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Abstract

This thesis identifies and derives several methods of transmitter localization as well as

collects several pre-existing algorithms and adapts them to the use of passive GPS interference

localization. Due to legal transmission limitations, the use of Anti-Jam algorithms in a custom

front-end architecture providing protection to a GNSS and INS navigation sensor is simulated

via hardware in the loop (HWIL) to mimic hostile navigation environments. The HWIL sys-

tem consists of multiple calibrated software-defined radios (SDRS), propogation delay systems,

GNSS/INS systems, timing, network, and processing devices. Each controlled by custom or

open-source software to create a system capable of simulating transmitted signals as would be

seen in a wavefront scenario. This system demonstrates moderately realistic signal source lo-

calization. This conceptual platform, designed to observe and localize a signal, requires several

sensors for observing its own location in the challenged RF environment. The suite of sensors

on this platform would include a GNSS and INS system to provide both position and attitude

that utilizes a fixed array of antennas. The array, known as a controlled reception pattern ar-

ray(CRPA), is designed for the navigation band of choice as well as the signal of interest. The

CRPA, utilizing mulitple signal classification (MUSIC), provides a direction of arrival (DOA)

to the transmitting source. The combination of the platform position, attitude and DOA collec-

tively provide the required information to generate estimates of the transmitter location. The

estimation methods referenced and derived include batched and continuous estimation tech-

niques utilizing the combination of the available observables on the theorized platform. The

use of closed form solutions with the noisy measurements are used only as initialization points

for the batch and continuous estimators. The estimation is done in two and three dimensions

for various esimators. These methods are selectivly compared based on the applied estimation

technique. The comparisons are divided into two groups, stochastic and instantaneous. The

instantaneous group is used as a method of initialization of the stochastic filters but should also
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be considered as an estimate method in multiple observer cases. The centroid algorithm pro-

vides moderately better results than other methods reviewed in the simulation. The stochastic

solutions are compared in the second group. The maximum liklihood estimator provides the

best solution consistently. While the particle filter method and extended kalman filter provide

similar results, they fall victim to different failure modes induced by the observer path.
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Chapter 1 Introduction

Navigation requirements in the modern world are constantly evolving. Modern navigation

solutions typically consist of a global positioning system, a system capable of providing a lo-

cation relative to the earth. These global navigation solutions are often provided by orbiting

satellites transmitting radio signals. The positioning systems suffer from weak signals due to

the range between transmitter and receiver. The weak signals are commonly subject to interfer-

ence sources. Other navigation methods can be used in conjunction to aide these systems. This

is a common practice in the navigation field. Although these other solutions exist, they tend to

suffer from different types of errors that satellite navigation systems do not suffer from. The

use of these systems provide solutions for extended time periods. Low power systems Signals

emitted from existing systems can be used to aid navigation systems by introducing further

ranging information or bearing information. These secondary navigation signals come in many

forms. Cellular signals and WIFI signals are both examples of these secondary signals. In or-

der to use these signals as way points in the aided navigation, the observing signal must know

where the signal is coming from. The signal source location may be transmitted in the signal for

cooperative communication but not all signals are conducive to communication. These other

signals are typically directed at a particular user and causes some form of interference for the

navigation equipment. These sources of interference can be localized from an observer. The

methods collected here combine several type of algorithms to localize and estimate a signals

source from a single observing platform.

1.1. Background and Motivation

Modern technology is relied on in nearly every industry. In the industries that require mo-

bility, navigation equipment is a common component of the utilized technology. Some form of

navigation is required in all mobile applications in both the civilian and military environments.
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In many cases, satellite navigation is sufficient for the application. These global navigation

satellite systems (GNSS) define several ubiquitous systems. Each GNSS system utilizes satel-

lites transmitting a dedicated navigation signal for receiving equipment to decode and estimate

its own position. Six GNSS systems exist in operation today. The United States, Russia, China,

European Union, India and Japan each have unique systems[14]. Table 1.1 shows a simple

summary of the systems from each country. These systems have similar methods of operation

but vary by signal frequency, band, coverage and availability.

Table 1.1: Current GNSS systems

System BeiDou Galileo GLONASS GPS NavIC QZSS

Country China European Russia United States India Japan

Union

Satellites 35 221 28 32 7 7

Coverage Global Global Global Global Regional Regional

Center 1561 1164 1602 1575 1164 15754

Frequency 1580 1260 1246 1227 2483 12276

(MHz)

Precision 10m 1m 7.4m 5m 5m 1.5m

(Public)

While each of these systems have different frequencies and operational bands, they have

somewhat similar positioning results during basic operation. There are several other types of

satellites that are also used but not listed here such as SBAS, which is used as augmenting signal

from deeper in space. This satellite aids in a similar was as QZSS aids GPS’s constellation.

Each of these constellations use different signals and encoding, resulting in different hard-

ware requirements for each constellation. Dedicated navigation devices, such as Ublox re-

ceivers, are capable of tracking signals from each of these systems while using an antenna

covering the required bands.
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While there are numerous satellites in operation, they are not always satisfactory for a

given scenario. In scenarios where the GNSS devices are insufficient, the receivers can be

aided by other navigation signals and sensors. Aiding GNSS devices can come from other

signals, sensors or other GNSS receivers. This navigational aid is particularly useful when the

GNSS signals produces poor or insufficient results. In many cases, an inertial measurement

unit (IMU) is used. This is one of the more common forms of navigational sensor aiding. The

use of other signals is very common as well. External signals include other constellations,

dedicated short-range communications or radar. Each of these signals when combined with a

GNSS receiver provides information that the GNSS receiver cannot. These are only two of

many ways that a GNSS receiver can be aided. Many researched areas include most permuta-

tions of GNSS, IMU/Gyro, Camera, Radar, LiDAR and DSRC. Many efforts exists to reduce

complexity of combining these sensors but are often still computationally heavy when power or

time limitations are a concern. Radio systems that communicate in both directions can provide

further information than that of just GNSS. By sharing power received measurements with the

transmitting device, devices can utilize spatial processing to resolve direction relative to each

device. This is seen in many modern day wireless routers under the 802.11.n specification. This

is known as beam-forming. This directional information can be used to find relative locations of

devices on the network. Direction to uncooperative signals can also be found using a modified

version of these techniques. Methods to find the direction to a signal require multiple antennas

receiving the signal of interest. Combining these types of signal processing algorithms, along

with aided GNSS sensors, estimations can be made passively.

Sensor aiding is commonly seen in conjunction with Bayesian filters. These types of

filters use state models and sensor measurements with stochastic probabilities to produce a

more accurate result [41][25]. These filters have various forms that excel in different scenar-

ios. As the stochastic assumptions change, the filters are adapted to different scenarios. One

form of the filter is the extended kalman filter (EKF). The EKF is focused for nonlinear state

models and nonlinear measurement models using a Gaussian distribution probability. EKFs

utilize linearization techniques to produce better results with the nonlinear models within cer-

tain operational ranges. The system model relates the states of the system to inputs while the
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measurement model relates the sensor measurements to the states. These models are applica-

tion dependent and vary from system to system. The models are mathematically derived from

theory of operation, known kinematics, or assumptions. Error quantification for a model is

often difficult to derive and can often be found empirically.

As autonomous devices become the standard in any industry, the use of sensor aided nav-

igation will only become more useful. Industries operate in vastly different environments.

These environments require sensors that excel in the different locations. An example of ad-

ditional navigational aids are in the forestry industry. One of these challenging navigational

environments is beneath the forest canopy. This does not necessarily make GNSS systems use-

less but does severely degrade the performance. The Global Positioning System (GPS) error is

typically below three meters with adequate satellite coverage[35]. The error in canopy cover-

age can commonly grow up to an additional eight meters [21]. This makes accurate position

solutions difficult to achieve. In order to continue toward completely autonomous systems,

these navigation systems must be aided. Navigation dependent autonomous systems are being

envisioned by leading forest industries[33].

To show motivation by example,Consider a system of devices where the primary device

will find the gloabl position of secondary devices and the tertiary devices are in communication

with several secondary devices. The primary system can operate above the forest canopy where

GNSS signals are significantly stronger. The secondary devices can operate as below canopy

base stations assumed to be incapable of finding its own position with GNSS signals. The

tertiary system, as depicted from[33], can be any other device requiring moderately accurate

position operating below the canopy. Figure 1.1 shows an example of this scenario.
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Figure 1.1: Primary, secondary and tertiary systems

In this example, the primary system is a drone capable of solving its own position and

attitude via aided GNSS. The secondary system is a temporary transmitting station and the

tertiary system is a navigation dependent piece of equipment capable of communications with

the secondary systems. The tertiary system is the autonomous device similar to the system

under development by australian forestry companies[33].

The primary system can pass the global location of the secondary system to each of the

secondary system devices. The primary system would localize each secondary device once

since they are static. The secondary system, remaining stationary, is capable of providing

below canopy navigation for the tertiary systems.

To further motivate the purpose of localizing a signal, airports are commonly victims of

signal interference, both intentional and unintentional. Airports utilize a ground based aug-

mentation system (GBAS) to aid landing planes with radio signals. As passenger and cargo

jets travel in and out of many airports everyday, they are vulnerable to these signal interference

sources. While many different airliners have many different sensors, degradation of one of the

sensors puts many lives at risk.
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These devices are commonly found on the internet and can even sometimes be bought

locally on the order of hundreds of dollars. Figure 1.2 shows an example of several widely

available devices.

Figure 1.2: Common jamming devices that are used in vehicles

These are referred to as a personal privacy devices (PPD) . Many PPD users are motivated

due to being tracked for various reasons. Commerical vehicles are commonly tracked using

GPS to ensure safe driving. PPD users can utitlize these devices to stop tracking efforts. The

10mW device is capable of a range up to 400m[16]. Each additional PPD user can cause

issues for GNSS devices on airliners due to radio signal propagation behaving differently on

the ground. Due to this behavior ranges are typically further vertically than horizontally given

an isotropic radiation and due to signal occlusion. Heavily populated airports are more likely

to have these devices in the nearby vicinity.

While PPDs may seem to be small weak devices, the Federal Aviation Administration

(FAA) and the Federal Communications Commision (FCC) worked together for years in order

to locate a PPD used by a commercial trucker. The trucker frequently drove past the airport

with a PPD installed. The device would commonly cause issues with the GBAS. It took nearly

two years for the interference source to be found[18]. These systems can cause GNSS receivers

to be unable to estimate a position or even make them more vulnerable to other attacks.

Outside of civilian industries, the military could also benefit from the localization of a

signal through the combination of a navigation system utilizing a system capable of finding the

direction to a device to locate the signal source.
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1.2. Prior Art

Current technologies to locate a signal range from military systems to every day home de-

vices such as a wireless router. Military systems utilize radar or situational awareness systems

to find and track signal sources. These systems can use trilateration, triangulation or both. Tri-

lateration uses estimated ranges from multiple receivers which is similar to current navigation

systems. Triangulation uses multiple observation points with relative direction information to

produce a location. These methods are also commonly used in systems with multiple observers.

There number of systems utilizing a

British Aerospace systems (BAE) produced a system capable of localizing an electronic

emitter. This system was first tested in 2015[38]. This is one of several signal intelleigent

systems used by multiple countires. The information available on this system is limited due to

its application.

