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Abstract

We are given an n × n array, ML(n, k), with integers n, d, k ≥ 1, such that n = mk

and each symbol in {0, ...,m − 1} appears in each row and column of the ML(n, k) exactly

k times. We aim to construct an MLd(n, k) with the restrictions below. It is required that the

array is filled so that every symbol i ∈ Zm appears exactly k times in each row and column, as

before. We will add the restriction that at most one of symbol i appears in each d × d block

inside of the original array. What are the possible values of n, k, and d? How do we arrange the

symbols? In this dissertation, we will find the answer to these questions by finding necessary

conditions for an MLd(n, k) to exist: m > d2, then creating a construction to produce one.

We will first assess the easier case of Latin squares, where k = 1, then move on to multi-Latin

squares, where k ≥ 2.
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Chapter 1

Background

1.1 Definitions and Examples

Definition 1.1.1. An n × n array is said to be row-Latin if each cell contains one of the

symbols in σ0, σ1, ..., σn−1, such that each row of the array contains each of the symbols in

σ0, σ1, ..., σn−1 exactly once. Column-Latin is defined similarly.

Definition 1.1.2. A Latin square of order n is an n×n array, each cell of which contains one of

the symbols in σ0, σ1, ..., σn−1, such that each row and each column of the array contains each

of the symbols in σ0, σ1, ..., σn−1 exactly once. [7]

1
1 2
2 1

1 2 3
2 3 1
3 1 2

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

n = 1 n = 2 n = 3 n = 4

Figure 1.1: Latin squares of size n [7]

Definition 1.1.3. A Latin square is said to be idempotent if cell (i, i) contains symbol i for

1 ≤ i ≤ n. A Latin square is said to be commutative if cells (i, j) and (j, i) contain the same

symbol for all 1 ≤ i, j ≤ n. [7]
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1 2 3
3 2 1
2 1 3

1 4 2 5 3
4 2 5 3 1
2 5 3 1 4
5 3 1 4 2
3 1 4 2 5

n = 3 n = 5

Figure 1.2: Idempotent and commutative Latin squares of size n [7]

Definition 1.1.4. Two Latin squares L1 and L2 are said to be orthogonal if for each (x, y) ∈

{1, 2, ..., n} × {1, 2, ..., n} there is exactly one ordered pair (i, j) such that cell (i, j) of L1

contains the symbol x and cell (i, j) of L2 contains the symbol y. [7]

Definition 1.1.5. A set of Latin squares L1, ..., Lm is mutually orthogonal, or a set of MOLS

(mutually orthogonal Latin squares), if for 1 ≤ a ̸= b ≤ m, La and Lb are orthogonal. [7]

1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4

1 4 2 3
3 2 4 1
4 1 3 2
2 3 1 4

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

L1 L2 L3

Figure 1.3: Three Mutually Orthogonal Latin Squares [7]

Definition 1.1.6. A subgrid S(s, t, u, v) of an m× n grid, where 1 ≤ s ≤ t ≤ m and 1 ≤ u ≤

v ≤ n, is the intersection of rows s through t and columns u through v. [1]

Definition 1.1.7. Let d ∈ Z+ with 1 ≤ d ≤ n. B[d] is a subgrid S(s, s + d − 1, t, t + d − 1)

for some s, t ∈ Zn.

1 4 2 5 3
4 2 5 3 1
2 5 3 1 4
5 3 1 4 2
3 1 4 2 5

5 3
3 1

5 3 1
3 1 4
1 4 2

A: Latin square of order n B[2] of A: s = 2, t = 3 B[3] of A: s = 2, t = 3

Figure 1.4: Examples of B[d]
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Definition 1.1.8. A Ld(n) is an n × n Latin square such that every B[d] contains at most one

of symbol i, for all i ∈ Zn, for some integer 1 < d ≤ n.

1 5 3 2 4
2 4 1 5 3
5 3 2 4 1
4 1 5 3 2
3 2 4 1 5

Figure 1.5: Example of a L2(5)

Note. Figure 1.4 is not an example of an L2(5) because the B[2] chosen contains the symbol

3 more than once. However, no matter what B[2] you look at in Figure 1.5, no symbol will

appear more than once.

Definition 1.1.9. A multi-Latin square, ML(n, k), with integers n, k ≥ 2 such that n = mk, is

an n×n array with rows and columns labeled 0, 1, ..., n−1 and filled with symbols 0, 1, ...,m−

1, where every symbol i ∈ Zm appears exactly k times in each row and column.

