Perm_db_6D_100 0.858219 -0.36116 -1.20282 0.93014 0.747633 -0.13163 0.608378 -0.58496 

Perm_db_8D_100 0.710783 -0.66132 -0.72571 0.934984 0.809493 -0.22716 0.418545 -0.64362 

Perm_db_10D_100 -1.5 -1.5 -0.98414 0.907809 0.687365 -0.21244 0.225983 -0.95269 

Shekel_4D_100 -0.02928 0.125881 0.11039 0.164864 0.14177 0.404813 -0.32742 -1.5 

Colville_4D_100 0.942485 0.867208 -0.03021 0.995901 0.985041 0.702282 0.639157 0.781973 

Powell_4D_100 0.90228 0.957928 -0.4955 0.993968 0.846287 0.629944 -0.04009 0.825404 

Powell_8D_100 0.732423 0.001133 -1.0269 0.821976 0.530489 0.156038 -0.59074 0.599838 

Hartmann_6D_100 0.227834 0.251753 -0.68461 0.366989 0.108299 0.171043 -0.91136 -0.38435 

Ackley_2D_100 0.425334 0.70875 0.510033 -1.44669 0.239919 0.643927 0.264013 0.644505 

Ackley_4D_100 -0.35862 -1.5 -0.13132 -1.5 -0.93236 -0.5471 -2.08849 0.17329 

Ackley_6D_100 -0.01372 -1.5 -1.5 -1.5 -1.5 -1.5 -3.98183 -0.66062 
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Ackley_8D_100 -0.05502 -1.5 -1.5 -1.5 -0.06417 -1.5 -4.46719 -1.5 

Ackley_10D_100 -0.12562 -0.18864 -1.5 -1.5 -0.11932 -1.5 -7.77997 -1.5 

Griewank_2D_100 0.999819 0.999631 0.999184 0.99979 0.999766 0.997979 0.794496 0.985984 

Griewank_4D_100 0.999973 0.985266 0.870127 0.999928 0.969005 0.902469 0.098762 0.957777 

Griewank_6D_100 0.999995 0.861048 0.10676 0.999833 0.943022 0.777748 -0.29115 0.889373 

Griewank_8D_100 0.999997 -0.79957 -0.37811 0.99951 0.919213 0.632642 -0.63683 0.785604 

Griewank_10D_100 0.999997 -1.5 -0.83193 0.410631 0.88907 0.427149 -0.8356 0.584749 

Schwefel_2D_100 0.144511 0.024465 -0.01052 0.225827 0.289089 -0.16029 0.061892 -1.5 

Schwefel_4D_100 0.065354 -0.05743 -0.10954 0.013203 -0.07005 -0.21493 -0.6459 -1.5 

Schwefel_6D_100 0.037441 -0.03025 -0.24414 -0.04356 -0.20329 -0.47031 -0.98137 -1.5 

Schwefel_8D_100 -0.47708 -1.14267 -0.78339 -0.44473 -0.03922 -0.43071 -1.07352 -1.5 

Schwefel_10D_100 -1.03086 -0.7016 -0.56705 -0.48638 -0.30925 -0.35524 -1.09425 -1.5 

Rastrigin_2D_100 0.344002 -0.04728 0.257224 0.170687 0.479212 0.122237 0.081978 -1.5 

Rastrigin_4D_100 0.225433 -0.03575 0.009374 -0.01592 0.276753 -0.15787 -0.65448 -0.48445 

Rastrigin_6D_100 -0.13438 -1.5 -0.38352 -0.01314 0.059962 -0.02456 -0.9365 -0.57165 

Rastrigin_8D_100 -0.98236 -1.5 -0.75364 -0.30245 -0.2052 0.029005 -1.13397 -1.34883 

Rastrigin_10D_100 -1.17346 -1.5 -0.59062 -0.53266 -0.64684 0.113615 -1.23337 -1.22309 

Levy_2D_100 0.678392 0.649477 0.077183 0.991821 0.943592 0.471336 0.812526 0.177742 
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Levy_4D_100 0.508912 0.171952 -0.02092 0.364377 0.548382 0.303737 0.042945 -0.42958 

Levy_6D_100 0.373461 -0.82096 -0.24866 0.185089 0.313556 0.240446 -0.40888 -0.7518 

Levy_8D_100 -0.17147 -1.097 -0.69295 0.122398 -0.03262 0.288655 -0.63977 -0.85862 

Levy_10D_100 -1.5 -1.5 -0.30288 0.09767 -0.19465 0.218847 -1.08598 -0.52653 

Cross_IT_2D_100 0.355755 0.226267 0.266149 -0.55916 0.051767 0.15522 -0.05831 -0.56527 

Drop_Wave_2D_100 0.228013 0.208136 0.125932 -1.5 0.150408 0.1039 -0.98652 -0.79842 

Eggholder_2D_100 -0.02658 -0.32071 -0.32999 0.342489 -0.06172 -0.80445 -1.88996 -1.5 

Holder_2D_100 0.377521 0.300838 0.114274 0.399522 0.376571 0.125071 -0.38402 -0.20563 

Sphere_15D_100 1 -4.61891 -0.76974 -0.07296 0.318527 -0.06355 -1.20445 0.380956 

Sphere_20D_100 -135633 -6.65182 -0.82295 -0.39472 -0.31862 -0.29499 -1.28239 0.175048 

Sum of Squares_15D_100 1 -3.32874 -0.49349 0.343819 0.458818 0.021935 -0.87706 -0.18465 

Sum of Squares_20D_100 -1633.07 -5.26714 -1.02498 0.050193 -30.2109 -0.21613 -1.0208 -0.06819 

Sum of Different 

Powers_15D_100 -370266 -1.66984 -0.68563 -0.04739 -0.07944 -0.06124 -1.0003 -0.64449 

Sum of Different 

Powers_20D_100 -10074.5 -2.86243 -0.92506 -0.24678 -0.18088 -0.2572 -1.24724 -0.82174 

Trid_15D_100 -413.514 -2.01178 -0.56875 0.213448 -0.3442 -0.13084 -1.22784 -0.35138 

Trid_20D_100 -939602 -3.68791 -1.78983 -0.08366 -0.77087 -0.38906 -1.49069 -0.59027 
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Zakharov_15D_100 -391.276 0.124606 -5.39704 0.694233 -0.7969 -0.317 -1.16995 -0.66209 

Zakharov_20D_100 -431.496 -0.56637 -16.083 0.540396 -0.16921 -0.33212 -1.02751 -0.62253 

StyblinskiTang_15D_100 -170.639 -2.51585 -0.70288 -0.62874 -0.78387 -8.33725 -1.05208 -1.6366 

StyblinskiTang_20D_100 -5286.51 -2.48305 -0.49842 -0.84771 -0.6966 -11.4528 -1.35812 -2.46108 

Ackley_15D_100 -0.3605 -838.892 -153.952 -76.6771 -0.24146 -2.72688 -6.0916 -10.797 

Ackley_20D_100 -0.62184 -1920.41 -326.582 -651.912 -0.40764 -1.57843 -7.22221 -13.7508 

Levy_15D_100 -530.085 -2.66509 -1.22043 -0.17959 -0.68693 -0.07477 -1.34705 -0.90935 

Levy_20D_100 -35768.1 -3.74071 -0.75929 -0.18584 -0.78689 -0.2388 -1.54952 -0.50568 

Griewank_15D_100 0.993283 -4.64028 -0.5374 -0.07431 0.385209 -0.0629 -1.23211 0.380775 

Griewank_20D_100 0.87662 -7.50464 -0.82432 -0.40076 -0.28119 -0.29473 -1.30121 0.175041 

Schwefel_15D_100 -674.401 -1.21062 -1.04949 -0.66133 -1.20287 -0.4779 -1.42391 -0.65559 

Schwefel_20D_100 -882.447 -2.21223 -3.08766 -1.07284 -1.04636 -0.54277 -1.46753 -1.23604 

Rastrigin_15D_100 -1349.92 -6.80422 -1.13365 -1.24732 -0.26674 -0.17617 -1.48785 -0.30097 

Rastrigin_20D_100 -2682.37 -17.3632 -1.41755 -1.89806 -408.412 -0.38405 -1.45162 -0.34758 

Ellipsoid_15D_100 1 -3.9619 -1.55759 0.326778 0.849871 -0.02959 -0.83311 0.055438 

Ellipsoid_20D_100 1 -6.2128 -0.47332 -0.20845 -0.29098 -0.24084 -1.18017 -0.15193 

Rosenbrock_15D_100 -390.441 -0.40476 -0.12977 0.592427 0.284645 -0.10759 -0.24556 0.016212 

Rosenbrock_20D_100 -1109.34 -1.3916 -0.49045 0.249173 -0.30072 -0.37114 -0.63169 -0.16587 
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Dixon_Price_15D_100 -628.462 -1.62503 -0.61525 0.40711 0.143907 -0.07602 -0.88208 -0.66442 

Dixon_Price_20D_100 -12405 -3.7154 -0.89822 0.062394 -67.4029 -0.25691 -1.00926 -0.92123 

Sphere_2D_200 1 0.999818 0.99983 0.999977 1 0.99959 0.896055 0.983602 

Sphere_4D_200 1 0.992352 0.878889 0.999981 1 0.978514 0.418393 0.971384 

Sphere_6D_200 1 0.985016 0.632009 0.999953 0.998001 0.827003 -0.00538 0.951962 

Sphere_8D_200 1 0.639883 0.051673 0.999892 0.96563 0.73601 -0.23206 0.918747 

Sphere_10D_200 1 -1.5 -0.2005 0.999677 0.958004 0.573536 -0.49236 0.843856 

Ellipsoid_2D_200 1 0.99989 0.999883 0.999978 1 0.998617 0.844945 0.975094 

Ellipsoid_4D_200 1 0.997384 0.983302 0.999981 0.999218 0.971204 0.562183 0.970839 

Ellipsoid_6D_200 1 0.973605 0.492198 0.999948 0.999715 0.845852 0.299883 0.95285 

Ellipsoid_8D_200 1 0.892473 -0.03616 0.994167 0.992324 0.658037 0.056029 0.924889 

Ellipsoid_10D_200 1 -0.01884 -0.08647 0.980247 0.955159 0.524508 -0.17972 0.8411 

Sum of Different 

Powers_2D_200 0.965078 0.99976 0.999343 0.999892 0.998936 0.997917 0.851457 0.975448 

Sum of Different 

Powers_4D_200 0.723677 0.423029 0.862193 0.996386 0.998446 0.876706 0.451397 0.923519 

Sum of Different 

Powers_6D_200 -1.5 0.76884 0.394734 0.75132 0.982926 0.694949 0.098486 0.831234 
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Sum of Different 

Powers_8D_200 -1.5 -0.1117 0.021265 0.620664 0.901513 0.631853 -0.16226 0.700068 

Sum of Different 

Powers_10D_200 -1.5 -0.90163 -0.08803 0.483529 0.810007 0.501085 -0.39864 0.408003 

Sum of Squares_2D_200 1 0.999186 0.999806 0.999978 1 0.998696 0.871759 0.975094 

Sum of Squares_4D_200 1 0.99688 0.977416 0.99998 0.999198 0.979738 0.601109 0.973801 

Sum of Squares_6D_200 1 0.965016 0.665232 0.999941 0.998623 0.813232 0.289942 0.962057 

Sum of Squares_8D_200 1 0.955805 0.02825 0.993986 0.996697 0.74067 0.073749 0.926106 

Sum of Squares_10D_200 1 0.376399 -0.19035 0.99625 0.975702 0.551819 -0.15301 0.860892 

