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Abstract

The relative position to neighboring vehicles is critical to ongoing autonomy efforts in-

cluding collision avoidance and path planning; therefore, it should not be fully dependent

on an external reference such as GPS. This thesis presents methods for real-time relative

positioning of ground vehicles by employing a network of on-board ultra-wideband (UWB)

radios. The difficulties in range-based relative positioning, and the results from prior liter-

ature are described. Next, the proposed methods are derived which employ the kinematic

bicycle model to constrain the estimated states to align with ground vehicle dynamics.

The initial methods do not require vehicle-to-vehicle (V2V) communication. However,

cooperative methods are also explored which make use of the simultaneous ranging and

communication capabilities of UWBs. Feedback of the tracked vehicle’s dynamic states

(velocity, yaw-rate, and steer angle) are analyzed for their impact on estimation quality.

A geometrically-inspired consensus extended Kalman filter (CEKF) is also developed as a

modification to both the prior work and the proposed vehicle-dynamic EKF (VehDynEKF).

The methods developed in this thesis improve upon prior literature results in accuracy

and robustness in the presence of UWB measurement errors, unfavorable relative geometry,

and dynamic maneuvers. While the CEKF shows improvement over the prior literature

methods without additional sensors, it under performs the VehDynEKF proposed here. With

only the use of UWB ranging and odometry, the VehDynEKF in this thesis can provide robust

relative pose estimates to a neighboring vehicle. The estimate is affected by relative dynamics

but maintains a mean error less than 2.5 meters in both simulation and experimental results

without cooperative feedback. The lateral velocity of the vehicles is found to be a primary

contributor to error; odometry including measurements of the estimating vehicle’s lateral

velocity significantly improves the results. Lastly, if the ego vehicle has access to the tracked
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vehicle’s longitudinal velocity, the mean error is refined to be less than 1 meter—sufficient

for the majority of safety-critical applications.
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Chapter 1

Introduction

As vehicle research progresses further into driver-assistive and autonomous technology,

tracking the relative pose of nearby vehicles is of increasing importance. The most criti-

cal requirement for autonomous vehicle platforms will always be safety. To ensure collision

detection and avoidance, determining the proper relative pose to local operators is imper-

ative. For this and other safety-critical operations, the minimum acceptable accuracy is

often considered to be a two-dimensional relative position vector (RPV) error of 1 meter [1].

Beyond safety assurance, relative positioning is essential for numerous applications of in-

terest for autonomous vehicles including search-and-rescue with multiple platforms, smart

warehouses, and path duplication (platooning). The success of these applications and many

more lies within accurate and robust localization to nearby participants. This thesis explores

the problem of autonomous ground-vehicle relative positioning through the use of on-board

sensors and local collaboration.

1.1 Background and Motivation

The Global Positioning System (GPS) introduced in 1993 became the first of many

Global Navigation Satellite Systems (GNSS) to provide globally-available localization infor-

mation within a few meters. Since then, advanced algorithms have been developed to refine

the accuracy to the order of centimeters through differential GPS methods (DGPS) between

receivers. If one of the receivers is at a known location, a highly accurate global solution can

be provided, but it may also be employed with mobile receivers to provide precise relative

positions. This is the most common method of ground-vehicle relative positioning and can
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Figure 1.1: Relative Positioning with GPS Obstacles

achieve the 1 meter accuracy requirement for safety. However, as impressive and ubiqui-

tous GNSS as solutions are, they are not without their shortcomings. The satellite signals

originating from space are frequently blocked from passive sources including foliage, build-

ings, and tunnels or from intentional manipulation such as jamming or spoofing. A blockage

due to structural interference is depicted in Figure 1.1. Due to these issues, GPS cannot

be considered the sole solution of relative ground-vehicle positioning, and other methods

independent of an external infrastructure should be explored.

The main goal of this thesis is to present onboard range-based estimation methods

for tracking the relative position of ground vehicles without GPS. This problem practically

consists of tracing a relative position vector between two vehicles through time. The two

components of this problem are detection and tracking. Detection may be considered lo-

calization at an instant in time by processing current measurements, while tracking aims

to predict the future path of the vehicle through a motion model [1]. This tracking step is
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crucial; it helps to assist future detection with an estimate of the next likely location, to

estimate additional states such as relative velocity, and to provide a path estimate through

measurement outages or errors. The implementations presented in this thesis approach these

tasks through cooperative solutions with relative ranging from on-board sensors and vehicle

odometry. The platform performing the estimation is denoted as the ”base” or ”ego” vehicle,

while the vehicle whose relative pose is being estimated will be referred to as the ”tracked”

vehicle.

In order to generate a relative position of the tracked vehicle in the ego vehicle’s frame,

this thesis makes use of multiple on-board range measurements. Many different sensors

can provide this ranging estimate through different means. Camera-based techniques can

estimate relative range through pixel-mapping image data to the physical world once the

target vehicle has been identified [2, 3]; however, the image processing techniques required

for proper identification are often complicated and computationally expensive. Additionally,

vision-based solutions rely upon consistent line of sight within their limited field-of-view—

requiring multiple camera systems to fully capture a vehicle’s surroundings. Radio detection

and ranging (RADAR) is a well-matured ranging solution based upon reflected elctromag-

netic waves. It has already been implemented in middle-class commercial vehicles for collision

warning and automatic cruise control (ACC) applications [1]. Although the technology has

been around for over a century, research is ongoing including recent developments to gener-

ate ground-penetrating maps for localization in surveyed environments [4]. Light Detection

and Ranging (LIDAR) operates similarly but utilizes reflections of light pulses to estimate

relative range of objects in the vicinity. Their high accuracy and map-generating capabili-

ties have made them a critical component of many budding autonomous vehicle efforts [5],

but they are susceptible to environmental conditions and their cost is still relatively high

compared to other sensing options. For an in-depth comparison on varying ranging sensor

options as they relate to the vehicle tracking problem, see [1].
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Ultra-wideband radios have gained interest in recent years for varying localization ap-

plications due to their robust and accurate ranging in many different scenarios where other

sensors suffer. UWBs are more resistant to multi-path than GPS, provide peer-to-peer

ranging without further processing, can be dispersed across platforms to provide multiple

geometrically diverse measurements, and can even provide limited data along with their

ranging measurements. Their relatively low cost and small form-factor have led to their

inclusion in many localization algorithms. UWBs have been used for aiding DGPS solutions

by providing a highly accurate base-length estimate [6–8]. They have also been used for

emergency-responder navigation [9], as landmarks for ground-vehicle localization [10], and

as an aiding source for range-only simultaneous localization and mapping (SLAM) [11].

This thesis also attempts to improve the UWB relative positioning results through coop-

erative methods. Collaboration for improved localization is of increasing interest as systems

become increasingly connected. This cooperation between nodes may take many different

forms including GPS location sharing, dynamic state transmission, or communication to

nearby smart infrastructure. Although relative positioning has been achieved with on-board

sensing alone, the inclusion of inter-vehicle communication presents ample opportunity for in-

creased accuracy and robustness. The recent introduction of standardized vehicle-to-vehicle

(V2V) communication structures in America, Europe, and Japan show the institutional

interest in the collaborative possibilities of ground vehicles [1].

The simplest method for implementing cooperation is for the tracked-vehicle(s) to pro-

vide its dynamic states directly to the estimator. This can assist in propagating the previous

state and prevent inaccurate solutions which may exist from the ranging alone. In Chap-

ter 2, the dynamic parameters of a maneuvering ground vehicle are simplified to a few key

components which can be broadcast to provide additional observability to the estimation

process.

When local vehicles all have an interest in relative positioning to one another, the

opportunity exists to leverage the local estimates into a more accurate solution for each
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— this is the basis for mutually-beneficial cooperation. Collaborative localization methods

can be divided into two main categories: centralized and decentralized. In a network of

vehicles with on-board sensing along with relative measurements to one another, a centralized

approach incorporates all of the measurement information to create an estimate of each

vehicle’s state vector and then broadcast this information back to each node in the network.

These centralized algorithms represent the best-case scenario, but suffer from non-scalability

due to limitations in communication bandwidth, processing bottlenecks, and proper time-

syncing of transmitted measurements. It also introduces a single point of failure for the

solution of a full network of vehicles.

Decentralized solutions attempt to overcome these problems by dividing the computa-

tional requirements and failure modes over a network of independent estimation algorithms.

However, these decentralized methods introduce difficulties when the relative measurements

are functions of multiple states. For instance, one of the most commonly seen applications

of decentralized algorithms is for navigation solutions of independent platforms with relative

measurements between one another. This application presents an issue where the cross-

correlation terms in the covariance matrix are no longer being directly tracked. These terms

are crucial for depicting the relation of errors between the states of multiple platforms.

Methods for recovering these cross-correlations have been proposed — the most common

being covariance intersection (CI) and inverse covariance intersection (ICI). For more infor-

mation on these estimators see [12] and [13], respectively. These decentralized methods do

not directly apply to the problem at hand, but they are the most common applications in

literature.

The relative tracking problem in this thesis differs from these decentralized global-

solution algorithms in a few critical ways. There are no global solutions tracked for each

vehicle, and so the relative measurements are not functions of states from multiple estimators.

Rather, the range measurements relate directly to the RPV solution of a given estimator. It

will be shown in a later chapter that multiple vehicles estimating pose to one another can
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be re-formulated to be considered as estimating a shared state. In problems with multiple

estimations of shared states, a decentralized algorithm known as the Consensus Kalman

Filter is often used for driving the solutions to a shared “consensus.” This concept will be

explored in proceeding chapters.

1.2 Prior Work

This thesis focuses on the generation of relative positions between locally-maneuvering

ground vehicles with on-board sensors and collaboration with local neighbors. The majority

of localization with UWBs has been restricted to employing measurements to local landmarks

or anchors with known locations [14–16]. Therefore, their primary use is often for indoor or

well-mapped local navigation where local anchors are feasible. For an in-depth overview of

indoor positioning with UWBs, Alarifi et al. provides a detailed analysis [17].

Relative positioning without known landmarks makes the problem more difficult, and

often UWBs are implemented to augment other existing solutions. An interesting new de-

velopment from Stanford involves a tight-coupling of three UWBs and carrier phase DGPS

solutions [18]. That work, published in May 2022, employed the three UWBs to create a nar-

row search space for resolving the carrier phase integer ambiguities with promising results.

This shows an increasing use-case for UWBs as companion solutions to GPS. However, the

work focused on simplistic UWB RPV estimation methods and only explored ideal relative

geometries (one vehicle following closely behind the other).

In [19], UWB ranges and inertial measurements were used to estimate relative paths

of UAVs. However, the path estimates were also dependent on magnetometers providing

a global heading reference and sufficient relative dynamics as outlined in previous work by

the same group [20]. One of the few sources in literature focusing on only on-board UWB

sensors was presented recently by Ghanem et al [21,22]. That work presents the first known

application of a multi-UWB network to the ground vehicle relative positioning problem. A
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Figure 1.2: UWB Layout with 4 Ranges

configuration of four UWBs horizontally across the roof of the vehicles was employed and

the same layout will be used here. This is seen in Figure 1.2.

Ghanem’s work explores the difficulties in this problem through their initial results

and observability analysis while employing a constant-relative-velocity Extended Kalman

Filter. This method has shortcomings due to the limitations of the constant relative velocity

assumptions resulting in instabilities and significant errors. Ghanem’s solutions in [22] form

a baseline comparison for all of the methods presented in this thesis. The results and error

modes from Ghanem’s method will be highlighted in more detail during the comparisons to

methods proposed in this thesis.

While [22] provides the first UWB ground vehicle RPV estimation in literature, exten-

sions were made with the application of vehicle dynamic models in [23]. However, these

methods do not explore the possibility of cooperative aiding. This thesis leverages vehicle-

to-vehicle information exchange through the UWBs communication capabilities in order to
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examine potential cooperative benefits. Simultaneous ranging and communication is a use-

ful aspect of certain UWB hardware and is further described in [24]. With this capability

in mind, two methods of collaboration are explored: dynamic state feedback from tracked

vehicles and consensus algorithms. The consensus condition applied to the decentralized rel-

ative position algorithms presented in this thesis originates from Oltafi-Saber who originally

derived the decentralized Kalman filtering method specifically for distributed sensor net-

works [25,26]. Since then, it has been applied to numerous applications including spacecraft

relative motion [27], UAV swarms [28], and traffic estimation [29]. The geometrically-inspired

consensus condition is varied from more typical consensus applications and is inspired from

a recent implementation by Gong et. al [30]. In this prior work, the authors apply vector

algebra to constrain the 2D relative positioning of aerial vehicles; however, the vehicles were

also equipped with many other sensors (IMUs, pitot tubes, and magnetometers) and only a

single range measurement was utilized on each vehicle. Nevertheless, this prior work high-

lights the successful application of the consensus condition in a less-conventional manner. A

similar methodology will be employed here to the ground-vehicle RPV estimation.

1.3 Research Contributions

The calculation of relative poses between local ground-vehicles has been performed in lit-

erature with a variety of sensor suites. Compared to other on-board solutions, UWBs present

the opportunity for reduced computational complexity, omni-directional performance, invari-

ance to local weather conditions, and geometric measurement diversity. Prior applications

of UWBs to ground-vehicle RPV estimation have shortcomings which this thesis improves

upon. The primary contributions of this thesis are as follows:

� Derivation and application of a vehicle dynamics model towards ground-vehicle relative

positioning with UWBs to provide a substantial improvement over existing methods

in literature (previously presented at MECC [23])
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� Design and comparison of extensions to [23] with numerous collaborative methods.

Consideration was taken towards the communication bandwidth limitations of the

UWB hardware

� A novel application of a geometrically-inspired Consensus Extended Kalman Filter to

ground-vehicle relative pose estimation

� Comparison of proposed methods to prior literature in both simulation and experi-

mentation

1.4 Thesis Outline

Chapter 2 of this thesis provides the technical foundations required to develop the

ground vehicle relative-positioning algorithms. It highlights the major components: coor-

dinate frames, vehicle odometry, kinematic models, and an analysis of the UWB-ranging

hardware. In Chapter 3, the difficulties of the relative-positioning problems are presented

and the non-cooperative algorithms are derived. Chapter 4 describes cooperative extensions

to the base algorithms with consideration of data transmission and sensor-availability con-

straints. The simulation structure and associated results for all algorithms are presented in

Chapter 5. Next, in Chapter 6, the simulation results are verified experimentally through

a variety of trajectories. Lastly, Chapter 7 presents final conclusions and recommendations

for future work.
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Chapter 2

Ground-Vehicle Localization Technical Background

For the algorithms presented in this thesis, a foundation of coordinate frames, sensor

models, vehicle odometry methods, and sensor analysis is required. These fundamental

concepts are outlined in this chapter.

2.1 Coordinate Frames

Coordinate frames are a fundamental component of any localization solution. Even

outside of technical applications, the statement “your position is [20, 15, -10]” is meaningless

without some reference frame for context. A Cartesian coordinate frame is defined by three

orthogonal axes intersecting at a defined origin. However, the potential options for valid

frames are limitless and often up to the user’s preferences. It is critical that the resolving

frames are well-understood and outlined.

In navigation and tracking applications, numerous resolving frames are typically present

since most solutions rely on the fusion of sensors which provide information in varying coor-

dinate systems. Consider the Global Positioning System (GPS). GPS-derived solutions are

calculated in an earth-centered, earth-fixed frame originating at the center of the earth, but

these values are difficult to comprehend and are often transformed into a geodetic represen-

tation (latitude (Φ), longitude (λ), and height). Figure 2.1 depicts these frames along with

a local navigation frame which will be described later.

Similarly, ground vehicles often employ mounted sensors such as cameras, inertial mea-

surement units (IMUs), and LiDARs, which generate measurements in their own sensor-body

frame. The vehicles are interested in solutions in a local navigation frame such as North-East-

Down (NED). In order to fuse varying sensors together into a cohesive and useful solution, a
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Figure 2.1: ECEF and LLA Coordinate Frames [31]

common frame is often selected into which each measurement is rotated and resolved. The

frames used in this thesis and the mechanisms for relating them to each other are described

in this section.

2.1.1 Local Tangent-Plane Frame

A local tangent-plane navigation frame is a commonly used to describe a frame which

is valid for navigation with respect to a locally defined origin. This frame often aligns with

some form of topographic directions (NED) and originates a coordinate system with a flat-

earth assumption at a provided origin location. This origin is often chosen to be a local

landmark or the first fixed position solution, and all subsequent navigation solutions are

then with respect to this frame. The further the navigator strays from the origin, the more

error is introduced due to the ellipsoidal nature of the Earth’s surface. This local-frame

assumption will be employed for the ground-vehicle trajectories presented in this thesis.
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Figure 2.2: NED and Vehicle Body Frames

Note that all algorithms are derived in the ego vehicle’s frame, so this NED frame is only

used for visualization.