This type of localization analysis is commonly found in radar systems. The earliest radar

publications related to this topic are from the mid 19th century. These methods incorporated

both range and bearing. While many radar systems have a range component to it due to the

known nature of the signal, the methods of estimation are still appilicable to this proposed plat-

form when the range is not used. Systems described in [22], [32] and [] utilize non-range based

estimation techniques. The latest bearing only solutions provide a new type of localization

without maneuvering[22].

Other systems capable of localizing a system include most home networks. Wi-Fi po-

sitioning system (WPS) uses local WiFi networks to aid in a devices current position. This

type of system requires a cooperative signal and uses both directional and range information

for the receiver device. The access points utilize beam-forming over a search space to find the

direction the user receives the highest power. This reveals the relative direction to the access

point from the device[36]. A range can be found with the transmit power, receive power and

a signal propagation model [37]. This information is available to a cooperative signal. This is

referenced as the received signal strength indicator (RSSI) . Figure 1.3 shows an example of

this type of networked system.
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Figure 1.3: Received Signal Strength Indicator represented in a physcical network

The combination of this information allows a device to produce a local position relative to

multiple cooperative wireless networks access points.

1.3. Contribution

This thesis provides an analysis of the use of a single observing platform to localize signal

sources and the related algorithms. It also provides a prototyped hardware simulation system

that is capable of emulating the scenario considered using relatively low cost systems. The

platform’s relevant navigation results and directional components are analyzed with respect to

the potential solution proposed for the observing platform. This conceptual device utilizes an

estimation filter to produce localization of a transmitting signal of interest. Relevant device

parameters are explored to inspect the resulting localization solution produced by the chosen

sensor system and parameters. As problems are explored, solutions and algorithms are utilized

to create a collection of subsystems to produce a final result, the source location. Based on the

prior art, most formulations of the problem do not consider the design aspects of the observation

platform as part of the localization simulation. Prior art related to the navigation methods or

MUISC is well documented. The localization methods are documented in but cover a wide

range of observer platforms typically consisting of multiple observers. This thesis looks into

the design of the platform and how a few of the key platform design parameters impact the

DOA and how a specifc design is capable of localizing a signal using several algorithms.
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1.4. Outline

The first chapter has introduced the concept of finding a signal in an environment that

has degraded or low quality GNSS signals and motivates the importance of navigation in a

challenging environment. This chapter also covers some of the current research in related

topics. This research also outlines several other related industries that utilize similar methods.

Chapter two covers the basic concepts of GNSS, specifically GPS and its use case for this

thesis. Chapter Three discusses the use of GPS to find the pose, position velocity and attitude,

of the primary device via multi-antenna arrays. Chapter four shows the basics of finding the

direction a signal is coming from via estimation. Chapter five discusses estimation of the

the signal source location using information available only at the primary device as shown in

previous chapters. Chapter six discusses a simulation and the results of the simulation while

chapter seven discusses the implementation, test environment and results for a real time system.

Chapter eight concludes the thesis and covers work that may be of future interest. The appendix

contains further information on various topics related to the thesis and other work attempted.
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Chapter 2 Global Positioning System

Global Positioning System (GPS) is the United States’ GNSS system. This system was

originally launched in the 1970’s over a series of orbital satellite launches. These launches

started in the 70’s and has extended to as recently as 2018[42]. As the lifespan of satellites

have been reached, new satellites have been launched. The satellites, commonly referenced as

the space component of the GNSS system, are distributed in six different orbits approximately

22,000 Km from earth[42]. The next component consists of the control system for GPS. This

system monitors and corrects errors in the satellites from Earth. The final segment is the re-

ceiver, which is for the end user. The original intention for GPS was military applications. It

was later opened to the public under the Reagan administration. The system was originally

limited by selective availability. This reduced the public accuracy of the system. The ending

of selective availability in 2000 began an era of commercial products that could better utilize

GPS signals. As receivers became more affordable, they were implemented into many different

devices such as cell phones, cars, drones and watches. A large majority of electronic products

today have GNSS receivers in them and are capable of providing the user with a global position

within a few meters of the true position [30]. While these systems are highly utilized, it empha-

sizes the reliance on the system across many industries. GNSS systems are a one directional

communication system that allows the receiving device to decode information and can estimate

its position any where on the earth. This is known as positioning and is fundamentally similar to

localization which is discussed later. Positioning benefits from creating a global solution rather

than a local solution. While local solutions are useful when referencing relative positions, the

global solution allows for repeatable positions over extended periods of time.
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2.1. GPS Signals

GPS signals are transmitted from the satellites in orbit at two main frequencies. While sev-

eral other signals exist, this thesis focuses on the primary civilian signal, L1. The frequencies

have a fundamental component created by the atomic clocks aboard the satellites[30]. Equa-

tions 2.1, 2.2 and 2.3 show the relationship between the common component, fo, and broadcast

frequencies, L1 and L2.

fo = 10.23MHz (2.1)

fL1 = 154 ∗ fo = 1575.42MHz (2.2)

fL2 = 120 ∗ fo = 1227.60MHz (2.3)

Each signal consists of three parts. First, the carrier signal which is a sine wave at the

broadcast frequencies. Second is the navigation data. The navigation data is at a rate of 50

Hz. This data contains information regarding the satellites, clocks, and Ephemerides. This data

structure is defined by the IS-200, a published document defining the interface specifications of

GPS[17]. The third section is the spreading sequence. The spreading sequence is what makes

each satellite signal unique. The spreading sequence, also known as the Gold codes or psuedo-

random sequence (PRN), are deterministic sequences with noise like qualities[1]. These prn

codes are transmitted at 1.023 MHz (for the L1 signal)[44]. Figure 2.1 shows what the resulting

time domain signal appears as.
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Figure 2.1: GPS Signal in the time domain

The first signal C/A Code, the second is the navigation data. The third signal shown is

the modulated combination of the previous two signals. The carrier is shown as well below the

C/A and navigation modulated signal. This signal is then modulated with the carrier frequency

to produce the final signal shown. This is the GPS signal that is received at the antenna for each

satellite and antenna combination.

Acquisition and tracking of GPS signals is a heavily documented and researched topic,

the process is done by all GPS receivers. While the process could be discussed in detail,

the scope of the thesis is focused on the estimation of the signal sources and combining the

information at the observer. The reader is directed to [44],[29],[8],[45] for acquisition and

tracking information related to scalar, vector, SDRs and clock related acquisition and tracking

information respectively.
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2.2. Receiver Architecture

Having discussed the basic structure of the signal, it is important to layout the digitization

of the signal at the observer. While this is arguably out of scope, the topic is extremely impor-

tant at the estimation of the attitude, bearing and signal source position. The GPS signals are

very weak signals being received at approximately -158 dBm[44]. While this is an extremely

weak signal, several methods are commonly used to mitigate signal power issues. These GPS

radio signals require several pieces of equipment that allow the Radio Frequency (RF) signal

to be converted to a final position. The use of additional hardware reduces signal power based

issues. In a basic receiver architecture, the signal starts at the receive antenna and passed into

an amplifier. Following the amplifier, the signal is filtered then passed into a down converter.

This shifts the frequency of the signal to an intermediate frequency (IF). This intermediate fre-

quency is filtered again and digitized at an ADC. The signal is then passed into the processor

for acquisition and tracking. The receiver acquires and tracks each individual satellite signal

from the filtered IF data. Multiple methods of acquisition and tracking exist but are not dis-

cussed at length due to the comprehensive nature of the topic as mentioned previously (refer to

[44],[29]). Figure 2.2 shows an example of a basic receiver architecture.

Figure 2.2: Basic GNSS receiver architecture
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This can be separated into different subsections. The RF front end includes the amplifica-

tion and filtering through the analog digital converter. The acquisition and tracking loops are

the heart of the GNSS receiver and each have their own subsection. The receiver navigation

processing is a subsection as well due to the many different methods that can be used here.

2.3. RF Front Ends

RF Front Ends are used in many applications, not just in GNSS receivers. The purpose

of a front end is to prepare the signal to be used for its purpose in the device. In the case of

many GNSS receivers, it is to receive satellite signals amplify and filter, then frequency shift

before amplification and filtering again. Addressing signal power is typically the first concern

of the front end. GPS is a weak signal transmitted from orbit. According to the GPS techincal

specifications, the signal is ensured to be above -158.5 dBW. This is far below the thermal noise

floor of many electronic systems as defined in Equation 2.4[20].

ηFloor = 10 ∗ log10(k ∗ t0 ∗ 1000) + ηRec + 10 ∗ log10(BWRec) (2.4)

In the equation, k is Boltzman’s constant. T0 is the antenna temperature. ηRec is the noise

floor of the receiver and the receiver bandwidth is BWRec. Bandwidth limitations in relation to

the noise floor are a concern due to the spread spectrum of the gps signal as seen in 2.3

Figure 2.3: RF chain for a front end system
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Generally, higher sampling bandwidth results in a higher noise floor. Ideally the narrowest

bandwifth acceptable for the signal of interest should be used while also minimizing IF signal

impact. Figure 2.4 shows the break down of a front end in greater detail than the GNSS receiver

architecture.

Figure 2.4: RF chain for a front end system

Following the antenna, there is filtering and amplification at RF. A low noise amplifier

(LNA) is typically used as the amplification device. Low noise levels are vital to allow the

signal to be able to be used efficiently. Amplifying the signal allows the system to be able to re-

ceive the signal when the system’s analog to digital converter (ADC) is incapable of quantizing

on the original signal.

Front ends also commonly convert the signal to a different frequency. This is known as

a superheterodyne front end[3]. Down conversion allows the ADC to be able to capture the

signal at a much lower frequency. In GNSS receivers, the goal is to reduce the frequency the

ADC needs to capture. Figure 2.5 shows the RF chain of a typical front end device.
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Figure 2.5: Frequency Represnentation of Down Conversion

The local oscillator (LO) and the original RF signal are mixed to produce the IF signal.

Filtering is used to remove images from the signals as well as reduce requirements on the

amplification devices [3]. Figure 2.5[15], shows the resulting frequency domain of the RF

chain. When the LO is a higher frequency than the RF signal, the signal frequency is shifted

down as shown in figure 2.5.

Equation 2.5 represents the original RF signal.

s(t) = ARF ∗ (sin(2 ∗ π ∗ fRF ) + cos(2 ∗ π ∗ fRF )) (2.5)

Both the RF signal and LO signal can be represented by Equation 2.5 with the associated

amplitude and frequency. After frequency shifting, the signal is moved to a new frequency

along with a signal image in the frequency domain. This relationship can be shown in Equation

2.6.

sIF (t) = ARF ∗ ALO ∗ (sin(2 ∗ π ∗ (fRF + fLO)) + cos(2 ∗ π ∗ (fRF − fLO))) (2.6)

The mixed result of the signals produces frequency components that are not desired in

the final signal. Secondary filtering at the intermediate frequency is used to mitigate these
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undesired components of the signal. The relationship between the IF and signal frequency is

seen in Equation 2.7

fLO − fRF = fIF (2.7)

These down converted and amplified signals should be within the ADC’s capable range.

The signal is passed through band pass filtering before the ADC digitizes the signal. Figure 2.4

shows these filtering systems. The samples are then passed onto the next portion of the receiver

to begin acquisition, tracking and positioning. Further reading on acquisition and tracking can

be found in many different sources. [44],[29],[40],[9].