Trid_2D_200 1 0.99943 0.999066 0.99999 1 0.999442 0.947466 0.954512 

Trid_4D_200 1 0.994666 0.990421 0.999989 0.993572 0.984814 0.401353 0.943189 

Trid_6D_200 1 0.957988 0.784977 0.999959 0.97316 0.882979 -0.15961 0.938718 

Trid_8D_200 1 0.957383 0.321243 0.999898 0.921074 0.780188 -0.52382 0.900433 

Trid_10D_200 1 0.293496 0.05587 0.999724 0.853658 0.571388 -0.94069 0.86727 

Perm_2D_200 0.999978 0.433105 0.999818 0.999994 1 0.999277 0.967012 0.983126 

Perm_4D_200 0.999135 -0.57932 0.984532 0.005877 0.999229 0.963326 0.270847 0.03539 

Perm_6D_200 0.999822 -0.62142 0.842975 -1.5 0.752068 0.716287 -0.42759 -1.5 

Perm_8D_200 0.999872 -0.61487 0.300041 -1.5 0.563159 0.300169 -1.02087 0.76686 
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Perm_10D_200 0.999922 -0.55692 -0.92345 -1.5 -0.14928 -0.03254 -1.57566 0.853605 

Bohachevsky_2D_200 1 0.999387 0.999806 0.999978 1 0.998696 0.869326 0.974771 

Dixon_Price_2D_200 0.966565 0.999637 0.999702 0.999897 0.999024 0.998887 0.968579 0.929645 

Dixon_Price_4D_200 0.956467 0.980038 0.743902 0.996741 0.989611 0.808083 0.661836 0.86546 

Dixon_Price_6D_200 0.943106 0.744308 0.332012 0.950206 0.99005 0.735041 0.333325 0.854972 

Dixon_Price_8D_200 0.949429 0.004946 0.051139 0.769367 0.970354 0.670239 0.085456 0.815164 

Dixon_Price_10D_200 0.916377 0.485476 -0.41575 0.703027 0.917587 0.533467 -0.02653 0.722816 

Rosenbrock_2D_200 0.995028 0.999036 0.999501 0.9999 0.999579 0.998472 0.985012 0.955934 

Rosenbrock_4D_200 0.993392 0.997879 0.909323 0.997595 0.993458 0.940803 0.872683 0.845712 

Rosenbrock_6D_200 0.990655 0.978474 0.578007 0.974566 0.991723 0.732214 0.627812 0.685778 

Rosenbrock_8D_200 0.987478 0.437981 0.388264 0.819124 0.977928 0.645638 0.458684 0.561884 

Rosenbrock_10D_200 0.97955 0.347104 0.380649 0.710717 0.968348 0.572787 0.261818 0.516381 

3Hump_2D_200 0.989037 0.999141 0.999416 0.999603 0.998821 0.996371 0.989557 0.768982 

6Hump_2D_200 0.672994 0.956045 0.998738 0.998826 0.999012 0.994254 0.838314 0.782116 

Booth_2D_200 1 0.999631 0.999558 0.999977 1 0.998794 0.949072 0.938488 

Matyas_2D_200 1 0.999832 0.999349 0.999988 1 0.99822 0.913293 0.972474 

McCormick_2D_200 0.994541 0.999484 0.999142 0.99927 0.99292 0.997904 0.928821 0.945781 

Zakharov_2D_200 0.977709 0.999693 0.997582 0.999826 0.991445 0.998108 0.945739 0.893762 
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Zakharov_4D_200 0.916217 0.993713 0.989421 0.994302 0.895699 0.956234 0.446596 0.781601 

Zakharov_6D_200 0.882411 0.994098 0.834732 0.963392 0.815855 0.360756 0.077539 0.503316 

Zakharov_8D_200 0.838451 0.997028 0.455427 0.957258 0.436355 0.166781 -0.56145 0.129526 

Zakharov_10D_200 0.78002 0.992723 -0.68585 0.876926 0.485268 -0.00617 -0.66176 -0.23254 

PowerSum_4D_200 0.943419 0.786341 0.838609 0.964849 0.876552 0.892585 0.357408 0.649295 

Beale_2D_200 0.899173 0.947187 0.996983 0.993066 0.303733 0.981536 -0.66078 0.695728 

Branin_2D_200 0.972976 0.998292 0.999166 0.999661 0.993968 0.997903 0.903917 -1.5 

GoldsteinPrice_2D_200 0.787703 0.938125 0.997334 0.99733 0.972962 0.993561 0.836872 0.877464 

StyblinskiTang_2D_200 0.994238 0.666087 0.998323 0.998586 0.994841 0.998531 0.733281 -0.21106 

StyblinskiTang_4D_200 0.991802 0.264073 0.143279 0.985166 0.978323 0.280935 0.336063 -0.50997 

StyblinskiTang_6D_200 0.985479 -0.39652 -0.17671 0.304134 0.949769 0.064957 0.11936 -0.84185 

StyblinskiTang_8D_200 0.985361 -0.19044 -0.21085 0.231946 0.808326 0.063083 -0.16754 -0.96863 

StyblinskiTang_10D_200 0.984592 -0.28757 -0.35884 0.059154 0.724754 0.016931 -0.44823 -1.45684 

Perm_db_2D_200 0.968134 0.997902 0.999226 0.99924 0.957421 0.997422 0.952989 0.946884 

Perm_db_4D_200 0.946653 0.949768 0.325678 0.98258 0.941125 0.351398 0.87463 0.242627 

Perm_db_6D_200 0.914079 0.94552 -0.09466 0.96457 0.940424 -0.04198 0.863859 0.108007 

Perm_db_8D_200 0.790035 0.17447 -0.38519 0.963132 0.925096 -0.19855 0.783105 -0.06803 

Perm_db_10D_200 0.63291 0.369778 -1.16754 0.957299 0.909499 -0.20046 0.672092 -0.30095 



 200 

Shekel_4D_200 0.417063 0.033955 0.390318 0.320211 0.389425 0.585199 -0.12365 -1.5 

Colville_4D_200 0.949572 0.998708 0.765646 0.999031 0.991599 0.797875 0.730587 0.798635 

Powell_4D_200 0.922037 0.95819 0.779326 0.998152 0.950146 0.898562 0.212824 0.864881 

Powell_8D_200 0.882435 0.198146 -0.09135 0.891319 0.818271 0.427284 -0.04207 0.805865 

Hartmann_6D_200 0.329122 0.223876 0.106812 0.641357 0.285149 0.352589 -0.6833 0.457387 

Ackley_2D_200 0.493708 0.80172 0.736576 0.857395 0.376523 0.617753 0.265979 0.705883 

Ackley_4D_200 0.407019 -1.5 0.29503 -1.5 -0.69921 0.212316 -0.97231 0.273438 

Ackley_6D_200 0.103835 -0.02729 -0.51483 -1.5 -0.9343 -0.87327 -1.7859 -0.33636 

Ackley_8D_200 -0.04964 -1.5 -1.5 -1.5 -0.0354 -1.01 -2.7704 -1.5 

Ackley_10D_200 -0.11988 -1.5 -1.5 -1.5 -1.5 -1.5 -3.86258 -1.5 

Griewank_2D_200 0.999822 0.999577 0.999601 0.999802 0.999798 0.999404 0.896036 0.986915 

Griewank_4D_200 0.999978 0.996132 0.975012 0.999957 0.999888 0.979562 0.410807 0.970943 

Griewank_6D_200 0.999996 0.958977 0.608579 0.999953 0.990021 0.827324 0.010822 0.951963 

Griewank_8D_200 0.999998 -0.53794 -0.055 0.999898 0.962566 0.736309 -0.26132 0.918594 

Griewank_10D_200 0.999999 -1.5 -0.20168 0.99969 0.964544 0.574013 -0.50294 0.843237 

Schwefel_2D_200 0.157636 0.161605 0.249702 0.159997 0.773878 0.353142 0.547145 -1.5 

Schwefel_4D_200 0.128724 -1.5 0.014504 0.084389 0.261998 -0.31978 -0.32484 -1.5 

Schwefel_6D_200 0.115043 -0.0617 0.014838 -0.04853 0.140859 -0.39478 -0.63846 -1.5 
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Schwefel_8D_200 0.038252 -0.43704 -0.18768 -0.25101 -0.12761 -0.45651 -0.83624 -1.5 

Schwefel_10D_200 0.011067 -0.34575 -0.18644 -0.35639 -0.40137 -0.33184 -1.03906 -1.5 

Rastrigin_2D_200 0.504087 0.490546 0.485987 0.501632 0.486768 0.19725 0.372325 -1.5 

Rastrigin_4D_200 0.369426 0.320015 0.191642 0.059452 0.360863 0.140567 -0.46681 -0.4099 

Rastrigin_6D_200 0.297453 -0.04104 0.008786 -0.06146 0.379445 0.140009 -0.70525 -0.26962 

Rastrigin_8D_200 0.243487 -0.27912 -0.2752 -0.087 0.178034 0.10258 -0.91924 -0.36923 

Rastrigin_10D_200 0.047222 -0.22323 -0.41667 -0.22127 0.054926 0.102172 -1.03388 -0.17789 

Levy_2D_200 0.685197 0.665926 0.574143 0.993064 0.98647 0.63668 0.935363 0.175422 

Levy_4D_200 0.546534 0.300702 0.267294 0.406376 0.852546 0.334979 0.457725 -0.2586 

Levy_6D_200 0.529975 -0.14428 0.023929 0.401692 0.679021 0.275967 0.006299 -0.27814 

Levy_8D_200 0.472022 -0.06115 -0.07859 0.244809 0.627604 0.312658 -0.31273 -0.51179 

Levy_10D_200 0.402505 -0.27931 -0.21296 0.229599 0.324578 0.273611 -0.70559 -0.5306 

Cross_IT_2D_200 0.399461 0.202927 0.358555 -0.18468 0.469212 0.11974 0.310156 -0.52542 

Drop_Wave_2D_200 0.260811 0.25545 0.189965 -0.8102 0.112988 0.075107 -0.98535 -0.85436 

Eggholder_2D_200 -0.03686 -0.01009 -0.07603 0.599 -0.00106 -0.15554 -1.39607 -1.5 

Holder_2D_200 0.411098 0.473432 0.408782 0.729855 0.438439 0.395668 -0.32582 -0.19592 

Sphere_15D_200 1 -1.10596 -0.18012 0.103611 0.885795 0.009449 -0.79551 0.609669 

Sphere_20D_200 1 -2.94319 -0.58441 -0.07959 0.806231 -0.25571 -1.03455 0.536625 
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Sum of Squares_15D_200 1 -1.60616 -0.13131 0.853978 0.908208 0.081034 -0.55054 0.153405 

Sum of Squares_20D_200 1 -2.64931 -0.50699 0.553723 0.723246 -0.17554 -0.76779 0.27881 

Sum of Different 

Powers_15D_200 -6.11834 -1.35967 -0.19991 0.314967 0.414152 0.05269 -0.67896 -0.3395 

Sum of Different 

Powers_20D_200 -16997.5 -1.49528 -0.89793 0.175209 0.049481 -0.26377 -0.89108 -0.53989 

Trid_15D_200 1 -1.1554 -0.32189 0.72585 -0.03593 0.028136 -1.07258 0.57528 

Trid_20D_200 -8.94887 -1.48695 -0.41392 0.31508 -0.12746 -0.3015 -1.29148 -0.09315 

Zakharov_15D_200 -1.5917 0.767038 -3.12102 0.889578 0.271402 -0.2764 -0.88782 -0.16009 

Zakharov_20D_200 -1.09594 -0.25067 -7.55503 0.755626 0.302948 -0.33 -0.90208 -0.66452 

StyblinskiTang_15D_200 0.778489 -2.21122 -0.36875 -0.24801 0.100488 -8.42738 -0.698 -1.17408 

StyblinskiTang_20D_200 0.248396 -1.9166 -0.36496 -0.31676 -0.19603 -11.5435 -0.83135 -1.08219 