2.1.2 Body Frame

Body frame is a general term for any coordinate system defined to move with a body of

interest. For a ground vehicle, the frame originates at the center of gravity (COG) with two

common axis conventions: X (forward), Y (right), and Z (down) or X (right), Y (forward) and

Z (up). These conventions are convenient as they align with the most commonly utilized local

navigation solutions, NED and ENU (East-North-Up), when the Euler angles (described in

the following section) are zero. The forward-right-down convention is selected for this thesis

to align with the chosen local NED frame. Figure 2.2 depicts these frames.
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Figure 2.3: Aircraft Body-Frame Axis Convention [32]

2.1.3 Coordinate Transformation Matrices

The relationship between two 3D coordinate frames may be expressed in numerous

different forms. One of the most useful representations, and the one which will be used

in this thesis, is a coordinate transformation matrix consisting of 9 elements which relate

common vectors in each frame. Commonly referred to as direction cosine matrices (DCMs)

or rotation matrices, these matrices allow for rotation of a vector from one frame to another

with simple matrix algebra. In Equation 2.1, the rotation matrix Rb
a rotates a vector resolved

in the a frame, x⃗ a, into an equivalent vector resolved in the b frame, x⃗ b.

x⃗ b = Rb
ax⃗

a (2.1)

In order to generate a rotation matrix, the composition of three sequential elementary

rotations can be considered. The angles of these rotations are commonly referred to as Euler

angles, but this general term encapsulates numerous conventions representing varying orders

and axes of rotations. The Tait-Bryan convention (yaw, pitch, roll) shown in Figure 2.3 is

frequently used in navigation, especially for aircraft, and will be described here.
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Figure 2.4: Three Successive Elementary Rotations

The first step in this convention is an elementary rotation about the original Z axis by

the yaw angle, ψ. This rotation generates a new intermediate coordinate system, i, described

by X ′Y ′Z ′. The pitch rotation occurs next about the new Y ′ axis, iy, by a magnitude of

θ. Once more an intermediate frame, j, is considered and the final coordinate frame is

derived by a roll about the X ′′ axis, jx. These three elementary rotation steps are depicted

in Figure 2.4.
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The rotation matrices defining each of these elementary rotations are shown in Equations

2.2 to 2.4.

RZ = Ri
a =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 (2.2)

RY = Rj
i =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (2.3)

RX = Rb
j =


1 0 0

0 cos(ϕ) sin(ϕ)

0 − sin(ϕ) cos(ϕ)

 (2.4)

The resulting matrix is described by pre-multiplying the successive rotations as shown in

Equation 2.5.

Rb
a = Rb

j(ϕ)R
j
i (θ)R

i
a(ψ) (2.5)

This convention of employing intermediate axes for each successive rotation is often

referred to as a body-fixed rotation sequence. A common alternative is to describe the

rotations about the original axes, a space-fixed sequence. This distinction may seem critical,

but in practice either leads to the same orientation [33]. Either is usable to generate the

required matrices so long as the chosen convention is consistent and clear. The resulting

rotation matrix for the Tait-Bryan convention defined here is shown in terms of Euler angle
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components [32].

Rb
a =


cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

− cos(ϕ) sin(ψ) + sin(ϕ) sin(θ) cos(ψ) cos(ϕ) cos(ψ) + sin(ϕ) sin(θ) sin(ψ) sin(ϕ) cos(θ)

sin(ϕ) sin(ψ) + cos(ϕ) sin(θ) cos(ψ) − sin(ϕ) cos(ψ) + cos(ϕ) sin(θ) sin(ψ) cos(ϕ) cos(θ)


(2.6)

The close relationship between Euler angles and rotation matrices is thus seen above. The

angles can be utilized to compose the rotation matrix and likewise the rotation matrix may

be decomposed into the more intuitive angles whenever necessary through [32]:

ϕ = arctan(Rb
a(2, 3), R

b
a(3, 3)) (2.7)

θ = − arcsin(Rb
a(1, 3)) (2.8)

ψ = arctan(Rb
a(1, 2), R

b
a(1, 1)) (2.9)

There are a few key properties of rotation matrices to note. First, in order for rotation

matrices to map equivalent vectors in between frames, it is required that rotation matrices

do not impose any scaling of the vector through multiplication. That is, the norm of each

row and column of a valid rotation matrix should have a magnitude of 1.

||R(:,i)|| = 1 ∀ i (2.10)

||R(j,:)|| = 1 ∀ j (2.11)

Additionally, all rotation matrices have columns which satisfy an orthogonal set. That

is, each column is orthogonal to the others — this is necessary to guarantee the rotation

yields values in an orthogonal coordinate frame. The combination of this property with

those described in Equations 2.10 and 2.11 results in rotation matrices being considered

orthonormal. All orthonormal matrices have the property of an inverse and transpose being
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equivalent as shown in Equation 2.12.

(Rb
a)

−1 = (Rb
a)
T (2.12)

This property is valuable since the transpose of a matrix is simpler to calculate than the

inverse. Additionally, the inverse of a rotation matrix describes the opposite rotation such

that,

Ra
b = (Rb

a)
−1 = (Rb

a)
T (2.13)

For relative positioning of ground vehicles, a 2D assumption is considered sufficient for

the majority of critical applications [1]. Therefore, throughout the remainder of this thesis,

the focus will be on two-dimensional coordinate frames and the transformations between

them. Two rotations of interest will be used extensively in the sections to follow: body-

to-NED and multi-vehicle body-to-body. Both of these rotations have the same form: an

elementary rotation about a shared Z-axis as in Equation 2.2. However, since the third

dimension is not of interest and assumed to remain aligned with each other, the matrix may

be simplified. The body-to-NED rotation is dependent on the heading measured clockwise

from north while the body-to-body rotation is calculated from the difference in heading

between the two vehicles. Equations 2.14 and 2.15 depict these relationships along with

Figure 2.5 where C will be the chosen variable to represent the coordinate transformations

from here on in this thesis.

CN
V1

= RZ(ψ)
T =

cos(ψV1) − sin(ψV1)

sin(ψV1) cos(ψV1)

 (2.14)

CV2
V1

= RZ(∆ψ)
T =

cos(∆ψ) − sin(∆ψ)

sin(∆ψ) cos(∆ψ)

 (2.15)
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2.2 Vehicle Odometry

As mentioned in Section 1.1, two aspects are critical to the relative position tracking

problem: the relative position of the target vehicle and estimates of the relative motion

through time. This second aspect involves predictions of the future path of the vehicle

through estimates of the vehicle’s motion. The position and attitude of a vehicle over time is

known as pose, and estimating the change in this pose over time through dynamic measure-

ments is referred to as odometry. In addition to estimates of the tracked vehicle’s odometry,

knowledge of the ego (vehicle performing the on-board estimation) vehicle’s dynamics is in-

herently required since the tracking presented in this thesis is calculated in the ego vehicle’s

moving body-frame. This necessitates defining the motion of the resolving frame. Solving

for a vehicle’s odometry has been well-studied using numerous methods which can often be

categorized as either kinematic or model-based implementations.

Model-based methods incorporate knowledge of the operating vehicle or the surrounding

environment to aid in the estimation process. For example, wheel encoders are commonly
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employed on ground vehicles, but knowledge of the wheel radius is required to convert the

number of revolutions into a ground speed estimate. Model-based implementations can be

used in tandem with a variety of sensors and platforms: [34] incorporated non-holonomic

ground-vehicle constraints to visual odometry methods while [35] employed UAV rotor dy-

namics with visual and inertial sensors.

Alternatively, kinematic approaches do not depend on vehicle parameters which typically

vary between platforms. This method is commonly employed through accelerometer and

gyroscope measurements from an IMU. The acceleration and angular velocity measurements

from these sensors can be utilized to estimate the full 6 degrees of freedom (6-DOF) for

any rigid body maneuvering in 3D space without requiring knowledge of the platform. The

lever arm from the body’s center of gravity is a required parameter, but this is typically well

measured or can be found through estimation techniques such as transfer alignment [36–38].

Both model-based and kinematic methods will be explored in the following sections as they

relate to vehicle odometry and the relative position tracking problem.

2.2.1 IMU Mechanization

Most inertial measurement units are comprised of three orthogonal single-axis accelerom-

eters along with three orthogonal single-axis gyroscopes each meant to measure the specific

force and angular rate along a single sensor body axis [32]. To make use of these sensor

measurements, the resolving frame should first be selected along with the chosen method

of depicting attitude. Here, the attitude will be described with the rotation matrix method

described previously and the solutions will be resolved in an NED frame.

IMU mechanization is an example of a dead-reckoning technique. Dead reckoning is

the process of finding the current position of an object by updating a previous position with

estimates of motion over time. Therefore, all dead-reckoning techniques require initialization

of the object’s pose at the beginning of the algorithm. This initialization reference may

come from various sources depending on the platform and use case. To obtain a global
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solution from dead reckoning, a global reference is required for initialization—this is often

the case for GPS/INS coupled solutions where the GPS solution is utilized for first position

fix. If only a relative solution is desired, then the initial pose may be with respect to a

nearby landmark or by taking the vehicle’s initial position as the origin of a local navigation

frame. The mechanization described here assumes the initial position to be the origin of

the NED frame with a known initial attitude. It should be reiterated that this tangent-

frame implementation with a static origin is valid for local solutions only. [32] provides an

NED frame mechanization that is valid beyond local solutions by updating an origin that

moves with along with the navigator. Although 2D solutions are the primary goal of this

thesis, the general 3D mechanization is provided for thoroughness. Implementing zeros for

the extraneous gyro and accelerometer measurements yields the equivalent solution to a

simplified 2D mechanization.

Given initial values, the position, velocity, and attitude (PVA) states may be initialized

as in Equations 2.16–2.18.

p⃗NNb(1) =


N0

E0

D0

 =


0

0

0

 (2.16)

v⃗NNb(1) =


vN

vE

vD

 =


0

0

0

 (2.17)

CN
b (1) = (Rb

a(ϕ0, θ0, ψ0))
T (2.18)

Where the notation p⃗NNb has a subscript denoting the position vector of the body with respect

to the local-tangent NED frame and a superscript expressing its resolution in said frame.

This notation is critical to understand the following equations. The attitude is initialized
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with the transpose of the rotation matrix shown in Equation 2.6 with initial Euler angles—

the rotation matrix is updated directly beyond this point. After initialization is completed,

the following steps are repeated for each successive inertial measurement received.

The previous attitude is updated with measurements from the gyroscopes along with

compensation for the rotation rate of the Earth. In discrete time, a first-order approximation

of this step is shown in Equation 2.19.

CN
b (i+ 1) = CN

b (i)(I + Ωb
ib∆t)− ΩN

ieC
N
b (i)∆t (2.19)

This update assumes a small integration period, ∆t, which represents the time step between

consecutive IMU measurements. The Ωb
ib and ΩN

ie terms are skew-symmetric matrix forms

of the input vectors — the gyroscope measurements and the rotation rate of the Earth,

respectively. A skew-symmetric form of a vector is constructed according to Equation 2.20.

Ω = Skew(ω⃗) =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (2.20)

The rotation rate of the Earth is considered constant about the Earth’s Z-axis (connecting

the two poles) at ωE = 7.292115 ∗ 10−5 radians per second. This may be rotated into the

local frame through the latitude of the local frame origin, Lb:

ΩN
ie = Skew(ωE ∗ [cos(Lb) 0 − sin(Lb)]

T ) (2.21)

The specific force measurements of the accelerometers are measured with respect to an

inertial frame and resolved into the sensor’s body frame. These measurements may then

be rotated into the resolving frame with the average of the previous and newly-updated
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attitude:

f⃗ Nib =
1

2

[
CN
b (i) + CN

b (i+ 1)
]
f⃗ bib (2.22)

The velocity with respect to the local-tangent frame may then be updated. As was

mentioned before, accelerometers measure specific force, f⃗ bib, which is the sum of the non-

gravity forces per unit mass acting on a body with respect to an inertial frame. This means a

perfect IMU in freefall would measure zero—contrary to the approximate 9.81 m
s2

acceleration

expected on Earth. Therefore, a gravity term must be added to the specific force in order

to generate an estimate of the body’s acceleration. This is commonly done with reference to

The World Geodetic System 1984 (WGS84) datum which provides a simple gravity model

as a function of latitude [39]. With this gravity compensation and a Coriolis term due to

rotation of the Earth, Equation 2.23 updates the velocity states.

v⃗NNb(i+ 1) = v⃗NNb(i) +
[
f⃗ Nib + g⃗Nb − 2ΩN

ie v⃗
N
Nb(i)

]
∆t (2.23)

Finally, the position with respect to the local-tangent frame origin may be updated:

p⃗NNb(i+ 1) = p⃗NNb(i) +
[
v⃗NNb(i+ 1) + v⃗NNb(i)

]
∆t (2.24)

A flowchart summarizing an epoch of this process is shown in Figure 2.6.

2.2.2 Ground Vehicle Dynamic Models

Vehicle models are highly useful approximations of physical truth and are commonly

employed to produce simulations, generate control commands, or improve estimation re-

sults. Ground-vehicle systems often employ kinematic methods to improve their odometry

solutions. These can consist of providing known motion constraints to an IMU-based imple-

mentation through pseudo-measurements as in [40–42], or the constraints can simplify the
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Figure 2.6: IMU Mechanization Process

required measurements to predict the motion. Numerous models of varying complexity have

been implemented throughout literature. One of the simplest and most common models, the

kinematic bicycle model, employs geometric relationships to predict motion without consid-

ering the forces governing said motion [43]. This model allows for fewer sensor measurements

to provide an odometry solution, and key components of this model will also be useful to

assist in the estimation process in proceeding chapters.

Kinematic Bicycle Model

The first major assumption of this model is the reduction of a four-wheeled vehicle into

two by combining the rear and front tires into one. Assuming only front-wheel steering, the

resulting depiction mimics a bicycle and is shown in Figure 2.7.

Perpendicular lines drawn from the surface of each tire intercept at a point, O, which

is known as the instantaneous point of rotation for the vehicle. R depicts the radius of this

rotation by connecting the COG and this stationary point. δ represents the deflection at the

wheels due to a steering input. L is known as the wheelbase and is the distance between the

two axles, and β is the sideslip angle. From these definitions, the geometric relationships

governing the vehicle’s motion may then be described. First, the following two trigonometric
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Figure 2.7: Kinematic Bicycle Model

relationships need to be considered:

S =
L

tan(δ)
(2.25)

R =
S

cos(β)
=

L

tan(δ) cos(β)
(2.26)

The angular velocity of the vehicle may then be described by the speed, |V⃗ |, and this radius:

ψ̇ =
|V⃗ |
R

(2.27)

and so:

ψ̇ =
|V⃗ | tan(δ)cos(β)

L
(2.28)
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The sideslip angle can be related to other known geometric values as:

β = arctan

(
lr tan(δ)

L

)
(2.29)

With X and Y as local-frame position components of the vehicle, the component velocities

and yaw rate of the COG, are summarized with Equations 2.30–2.32

Ẋ = |V⃗ | cos(ψ + β) (2.30)

Ẏ = |V⃗ | sin(ψ + β) (2.31)

ψ̇ =
|V⃗ | tan(δ) cos (β)

L
(2.32)

The sideslip angle term, β, relates the body’s longitudinal and lateral velocities at

an instant in time while ψ denotes the heading of the vehicle measured from the local

X-axis. The sum of these values is considered the vehicle’s course. Depending on the

application, it may useful to instead find the velocity components in the body frame as seen

in Equation 2.33.

v⃗ b =

Vx
Vy

 =

|V⃗ | cos(β)

|V⃗ | sin(β)

 (2.33)

Although simplistic, this model is quite useful in practice at low speeds since this model

assumes no side-slip at the tires—an assumption that becomes less accurate at higher speeds

and higher lateral accelerations [43]. This is clear from the relationship shown in Equa-

tion 2.34 which depicts the lateral forces required at the tires required to turn at a given

radius and speed.

Flat =
mV 2

R
(2.34)
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Figure 2.8: RTK and Kinematic Bicycle Model Experimental Comparison

This thesis focuses on low-speed relative trajectories. Therefore, the simulation de-

scribed in a later chapter makes use of this model as its basis. Through this model, the

odometry of a ground vehicle in a local-frame can be estimated with only two sensors. A

example comparison of this odometry method to a real-time kinematic (RTK) ground truth

from an Auburn test vehicle with wheel encoder and steer angle sensors is shown in Fig-

ure 2.8.

Even with the assumptions made within the kinematic bicycle model, the accuracy

remains within a few meters after a 1.5-minute test. Note the max speed achieved during

this test was roughly 13.4 miles per hour, thus the low-speed requirement was well preserved.

Dynamic Bicycle Model

Although it will not be detailed here, it is worth noting the existence of a more sophis-

ticated ground vehicle model known as the dynamic bicycle model. At higher speeds, this

model’s consideration of forces at the tires more accurately predicts the lateral motion of the

vehicle. With well-known vehicle parameters, the dynamic bicycle model is quite accurate
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Figure 2.9: UWB Layout and Corresponding Range Measurements

under most circumstances. This model is therefore one of the most widely used in litera-

ture. [43] provides a thorough derivation and analysis of this model while a comparison of

these kinematic and dynamic versions may be seen in [44].

