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Abstract 
 

 
 
 Metrics such as the Index of Biotic Integrity (IBI) are often used by management 

agencies to estimate the abstract property of stream health. These metrics are usually predicated 

on the belief that certain fish species are tolerant to environmental perturbation while others are 

sensitive. Species are usually designated as either tolerant or sensitive in these analyses based on 

inherent ecological or taxonomic characteristics. However, previous literature has shown that 

certain species from ecological or taxonomic “sensitive” groups experience increased abundance 

in degraded streams. We term such species “cryptic tolerants”. Using a stream fish assemblage 

dataset of 433 unique sample locations across the state of Alabama and the National Landcover 

Dataset (NLCD) (Dewitz 2021), our objectives were to 1) identify the most common cryptic 

tolerant species, 2) investigate how cryptic tolerant species might inflate metrics of stream 

health, and 3) compare an alternative metric of stream health in which species are statistically 

defined rather than defined using the traditional trait-based approach. We identified cryptic 

tolerants using Nonmetric Multidimensional Scaling in each ecoregion. A series of regressions 

revealed that the proportion of cryptic tolerant species decreased in response to the proportion of 

forested land in catchments while the proportion of true sensitives increased in all ecoregions 

except for the Cumberland Plateau. A metric that simply used the percentage of statistically 

defined, non-tolerant species generally had lower p-values and higher r2 values than IBI scores 

when both were regressed against percentage of forest in catchment. However, both metrics had 

low degrees of correlation with expected disturbance, indicating a univariate metric may be 

inadequate to characterize stream health. Our results highlight a potential issue with applying the 
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IBI to diverse southeastern systems, which may be alleviated by designating species sensitivity 

based on empirical response to disturbance rather than taxonomic or ecological characteristics. 
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Introduction 

 

 

 Biodiversity sustains resilient ecosystems (Oliver et al. 2015). The loss of ecological 

functional groups within an ecosystem may compromise ecosystem functions (Cardinale et al. 

2012, Leduc et al. 2015). Within fish assemblages, certain ecological functional groups are more 

vulnerable to localized extirpation than others. Typically, resource specialists are the most 

vulnerable to extirpation and are often replaced by generalist species (i.e., species that have large 

geographic ranges, occur in both highland and lowland habitats, and are typically more tolerant 

of temporal and spatial variation in habitat or food type) (Karr et al. 1986, Weaver and Garman 

1994, Scott and Helfman 2001, Scott 2006).  

Within the southeastern United States, the center of aquatic biodiversity in the temperate 

world (Warren et al. 2000), declines of fish species in sensitive functional groups have been well 

documented (Onorato et al. 2000, Phillips and Johnston 2004a, Johnston and Maceina 2009, 

Johnston et al. 2013, Lawson and Johnston 2016, Dunn and Angermeier 2019). Declines of these 

species result in lasting assemblage changes via faunal homogenization (Johnston and Maceina 

2009, Lawson and Johnston 2016). Habitat alteration is usually implicated as the cause of such 

fish assemblage homogenizations (Freeman and Marcinek 2006, Freedman et al. 2014, Perkin 

and Bonner 2016, Montag et al. 2018). Specifically, previous studies have linked shifts in stream 

fish assemblages to change in hydrologic regime (Freeman and Marcinek 2006, Lawson and 

Johnston 2016, Stiles 2016), presence of in-stream impoundments and loss of aquatic habitat 

connectivity (Phillips and Johnston 2004b, Catalano et al. 2007, Perkin et al. 2017, Reuter et al. 



 

 11 

2019), and land use change (Weaver and Garman 1994, Lobón-Cerviá et al. 2016, Paller et al. 

2016, Montag et al. 2018). 

Land use has been shown to be a reliable predictor of stream fish assemblage structure 

(Weaver and Garman 1994, Wang et al. 2000, Wang et al. 2001, Allan 2004, Sawyer et al. 2004, 

Helms et al. 2005, Paller et al. 2016, Morrill et al. in press). Stream catchments with high 

percentages of forested landcover typically foster intact fish assemblages, while catchments 

dominated by urbanization, agriculture, or deforested landscapes tend to have assemblages 

dominated by tolerant habitat generalists (Weaver and Garman 1994, Scott and Helfman 2006, 

Wang et al. 2001, Scott 2006). The latter landscapes tend to produce erosion and sedimentation 

which reduce suitable habitat for benthic lithophilic species as the interstitial spaces between 

sediments are filled with fine sediment (Berkman and Rabeni 1987, Scott and Helfman 2001, 

Walters et al. 2003, Dunn and Angermeier 2019). Additionally, catchments dominated by high 

percentages of impervious surfaces associated with urban landcover experience flashier 

hydrology and lower baseflows which create conditions unfavorable for many lotic species 

(McMahon et al. 2003, Roy et al. 2005, Johnston and Maceina 2009). The extent of faunal 

homogenization in response to land use may vary with respect to physiographic region and 

within-species responses can even differ based on physiographic context (Utz et al. 2010). 