Ackley_15D_200 -0.35356 -712.02 -78.6763 -63.8104 -0.10715 -2.23492 -3.45269 -8.69487 

Ackley_20D_200 -0.61356 -11.8529 -144.962 -1062.87 -0.16098 0.070974 -5.36489 -12.0536 

Levy_15D_200 0.050259 -1.0422 -0.28584 0.193641 -0.23163 0.005206 -0.96598 -0.36653 

Levy_20D_200 -4.27687 -2.57086 -0.49569 0.039353 -0.48955 -0.2251 -1.23707 -0.47902 

Griewank_15D_200 0.999998 -1.09822 -0.18208 0.102262 0.8984 0.010028 -0.79658 0.611477 

Griewank_20D_200 0.999997 -3.4306 -0.32981 -0.0731 0.81817 -0.25546 -1.04434 0.536445 
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Schwefel_15D_200 -0.35354 -1.24923 -0.63553 -0.45386 -0.18729 -0.50494 -1.26614 -1.00282 

Schwefel_20D_200 -11.5228 -1.2842 -1.19632 -0.73198 -1.12964 -0.53657 -1.33332 -0.85648 

Rastrigin_15D_200 -1.1761 -5.33882 -0.44525 -0.61836 -0.40686 -0.18305 -1.18889 -0.09932 

Rastrigin_20D_200 -14.0494 -7.76826 -1.40439 -1.0837 -612.801 -0.35365 -1.28682 -0.1821 

Ellipsoid_15D_200 1 -1.20502 -0.23038 0.798292 0.868753 0.087065 -0.54179 0.305774 

Ellipsoid_20D_200 1 -1.18086 -0.21676 0.504959 0.790475 -0.18597 -0.84286 0.219933 

Rosenbrock_15D_200 0.550824 -0.41237 0.227697 0.643653 0.886534 0.06032 -0.113 0.358381 

Rosenbrock_20D_200 0.168131 -0.53004 0.004604 0.593593 0.789566 -0.31194 -0.34811 0.304644 

Dixon_Price_15D_200 0.676807 -0.98356 -0.21912 0.511586 0.836783 0.055484 -0.43084 -0.16074 

Dixon_Price_20D_200 -1.79887 -1.82254 -0.41316 0.36561 0.7026 -0.23679 -0.69579 -0.3843 

Sphere_2D_400 1 0.999696 0.999852 0.999981 1 0.999398 0.958331 0.983727 

Sphere_4D_400 1 0.990807 0.997655 0.999987 1 0.994541 0.624083 0.97561 

Sphere_6D_400 1 0.974552 0.787676 0.999984 1 0.943437 0.248207 0.965773 

Sphere_8D_400 1 0.931611 0.456962 0.999966 0.999438 0.812765 -0.05483 0.954387 

Sphere_10D_400 1 -0.01913 0.04905 0.999927 0.999304 0.687485 -0.25671 0.923238 

Ellipsoid_2D_400 1 0.999675 0.999898 0.999982 1 0.998506 0.959942 0.976304 

Ellipsoid_4D_400 1 0.99092 0.998921 0.999987 0.999126 0.990759 0.740812 0.975165 

Ellipsoid_6D_400 1 0.985747 0.690979 0.999981 0.999192 0.927103 0.484208 0.967774 
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Ellipsoid_8D_400 1 0.979106 0.124041 0.999955 0.999266 0.774351 0.253268 0.958376 

Ellipsoid_10D_400 1 0.949353 0.061668 0.996781 0.997227 0.666721 0.056368 0.941112 

Sum of Different 

Powers_2D_400 0.965434 0.99972 0.999457 0.999908 0.999348 0.99916 0.949303 0.976871 

Sum of Different 

Powers_4D_400 0.238831 0.908122 0.876977 0.998709 0.999153 0.979588 0.635574 0.930242 

Sum of Different 

Powers_6D_400 -1.5 0.812363 0.62638 0.980641 0.996563 0.790557 0.303425 0.850679 

Sum of Different 

Powers_8D_400 -1.5 0.724127 0.256014 0.698747 0.994067 0.670084 0.051733 0.750378 

Sum of Different 

Powers_10D_400 -1.5 0.131086 0.057524 0.596232 0.990881 0.586906 -0.19008 0.622271 

Sum of Squares_2D_400 1 0.998844 0.999831 0.999982 1 0.998905 0.959102 0.976068 

Sum of Squares_4D_400 1 0.992556 0.992203 0.999987 0.998947 0.992331 0.731073 0.973699 

Sum of Squares_6D_400 1 0.989861 0.697368 0.999981 0.999161 0.942406 0.477936 0.969618 

Sum of Squares_8D_400 1 0.972782 0.2991 0.999951 0.999211 0.810689 0.218584 0.960407 

Sum of Squares_10D_400 1 0.425936 0.041325 0.997051 0.998038 0.661833 0.042835 0.933858 

Trid_2D_400 1 0.999432 0.999278 0.999994 1 0.999051 0.981543 0.963012 
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Trid_4D_400 1 0.990563 0.997581 0.999994 1 0.992804 0.639202 0.953992 

Trid_6D_400 1 0.976504 0.847151 0.999987 0.999175 0.938965 0.174085 0.954467 

Trid_8D_400 1 0.948949 0.500943 0.999969 0.999806 0.869218 -0.20218 0.942358 

Trid_10D_400 1 0.917109 0.166941 0.999938 0.983842 0.751921 -0.53797 0.924982 

Perm_2D_400 0.999978 0.348701 0.999846 0.999998 1 0.999565 0.985618 0.98505 

Perm_4D_400 0.999205 -0.57087 0.99074 0.036406 0.99738 0.988854 0.54944 0.95127 

Perm_6D_400 0.99978 -0.57686 0.874437 -1.5 0.998085 0.891335 -0.14072 0.076109 

Perm_8D_400 0.999892 -0.58205 0.483222 -1.5 0.862808 0.553419 -0.81752 -1.5 

Perm_10D_400 0.999943 -0.54654 0.242635 -1.5 0.775111 0.201629 -1.17368 0.895034 

Bohachevsky_2D_400 1 0.999698 0.999831 0.999982 1 0.998905 0.958898 0.976274 

Dixon_Price_2D_400 0.967389 0.999638 0.999789 0.999956 0.998725 0.998876 0.989791 0.958183 

Dixon_Price_4D_400 0.964108 0.931252 0.837907 0.998917 0.992059 0.960689 0.771996 0.870512 

Dixon_Price_6D_400 0.962117 0.822754 0.694676 0.982879 0.993315 0.786632 0.523054 0.864853 

Dixon_Price_8D_400 0.960931 0.816301 0.338609 0.964569 0.990662 0.719541 0.287782 0.850422 

Dixon_Price_10D_400 0.955984 0.360551 0.076941 0.798305 0.987988 0.643162 0.127146 0.832585 

Rosenbrock_2D_400 0.995389 0.998358 0.999598 0.999948 0.998516 0.998756 0.994422 0.965431 

Rosenbrock_4D_400 0.994281 0.996107 0.955987 0.999499 0.998044 0.985081 0.923099 0.913496 

Rosenbrock_6D_400 0.99386 0.977201 0.732678 0.99091 0.995534 0.870376 0.804882 0.834822 
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Rosenbrock_8D_400 0.993231 0.963305 0.544857 0.979199 0.991135 0.730189 0.652874 0.735973 

Rosenbrock_10D_400 0.991593 0.528498 0.429493 0.928389 0.982797 0.647834 0.466107 0.658344 

3Hump_2D_400 0.991984 0.999284 0.999748 0.999683 0.998908 0.997991 0.997243 0.871867 

6Hump_2D_400 0.647121 0.994537 0.994531 0.999387 0.998766 0.997446 0.901497 0.858026 

Booth_2D_400 1 0.995523 0.999631 0.999991 1 0.998763 0.978486 0.946271 

Matyas_2D_400 1 0.999219 0.999169 0.999992 1 0.999188 0.979341 0.972613 

McCormick_2D_400 0.99477 0.998466 0.999285 0.99968 0.993858 0.998102 0.980557 0.946033 

Zakharov_2D_400 0.979281 0.997563 0.997779 0.999882 0.993772 0.996988 0.978953 0.907078 

Zakharov_4D_400 0.933203 0.99793 0.997297 0.996932 0.91102 0.982551 0.705563 0.839914 

Zakharov_6D_400 0.898846 0.998627 0.905664 0.992169 0.851709 0.84628 0.336519 0.677488 

Zakharov_8D_400 0.887197 0.989913 0.652272 0.97726 0.778605 0.531191 -0.01653 0.579384 

Zakharov_10D_400 0.87287 0.993593 -0.30346 0.935007 0.570934 0.215758 -0.4233 -0.0788 

PowerSum_4D_400 0.810685 0.882191 0.910182 0.98436 0.97293 0.955725 0.594382 0.755086 

Beale_2D_400 0.915509 0.858335 0.997936 0.998449 0.653778 0.993924 0.635997 0.780049 

Branin_2D_400 0.974496 0.996422 0.998411 0.999857 0.996614 0.997532 0.954371 -1.5 

GoldsteinPrice_2D_400 0.80186 0.982137 0.997497 0.998944 0.972649 0.996983 0.924842 0.93824 

StyblinskiTang_2D_400 0.991106 0.996601 0.998205 0.999223 0.999041 0.997211 0.832956 -0.069 

StyblinskiTang_4D_400 0.991186 0.337742 0.177536 0.996256 0.996011 0.879504 0.506128 0.301686 
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StyblinskiTang_6D_400 0.987347 0.091775 0.170285 0.449357 0.987379 0.153848 0.20412 -0.56928 

StyblinskiTang_8D_400 0.990072 0.036754 0.070966 0.327905 0.975825 0.124625 -0.03458 -0.62417 

StyblinskiTang_10D_400 0.981687 0.049363 -0.04194 0.207912 0.957876 0.084627 -0.2459 -0.96057 

Perm_db_2D_400 0.964197 0.922989 0.998373 0.999778 0.971939 0.998264 0.977431 0.95407 

Perm_db_4D_400 0.961591 0.946405 0.343505 0.990606 0.96908 0.761173 0.906623 0.27649 

Perm_db_6D_400 0.912716 0.946242 0.129327 0.971718 0.968993 0.048516 0.917208 0.124472 

Perm_db_8D_400 0.795347 -0.01084 -0.0783 0.966607 0.958703 -0.12859 0.892649 0.057008 

Perm_db_10D_400 0.716282 0.234653 -0.34817 0.962708 0.954217 -0.20351 0.850869 -0.00896 

Shekel_4D_400 0.457505 0.487617 0.627718 0.477724 0.511997 0.62046 -0.02087 -1.5 

Colville_4D_400 0.953732 0.999028 0.930896 0.999636 0.997799 0.96063 0.843357 0.815367 

Powell_4D_400 0.930099 0.968926 0.972259 0.9991 0.961439 0.968332 0.817657 0.871711 

Powell_8D_400 0.917297 0.804403 0.315575 0.975794 0.908758 0.580675 0.342768 0.836212 

Hartmann_6D_400 0.417395 0.508502 0.43962 0.879648 0.437493 0.7125 -0.23017 0.630687 

Ackley_2D_400 0.469666 0.79908 0.811102 0.901217 0.438699 0.850266 0.75906 0.751401 

Ackley_4D_400 0.51339 0.236607 0.482497 -0.46963 0.199572 0.527553 0.141093 0.577106 

Ackley_6D_400 0.090669 0.342441 0.189507 -1.5 -0.25624 -0.31729 -0.87297 0.076698 

Ackley_8D_400 -0.20073 -0.01684 -1.5 -1.5 -1.5 -0.6906 -1.22147 -1.01751 

Ackley_10D_400 -0.63751 -0.08892 -1.5 -1.5 -0.01415 -0.87486 -1.64499 -1.5 
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Griewank_2D_400 0.999824 0.999576 0.999662 0.999806 0.999814 0.999218 0.956695 0.987014 