2.3 Ultra-wideband Radios (UWBs)

As mentioned, the estimation algorithms presented in this thesis are reliant upon inter-

vehicle ranging measurements. UWB node-to-node ranging is one of the most-commonly

employed relative measurements in collaborative estimation techniques. UWBs are employed

in this thesis for all ranging measurements between the locally-operating vehicles, and each

vehicle is assumed to be equipped with two UWBs positioned horizontally across the vehicle’s

roof. This results in each vehicle producing four ranges with a given neighbor as seen in

Figure 2.9. Note the sensor spacing is exaggerated for clarity. UWB technology, performance,

and the chosen hardware model will be described in this section.
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Figure 2.10: Two-Way Time-of-Flight (TW-TOF) Process [45]

2.3.1 Measurement Methodology

The most common implementation of UWB technology generates peer-to-peer measure-

ments with a two-way time-of-flight (TW-TOF) protocol. This method removes the need

for accurate time synchronization between nodes required by time of arrival (TOA) tech-

niques. Figure 2.10 depicts a simplified illustration of this process. The process begins with

the requesting node sending a pulse (blue) at a recorded time, τ tx1 . The time of arrival of

the request at the responder, τ rx2 , is found from a leading edge detection (LED) algorithm

and recorded. The proceeding orange signals seen after this point are duplicated due to

multipath effects which can be mitigated with successful LED. The responder then forms a

response signal after a highly precise delay interval, τdelay, and generates its own waveform

to be broadcast back to the requester node. This packet contains the delay interval which

will be required for the range calculation. At the requester node, the leading edge is once

more calculated to generate the TOA for the response, τ rx1 . With the three necessary val-

ues, τ rx1 , τ tx1 , and τdelay, collected at the requesting node, the range may be calculated by
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Figure 2.11: TimeDomain (TDSR) PulsON 440 Development Board [46]

Equation 2.35.

Range = c ∗ 1

2
(τ rx1 − τ tx1 − τdelay) (2.35)

2.3.2 Hardware Description

The methodology described above is a general outline of the TW-TOF procedure utilized

by modern UWBs. However, the exact signal structures and processing methods are more

complex and vary between UWB models and manufacturers. The methodology described

here is based upon the selected hardware: a TimeDomain PulsON 440 (P440). This module,

shown in Figure 2.11, is one of the top-performing and well-recognized UWB modules at the

time of writing. Note that the manufacturer, TimeDomain, has undergone acquisitions since

the creation of this module. The P440 is being improved upon but remains available under

a new company name: TDSR [46].

The following description is a summary of more-detailed information in [47]. Com-

munication between the P440s is performed by sending a train (packet) with hundreds or

thousands of pulses. The transmission rate and phase of these pulses are determined by a

pseudo-random code. Thus, a responding node must have knowledge of this code in order
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to lock onto this pulse train. The train of pulses also may contain user data which offers the

ability to use one sensor for both communication and ranging simultaneously. This creates

an even higher-incentive for the use of UWBs in the presented collaborative algorithms which

inherently rely upon data transmission to operate. Up to 1024 bytes may be included in

each packet of a ranging request. However, only 136 bytes can be sent per packet without

increasing packet size or transmission time.

It should be noted that the short-pulse nature of the signals are inherently broadband.

This is verified in a Fourier analysis of an ideal impulse over an infinitesimally short duration

which would have infinite bandwidth [48]. This results in in the highest possible bandwidths

and lowest center frequencies for the UWB signals. This improves multipath rejection con-

siderably; however, it also means each pulse fully occupies the entire operating bandwidth.

The result is that the common method of frequency-based channelization is not possible.

Instead, the P440s pseudo-random noise encoding on each pulse train allows for the creation

of parallel channels [9].

The individual pulses are very low power. To counteract this, the transmissions are

encoded such that blocks of pulses are integrated to form a single communication “symbol.”

This summation of pulses increases the signal-to-noise ratio (SNR) of the received transmis-

sion. The number of pulses which are summed for each symbol may be selected by the user

by modification of the pulse integration index (PII). These PII values are based on powers of

two, so a PII of 4 results in 24 or 16 pulses per symbol. The more pulses integrated into each

symbol, the higher the SNR which results in a further operating range. However, this comes

at a trade-off with update rate of the ranging network. A table describing the expected

ranges (in free space) and measurement rates is recreated from data sheets in Table 2.1 [47].

Note that UWBs often operate in a network format where only a single range is being

generated at a given instance in time. The result is that for the ranging network in this

thesis, only one of the four desired ranges will be present at a given instance in time. An
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Table 2.1: PulsON P440 Operating Results from PII Selection

PII Max Range (m) Range Measurement Rate (Hz) Data Rate (kbps)
4 66 123.5 612.48
5 101 102.0 308.48
6 145 72.5 144.64
7 207 47.2 76.80
8 260 27.5 39.04
9 410 14.9 19.20

advertised ranging measurement rate is therefore divided among the nodes in the network.

For example, at the chosen PII value of 9, the update rate for r02, seen in Figure 2.9, would be

approximately 14.9/4 or 3.725 Hz. However, there exist methods for dynamically switching

connectivity (ALOHA protocol) and research is being conducted to generate the ranges

concurrently [49]. Regardless of the update rate, the expected accuracy is approximately 2

cm if properly calibrated as documented on the data sheet.

2.3.3 Experimental Analysis

The selected UWBs advertise an accuracy on the order of a few centimeters up to 400

meters of range. Before analyzing the results on the vehicle platforms, the hardware needs to

undergo calibration. The calibration process built-in to the system’s software is for a single

node-to-node calibration. This successfully accounts for the electrical delays between a two

node range request. However, this method distributes the calculated delays between the two

nodes evenly and cannot determine the individual error in each. For example, a calibration

between nodes 1 and 2 does not provide information on the errors internal to node 2 and it is

not valid for any other range such as between node 2 and node 3 [50]. Although it is possible

to keep a generate a reference table of errors between node pairs, solving for the individual

delays of each node is far more advantageous; it allows for delay errors to be removed in

software before the ranges are published and for new connections to be made between nodes
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without re-calibration. For the four-node network implemented here, the delay for each node

will be calculated in a fully-networked fashion with a least-squares technique.

The premise of this technique is that the only errors in a TW-TOF measurement imple-

mented in the TimeDomain radios should be the electrical delays in each node along with

random noise. The resulting measurement model is then seen to be:

r̃12 = r12 + ϵ1 + ϵ2 + ν (2.36)

With knowledge of the true ranges between the radios along with a sufficient connectivity of

a network, the delays embedded in each radio, ϵ, may be calculated. This can be done from a

least squares estimation technique which minimizes the residual between the measurements,

y⃗, and the estimated value as a function of states, h(x⃗). In a linear model, this form

is simplified to a linear a mapping matrix, H. Also, since the true ranges are known and

constant, the measurement vector may be simplified to be measurements of the errors instead:

˜⃗y = y⃗ − r⃗ (2.37)

where r⃗ is a vector consisting of the true ranges between each node pair. Selecting the states

of interest to be the errors in each node, the final form of the measurement error model is:

˜⃗y = H



ϵ0

ϵ1

ϵ2

ϵ3


+ ν (2.38)
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Figure 2.12: Indoor Data Collection for Calibration

If the model is properly observable (H is full-rank and invertible), the optimal estimates of

the unknown states, x, can be found with:

x⃗ = (HTH)−1HT y⃗ (2.39)

The measurements for this calibration were made indoors across a flat rectangular surface

(ping pong table) with the true spacing hand measured. This setup is shown in Figure 2.12

As shown in Figure 2.9, only 4 ranges are useful in the estimation—r01 and r23 are static

and assumed to be well-measured. This results in an H matrix mapping the errors to the
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measurement errors for a single set of to be of the form:

Hx⃗ =



1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1





ϵ0

ϵ1

ϵ2

ϵ3


(2.40)

However, with only the four range measurements needed for estimation, the least-squares

calibration is unobservable as the H matrix in Equation 2.40 is not full-rank and is non-

invertible regardless of how many measurements are taken. Even though they will not be

used in estimation, the extra ranges r01 and r23 provide observability to the node errors;

therefore, the measurements and H matrix are extended to include all 6 possible range

measurements. The final measurement form which will be utilized to estimate the errors is

summarized in Equations 2.41 and 2.42.

˜⃗y = Hx⃗+ ν (2.41)

r̃01 − r01

r̃02 − r02

r̃03 − r03

r̃12 − r12

r̃13 − r13

r̃23 − r23


=



1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1





ϵ0

ϵ1

ϵ2

ϵ3


+ ν (2.42)

The errors are found by solving Equation 2.39 from a few minutes of static data (ap-

proximately 350 measurements of each range) with H and ˜⃗y concatenated accordingly. This

solution is optimal if and only if a few requirements are met: there are infinite measurements,

the measurement model is completely accurate, and the noise on the measurements is zero-

mean and Gaussian. Here, all of the ranges are collected in a single batch and are considered
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Figure 2.13: P440 Measurement Errors Pre-Calibration

to be equivalent in accuracy (dropout range measurements of 0 meters were removed before

processing the results). This means no weighting of the measurements is required and the

estimates may be made in post-processing since the error states are considered constant.

Modifications for dynamic states and weighted estimations exist and form the basis for the

Kalman filter which will be described in a later chapter.

Figure 2.13 shows the errors in the ranging network before calibration of the biases. It

can be clearly seen that the network contains significant errors. This is most likely due to

previous attempts to calibrate the network through the single node-to-node method. The

errors are also non-zero mean, but their precision is quite similar to the TDSR documented

value of 0.3 cm [47]. The mean and standard deviation of this set of data is described in

Table 2.2. Note that the P440 node naming convention defines the 4-node network from 100

to 103. Therefore, the ranges may be referred to with either convention (e.g: r02 is the range

from 100 to 102).
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Table 2.2: P440 Measurement Error Statistics Pre-Calibration

Range µ (cm) σ (cm)
100 to 102 (r02) -7.11 0.17
100 to 103 (r03) 8.52 0.16
101 to 102 (r12) 8.12 0.23
101 to 103 (r13) 22.85 0.22
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Figure 2.14: P440 Measurement Errors Post-Calibration

Following the estimation of the delay errors, the biases were loaded into the software

of each UWB to compensate for their measurement delays. A new set of data was then

recorded with these updated biases. Figure 2.14 shows the improvement of the measure-

ments. The errors are now nearly zero-mean and maintain similar noise characteristics to

the pre-calibration results. This indicates a static bias was properly removed. The new error

statistics are shown in Table 2.3.

It should be noted that UWB errors have been shown to not be truly Gaussian in na-

ture [48]. The result is a bimodal distribution due to quantization errors in the measurement
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Table 2.3: P440 Measurement Error Statistics Post-Calibration

Range µ (cm) σ (cm)
100 to 102 0.45 0.22
100 to 103 -0.15 0.16
101 to 102 0.53 0.21
101 to 103 -0.60 0.22
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Figure 2.15: P440 Individual Range Errors Post-Calibration

methodology. It can be difficult to see, but close inspection of the individual range mea-

surements in Figure 2.15 reveals this trend, but it is further highlighted in the Histogram

in Figure 2.16. In this thesis, the Gaussian assumption will be implemented with a larger

standard deviation to encapsulate both modes.

The errors calculated up to this point were found in a favorable environment: static,

LOS, and indoors. The hardware will be implemented outdoors on moving vehicles, so

outdoor data is taken to consider performance in this environment. The outdoor performance

data of the UWBs were analyzed in comparison to an RTK-corrected GPS solution on two

maneuvering vehicles. The experimental setup is seen in Figure 2.17.
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Figure 2.16: P440 Ranging Error Histogram

The ranges were collected in the same layout that will be utilized in the experimental

results. Each vehicle’s RTK antenna was placed along the baseline of its respective UWB

nodes. A GPS/INS solution was also utilized to provide a heading estimate of each vehicle.

Post-processing of the measurements was performed to time-sync the ranges, headings, and

RTK positioning. This data was then converted to relative position vectors in the local NED

frame before being rotated into the follower frame according to transpose of the rotation

matrix in Equation 2.14. With a body frame relative position vector and relative heading of

the two vehicles, RTK-level ranges may be extracted and utilized as truth for comparison.

The ranging accuracy in a testing environment is expected to be poorer than the indoor

calibration results. This is due to a number of factors. First, although the UWB technology is

resistant to multipath, it still may cause some errors. This often shows itself in Fresnel effects

which result in destructive interference of the LOS signal due to reflections off surrounding

surfaces. This is depicted in Figure 2.18.

Although the UWBs send and receive signals from all directions (omnidirectional), there

is a slight reduction in performance when their antennas are not facing each other directly

(in each other’s antenna boresight). Given the orientation of the UWB nodes in the vehicles,

this may frequently arise during many reasonable maneuvers of the vehicles. TDSR estimates
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(a) Lincoln MKZ (71.5 Inch UWB Baseline)

(b) Kia Optima MKZ (67.25 Inch UWB Baseline)

Figure 2.17: Experimental Vehicle and Sensor Setup

39



Figure 2.18: P440 Transmitted Signal (A) Destructively Interfered by Signal (B) [47]
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Figure 2.19: Satellite Trajectories for Double-Lane Change UWB Measurement Collection

this to be around 2 cm of added errors. Other factors which degrade the performance include

onboard temperature, relative dynamics, and errors due to increasing range [47].

The goal of the following outdoor experimental analysis is to generate a reasonable

error bound for the UWB measurements to be utilized in the simulation and experimental

estimation algorithms. The first test was a leader-follower format starting from rest and

then performing a double lane-change maneuver. The path is shown in Figure 2.19.

The errors in ranges during this maneuver are shown in Figure 2.20. The relative

dynamics in this run are relatively low. It is noticeable how the error shapes loosely follow
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Figure 2.20: P440 Double Lane-Change UWB Ranging Errors

the dynamics of the vehicles. Although the errors are increased over the benign static test,

the errors remain close to the expected outdoor accuracy of a few centimeters. The standard

deviation of the errors are all around 5 cm as well. Table 2.4 shows a summary of the ranging

errors for each node pair.

Table 2.4: S-Turn Following Ranging Error Statistics

Range µ (cm) σ (cm)
100 to 102 -1.79 5.71
100 to 103 -2.97 5.87
101 to 102 -3.12 5.60
101 to 103 1.65 5.25

A more dynamic test was performed for the second experiment. A figure-8 maneuver was

performed by the two vehicles at varying follow distances. This resulted in numerous sections

where the vehicles were in non-optimal orientations for ranging and the errors increased as

a result. The maneuver is shown in Figure 2.21.
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Figure 2.21: P440 Data Collection with Figure-8 Trajectories

The errors from the figure-8 test along with the errors bounds are shown in Figure 2.22.

Rather than trying to model the errors as functions of range, relative geometry, and envi-

ronmental effects, sufficient 3σ bounds are selected in order to approximate the errors as

zero mean with a Gaussian distribution. The goal is to have a cautious but reasonable value

to encapsulate both the ideal and non-ideal ranging conditions. A 3σ bounding means that

99.7% of the ranging errors should be within these bounds. From analysis of these tests, the

bounds were selected to be 3σ = 30cm. It can be seen that the errors lie within these bounds

for nearly all of the calculated errors. This selected standard deviation (i.e. σ = 10cm) is

therefore implemented for generation of the UWB measurements in the simulation environ-

ment as well as for the measurement variance. Both of these applications will be described

in more detail in later sections.

There is one more important aspect to modeling and utilizing the UWB ranges: outlier

rejection. Like all sensors, the P440s may sometimes have a measurement fault resulting in a
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Figure 2.22: P440 Dynamic Figure-8 Ranging Errors with 3σ = 30cm Bounds

largely erroneous measurement which could severely damage relative positioning estimates.

An example of one set of ranges before outlier rejection is shown in Figure 2.23. These

measurements were removed in post-processing before calculation of the errors; however, in

real-time runs, an online rejection criteria must be defined. Such a method is implemented in

the estimation algorithms and will be described along with the algorithms in future sections.

Even though these experimental errors are substantially larger than the indoor static

test, the previous works utilizing Decawave TREK1000 UWBs frequently experienced errors

up to half a meter during dynamic runs with standard deviations over 20 centimeters [21].

The TimeDomain P440s implemented here present a hardware improvement for this relative

positioning problem. Previous results from prior work will be recreated with this new hard-

ware for a fair comparison. Now that the technical foundations have been built, the next

chapter will derive the relative positioning algorithms.
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Chapter 3

Non-Cooperative Relative Positioning Algorithms

The non-cooperative algorithms will be described in a two-vehicle network with the

vehicle being estimated denoted the “leader” and the vehicle performing the tracking denoted

the “follower.” This represents a common use case for autonomous vehicle relative position

tracking and is primarily used here for clarity. Figure 3.1 displays the states necessary

to describe the relative pose over time of two locally maneuvering ground vehicles: a two

component relative position vector (RPV), R⃗F , and the relative heading between the two

vehicles, ψL|F .

3.1 Geometric Relative Position Solution

With the four available ranges between each vehicle, the simplest method to solve the

relative position is through direct geometric relationships. Figure 3.2 shows the required

ranges and angles to calculate for this solution method.

The interior angles from the vectors formed from base UWB 0 to UWBs 2 and 3 are α

and β, respectively. They each may be calculated from the law of cosines by:

α = arccos

(
r202 + a2 − r212

2ar02

)
(3.1)

β = arccos

(
r203 + a2 − r213

2ar03

)
(3.2)

These angles may then be used to construct two position vectors in the follower’s frame

between base 0 and the two leader nodes: r⃗02 and r⃗03. These vectors may be shifted to
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Figure 3.1: 2D Components of Relative Pose

Figure 3.2: Geometric Solution Method
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Figure 3.3: 1000 Geometric Solutions at 0◦ Relative Bearing

instead originate from the middle of the base on the follower.

r⃗ Fa2 =

 r02 sin(α)

r02 cos(α)− a
2

 (3.3)

r⃗ Fa3 =

 r03 sin(β)

r03 cos(β)− a
2

 (3.4)

The relative position vector between the center of the UWB baseline on the vehicles can

then be considered the average of these two vectors:

R⃗F =
r⃗ Fa2 + r⃗ Fa3

2
(3.5)

This solution is valid and accurate in the presence of accurate, time-synced ranges. Simulated

geometric results with the nominal UWB errors described in Section 2.3.3 are shown in

Figure 3.3.
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Figure 3.4: 1000 Geometric Solutions Showing Quadrant Ambiguity Faults

A major drawback of this method is that the geometric relationships are unable to

calculate solutions in the 3rd and 4th quadrant (behind the follower vehicle). This results

in larger and single-sided solution errors when the relative bearing is approaching these

quadrants in addition to complete inaccuracies when in these unobservable positions. This

issue is depicted in Figure 3.4.