2.4. Receiver Pose

As previously discussed, the GNSS system produces a global position for a given antenna

using signals generated from multiple satellites. After the signal has been decoded, the informa-

tion from this signal is used to find the antenna position. This does not provide any information

for the orientation of the antenna. In order to produce information about the orientation, mul-

tiple GNSS antennas must be used. Antennas placed on the body of a platform can produce

the necessary attitude information. The combination of the position and attitude is referred to

as pose. Attitude represents the three dimensional orientation of an object in space. The three

dimensions are typically represented by yaw, pitch and roll, collectively labeled euler angles.

The combination of these angles in rotation matrices can be used to rotate the body coordinate

frame to a global coordinate frame or a chosen navigation frame. This rotation can be used to

rotate information from one frame to the next. The euler angle definition fails in some cases

due to gimbal lock. Gimbal lock is discussed in the appendix and other noted sources [5].

2.4.1. Pseudorange Positioning

Positioning a receiver to a three dimensional location requires at least three satellite re-

ceivers when using a perfect clock. Figure 2.6 shows this scenario.
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Figure 2.6: Range Positioning with three satellites

The centers of each circle represent the location of the satellites. The intersection of the

circles represents the location of the antenna receiving the signals. The radius of the circles are

proportional to the range from the satellite to the user. The receiver estimates the range to each

satellite, ρn.

The satellite positions are known to the user through the decoded information on the satel-

lite signal. With the known locations and ranges of each satellite, a position of the receiving

antenna can be estimated through iterations of least squares (ILS). Receiver hardware intro-

duces an unknown clock bias. This clock bias can be estimated but requires an additional

satellite.

The range to a given satellite is found with a transmit time, tst, which is given in each

satellite’s signal. The receiver is using its own time, kept by a local clock, to approximate the

time between signal transmission and reception. Equation 2.8 shows this relationship.

ρi,true = C ∗ (treceiver − ti,st) (2.8)

This elapsed time is multiplied by the speed of light to represent the true range to each

satellite.
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The subscript st represents the time at a given satellite. The subscript i denotes a specific

satellite. In practice, the true values are not available and are also biased. The measured values

are related to the true values as shown in Equations 2.9 and 2.10.

t′i,st = tst,i + bi (2.9)

t′receiver = treceiver + breceiver (2.10)

These equations show an additional bias in both the satellite clock and the receiver clock

measurements. The satellite clock bias has corrections provided from the U.S. government

through the signal. The receiver clock bias is the value that must also be estimated with the

position. The measured pseudorange is defined in Equation 2.11.

ρ̃i = ρi,true + c ∗ bi + c ∗ breceiver + c ∗ Ti + Ii +Mreceiver + vreceiver (2.11)

The measured value has error introduced from clock bias errors, atmospheric errors (Ti and

Ii), receiver noise (vi) and multipath errors (Mreceiver). Satellite positional error has little impact

on the measurement and can fall within the receiver noise. The clock error for the satellite is

corrected in the data transmitted. The receiver clock bias must be estimated in the positioning

solution. The atmospheric errors can be accounted for in some systems such as dual frequency

systems but this is not required[24]. Finally, the receiver psuedorange noise is a function of

the bandwidth, carrier to noise ratio and integration period as shown in sources [29],[44]. The

pseudorange measurement model relates the position estimates in Earth Centered Earth Fixed

(ECEF) coordinates to the range measurements from each satellite. This is seen in Equation

2.12.

ρ̂i =
√

((xi − x̂rcvr)2 + (yi − ŷrcvr)2 + (zi − ẑrcvr)2) + brcvr (2.12)
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The bias term at the end of the equation is the clock bias of the receiving device. This term is

common among each of the range equations. Differentiating Equation 2.12 produces Equation

2.13.

δρi =
(xi − x̂rcvr) ∗ δXrcvr + (yi − ŷrcvr) ∗ δYrcvr + (zi − ẑrcvr) ∗ δZrcvr√

((xi − x̂rcvr)2 + (yi − ŷrcvr)2 + (zi − ẑrcvr)2)
+ δbrcvr (2.13)

This iterative form represents the relationship for a single satellite. Combining the equa-

tion into vector form, produces Equation 2.14 where Equation 2.15 simplifies the vector form.

δρi =



x1−x̂rcvr
r̂1

y1−ŷrcvr
r̂1

z1−ẑrcvr
r̂1

1

x2−x̂rcvr
r̂2

y2−ŷrcvr
r̂2

z2−ẑrcvr
r̂2

1

...
...

...
...

xi−x̂rcvr
r̂n

yi−ŷrcvr
r̂n

zi−ẑrcvr
r̂n

1


∗



δXreceiver

δYrcvr

δZrcvr

δbrcvr


(2.14)

r̂i =
√

(xi − x̂rcvr)2 + (yi − ŷrcvr)2 + (zi − ẑrcvr)2 (2.15)

This is the iterative model that is used in the least squares process relating the measurements

to the states. Using this relationship, the iterative least squares can be repeated using Equation

2.16 until the change in states are small. After each iteration, the values are updated and

repeated.

δX̄ = (H ∗HT )−1 ∗HT ∗ δρi (2.16)

The matrix H represents the observation matrix. This contains the relative directions of the

satellites to the receiver. This matrix is commonly used to find the dilution of precision (DOP)

as defined in Equation 2.17.

DOP = (H ∗HT )−1 (2.17)
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The DOP is a measure of the accuracy of the estimated position state. The DOP is more

useful in a navigation frame such as ENU or NED. The diagonal of the resulting matrix repre-

sents the potential error that could exist in that state as shown in equations 2.18 to 2.20.

σ2
x = DOP1,1 (2.18)

σ2
y = DOP2,2 (2.19)

σ2
z = DOP3,3 (2.20)

Typically, the error of the position is around three meters given an adequate DOP [44].

This error range is important when creating pose information as shown later in this chapter.

2.4.2. Carrier Phase Positioning

Carrier phase positioning uses the carrier signal of GPS. The base frequency component

of the signal is a sine wave as shown previously in figure 2.1. The information available here

is limited due to the repeating nature of a sine wave. In order to position with the carrier phase

signal, the phase must be measured by a phase lock loop.These methods such as Precise Point

Positioning or differential positioning can be used to position on the order of one tenth of the

carrier wavelength [13]. After acquisition, receivers use tracking to be able to continuously

receive data from the signal. These tracking loops compare the received signal to a replicated

signal to measure a phase error. This phase error allows the receiver to know approximately

where in the cycle the signal is. This information is still not enough to be able to position.

The total number of cycles is still required. This value can be reduced using the LAMBDA

method[43]. The combination of the total cycles and the phase produce a range to each satellite.

Equation 2.21 shows the representative components of the measurement while Equation 2.22

shows the carrier phase estimation model.

21



φ = ρsa + c ∗ dtsa + c ∗ dts + T sa − Isa + λ ∗N s
a +M s

aφ
+ vsaφ (2.21)

Φ = λ ∗ (Ni + φi) + ηi (2.22)

These equations result in meters to each satellite.

The measurement model consists of the true range, ρsa, the receiver clock bias and satel-

lite clock bias scaled by the speed of light, dtsa and dts respectively. T sa and Isa represent the

troposphere and ionospheric components respectively. The multipath is represented by M s
aφ

.

The last term, vsaφ represents the noise of the measurement. Each term with a superscript or

subscript reference each individual satellite or antenna respectively.

Here, λ represents the carrier wavelength, N represents the whole cycles to a satellite

and φi represents the fractional cycle for a satellite signal. The associated noise on a carrier

measurement is a function of the tracking loops within the receiver and is represented by ηi.

The tracking loops are a heavily researched topic in [44],[29] and [35]. Equation 2.23 shows

the relationship between several receiver parameters and the resulting fractional phase noise of

a signal[35][7].

σPLL = σ2
noise,interference + σ2

phasenoise +4θ2 (2.23)

where σphasenoise is the noise associated with the receiver clock hardware and 4θ rep-

resents the change in phase during a loop update along the direction of the line of sight to a

satellite [6]. σnoise,interference is represented in Equation 2.24 whereBl is loop bandwidth, CN0

is the carrier to noise ratio and γ is the fraction of total signal power in the component being

tracked.

σ2
noise,interference

∼=
Bl

γ ∗ CN0

(2.24)
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These associated errors are assumed to be Gaussian and are not biased. The clock bias

terms can be mitigated with methods such as differencing, known as differential GPS (DGPS)

. Using the differencing method across multiple antennas, Equation 2.21 can be reduced to ??.

4φ12 = ρs12 + c ∗ dt12 + λ ∗N s
12 + vs12 (2.25)

This model combines the atmospheric noises with the measurement noise and ignores the

multipath component. Multipath can be mitigated using different techniques across multiple

antennas [27].

This equation has an unkown number of cycles represented by the true distance between

the antenna and the satellites. This value is represented in the equation by λ ∗N . In this case,

the number of full cycles is constrained to an integer value.

Limiting the distance between the two antennas to less than a wavelength can reduce this

equation further to drop the integer wavelength to zero. Equation 2.26 shows this result.

4φ12 = ρs12 + c ∗ dt12 + vs12 (2.26)

This wavelength limitation is shown to be relevant when considering the AOA as shown

in a later chapter.

23



Chapter 3 Platform Attitude Determination

Attitude is the description of the physical orientation of a body in three dimensional space.

Fusing measurements in the three dimensional systems require information to be in common

coordinate frames. Information produced at the body frame must be rotated into the desired

navigation frame using the attitude information. In order to do this, the relative body frame

attitude must be found. This can be done with two unique nonparallel vectors attached to

the body in question. These vectors are then compared to another reference frame such as

North East Down (NED) or East North Up (ENU). Attitude determination using only GNSS

measurements requires at least three antennas in independent directions to produce the rotation

at a single instant.

Use of multiple signal paths require each antenna to have its own signal processing to

produce the positions and resulting vectors. This can be done by a single device that utilizes

a single oscillator. This reduces ambiguities in the measurements from antenna to antenna

by removing additional clock biases. This is sufficient for the pseudorange attitude solution

approach. The carrier phase measurement system requires the integer estimation in order to

produce the body vector beyond half a wavelength [7]. Simplifying the ranges of operation for

each method, the psueduorange method is the simplest but requires a large antenna separation.

The carrier phase method requires more processing and fairly accurate initial conditions but

can be reduced to much less than a wavelength.

The pseudorange system is commonly seen on larger systems that require attitude such as

aircraft carriers. This system is called JDAP and is used in transmitting an accurate attitude of

the carrier to the landing aircraft. In shorter antenna separations,

Defining the attitude of a body using only GPS measurements requires a three planar an-

tenna system in two of the principle directions. One antenna is chosen as the base antenna.
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The two remaining antennas are auxiliary antennas. Differencing the position of the two auxil-

iary antennas with the main antenna produces the required vectors to represent the euler angles.

These differential vectors are used to produce the required attitude for the the body frame which

can be rotated to a different frame. Figure 3.1 shows an example of an antenna configuration

capable of producing all three euler angles independently.

Figure 3.1: Antenna Configuration

The antennas shown are inline with the principle axes of the body in question. Equation

3.1 shows the difference of the main antenna position and auxiliary antenna two in the three

dimensional vector form.


4XNM

4YNM

4ZNM

 =


XN

YN

ZN

−

XM

YM

ZM

 (3.1)

The subscript of 4XNM represents the position difference between antenna N and the

main antenna M in the x direction. The same notation follows for the y and z directions in the

body frame. For the research presented, the antenna vectors coincide with the positive x and

positive y axes of the body frame.
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Generating these two vectors allow the body attitude to be defined completely with instan-

taneous measurements. This information must be translated into different coordinate frames to

relate to other systems in a global frame. This can be done with rotation matrices or quater-

nions.