Griewank_4D_400 0.999978 0.98972 0.961691 0.999965 0.999976 0.993969 0.623304 0.97528 

Griewank_6D_400 0.999996 0.97934 0.907866 0.999981 0.999615 0.943389 0.240772 0.966034 

Griewank_8D_400 0.999999 0.272142 0.5455 0.999966 0.999146 0.830183 -0.06476 0.954368 

Griewank_10D_400 1 -0.0191 0.04848 0.999929 0.98357 0.688482 -0.24661 0.92293 

Schwefel_2D_400 0.165454 0.098348 0.17238 0.233023 0.978788 -0.30804 0.638808 -1.5 

Schwefel_4D_400 0.161326 0.09383 0.079074 0.108493 0.662241 -0.32523 -0.03218 -1.5 

Schwefel_6D_400 0.123198 0.058277 0.015877 0.034737 0.423985 -0.48978 -0.38049 -1.45821 

Schwefel_8D_400 0.10546 0.090216 -0.03006 -0.17917 0.22287 -0.42893 -0.60447 -1.5 

Schwefel_10D_400 0.086154 0.027753 -0.03709 -0.2343 -0.0906 -0.35884 -0.87152 -1.5 

Rastrigin_2D_400 0.507857 0.501167 0.503043 0.507221 0.617343 0.191664 0.464774 -1.5 

Rastrigin_4D_400 0.49367 0.483028 0.339621 0.26294 0.519471 0.236068 -0.20046 -0.4138 

Rastrigin_6D_400 0.431782 0.203334 0.218506 -0.07496 0.405164 0.172878 -0.48635 -0.17929 

Rastrigin_8D_400 0.331033 0.021847 -0.01861 -0.04221 0.319855 0.100079 -0.70487 -0.21937 

Rastrigin_10D_400 0.323102 -0.13889 -0.11536 -0.11257 -0.32541 0.062619 -0.83206 -0.20476 

Levy_2D_400 0.706053 0.591572 0.595593 0.995062 0.99394 0.850909 0.960002 0.190561 

Levy_4D_400 0.668564 0.377159 0.405573 0.696856 0.98156 0.343301 0.596688 -0.02285 

Levy_6D_400 0.636065 0.33969 0.279651 0.427 0.940845 0.301091 0.228069 -0.06933 
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Levy_8D_400 0.615938 0.192437 0.115524 0.390323 0.868198 0.308734 -0.04128 -0.10048 

Levy_10D_400 0.610527 0.008512 0.041721 0.366779 0.724048 0.316246 -0.31395 -0.37539 

Cross_IT_2D_400 0.426827 0.413657 0.243922 0.301718 0.81305 0.046041 0.429405 -0.40655 

Drop_Wave_2D_400 0.310639 0.277461 0.274684 -0.68116 0.109621 0.025943 -0.84986 -0.79106 

Eggholder_2D_400 -0.02089 -0.01866 -0.04154 0.769137 -0.02665 0.019367 -0.97831 -1.5 

Holder_2D_400 0.426774 0.390387 0.417275 0.839348 0.613788 0.297453 -0.01575 -0.12281 

Sphere_15D_400 1 -0.39515 -0.17359 0.999563 0.982789 0.142356 -0.66016 0.808444 

Sphere_20D_400 1 -1.71286 -0.17757 0.764135 0.938563 -0.18741 -0.91913 0.650408 

Sum of Squares_15D_400 1 -0.35178 -0.07159 0.985503 0.990151 0.179028 -0.30923 0.820917 

Sum of Squares_20D_400 1 -1.42163 -0.12987 0.885886 0.922274 -0.13659 -0.60212 0.490962 

Sum of Different 

Powers_15D_400 -25.5107 -0.83696 -0.07621 0.466401 0.951628 0.215312 -0.53003 0.145991 

Sum of Different 

Powers_20D_400 -10.3584 -0.8304 -0.17332 0.351022 0.676435 -0.21671 -0.734 -0.25291 

Trid_15D_400 1 0.46039 -0.14092 0.999646 0.971349 0.231814 -0.91808 0.842893 

Trid_20D_400 1 -0.3656 -0.20582 0.996348 0.84833 -0.21211 -1.10528 0.678411 

Zakharov_15D_400 0.888379 0.909721 -0.40636 0.924166 0.588008 -0.1957 -0.48322 0.274553 

Zakharov_20D_400 0.834273 0.72447 -2.31618 0.815123 0.524755 -0.30904 -0.66483 -0.34217 
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StyblinskiTang_15D_400 0.989324 -1.63732 -0.09849 0.057818 0.935918 -8.38842 -0.50927 -0.90577 

StyblinskiTang_20D_400 0.985883 -1.30034 -0.11558 -0.04851 0.562885 -11.5143 -0.73165 -0.57459 

Ackley_15D_400 -0.35014 -3.76164 -36.41 -42.3464 -1.43489 -1.22365 -2.47968 -6.93365 

Ackley_20D_400 -0.60949 -505.883 -81.8248 -166.815 -3.26805 0.140794 -3.39421 -9.09875 

Levy_15D_400 0.530301 -1.03987 -0.06584 0.295718 0.344053 0.114607 -0.75986 -0.43323 

Levy_20D_400 0.342689 -0.8057 -0.14717 0.198511 0.18219 -0.18206 -1.02348 -0.34723 

Griewank_15D_400 1 -0.22538 -0.08968 0.999571 0.971593 0.128699 -0.66465 0.808057 

Griewank_20D_400 1 -0.73509 -0.16961 0.764257 0.937457 -0.18754 -0.91938 0.652847 

Schwefel_15D_400 -0.0411 -2.55782 -0.46389 -0.38843 -0.3911 -0.57183 -1.09658 -1.38973 

Schwefel_20D_400 -0.12279 -1.93537 -0.67033 -0.64494 -0.83667 -0.5575 -1.20491 -1.04756 

Rastrigin_15D_400 0.235833 -1.82491 -0.41566 -0.10557 0.04382 -0.24307 -1.13971 -0.11993 

Rastrigin_20D_400 0.079399 -7.66259 -0.66893 -0.40423 -84.2518 -0.36489 -1.26429 -0.0328 

Ellipsoid_15D_400 1 -0.09739 -0.03702 0.984169 0.99273 0.207683 -0.31201 0.855834 

Ellipsoid_20D_400 1 -0.72592 -0.11263 0.888534 0.985395 -0.13196 -0.60202 0.444602 

Rosenbrock_15D_400 0.990396 -0.13268 0.323862 0.710937 0.966199 0.274336 0.041192 0.588158 

Rosenbrock_20D_400 0.983713 -0.0262 0.288651 0.658235 0.952656 -0.21321 -0.27961 0.483032 

Dixon_Price_15D_400 0.935346 -0.53432 -0.08887 0.657532 0.962118 0.24154 -0.20369 0.719995 

Dixon_Price_20D_400 0.923226 -0.76939 -0.10763 0.497107 0.885766 -0.17818 -0.50379 0.140447 
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Sphere_2D_800 1 0.999649 0.999866 0.999984 1 0.999315 0.984919 0.983788 

Sphere_4D_800 1 0.996345 0.918534 0.99999 1 0.996347 0.751833 0.977834 

Sphere_6D_800 1 0.980497 0.778497 0.999991 1 0.989753 0.416637 0.976285 

Sphere_8D_800 1 0.976502 0.523603 0.999987 1 0.921055 0.164623 0.963548 

Sphere_10D_800 1 0.204806 0.160379 0.999977 1 0.806904 -0.07972 0.951555 

Ellipsoid_2D_800 1 0.999633 0.999014 0.999985 1 0.999388 0.98744 0.976562 

Ellipsoid_4D_800 1 0.997953 0.993742 0.99999 1 0.995478 0.820686 0.973825 

Ellipsoid_6D_800 1 0.991022 0.755987 0.999991 0.999237 0.972368 0.619715 0.973765 

Ellipsoid_8D_800 1 0.986339 0.492432 0.999984 0.999008 0.892048 0.425179 0.968309 

Ellipsoid_10D_800 1 0.973478 0.185328 0.999965 0.998374 0.785316 0.241614 0.95789 

Sum of Different 

Powers_2D_800 0.951177 0.99975 0.999489 0.999937 0.999017 0.998792 0.983815 0.977919 

Sum of Different 

Powers_4D_800 -1.5 0.920497 0.844831 0.999233 0.998934 0.994941 0.752265 0.931517 

Sum of Different 

Powers_6D_800 -1.5 0.843011 0.614043 0.992755 0.997736 0.873551 0.470851 0.850297 

Sum of Different 

Powers_8D_800 -1.5 0.773035 0.436766 0.946521 0.995418 0.730218 0.236796 0.778148 
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Sum of Different 

Powers_10D_800 -1.5 0.235275 0.136504 0.651668 0.992843 0.610035 0.01198 0.687467 

Sum of Squares_2D_800 1 0.999786 0.999847 0.999985 1 0.998468 0.987544 0.976567 

Sum of Squares_4D_800 1 0.995003 0.998564 0.99999 1 0.996243 0.821441 0.97387 

Sum of Squares_6D_800 1 0.987831 0.810437 0.99999 0.999247 0.971531 0.604048 0.974823 

Sum of Squares_8D_800 1 0.985817 0.713596 0.999983 0.999145 0.908686 0.41664 0.967683 

Sum of Squares_10D_800 1 0.971476 0.130568 0.999967 0.997438 0.799755 0.206827 0.955905 

Trid_2D_800 1 0.998968 0.99932 0.999995 1 0.99934 0.992541 0.963655 

Trid_4D_800 1 0.991945 0.984181 0.999996 1 0.993921 0.769476 0.959917 

Trid_6D_800 1 0.98723 0.863952 0.999995 1 0.98217 0.406439 0.964588 

Trid_8D_800 1 0.97361 0.590462 0.99999 0.998814 0.917003 0.090491 0.95372 

Trid_10D_800 1 0.954639 0.400673 0.999982 0.993139 0.849136 -0.19266 0.947025 

Perm_2D_800 0.999979 0.442545 0.999857 0.999998 0.998741 0.999656 0.995313 0.983808 

Perm_4D_800 0.999234 -0.56722 0.996109 0.073024 0.997185 0.993667 0.741489 0.993635 

Perm_6D_800 0.999845 -0.55994 0.922299 -1.5 0.997573 0.969982 0.148309 0.856017 

Perm_8D_800 0.9999 -0.55049 0.780588 -1.5 0.996436 0.756681 -0.44806 -0.89604 

Perm_10D_800 0.99995 -0.54103 0.624652 -1.5 0.991392 0.403884 -0.80881 -1.5 

Bohachevsky_2D_800 1 0.999489 0.999847 0.999985 1 0.998468 0.987237 0.976496 
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Dixon_Price_2D_800 0.967807 0.9996 0.999558 0.999982 0.999104 0.998743 0.995589 0.969316 

Dixon_Price_4D_800 0.966971 0.993729 0.746143 0.999776 0.993336 0.992959 0.862137 0.91106 

Dixon_Price_6D_800 0.964688 0.864249 0.759508 0.995155 0.994732 0.867803 0.654457 0.871128 

Dixon_Price_8D_800 0.964339 0.516214 0.450108 0.983799 0.991433 0.767606 0.487711 0.871072 

Dixon_Price_10D_800 0.962498 0.791912 0.222745 0.967677 0.991298 0.715531 0.229437 0.865168 

Rosenbrock_2D_800 0.995449 0.99886 0.999624 0.999974 0.998529 0.999159 0.997393 0.96862 

Rosenbrock_4D_800 0.994908 0.996075 0.992708 0.999845 0.998479 0.99437 0.951219 0.944801 