Reliable assessment of assemblage structure is crucial for monitoring trends in fish 

communities. A range of metrics have been proposed by ecologists to attempt to accurately 

assess structure of fish assemblages (Fausch et al. 1990). Often, assessment of fish assemblages 

has the implied goal of quantifying the abstract property of “ecosystem health”—a concept that 

places high value on natural systems and low value on altered ones (Karr 1999).  Diversity 

indices were historically used for measuring stream health but are now rarely used by fish 
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ecologists because they weight all species equally and fail to consider species identity and 

nativity (Karr 1981, Karr et al. 1986, Fausch et al. 1990). Moreover, species diversity may 

actually increase as a result of environmental degradation as native cosmopolitan species invade 

new habitats (Scott and Helfman 2001, Paller et al. 2016). Similarity indices are often employed 

where temporal data exist (Ross et al. 1985, Phillips and Johnston 2004a). These metrics are 

useful when investigators are interested in assessing the degree of faunal change in a particular 

system over time. Likewise, these indices do not consider species identity but are often paired 

with ordination or rank-abundance analyses to further identify taxon-specific patterns in 

assemblage shifts (Johnston and Maceina 2009, Lawson and Johnston 2016).  

The Index of Biotic Integrity (IBI) attempts to unify population, diversity, and individual 

considerations and presents a score reflecting the abstract property of assemblage “health” (Karr 

1981, Karr et al. 1986). Unlike diversity or similarity indices, the IBI attempts to account for 

both diversity and species identity. A suite of properties (usually 12) is measured from the fish 

assemblage and assigned a 1, 3, or 5 based on its degree of similarity to an expected reference 

assemblage for a particular ecological context. A single number is obtained by summing each of 

these constituent metrics. A qualitative rating (i.e., very poor, poor, fair, good, or excellent) is 

subsequently derived from the numeric score. The IBI has many localized adaptations that 

attempt to account for expected assemblage differences based on physiography and natural 

faunal diversity (e.g., Schleiger 2000, Compton et al. 2003, Morris et al. 2007, Whittier et al. 

2007, Paller et al. 2017).  

The IBI is used extensively by state and federal management agencies in the eastern 

United States to monitor stream health. This method allows for the distillation of a complex, 

abstract ecological property (“stream health”) into a simple score that can be understood by 
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policy makers and the public. However, the IBI initially faced criticism primarily on 

philosophical and statistical grounds (Suter 1993, Norris 1995, Norris and Hawkins 2000). The 

points of criticism are numerous, but the primary categories of critique are: 1) methodological 

and predictive inferiority to multivariate methods, 2) problems with data distribution and 

variance of IBI scores, 3) problems intrinsic to the multi-metric approach (i.e., meaning of 

constituent metrics is lost when all are summed together; the potential of low-scoring metrics to 

be compensated for by high-scoring metrics in the overall score), 4) concerns over the selection 

of candidate constituent metrics (e.g., potential redundancy of metrics which could lead to 

exaggerated estimates of effect), and 5) lack of the use of independent methods of verification to 

assess the IBI rendering it unfalsifiable (often expressed as tautological/circular justification, i.e., 

the IBI is used to assess stream health which is in turn used to assess the quality of the IBI) 

(criticisms outlined in Suter 1993, Norris 1995, Norris and Hawkins 2000; rebutted in Karr 1999, 

Simon 1999a). 

In addition to the philosophical and statistical concerns raised by these authors, other 

authors have mentioned practical concerns regarding the contribution of various species to IBI 

scores (e.g., Scott and Helfman 2001, Johnston and Maceina 2009). Certain native species 

increase in abundance when subjected to land use change or other environmental perturbations 

(Scott and Helfman 2001). In fact, some species that experience such increases in response to 

disturbance are members of taxonomic or ecological groups considered “sensitive” in IBI 

calculations (Johnston and Maceina 2009, Lawson and Johnston 2016). These taxa typically have 

large geographic ranges (Scott and Helfman 2001), but nevertheless meet the ecological or 

taxonomic criteria of “sensitive” species and therefore contribute to higher IBI scores. We term 

such species “cryptic tolerant species” because their expected response to disturbance is 
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negative, but in actuality they thrive in degraded streams. This phenomenon has been 

documented in Percina nigrofasciata (Johnston and Maceina 2009, Lawson and Johnston 2016). 

In theory, this species represents a sensitive species in multiple respects: it is a darter, an 

insectivore, benthic, requires a fluvial habitat, and shows preference for erosional substrata 

where available (Mathur 1973, Boschung and Mayden 2004, Henry and Grossman 2008). 

Nevertheless, this species tends to replace more sensitive forms in degraded streams and can 

even be the most numerically abundant fish in these systems (Johnston and Maceina 2009, 

Lawson and Johnston 2016). A similar phenomenon has been documented with Cyprinella 

venusta (Johnston and Maceina 2009, Lawson and Johnston 2016), an invertivorous leusiscid 

and crevice spawner that by most documented traits should be a sensitive species (Hambrick and 

Hibbs 1977, Heins 1990). These species — though tolerant — may masquerade as sensitive 

species in approaches that categorize taxa based on ecological or taxonomic traits. Clearly, our 

understanding of the traits that drive the sensitivity-tolerance gradient among stream fishes needs 

to be revised. Furthermore, this phenomenon implies that cryptic tolerant species could 

compensate for or even replace truly sensitive species. This replacement would be masked in IBI 

scores because cryptic tolerant species are categorized by broad ecological and taxonomic traits 

rather than actual response to disturbance. 