0 1 0 1
1 0 1 0
1 1 0 0
0 0 1 1

0 1 2 0 1 2
1 2 0 1 2 0
2 0 1 2 0 1
0 1 2 0 1 2
1 2 0 1 2 0
2 0 1 2 0 1

ML(4, 2) ML(6, 2)

Figure 1.6: Examples of Multi-Latin Squares
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Definition 1.1.10. An MLd(n, k) is an ML(n, k), where n, k ≥ 2 such that n = mk and every

B[d] contains at most one of symbol i for all i ∈ Zm, for some integer 1 < d ≤ n.

row/column 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 0 1 2 3 4
1 3 4 0 1 2 3 4 0 1 2
2 1 2 3 4 0 1 2 3 4 0
3 4 0 1 2 3 4 0 1 2 3
4 2 3 4 0 1 2 3 4 0 1
5 4 0 1 2 3 4 0 1 2 3
6 2 3 4 0 1 2 3 4 0 1
7 0 1 2 3 4 0 1 2 3 4
8 3 4 0 1 2 3 4 0 1 2
9 1 2 3 4 0 1 2 3 4 0

Figure 1.7: Example of ML2(10, 2)

1.2 History of Latin Squares

1.2.1 The Euler Officer Problem

The name ”Latin Square” was inspired by Leonhard Euler (1707-1783) because of his use of

Latin characters in the squares. However, the first instance published of a Latin square was

from Choi Seok-Jeong in 1700 to construct a magic square. [3]

In 1778, Euler introduced the following problem:

The Euler Officers Problem: ”Six officers from each of six different

regiments are selected so that the six officers from each regiment are of

six different ranks, the same six ranks being represented by each regiment.

Is it possible to arrange these 36 officers in a 6 × 6 array so that each regi-

ment and each rank is represented exactly once in each row and column of

this array?” [7] [5]

If a solution exists to this problem, it would be the same as forming two mutually orthog-

onal Latin squares of order 6. Euler made the following conjecture based off of his research of

this problem:

4



Euler’s Conjecture (1782): A pair of orthogonal Latin squares of order n

exists if and only if n is congruent to 0, 1, or 3 (mod 4). [5]

In 1900, Tarry [9] used brute force to prove that there did not exist a pair of orthogonal

Latin squares of order 6, proving that the Euler Officer Problem cannot be solved. Eventually,

MacNeish made the following conjecture:

MacNeish’s Conjecture (1922) ”Let n = pr11 ...prxx , where each of p1, p2, ..., px

is a distinct prime. Then the maximum number of MOLS(n) is

m(n) =min{pr11 , ..., prxx } − 1. [8]

Euler’s conjecture is a special case of MacNeish’s, and they were both proved wrong in

1960 when Bose, Shrikhande, and Parker [2] proved that a pair of orthogonal Latin squares of

order n exists for all n except 2 and 6. Euler provided the initial spark for the history of this

problem and many others. Design theory is a field that dates back to the problems of magic

squares and Latin squares, and has grown into a large field of study with many open problems

and applications today.

1.2.2 Applications of Latin Squares

As we have seen, Latin squares have many applications in the field of Design theory. However,

it also plays a hand in many other fields. For example, in Algebra, Latin squares are related

to groups. In particular, they can be characterized as the multiplication tables of quasigroups.

Latin squares have also found applications in error correcting code. This application is mostly

applied to noise other than basic white noise, specifically when trying to transmit internet over

power lines. [4] [6] Latin squares are also found in every day puzzles. Sudoku is an example of

a 9× 9 Latin square with the extra condition that each of the specified blocks of size 3 needs to

include every symbol in it exactly once. In the game, you are given certain placements of some

of the numbers, and the player must fill in the rest. Below is an example of one where the blue

numbers were given at the beginning, and the black numbers were filled in by the player.
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Figure 1.8: Sudoku puzzle (Latin square of order 9)

There are many spin-offs of Sudoku that are similar Latin squares with different kinds of

conditions on them. Below is an example of two popular spin-offs, KenKen and Strimko. In

KenKen, you are given only the bold lines and the combination of the number and operation

you see in the corner. You must satisfy each operation while forming a Latin square. For

example, in the top right corner, there is a 2−, meaning that for the cells contained in those

bold lines, they must subtract to equal 2. In Strimko, you are given the numbers in the blue

circles and the lines connecting the circles. From there, the player must fill in the rest to create

a Latin square. The extra condition is that each stream (any circles connected by a single line)

must contain different numbers.