Rosenbrock_6D_800 0.994665 0.99793 0.79573 0.998366 0.995673 0.943811 0.871725 0.898812 

Rosenbrock_8D_800 0.994383 0.985404 0.653817 0.985677 0.994597 0.823199 0.759118 0.827876 

Rosenbrock_10D_800 0.994109 0.869777 0.541963 0.978959 0.992862 0.718157 0.599103 0.750844 

3Hump_2D_800 0.993678 0.999317 0.999068 0.999713 0.998962 0.998874 0.998771 0.914966 

6Hump_2D_800 0.945907 0.994543 0.999638 0.99991 0.998572 0.99732 0.954047 0.889285 

Booth_2D_800 1 0.999143 0.999656 0.999997 1 0.999309 0.993461 0.949362 

Matyas_2D_800 1 0.999405 0.999209 0.999993 1 0.998246 0.99189 0.972682 

McCormick_2D_800 0.994816 0.998712 0.999342 0.999935 0.997025 0.998119 0.992583 0.95088 

Zakharov_2D_800 0.980455 0.997141 0.997844 0.999934 0.993693 0.997958 0.990282 0.91859 

Zakharov_4D_800 0.93612 0.997385 0.991192 0.998921 0.938258 0.988117 0.823905 0.872591 

Zakharov_6D_800 0.91605 0.994979 0.949221 0.995432 0.906441 0.927555 0.588111 0.765993 
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Zakharov_8D_800 0.905471 0.989738 0.865079 0.986733 0.836814 0.779639 0.286487 0.673273 

Zakharov_10D_800 0.905084 0.997025 0.216994 0.971029 0.750692 0.384723 0.016597 0.25278 

PowerSum_4D_800 0.883708 0.967326 0.973294 0.992953 0.982277 0.977945 0.755931 0.849352 

Beale_2D_800 0.920123 0.859493 0.998492 0.999484 0.955586 0.994087 0.926688 0.823584 

Branin_2D_800 0.968544 0.996435 0.998522 0.999937 0.996403 0.997771 0.984677 -1.5 

GoldsteinPrice_2D_800 0.797327 0.980308 0.997784 0.999493 0.971189 0.996138 0.970615 0.95344 

StyblinskiTang_2D_800 0.990864 0.552167 0.99839 0.999484 0.997843 0.997702 0.931554 -0.02548 

StyblinskiTang_4D_800 0.990898 0.378161 0.979697 0.998196 0.995545 0.973861 0.616359 0.68018 

StyblinskiTang_6D_800 0.989185 0.250428 0.200768 0.993006 0.987903 0.371261 0.333382 -0.60406 

StyblinskiTang_8D_800 0.990733 0.121192 0.108221 0.350386 0.984971 0.143272 0.129084 -0.55464 

StyblinskiTang_10D_800 0.9896 0.056869 0.010532 0.273789 0.981113 0.109877 -0.07419 -0.73293 

Perm_db_2D_800 0.997104 0.92452 0.998484 0.999905 0.995775 0.997797 0.992979 0.960585 

Perm_db_4D_800 0.960004 0.963087 0.552993 0.994389 0.971292 0.868255 0.930373 0.535046 

Perm_db_6D_800 0.934126 0.927128 0.222235 0.981746 0.970239 0.115384 0.917911 0.000391 

Perm_db_8D_800 0.799285 0.298146 -0.05237 0.96935 0.962961 -0.14887 0.901609 0.093098 

Perm_db_10D_800 0.724317 0.301476 -0.24882 0.96573 0.94425 -0.19475 0.880956 0.056266 

Shekel_4D_800 0.475095 0.498823 0.684792 0.673321 0.581998 0.665099 0.219408 -1.5 

Colville_4D_800 0.955943 0.9991 0.85155 0.999837 0.998253 0.991851 0.919449 0.906764 
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Powell_4D_800 0.936447 0.963273 0.972347 0.999556 0.980454 0.987691 0.884117 0.873389 

Powell_8D_800 0.932427 0.833492 0.489379 0.991214 0.969286 0.679701 0.53831 0.87178 

Hartmann_6D_800 -1.5 0.594109 0.545069 0.950477 0.587196 0.843477 0.156089 0.741242 

Ackley_2D_800 0.510976 0.810404 0.886919 0.907675 0.524786 0.880991 0.781902 0.781825 

Ackley_4D_800 0.503167 0.49379 0.65753 0.666274 0.011839 0.671646 0.366706 0.647319 

Ackley_6D_800 0.43699 0.125312 0.333463 -1.09956 0.098607 0.347601 -0.17981 0.208862 

Ackley_8D_800 -0.44824 0.042349 -1.2773 -1.5 -0.1231 -0.25906 -0.77608 -0.56006 

Ackley_10D_800 -0.77566 -0.05559 -1.5 -1.5 -0.53844 -0.18848 -1.18839 -1.5 

Griewank_2D_800 0.999825 0.999486 0.999684 0.99981 0.999819 0.998891 0.984598 0.987063 

Griewank_4D_800 0.999978 0.992434 0.998005 0.999968 0.999976 0.996316 0.754225 0.977581 

Griewank_6D_800 0.999996 0.985688 0.778379 0.999988 0.999656 0.990015 0.415838 0.976309 

Griewank_8D_800 0.999999 0.983252 0.546786 0.999986 0.999643 0.919572 0.161867 0.963344 

Griewank_10D_800 1 0.950707 0.159794 0.999978 0.999738 0.804125 -0.08059 0.951326 

Schwefel_2D_800 0.184496 0.101924 0.176116 0.99661 0.989143 0.804108 0.781915 -1.5 

Schwefel_4D_800 0.168521 0.102634 0.09625 0.248259 0.975974 -0.29233 0.170337 -1.5 

Schwefel_6D_800 0.153837 0.082935 0.044283 0.085539 0.92391 -0.36446 -0.21597 -1.23252 

Schwefel_8D_800 0.125663 0.083474 0.023397 -0.0716 0.827114 -0.44375 -0.48915 -1.5 

Schwefel_10D_800 0.131119 0.06051 0.021626 -0.17812 0.618073 -0.34306 -0.68799 -1.5 
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Rastrigin_2D_800 0.510141 0.504614 0.505986 0.988263 0.981624 0.420917 0.521144 -0.99891 

Rastrigin_4D_800 0.499892 0.499229 0.443242 0.345332 0.796458 0.232388 -0.09929 -0.2834 

Rastrigin_6D_800 0.463228 0.447673 0.287806 0.172312 0.625954 0.133296 -0.40384 -0.16118 

Rastrigin_8D_800 0.433782 0.167482 0.163565 0.065044 0.475903 0.157824 -0.55321 -0.07933 

Rastrigin_10D_800 0.42862 0.122554 -0.03891 -0.03079 0.287762 0.110569 -0.69227 -0.06952 

Levy_2D_800 0.712924 0.608963 0.686929 0.995738 0.994525 0.884631 0.972514 0.177774 

Levy_4D_800 0.69841 0.576574 0.547446 0.733393 0.989743 0.417142 0.704943 0.037263 

Levy_6D_800 0.682548 0.539384 0.377755 0.436707 0.985339 0.326949 0.387981 0.043375 

Levy_8D_800 0.661423 0.49389 0.250213 0.421938 0.980663 0.319752 0.108836 -0.00803 

Levy_10D_800 0.645834 0.044315 0.116493 0.399691 0.957476 0.322412 -0.14492 -0.06978 

Cross_IT_2D_800 0.432157 0.421847 0.414561 0.359432 0.919904 0.318044 0.538974 -0.35785 

Drop_Wave_2D_800 0.338852 0.314596 0.341525 -0.23341 0.072714 0.113093 -0.80949 -0.538 

Eggholder_2D_800 -0.01377 -0.0094 -0.01471 0.885086 -0.06601 0.228336 -0.24962 -1.5 

Holder_2D_800 0.495524 0.388077 0.426306 0.941644 0.805238 0.501174 0.590302 -0.27848 

Sphere_15D_800 1 0.657866 -0.53982 0.999907 0.99246 0.305597 -0.43793 0.912988 

Sphere_20D_800 1 -0.48043 -0.14448 0.999458 0.982466 -0.12448 -0.79721 0.803449 

Sum of Squares_15D_800 1 0.673111 -0.21944 0.995407 0.993411 0.363532 -0.12227 0.919229 

Sum of Squares_20D_800 1 -0.26976 -0.08094 0.987058 0.982568 -0.07073 -0.39439 0.826161 
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Sum of Different 

Powers_15D_800 -124.562 0.07512 -0.00308 0.535689 0.983834 0.368267 -0.32876 0.426821 

Sum of Different 

Powers_20D_800 -7.72661 -1.06627 -0.07526 0.476968 0.972813 -0.10266 -0.57496 0.050868 

Trid_15D_800 1 0.770758 0.037977 0.999922 0.978469 0.455395 -0.65442 0.910437 

Trid_20D_800 1 0.397929 -0.12871 0.999611 0.96426 -0.07005 -0.98298 0.846118 

Zakharov_15D_800 0.914532 0.952146 0.270889 0.956584 0.834539 -0.0637 -0.2389 0.443411 

Zakharov_20D_800 0.905478 0.875101 -0.76126 0.913099 0.747555 -0.2836 -0.4285 -0.00685 

StyblinskiTang_15D_800 0.987926 -0.22326 0.012594 0.176881 0.968053 -8.24043 -0.38653 -0.65058 

StyblinskiTang_20D_800 0.990988 -1.24321 -0.02038 0.115512 0.949897 -11.4952 -0.61884 -0.3529 

Ackley_15D_800 -0.43246 -0.36789 -7.80535 0.368023 -2.30029 -0.40615 -1.96011 -3.94765 

Ackley_20D_800 -1.6957 -1.1361 -23.2863 -0.04556 -61152.4 0.23526 -4.65759 -10.7803 

Levy_15D_800 0.613834 -0.27823 0.004534 0.344671 0.931967 0.20466 -0.56141 -0.20426 

Levy_20D_800 0.582987 -1.20076 -0.03931 0.284471 0.625852 -0.06963 -0.87478 -0.17611 

Griewank_15D_800 1 0.599557 -0.11264 0.999908 0.999208 0.300506 -0.43802 0.912674 

Griewank_20D_800 1 -0.47896 -0.14515 0.999462 0.961822 -0.12427 -0.79258 0.803182 

Schwefel_15D_800 0.081031 -0.64209 -0.18778 -0.29424 0.394892 -0.54571 -0.96847 -1.25502 

Schwefel_20D_800 0.057362 -1.58782 -0.34063 -0.39696 -0.20466 -0.5454 -1.13768 -1.1366 
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Rastrigin_15D_800 0.344936 -0.45873 -0.27062 0.011878 0.264482 -0.2408 -0.98123 -0.13185 

Rastrigin_20D_800 0.288826 -1.94727 -0.56312 -0.24276 -10658.4 -0.38467 -1.14618 -0.03046 

Ellipsoid_15D_800 1 0.776812 -0.04454 0.995215 0.995794 0.331884 -0.09436 0.924636 

Ellipsoid_20D_800 1 0.017878 -0.05659 0.993144 0.985905 -0.0623 -0.40292 0.845662 

Rosenbrock_15D_800 0.994055 0.57657 0.440346 0.843398 0.978947 0.453325 0.236019 0.694309 

Rosenbrock_20D_800 0.992139 -0.06995 0.305331 0.736882 0.964536 -0.04732 -0.027 0.653843 

Dixon_Price_15D_800 0.957524 0.518144 0.029872 0.720863 0.984069 0.437569 -0.06128 0.833311 

Dixon_Price_20D_800 0.945513 -0.53934 -0.06158 0.801769 0.98008 -0.0302 -0.29528 0.743968 