Using a statewide dataset of sample sites from Alabama, we had the following objectives: 

1) identify cryptic tolerant species, 2) investigate how the proportion of cryptic tolerant species 

and truly sensitive species change in relation to disturbance and how combining these groups in 

metrics like the IBI might hide ecologically important information, and 3) compare the IBI  to a 

metric that relies on statistically defined (rather than ecologically or taxonomically defined) 

sensitive and tolerant taxa. 
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Methods 

 

 

Data Collection and Calculation of IBI Scores 

 Four hundred and thirty-three stream sites were sampled state-wide by the Alabama 

Department of Conservation of Natural Resources from 2008–2020 (Figure 1a). All fish were 

collected using the 30+2 method (described in detail in ADWFF 2010). In this method, 

personnel use backpack electrofishing units to shock in an upstream direction along the 

shoreline. Other personnel follow closely behind with dip nets and net stunned fish. Riffles, runs, 

and pools are frequently sampled by shocking into a kick seine. “Thirty” refers to 30 seine 

samples collected from the riffle, run, and pool habitats (10 each) and “+2” is the number of 

shoreline samples collected using backpack shockers with dipnet personnel following shortly 

behind. Collected fishes are identified to species, counted, and released. Specimens that are 

difficult to identify in the field are preserved in 10% formalin and identified in a laboratory.  

 IBI scores were calculated for all sites according to the state-standard methods (examples 

for two regions in Alabama include O’Neil and Shepard 2009; 2011a,b). As in most IBI versions, 

each constituent metric is mathematically assigned a score of 1, 3, or 5 based on similarity to the 

expected ideal condition for that stream (see Karr 1981 for a detailed explanation). Formulas are 

altered based on watershed area and zones of ichthyofaunal similarity that approximate 

physiographic region to account for expected natural differences in fish assemblages (e.g., 

O’Neil and Shepard 2011a,b). For sites with multiple collections, we averaged IBI score and 

species abundances to obtain single values for the site to avoid duplicate observations for our 

statistical analyses. 
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Calculation of Land Cover 

We conducted spatial analyses of land use in ArcMap version 10.3.1 (ESRI 2015). We 

obtained raster data detailing land use from the National Land Cover Database (NLCD) (Dewitz 

2021). We used land cover data associated with the year a collection was conducted. When land 

cover data was not available for a particular year, we used the nearest available year. The 

following land cover categories are included in the NLCD layer and were used in analysis 

(variable abbreviations in parentheses): 1) Open water (“OpenWater”), 2) Developed—open 

space (“DevOpen”), 3) Developed low intensity (“DevLow”), 4) Developed medium intensity 

(“DevMed”), 5) Developed high intensity (“DevHigh”) , 6) Barren land (“Barren”), 7) 

Deciduous forest (“Decid”), 8) Evergreen forest (“Everg”), 9) Mixed forest (“MixFor”), 10) 

Shrub/scrub (“Shrub”), 11) Herbaceous (“Herb”), 12) Hay/pasture (“Hay”), 13) Cultivated crops 

(“Crops”), 14) Woody wetlands (“Wwetl”), and 15) Emergent herbaceous wetlands (“Ewetl”). 

Open water land cover is usually indicative of artificial farm ponds and reservoirs in the 

southeastern United States. 

We calculated percentage of each land cover type for each upstream catchment that has 

an associated fish collection. We used the Digital Elevation Model (DEM) methodology 

available in the hydrology toolbox extension in ArcMap to delineate catchments upstream of 

sample locations. We used the National Elevation Dataset (NED) (USGS 1999) 30-meter raster 

as the elevation input for this analysis because of its accuracy and accessibility (Tighe and 

Chamberlain 2009). After raster catchment delineations were returned from the DEM, we used 

the tabulate area tool in the spatial analyst toolbox to calculate areas (m2) of each land use 

category that fell within the catchment. We subsequently converted these areas to percentages of 
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catchment area. All calculations were done using the NAD 1983 UTM zone 16 coordinate 

system. 

 

Statistical Analysis 

 To reduce subjectivity in determining cryptic tolerant species and to visualize species 

associations with environmental variables, we ran separate Non-Metric Multidimensional 

Scaling (NMDS) ordinations of species-specific counts in samples in each of 6 zoogeographic 

regions we determined based on patterns of ichthyofaunal diversity (Figure 1b). Because the 

Coastal Plain makes up >60% of the land area in the state of Alabama (Boschung and Mayden 

2004), we partitioned the Coastal Plain into two separate sub-regions (Eastern and Western) for 

the purposes of analysis. The final ecoregions we used for analysis were 1) the Piedmont, 2) The 

Ridge and Valley, 3) Tennessee Valley, 4) The Mobile Portion of the Cumberland Plateau, 5) 

The Eastern Coastal Plain, and 6) The Western Coastal plain (Figure 1b). For each region’s 

NMDS, we used the Bray measure of pairwise distances between samples and retained two 

dimensions for each ordination (stress seldom exceeding 0.20 for the set of ordinations, range 

0.144–0.231). We then visualized association of the 15 landcover variables (arcsin-square root 

transformed) as well as catchment area (log transformed, abbreviated “Area” on biplots) as 

environmental vectors in ordination space. We displayed species scores in ordination space for 

the top 20 most abundant species on separate accompanying biplots. A list of species included in 

analyses and their abbreviations are provided in Table 1. We considered cryptic tolerant species 

to represent those species that are traditionally considered “sensitive” by multiple metrics in the 

IBI but that either load highly on well-accepted environmental predictors of poor stream health 

(e.g., developed land, barren land) and cluster around well-established tolerant species (e.g., 
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Lepomis spp. [sans L. megalotis], Gambusia spp.). We considered truly sensitive species to 

represent those that loaded high on well-accepted environmental predictors of healthy streams 

(e.g., deciduous forest for regions above the fall line, total forest cover for regions below the fall 

line) or that displayed repulsion in multivariate space from well-accepted tolerant species.  