3.2 Least Squares Relative Positioning

The geometric solution has clear quadrant ambiguities and lacks a method to account

for the accuracy of the measurements because each range is assumed perfectly accurate.

A non-linear least squares technique may be implemented instead which iterates upon the

solution from a manually selected initialization. [22] began with this method as their ini-

tial solution. The non-linear least squares algorithm employs the Gauss-Newton iterative

method to reach a converging solution while considering the relative accuracy of each mea-

surement. The format is similar to the one used in the calibration of the P440 UWBs. First,

the nonlinear measurement model which maps the states to the measurements needs to be
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Figure 3.5: UWB Measurement Model Depiction

formed. Figure 3.5 depicts the relationship between a single range measurement and the

relative position vector.

In order to achieve enough geometric diversity to calculate the relative pose, the UWBs

must be offset from each vehicle’s COG; therefore, the positions of the UWBs in their

respective vehicle frames, rF0 and rL2, must be known a priori. The UWBs measure the

magnitude of vector between them, r⃗02. The relationship between r⃗02 and the position vector

of interest is given by:

r⃗ F02 = R⃗F + CF
L r⃗

L
L2 − r⃗ FF0 (3.6)

49



Figure 3.6: UWB Measurement Model Assuming UWB Baseline Intercepts COG

The nonlinear measurement model is the norm of this vector. For an arbitrary UWB pair,

γ1 and γ2, this measurement model is:

r = h(x⃗) = ||R⃗F + CF
L r⃗

L
Lγ1

− r⃗ FFγ2 || (3.7)

In this thesis, the RPV is estimated between the baseline centers of the UWB pairs on

each vehicle. This implicitly assumes that the UWBs are spaced along the COG and have

no offset from the body’s Y-axis (i.e. their offset from the vehicle’s COG is only in the Y

direction). This allows for simplification of the UWB position vectors with given baselines

between the UWBs on the follower and leader as a and b, respectively, as seen in Figure 3.6

This assumption simplifies the derivation, but is not required in a true implementation.

So long as the body frame vector is known, the UWB measurements may be related to any

point on the body. The body frame vectors for all the UWBs under this assumption are
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then:

r⃗ FF0,1
=

 Fx

±Fy

 =

 0

−a
2

 ,
0
a
2

 (3.8)

r⃗ LL2,3
=

 Lx

±Ly

 =

 0

− b
2

 ,
0
b
2

 (3.9)

This simplifies the range measurement model from:

r02 = norm


Rx + cos(ψL|F )Lx − sin(ψL|F )Ly − Fx

Ry + sin(ψL|F )Lx + cos(ψL|F )Ly − Fy


 (3.10)

to:

r02 = norm


 Rx +

b
2
sin(ψL|F )

Ry − b
2
cos(ψL|F ) +

a
2


 (3.11)

This measurement model is fundamental to not only the least squares algorithm but to all

algorithms henceforth in this thesis. Utilizing the measurement model for comparison to the

generated measurements yields the residuals to be minimized:

ẑ = ỹ − h(x̂) (3.12)

A linearized model of this measurement model is required for calculating the gain used

in the state iteration. It is found by taking the Jacobian of this model with respect to the
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three pose states: Rx, Ry, and ψL|F . The linearized model is seen in Equation 3.13.

H =
∂h(x⃗)

∂x⃗
=



∂r02
∂Rx

∂r02
∂Ry

∂r02
∂ψL|F

∂r03
∂Rx

∂r03
∂Ry

∂r03
∂ψL|F

∂r12
∂Rx

∂r12
∂Ry

∂r12
∂ψL|F

∂r13
∂Rx

∂r13
∂Ry

∂r13
∂ψL|F


(3.13)

The general form of the partial derivatives are the same for each range. The only

differences are the signs of a and b depending on which UWBs the measurements were made

between. For the range estimate r̂02, a single row of the linearized measurement matrix, H,

is constructed by Equations 3.14–3.16.

∂r̂02
∂Rx

=
Rx +

b
2
cos(ψL|F )− a

2

r̂02
(3.14)

∂r̂02
∂Ry

=
Ry +

b
2
sin(ψL|F )

r̂02
(3.15)

∂r̂02
∂ψL|F

=
b
2
Ry cos(ψL|F )− b

2
Rx sin(ψL|F ) +

ab
4
sin(ψL|F )

r̂02
(3.16)

With the H matrix constructed, the last remaining component is the relative weighting

of the measurements based on their expected variance. This is done through a measure-

ment covariance matrix, R, which is diagonal if the measurements are independent of each

other. In this implementation, each measurement is assumed to be uncorrelated with similar

errors (1σ = 10 cm), so R is a diagonal matrix with each element equivalent as seen in

Equation 3.17.

R =



σ2
r02

0 0 0

0 σ2
r03

0 0

0 0 σ2
r12

0

0 0 0 σ2
r13


=



.12 0 0 0

0 .12 0 0

0 0 .12 0

0 0 0 .12


(3.17)
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Figure 3.7: Nonlinear Least Squares Algorithm

Since all measurements have the same noise characteristics in this case, each is weighted

equally and the result is equivalent to omitting R from the algorithm. The iteration on the

state estimate is then performed by:

X̂k+1 = X̂k + (HTRH)−1HTRẑ (3.18)

A summary of this nonlinear least squares method is shown in Figure 3.7. This process is

repeated until a sufficient convergence criteria is met or the maximum allotted iterations

have been performed.

Upon convergence, the covariance matrix representing the estimated error in each state

may be extracted from the measurement matrix at the final step. This is a symmetric matrix

with the diagonal representing the main values of interest: the estimated error variance in

each state. The off-diagonal terms represent their cross-correlations. Equation 3.19 shows
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Figure 3.8: Importance of Proper Initial Guess to Least Squares Quadrant Ambiguity

the error covariance matrix.

P̂ = (HTRH)−1 =


σ2
Rx

ρx,yσRxσRy ρx,ψσRxσψL|F

ρx,yσRxσRy σ2
Ry

ρy,ψσRyσψL|F

ρx,ψσRxσψL|F ρy,ψσRyσψL|F σ2
ψL|F

 (3.19)

If all the measurements are of equivalent accuracy, a single variance may be applied as a

scaling factor rather than including the full R matrix:

P̂ = σ2(HTH)−1 (3.20)

The least squares solution is an improvement over the geometric method in regards to

quadrant ambiguity. Although the ambiguity still exists, it can be overcome more readily.

This quadrant ambiguity is due to the presence of multiple non-global minima—the least

squares algorithm will regress to whichever is closer to the initial estimate. The quadrant

ambiguity can therefore be overcome provided that the initial estimate is closer to the truth

than its ambiguous pair, as shown in Figure 3.8.
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The above solutions assume all four ranges are available instantaneously. A minimum

of 3 unique measurements are required at a given time for the least squares solution to be

solvable (for H to be full rank). This is similar to the geometric solution and is one of the

main drawbacks of attempting a least squares solution for this relative positioning problem.

In Chapter 2, it was described that a network of UWBs provide measurements sequentially,

thus all 4 measurements are not available simultaneously. One method of overcoming this

would be to hold onto previous measurements until enough have been received to perform

the estimation. If the vehicle’s are static, this is a valid option and is how all algorithms

presented here are initialized. However, as the relative speed or yaw rate increases, this

introduces substantial errors. This requires the use of a method which can provide state

estimates from the individual measurements as they arrive. Such methods include Kalman

Filtering which is explored in the Section 3.4. Before deriving the Kalman Filter algorithms,

there are inherent difficulties to the estimation structure which need to be explored.

3.3 Observability Difficulties (DOP)

Beyond the quadrant ambiguity problem, the relative pose solution quality is generally

dependent on the relative geometry of the vehicles. This is because different orientations

result in H matrices of varying observability. The RPV components of the linearized mea-

surement matrix, H, seen in Equations 3.14 and 3.15 are the unit vectors between the

UWBs used in a given measurement. Essentially, the more diverse the unit vectors for the

four ranges are, the more observable the states are from the measurements and the more

accurate the solutions become. Different orientations lead to varying unit-vector diversity.

This nonlinear least squares process is analogous to how GPS solutions are formed. In

common GPS solutions, nonlinear least squares is utilized with a measurement matrix con-

sisting of the estimated unit vectors between the receiver and each satellite [51]. This leads

to the measurement matrix often being referred to as the geometry matrix. Quantifying the

effect of satellite geometry on the resulting position solution is possible through a dilution of
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precision (DOP) analysis. Although this method is most frequently seen in GPS implemen-

tations, it is also applies to any solution which depend on geometry [52, 53]. DOP analysis

will be utilized here to depict problematic orientations for UWB relative positioning. Similar

results were shown in [21], but are re-created here.

As mentioned, the measurement matrix, H, provides the geometric relationships for

the vehicles’ current positions and is the critical component of the estimation accuracy.

DOP analysis separates errors due to measurement quality from errors due to geometry.

Therefore, it is calculated by excluding the measurement variance from covariance calculation

in Equation 3.19. This is seen in Equation 3.21.

DOP = (HTH)−1 =


a # #

# b #

# # c

 (3.21)

The DOP for each state is then the square root of the corresponding diagonal element:

DOPRx =
√
a (3.22)

DOPRy =
√
b (3.23)

DOPψL|F =
√
c (3.24)

The DOPs were calculated assuming all four measurements were available and the UWBs

were separated by 72 in (6 ft) across each vehicle’s roof. The DOP was found for all locations

within 50 meters of the vehicle with varying relative headings. The results are summarized

in Figure 3.9

The DOP plots in Figure 3.9 provide valuable insight into the expected observability

of the RPV given a relative orientation. The dilution of precision in the Y-axis of the

follower’s body frame, DOPy, is more or less consistent regardless of orientation, but is

highly dependent on the range. The accuracy in the X direction is seen to be higher in
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(a) Dilution of Precision with 0◦ Relative Heading

(b) Dilution of Precision with 45◦ Relative Heading

(c) Dilution of Precision with 90◦ Relative Heading

Figure 3.9: Dilution of Precision with Varying Relative Poses
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Figure 3.10: Least Squares Solution Quality for High vs Low DOP Geometries

front of and behind the estimating vehicle, but there are large areas of uncertainty when the

vehicles are side by side. This difference is due to the UWBs being situated along the Y-axes

of the vehicles. The DOPx and DOPy characteristics would swap if the UWBs were aligned

along the longitudinal track of the vehicles instead. An example comparison of an area with

high and low DOP is depicted in Figure 3.10. These locations correspond to the DOP plots

in Figure 3.9a with a relative heading of 0. Notice how much worse the solutions are in

Figure 3.10b with the same noise on the range measurements. Note that in these results

both solutions were initialized within the proper quadrant to avoid the ambiguity problem.

Assuming these poorly-observable relative geometries will not arise in locally maneuver-

ing vehicles is invalid. Therefore, methods to propagate the previous states through these

areas is required to attain a robust relative positioning solution.

3.4 Extended Kalman Filter (EKF) Relative Positioning

Kalman Filtering was first developed by Rudolf E. Kalman in 1960 [54] and has seen

extensive adoption in numerous fields. It forms the basis for the majority of localization

algorithms and was even used in the NASA Apollo Missions [55]. In essence, the Kalman

Filter is a recursive algorithm which processes a stream of measurements to update state
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estimates similar to recursive least squares. However, Kalman Filter techniques include an

additional step: a state propagation time update which utilizes a system model for updating

the estimates and their covariances between measurements. In a linear system with properly

modeled statistics, the result is an optimal balancing of uncertainty in the system model and

the measurement noise. Many sub-optimal derivatives of this algorithm have been created

for application to nonlinear systems. The most common is known as the Extended Kalman

Filter (EKF), which is presented below. For detailed analyses or intuitive applications of the

Kalman Filter, many sources exist including [56,57]. Here, the discretized form of the EKF

will be briefly described.

An initialization of the state and state covariances needs to be formed: x⃗1 and P1,

respectively. Then, the two steps of the filter, the time and measurement updates, can be

performed from these initial estimates.

The measurement update step is essentially equivalent to a single update of a recursive

least squares estimator. It consists of first calculating a Kalman gain, K, based on the

linearized measurement matrix, H, along with the uncertainties in the states and measure-

ments: P and R. The superscripts, − and +, denote variables before or after correction,

respectively.

Kk = P−
k H

T (HP−
k H

T +R)−1 (3.25)

For the UWB relative positioning problem, H is a single row of Equation 3.13 con-

structed according to the corresponding range measurement. Each state is then corrected

through the measurement residuals with the resulting gain matrix:

x⃗+
k = x⃗−

k +Kk(ỹ − h(x⃗−
k )) (3.26)
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Lastly, the state covariance is corrected to show the change in confidence due to this newly-

processed measurement:

P+
k = (I −KkH)P−

k (3.27)

The time update is then utilized to propagate the state and corresponding uncertainty

from time k to time k + 1. For a nonlinear system, the nonlinear model is employed to

update the states with the previous values and any inputs to the system, while a linearized

form, Φ, is necessary to update the covariance matrix. This is summarized in Equations 3.28

and 3.29.

x⃗−
k+1 = f(x⃗+

k , u⃗) (3.28)

P−
k+1 = ΦP+

k Φ
T +Qd (3.29)

The matrix Q is a discretized process noise matrix which is often partially based on known

sensor or model errors and then hand-tuned. The composition of this matrix varies for the

different implementations presented in the following sections. This EKF process is then

repeated with measurement updates performed when measurements are available and time

updates performed intermediately. The integration step length of the filter is either pre-

determined or set by frequency of input measurements. The shorter this step is, the more

accurate the linearization will be. Figure 3.11 provides an overview of the EKF algorithm

process.

3.4.1 Constant Velocity Extended Kalman Filter

The first application of Kalman Filter-based dynamic RPV estimation with multiple

UWBs was presented in [21]. This work provided a detailed overview of the problem with

least squares techniques and designed a constant velocity model to handle the least squares

estimation issues described previously. Constant velocity dynamic models are commonly
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Figure 3.11: Extended Kalman Filter Algorithm

used in estimation algorithms to smooth measurements, especially in platforms where odom-

etry is not available or the dynamics may be difficult to model [58–60]. In [21], the state

vector consisted of the three pose states and their derivatives. Although direct measure-

ments of the derivatives are not available, the coupling to the change in position through

the dynamic model allows for the EKF algorithm to approximate the relative velocity. With

this estimate, the implementation aims to propagate the state vector through measurement

outages and unobservable areas. [21] modified the general constant velocity model to govern

the relative yaw-rate by a decaying exponential function with a time constant, τ . This is a

purely linear model, so the time update portion of the EKF does not require linearization

for the covariance propagation. The prior work’s time update is illustrated in Equation 3.30

with modifications to match the notation used in this thesis.

Rx

Ry

ψLF

Ṙx

Ṙy

ψ̇LF


k+1

=



1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 e−
∆t
τ





Rx

Ry

ψLF

Ṙx

Ṙy

ψ̇LF


k

(3.30)
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In a constant velocity implementation, the acceleration is assumed to be 0 mean. This

is rarely the case, so the process noise matrix, Q, may be tuned in relation to the expected

variance in the acceleration. Higher values of this variance causes the covariance estimate

to grow at a faster rate, and thus the constant velocity model is trusted less as a result.

Consequentially, more trust is placed in the measurements to deviate the state estimates

from the dynamic model. The author of [21], Ghanem, provided the tuning parameters

utilized for their results. This will be utilized in all implementations of this method during

comparison to the new algorithms. The discretized form is shown in Equation 3.31.

QCV =



0.01 0 0 0 0 0

0 0.01 0 0 0 0

0 0 0.005 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.2 0

0 0 0 0 0 0.002


∆t (3.31)

As was mentioned in Chapter 3, the UWBs are subject to measurement outages charac-

terized by significant outliers. [32] outlines a method based on innovation filtering to reject

these measurements in real time. An innovation test for a single UWB range measurement

is found by:

χ =
√
δzTC−1δz (3.32)

where:

C = HPHT +R (3.33)

δz = ỹ − h(x⃗) (3.34)
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Comparing this to a pre-determined threshold of χ allows for exclusion of measurements

which are erroneous. This is an implementation of a chi-squared test. With perfect tuning

of the filter’s statistics and truly Gaussian measurement errors, setting the threshold to 3

results in accepting 99.7% of the range measurements and rejecting the clear outliers. This

technique is implemented in all filters presented in this thesis.

This prior work in [21] forms the baseline comparison for all of the estimation algorithms

presented in this thesis. The proposed methods in this thesis aim to improve upon the

algorithm in [21]. Results from the proposed algorithms are compared to results from [21]

in the following chapters.