KenKen Strimko

Figure 1.9: Popular Games Based off of Latin Squares

There are many more variations of puzzles on Latin squares. The main problem of this

paper is similar to these puzzles as we are trying to form Latin squares with extra conditions on

them.
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1.3 Previous Work

1.3.1 Results from [1]

Definition 1.3.1. Let k, d, n ∈ Z+, where 1 ≤ k, 2 ≤ d < n. Then a (d, k, n)-tree planting

(denoted as TP (d, k, n)) is a planting of exactly k trees (or a placement of exactly ksymbols)

in each row and column of n-grid such that there is at most one tree in any block B[d].

The following are results from [1], numbered as they are in that dissertation.

Theorem 1.4 If TP (d, k, n) exists, then
⌊

n
d2

⌋
≥ k.

Proposition 1.6 TP (d, k, kd2) can be attained by planting trees in the cells (jd+ i, d(ki+

l − k)−
⌊
jd+i−1

kd

⌋
, where 1 ≤ i ≤ d, 0 ≤ j ≤ dk − 1, and 1 ≤ l ≤ k.

Proposition 1.8 TP (d, k,mdk) can be attained by planting trees in the cells (jm +

i, d(ki+ l)− dk −
⌊
jm+i−1

mk

⌋
+ 1, where 1 ≤ i ≤ m, 0 ≤ j ≤ dk − 1, and 1 ≤ l ≤ k − 1.

1.3.2 Comparison to [1]

Chapter 1 of [1] discusses necessary and sufficient conditions for the existence of TP (d, k, n).

Theorem 1.4 of [1] is similar to Theorems 2.1.1 and 2.1.2 of this paper. However, since [1]

is only looking at one tree (or symbol), there can exist a TP (d, 1, d2), shown in Figure 1.10,

whereas there does not exist an Ld(d
2), which will be proven later in this dissertation. Similarly,

Proposition 1.6 in [1] gives a construction for TP (d, k, kd2), but an MLd(kd
2, k) is proven to

not exist by Theorem 3.1.2 of this dissertation.

Example 1.3.1.

Figure 1.10: Examples of TP (d, 1, d2)
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Proposition 1.8 in [1] gives a construction for a TP (d, k,mkd), where m > d. Only

placing one symbol, say symbol 0 in the construction in Theorem 3.2.2 of this paper of an

MLd(n, k) where n = mk and m ≥ d2 + 1 gives a different construction of a TP (d, k,mkd)

than Proposition 1.8.

Example 1.3.2. Below is a picture from[1] of a TP (d, k,mdk) with d = 2, k = 3,m = 4.

Figure 1.11: Example of a TP (2, 3, 24)

Chapter 2 of [1] goes on to discuss possibilities of TP (d, k,mkd + i) where 1 ≤ i ≤ d.

This paper does not have a construction to cover this, since we are only discussing multi-Latin

squares, where k|n.

In the following chapters, we will present results on a generalization of [1].
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Chapter 2

Existence of Ld(n)

The previously stated problem of finding necessary and sufficient conditions of TP (d, k, n)

leads into the problem statement for this dissertation. In this chapter, we will discuss the exis-

tence of Ld(n), which was defined in Definition 1.1.8. We will assume that n > d ≥ 2.

2.1 Necessary and Sufficient Conditions

Theorem 2.1.1. If an Ld(n) exists, then n ≥ d2.

Proof. Suppose there exists an Ld(n) with blocks of size d with 2 ≤ d ≤ n. Therefore, there

must be at least one B[d], say b. By Definitions 1.1.7 and 1.1.8, the block b must contain d2

distinct symbols. So, n ≥ d2.

Theorem 2.1.2. If an Ld(n) exists, then n ̸= d2.

Proof. Assume that there exists an Ld(n) of size n = d2. Consider symbol i ∈ Zn and consider

just the first d rows of the Ld(n). The symbol i must show up in each row, meaning that it must

appear in each of the B[d]’s shown below:

Figure 2.1: First d rows of the Ld(n)

This will occur for the next d− 1 sets of d rows, too. So, the symbol i must appear exactly

once in each of the B[d]’s shown below.
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Figure 2.2: Ld(n) broken down into sets of d− 1 rows

Since this argument works for any symbol i in the Latin square, consider the symbol j

such that there is a j in the cell (d− 1, d− 1). Since the j in S(0, d− 1, 0, d− 1) is in column

d−1, this forces the j in the block S(0, d−1, d, 2d−1) to be in column 2d−1 in order for them

to be far enough apart to not be in a d×d block together. Similarly, the j in S(d, 2d−1, 0, d−1)

must be in row 2d− 1.