 Once we identified the cryptic tolerant and true sensitive species based on their locations 

in multivariate space, we regressed each group (proportion of total catch) against percentage of 

forested landcover (deciduous forest in the case of upland regions and total forest in the case of 

coastal plain regions) to visualize changes in the abundance of the two groups. Because the IBI 

does not explicitly discriminate between cryptic tolerants and true sensitives, we also 

investigated changes in “total fluvials” by summing the percentage of cryptic tolerants and 

percentage of true sensitives to obtain a single value. We regressed proportion of total fluvials 

against percentage of forested landcover.  

 We used the species we identified from our NMDS analyses to test a new metric of 

stream health that uses percentage of non-tolerant species (all species not delimited as tolerant in 

ordinations) as opposed to the multi-metric approach of the IBI (see discussion for justification). 

As pointed out by Suter (1993), there is a danger that one falls into the trap of post-hoc 

justification when assessing the effectiveness of metrics of stream health. To reduce this risk, we 

regressed both IBI and the new percent non-tolerant species metric against forested landcover for 

each region. We used forested landcover because this represents the primary undisturbed state 

for the southeastern United States, whereas using a single disturbed landcover type (e.g., total 

developed land) would be excluding alternative modes of impairment. We assumed percentage 

of forested landcover serves as a proxy for the inverse of total disturbance, meaning that the 
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better metric of stream health should have a stronger positive correlation with forested landcover. 

All statistical analyses were conducted in RStudio 2022.02.0. 
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Figure 1. (a) Stream sample sites (n = 433) used to identify cryptic tolerant species and assess 

their potential effect on the Index of Biotic Integrity (IBI). These sites were also used to compare 

the IBI to a %non-tolerant native-species-in-catch metric. Sites are located in Alabama, USA 

(inset).  (b) Regions used for partition of NMDS analyses and subsequent regressions for a 

statewide stream fish assemblage dataset in Alabama, USA. Regions were delineated according 

to broad patterns of ichthyofaunal diversity and to account for manageable sample sizes for 

analysis. 
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Table 1. List of species and abbreviations used in NMDS analyses. 
  Species Abbrev.   Species Abbrev. 
Leuciscidae  Catostomidae  
 Alburnops asperifrons A.asperi  Hypentelium etowanum H.etowa 

 Alburnops baileyi A.baile Ictaluridae  
 Alburnops texanus A.texan  Noturus leptacanthus N.lepta 

 Alburnops xaenocephalus A.xaeno Aphredoderidae  
 Campostoma oligolepis C.oligo  Aphredoderus sayanus A.sayan 

 Clinostomus funduloides C.fundu Fundulidae  
 Coccotis zonistius C.zonis  Fundulus olivaceus F.oliva 

 Cyprinella callistia C.callis Poeciliidae  
 Cyprinella galactura C.galac  Gambusia affinis G.affin 

 Cyprinella gibbsi C.gibbs Cottidae  
 Cyprinella trichroistia C.trich  Cottus carolinae C.carol 

 Cyprinella venusta C.venus  Cottus tallapoosae C.talla 

 Ericymba amplamala E.ampla Centrarchidae  
 Hybopsis amblops H.amblo  Lepomis auritus L.aurit 

 Hybopsis cf. winchelli H.cf.winch  Lepomis cyanellus L.cyane 

 Hybopsis lineapunctata H.linea  Lepomis macrochirus L.macro 

 Hydrophlox chrosomus H.chros  Lepomis megalotis L.megal 

 Luxilus chrysocephalus L.chryso  Lepomis miniatus x punctatus  L.mi.x.pu. 

 Lythrurus alegnotus L.alegn  Micropterus henshalli M.hensh 

 Lythrurus atrapiculus L.atrap Percidae  
 Lythrurus bellus L.bellu  Etheostoma artesiae E.artes 

 Lythrurus fasciolaris L.fasci  Etheostoma caeruleum E.caerul 

 Lythrurus roseipinnis L.rosei  Etheostoma colorosum E.color 

 Miniellus ammophilus M.ammo  Etheostoma coosae E.coosa 

 Miniellus longirostris M.longi  Etheostoma duryi E.duryi 

 Notropis stilbius N.stilb  Etheostoma flabellare E.flabe 

 Paranotropis cahabae P.cahab  Etheostoma simoterum E.simot 

 Paranotropis volucellus P.voluc  Etheostoma stigmaeum E.stigm 

 Pimephales notatus P.notat  Etheostoma swaini E.swain 

 Pimephales vigilax P.vigila  Etheostoma tallapoosae E.talla 

 Pteronotropis hypselopterus P.hypse  Nothonotus douglasi N.dougl 

 Pteronotropis merlini P.merlin  Nothonotus jordani N.jorda 

 Pteronotropis signipinnis P.signi  Nothonotus rufilineatus N.rufi 

 Rhinichthys obtusus R.obtus  Percina kathae P.katha 

 Semotilus atromaculatus S.atrom  Percina nigrofasciata P.nigro 

 Semotilus thoreauianus S.thore  Percina palmaris P.palma 
        Percina smithvanizi P.smith 
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Results 