3.4.2 Vehicle Dynamics Extended Kalman Filter (VehDynEKF)

A modification to the algorithm in [21] was proposed and presented at the 2022 Mod-

eling, Estimation, and Control Conference, (MECC) [23]. The goal of the work was to

improve the relative positioning results by shifting away from a constant velocity state prop-

agation to one governed by vehicle dynamic models. The measurement model, and thus the

measurement update of the EKF, remains the same.

Rather than assumed constant, the derivative of the relative position and heading be-

tween the vehicles can be described by the velocity and rotation rates of the two vehicles as

in Equations 3.35 and 3.36.

˙⃗
R = CF

L

vLx
vLy

−

vFx
vFy

+ ωF ×

Rx

Ry

 (3.35)

ψ̇L|F = ωL − ωF (3.36)

The time derivative of the heading of the two vehicles is simply the difference in the

yaw-rates of the two vehicles, ωF and ωL, since their body-frame Z-axes remain aligned under

the 2D assumption. The final term in Equation 3.35 represents apparent motion of the leader
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with respect to the follower due to rotation of the follower frame. Since the yaw-rate of the

follower frame is about the body frame Z-axis, the cross product term may be simplified:

˙⃗
R = CF

L

vLx
vLy

−

vFx
vFy

+ ωF

 Ry

−Rx

 (3.37)

Note that the rotation matrix CF
L is an application of Equation 2.15. Applying this

equation with the relative heading of the vehicles yields:

CF
L =

cos(ψL|F ) − sin(ψL|F )

sin(ψL|F ) cos(ψL|F )

 (3.38)

The constant velocity model does not consider these separate sources of relative motion

and attempts to lump them together into two constant terms, Ṙx and Ṙy. This vehicle

dynamics-based EKF has additional constraints on the propagation through this relative

motion model. From the equations presented above, the estimate of the relative position

over time can improved by employing the vehicles’ velocities and yaw-rates. The follower’s

velocity, v⃗F , can be estimated through onboard odometry methods as described in Chapter

2. Here, the no side-slip assumption (utilized in the results in Figure 2.8) is employed so that

only two sensors are required for the follower’s odometry: a wheel encoder and a yaw-gyro.

This means the lateral velocity of the follower, vFy, is considered to be 0. The process noise

matrix can incorporate additional uncertainty in the propagation due to this assumption

and will be described shortly.

If there is no communication between the vehicles, the estimating/following vehicle lacks

knowledge of two necessary parameters: the lead vehicle’s velocity (v⃗L) and yaw rate(ωL).

Instead of estimating these states directly, the kinematic bicycle model can be employed to

relate them and reduce the number of required states. Recalling Equation 2.32, the yaw rate
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may be shown as:

ωL =
|V⃗ | tan(δ) cos

(
lr tan(δ)

L

)
L

(3.39)

Utilizing the same no side-slip assumption applied to the follower vehicle, the velocity

becomes purely longitudinal, and the yaw rate representation may be simplified to:

ωL =
vLx tan(δ)

L
(3.40)

The wheelbase, L, varies between vehicles, and it is unreasonable to assume that neigh-

boring vehicles know its value. To avoid estimating the wheelbase and in order to make the

estimator vehicle-agnostic, the wheel deflection and base length may be compacted into an

effective steer angle:

dL =
tan(δ)

L
(3.41)

The dynamics of the lead vehicle have thus been simplified to only two states: vLx

and dL. This also has the benefit of closely linking the yaw rate and velocity of the lead

vehicle. Along with odometry measurements on the follower, proper estimation of these

additional states can provide more accurate state propagation. This improved time update

should increase the resiliency of the estimator in the presence of measurement outages and

high-DOP relative geometry. A summary of the nonlinear state propagation equations with

the appropriate assumptions made here is shown in Equations 3.42 and 3.43.

˙⃗
R = CF

L

vLx
0

−

ṽFx
0

+ ω̃F

 Ry

−Rx

 (3.42)

ψ̇L|F = vLxdL − ω̃F (3.43)
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The tilde notation denotes a measurement of the value exists (e.g. ω̃F is a measurement

from the follower yaw-rate gyroscope). With this relative dynamics model and vehicle dy-

namics constraints, the vehicle dynamics EKF can be constructed. The state vector consists

of the three states required to define the relative pose along with the lead vehicle states

derived from the bicycle model:

X⃗ =



Rx

Ry

ψL|F

vLx

dL


(3.44)

The required linearization is found from the partial derivative of each state’s update

equation with respect to the state vector. These first order partial derivatives form the Jaco-

bian, A. After discretization, the resulting state-transition matrix is shown in Equation 3.45.

Φ = (I + A∆t) =



1 ωf −vLx sin(ψL|F ) cos(ψL|F ) 0

−ωf 1 vLx cos(ψL|F ) sin(ψL|F ) 0

0 0 1 dL vLx

0 0 0 1 0

0 0 0 0 1


∆t (3.45)

Again, two more simplifications were made while applying the bicycle model to this

algorithm: the lateral velocities, vFy and vLy, are zero. This is rarely the case during vehicle

motion, but similar to the constant velocity model, process noise may be added to these

values to allow for the estimates to deviate from the model. Also, the lead vehicle’s velocity

is assumed to be constant, so process noise is modeled on v̇L as well. These additions along

with the sources on the odometry measurements and state process noise yield 6 total sources
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of process noise:

Q = diag

([
ν2vFx

ν2vFy
ν2ωF

ν2v̇Lx
ν2vLy

ν2
ḋL

])
(3.46)

The variances of these process noise sources are found through a combination of cal-

culation and tuning. For instance, the error in the follower’s gyroscope measurement can

be estimated from static experimental runs, while the variance in the effective steer angle is

tuned heuristically. Summarizing the state-propagation equations with these additions:

˙⃗
R = CF

L

 vLx

0 + νvLy

−

ṽFx + νvFx

0 + νvFy

+ (ω̃F + νωF
)

 Ry

−Rx

 (3.47)

ψ̇L|F = vLxdL − (ω̃F + νωF
) (3.48)

v̇Lx = 0 + νv̇Lx
(3.49)

ḋL = 0 + νḋL (3.50)

Since these sources of process noise are all additive, the mapping of these process noise values

to the states is linear. The mapping matrix is:

Bw =



1 0 Ry 0 − sin(ψL|F ) 0

0 1 −Rx 0 cos(ψL|F ) 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


(3.51)

The discretized process noise matrix, Qd, is found from Equation 3.52, though the resulting

matrix is too large to visualize here.

Qd = BwQB
T
w∆t (3.52)
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A block diagram summarizing this vehicle dynamics EKF is shown in Figure 3.12.

Figure 3.12: Vehicle Dynamic EKF (VehDynEKF) Block Diagram

These two non-cooperative methods are now well-defined and will be compared to one

another in simulation and experimentation in the following chapters. The main improvement

of this vehicle dynamics model is the ability to better propagate through difficult relative

geometries (high DOP) than the constant velocity method. This was shown in the author’s

previous work [23]. Although further comparisons between methods will be made in the

following chapters, this direct comparison is useful.

The full-path estimation of the leader vehicle encircling a static follower is shown in

Figure 3.13.
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Figure 3.13: Simulated Static-Follower Encirclement Trajectory

Although the overall results look similar, the constant velocity method significantly lags

the estimate through the unobservable region, as seen in Figure 3.14. Both methods have

increased errors through the high-DOP region shown in 3.14a, but the improvement of the

vehicle dynamics EKF is evident. Although it is arguably less important than the RPV

components, the VehDynEKF also performs better in estimating the relative heading as

seen in Figure 3.14c. The non-cooperative methods shown in this chapter form the basis for

the collaborative extensions derived in the following chapter.
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(a) Snapshot of High DOP Section

0 5 10 15 20 25 30 35 40 45

Time (s)

-5

0

5

10

15

E
rr

 (
m

)

RPV X Err

vehDynEKF
ConstVel

0 5 10 15 20 25 30 35 40 45

Time (s)

-5

0

5

E
rr

 (
m

)

RPV Y Err

(b) Relative Position Vector Estimation
Error Comparison

Relative Heading Estimate

Time (s)

R
el

at
iv

e 
H

ea
di

ng
 (

de
g)

0 5 10 15 20 25 30 35 40 45
-200

-100

0

100

200

truth
vehDynEKF

0 5 10 15 20 25 30 35 40 45
-200

-100

0

100

200

truth
ConstVel

(c) Relative Heading Accuracy Comparison

Figure 3.14: Comparison of Non-Cooperative Results for Static Follower Encirclement Test
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Chapter 4

Cooperative Relative Positioning Algorithms

As the computing capabilities and connectivity of autonomous vehicles increase, solu-

tions employing information from multiple nodes within a network are increasingly common.

This chapter explores cooperative methods for improving the UWB RPV estimation solu-

tions.

4.1 Relative IMU Mechanization

In the majority of collaborative algorithms, inertial measurements are assumed to be

available on each member of the network: [12, 61–67]. The most straightforward way to

utilize IMUs for relative positioning is to perform a full mechanization for each with relative

measurements providing corrections to the IMU errors of the vehicles; however, depending

on the dimensionality of the mechanization, the state vector can be quite large. A full 6-DOF

mechanization typically consists of a 15-state vector for each vehicle as described in [32]:

X⃗ =

[
Ψi
ib viib riib ba bg

]T
15x1

(4.1)

Each component above is a 3-dimensional vector corresponding to the attitude, velocity,

position, and accel and gyro biases, respectively. Tracking the states of two vehicles would

result in a state vector with a dimension of 30. For the 2-dimensional scenario on which this

thesis focuses, a simplified state vector in a local NED frame can be constructed:

X⃗ =

[
ψ vN vE rN rE bax bay bgz

]T
8x1

(4.2)
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Figure 4.1: Position in Multiple Reference frames (O as static and O’ as mobile)

Even with the reduced-state vector, a two-vehicle mechanization would result in 16

states to track. Since relative positioning is the primary goal of this thesis, a relative IMU

mechanization is developed. [19] explored a 3D relative mechanization for multiple UAVs

with UWBs to achieve promising results. However, the algorithm employed magnetometers

to provide an accurate rotation of the IMU measurements into a common, static local frame.

The goal here is to perform the estimation in real time in the estimating vehicle’s moving

frame. Although a 2D relative mechanization in a mobile reference frame is not novel, the

author was unable to find a well-related source, thus the derivation is presented here.

As described in Chapter 2, the initial step in IMU mechanization is selecting the resolv-

ing coordinate frame. The most logical choice is to perform the mechanization within the

follower frame, as this is the most commonly chosen frame for the relative position vector.

However, this poses difficulties since the estimating (follower) vehicle’s body frame is rotat-

ing and translating through time. This yields centripetal, Coriolis, and Euler acceleration

terms [32] which account for the apparent motion of the leader due to motion of the follower’s

frame. Figure 4.1 depicts a particle’s position with respect to both an inertial and moving

reference frame.
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[33] provides a compact formulation for the acceleration of the a body in a moving

reference frame with each component well-described. The notation has been modified to fit

the specific use case here in Equation 4.3.

a⃗iiL = a⃗iiF + a⃗FFL + ˙⃗ωFiF × r⃗FFL + ω⃗FiF × (ω⃗FiF × r⃗FFL) + 2ω⃗FiF × v⃗FFL (4.3)

The left-hand side of this equation, a⃗iiL, is the leader’s acceleration with respect to an inertial

frame, resolved in an inertial frame. The leader’s IMU measures this acceleration directly,

but it is resolved in the vehicle’s body frame. Similarly, a⃗iiF is the body-resolved acceleration

for the follower. The yaw rate of the follower’s frame is ω⃗FiF . It is assumed that a local NED

frame, N , may be considered inertial for local trajectories; therefore, the rotation of the

follower’s 2D frame may be directly measured by the yaw-rate gyro. Lastly, r⃗ FFL and v⃗ FFLare

the relative position vector and relative velocity vector, respectively. The primary variable of

interest is the relative acceleration of the leader with respect to the follower’s frame, a⃗FFL, as

this can be integrated to the get the relative position over time. The accelerations measured

in the leader’s frame are then rotated into the follower’s frame to combine all terms into a

consistent coordinate system.

Rewriting Equation 4.3 to solve for a⃗FFL and substituting in the necessary rotation to

utilize the leader’s IMU measurements yields Equation 4.4.

a⃗FFL = CF
L a⃗

L
iL − a⃗FiF − ˙⃗ωFiF × r⃗FFL − ω⃗FiF × (ω⃗FiF × r⃗FFL)− 2ω⃗FiF × v⃗FFL (4.4)

Note the acceleration terms, a⃗LiL and a⃗FiF , are measured directly from the accelerometers, and

the rotation rate of the follower’s frame, ω⃗FiF , is measured directly from the follower’s yaw

gyroscope. The term representing the angular acceleration of the follower’s frame, ˙⃗ωFiF , is

more difficult as it is not measured from an IMU. The simplest estimate of this value can be

found from a numerical derivative of the yaw rate across two time steps.
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This relative mechanization can then be utilized as a time update for an EKF with a

state vector of the form:

x⃗ =



Rx

Ry

ψL|F

Vx

Vy


(4.5)

This cooperative algorithm does not make use of the vehicle dynamics and instead has

a form closer to the constant velocity implementation by including estimates of the relative

velocity in the follower’s frame: Vx and Vy. However in this algorithm, acceleration is

not assumed to be zero mean and is instead measured by onboard sensors. The nonlinear

equations for updating these states are seen in Equations 4.6–4.10.

Ṙx = Vx (4.6)

Ṙy = Vy (4.7)

ψ̇L|F = ωL − ωF (4.8)

V̇x = a⃗FFL(1) (4.9)

V̇y = a⃗FFL(2) (4.10)

The inputs to the system are the accelerometer and gyroscope measurements of the two

vehicles along with the analytical derivative of the follower’s yaw rate: aF , aL, ωF , ωL, and

ω̇F . The state transition matrix, A, and the input-mapping matrix, B, can be found from

the Jacobians of the nonlinear equations with respect to the states and inputs, respectively.
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These are seen in Equation 4.11 and 4.12.

A =



0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

ω2
F ω̇F −aLy cos(ψL|F )− aLx sin(ψL|F ) 0 2ωF

−ω̇F ω2
F −aLx cos(ψL|F )− aLy sin(ψL|F ) −2ωF 0


(4.11)

B =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 0 0 1

−1 0 2Vy + 2RxωF cos(ψL|F ) − sin(ψL|F ) 0

0 −1 2RyωF − 2Vx sin(ψL|F ) cos(ψL|F ) 0


(4.12)

Assuming there is uncorrelated noise on all of the input measurements, Q is a diagonal

matrix with 7 elements tuned according to the expected measurement noise. It should be

noted that this model does not attempt to estimate the biases which are present in inertial

sensors. Depending on the application and the selected hardware, estimation of these biases

may or may not be necessary. These biases typically consist of a static (turn-on) bias and

a dynamic (walking) bias, but the largest error source is due to the static portion [32].

Although they are not estimated, constant biases are introduced to each accelerometer and

gyroscope measurement along with the noise. The measurement model for the IMUs is

therefore:

˜⃗a = a⃗+ b⃗a + ν⃗a (4.13)

ω̃ = ω + bg + νg (4.14)
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The constant biases are generated by a random value with a standard deviation derived

from a lower-end tactical grade IMU. Table 4.1 illustrates the typical ranges for various

grades.

Table 4.1: Typical IMU Bias Characteristics [32]

IMU Grade Accelerometer Bias (m/s2) Gyro Bias (deg/hr)
Marine 10−4 0.001
Aviation 3 ∗ 10−4 − 10−3 0.01

Intermediate 0.001− 0.01 0.1
Tactical 0.01− 0.1 1− 100
Consumer > 0.1 > 100

With these biases included, a comparison of the relative IMU mechanization to the true

relative position for a sample run is shown in Figure 4.2. The error grows with time as

expected for a biased-IMU mechanization.

To quantify the performance of the relative mechanization EKF, a comparison can be

made to the vehicle dynamics EKF results from the static-follower test depicted in Fig-

ure 3.13. The relative mechanization algorithm was implemented on the same scenario with

identical range errors. The resulting RPV error norm for the two methods are shown in

Figure 4.3.

Even though the non-corrected relative mechanization errors grow quickly, the relative

mechanization provides valuable estimates of the relative dynamics when the UWB measure-

ments are employed alongside them. Since this method employs IMUs, it has the additional

benefit of being platform agnostic. Although this method seems promising for relative po-

sitioning, the requirement of transmitting high update rate IMU measurements (≈100 Hz)

may be overbearing for a collaborative approach. The UWBs utilized in this thesis are capa-

ble of transmitting data, but the limited data rate is impractical for transmitting IMU data

effectively without additional dedicated hardware. This is especially true if there are multi-

ple vehicles locally maneuvering and the number of relative positions being tracked grows.

With the selected UWB configuration (PII = 9), the maximum data rate is 19.2 kilobits per
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second. Equation 4.15 shows how a full 6-axis IMU with float32 (32 bits) format operating

at 100 Hz reaches the maximum of this data transmission rate.

kbpsIMU = 32
bits

axis
∗ 6 axes ∗ 100 meas

s
= 19, 200

bits

s
(4.15)

It should be noted that only 3-axes of the IMUs are required for this 2D mechanization,

but even with this reduction, adding another node in the network would then reach the

threshold. Additionally, once the data is received, it must be processed by the estimation

algorithms by the on-board hardware. Therefore, this algorithm presents scaling challenges

and will not be explored as thoroughly as the other methods for the results presented in this

thesis.