Sphere_2D_1200 1 0.999804 0.999868 0.999986 1 0.99968 0.991896 0.983809 

Sphere_4D_1200 1 0.995465 0.997863 0.999991 1 0.996857 0.789296 0.980703 

Sphere_6D_1200 1 0.98862 0.957189 0.999993 1 0.992716 0.512863 0.978068 

Sphere_8D_1200 1 0.983091 0.862573 0.999991 1 0.963926 0.250036 0.968389 

Sphere_10D_1200 1 0.98138 0.166268 0.999987 1 0.86804 0.034364 0.961394 

Ellipsoid_2D_1200 1 0.999379 0.999028 0.999987 1 0.998769 0.992952 0.976503 

Ellipsoid_4D_1200 1 0.995257 0.998358 0.999991 1 0.99657 0.853445 0.975336 

Ellipsoid_6D_1200 1 0.992173 0.762677 0.999993 0.999259 0.984398 0.674587 0.974657 

Ellipsoid_8D_1200 1 0.98403 0.525662 0.99999 0.998998 0.920681 0.49189 0.969739 

Ellipsoid_10D_1200 1 0.983116 0.243274 0.999982 0.998367 0.843771 0.323332 0.963591 
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Sum of Different 

Powers_2D_1200 0.951259 0.999754 0.999496 0.999955 0.999057 0.998504 0.991026 0.977813 

Sum of Different 

Powers_4D_1200 -1.5 0.902279 0.954952 0.999354 0.999007 0.9957 0.806664 0.948255 

Sum of Different 

Powers_6D_1200 -1.5 0.853277 0.694969 0.99425 0.996699 0.933423 0.54743 0.858081 

Sum of Different 

Powers_8D_1200 -1.5 0.787268 0.414135 0.968456 0.994856 0.748471 0.309538 0.789219 

Sum of Different 

Powers_10D_1200 -1.5 0.412786 0.195396 0.674248 0.992483 0.647988 0.12127 0.69653 

Sum of Squares_2D_1200 1 0.999535 0.99985 0.999987 1 0.998769 0.992826 0.976493 

Sum of Squares_4D_1200 1 0.997624 0.980627 0.999991 0.998844 0.996999 0.852476 0.969509 

Sum of Squares_6D_1200 1 0.992021 0.779839 0.999993 0.999248 0.984304 0.662688 0.975558 

Sum of Squares_8D_1200 1 0.986527 0.542723 0.999989 0.999077 0.931941 0.480943 0.968502 

Sum of 

Squares_10D_1200 1 0.984888 0.23892 0.999982 0.998214 0.850591 0.289929 0.963546 

Trid_2D_1200 1 0.998956 0.999328 0.999995 1 0.999506 0.99547 0.964665 

Trid_4D_1200 1 0.993322 0.99711 0.999996 1 0.994876 0.816749 0.960935 
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Trid_6D_1200 1 0.991274 0.870457 0.999996 1 0.986977 0.473246 0.96949 

Trid_8D_1200 1 0.984209 0.700002 0.999994 1 0.940813 0.172686 0.957454 

Trid_10D_1200 1 0.963588 0.422292 0.99999 0.995352 0.881274 -0.06497 0.955147 

Perm_2D_1200 0.999979 0.99973 0.999063 0.999998 1 0.999692 0.997454 0.964384 

Perm_4D_1200 0.999243 0.988007 0.994869 0.097144 0.996865 0.994187 0.827253 0.998685 

Perm_6D_1200 0.999792 -1.5 0.991689 -1.5 0.996703 0.982443 0.259953 0.991509 

Perm_8D_1200 0.999902 -1.5 0.888386 -1.5 0.99738 0.86649 -0.25778 0.95744 

Perm_10D_1200 0.999951 -1.5 0.605135 -1.5 0.978555 0.579159 -0.66151 0.883825 

Bohachevsky_2D_1200 1 0.999535 0.99985 0.999987 1 0.998769 0.9928 0.976638 

Dixon_Price_2D_1200 0.967951 0.999603 0.999566 0.99999 0.999112 0.999232 0.997864 0.974404 

Dixon_Price_4D_1200 0.967535 0.993659 0.877039 0.999853 0.996448 0.995561 0.902566 0.933281 

Dixon_Price_6D_1200 0.965313 0.861831 0.683022 0.995515 0.992993 0.927625 0.731914 0.875586 

Dixon_Price_8D_1200 0.965089 0.844022 0.41486 0.985431 0.993031 0.787445 0.55962 0.879944 

Dixon_Price_10D_1200 0.965538 0.817671 0.263543 0.972853 0.989621 0.742433 0.370267 0.875579 

Rosenbrock_2D_1200 0.995513 0.998716 0.999629 0.999982 0.998522 0.999068 0.998507 0.969877 

Rosenbrock_4D_1200 0.995018 0.997891 0.965676 0.999915 0.99856 0.995962 0.965422 0.955415 

Rosenbrock_6D_1200 0.994695 0.977898 0.803876 0.999415 0.995348 0.964495 0.890636 0.926122 

Rosenbrock_8D_1200 0.994611 0.716826 0.684812 0.99006 0.99426 0.885697 0.793471 0.870975 
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Rosenbrock_10D_1200 0.994176 0.900713 0.551694 0.982928 0.989478 0.764321 0.660186 0.808826 

3Hump_2D_1200 0.992013 0.999316 0.999123 0.999983 0.998954 0.998996 0.999113 0.929183 

6Hump_2D_1200 0.946035 0.756748 0.99966 0.999941 0.998586 0.997728 0.973184 0.903182 

Booth_2D_1200 1 0.998117 0.999661 0.999997 1 0.99848 0.99592 0.949864 

Matyas_2D_1200 1 0.998422 0.999217 0.999993 1 0.99844 0.994777 0.972705 

McCormick_2D_1200 0.994717 0.998643 0.999353 0.999966 0.993983 0.998596 0.995425 0.952243 

Zakharov_2D_1200 0.980713 0.996609 0.997862 0.999955 0.9932 0.997275 0.994144 0.920567 

Zakharov_4D_1200 0.9378 0.997344 0.950434 0.999292 0.934034 0.989806 0.872663 0.886163 

Zakharov_6D_1200 0.919756 0.998479 0.972684 0.996705 0.904299 0.96092 0.64586 0.799109 

Zakharov_8D_1200 0.9102 0.989169 0.710278 0.989787 0.897625 0.816559 0.347985 0.703315 

Zakharov_10D_1200 0.913455 0.997323 0.556858 0.981744 0.877402 0.437224 0.262649 0.389651 

PowerSum_4D_1200 0.958115 0.955246 0.944064 0.995228 0.97949 0.981907 0.79577 0.85777 

Beale_2D_1200 0.923556 0.833494 0.998552 0.999631 0.845799 0.997399 0.95272 0.85231 

Branin_2D_1200 0.963631 0.996936 0.998554 0.99996 0.995337 0.997825 0.990577 -1.5 

GoldsteinPrice_2D_1200 0.792883 0.970379 0.997847 0.999663 0.971153 0.996823 0.985152 0.960373 

StyblinskiTang_2D_1200 0.993619 0.546254 0.998436 0.999897 0.998909 0.51137 0.960765 0.251555 

StyblinskiTang_4D_1200 0.989871 0.397985 0.980386 0.998755 0.996516 0.991143 0.681022 0.795022 

StyblinskiTang_6D_1200 0.988307 0.369957 0.277 0.996554 0.996038 0.730671 0.454327 0.093897 
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StyblinskiTang_8D_1200 0.986517 0.123046 0.190168 0.458691 0.984497 0.179468 0.228373 -0.45461 

StyblinskiTang_10D_1200 0.991038 0.068462 0.072886 0.34547 0.978826 0.121122 0.055063 -0.5934 

Perm_db_2D_1200 0.997656 0.989446 0.998508 0.99993 0.97425 0.997834 0.995487 0.963298 

Perm_db_4D_1200 0.962984 0.962187 0.616974 0.995703 0.974212 0.959884 0.938935 0.629667 

Perm_db_6D_1200 0.936889 0.92381 0.3082 0.988299 0.973339 0.378165 0.927315 0.149442 

Perm_db_8D_1200 0.804331 0.658164 0.028068 0.971824 0.968977 -0.11364 0.914694 0.109094 

Perm_db_10D_1200 0.730561 0.278253 -0.20555 0.968145 0.963613 -0.17891 0.901955 0.073579 

Shekel_4D_1200 0.480465 0.468386 0.617649 0.698154 0.63936 0.678746 0.280929 -1.5 

Colville_4D_1200 0.956407 0.999149 0.883472 0.999873 0.998195 0.995156 0.940176 0.93016 

Powell_4D_1200 0.937058 0.975282 0.967716 0.999744 0.906455 0.991931 0.927013 0.906958 

Powell_8D_1200 0.934814 0.885134 0.50485 0.996247 0.93189 0.755471 0.595892 0.874092 

Hartmann_6D_1200 -1.5 0.553477 0.486336 0.968029 0.64439 0.901417 0.393026 0.781507 

Ackley_2D_1200 0.517633 0.875124 0.906587 0.923063 0.670533 0.887768 0.813705 0.791955 

Ackley_4D_1200 0.574568 0.502061 0.610009 0.767003 0.390493 0.696559 0.450808 0.666885 

Ackley_6D_1200 0.610921 0.463932 0.482279 0.629409 0.288344 0.485581 -0.07236 0.23012 

Ackley_8D_1200 0.540206 0.024194 0.116668 0.518813 -0.28374 0.009503 -0.55338 -0.52077 

Ackley_10D_1200 -0.2229 0.105279 -1.5 0.257123 -0.89528 -0.10203 -0.8652 -1.39035 

Griewank_2D_1200 0.999825 0.999622 0.999689 0.999812 0.999821 0.999504 0.991262 0.98708 
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Griewank_4D_1200 0.999978 0.99287 0.998363 0.999969 0.999977 0.996601 0.790875 0.980748 

Griewank_6D_1200 0.999996 0.988686 0.839765 0.99999 0.999996 0.992739 0.515443 0.978203 

Griewank_8D_1200 0.999999 0.985109 0.575737 0.999991 0.999767 0.963938 0.245158 0.96822 

Griewank_10D_1200 1 0.741827 0.116949 0.999988 1 0.862525 0.032799 0.96129 

Schwefel_2D_1200 0.186711 0.103004 0.184327 0.998469 0.993704 0.771986 0.843496 -1.5 

Schwefel_4D_1200 0.176148 0.10225 0.092047 0.286497 0.984236 -0.28688 0.250282 -1.48306 

Schwefel_6D_1200 0.171342 0.098274 0.070012 0.104585 0.976188 -0.3935 -0.14133 -1.16865 

Schwefel_8D_1200 0.166721 0.093453 0.045699 -0.03381 0.937153 -0.39026 -0.39148 -1.15338 

Schwefel_10D_1200 0.164728 0.095537 0.013334 -0.14341 0.874635 -0.34476 -0.631 -1.5 

Rastrigin_2D_1200 0.510756 0.506906 0.508642 0.998013 0.984083 0.431793 0.596395 -0.9254 

Rastrigin_4D_1200 0.503941 0.497342 0.460745 0.351639 0.923752 0.231356 -0.00816 -0.28442 

Rastrigin_6D_1200 0.478979 0.461771 0.359338 0.139169 0.694134 0.123802 -0.34836 -0.16263 

Rastrigin_8D_1200 0.458138 0.174257 0.223343 0.13432 0.58387 0.159451 -0.49805 -0.04845 

Rastrigin_10D_1200 0.439601 0.046008 -0.0133 0.045525 0.530829 0.130357 -0.63689 -0.07633 

Levy_2D_1200 0.715123 0.61099 0.690448 0.995814 0.994877 0.887795 0.97932 0.197529 

Levy_4D_1200 0.701008 0.572236 0.547986 0.719131 0.991957 0.47204 0.755537 0.068325 