 

 

NMDS Ordinations  

 The NMDS analyses revealed cryptic tolerant and true sensitive species in each region. In 

the Piedmont ordination (stress = 0.144, 2 dimensions), Alburnops baileyi, Ericymba amplamala, 

Percina nigrofasciata, Cyprinella venusta and Hypentelium etowanum were associated with 

developed land use vectors and were located near the well-established tolerant species Lepomis 

auritus and Lepomis macrochirus in multivariate space (Figure 2a). Cottus tallapoosae, 

Cyprinella gibbsi, Hybopsis lineapunctata, Percina smithvanizi, and Lythrurus bellus were 

negatively correlated with developed land use vectors and instead were associated primarily with 

deciduous forest landcover (Figure 2a). In the Ridge and Valley ordination (stress = 0.159, 2 

dimensions), P. nigrofasciata, Etheostoma stigmaeum, Cyprinella venusta, and Campostoma 

oligolepis were associated with developed land use vectors, correlated negatively with deciduous 

forest landcover, and were located near L. macrochirus, L. auritus, and L. cyanellus in 

multivariate space (Figure 2b). Conversely, Alburnops xaenocephalus, Cottus carolinae, 

Etheostoma coosae, Luxilus chrysocephalus, and Hydrophlox chrosomus were associated with 

deciduous landcover (Figure 2b). In the Tennessee Valley ordination (stress = 0.185, 2 

dimensions), C. oligolepis and Cyprinella galactura were associated with high and medium 

intensities of developed land and open water and were located near the well-accepted tolerant 

species Gambusia affinis in multivariate space (Figure 3a). Additionally, Lepomis auritus 

(nonnative in the Tennessee River system) loaded highly on these land use vectors, even more so 

than other Lepomis spp. Etheostoma duryi was centered in the middle of the plot indicating a 
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lack of bias towards any landcover type. Therefore, we considered this species to represent a 

cryptic tolerant species in this context as well. Clinostomus funduloides, Etheostoma flabellare, 

Etheostoma caeruleum, Etheostoma simoterum, Lythrurus fasciolaris, C. carolinae, L. 

chrysocephalus, and Hybopsis amblops were negatively correlated with developed landcover 

vectors and instead associated with “undisturbed” land cover vectors — deciduous, evergreen, 

herbaceous and shrub (Figure 3a). In the Cumberland Plateau ordination (stress = 0.206, 2 

dimensions), C. oligolepis, C. venusta, H. etowanum, and P. nigrofasciata were associated with 

cropland, hay pasture, and all intensities of developed land. These species also fell adjacent to 

Lepomis spp. (except for Lepomis megalotis) in multivariate space (Figure 3b). Etheostoma 

artesiae, Alburnops asperifrons, L. megalotis, Percina kathae, Etheostoma stigmaeum, and L. 

bellus were considered to represent true sensitives as they were associated primarily with mixed 

forest, herbaceous, woody wetland, evergreen, and Shrub land use vectors. In the eastern Coastal 

Plain ordination (stress = 0.231, 2 dimensions), P. nigrofasciata, Miniellus longirostris, 

Ericymba amplamala, and Semotilus thoreauianus were associated with “disturbed” land use 

types (all intensities of developed land, open water [ponds and reservoirs], and cropland) and 

were located near L. auritus in multivariate space (Figure 4a). Cyprinella venusta and Alburnops 

texanus were associated with catchments dominated by high percentages of barren land and hay 

pasture. These two leuciscids were located near L. macrochirus in multivariate space. 

Additionally, these species were associated with high catchment area (large watersheds). 

Pteronotropis hypselopterus, Pteronotropis merlini, Fundulus olivaceus, Etheostoma colorosum, 

Lythrurus atracpiculus, and Lepomis megalotis were associated with “undisturbed” lands: 

evergreen-forested land cover, shrubs, and herbaceous plants. In the western Coastal Plain 

ordination (stress = 0.179, 2 dimensions), P. nigrofasciata and A. texanus were associated 
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primarily with disturbed land types (all intensities of developed land, barren, and crops), as well 

as with woody wetlands (Figure 4b). Lythrurus roseipinnis and Noturus leptacanthus fell 

somewhat near these species in multivariate space but were associated with those land use 

variables to a lesser degree. Therefore, we considered these species to represent “borderline” 

taxa that did not fall well into either cryptic tolerants or true sensitives. Unexpectedly, 

Pteronotropis signipinnis and Pteronotropis hyspelopterus showed association with developed 

land, barren land, and crops. More intuitively, these two species were associated with high 

amounts of woody wetlands in the catchment. We did not consider these Pteronotropis spp. to 

represent cryptic tolerants in future analysis as both species are often patchily distributed, locally 

abundant, and tend to be habitat specialists on small wetland creeks (Boschung and Mayden 