3.1. Coordinate Frame Rotations

Different applications can benefit from different coordinate frames. A device that is con-

strained to a building does not need global coordinate frame solutions where as a plane or car

would benefit from a global solution. There are several commonly used frames in navigation

including NED, ENU, and ECEF. These frames are chosen within different fields as a standard.

ENU and NED are both frames defined from a single point while ECEF is defined with respect

to the Earth. Many other frames exist but are not within the scope of this thesis. Converting be-

tween a local or navigation frame to a global frame can be done with direction cosine matrices

(DCM). A DCM utilizes mathematical manipulations to transform across coordinate frames

using the attitude representation between coordinate frames. DCMs have a limitation termed

gimbal lock.

In the three dimensional case, the DCM is the product of three different rotations about

the principle axes of the original frame as shown in Equation 3.2.


XNAV

YNAV

ZNAV

 =

[
RBodytoNAV

]
XBody

YBody

ZBody

 (3.2)

Each rotation is with respect to a specific axis in the body frame and its intermediate

frames. Figure 3.2 shows the rotations with respect to the body frame coordinate system.
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Figure 3.2: Euler angle rotations on a coordinate frame

Considering the figure, the z axis must point out of the top of the body, the y axis points

out the side of the body and the x axis points out the front. The euler angles are defined by

the rotation about these axes to the reference frame. While the rotation order can change, it is

important to note the order of rotations. The different orders represent different intermediate

frames. The combination of the rotation matrices, Equations 3.3 to Equation 3.5 create the

DCM shown in Equation 3.6.

[
Rx

]
=


1 0 0

0 cos(θ) sin(θ)

0 −sin(θ) cos(θ)

 (3.3)

[
Ry

]
=


cos(φ) 0 sin(φ)

0 1 0

−sin(φ) 0 cos(φ)

 (3.4)

[
Rz

]
=


cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

 (3.5)
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[
RBodytoNAV

]
= Rz ∗Ry ∗Rx (3.6)

Using these rotations representing a 3-2-1 rotation, different frames can be reached by

multiplying RBodytoNAV with the three dimensional information represented as a 3x1 vector.

The limitation mentioned earlier about the gimbal lock of the system can be circumvented

by utilizing a quaternion through different portions of the computations. Utilizing the newly

defined rotation matrix, where ri,j represents the i row and j column component, a quaternion

can be created. Equation 3.7 shows an example of one of the equations that can be used for a

quaternion[11].



q0

q1

q2

q3


=



(R21 −R12)/4 ∗ q3

(R13 −R31)/4 ∗ q3

(R23 −R32)/4 ∗ q3

0.5 ∗
√

(1− r11 − r22 + r33)


(3.7)

There are several other forms but result in the same values. Direct forms of the translation

from the euler angles to quaternions and the inverse are shown in equations 3.8 and 3.9[11].

Equation 3.8 is specific for a 3− 2− 1 rotation[11].

[
~qba

]
=



cos(φ/2) ∗ cos(θ/2) ∗ cos(φ/2) + sin(φ/2) ∗ sin(θ/2) ∗ sin(φ/2)

cos(φ/2) ∗ cos(θ/2) ∗ sin(φ/2)− sin(φ/2) ∗ sin(θ/2) ∗ cos(φ/2)

cos(φ/2) ∗ sin(θ/2) ∗ cos(φ/2) + sin(φ/2) ∗ cos(θ/2) ∗ sin(φ/2)

cos(φ/2) ∗ cos(θ/2) ∗ cos(φ/2)− sin(φ/2) ∗ sin(θ/2) ∗ cos(φ/2)


(3.8)


ψ

θ

φ

 =


arctan(2∗(q0∗q3+q1∗q2)

q20+q
2
1−q22−q23

)

arcsin(2 ∗ (q0 ∗ q2 − q1 ∗ q3))

arctan(2∗(q0∗q1+q3∗q2)
q20−q21−q22+q23

)

 (3.9)

The majority of the computations in this thesis occur in a local navigation frame such

as NED or ENU. ECEF positions must be converted to one of these frames to be used in the

computations. Converting from ECEF to ENU requires the position of the device in latitude
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and longitude defined by Φ and Λ respectively. Due to the earth not being a perfect sphere,

an iterative approach must be used [30], [7]. A model for the earth is required in this process.

Typically in GPS systems, the world geodetic system 1984 (WGS84) is used for this model.

Figure 3.3 shows the relationship between the latitude and longitude for a specific ENU frame.

Figure 3.3: Representation of an ENU frame with respect to the ECEF frame

Using trigonometric relationships, it can be seen that these angles can be related to the

origin of the ENU frame as shown in equations 3.10 and 3.11.

tanλ =
YECEF
XECEF

(3.10)

tanφ =
ZECEF√

X2
ECEF + Y 2

ECEF

(3.11)

These equations suffice for a perfectly round earth as mentioned before. To account for

the ellipsoidal shape of the earth, WGS84 parameters are used. Equations 3.12 through 3.16

are used in the iterative process to calculate the latitude and longitude.
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ae = 6, 378, 137m (3.12)

be = 6, 356, 752m (3.13)

ep = 3.35261 ∗ 10−3 (3.14)

Li+1 = Le + ep ∗ sin 2 ∗ Li (3.15)

Le = arctan
ZECEF√

X2
ECEF + Y 2

ECEF

(3.16)

This process is continued through longitudes to produce a sufficiently accurate result.

While this can be used to convert the ECEF to latitude, longitude and altitude (LLA) . The

ENU or NED frame still requires the use of a reference LLA to represent the origin of the

tangent coordinate frame. This can be done at the initial point of the

3.2. Attitude Estimation

Attitude estimation using GPS varies greatly in complexity. Starting with a position so-

lution at each antenna, the attitude can be found using large antenna baselines and calculated

directly. The error on this system is directly proportional to the error of the positions and

antenna baseline. Another option is to use the gps carrier signal to generate directional unit

vectors of each signal over the antenna array [28]. Figure 3.4 shows a two dimensional physi-

cal representation of the wave front impinging on the antenna array from a single satellite.
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Figure 3.4: Representation of the unit vector generated by the differenced carrier phase over

multi-antenna systems

Using the differential carrier phase and the known geometry between antennas allows for

the satellite angle of arrival to be calculated. This is calculated by the difference in the tracked

carrier phase through each antenna. This AOA estimate becomes directly dependent on CN0,

baseline and actual AOA. Modeling the carrier phase as a trigonometric function can be seen

in Equation 3.17 and 3.18.

θ = cos− 1
∆̃L

B
(3.17)

L̃ = L+ η(0, σ = f(SNR,BW )) (3.18)

This model has been shown in [7] and [34]. The noise is added to the delta carrier mea-

surement, L while the baseline is varied to produce a ratio in order to find the angle. The noise

is varied in meters to minimize the requirement for the receiver parameters to be defined. The

receiver carrier noise is dependent on the devices tracking loop [44],[29] and [34]

Figure 3.5 shows the error of several baselines with respect to various noise levels.
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Figure 3.5: CW AOA Error with respect to Elevation and Measurement Error

The relationship between the expected and actual AOA while considering the baseline

shows higher antenna separation results in lower AOA error. Extending this figure across a

single noise level of 0.05m on ∆φ results in figure 3.6.
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Figure 3.6: CW AOA Error with respect to Elevation and Antenna Separation

From this figure we can see that at the shortest baseline (0.02m), the AOA error is much

higher. This is because the differential carrier noise, ignoring clock error due to measurements

having a common clock, is a larger ratio of the baseline. This is why the error increases as

the baseline get smaller. The same result can be seen as the angle approaches the horizon

(0 deg,180 deg). In each case, the noise results in a larger ratio of the measurement or can be

described as a decreased signal to noise ratio (SNR).

Using the modeled measurements, an attitude simulation can be created using this to gen-

erate the signal noise errors. The system estimates three states for an instantaneous attitude

estimate. The roll pitch and yaw are estimated using both nonlinear least squares and an ex-

tended kalman filter. Equations 3.19 represents the measurement model while Equation 3.20

and 3.21 represent the observation equations.

ŷ = bTi ∗ A(X̂) ∗ ARE ∗ Ŝj (3.19)
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ŷ = H(X̂) (3.20)

H =


∂h11
∂x1

. . .
∂h1i
∂xl

... . . . ...
∂hj1
∂x1

. . .
∂hji
∂xl

 (3.21)

Table 3.2 defines the parameters in these equations.

Table 3.1: Estimation Equation Variables

Parameter Size Description

bi 1x3 Body vector from antenna one to antenna i

A(X̂) 3x3 DCM using current attitude estimates

ARE 3x3 DCM rotation from ECEF to Reference

Ŝj 3xN Directional unit vector to satellites one to j
∂hji
∂xl

1x1 Partial derivative with respect to state l, sattelite j, and antenna i

Equation 3.19 represents the projection of the body frame satellite unit vectors onto the

antenna array in the body frame for each satellite. This equation results in fractional wave-

lengths or meters of the signal and should be accounted for appropriately as the only units in

the equation are from the antenna vector bi.

Utilizing the combination of these equations, a GPS attitude based system can be simu-

lated. In each system, the system is simulated with dynamics limited to a single state at a time

to retain simplicity. Figure 3.7 shows the results of the NLS estimation and figure 3.8 shows

the error.
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Figure 3.7: Non-linear Least squares attitude simulation

Figure 3.8: Non-linear Least squares attitude simulation error and showing the dynamic bounds

The error plots show vertical lines where the dynamics start and end in each rotation. Each

individual attitude solution is simulated and solved with eight satellites, average CNOs of 42

and a baseline of 0.9λ.

The Non-linear solution produces sufficient results and can be improved. A kalman filter

can benefit from the past information. The simulation shows a slight phase lag in the kalman

filter suggesting that it is filtering too much of the signal. In low dynamic periods, the filter
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outperforms the NLS by a couple degrees in each rotation. Using equations 3.22 to 3.26 and

simulating a chosen baseline from figure 3.5 an attitude system can be simulated.

X̂−k = A ∗ X̂k−1 +B ∗ U (3.22)

P−k = A ∗ Pk−1 ∗ AT +Q (3.23)

K−k = P−k ∗H
T ∗ (H ∗ P−k ∗H

T +R)−1 (3.24)

X̂k = X̂−k +K−k ∗ (Zk −H ∗ X̂−k ) (3.25)

Pk = (I −Kk ∗H) ∗ P−k−1 (3.26)

The results are shown in figure 3.9 and 3.10.

Figure 3.9: EKF attitude simulation

36



Figure 3.10: EKF attitude simulation error

Completing a Monte Carlo Analysis on the attitude results of the differential carrier phase,

it can be shown that a system with a static baseline and receiver parameters results in an im-

proved attitude estimation at longer baselines [13, 10, 7, 27]. Figure 3.11 shows the expected

attitude error from GPS as a function of antenna distances. This assumes using only one datum

antenna and no cycle slips in the system.

Figure 3.11: MUSIC Error over various Antenna separation
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3.3. Positional Noise affects on attitude

It is important to note that the distance between the antennas d, must be larger than the

positional noise variance to prevent large errors in the attitude measurement. In the event of

two noisy positions of the antennas, the noise added can cause the vector to change directions

causing the resulting solution to have a large error. This is easier seen in the two dimensional

case when considering heading. Note, the two dimensional case does not consider altitude of

the antennas.