Levy_6D_1200 0.696474 0.550328 0.444852 0.524255 0.987626 0.349088 0.448391 0.054558 

Levy_8D_1200 0.68212 0.245934 0.323118 0.431335 0.983495 0.331098 0.200383 0.04975 
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Levy_10D_1200 0.673929 0.479089 0.119744 0.436947 0.980303 0.342399 -0.0451 0.000574 

Cross_IT_2D_1200 0.431432 0.412344 0.41881 0.372231 0.948717 0.344142 0.638731 -0.29203 

Drop_Wave_2D_1200 0.343684 0.318479 0.348519 0.132209 0.207065 0.151096 -0.67213 -0.558 

Eggholder_2D_1200 -0.00538 -0.00557 0.037781 0.885452 0.044063 0.244573 0.152157 -1.5 

Holder_2D_1200 0.501875 0.39992 0.528125 0.97222 0.7588 0.493249 0.694686 -0.30239 

Sphere_15D_1200 1 0.855494 0.137155 0.999954 1 0.460865 -0.34434 0.933559 

Sphere_20D_1200 1 0.199602 -0.07322 0.999822 0.998696 0.084377 -0.64844 0.871431 

Sum of 

Squares_15D_1200 1 0.915202 0.099506 0.999099 0.993978 0.491611 -0.01628 0.932133 

Sum of 

Squares_20D_1200 1 0.809993 -0.04535 0.994572 0.993782 0.095875 -0.29204 0.886374 

Sum of Different 

Powers_15D_1200 -14.5261 0.426108 0.062873 0.561389 0.986664 0.478143 -0.22905 0.466372 

Sum of Different 

Powers_20D_1200 -14.5264 -0.22127 2.1E-05 0.496044 0.980595 0.104495 -0.46923 0.142235 

Trid_15D_1200 1 0.80782 0.113752 0.999961 0.978234 0.584562 -0.58254 0.92831 

Trid_20D_1200 1 0.725437 -0.07804 0.999885 0.974946 0.129998 -0.88571 0.899299 

Zakharov_15D_1200 0.919822 0.96337 0.372835 0.971757 0.80155 0.103194 -0.14881 0.558712 
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Zakharov_20D_1200 0.913582 0.944549 -0.64348 0.936211 0.819971 -0.12497 -0.32238 0.147867 

StyblinskiTang_15D_1200 0.990141 -0.01139 0.018484 0.222833 0.972978 -7.23099 -0.28803 -0.6335 

StyblinskiTang_20D_1200 0.989557 -0.36905 0.01962 0.185759 0.971091 -10.0815 -0.52113 -0.40566 

Ackley_15D_1200 0.317216 -0.40603 -6.0567 0.390101 -1.0037 0.007104 -2.34177 -3.57873 

Ackley_20D_1200 -0.16331 -0.63947 -27.0515 -0.02801 -1.75898 0.364076 -2.75677 -9.85332 

Levy_15D_1200 0.643462 0.097711 -0.0366 0.365 0.959871 0.318104 -0.4562 -0.23658 

Levy_20D_1200 0.621659 -0.20776 -0.0166 0.32143 0.927098 0.096234 -0.75665 -0.13698 

Griewank_15D_1200 1 0.855778 0.136854 0.999955 0.999157 0.465879 -0.34658 0.933584 

Griewank_20D_1200 1 0.260972 -0.15638 0.999823 0.9868 0.07581 -0.64955 0.871268 

Schwefel_15D_1200 0.12387 -0.34612 -0.11854 -0.27653 0.818164 -0.30441 -0.87241 -1.26346 

Schwefel_20D_1200 0.084842 -0.739 -0.25684 -0.34648 0.173521 -0.28225 -1.01248 -1.15556 

Rastrigin_15D_1200 0.400583 -0.0863 -0.18453 0.055653 -0.00479 -0.00963 -0.86386 -0.18179 

Rastrigin_20D_1200 0.367451 -0.53631 -0.40856 0.101329 0.061813 -0.12125 -1.02063 -0.03264 

Ellipsoid_15D_1200 1 0.961096 0.08432 0.999084 0.993827 0.489973 -0.00868 0.9405 

Ellipsoid_20D_1200 1 0.495207 -0.03139 0.997564 0.993861 0.10559 -0.2552 0.896431 

Rosenbrock_15D_1200 0.994454 0.768262 0.44624 0.913402 0.979099 0.569604 0.343784 0.728412 

Rosenbrock_20D_1200 0.994096 0.35857 0.454618 0.815169 0.972966 0.171239 0.059372 0.718859 

Dixon_Price_15D_1200 0.960611 0.734953 0.066343 0.906992 0.987618 0.546781 0.068516 0.855328 
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Dixon_Price_20D_1200 0.955546 0.354477 0.004097 0.812559 0.98259 0.168942 -0.20382 0.806583 

Sphere_2D_1600 1 0.999828 0.999868 0.999987 1 0.999686 0.994559 0.983819 

Sphere_4D_1600 1 0.997931 0.922767 0.999992 1 0.997218 0.821381 0.981974 

Sphere_6D_1600 1 0.982198 0.845435 0.999994 1 0.993855 0.567365 0.97938 

Sphere_8D_1600 1 0.977923 0.587821 0.999993 1 0.974199 0.307969 0.972291 

Sphere_10D_1600 1 0.62307 0.184512 0.999991 1 0.905131 0.108962 0.965735 

Ellipsoid_2D_1600 1 0.999692 0.999032 0.999988 1 0.998771 0.99522 0.976265 

Ellipsoid_4D_1600 1 0.998371 0.974529 0.999992 1 0.997159 0.873116 0.97462 

Ellipsoid_6D_1600 1 0.994919 0.765862 0.999994 0.999271 0.988425 0.709443 0.973956 

Ellipsoid_8D_1600 1 0.979219 0.599677 0.999992 0.999022 0.941663 0.539774 0.973505 

Ellipsoid_10D_1600 1 0.976207 0.269139 0.999987 0.998326 0.862591 0.383907 0.967958 

Sum of Different 

Powers_2D_1600 0.9513 0.999779 0.9995 0.999965 0.999072 0.998576 0.993693 0.977268 

Sum of Different 

Powers_4D_1600 -1.5 0.922374 0.932503 0.99939 0.999136 0.995956 0.839934 0.954576 

Sum of Different 

Powers_6D_1600 -1.5 0.845503 0.700438 0.994947 0.998186 0.951579 0.611094 0.875177 
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Sum of Different 

Powers_8D_1600 -1.5 0.784877 0.472899 0.974915 0.996086 0.768785 0.379599 0.787604 

Sum of Different 

Powers_10D_1600 -1.5 0.726781 0.25746 0.857156 0.993469 0.67081 0.199673 0.704517 

Sum of Squares_2D_1600 1 0.999565 0.99985 0.999988 1 0.998771 0.995481 0.976348 

Sum of Squares_4D_1600 1 0.996087 0.998112 0.999992 1 0.997292 0.872337 0.974323 

Sum of Squares_6D_1600 1 0.9969 0.784233 0.999994 0.999216 0.989284 0.705925 0.976262 

Sum of Squares_8D_1600 1 0.98498 0.62337 0.999992 0.999171 0.945974 0.496388 0.969937 

Sum of 

Squares_10D_1600 1 0.981027 0.257619 0.999988 0.9983 0.879641 0.361293 0.966506 

Trid_2D_1600 1 0.999064 0.999331 0.999995 1 0.999507 0.99697 0.965344 

Trid_4D_1600 1 0.996125 0.997263 0.999997 1 0.995463 0.85134 0.95982 

Trid_6D_1600 1 0.991991 0.872794 0.999997 1 0.988911 0.524246 0.970444 

Trid_8D_1600 1 0.976739 0.674621 0.999996 1 0.959344 0.223598 0.962085 

Trid_10D_1600 1 0.978083 0.532841 0.999993 0.999884 0.897638 0.017934 0.957893 

Perm_2D_1600 0.999979 0.43648 0.99986 0.999998 0.998841 0.999647 0.998179 0.986919 

Perm_4D_1600 0.999248 -0.56481 0.996957 0.117186 0.99653 0.994921 0.854886 0.998413 

Perm_6D_1600 0.999848 -0.55488 0.9815 -1.5 0.996231 0.985217 0.320285 0.972447 
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Perm_8D_1600 0.999903 -0.54437 0.934985 -1.5 0.996802 0.898284 -0.20284 0.844817 

Perm_10D_1600 0.99995 -0.53766 0.609655 -1.5 0.987473 0.643735 -0.50347 0.270371 

Bohachevsky_2D_1600 1 0.999565 0.99985 0.999988 1 0.998771 0.995445 0.976207 

Dixon_Price_2D_1600 0.968049 0.999606 0.99957 0.999994 0.999263 0.999701 0.998575 0.976717 

Dixon_Price_4D_1600 0.967643 0.997098 0.940762 0.999877 0.99544 0.995916 0.92346 0.943459 

Dixon_Price_6D_1600 0.966214 0.918917 0.687876 0.999505 0.993812 0.954047 0.760728 0.875671 

Dixon_Price_8D_1600 0.96669 0.83528 0.499048 0.992997 0.99439 0.804635 0.594675 0.879581 

Dixon_Price_10D_1600 0.966456 0.840258 0.325223 0.983548 0.994273 0.762298 0.452424 0.87943 

Rosenbrock_2D_1600 0.995522 0.998594 0.999631 0.999986 0.998493 0.998932 0.998866 0.970229 

Rosenbrock_4D_1600 0.995043 0.996116 0.997547 0.999939 0.99859 0.996235 0.973441 0.959506 

Rosenbrock_6D_1600 0.994871 0.934071 0.806998 0.999684 0.995513 0.978193 0.910565 0.938707 

Rosenbrock_8D_1600 0.994741 0.960944 0.693027 0.994194 0.995276 0.907133 0.82646 0.890408 

Rosenbrock_10D_1600 0.994473 0.919337 0.596711 0.984259 0.993329 0.802786 0.697253 0.844418 

3Hump_2D_1600 0.992259 0.999349 0.99914 0.999989 0.998974 0.999041 0.999304 0.939343 

6Hump_2D_1600 0.946501 0.993993 0.997881 0.999949 0.998577 0.997703 0.979618 0.913514 

Booth_2D_1600 1 0.9997 0.999663 0.999998 1 0.998846 0.997241 0.950234 

Matyas_2D_1600 1 0.998436 0.999221 0.999993 1 0.998429 0.996272 0.972716 

McCormick_2D_1600 0.994725 0.999332 0.999355 0.999975 0.99403 0.998045 0.996977 0.954171 
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Zakharov_2D_1600 0.980755 0.998827 0.99787 0.999966 0.993992 0.996832 0.995203 0.920387 

Zakharov_4D_1600 0.93835 0.997566 0.993911 0.999635 0.934548 0.990842 0.891078 0.897161 

Zakharov_6D_1600 0.920823 0.996505 0.94864 0.997877 0.915924 0.970389 0.695441 0.81893 

Zakharov_8D_1600 0.913674 0.990619 0.724309 0.992372 0.89996 0.861584 0.450044 0.733163 

Zakharov_10D_1600 0.915704 0.997007 0.209359 0.985178 0.700378 0.6006 0.336001 0.446459 

PowerSum_4D_1600 0.981346 0.750991 0.926173 0.996565 0.974082 0.985866 0.848407 0.887386 

Beale_2D_1600 0.916901 0.494464 0.998553 0.999677 0.847354 0.997279 0.960734 0.863616 

Branin_2D_1600 0.962439 0.998116 0.998565 0.999969 0.992994 0.998784 0.993549 -1.5 

GoldsteinPrice_2D_1600 0.793274 0.974704 0.997876 0.999756 0.973306 0.996041 0.991387 0.963329 

StyblinskiTang_2D_1600 0.993611 0.997976 0.998454 0.99994 0.998124 0.998048 0.96811 0.004283 