2004). Pimephales notatus and Semotilus atromaculatus were associated with high amounts of 

open water in the catchment and were located near Lepomis macrochirus and Gambusia affinis 

in multivariate space.  Aburnops baileyi, L. chrysocephalus, Miniellus ammophilus, Lythrurus 

bellus, and Etheostoma stigmaeum were associated with deciduous forest and mixed forest, and 

to lesser extent herbaceous plants and large watershed area. Interpretation of the western Coastal 

Plain biplot was more complicated than previous biplots with regards to the tolerance-sensitivity 

spectrum. Nevertheless, we considered P. nigrofasciata, P. notatus, A. texanus, and S. 

atromaculatus to represent cryptic tolerant species while A. baileyi, L. chrysocephalus, M. 

ammophilus, L. bellus, and E. stigmaeum were considered to represent true sensitive species for 

this region in subsequent analyses. 
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Change in Proportion of Cryptic Tolerant, True Specialist, and Total Fluvial Species 

 As expected, the proportion of cryptic tolerants decreased in all regions with respect to 

forested landcover whereas the proportion of true sensitives increased, and this relationship was 

statistically significant in all regions except for the Cumberland Plateau (Figure 5, Table 2). The 

change in proportion of total fluvials (S cryptic tolerants + true specialists, all considered 

sensitive in some aspect of the IBI) varied considerably among regions but only had a 

statistically significant change in the Western coastal plain (Figure 5, Table 2).  

 

Comparison of Metrics of Stream Health 

 Both the IBI and percentage of non-tolerants in the collection generally correlated 

positively with percentage of forest in the catchment (Figure 6, Figure 7). However, the IBI 

failed to correlate positively with percent forest in the Eastern Coastal Plain (Figure 7). All 

regressions using percent non-tolerants had significant relationships at the a = 0.05 level, but the 

IBI lacked a significant positive relationship in two regions (Figure 6, Figure 7). Percentage of 

non-tolerants in the catchment generally correlated more strongly (lower p-values and higher r2) 

with percentage of deciduous forest in catchment than did the IBI. However, the reverse was true 

in the western Coastal Plain (figure 10).  
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Figure 2. NMDS ordination of top 20 most abundant species in the Piedmont (stress = 0.144) and 

Ridge and Valley (stress = 0.159) regions of Alabama, USA. The upper biplots display the 

loadings of 15 landcover variables from the National Land Cover Database (NLCD) and 

watershed area upstream of each collection site. The lower biplots displays species scores for 

each respective region. The blue polygons delineate species we interpreted as sensitive and the 

red polygons delineate species we interpreted as tolerant. Cryptic tolerant species are indicated 

by downward-facing triangles. Species abbreviations are summarized in Table 1. 
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Figure 3. NMDS ordination of top 20 most abundant species in the (A) Tennessee Valley (stress 

= 0.185) and (B) portion of the Cumberland Plateau drained by the Mobile Basin (stress = 0.206) 

in Alabama, USA. The upper biplots display the loadings of 15 landcover variables from the 

National Land Cover Database (NLCD) and watershed area upstream of each collection site. The 

lower biplots displays species scores for each respective region. The blue polygons delineate 

species we interpreted as sensitive and the red polygons delineate species we interpreted as 

tolerant. Cryptic tolerant species are indicated by downward-facing triangles. Species 

abbreviations are summarized in Table 1. 
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Figure 4. NMDS ordinations of top 20 most abundant species in the (A) Eastern (stress = 0.231) 

and (B) Western portions (stress = 0.179) of the Coastal Plain region in Alabama, USA. The 

upper biplot displays the loadings of 15 landcover variables from the National Land Cover 

Database (NLCD) and watershed area upstream of each collection site. The lower biplots display 

species scores for each respective region. The blue polygons delineate species we interpreted as 

sensitive and the red polygons delineate species we interpreted as tolerant. Cryptic tolerant 

species are indicated by downward-facing triangles. Species abbreviations are summarized in 

Table 1. 
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Figure 5. Regressions showing the change in the proportion of cryptic tolerants, true sensitives, 

and total fluvials identified in 6 NMDS analyses in Alabama stream fish assemblages. P-values 

and r2 values are reported in table 2. 
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Figure 6. Correlation of Index of Biotic Integrity (IBI) scores versus statistically identified 

%Non-tolerant species with percentage of deciduous forest in watershed in the Piedmont, Ridge 

and Valley, and Tennessee Valley Regions of Alabama, USA. Shaded gray regions around the 

represent 95% confidence intervals. Clusters of points darker in shade represent overlap among 

points. 
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Figure 7. Correlation of Index of Biotic Integrity (IBI) scores versus statistically-identified 

%Non-tolerant species with percentage forested landcover in the watershed in the Mobile portion 

of the Cumberland Plateau as well as the Eastern and Western portions of the Coastal Plain in 

Alabama, USA. Percent deciduous forest was used for regions above the fall line whereas 

percent total forest was used for Coastal Plain regions. Shaded gray regions represent 95% 

confidence intervals. Points darker in shade represent overlap among points. 
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Table 2. P-values, r2, and slopes for each regression in figure 5 assessing the change in 

proportion of cryptic tolerants, true sensitives, and total fluvials (both groups combined) in 

response to percentage of forested landcover in the catchment upstream of each collection 

(*p<0.05, **p<0.01, ***p< 0.001). Percentage deciduous forest was used for regions above the 

fall line whereas percentage of total forest was used for regions below the fall line. 