4.2 Vehicle Dynamic Model State Feedback

The vehicle dynamics EKF described in the previous chapter seeks to improve RPV

estimation quality by providing a more sophisticated model for the propagation of the RPV
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over time. The results shown in the following chapter highlight the error reduction in a

variety of non-cooperative test cases. The inclusion of this dynamic model also provides

an avenue for highly-impactful collaboration. Recall the crucial relationship between lead

vehicle speed and yaw rate (previously shown in Equations 3.39–3.41):

ωL = vLxdL (4.16)

The above relationship was useful to simplify the number of states estimated to describe

the change in the RPV due to the lead vehicle’s motion. This also means that significant

information can be provided to the filter by the feedback of a few states from the lead vehicle.

Any or all of the three dynamic variables (ωL/vLx/dL) may be transmitted to the estimat-

ing vehicle. The longitudinal velocity could be generated from wheel encoders or a rough

speedometer estimate, while the effective steer angle is a more involved measurement since

it requires knowledge of the deflection at the tires along with the length of the wheelbase.

On the other hand, a yaw-gyro is exceedingly common in autonomous vehicle applications.

As with any EKF measurement, the measurement mapping matrices are required for imple-

mentation. For the velocity and effective steer angle, the measurements are directly related

to the states, so their measurement matrices are:

HvLx
=

[
0 0 0 1 0

]
(4.17)

HdL =

[
0 0 0 0 1

]
(4.18)

The yaw-rate measurement is a function of both the velocity and steer angle, so the mapping

matrix is found from the partial derivative with respect to each:

HωL
=
∂ ωL

∂X⃗
=

[
0 0 0 dL vLx

]
(4.19)
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Any combination of these measurements can be useful to the relative position estimators

and will be explored in the simulation and experimental results. It should be noted that this

direct state feedback capability is not feasible in the constant velocity EKF and represents

a further improvement over that method. Further, unlike the relative IMU mechanization,

the data sizes are substantially smaller. The feedback measurements also do not require

integration to be useful. If communication bandwidth is limited, logic can be implemented

to only send these feedback terms when deemed necessary, such as in non-observable regions

or when a large change occurs.

4.3 Consensus Extended Kalman Filter (CEKF)

Up until this point, all of the algorithms assume only one vehicle was tracking the pose of

another. It is rational to assume other vehicles would also be interested in this information.

Extending this problem to multiple vehicles tracking relative poses to one another creates

opportunities for cooperation. As was mentioned in Chapter 1, ground vehicles estimating

their relative positions to one another may be re-formulated to be estimating a shared state.

With this modification, a consensus condition may be employed to achieve a more optimal

estimate for each node in the network. For instance, consider two locally-operating vehicles

each estimating the relative position to one another as seen in Figure 4.4.

Although these estimators are tracking two different vectors independently, R⃗F and R⃗L,

these two vectors are simply the inverses of one another resolved in different frames. The

conversion between the frames is dependent on another existing state, the relative heading

ψ. These relationships are shown in Equations 4.20 and 4.21.

R⃗F = −CF
L R⃗L (4.20)

ψL|F = −ψF |L (4.21)
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(a) Estimator 1 on Follower (b) Estimator 2 on Leader

Figure 4.4: Two Geometrically-Related RPV Estimators

With a simple negation and conversion between frames, the two estimators are esti-

mating the same state and can cooperate with one another to converge their estimates to

a common consensus. The class of decentralized estimators that achieve consensus between

one another are known as Consensus Kalman Filters (CKF). As in a traditional Kalman

Filter, the sub-optimal extension to a nonlinear system is known as a Consensus Extended

Kalman Filter (CEKF).

The CEKF process for a single node’s time update remain unchanged. The measurement

update process is modified to account for the neighboring estimates. This is seen in Equations
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4.22–4.24. Note the subscript i refers to an update for a specific node in the network.

Ki =

(
Pi + Ci

∑
j∈Ni

(Pj,i − Pi)

)
HT
i

(
Ri +HiPiH

T
i

)−1
(4.22)

Pi = FiPiF
T
i + Ci

∑
r∈Ni

(Pr,i − Pi)F
T
i + Fi

∑
s∈Ni

(Pi,s − Pi)C
T
i + CiDiC

T
i +KiRiK

T
i (4.23)

x⃗+
i = x⃗−

i +Ki

(
ỹ − h(x⃗−

i )
)
+ Ci

∑
j∈Ni

(x⃗−
i − x̃−

i ) (4.24)

At steady-state, the consensus update term, Ci
∑
j∈Ni

(x⃗−
i − x̃−

i ), leads each individual

estimator to a globally-averaged consensus for the shared states. The terms, Pi,j and the

like, represent edge-covariance matrices depending on the connectivity of the network, while

Ni denotes the first neighbors of a given node. These edge-covariance matrices are tracked

separately and require interaction with second neighbors along with their local covariance

estimates. For specifics on their calculations and a full derivation of the optimal CEKF, look

to [68].

The main takeaway from the measurement update equations is that the optimal con-

sensus estimation method requires exchange of each node’s covariance matrix and estimated

states. It was shown in [68] that this results in a non-scalable algorithm where the computa-

tional complexity of the covariance update is O(n2) with n being the number of nodes in the

network. The sub-optimal CKF was also introduced by Oltafi which utilizes the assumption

of a small consensus gain, Ci, to neglect sharing of covariance estimates. Although the op-

timal CEKF does generally perform better, successful tracking has been achieved with the

sub-optimal form as well [27]. This sub-optimal method will be employed here. The omission

of covariance transmission leads to the sub-optimal CEKF gain calculation and covariance

update matching a traditional EKF. The only remaining difference from a traditional EKF

is the additional term applied to the state correction as seen in Equation 4.25. This makes

it exceptionally easy to augment a candidate EKF into a sub-optimal CEKF regardless of

82



the filter’s time or measurement model forms.

x⃗+
i = x⃗−

i +Ki

(
ỹ − h(x⃗−

i )
)
+ Ci

∑
j∈Ni

(x⃗−
i − x̃−

i ) (4.25)

The final term, x̃−
i , represents the state estimate derived from a consensus condition

with relationships to the other estimator(s). The consensus gain is a tunable parameter for

each estimator, but prior literature results have lead to the commonly used form:

Ci = γ
Pi

1 + ||Pi||F
(4.26)

where Pi is the covariance of the local estimator. The choice of γ is free under the condition it

is greater than 0. A higher value results in a faster consensus, but may result in unstable error

dynamics [68]. In general, it should be kept small to guarantee convergence and maintain

the small gain assumption (often on the order of the discretization time step). The subscript

F denotes the Frobenius norm of a given node’s covariance matrix. It is found by the square

root of the sum of all the squared values of a matrix. It may be calculated directly by:

||Pi||F =
√
trace(P T

i Pi) (4.27)

This geometric consensus condition was inspired by an application of a sub-optimal

CEKF to aerial vehicles with numerous sensors by Gong et al. [30]. In this work by Gong,

each of the three aerial vehicles were estimating 2-D relative pose to one other node and

were equipped with single UWBs along with IMUs, pitot tubes, and magnetometers. The

three aerial vehicles utilized vector algebra to create a global consensus condition. To the

author’s knowledge, this thesis is the first application of a geometric condition CEKF to

locally-maneuvering ground vehicle relative positioning.

For a multi-vehicle network, potential benefits of a consensus condition include: re-

duced transmission requirements compared to relative mechanization (similar to odometry
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Figure 4.5: 2-Vehicle Consensus Block Diagram with Veh. Dyn. CEKFs

feedback), error averaging, and method-agnostic fusion capabilities. Method-agnostic fusion

means that not all vehicles must be utilizing the same RPV estimation method; for instance,

vehicle 1 may estimate vehicle 2 with the vehicle dynamic EKF with onboard odometry

while vehicle 2 may estimate vehicle 1 with a vision-based tracking solution. This consensus

condition can allow for leveraging the strengths and weaknesses of multiple methods together

with minimal changes to each algorithm. If there were more than two vehicles interested in

relative positions to one another, the consensus condition could make use of all the estima-

tor’s solutions and provide further agreement among the network, but here only two-vehicle

networks will be considered.

In this thesis, two-vehicle consensus modifications will be applied and compared within

both the constant velocity and vehicle dynamic frameworks. A block-diagram for the

geometrically-inspired Consensus Extended Kalman Filter for two vehicles is shown in Fig-

ure 4.5.

Even without the consensus correction, the block diagram illustrates that the filters

in the two-vehicle CEKF algorithm do not have complete independence from one another

since they make use of the same UWB ranges at an instance in time. This is another factor
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leading to a sub-optimal result. The consensus updates will be explored alongside the other

cooperative algorithms in the following chapters.
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Chapter 5

Simulation Results

5.1 Simulation Structure

The simulation was generated according to the models described in the previous sections.

The dynamics of the vehicles are governed by the full kinematic bicycle model from Chapter

2 but are not constrained by the zero side-slip angle assumption employed in the estimation

algorithms. This means the dynamic model for the trajectories and the state-propagation

model in the vehicle dynamics EKF are not identical. This more closely resembles an exper-

imental implementation where the estimator model does not fully encapsulate the ground-

vehicle physics. It is common in sub-optimal estimation algorithms for the modeled and true

dynamics to differ when the full model may be unknown or difficult to describe.

The kinematic bicycle model is traditionally employed with velocity and steer-angle

inputs. However, since accelerations are desired for some of the algorithms presented here,

Equations 2.30 to 2.32 are differentiated to generate the governing dynamic equations. The

dynamics are controlled through acceleration and the rate of change of the steer angle instead,

reducing singularities and allowing for generation of simulated IMU accelerations. This more

closely resembles reality and also results in improved estimation accuracy once the vehicles

begin moving since the velocity-derived equations would predict an infinite acceleration when

starting from rest otherwise. The acceleration-based equations are shown here:

Ẍ = ˙|V | cos(ψ + β)− |V | sin(ψ + β)(ψ̇ + β̇) (5.1)

Ÿ = ˙|V | sin(ψ + β)− |V | cos(ψ + β)(ψ̇ + β̇) (5.2)
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Figure 5.1: Trajectory Generation Example

where:

ψ̇ =
|V⃗ | tan(δ)cos(β)

L
(5.3)

β = arctan

(
lr tan(δ)

L

)
(5.4)

β̇ =
LLrδ̇ sec

2(δ)

L2 + L2
r tan

2(δ)
(5.5)

These derivatives are used to update the vehicle states at 100 Hz. The trajectories are

determined by a coarse waypoint-following control law where the points are manually selected

at the start of a run. After waypoint selection, the vehicles accelerate according to a first-

order model up to the desired speed. This velocity is maintained and the steering commands

are generated from a heading error control law with a velocity-moderated lookahead distance.

This results in a rough following of the desired paths, but since specific trajectories are not

the focus of this thesis, realistic dynamics are more important than the exact paths taken.

An example of the trajectory generation and resulting velocities is shown in Figure 5.1.

The UWB measurements are constructed at the nominal update rate of the P440 hard-

ware configuration: 15 Hz. As mentioned previously, this equates to each range having an
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independent update rate of ≈3 Hz. The values are generated from the nonlinear measure-

ment model seen in Equation 3.7 using the vehicle states at given instant in time. The

UWBs are assumed to be spaced 6 feet (36 inches) apart and to have the midpoint of their

baseline coincident with the vehicle’s COG.

The vehicles always start from rest to allow for the least-squares initialization process

to convergence. The initial covariance is set by multiplying the calculated DOP at the initial

location by the UWB measurement variance. Also, all of the results are performed with

the wheel encoder and gyro odometry method that will be employed in the experimental

results. This means the lateral velocity of the ego vehicle is unmeasured and set to zero in

the state propagation step (i.e. the zero side-slip angle assumption described in Chapter 2).

To compensate, the follower lateral velocity uncertainty process noise parameter is increased.

5.2 Non-Cooperative Results

5.2.1 Scenario 1: S-Turn with Static Base Vehicle

The first simulated scenario is a static base vehicle estimating the RPV to a dynamic ve-

hicle performing an “s-turn” maneuver. This is the most benign experiment presented in this

work as the maneuvering vehicle remains in low-DOP relative pose geometries throughout

the run. The generated path is depicted in Figure 5.2.

For a direct comparison, the two non-cooperative algorithms were tested on UWB ranges

corrupted with the same errors. The results for a single-run are shown in Figure 5.3. The

accuracy of each algorithm is quantified by comparing the RPV estimate to the true tra-

jectory at each instance in time. The RPV-component errors for this run can be seen in

Figure 5.4

From inspection of the RPV errors, another source of error for the algorithms can be

seen—relative dynamics. The errors grow when the relative velocity between the two vehicles

change such as during a turn. Since each non-cooperative algorithm does not have direct

measurements of the relative velocities, the EKF estimates for them are generated from their
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Figure 5.2: Simulated S-Turn Maneuver with Static Base
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Figure 5.3: Single Run S-Turn RPV Estimation Results
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Figure 5.4: S-Turn RPV Component Errors

correlation with the consecutive range measurements. This leads to a lagging estimate in the

relative velocities for the constant velocity EKF and a lagging estimate of speed and effective

steer angle for the vehicle dynamics EKF. Recall that the VehDynEKF algorithm does not

estimate the relative velocities directly but rather the leader’s components of the relative

motion model. The vehicle dynamics EKF estimates its dynamic states more quickly and

accurately, however, which is one reason for the improved results. This is shown in Figure 5.5.

To perform a statistical analysis of the errors encountered in each algorithm, a Monte

Carlo simulation of 100 runs was performed with the nominal 10 cm of random error added

to the simulated ranges. The errors of the RPV components were plotted with the mean 3σ

bounds at each time-step from the covariance of EKFs. The Monte Carlo sample covariance

bounds were calculated as well. These values are shown in Figure 5.6 for the constant-velocity

EKF.

The impact of the relative dynamics and resulting lagging relative velocity estimate are

clear. Although there are differences in each Monte Carlo run due to varying errors on the
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Figure 5.6: S-Turn Constant Velocity EKF 100 Monte Carlo Run RPV Errors
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Figure 5.7: S-Turn Vehicle-Dynamics EKF 100 Monte Carlo Run RPV Errors

UWB observables, the errors are not zero-mean and follow a similar trend for each run,

especially in the y-direction. Figure 5.7 shows the same plot for the vehicle dynamics EKF.

Comparisons of these figures show clear improvements between this EKF and the

constant-velocity method from [21]. However, similar to the constant velocity method, the

errors are not truly zero-mean due to the relative dynamics. To combine the two-dimensional

RPV results into one scalar value, the norm of the RPV error at a given point in time is

calculated by the Euclidean distance between the truth and estimated point. These error

norms were found for each Monte Carlo run and were utilized to calculated the expected

error mean and standard deviation for each filter’s estimate. Figure 5.8 shows the mean of

the results at each time-step while the vertical bars represent one standard deviation in the

Monte Carlo error results at that instant in time.

In this scenario, the range between the vehicles grows with time, and the expected error

tends to grow as a result—particularly in the base vehicle’s y-axis. The DOP plots presented

in Chapter 3 agree with this finding as the UWB measurements provide less observability of

the RPV with increasing distance. A summary of the error statistics for this non-cooperative

scenario is shown in Table 5.1.

92



0 5 10 15 20 25 30

Time (s)

0

2

4

6

8

10

12
E

rr
or

s 
(m

)
Const. Vel. EKF Error Norm

0 5 10 15 20 25 30

Time (s)

0

2

4

6

8

10

12

14

E
rr

or
s 

(m
)

Veh. Dyn. EKF Error Norm

Figure 5.8: S-Turn Mean and Standard Deviation for Monte Carlo Errors

Table 5.1: Scenario 1: S-Turn with Static Base 100-Run Error Statistics

Algorithm Mean Std. Dev.

Const. Vel. EKF

X Error (m) -1.06 1.29
Y Error (m) 1.10 3.86
ψ Error (deg) -5.84 39.39

RPV Error Norm (m) 3.03 3.11

Veh. Dyn. EKF

X Error (m) -0.29 0.37
Y Error (m) 0.07 1.00
ψ Error (deg) 0.14 4.27

RPV Error Norm (m) 0.88 0.71

5.2.2 Scenario 2: Dynamic U-Turn

Ghanem [21] showed in their results that there is a problem area when the two vehicles

pass one another. This was encountered during a U-turn in their experimental data set where

the estimator locked onto the ambiguous solution. This maneuver is recreated in simulation

to verify their findings and to compare the proposed vehicle dynamics EKF. The trajectory

of the vehicles is outlined in the snapshots shown in Figure 5.9.

For this run, the mean range between the vehicles was 32 meters. Each filter is given the

same UWB ranges with equivalent error statistics. A comparison for a single run is shown

in Figure 5.10. It can be seen from the single-run results that the constant-velocity EKF
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Figure 5.9: Dynamic U-Turn Trajectory Depiction
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Figure 5.10: Single Run of Non-Cooperative Estimation Comparison

solution begins to break down during the unobservable relative pose when the vehicles are

side-by-side. Figure 5.11 highlights 3 different segments of the trajectory to visualize the

errors more directly. In Figure 5.11a, when the tracked vehicle is at the top of its turn, the

estimators both have a decent solution of the relative pose. In Figure 5.11b, the solutions

of both estimators have degraded as the vehicles pass one another; however, by the end of

the run in Figure 5.11c, the vehicle-dynamics EKF has continued tracking the vehicle and

returned to the truth while the constant-velocity EKF has converged to the geometrically

extraneous solution.