StyblinskiTang_4D_1600 0.99292 0.381793 0.995988 0.998914 0.997632 0.992376 0.733756 0.839561 

StyblinskiTang_6D_1600 0.987111 0.379544 0.230659 0.997452 0.994942 0.829417 0.502352 0.291248 

StyblinskiTang_8D_1600 0.99132 0.159382 0.135524 0.981831 0.983618 0.210068 0.299261 -0.47286 

StyblinskiTang_10D_1600 0.98966 0.091858 0.091378 0.355035 0.979663 0.137505 0.135526 -0.52983 

Perm_db_2D_1600 0.994346 0.990804 0.998513 0.999935 0.974976 0.997934 0.997029 0.963539 

Perm_db_4D_1600 0.976529 0.963924 0.576453 0.99763 0.973071 0.977747 0.952705 0.683085 

Perm_db_6D_1600 0.937524 0.951428 0.340628 0.990112 0.973433 0.500445 0.935321 0.135585 

Perm_db_8D_1600 0.805749 0.78722 0.106371 0.974433 0.970717 -0.09388 0.920898 0.11344 
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Perm_db_10D_1600 0.733381 0.292838 0.041721 0.966602 0.968385 -0.15861 0.906443 0.086711 

Shekel_4D_1600 0.493072 0.510565 0.551382 0.71797 0.61829 0.685652 0.344164 -1.5 

Colville_4D_1600 0.956388 0.865729 0.9549 0.999896 0.998575 0.996325 0.951837 0.942249 

Powell_4D_1600 0.938107 0.968921 0.79249 0.999804 0.949139 0.992822 0.938953 0.914972 

Powell_8D_1600 0.935955 0.837452 0.525128 0.997674 0.931742 0.815596 0.629576 0.874842 

Hartmann_6D_1600 -1.5 0.619711 0.543734 0.973456 0.651593 0.914878 0.462117 0.811724 

Ackley_2D_1600 0.518037 0.833376 0.897858 0.936409 0.555232 0.894789 0.854412 0.799454 

Ackley_4D_1600 0.55065 0.490701 0.694313 0.796112 0.391323 0.697587 0.48952 0.685957 

Ackley_6D_1600 0.644019 0.470064 0.448429 0.648907 -0.04238 0.519597 0.03528 0.283452 

Ackley_8D_1600 0.58385 0.057882 -0.54151 0.493618 0.13989 0.203868 -0.36781 -0.43735 

Ackley_10D_1600 -0.62817 -0.01582 -1.5 0.237318 -0.02828 -0.05504 -0.70117 -1.5 

Griewank_2D_1600 0.999826 0.999649 0.99969 0.999813 0.999823 0.999511 0.993868 0.987088 

Griewank_4D_1600 0.999978 0.997877 0.998443 0.99997 0.999977 0.997197 0.822975 0.983556 

Griewank_6D_1600 0.999996 0.987767 0.872595 0.99999 0.999996 0.994125 0.56256 0.979573 

Griewank_8D_1600 0.999999 0.987894 0.760094 0.999993 0.999999 0.973121 0.308186 0.972273 

Griewank_10D_1600 1 0.264357 0.191931 0.999991 1 0.909567 0.098674 0.965722 

Schwefel_2D_1600 0.187565 0.104978 0.187383 0.998864 0.991848 0.79858 0.871999 -1.5 

Schwefel_4D_1600 0.18109 0.124823 0.136294 0.294608 0.987296 -0.29543 0.303803 -1.42619 
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Schwefel_6D_1600 0.181784 0.097304 0.082097 0.154571 0.975387 -0.37517 -0.06622 -1.04575 

Schwefel_8D_1600 0.171062 0.095345 0.059787 -0.04794 0.965929 -0.41774 -0.32048 -1.00114 

Schwefel_10D_1600 0.175609 0.096785 0.054854 -0.1324 0.948622 -0.35813 -0.55673 -1.49876 

Rastrigin_2D_1600 0.511063 0.507791 0.510814 0.999002 0.979163 0.434392 0.60158 -0.82894 

Rastrigin_4D_1600 0.517995 0.505014 0.480923 0.356363 0.963429 0.266445 0.057881 -0.27123 

Rastrigin_6D_1600 0.488256 0.472387 0.372965 0.190648 0.802082 0.108524 -0.27896 -0.15136 

Rastrigin_8D_1600 0.464325 0.180177 0.24416 0.153086 0.701661 0.163321 -0.46584 -0.0367 

Rastrigin_10D_1600 0.461392 0.103407 -0.00772 0.045149 0.628042 0.149596 -0.60067 -0.04954 

Levy_2D_1600 0.715903 0.62385 0.904335 0.99586 0.995375 0.8904 0.9843 0.308814 

Levy_4D_1600 0.70349 0.579495 0.572019 0.931599 0.993511 0.597885 0.779861 0.15483 

Levy_6D_1600 0.699211 0.554867 0.413489 0.556914 0.987081 0.33627 0.512224 0.044948 

Levy_8D_1600 0.696073 0.542386 0.296813 0.491928 0.981225 0.321157 0.262914 0.048386 

Levy_10D_1600 0.689446 0.158008 0.158055 0.44029 0.981037 0.359537 0.03735 0.024425 

Cross_IT_2D_1600 0.432628 0.42928 0.420614 0.72311 0.963486 0.344913 0.679322 -0.30257 

Drop_Wave_2D_1600 0.357069 0.360002 0.362662 0.823681 0.289076 0.201776 -0.45744 -0.48614 

Eggholder_2D_1600 -0.00428 -0.00165 0.024226 0.930592 0.126356 0.281104 0.310172 -1.5 

Holder_2D_1600 0.502776 0.392856 0.461777 0.97788 0.792675 0.504639 0.743412 -0.02665 

Sphere_15D_1600 1 0.901505 0.20175 0.999969 1 0.559725 -0.28168 0.943338 
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Sphere_20D_1600 1 0.576528 -0.05209 0.999901 0.999906 0.186835 -0.54515 0.893752 

Sum of 

Squares_15D_1600 1 0.923974 0.16058 0.999121 0.994226 0.562176 0.041534 0.943499 

Sum of 

Squares_20D_1600 1 0.864634 -0.03381 0.998027 0.991448 0.1898 -0.20152 0.905749 

Sum of Different 

Powers_15D_1600 -22.2867 0.532569 0.074018 0.581916 0.98842 0.530873 -0.18027 0.484168 

Sum of Different 

Powers_20D_1600 -0.20763 0.095108 0.021095 0.531611 0.983104 0.197582 -0.40544 0.183406 

Trid_15D_1600 1 0.917803 0.162417 0.999974 0.978065 0.641281 -0.57338 0.937721 

Trid_20D_1600 1 0.823767 0.011106 0.999935 0.975215 0.223823 -0.82066 0.9183 

Zakharov_15D_1600 0.923043 0.959522 0.490517 0.980954 0.850865 0.209839 -0.02704 0.623248 

Zakharov_20D_1600 0.932479 0.964112 -0.30988 0.949076 0.84579 -0.05404 -0.20122 0.171923 

StyblinskiTang_15D_1600 0.989944 0.03297 0.046734 0.245061 0.977066 -6.79218 -0.19647 -0.57231 

StyblinskiTang_20D_1600 0.991372 -0.2237 0.003281 0.195755 0.970357 -9.46084 -0.45652 -0.35589 

Ackley_15D_1600 0.466418 -0.15219 -5.4967 0.38639 -2.25907 0.124186 -1.66472 -3.3722 

Ackley_20D_1600 0.296027 -0.4963 -18.9065 -0.01684 -0.9248 0.412572 -1.97712 -9.1835 

Levy_15D_1600 0.657746 0.218874 0.050544 0.377196 0.968344 0.366444 -0.3843 -0.2493 
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Levy_20D_1600 0.638234 -0.15514 0.022997 0.344354 0.956147 0.178694 -0.65011 -0.13486 

Griewank_15D_1600 1 0.826225 -0.08963 0.99997 0.999867 0.555825 -0.28171 0.943276 

Griewank_20D_1600 1 0.5767 -0.06968 0.999901 0.989234 0.186971 -0.54701 0.89341 

Schwefel_15D_1600 0.153291 -0.08762 -0.05846 -0.23824 0.896725 -0.20392 -0.79758 -1.34205 

Schwefel_20D_1600 0.102122 -0.28392 -0.17068 -0.35337 0.559899 -0.17865 -0.97228 -1.17021 

Rastrigin_15D_1600 0.422804 0.112539 -0.30215 0.07256 0.372763 0.113301 -0.81729 0.017335 

Rastrigin_20D_1600 0.40394 -0.34557 -0.2763 0.129919 0.265411 -0.00175 -0.9605 -0.00222 

Ellipsoid_15D_1600 1 0.933372 0.15557 0.999097 0.99489 0.547912 0.04905 0.949877 

Ellipsoid_20D_1600 1 0.87625 -0.03465 0.997726 0.989704 0.19704 -0.19764 0.914573 

Rosenbrock_15D_1600 0.994576 0.799546 0.557017 0.955473 0.977751 0.614582 0.389156 0.751673 

Rosenbrock_20D_1600 0.994323 0.52986 0.436496 0.846009 0.972027 0.265218 0.121412 0.739971 

Dixon_Price_15D_1600 0.963182 0.780149 0.101105 0.940525 0.989112 0.604457 0.13765 0.866524 

Dixon_Price_20D_1600 0.959964 0.638323 0.042476 0.845173 0.983526 0.264793 -0.12912 0.843491 
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Appendix C – pyBOUND Test Problems 

No
. Function Name 

Dimension
s Bounds Minimum Value Minimum Location 

1 Langermann 2 [0,10] -5.1621259 [2.00299219, 1.006096] 
2 Easom N [-2π, 2π] -1 π 

3 Bent_cigar N 
[-100, 
100] 0 0 

4 Alπne1 N [-10, 10] 0 0 
5 Alπne2 N [0, 10] 2.808^D 7.917052698 
6 Brown N [-1, 4] 0 0 
7 Spring N [0, 10] -1 5 
8 Yang3 N [-2π, 2π] 0 0 

9 Sargan N 
[-100, 
100] 0 0 

10 Michalewicz 2 [0, π] -1.8013 [2.20, 1.57] 
11 Holzman N [-10, 10] 0 0 

12 Saloman N 
[-100, 
100] 0 0 

13 Chichinadze 2 [-30, 30] 
−42.9443870189909

8 [6.189866586965680, 0.5] 

14 Leon 2 
[-1.2, 
1.2] 0 [1, 1] 

15 Trig2 N 
[-500, 
500] 1 0.9 

16 Mishra 3 [-10, 10] 0 [1, 2, 3] 
17 Layeb02 N [-10, 10] 0 1 

18 Layeb01 N 
[-100, 
100] 0 1 

19 Biggs3 3 [0, 20] 0 [1, 10, 5] 
20 Biggs4 4 [0, 20] 0 [1, 10, 1, 5] 
21 Biggs5 5 [0, 20] 0 [1, 10, 1, 5, 4] 
22 Biggs6 6 [-20, 20] 0 [1, 10, 1, 5, 4, 3] 

23 
Chung_Reynold
s N 

[-100, 
100] 0 0 

24 Cube 2 [-10, 10] 0 [1, 1] 

25 El_Attar 2 
[-500, 
500] 1.712780355 

[3.4091868222,-
2.1714330361] 

26 Hartmann3 3 [0, 1] -3.862782 
[0.114614, 0.555649, 
0.852547] 

27 Himmelblau 2 [-5, 5] 0 [3, 2] 

28 Pathological N 
[-100, 
100] 0 0 

29 Periodic 2 [-10, 10] 0.9 [0, 0] 
30 Quadratic 2 [-10, 10] -3873.7243 [0.19388, 0.48513] 
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