 

    Cryptic Tolerants True Sensitives Total Fluvials 
Piedmont p-value 0.0088 ** 0.045 * 0.47 

 r2 0.20 0.12 0.016 

 slope + 95% CI -0.0072 + 0.0053 0.0054 + 0.0052 -0.0019 + 0.0052 

  
   

Ridge and 
Valley p-value 

0.00023 *** 3.53*10^-6 *** 0.059 

 r2 0.22 0.32 0.062 

 slope + 95% CI -0.0057 + 0.0029 0.010 + 0.0039 0.0043 + 0.0045 

  
   

Tennessee 
Valley p-value 

0.0022 ** 0.0069 ** 0.64 

 r2 0.10 0.082 0.0025 

 slope + 95% CI -0.0037 + 0.0023 0.0030 + 0.0021  -0.00070 + 0.0030 

  
   

Cumberland 
Plateau p-value 

0.78 0.44 0.76 

 r2 0.0014 0.011 0.0018 

 slope + 95% CI -0.00078 + 0.0056 0.0016 + 0.0042  0.00086 + 0.0056  

  
   

Eastern 
Coastal Plain p-value 

0.0046 ** 0.0041 ** 0.079 

 r2 0.075 0.077 0.00071 

 slope + 95% CI -0.0032 + 0.0022 0.0029 + 0.0019 -0.00027 + 0.0020 

  
   

Western 
Coastal Plain p-value 

0.0024 ** 5.11*10^-10 *** 2.19*10^-5 *** 

 r2 0.099 0.35 0.18 

  slope + 95% CI -0.0024 + 0.0015 0.0084 + 0.0024 0.0060 + 0.0026 
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Discussion 

 

 

 Our results highlight a potential issue with applying the standard trait- and taxonomy-

based IBI to diverse southeastern fish assemblages. We have shown that many species that 

appear to share taxonomic affinities or ecological similarities can respond differently to 

disturbance, yet these forms are often treated as interchangeable components under metrics of 

stream health that use a trait-based classification system. In fact, we identified a suite of species 

that are associated with degraded streams yet contribute to higher IBI scores in several 

constituent metrics (Table 3).  The southeastern United States has both extensive aquatic 

diversity and geographic heterogeneity, which makes the application of a simple metric of stream 

health difficult. Additionally, many southeastern native fishes lack basic biological and natural 

history studies which also may create difficulties in appropriately assigning species to ecological 

guilds under this method (Goldstein and Simon 1999, Simon 1999b).  

Using percent non-tolerant species to estimate stream health may provide a more accurate 

picture of stream health because it relies on statistical definition of tolerant and sensitive taxa 

(empirical response) rather than trait-based definition of taxa (theoretical response). This method 

also removes several of the methodological concerns raised by previous authors (Suter 1993, 

Norris 1995, Norris and Hawkins 2000). Specifically, this approach eliminates many concerns 

surrounding multi-metric indices (eclipsing, redundancy of constituent metrics, etc.) and 

represents a real property of fish assemblages with continuous units (percent composition) as 

opposed to the abstract and unitless nature of the IBI (Suter 1993). Therefore, the better 

performance of the %Non-tolerant metric may be due in part to the elimination of issues with 
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multi-metric indices and not due solely to the reduction of cryptic tolerant species in the stream 

health metric. 

 The IBI and % non-tolerant metrics are both vulnerable to circular justification (a 

philosophical bane that plagues most metrics of stream health) outside of costly and time-

intensive lab-based species tolerance studies (Suter 1993). The %Non-tolerant metric also 

devalues all native tolerant species which should be present in low abundances even in pristine 

systems. Additionally, this method requires statistical definition of sensitive and tolerant species 

prior to analyses, which may be more time intensive than the trait-based approach the IBI uses. 

Any metric of stream health will require initial development and calibration, and the multivariate 

methods required for visualizing species associations in our method are more easily implemented 

today than they were at the debut of the IBI in the early 1980s. Even if the two methods yield 

comparable results, one could choose to use the uni-metric as opposed to multi-metric approach 

as this is the more parsimonious and arguably more direct method (Behnke 1987).  

Nevertheless, the IBI does have merits over a uni-metric approach. It measures a suite of 

assemblage properties which may better reflect the complexity of ecological systems (Karr et al. 