In the two dimensional case, heading is the observable rotation. The position solution of

each antenna is solved independently, then differenced. This type of solution is synonymous

with the pseudorange positioning method. The differenced result is the heading vector. The

true heading is measured from the positive y-axis of the reference frame to the true differential

position vector as shown in figure 3.12. The measured differential position vector is shown as

a dashed line. ψ represents the heading and measured heading in both figures 3.12 and 3.13.

Figure 3.12: True heading with potential position error of each antenna
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Figure 3.13: Measured heading with potential position error

The subscript e represents the the error of the measured vector with respect to the true

vector. The circles represent the three sigma bound of the position of each antenna. From this

it is easy to see the potential error of the measured heading vector as in figure 3.13. These

figures show the appropriate distances between antennas. When the antenna distance is smaller

than the potential error and the potential errors overlap, the vector can invert and cause the

measurement to have large errors. Figure 3.14 shows this scenerio.

Figure 3.14: Measured heading with short antenna separation
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This noise overlap is applicable to the pseudorange and carrier phase positioning meth-

ods. Each positioning method has a noise level associated with it but are orders of magnitude

different. The measured angle error is proportional to the three sigma value and inversely pro-

portional to the distance between the antennas. Each are evaluated separately due to the noise

limitations of each solution. This is the lower limitation for the baselines for each pseudorange

and carrier phase methods.
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Chapter 4 Angle of Arrival Estimation

The angle of arrival (AOA) refers to the direction that a signal is coming from relative

to an antenna array. The AOA can be found using signal correlation or time differences of

measurements. These are the two most common methods in direction finding across an antenna

array. The methods are dependent on knowing the antenna separation and having simultaneous

measurements at each antenna. The signal algorithms are better suited for stronger signals

relative to the noise floor (SNR), as with many other algorithms. Each method suffers from

ambiguities due to the trigonometric relationships in the array and the signal. The ambiguities

can be mitigated with the addition of extra antennas, which increases observability but also

the required processing needs. Antenna Array size, Antenna separation, signal power, signal

type and sampling times affect the results. Deriving a measurement variance for the AOA

estimation is a long process which only provides a single combination of scenarios that pertain

to the environment.

4.1. Signal Model

The signal model utilized for estimation of real data is dependent on several factors. some

of which are antenna separation, center frequency, and the speed of light. Figure 4.1 shows a

signal source emitting a signal from the far field.
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Figure 4.1: Two-Dimensional Wavefront of a Signal from a given AOA

As it approaches the antenna array. The signal is seen as a flat wave front due to the far field

propagation. The far field is defined by equations 4.1 through 4.3 where r represents the range

between the receiving antenna and the transmitting antenna, λ represents signal wavelength

and D represents the largest dimension of the antenna, or the largest distance between any two

elements.

r >> 1.6 ∗ λ (4.1)

r >
2 ∗D2

λ
(4.2)

r >> 5 ∗D (4.3)

Figure 4.2 shows the physical representation of these values.

In many cases, these do not impact the ability of the estimation algorithm due to most

cases that this can be applied for are at much greater distances than the far field limit. At the L1

frequency, the range is on the order of meters so localization does not provide much use when

the source of the signal is within arms reach.
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Figure 4.2: Farfield criteria

The receiving antennas are separated by some distance ’d’ and due to the angle theta the

signal wave front arrives at each antenna at different times. The effective delay distance is

shown by the trigonometric relationship between antenna spacing and the angle theta. When

theta is found to be at ninety degrees (Array broadside), the effective delay is zero and similarly,

when theta is at zero degrees, the delay is proportional to the distance between antennas. When

the array is receiving signals from different geometries, the delays are used in estimating the

direction. When there is an ambiguity to the direction it is typically due to a mirroring of some

component due to the trigonometric terms within the signal model.

Deriving the model from this image is begins by stating the measured signal is a function

of the signal and some noise component. The received signal is represented by s(t) in Equation

4.4 and η as the unique noise figure for each receiving antenna.

x1(t) = s(t) + η1 (4.4)

This represents the signal at the base antenna. Each following element in the array has a

phase offset relative to the reference antenna array element Equation 4.5 shows this relationship

for each additional antenna delay in the planar, one degree of freedom case.

µm = (M − 1) ∗ d ∗ sinθ (4.5)

Here, d represents the distance between the antennas of the linear array as shown in 4.1.

The trignometric term inside the delay component, Equation 4.5, is a function of the true receive
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angle of arrival. Using this equation in the complex signal representation results in Equation

4.6.

xm(t) = s(t) ∗ e(−j∗2∗π∗µm)∗λ−1

+ ηm (4.6)

This equation shows to be a function of the signal, noise, AOA, wavelength, antenna, and

element separation. Combining equations 4.4 and 4.6 for the linear array into matrix form

results in the matrix Equation 4.7.

X̄s =



x1(t)

x2(t)

...

xm(t)


=



1

e−j∗2∗pi∗d/λ∗sinθ

...

e−j∗2∗pi∗(2−1)∗d/λ∗sinθ


∗ s(t) +



η1

η2
...

ηm


(4.7)

This definition represents the signal received at each antenna with a phase delay based on

the array geometry. Remaining a function of the same variables but now representative of an

array.

This matrix form is useful in array processing for the subspace based methods shown

later. The matrix multiplied by the base signal is commonly referred to as the array response.

The array response is a starting point for beam forming algorithms and other array processing

methods as many use it to define the initial values that need to be weighted to have a controlled

response. It is also important to note that the noise on each element is unique. If the noises

are not unique, the signal processing methods shown in this research break down due to the

subspace based methods not being able to differentiate between the common signal components

from element to element. While this format only shows the one DOF model, the two DOF

model can be derived using the approach but utilizing the second angular measurement with

respect to the array in the spherical coordinates.

4.2. Antenna Model

The signal model defines the signal as it approaches the array. The array should be defined

in the physical world in the same fashion. Some signals behave differently due to polarizations
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and signal structures. It is important to understand the way the array interacts with the signal

before the signal is quantized on the ADC. In many cases, manufacturers of arrays will provide

the necessary data to account for these errors. Power and phase errors are introduced in every

antenna. Due to the antenna not being perfectly designed and manufactured. In most systems,

a single antenna error has negligible impact on the system as a whole. In the case of direction

finding, the array response across all combinations of angles and desired frequencies should be

understood to be able to effectively find the AOA. For each antenna, the sensitivity of each of

the parameters can be derived and has been well researched from Maxwell’s equations[23]. The

reader is directed to [19, 23] for further reading on the topic. A moderate understanding of the

electric field allows for the polarization mismatch and phase error to be understood. A physical

representation of the signal in the electric field can be seen in figures 4.3 and 4.4 where each

arrow from the z-axis represents a vector indicating the phase and amplitude for that phasor[2].

Figure 4.3: Right hand circular polarized wave propagation
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Figure 4.4: Left hand circular polarized wave propagation

A phasor references the magnitude and phase of a signal at a given instant. These fig-

ures show perfectly circularly polarized signals, not typically seen in satellite signals due to

atmospheric errors[35, 23] among many other errors. While good polarization matches are

common perfectly received polarization matches are difficult to achieve. The polarization sim-

ilarity of the signal to antenna affect the received power past the antenna. Due to many of the

algorithms using both power and phase to estimate the antenna AOA, the polarization must be

considered as well. [32]. If these values have biases or nonlinearities, the AOA results will be

skewed with dynamic biases. The receiving system can be calibrated to account for this offset.

The polarization difference between the signal and the antenna is called polarization mismatch.

Equation 4.8 shows the relationship between received signal power and transmit power with

various coefficients pertaining to the polarization and circuit components.

PR = p ∗ qPT ∗GT ∗GR ∗ c2

42 ∗ π2 ∗ d2 ∗ f 2
(4.8)

Variable p represents the polarization mismatch, restricted between zero and one which

directly scales the receive power. Impedance mismatch is q. PR and PT are receive and transmit
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power respectivly. G is gain. d c and f are distance, speed of light, and frequency of the

signal, respectively. The wave propagation, polarization and rotation of the signal all impact

the received signal through any given antenna. These are all factors that should be considered

when designing any electromagnetic direction finding system.

As these figure show a perfectly polarized signal, the projection of the tip of the vector onto

the x-y plane shows the polarization shape. This is ideally a perfect circle. On the Poincare

sphere shown in figure 4.5, all potential polarizations of signals are shown. In this case, the

two signals shown are at the top and bottom of the sphere representing left and right circular

polarization.

Figure 4.5: Poincare Sphere

In practice the signal is not perfectly located at the point desired. Addressing polarization

errors can be done in the front end processing as part of a calibration utilizing the manifold data

typically given by the antenna manufacturer.

4.3. Multiple Signal Classification

Multiple Signal Classification (MUSIC) utilizes the signal and noise subspace based eigen

value decomposition of the covariance matrix for direction finding. The algorithm has been

heavily research over the last fifty years by various groups with defense companies making the

largest strides with the algorithm initially[4]. Accounting for all antenna spacing and iterating

the algorithm over the array response search space allows the observer to find a direction in

which the maximum power is received by an antenna array. This is the AOA with respect to

the antennas coordinate frame. Each antenna observes unique noise and the signals present in

the environment. The noise for each antenna is generally uncorrelated. The received signal is

correlated because they originated from the same transmitter, ideally and ignoring the possibil-

ity of multipath. Mutual coupling of antennas can cause issues in the measurements received,
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however it is assumed the associated errors are properly calibrated for in this thesis. As they

are commonly given in manifold data or this data can be generated in an anechoic chamber

over all operational parameters and directions of the antenna array. Defining the covariance

matrix and what is represented is important for these assumptions as well as in determining

the signal results and values. A covariance matrix is the CRPA’s received signals multiplied by

itself. This creates a square matrix of size NxN , where N is the number of antennas in the

array. This matrix is composed of complex values and squared complex values on the diagonal

which results in only real terms. The magnitude of each signal can be found from the covari-

ance diagonal. The remaining phase components can be measured with respect to a reference

element. There are several other factors that also play into the covariance matrix such as dwell

time (sampling time), number of samples used (number of quantized values to average). This

matrix contains many different noise sources and is very difficult to model perfectly. Table 4.1

shows the current list of assumptions and its source and if it is unique to the element or array.

Table 4.1: Noted Noise Sources

Noise Source Note

Thermal Noise Antenna Unique to each antenna

design

Clock System Oscillator Unique to each antenna

system clock

Quantization ADC Unique to each RF path

Local Oscillator Drving timing oscilla-

tor

Unique to each down

conversion system

Bias Estimation System channel estima-

tion algorithm

unique to each calibra-

tion

Making and continuing with these assumptions allows the AOA to be found from the

correlation matrix as shown in Equation 4.9 where H represents the hermitian transpose of the

complex signal matrix[12].
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Rxx ≈ E[X̄ ∗ X̄H ], whereX̄ = [s(t)1...s(t)n] (4.9)

As the complex vectors grow, the accuracy of the direction estimate increases. Equations

4.11 and 4.10 show the representative model holding all previous assumptions true.

Rss,ij = E[s(t)i ∗ s(t)Hj ] (4.10)

Rxx = A ∗Rxx ∗ AH + σ2
N ∗ IM (4.11)

A represents the geometry relationship of the antennas based on the signal delay as shown

in Equation 4.7. σ represents the collective noises from 4.1 lumped into one term.