As in the previous scenario, 100 Monte Carlo simulations were performed to quantify

the error statistics for this case. Once again, the impact from the relative dynamics is still

present as the errors are not zero-mean for either algorithm. From inspection of Figures 5.12

and 5.13, the reduction in RPV errors in the vehicle dynamics EKF are evident.

The error norms and standard deviations were calculated as before. A comparison of

these two non-cooperative EKFs for this scenarios are shown in Figure 5.14. It is clear from
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Figure 5.12: Dynamic U-Turn Constant Velocity EKF 100 Monte Carlo Run RPV Errors

Figure 5.13: Dynamic U-Turn Vehicle-Dynamics EKF 100 Monte Carlo Run RPV Errors
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Figure 5.14: Dynamic U-Turn Mean and Standard Deviation for Monte Carlo Error Norms
(Varied Y-Axis Scales)

these results that the constant velocity method lacks robustness, and certain trajectories can

lead to filter instability. This finding agrees with the results from Ghanem’s prior work with

similar trajectories [21].

The errors for the vehicle dynamics EKF were also higher for this scenario compared to

the last due to the increased relative dynamics. However, the errors were still below a meter

on average in each axis and remain bounded by the filter’s covariance estimate. Table 5.2

summarizes the errors for this scenario.

Table 5.2: Scenario 2: Dynamic U-Turn 100-Run Error Statistics

Algorithm Mean Std. Dev.

Const. Vel. EKF

X Error (m) -19.03 27.29
Y Error (m) -0.27 3.05
ψ Error (deg) -3.05 66.80

RPV Error Norm (m) 20.97 25.97

Veh. Dyn. EKF

X Error (m) 0.77 1.40
Y Error (m) -0.41 0.79
ψ Error (deg) -1.32 4.40

RPV Error Norm (m) 1.25 1.33
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5.2.3 Scenario 3: Figure-8 Maneuver

The previous two scenarios are specific situations to exhibit a variety of scenarios of

the estimators to show performance in both ideal and edge-cases. A scenario to encompass

many of these aspects into one run is a figure-8 trajectory. This scenario consists of a mixture

of favorable and unfavorable relative geometries. Figure 5.15 highlights components of the

paths taken by the vehicles in this scenario. The range between the vehicles varied in this

scenario, but the average was 21.49 meters.

Note that the vehicles approach the unobservable relative-geometry regions throughout

the turns, but never fully pass each other in opposite directions (as they did in scenario 2).

This prevents the constant velocity estimates from completely breaking down for this run.

Nevertheless, the resulting errors show similar trends as before. The two non-cooperative

methods have similar non-zero-mean errors as the vehicles have higher relative dynamics dur-

ing the turns, but the vehicle dynamic EKF maintains substantially lower errors throughout.

Figures 5.16 and 5.17 depict the 100-run Monte Carlo results for each filter. Note that the

vehicle-dynamic EKF remains bounded by the estimated covariance bounds.

The error norms for this run are shown in Figure 5.18. The y-axis limits are different

on the left and right plots to show more detail on the lower errors of the vehicle-dynamic

EKF results. Since the relative range of the two vehicles was relatively constant (between

18–24 meters) during this run, the error spikes are more dependent on the relative dynamics

as mentioned previously. Table 5.3 shows the error statistics for this scenario.
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Figure 5.16: Figure-8 Constant Velocity EKF 100 Monte Carlo Run RPV Errors

Figure 5.17: Figure-8 Vehicle-Dynamics EKF 100 Monte Carlo Run RPV Errors
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Figure 5.18: Figure-8 Mean and Standard Deviation for Monte Carlo Error Norms (Varied
Y-Axis Scales)

Table 5.3: Scenario 3: Figure-8 100-Run Error Statistics

Algorithm Mean Std. Dev.

Const. Vel. EKF

X Error (m) 0.47 1.76
Y Error (m) -0.12 2.89
ψ Error (deg) -10.79 55.88

RPV Error Norm (m) 2.47 2.38

Veh. Dyn. EKF

X Error (m) -0.06 0.43
Y Error (m) 0.06 0.61
ψ Error (deg) -0.69 4.09

RPV Error Norm (m) 0.61 0.44

5.3 Cooperative Results

Rather than repeating all of the previously-shown non-cooperative scenarios, only the

two dynamic scenarios were selected to highlight key points of analysis for the cooperative

methods. Combining all of the potential options described in the previous chapter in various

forms, the following collaborative methods were considered:

1. VehDynEKF with Feedback of tracked-vehicle states (longitudinal velocity, vLx, effec-

tive steer angle, dL, yaw rate, ωL )

(a) vLx
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(b) dL

(c) ωL

(d) vLx and dL

(e) vLx and ωL

(f) dL and ωL

(g) vLx , dL and ωL

2. Consensus EKF with constant velocity model

3. Consensus EKF with vehicle model

The feedback terms all have random noise applied to them on varying orders of magni-

tude: σvL = 0.1, σdL = 0.01, and σωL
= 0.001. Since it is assumed the UWBs are passing

this information along with the range measurements, these feedback measurement updates

happen alongside the range updates at 15 Hz. The consensus algorithms will be explored

separately.

5.3.1 Scenario 1: Dynamic U-Turn

The same dynamic U-turn scenario was performed to compare the cooperative and

non-cooperative results. A Monte Carlo analysis with 100 runs was again performed for

each collaborative algorithm. The mean norm error over time is shown for each method in

Figure 5.19.

Although there are improvements in accuracy with the inclusion of state feedback terms,

there is not a clear best option across the entire run as slightly different error dynamics arise

for each case. This mainly arises due to the assumptions made in the time update of the

estimation algorithm. Recall that the lateral velocity is assumed to be zero for both the ego

and the tracked vehicle. Therefore, feedback of dynamic states has the effect of increasing

confidence in a model that does not fully encapsulate the system dynamics. Although this
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Figure 5.19: Cooperative U-Turn RPV Errors Through Run

feedback can help accuracy since the model is a decent approximation of truth, it can also

lead to increased errors in some situations. In particular, the error increases when the vehicles

perform turns and the zero-lateral-velocity assumption is violated. To quantify this effect,

the absolute sum of the vehicles’ respective lateral velocities was calculated and the errors

were sorted with respect to this. Figure 5.20 shows the resulting trends. Note that a moving

average smoothing operation was performed to enhance readability.

The trend in this plot provides support for the predicted error being significantly cor-

related with the lateral velocities of the vehicles. Regardless of the employed method, the

accuracy generally suffers as the lateral velocity assumption is violated. If the ego vehicle

had access to a sufficient lateral velocity measurement, such as from a side-slip sensor or

an error-corrected IMU solution, then only the tracked vehicle’s dynamics must be subject

to the zero-lateral-velocity assumption. The accuracy could be improved significantly as a

result. The same feedback methods were re-run assuming the ego vehicle had access to a

noisy (σ = 0.1m
s
) measurement of its lateral velocity. The results, shown in Figure 5.21,

demonstrate clear improvements with the feedback terms which include a velocity estimate

from the tracked vehicle.
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There is an outlying feedback method which should be highlighted before moving for-

ward. Notice that the feedback methods including effective steer angle (dL) generally perform

worse than their counterparts. The light blue line which represents only the effective steer

angle feedback is even worse than the baseline approach. By inspecting the derivation of

the kinematic bicycle model in Chapter 2, it can be seen that the input steer angle is ge-

ometrically related to the side slip experienced by the vehicle. However, the estimator still

is restricted by the zero-lateral-velocity assumption. In the Kalman Filter framework, this

leads to a high confidence in the current estimate of the tracked vehicle’s steer angle and a

corresponding resistance to change of this estimate based on measurements from the UWB

ranging. The results in the estimator struggling to deviate from the zero-side-slip model and

leads to an increase in error. To highlight this, an additional test was performed where the

effective steer feedback was related to a sideslip, β, which was then used to provide a direct

estimate of the lead vehicle’s longitudinal and lateral velocities through:

Vx = |V | cos(β) (5.6)

Vy = |V | sin(β) (5.7)

This modified feedback method was employed on the scenario and is compared to a few of

the other methods in Figure 5.22.

The red lines in these figures represent this modified feedback method. The results

without a lateral velocity on the base vehicle show a reduced error over the effective steer

feedback method (light blue), but it performs worse than the other options. A lag is also

present. These aspects are seen since the following vehicle still is restricted to the zero-

lateral-velocity assumption and that vehicle experiences sideslip later in the run. When the

following vehicle also has a lateral velocity measurement for itself, the best potential results

arise since the estimator now matches the model directly. This is shown with the sideslip

lateral velocity feedback method in Figure 5.22b.
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Figure 5.22: Error Norm Comparison of Sideslip-Estimated Lateral Velocity Feedback
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The results are promising but there are a few key issues with employing this method

in practice. In particular, the accuracy experienced here is mostly due to the estimator dy-

namics matching the true dynamics perfectly — something which is not true with employing

a simple kinematic model on real vehicles. Secondly, the equation for sideslip generation

from input steer (Equation 2.29) requires knowledge of the lead vehicle’s COG offset from

the rear axle. This is more involved than knowledge of the wheelbase which is required for

the effective steer feedback and also has potential to vary with loading conditions. For these

reasons, this feedback method will not be explored further in experimentation.

For comparison of the methods with a single value, the root mean squared error (RMSE)

was taken of each method’s RPV error norm. The results for both the lateral and non-lateral

ego vehicle measurement cases are shown in Table 5.4.

Table 5.4: Scenario 1: Dynamic U-Turn Cooperative Result Comparison

RMSE of Cooperative RPV Estimates (m)
Fdbk. Method No Ego Vy With Ego Vy

None 1.77 1.42
vL 0.93 0.70
dL 1.81 1.63
ωL 1.17 1.28

vL and dL 1.03 0.81
vL and ωL 0.95 0.71
dL and ωL 1.17 1.43

vL, dL, and ωL 0.96 0.76

Within the consensus implementation, the assumption is that both vehicles are inter-

ested in relative positioning to one another. Therefore, rather than only analyzing the error

of only one estimator, the cumulative errors of the network are the metric. Figure 5.23

shows a comparison of the traditional algorithms versus one with consensus between the

two-vehicle network with a consensus hyper-parameter of λ = 0.1.

For this run, the consensus algorithm does not present a significant change in results

for the vehicle-dynamic EKF network, but there is a noticeable improvement in the RPV

mean error for the constant velocity case. Recalling the results from the previous section,
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Figure 5.23: U-Turn Consensus EKFs for Each Propagation Model (varying y-axis scales)

the constant velocity method went unstable through the unobservable region for all 100 runs

of the trajectory. Here, with a consensus constraint, a portion of the runs managed to track

through the this section of the path. This is shown in Figure 5.24 which can be compared

to Figure 5.12. Only the RPVx component is shown as this is the component which suffers

the most from the unobservable region. Although this consensus method does provide the

constant velocity method an opportunity to pass through observability-faults, it is certainly

not guaranteed. Of the 100 runs, 69 managed to re-converge to the proper quadrant solution

while passing through the unobservable region.

One more aspect of this consensus application should be highlighted. Recalling from

the previous sections, the constant velocity method struggled to track the relative heading of

the two vehicles. This is particularly problematic because the consensus condition requires

the relative heading when applying the RPV consensus condition in Equation 4.20. In [30],

which first applied this geometric consensus condition, the author avoided this issue by

using a magnetometer on each vehicle for relating their RPV estimates to a common frame.

To explore this effect, the constant velocity consensus was performed again assuming the

relative heading was measured (σ = 0.01rad), such as from a magnetometer on each vehicle.
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Figure 5.24: U-Turn Consensus EKFs for Each Propagation Model (Varying Y-Axis Scales)

This relative heading is also a state of the estimator, so if it is available for the consensus

conditions, one should assume it could also be used as a direct measurement outside of a

consensus framework. Therefore, the consensus will be compared to a constant velocity

implementation which is aided by a relative heading measurement update. This allows for a

fair comparison of how the consensus may assist the estimation and is shown in Figure 5.25.

The same experiment was performed for the vehicle-dynamic EKF in Figure 5.26.

The improvement of the relative heading addition to the constant velocity method is

clear. An even further improvement is seen from applying a consensus update along with

the relative heading corrections. Figure 5.27 shows the improvements of these additions for

a single run of the constant velocity method. Since the interest lies in the error of the full

network, both vehicle positions are estimated and shown here.

The improvement seen from inclusion of relative heading measurements with the con-

sensus condition in the constant velocity method is less noticeable for the vehicle dynamic

method. Since the vehicle-dynamic EKF manages to track the relative heading quite well in

all scenarios, the relative heading component of the consensus condition is not the primary
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Figure 5.25: U-Turn Constant Velocity Consensus EKFs with Relative Heading
Measurements
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Figure 5.26: U-Turn Vehicle Dynamic Consensus EKFs with Relative Heading
Measurements
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Figure 5.27: Dynamic U-Turn Constant Velocity Method Comparisons
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source of error. This is verified in Figure 5.26 where the inclusion of a relative heading mea-

surement provides little change compared to the base vehicle-dynamic EKF. The inclusion

of the relative heading measurement along with the consensus condition does represent an

improvement, but it is less pronounced than the constant velocity application.

This scenario has shown that the consensus condition could be helpful to the constant

velocity method if on-board odometry is unavailable for the vehicle dynamic method to be

employed. With the application of a relative heading measurement, the consensus shows an

even further improvement. Whether or not the consensus addition should be applied will

depend on how it performs in more diverse runs, such as when the filter is not predisposed

to instability. The next scenario will examine this.
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Figure 5.28: Figure-8 Vehicle-Dynamics EKF RPV Errors Through Run

5.3.2 Scenario 2: Figure-8 Maneuver

In this run, the vehicles are performing alternating turns frequently; therefore, the lateral

velocity assumption is violated even more than in the previous scenario. The RPV errors

for the varying methods in this scenario are shown in Figure 5.28. From initial inspection of

these results, it can be seen that some of the feedback options actually degrade the accuracy

compared to the non-cooperative solution. Figure 5.29 shows the RPVx and RPVy solutions

from the longitudinal-velocity feedback. In comparison to the same non-cooperative results

in Figure 5.17, the solution degradation is apparent. Not only do the errors grow, but also

the filter no longer properly bounds the estimate errors.

Sorting the errors by the cummulative lateral velocities provides more insight to the

error trends in the case without the ego vehicle’s lateral velocity measurement. This is

depicted in Figure 5.30.

Notice that for this figure-8 scenario the velocity feedback options have the highest

error with respect to the cumulative lateral velocity. In the previous scenario, these same
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Figure 5.29: Figure-8 VehDynEKF Results with vL Feedback without Ego-Vehicle
Lateral-Velocity Measurement
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Figure 5.30: Figure-8 Cooperative Method Errors Sorted by Cumulative Lateral Velocity
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Figure 5.31: Figure-8 Cooperative Method Errors Throughout Run with Ego Lateral Vel.
Measurements

feedback methods showed some of the lowest sensitivity to lateral velocity. This is likely to

do with the differences in the ego vehicle’s dynamics in each test. In the dynamic u-turn,

the ego only performed one large turn. Meanwhile, in the figure-8 run, the direction of

turning was oscillatory and the side-slip angle has changing signs. Nevertheless, including a

measurement of the lateral velocity of the ego vehicle once more significantly improves the

estimation shown in Figure 5.31.

Figure 5.32 sorts the errors with respect to the cumulative lateral velocity once more.

Comparison to the same plot without the ego vehicle’s lateral velocity measurement, Fig-

ure 5.30, shows that the feedback options with the highest correlation of error with lateral

velocity are now the lowest: the velocity feedback terms. Consequentially, these methods

are also the best performing as previously shown in Figure 5.31. Table 5.5 summarizes the

feedback results with and without the ego vehicle’s lateral velocity measurement.

The consensus cumulative error results for the two-vehicle network are depicted in Fig-

ure 5.33. Similar to the previous scenario, the consensus condition presents an improvement
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Figure 5.32: Figure-8 Cooperative Method Errors Sorted by Cumulative Lateral Velocity
(with Ego Lateral Vel. Measurement)

to the constant-velocity method even without the relative heading measurement. The vehicle-

dynamic EKF consensus results also demonstrate a clear improvement in this scenario.

Inclusion of a relative heading measurement is depicted for the constant velocity method

and Figure-8 maneuver in Figure 5.34. As in the dynamic U-turn scenario, the inclusion of a

relative heading measurement represents a significant improvement. The consensus algorithm

improves upon this even further. These results along with the previous scenario provide a

Table 5.5: Scenario 2: Figure-8 Cooperative Result Comparison

RMSE of Cooperative RPV Estimates (m)
Fdbk. Method No Ego Vy With Ego Vy

None 0.76 0.75
vL 1.50 0.30
dL 0.69 0.72
ωL 0.95 0.79

vL and dL 1.54 0.302
vL and ωL 1.51 0.306
dL and ωL 0.72 0.71

vL, dL, and ωL 1.53 0.28
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Figure 5.33: Figure-8 Consensus EKFs for Each Propagation Model

strong case for the inclusion of a consensus condition to the constant velocity algorithm if

on-board odometry is unavailable.

The relative heading inclusion to the vehicle-dynamic EKF once more provides little

change over the base algorithm. Unlike the previous U-turn scenario, the consensus algo-

rithm does show more significant improvements over the base methods. Comparisons of the

consensus results with the relative heading feedback is shown in Figure 5.35.