1986). The IBI also has extensive testing and use in the literature and often shows correlation 

with disturbance variables (Schleiger 2000, Wang et al. 2000, McCormick et al. 2001, Morris et 

al. 2007, Paller et al. 2017, this study). It is unclear whether the comparatively poor performance 

of the IBI is due to idiosyncrasies of the Alabama version of the IBI or due to fundamental issues 

with the IBI as a whole. Many of Karr’s (1981, 1999) original cautions have been disregarded in 

current applications of the IBI which may represent a problem in execution rather than a 

methodological shortcoming of the IBI itself (Seegert 2000). Additional testing with other 

datasets in other geopolitical and physiographic regions could help ascertain whether statistically 
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identified percent non-tolerants is a consistently better predictor of disturbance than the IBI. An 

IBI could be developed that accounts for the presence of cryptic tolerants, but the trait-based 

framework would have to be adjusted to incorporate statistical definitions of species tolerance in 

addition to (or instead of) the current trait-based approach that bases species classifications on 

ecological guilds and taxonomic groups. If the multi-metric approach is desired, constituent 

metrics could consist of species “response groups” to different categories of disturbance (urban 

landcover tolerance, degree of chemical tolerance, etc.) rather that taxonomic or ecological 

groups. 

Though percent non-tolerant species generally correlated more strongly with land-cover 

disturbance in our analyses, both metrics had low degrees of correlation with expected 

disturbance. While forms of disturbance other than land use may be present, this may also 

indicate that univariate approaches are limited in their ability to accurately characterize stream 

health. Multivariate metrics were proposed early in the history of stream health indices to 

account for the n characteristics (dimensions) of assemblages measured by environmental 

monitoring programs (Suter 1993, Norris 1995). These methods were initially impractical to use 

but streamlined computer programs now make the widespread use of multivariate methods 

relatively straightforward. However, an ideal metric of stream health should be easily interpreted 

by non-experts (O’Connor and Dewling 1986). Policymakers may struggle to understand the 

esoteric nature of raw multivariate outputs and may prefer a single number or a qualitative rating. 

The metric we present represents a compromise because it is a univariate metric but nevertheless 

informed by empirical multivariate species associations.  

In addition to calculating IBI scores, management agencies could also use the same fish 

assemblage data to calculate similarity indices which would be a more robust measure of 
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assemblage change through time than the IBI (Johnston and Maceina 2009). Both numbers could 

be considered together to evaluate stream health and stability. This would require repeated 

sampling of streams as opposed to the one-time-sample approach that is used by many 

management agencies. Using the IBI as a surrogate to measure temporal assemblage change may 

fail to register the replacement of true sensitives by cryptic tolerants because these species are 

considered interchangeable components by the IBI during calculation, and both contribute to 

higher IBI scores. Therefore, the decline of endemic, truly sensitive fishes could be masked by 

the associated increase in cryptic tolerants when trait-based multi-metric indices are used, a 

phenomenon which could be termed “cryptic assemblage change” (but see Karr et al. 1987 for an 

IBI that appears sensitive to temporal assemblage change in two northern US states). 

Scott and Helfman (2001) recognized that increased abundances of specific native fishes 

(even minnows and darters) have the potential to indicate assemblage homogenization and 

stressed that highland endemic species are the best indicators of assemblage health in southern 

Appalachian streams. Many of the true sensitives we identified are fishes restricted to the upland 

region of one or two river systems (e.g., H. lineapunctata, P. smithvanizi, E. coosae). 

Conversely, many of the cryptic tolerant species we identified are taxa that occur both above and 

below the fall line and have large geographic ranges (e.g., P. nigrofasicata, A. texanus, C. 

venusta, E. amplamala). Interestingly, some species that were identified as cryptic tolerant 

species in one region were identified as true sensitives in another (e.g, E. stigmaeum, A. baileyi). 

These results suggest that a given species’ response to disturbance may vary based on 

physiographic context—an idea that is supported by previous research (Utz et al. 2010).  

In addition to fishes, the IBI has been adapted for use with other taxa including aquatic 

macroinvertebrates (Klemm et al. 2003, Weigel and Dimick 2011), birds (Bryce et al. 2002) and 
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even plants (Mack 2007). Cryptic tolerants may be present in these versions as well because taxa 

are defined based on ecological or taxonomic characteristics rather than measured response.  

Reliably assessing ecosystem health is crucial to monitoring localized faunal 

homogenizations and in turn implementing actionable management initiatives. Here we have 

identified some of the potential pitfalls of trait-based metrics of stream health and provided a 

method for mitigating these pitfalls. In summary, if agencies are interested in developing metrics 

of stream health that more accurately measure similarity to natural assemblage structure, 

defining sensitive and tolerant taxa based on quantified response to disturbance rather than based 

on ecological or taxonomic traits of organisms may provide a more accurate picture of ecosystem 

health.   
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    TAXONOMIC   ECOLOGICAL   COMBINATION 

Species  Shiner Sucker Darter  leuciscid   Native  Intolerant Invertivore Lithophil 
Simple 
misc.  Insectivorous leuciscid 

A. baileyi  x   x  x   x   x 
A. texanus  x   x  x    x  x 
C. oligolepis     x  x   x    
C. galactura  x   x  x    x  x 
C. venusta  x   x  x  x  x  x 
E. amplamala  x   x  x   x   x 
M. longirostris  x   x  x   x   x 
P. notatus     x  x       
S. atromaculatus    x  x   x    
S. thoreauianus     x  x   x    
H. etowanum   x    x   x    
E. duryi    x   x    x   
E. stigmaeum    x   x   x    
P. 

nigrofasciata       x     x     x       
 

Table 3.  Cryptic tolerant species identified from NMDS analyses and their contributions to "sensitive" metrics (higher scores) in the IBI. 
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