Equation 4.11 is sufficient for simulation but is not useful for application as the true signal

level is not known. In real time applications. Rxx is estimated by making assumptions of the

stochastic characteristics of the system to be replaceable by the expectation. Equation 4.12

shows the relationship of real time samples to the signal correlation matrix estimate.

Rxx ≈ R̂xx =
1

N
∗

N∑
i=1

x(t) ∗ xH(t) =
1

N
∗ X̄ ∗ X̄H (4.12)

Using the array response matrix, the conventional MUSIC equation is formed by using

the response matrix and signal matrix. The combination of these two produce an equation as

a function of the AOA. This equation, for the linear array, is used as a search space to find a

maximum power in a specific direction. Equation 4.13 is the conventional form of MUSIC in

the one DOF system.

P (θ) =
AH(θ) ∗ R̂xx ∗ A(θ)

AH(θ) ∗ A(θ)
(4.13)

Equation 4.13 results in a relative signal power with respect to the receive signal power.

As the search space is indexed, the power level will reach a peak. At this point, the signal

delay according to the array response is in the direction of the signal and is representative of
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the impinging signal direction. This angle is the AOA estimate. Modifying the equations to a

two dimensional system is simple process of adding another dimension to the equations from

the linear equations. Starting from Equation 4.5 the equation is modified to create a single

response for each antenna. The resulting equation is shown in Equation 4.14.

x(t) = Ai ∗ exp

−j∗2∗π
λ
∗
[
dx dy dz

]
∗



cos(θ) ∗ cos(φ)

sin(θ) ∗ cos(φ)

sin(φ)


(4.14)

The terms dx,dy and dz are the Cartesian differences of the antennas from the reference

antenna. θ and φ are the azimuth and elevation angles of the search space. The physical

representation of these angles are shown in figure 4.3.

Figure 4.6: Azimuth and Elevation Physical Representation

The remaining equations for X̄(t) and Rxx are extended to include all antenna combi-

nations with the reference antenna. As for the MUSIC equation in 4.13, it is extended by

iterating over a larger steering array. This increases computation time significantly. Equation
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4.15 shows the resulting equation where each component is derived using the antenna response

from Equation 4.14.

P (θ, φ) =
AH(θ, φ) ∗ ˆRxx(θ, φ) ∗ A(θ, φ)

AH(θ, φ) ∗ A(θ, φ)
(4.15)

Defining the error of the algorithm is not a simple solution due to the many parameters that

play a role in the estimate. Monte Carlo simulations were used to estimate the expected error

in a given direction over various signal powers and white noise bandwidths. The Monte Carlo

results of the music algorithm are shown in figure 4.3 for a single bandwidth and direction.

Figure 4.7: Monte Carlo Music Simulations

The simulation uses the same parameters as the shown in table 4.2.
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Table 4.2: MUSIC Parameters

Parameter Value

Antennas 4

Array Planar

Frequency 1575.42 MHz

Samples 2500

Spacing 0.2 * λ m

SNR -25:10 dB

Signals 1

Signal Type AWGN

BW Ratio 0.05:1

This particular portion of the simulation shows the error for a single AOA. As the signal

approaches the noise floor threshold (0 dB), the error of the signal dramatically reduces. At

a SNR of zero, the error can be seen to be contained to within a few degrees of truth. On

certain combinations of platforms and signals, this is the point where navigation signal qual-

ity received can be seen to diminish. These are the minimum signal levels that have a chance

of changing a GPS receiver’s tracking ability. At this point the ability to localize the signal

becomes much greater. To completely inhibit the receivers operation, the power must be sig-

nificantly higher but is dependent on the receiver’s operation to define a lower limit to hinder

the receiver completely.

Using the same information across all Monte Carlo simulations, the expected error of a

white noise interference signal at the antenna center frequency is shown as a function of Signal

to Noise ratio and signal bandwidth relative to the front end bandwidth. Figure 4.3 shows the

absolute error of this particular combination of signal and array at random azimuth directions.
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Figure 4.8: Monte Carlo mean azimuth error

Figure 4.3 shows the elevation error over the same simulation.
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Figure 4.9: Monte Carlo mean elevation error

These give general trends for the relationship of the algorithm using an example set of

idealized antennas. Although other solutions such as dual polarization antennas are capable of

producing the azimuth of a known signal but at a much higher uncertainty[26], other multi-

element methods are more accurate. As seen with using a CRPA, when the signal is above

the noise floor, MUSIC or signal phase differencing are capable of finding these directions

effectively. The azimuth and elevation error show that as the signal power is increased the error

on the directional measurement reduces quickly. The slant in error reduction away from the

noise floor is due to the signal power being spread across a bandwidth. As the power spreads,

the peak power drops. This drop is adjusted to maintain a steady peak power across the all

simulated bandwidth. Combining these errors into a value encompassing the entirety of the

error, the angular error was used to compute a RMS error between the two angles. this shows a

similar error curve over the same simulation in figure 4.3.
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Figure 4.10: Monte Carlo mean RMS error

As these curves are observed, a relationship to the eigenvalues of the covariance matrix

during the music estimation and rms error can be seen. Figure 4.3 shows the plane of eigenvalue

averages for each antenna during the same simulation.
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Figure 4.11: Monte Carlo mean RMS error

It is obvious to see as the signal power increases and bandwidth increases, the eigenvalue

of one antenna separates itself from other antennas. This eigenvalue is represents the eigenvalue

representing the signal subspace. It is important to note the axes are flipped in this image to

allow visibility of the eigenvalue plane.
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Chapter 5 Radio Source Localization

Localization of a signal source requires a combination of different types of information,

including positions, attitudes bearings and ranges. When combining these, it is commonly

known as a form of triangulation, trilateration or multilateration. Triangulation refers to ge-

ometry based point deduction, typically from bearings at two known points. Given the nature

of the measurements available and unknowns of the signal of interest, triangulation will best

fit the needs of this problem. The methods utilized here, focus on a combination of position,

attitude and bearings. While range can still be used as an aide to these methods, it requires

assumptions that can only be estimated after localization or from other forms of estimation.

A single moving platform can identify and localize a single source that is stationary [32]

and even a non-stationary target given dynamic requirements are met [32, 31]. This requires

additional tracking states and a different coordinate frame to assist the filter in stability. More

can read on this topic in [31]. The platforms maneuvering and navigation capabilities directly

impact the capability of the device to localize a source. Lack of positional diversity reduces

observability of the point of interest while positional error adds proportional positional error

to the final estimate. Since the range to the device of interest is unknown it is difficult to

define the error on the target location based on this unknown range and angular measurement

relationship. This is one of the difficulties of the problem of localizing a source using bearing

only measurements.

There are many ways to create an estimate of a source location given only bearing mea-

surements. Looking at purely geometric solutions is an option, especially when diverse angular

measurements are provided. Over the course of an extended period of measurements, the (ap-

proximately) zero mean angular measurement should be able to create a rough estimate of the

source location through an averaging of the points provided by the triangular geometry created
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from the bearing measurements. Different formulations of the vertices created by the bear-

ing intersections have different names such as centroid, in-center or bisector[32]. These are

common formulations of purely geometric solutions to the problem.

More standardized estimation methods such as least squares and kalman filtering provide

the opportunity to account for the noise in the system. Using the AOA as a measurement also

requires some knowledge of the noise of the front end system due to the inconsistent power

received inherently in this problem. AOA noise, as shown previously is heavily dependent on

the system parameters defined by the designer, and should be adapted for through subspace or

signal processing methods.

To compare these methods, the source estimate location error can be measured by deter-

ministic methods such as root mean square error (RMSE) or circular error probable (CEP).

RMSE is the magnitude of the vector from the estimate to the truth. CEP describes the area

that defines the probability of the truth being contained in the area enclosed. This probability

threshold can be any chosen percentage but is commonly depicted as fifty or ninety-five. To

assist in the understanding of these comparisons, Crao Ramer lower bound (CRLB) defines the

reference for the ideal statistical estimate. The CRLB is an upper bound on the error covari-

ance matrix for an unbiased estimate[32]. Quantifying the error is done with CEP or RMSE.

Showing these values along with the CRLB for the same iterations show the ’inefficiency’ of

the estimation solution.

5.1. Measurement Generation System

The localization methods described still require accurately modeled or simulated measure-

ments. The generation of these measurements in hardware would be much simpler process if

creating an interference signal was legal. In lieu of an adequate operational area, an open hard-

ware in the loop system was created. Creating an open loop hardware system to get beyond

just simulation is one of the few options available to have these measurements. While hardware

in the loop systems are not always perfectly representative of real scenarios, they do provide

enough accuracy for system understandings if calibrated appropriately.
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This particular system requires a less common technology, the RF delay system capable of

resolutions in the pico-second time frame for each antenna. Other portions of the system such

as ettus research devices are more common and are commonly used to generate and receive

signals. The remaining subsections are commonly used in industry and can be found in many

places. Combining these types of hardware to create the system was achieved through several

networked devices to create an inexpensive small scale wave front simulation system(Relative

to commercial wave front GNSS simulation systems). Table 5.1 shows the list of devices used

to create and control the wavefront simulation.

Table 5.1: Measurement Generation Hardware

Device Use

Rackmount desktop software host and interface

USRP N310 Phase delayed signal recep-

tion

USRP N210 Signal Generator

USRP N210 Local Oscillator

JFW RF Attenuation Signal conditioning

Gigabaudics QAPDL-5 Signal phase delay

Raspberry Pi 3 Phase delay controller

Figures 5.1 through 5.3 show the physical hardware and connections.
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Figure 5.1: HWIL system (Front)
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Figure 5.2: HWIL system (Side)
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Figure 5.3: HWIL System attenuation

The ettus devices handle all signal generation and reception. The signal power and timing

is controlled by the raspberry pi using the GPIO pins as inputs to the gigabaudics phase delay

system. Interfacing with each of these required their own software to interface and time align

the systems. Table 5.2 shows the list of software used in the measurement generation process.
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Table 5.2: Measurement Generation Software

ROS GNURadio UHD Other/Custom

Navigation Filter AOA Estimation LO Generation Localization Filter

Planned Path IQ Calibration Signal Sampling Initial Estimates

Emitter Location Clock Calibration Signal Generation Phase Delay

Signal Type Signal Model Timing

MUSIC Parameters AOA Model

These software systems include Robot Operating System (ROS), USRP Hardware Driver

and GNURadio. These are relatively common software systems that handle the hardware in-

teractions and timing. To aide in creating a full description of the simulation system figure 5.1

shows the flow of information in the the simulation.

Figure 5.4: Information flow for HWIL system

Each component operated within a networked ROS environment to allow timing synchro-

nization among elements as well as the ability to pass information from system to system.

The simulation uses pre-recorded data from a tactical grade GPS/INS device to simulate the

navigation solution over the simulation time. As the position changes, the difference between

the location of the source and the current solution is used to generate a body frame vector for

the AOA simulation. The information is then passed to the signal simulation system in the
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body-spherical frame to appropriately delay the signal for the receiving USRP. The signal is

then appropriately delayed to represent a signal received from the predetermined location to

the current location represented by the navigation solution’s pose. The attenuation system han-

dles the signal attenuation at integer dB scaling. The remaining fractional dB is handled by

software by adding white noise across all samples relative to the power of the received signal.

The power and phase appropriate signal samples are passed into the AOA model. The AOA

model then computes the music solution based on the parameters and received signals. The es-

timated AOA is passed into the localization filter along with measurement variance and current

navigation solution.