Since the vehicle-dynamic EKF has two distinct cooperative methods, feedback and

consensus constraints, the two are compared with the same cumulative network norm in

Figure 5.36. The consensus condition’s improvement is notable, but it is slightly outper-

formed by the top performing feedback methods. The selection between these methods will

be determined by their performance during experimental tests in the following chapter.
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Figure 5.34: Figure-8 Constant Velocity Consensus EKFs with Relative Heading
Measurements
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Figure 5.35: Figure-8 Vehicle-Dynamic Consensus EKFs with Relative Heading
Measurements
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Figure 5.36: Figure-8 Vehicle-Dynamic Cooperative Method Comparison

5.4 Conclusion of Simulation Results

The simulation analysis performed in this chapter outlined the performance of both

cooperative and non-cooperative methods for ground-vehicle relative positioning with UWBs.

The main conclusions are as follows:

1. Without communication between vehicles, the proposed VehDynEKF substantially

outperforms the constant velocity method in both high and low-observability relative

geometries

2. Feedback of the tracked vehicle’s dynamics provides useful information for the Veh-

DynEKF and can improve the estimation results. However, without a measurement of

the ego vehicle’s lateral velocity, the potential exists for the some feedback methods to

degrade the solution instead. This is due to feedback measurements providing a highly

confident solution in a model that does not fully encapsulate the true dynamics of the
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system. In particular, the zero-lateral-velocity assumption is a large source of error,

so inclusion of a measurement of the ego vehicle’s lateral velocity improves the impact

of the feedback terms and provides the highest estimation accuracy. This could also

be a by-product of the dynamic model used in the simulation generation, so it will be

re-analyzed in the experimental section.

3. If no on-board odometry is available, the consensus constraint can improve the constant-

velocity model if the vehicles may communicate with one another. The consensus

provides the opportunity for the constant velocity method to sometimes overcome the

major pitfalls experienced through unobservable areas, but this is not guaranteed. Fur-

ther improvement is seen if a relative heading measurement is available to aid in the

consensus construction since the traditional constant velocity method often does not

track this state well. However, the results still underperform the VehDynEKF.

4. The VehDynEKF also experiences a benefit from a consensus constraint in some sce-

narios, but it is not required to overcome observability issues. If the vehicles are capable

of communication and each are employing the VehDynEKF, the dynamic states can

shared instead which offers slightly improved performance. These two cooperative

methods will be compared in experimental applications.
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Chapter 6

Experimental Results

6.1 Experimental Setup

The experimental data was collected on two passenger vehicles, a retrofitted drive-by-

wire Lincoln MKZ and a Kia Optima. The UWBs were situated across the roof-rack of

each vehicle with a GPS antenna bisecting their baselines. The aim for the spacings of the

UWBs was to match the simulation of 6-foot baselines, but the resulting separations were

71.5 and 67.25 inches, respectively. The antenna signals were fed into a splitter with one

output connected to an RTK-capable receiver and one connected to a GPS/INS solution

utilized for heading. The two vehicles are shown in Figure 6.1 (a more detailed depiction of

the UWB placement was previously shown in Figure 2.17).

The odometry of the estimating vehicle (MKZ) was obtained with a wheel encoder and

gyroscope. The bicycle model mechanization was employed as was done in simulation. The

MKZ has embedded encoders in each wheel. The average of the two rear wheels was taken

as the longitudinal velocity. The gyro was a KVH DSP 1760 fiber optic single-axis gyroscope

shown in Figure 6.2.

As explored in the simulation results, lateral velocities on the ego vehicle may improve

the estimation significantly. This lateral measurement is not as easily generated as a longi-

tudinal estimate. Although it does not align with the sensor suite of this thesis, this lateral

velocity was generated by a high-quality GPS/INS system as proof of concept for its in-

clusion. Due to hardware constraints, the steer feedback is omitted from the experimental

results, but prior simulation results showed it to be the least impactful option.

The TimeDomain P440s were configured with a PII value of 9 corresponding to a 14.9

Hz network update rate with an approximate range of 410 meters. Each range measurement
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Figure 6.1: Experimental Passenger Vehicles: Lincoln MKZ and Kia Optima

Figure 6.2: KVH DSP 1760
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has an individual update rate of around 3.75 Hz. The cooperative feedback terms from the

tracked vehicle were not configured to pass through the UWBs in real-time, but they are

synced in post-process to be delivered alongside the range measurements. This results in

the cooperative updates having the same 14.9 Hz update rate as the UWBs — as in the

simulations.

Two scenarios were chosen for the experimental analysis. The first is the dynamic U-

turn maneuver to again examine the observability issues in this relative geometry. In the

second scenario, the two vehicles moved around the track randomly to see how well the

algorithms can perform in a variety of ranges, maneuvers, and relative geometries. The

consensus condition is applied to the constant velocity method in both scenarios, but the

VehDynEKF is only explored for the second scenario.

6.2 Scenario 1: Dynamic U-Turn

For this test, the vehicles pass by one another imposing the unobservability condition

through the turn. The mean range between the vehicles was 21.4 meters. It should be noted

and the UWBs had a dropout rate of ≈4%, but all of those were confined to the range

between UWB 1 and 2 which had a dropout rate of ≈16%. The paths of the vehicles are

depicted in Figure 6.3.

A comparison of the non-cooperative algorithms can be seen in Figure 6.4. In this figure,

the relative positioning estimates were transformed into an local frame solution through the

position and heading information of the GPS/INS system. The RPV error norms are depicted

in Figure 6.5.

It was seen in simulation that a measurement of the ego vehicle’s lateral velocity sig-

nificantly improved estimation quality for the feedback and non-feedback cases. Both are

explored here and are shown in Figure 6.6 with the same y-axis scales. The euclidean error

norms are improved for each feedback method.
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Figure 6.3: Dynamic U-Turn Experimental Scenario Trajectories
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Figure 6.4: Dynamic U-Turn Non-Cooperative Estimation Results
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Figure 6.5: Dynamic U-Turn Non-Cooperative Error Norms
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Figure 6.6: Dynamic U-Turn Feedback Results
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Figure 6.7: Dynamic U-Turn Feedback Results VS Cumulative Lateral Velocity

The results of the previous chapter predicted that the relative positioning errors are

correlated with the violation of the zero-lateral-velocity assumption employed in the estima-

tion algorithm. Figure 6.7 sorts the errors with respect to the cumulative lateral velocity in

the network over time. This figure shows that, with the inclusion of the ego vehicle’s lateral

velocity, the feedback methods become less sensitive to the lateral velocity of the vehicles.

This is especially true for the methods employing longitudinal velocity feedback.

Table 6.1 summarized the experimental results of the dynamic-state cooperative meth-

ods. The longitudinal velocity feedback proves to be the most useful dynamic state to be

shared between vehicles, but the inclusion of both velocity and yaw rate provides the best

results. The inclusion of lateral velocity measurements on the Ego vehicles refines the so-

lutions substantially and allows for the state feedback to be more impactful. These results

concur with those seen in the simulation studies.

Table 6.1: Experimental Dynamic U-Turn Cooperative Result Comparison

RMSE of Cooperative RPV Estimates (m)
Fdbk. Method No Ego Vy With Ego Vy

None 0.86 0.62
vL 0.59 0.34
ωL 0.63 0.53

vL and ωL 0.51 0.31
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Figure 6.8: Dynamic U-Turn Constant Velocity Consensus Comparison

The consensus constraints were tested with the constant velocity model in this scenario

to compare to the simulation results. In simulation, the consensus condition showed promise

in aiding the constant velocity filter through the poor observability areas. As in simulation,

the base form of the constant velocity EKF was unable to track the vehicle as they pass one

another. When the consensus condition is applied, the estimate is able to recover for this

scenario as shown in Figure 6.8. This agrees with the simulation results.

Simulation results showed how the inclusion of a relative heading also increases the

likelihood of propagating through this region. Figure 6.9 compares these options as a cumu-

lative error across the consensus network. Interestingly, the consensus condition performs

better when the relative heading is excluded from the algorithm—this was not the case in

simulation. This may be due to biases in the relative heading solutions generated from the

differenced GPS/INS solutions; the relative heading measurements were unbiased and low
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Figure 6.9: Dynamic U-Turn Consensus Cumulative Error Norms

noise in simulation. This scenario once again shows the potential improvement of a con-

sensus condition application to a constant velocity implementation, but it still consistently

underperforms the VehDynEKF.

6.3 Scenario 2: Random Driving

This scenario consisted of the two vehicles wandering the testing pad randomly. The

drivers of the vehicles were instructed to speed up and slow down sporadically while also

performing dynamic turns. The range between the vehicles varied from 14.1 meters to 58.2

meters with a mean of 31.9 meters. The ego vehicle had a maximum velocity of 7 m
s
and an

average of 3.9 m
s
. Meanwhile, the tracked vehicle had a maximum velocity of 10.5 m

s
and an

average of 4.2 m
s
. The paths of the vehicles are depicted in Figure 6.10.

This trajectory provided many opportunities for poor observability. The constant ve-

locity method’s solution broke down quickly in the run as a result. Meanwhile, the vehicle-

dynamic EKF experienced spikes in error during the turns and further ranges, but remained
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Figure 6.10: Random Maneuvers Experimental Scenario Trajectories

a consistent solution throughout. These results are shown on a geographical map in Fig-

ure 6.11. The RPV errors for this run are depicted in Figure 6.12

Improvements to the VehDynEKF solution are seen once more from the inclusion of

lateral velocity of the ego vehicle. Again, the most beneficial feedback term continues to be

the speed of the tracked vehicle. Figure 6.13 shows RPV error norms throughout the run.

The error’s dependency on lateral velocity remains true and can be seen in Figure 6.14.

Table 6.2 shows the promising results for the UWBRPV estimation algorithms presented

in this thesis. The variable dynamics, range, and geometries experienced in this scenario

result in an increased error in the estimation, but the results remain on the order of a few

meters or less for all vehicle dynamic based methods.

The consensus application to the constant velocity model is once more explored. The

error norms throughout the run are shown in Figure 6.15. The clear improvements seen in the

previous scenario are missing in these results. Although the consensus methods outperform
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Random Maneuvers with Varying Speeds Non-Cooperative Comparison
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Figure 6.11: Random Maneuver Non-Cooperative Estimation Results
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Figure 6.13: Random Maneuver Feedback Results Through Run

0 0.2 0.4 0.6 0.8 1 1.2

Sum of Abs. Lateral Vel. (m/s)

0

1

2

3

4

5

6

7

N
or

m
 R

P
V

 E
rr

or
 (

m
)

Deviation From Zero Lateral Velocity Assumption
vehDynEKF
Fdbk. v

L

Fdbk. !
L

Fdbk. v
L
 !

L

(a) Without Lateral Velocity Measurement

0 0.2 0.4 0.6 0.8 1 1.2

Sum of Abs. Lateral Vel. (m/s)

0

1

2

3

4

5

6

7

N
or

m
 R

P
V

 E
rr

or
 (

m
)

Deviation From Zero Lateral Velocity Assumption
vehDynEKF with V

y

Fdbk. v
L

Fdbk. !
L

Fdbk. v
L
 !

L

(b) With Lateral Velocity Measurement

Figure 6.14: Random Maneuver Feedback Results VS Cumulative Lateral Velocity

132



Table 6.2: Experimental Random Maneuver Cooperative Result Comparison

RMSE of Cooperative RPV Estimates (m)
Fdbk. Method No Ego Vy With Ego Vy

None 2.59 2.16
vL 1.25 0.89
ωL 1.99 1.80

vL and ωL 1.16 0.86

the base model in portions of the run, they also degrade the solutions in some areas. As

mentioned previously, this scenario is a stress-test for the feasibility of on-board UWB relative

positioning. In such a demanding scenario, these results show that the constant velocity

model cannot provide robust solutions even with the two-vehicle consensus application.

0 10 20 30 40 50 60 70 80

Time (s)

0

50

100

150

200

250

C
um

ul
at

iv
e 

E
rr

or
 (

m
)

Network RPV Error

Const. Vel.
Const. Vel. w/ Rel. Hdg.
Consensus
Consensus w/ Rel. Hdg

Figure 6.15: Random Maneuver Constant Velocity Consensus Cumulative Error Norms

Lastly, the consensus condition was applied to the VehDynEKF. Figure 6.16 compares

the estimation results of velocity feedback and the consensus conditions for one of the vehicles

in the network. Meanwhile, Figure 6.17 compares the cumulative network errors.

The consensus results in these figures do not show the same positive trend that was

seen in simulation. Although the consensus condition improves the estimation throughout
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portions of the run, it also degrades the results in some areas. This deviation from simulation

results may be due to non-perfect time syncing for the consensus updates and the physi-

cal deviation of from the kinematic bicycle model employed in the simulation. Contrarily,

the velocity feedback outperforms both the base and consensus methods substantially even

without the lateral velocity measurements on the base vehicle. Therefore, if the vehicles are

able to communicate with one another and odometry is available, dynamic state feedback

offers more accuracy and robustness than the consensus condition and should be employed

instead.

6.4 Conclusion of Experimental Results

The experimental results presented in this chapter validate the findings from simulation

in Chapter 5. The proposed vehicle-dynamic EKF is more accurate and robust than the

constant velocity model in all explored scenarios. With the application of cooperative meth-

ods to the VehDynEKF, the feedback methods including longitudinal speed measurements

provide the largest improvement. This provides further benefit if a measurement of the lat-

eral velocity on the base vehicle is available. The application of a consensus condition to

the constant velocity method provides the opportunity for tracking through difficult relative

geometry areas, but an accuracy improvement is not guaranteed in more dynamic scenarios.
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Chapter 7

Conclusions

This thesis explored various methods for relative positioning of ground vehicles with on-

board UWB range measurements. After providing necessary technical background, Chapter

3 outlined the difficulties of range-based relative positioning with an observability analysis

through DOP calculations. The relevant non-cooperative algorithms from prior work were

then outlined. An extension to this prior work was described through the application of vehi-

cle dynamic models and the inclusion of on-board odometry to the base vehicle. In Chapter

4, modifications were made to each algorithm to explore the effect of cooperative methods.

All of the algorithms were compared to one another in both simulation and experimental

results in Chapters 5 and 6.

It was shown in Chapters 5 and 6 that the VehDynEKF described in Chapter 4 is

superior in both accuracy and robustness to the constant velocity method in prior works.

When the ego vehicle does not have access to a lateral velocity measurement, the RMSE of

the proposed VehDynEKF estimator is under 3 meters. Feedback of dynamic states from

the tracked vehicle can reduce this to below 2 meters. With the inclusion of lateral velocity

measurements and feedback of the tracked vehicle’s speed, the VehDynEKF is capable of a

mean error below the 1 meter goal for collision avoidance during real-world trajectories with

varying dynamics. However, the errors are not zero-mean and are affected by the relative

geometry between the vehicles.

Consensus modifications to the non-cooperative EKFs were explored. The consensus

conditions showed improvement to the VehDynEKF algorithm in simulation, but in exper-

imental analysis the results were less promising. Consensus applications to the constant
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velocity method present a significant opportunity for overcoming the instability issues expe-

rienced when the vehicles are side by side. This represents a improvement over prior work

in [21] without the inclusion of any additional sensors. However, this two-vehicle consensus is

not sufficient to guarantee the constant velocity EKF will remain stable throughout dynamic

runs.

This thesis presents a recommendation for improved ground vehicle relative position

estimation with only on-board sensors. With only UWB ranges and odometry, the appli-

cation of the dynamic models through the VehDynEKF in Chapter 4 can provide robust

relative pose estimates to a local vehicle. This was shown to be successful with only a wheel

encoder and yaw-gyro, but if the odometry method includes lateral velocity measurements,

knowledge of the tracked vehicle’s longitudinal speed provides a relative position estimate

accurate enough for most safety-critical applications.

7.1 Recommendations of Future Work

There exist a variety of potential extensions to this work. The following list contains

suggestions for iterating upon the work presented here:

� Test the algorithm in more realistic driving scenarios to explore the sensitivity to cut-

ins and multi-path interference of local objects.

� Extend upon recent work by [18] to employ the algorithms presented here with their

carrier phase positioning methods. The author believes that thes work presented here

would allow for a more refined and robust search space for the integer ambiguities.

� Bridge the gap between odometry and UWB sensor interfaces to implement simultane-

ous ranging and communication for implementing the dynamic state feedback methods

in real-time systems.

� Numerous methods for refining the UWB hardware layout could be explored:
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1. Additional UWBs could eliminate the quadrant ambiguity and reduce observabil-

ity issues. However, with more UWBs in the network, the update rate of each

decreases. A study on these trade offs could prove useful.

2. A more omni-directional antenna may allow for better range quality as the vehicles

approach the unobservable region

3. Reconfiguring the UWBs to implement an ALOHA random-access network pro-

tocol which is not restricted to the sequential order of range requests. This would

allow for use of the most opportunistic measurements and may alleviate the im-

pact of poorly-performing nodes.

� Explore the spatial effects on UWB measurements along with their multi-modal error

patterns to create a more refined error model than presented here.

� Extend the consensus network to more than two vehicles. The more actors involved,

the more averaging can take place and the constant velocity method may be able to

further overcome its fault areas.

� This thesis showed the potential for consensus estimation of locally-operating ground

vehicles, but many aspects of this consensus problem remain unexplored: (dynamic

network switching, relative uncertainty [69]).
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