5.2. Signal Calibration

There are two main calibrations required for the signal calibration. The first is a relative

power calibration across all antennas receiving the same signal. This calibrates the signal power

at the receiving element relative to the reference antenna. The second calibration is a clock

calibration that time aligns the four inputs due to the N310 using a signal for each pair of

antennas. Correcting these two biases are done at the operation frequency of interest, GPS L1

in this case. This calibration process is done by transmitting a CW tone at the center frequency

through the attenuation and phase delay system to the receiving system via RF cabling. At

the receiving port, the signal is not perfectly polarized and has phase error in each pair of

signals. Figure 5.2 shows an example of an unbalanced IQ before and after balancing for a

single antenna.
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Figure 5.5: IQ Balance correction before and after

The received signal is sampled and used to create an ellipse calibration scaling for the IQ

values to correct for the mismatch.

At this point the signals should be adjusted to the correct power relative to the reference

antenna. This calibration is used to adjust all samples received for the duration of the system

being powered on. Phase coherency is achieved by sampling the same signal and averaging the

phase offset between the carrier waves on all antennas. The signals are then corrected by phase

as after correcting for the amplitude offsets. Figure 5.2 shows the received carrier wave phase

offsets for each of the signals before correction.
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Figure 5.6: Clock error Pre-correction

After the two calibrations, the signals should be nearly identical with the exception of the

inherent noise of the front end recording device.

In order to verify the signal is appropriately calibrated, the MUSIC estimation can be

ran on the signal that is power and phase calibrated. If the the phase and power calibration

are correct, the received signal would not have a phase delay and would be equal in power.

In the MUSIC algorithm, an equally delayed signal and equal power signal should produce a

peak power at the search space directly over the array. This would be at an elevation of ninety

degrees.

To further represent the calibration process for a theorized antenna system, figure 5.7

shows the math behind the calibration process using a CW tone.
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Figure 5.7: Front End Calibration

Refer to table 5.2 for each variable’s definition and description.

67



Table 5.3: Estimation Equation Variables

Equation Parameter Description

All Ex Primary axis X direction Electric Field magnitude

All Ey Primary axis Y direction Electric Field magnitude

All x̂ Primary axis X direction

All ŷ Primary axis Y direction

All ẑ Primary axis Z direction

All βz Wave propagation constant

Antenna Array Ad(θ, φ) Antenna polarization mismatch constant as a function

of θ and φ in the direction of d

Antenna Array γA(θ, φ) Antenna phase shift constant as a function of θ and φ

for antenna A

ADC Cd ADC Gain mismatch ratio from a specific antenna to

the datum antenna, this value is one for the datum an-

tenna

ADC α ADC phase error from a specific antenna to the datum

antenna, this value is zero for the datum antenna

IQ Calibration Âd(θ, φ) Estimate of the gain in the direction of the signal

based on the antenna manifold in the direction of d

IQ Calibration Ĉd ADC Gain mismatch ratio from a specific antenna to

the datum antenna, this value is one for the datum an-

tenna

Clock Calibration α̂ Phase error shift in samples relative to the datum an-

tenna

Antenna Phase

Calibration

γ̂A(θ, φ) Estimate of Phase delay caused by the antenna
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The signal is represented in the E and H fields as a wave traveling in the ẑ direction. Pass-

ing through the antenna introduces an antenna gain and phase offset which can be represented

as antenna manifold data. The signal is then quantized on the ADC which potentially intro-

duces a small timing error during long sampling periods. The samples are then passed through

the IQ calibration and clock(phase) calibrations as shown previously. At this point correcting

for the antenna phase differences for each antenna, the samples can then be used in direction

finding signal processing algorithms.

5.3. Simulation Signal Generation

The generation of the signal being passed into the music algorithm was done by the col-

lection of hardware from table 5.1. Figure 5.8 shows the different connections required to make

the signal generation time and pose appropriate for a source location of choice.

Figure 5.8: HWIL system for simulations
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The N210 at the top of the block diagram is the signal generation system. The signal is

split four ways and phase delayed according to the current pose of the ROS node replaying the

GPS/INS data and the array response. These signals are then passed into the power attenuation

system correcting for the expected power levels. Equation 5.3 shows the relationship between

the generated signal power and output signal power of the attenuation system.

OutputdBm = Tx− SplitterdB −DelaySys.LossdB − Pathloss (5.1)

The signals are then passed into the N310 to be multiplied by the calibration parameters

estimated in the previous process. Then the signals quantized for each antenna. The signal

can then be used to generate the directional measurement. At this point the weighted signal

could then been passed to the RF receiver. Due to to the requirement of having the current

pose, this portion was not utilized but could be used for other GNSS receivers. The directional

measurements were then passed through the asynchronous updates to the ROS node system to

be used in various localization methods. In the interest of being able to run multiple localiza-

tion algorithms, the localization inputs were recorded in the ROS software. Post processing

of the system inputs was done in Matlab. While this system produces a power and phase cor-

rected signals from a simulated device, other errors still exist and are not considered such as

the clocks in each transmitting device. Although software timing corrections were applied ap-

proximately every second, sample to sample errors exist and are unaccounted for which limits

high dynamics in this system. Another high frequency operation limitation exists in the phase

control system limited by the Raspberry pi’s GPIO output rate. Accounting for and providing

low phase noise clock inputs to the generation systems as well as the use of a higher data rate

on the phase delay system would allow for simulation of relatively high dynamics.

An example of the results of the system described can be seen in the following figures, the

position, attitude, and AOA measurements are shown from figures 5.3 to 5.3.
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Figure 5.9: Observer Path, Bearing Measurements and Emitter

Figure 5.10: Observer Attitude

Figure 5.11: Observer Bearing Measurements
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Figure 5.12: Observer Elevation Measurements

Figure 5.13: Measurement Variance via mapped eigenvalue ratios to Monte Carlo Simulations
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Figure 5.3 shows both the path, ideal bearings and position of the source device. In this

case the device was chosen at Jordan Hare stadium at a chosen elevation simulating a device

at the top of the stadium. This source device is assumed to be a small PPD device at 10dBm.

This allowed the directional estimate variance to grow to a significantly noisy measurement at

the ranges experienced. A combination of the measurements taken on this path can estimate

the location of the source. This path is derived from measurements taken from a Honeywell

E-Talin GPS/INS system that provides the pose information required.

Representing the error of the measurements taken, figures 5.3 and 5.3 show the measure-

ment variance over the duration of the simulation. The discrete steps between the measure-

ments are caused by the MUSIC algorithm due to computation limitations which limit search

space resolution to less than infinite. Ideally manifold data which is measured in discrete points

would be the limiting factor in the search space. In this case the resolution is limited to five

degree increments

The variance of the measurement provided by the AOA sensor is highly non-linear and

can be approximated with estimated signal parameters. While this works in some cases such as

CW tones, broad band noise signals cen be more difficult to properly estimate. Using the eigen-

values from the MUSIC spectrum provide some insight to the confidence of the spectrum’s es-

timate of direction. Figure 4.3 shows the ratio of the eigenvalues relative to the smallest eigen-

value provided by the decomposition of the covariance matrix. This is directly proportionate

to the range and therefore received signal power. Mapping the AOA error to measurement

variance through the eigenvalue ratio and known RMS errors as shown in figure 4.3. Different

mappings are required for each antenna array, MUSIC signal parameters and receive signal

type. Each of these change the MUSIC spectrum error non-linearly.

5.4. Source Location Estimation Models

The two dimensional position estimation is useful for scenarios where the device being

localized can be constrained to a plane. To observe the location, the observer needs position,

heading and bearing measurements for each measurement time. Considering the case where

the observation platform and the transmitting device are co-planar, the observation platform can
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localize the transmitter with the use of two independent measurements from different locations.

Figure 5.4 shows a case representing this noiseless AOA scenario from three locations. The two

unknowns, x and y source positions, can be solved for directly with two measurements.

Figure 5.14: Example of planar triangulation

As the number and diversity of measurements increase, the resultant solution should be-

come more accurate.

5.4.1. Non-Stochastic Models

The non-stochastic models do not utilize methodologies to capture the information about

the measurement confidence. Due to the non-linearity, difficulty in accurate modeling and

unknown signal environment, measurement variance estimates can suffer dramatically under

certain conditions. For this reason, the non-stochastic estimates can be used as both an initial-

ization as well as an averaged intersection over a windowed group of measurements. These

are expected to perform poorly in comparison to the continuous estimation methods. Utiliz-

ing geometric formulas such as centroids and triangle incenters for triangulation of three or

more measurements provides instantaneous solutions but are computationally heavy when a

very large number of measurement permutations are iterated over. To represent the geometric

solutions, figure 5.4.1 shows the physical representation for the centroid calculated with noisy

directional bearing measurements.
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Figure 5.15: Instance of centroid triangulation

While being purely geometric, it can produce adequate solutions at a single time point but

requires sufficient angular diversity to create an enclosed area that sufficiently represents the

solution. While this type of solution can be useful for intermittent observations of a signal,

it does not provide the same quality solution as stochastic estimations. The solution uses line

intersections of the three measurements used, then taking the mean of the intersections A,B

and C. The incenter method shown in 5.4.1 uses a similar method but splits the angle and uses

basic trigonometry to solve for the center point.

Figure 5.16: Instance of bisector triangulation

The incenter is the another averaging method but is weighted by the side lengths a, b and

c. These solution works well in unbiased, low noise scenarios but would suffer from a single

noisy measurement. The mathematical representation of these methods are seen in Equations

5.2 and 5.3

Centroid = [
Ax +Bx + Cx

3
,
Ay +By + Cy

3
] (5.2)
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Incenter = [
a ∗ Ax + b ∗Bx + c ∗ Cx

a+ b+ c
,
a ∗ Ay + b ∗By + c ∗ Cy

a+ b+ c
] (5.3)

While these have no considerations for the noise or filtered solutions, they are important

methods in initialization. Using these initial estimates of a location is useful in initially avoid-

ing local minimums and are not computationally heavy in comparison to an iterative method for

many measurements. These methods were found to be slightly more robust with smaller angu-

lar excitation and low measurement counts but more limited than other options with significant

measurement noise and numerous measurements.

Beginning with a rudimentary two dimensional solution in Equation 5.4, the measurement

model is based purely on the geometric relationship but can be easily extended into various

estimation methods.

ŷ = tan−1
(
Yemitter − Yreceiver
Xemitter −Xreceiver

)
(5.4)

The measurements are assumed to be normally distributed as shown in the measurement

process, Equation 5.5.

ỹ = p(x) + η(0, σ2) (5.5)

The bearing measurement noise is dependent on many different parameters when gen-

erated using a subspace based approach as shown previously in table 4.2 but are treated as

Gaussian. The measurement noise is generally zero mean and normal if they are sufficiently

small (i.e. high signal power). This assumption breaks down when higher measurement noise

is present[32](i.e. Low signal power).

Batch processing can be used effectively but suffers due to the non-linearity of the model

which impacts observability in the presence of high noise measurements. Continuing to only

utilize bearing measurements, equations 5.5, 5.4 and 5.6 defines a two dimensional source

measurement model.
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x̂ = (HT ∗H)−1 ∗H ∗∆Y (5.6)

This measurement is compared with a Cartesian vector between the estimated position

and observation position. to create the estimated measurement. This model can be expanded

into the three dimensional form as shown in Equation 5.7 where θ is the azimuth and φ is the

elevation.

θ̂
φ̂

 =

 tan−1
(

ˆYemitter−Yreceiver
ˆXemitter−Xreceiver

)
tan−1

(
ˆzemitter−zreceiver√

( ˆxemitter−xreceiver)2+( ˆyemitter−yreceiver)2

)
 (5.7)

Attempting to linearize the model shown in 5.7 produces a model that is marginally stable.

If the measurement model is rearranged to accommodate for a different approach, a more stable

result can be found in [39]. Redefining tan to sin ∗ cos−1 allows the terms to be isolated and

reduced to the standard least squares model. From here the least squares solution can be used

for estimates for every new measurement. This solution was found independently of the original

solution in [39]. Equation 5.8 shows the same model as derived from [39]

Xemitter ∗ sin(θi)− Yemitter ∗ cos(θi) = Xi,receiver ∗ sin(θi)− Yi,receiver ∗ cos(θi) (5.8)

These estimation models are sufficient when sufficient measurements are provided but be-

come unstable without observability. Observability is directly impacted in the same way GDOP

is impacted by satellite position diversity, however the metric for localization is not as simple to

calculate due to the unknown position of the source. Geometric position measurement combi-

nations that are not conducive to the estimation can cause large errors in a single direction. This

is easily seen by the estimation solutions in the early steps with low observability. This should

be considered when measurement positions (observer path) can be chosen. The path traveled

is important to both minimize time required and error in estimation from a single observer.

Building on similar methods as shown in the least squares solution an extended kalman

filter implementation can be created. Equations 5.9 through 5.13 define the estimator.
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
X

Y

Z

 = I3x3 +


−Vx

−Vy

−Vz

 ∗ dt (5.9)

H = tan−1(
Yemitter − YObserver
Xemitter −XObserver

) (5.10)

K = P− ∗H ∗ (H ∗ P− ∗HT +R)−1 (5.11)

P+ = (I3x3 −K ∗H) ∗ P (5.12)

¯Xt+1 = X̄t +K ∗ Y (5.13)

This implementation utilizes grouped measurements to estimate the position of the emitter.

While this implementation is not idealized for this approach, it avoids the problem of range

observability. The range observability problem can be addressed with the utilization of a state

by state range parameterization and tracking multiple filters to ensure a stable solution is always

provided. This problem is discussed at length in several documents focused on radar based

applications but originally in [31].

This implementation works sufficiently well for simple low dynamics but suffers in the

event of dynamics due to the relative velocity not being modeled. Since the signal cannot

be clearly defined in all cases, the instantaneous relative velocity is not observable directly

through frequency estimations. This form of the kalman filter was found to marginally stable

due to the observability issue with the range estimation. The local minima problem where the

solution falsely converges to a location is the primary driver of initial instability. Further work

is required to fully define the minimum initialization error to guarantee stability.

Regressing in Bayesian theory to a maximum likelihood estimator allows a search space

to be used which does not suffer as much as other methods to the local minima problem given
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a sufficient cost function. The maximum likelihood estimator is derived and defined in [41,

32]. The likelihood cost function is given by the difference between the measured AOA and

AOA estimate based on the current estimated location. Using the equation shown in 5.14, the

liklihood estimate can be accumulated as measurements are provided.

J = 0.5 ∗ (ψ̃ − ψ̂) ∗ C−1 ∗ (ψ̃ − ψ̂) (5.14)

Each of the solutions up to this point are increasing in general complexity and computation

requirements. Each implementation is heavily dependent on measurement diversity as well as

the measurement variance. The variance is dependent on the signal environment. In an attempt

to mitigate the filter’s weakness to measurement diversity in a single time point, the filter design

needs to change to accommodate a ’tightly coupled’ filter state where the measurement is the

state.

The assumption of bearing only is still held through each of these implementations. Im-

plementing the angular measurement in a particle filter can help mitigate the lack of range

measurement while also estimating only the angle to the emitter with a sufficient number of

particles and re-sampling method. The particle filter does not provide any greater observabil-

ity into the range but does provide multiple instances of solutions that can iterated through

measurements to isolate surviving particles.

To define the particle filter, the pseudocode in algorithm 5.4.1 describes the process used in

the particle filter implementation. The first step in the filter is to create an initial set of particles

that are all equally weighted and evenly distributed over an initial guess area. As directional

measurements are provided from the MUSIC algorithm, the particle angles are propagated in

the body frame of the observer based on the navigation measurements provided by the GPS/INS

system. Comparing these particles to the MUSIC estimate, produces an error using the arc

angle between the two points. Equation 5.15 mathematically represents the angle between two

points on a unit sphere.

ε = arccos(sinφ1 sinφ2 + cosφ1 cosφ2 cos ∆θ) (5.15)
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This angle is physically represented in figure 5.4.1.

Figure 5.17: Angular Error Representation on a unit sphere

Using this angular measurement, error of the particle is weighted by multiplying the cur-

rent weight by the arc angle and Gaussian probability density function inverse.

After normalizing the weights, the weights (and particles) that are below one quarter of

the maximum weight are dropped. Re-sampling is done by initializing new particles at the

weighted average of the current particles. The filter’s re-sampling method is done when the

filter drops below 80% of its maximum particles. This re-sampling method can be further opti-

mized but is not a concern for processing systems capable of handing this number of particles.

5.5. Results

RMS of the states estimated are used as the comparison between each system. To main-

tain equal comparisons, the measurements of the sensors remained the same for each system.

While the different methods suffer for different reasons, each method still provides something

slightly different in different cases. Purely geometric solutions allow instantaneous solutions

with little computation. While this is useful for extremely intermittent measurements, these

type of approaches suffer from biased or noisy measurements. The continuous methods suf-

fer from observability issues and require noise models but are more robust to noise. Methods
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Algorithm 1 Particle Filter - Gaussian Error weighting
Require: V alidParticles ≥MaxParticles ∗ 80%
Require: Initialized Uniform weight distribution (No prior knowledge of source)

while Signal Detected do
Propagate expected DOAs for each particle
for all Particles (i) do
P̂i = P̂i−1 + f(Vx, Vy, Vz, dt)

end for
Evaluate particle error
for all combinations of Particles (i) and Measurements (j) do

Measured Error
εi = arccos(sinφ1 sinφ2 + cosφ1 cosφ2 cos ∆θ)

Weighting Definition
wi = wi−1 ∗ ε ∗ 1

GaussianPDF (σ2
DOA)

if wi ≥ 25% then
Drop related particle to weight

end if
Normalize all weights

end for
if V alidParticles ≤MaxParticles ∗ 80% then

Resample Particles around weighted particle average
NumberNewParticles = MaxParticles− V alidParticles
NewParticles = η(WeightedAvg, StandardDeviationofremainingParticles)
NewWeights =

∑I
n=0

wi
V alidParticles

Normalize weights including new weights
end if

end while
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implementing a search space or brute force approaches such as particle filters are better suited

for these types of problems but are very heavy computationally. The particle filter and the

maximum likelihood estimator have better solutions because they do not suffer from the same

limitations. The limitations are due to local minimums and lack of range observability. The

range observability can be overcome by parameterization of the states of the continuous filters

by the range. This method is shown in ??. Figures 5.5 through 5.5 show the various estimates

and the related errors.

Figure 5.18: Centroid estimate error during the simulation
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Figure 5.19: Bisector estimate error during the simulation
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Figure 5.20: Least Squares estimate error during the simulation
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Figure 5.21: Extended Kalman Filter Error during the simulation
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Figure 5.22: Maximum Likelihood Error during the simulation
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Figure 5.23: Particle Filter Error during the simulation

All systems that require an initial guess are initialized randomly one thousand meters in

any direction from the true location. As expected, the geometric solutions suffer from a single

noisy measurement which can be seen in figures 5.5 and 5.5. As long as large enough sensor

excitation is available the measurements do not intersect near the point of observation. The

interaction between the sensor excitation, signal power and measurement variance is highly

variable and would require knowledge of the transmitter. To limit the variables, the sensor

variance model at the edge of observability suggests a measurement variance of approximately

ten degrees. Using this as the limitation for the sensor excitation for all of the results provides

a reduction in error spikes for grouped measurements.

The kalman filter result which utilizes grouped measurements provide a sufficiently accu-

rate solution but can still be improved upon in comparison to the heavy computational methods.

The maximum likelihood and particle filter results can be improved upon by utilizing additional

resources but still provide greater accuracy than the kalman filter. Figures 5.5 and 5.5 show two
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instances in time of the estimates of the search spaces and the particles at the shortest distance

to the emitter.

Figure 5.24: Maximum likelihood probability over the estimation area
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Figure 5.25: Particle distribution over the estimation area

Since they both utilize normal distributions, they show similar results for distribution of

solutions.
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Chapter 6 Conclusions

The localization of signal’s origin can be achieved via several methods from a single ob-

server platform with on board computation. These methods all utilize the same information,

including system pose and signal bearings, provided by the platform’s systems. The meth-

ods have traits unique to each method while they also have limitations due to several different

reasons. While the geometric only solutions provide benefits such as low computational cost,

initialization for filters and validity checks various estimates, the stochastic filters are capable

of providing a better solution at the cost of computation power. These filters can fail in a couple

different modes as the localization problem suffers from a few various problems. Systems can

fall into a local minimum. These local minimums create false positive solutions and can be seen

at various points throughout the search space methods. The other main problem, that drives the

choice of estimation solutions, is range to the source is not observable. Without knowledge of

the transmitter power, waveform, antenna, direction, surrounding terrain at both locations, and

frequency of operation, a power measurement at the receiver cannot be sufficiently utilized.

The search space methods are the most robust and show the greatest accuracy of the es-

timation methods as well as the most robust methods. Other optimization such as a dynamic

search grids for the maximum likelihood could show greater accuracy allowing greater resolu-

tion. Additionally the weightings based on different probability distributions that more accu-

rately represent the AOA measurements could provide more accurate estimates as well.

The main limitation of the implementation of the data generation system is the lack of

antenna manifold data. The manifold data, which captures the non-linear coloring of the signal

power and phase for each antenna, direction and frequency, is not injected as a source of error

in the measurements. AOA measurements are impacted by the array’s manifold significantly

and should be considered. Injection of the manifold data into the signal generation portion by

digitally attenuating and delaying signals appropriately before reaching the receiving device
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would make the simulation more realistic but would require having that data collected from an

appropriate anechoic chamber.

Another limitation of the simulation system is the lack of navigation degradation. While

this can be simulated at the signal level, it is difficult to accurately represent the beamforming

capabilities of an array. This is mainly due to the manifold data and its related characteristics.

The complexity of the simulation representing this type of signal system is dependent on many

different variables from navigation to body occlusion.

Directions for future work should include the addition of manifold data into simulation

as well as hardware operations. Further signal modeling and simulation should be completed

for the monte carlo results for the aoa systems. Characterization of various signals over all

directions for a manifold would assist in understanding the impact of each of the signals in

relation to the AOA accuracy and resultant beamforming capabilities in relation to those signals.

This leads into the concept of ”cross-eyed” jamming. The impact of this type of signal would be

interesting on the aoa method as well as what it would take for the array to be able to adequately

survive and localize a signal. It is not beyond consideration for a signal system utilizing vision

systems along with directional antennas to target a specific device from multiple locations.
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Chapter 7 Appendix

This section outlines related information and information that can be utilized to aid in

understanding of the concepts presented in the body.
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