Figure 2.3: Contradiction in the middle block: S(d, 2d− 1, d, 2d− 1)

Now, consider the block S(d, 2d − 1, d, 2d − 1). Since there is already a j in row 2d − 1

and column 2d− 1, the j in this block must be in S(d, 2d− 2, d, 2d− 2). Therefore, the d× d

block S(d− 1, 2d− 2, d− 1, 2d− 2) has two of the symbols j in it, which is a contradiction to

the definition of an Ld(n).
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2.2 Construction

Theorem 2.2.1. If n ≥ d2 + 1, then Ld(n) exists.

Construction. Let n, d, g, h, p, and q be integers such that n ≥ d2 + 1, g = gcd(n, d),

h = n
g
, 0 ≤ p ≤ h− 1, and 0 ≤ q ≤ g− 1. Given a pair (r, c) with r, c ∈ {0, 1, ..., n− 1}, find

p and q such that p + qh = r and q + pd + s′ = c, for some s′. Then, place symbol s in cell

(r, c) where s ∼= s′ (mod n) and s ∈ {0, ..., n− 1}.

Example 2.2.1. Let n = 5 and d = 2. Then g = 1, h = 5, and 0 ≤ p ≤ 4, 0 ≤ q ≤ 0.

Consider cell (0, 0). We have that r = 0 = p + qh. Since q = 0, this forces p = 0. Then

c = 0 = q + pd + s′ = 0 + 0 + s′. Therefore, the symbol in cell (0, 0) is s = 0. From the

construction, the rest of row 0 is simple to fill in.

Consider cell (1, 0). We have that r = 1 = p+ qh. Again, q = 0, so p = 1. This leads to

c = 0 = q + pd+ s′ = 0 + (1× 2) + s′

⇒ s′ = −2 ⇒ s ∼= −2(mod 5) ∼= 3(mod 5)

Lastly, consider cell, say (4, 2). Here, r = 4 = p+ qh = p. Then

c = 2 = q + pd+ s′ = 0 + (4× 2) + s′ = 8 + s′

⇒ s′ = −6 ⇒ s ∼= −6(mod 5) ∼= 4(mod 5)

Below is the example all filled in:

0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1

Figure 2.4: Example of an L2(5) using the construction above
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Before we prove Theorem 2.2.1, here are some lemmas to help us out.

Lemma 2.2.2. Suppose that n, d > 1 are integers, g = gcd(n, d), and h = n
g
. Then for each

r ∈ {0, ..., n − 1} there is a unique pair (p, q) with 0 ≤ p ≤ h − 1, 0 ≤ q ≤ g − 1, such that

r = p+ qh.

Proof. There are hg = n pairs (p, q) and for each pair

0 = 0 + 0h ≤ p+ qh ≤ (h− 1) + (g − 1)h = gh− 1 = n− 1

So, it suffices to show that for 0 ≤ q1, q2 ≤ g − 1 and 0 ≤ p1, p2 ≤ h− 1,

p1 + q1h = p2 + q2h ⇒ p1 = p2 q1 = q2

Therefore, if p1 + q1h = p2 + q2h, then we have that p1 − p2 = (q1 − q2)h. Since

|p1 − p2| ≤ h− 1 < h, there is no way this would happen unless p1 = p2 and q1 = q2.

Lemma 2.2.3. Suppose that 0 ≤ r ≤ n− 2 and 0 ≤ c ≤ n− 1.

(a) Suppose that r = p + qd for some 0 ≤ p ≤ h − 1 and 0 ≤ q ≤ g − 1. Then

s(r + 1, c) ≡ s(r, c)− d (mod n).

(b) Suppose that r = (h − 1) + qd for some 0 ≤ q ≤ g − 1. Then, s(r + 1, c) ≡

s(r, c)− (d+ 1) (mod n).

Proof. (a) Let r = p+qh for 0 ≤ p ≤ h−2, 0 ≤ q ≤ g−1 and let s′ be such that c = q+pd+s′.

So, we have that:

c = q + pd+ s′ = q + (p− 1)d+ s′ − d

⇒ s(r + 1, c) ≡ s′ − d (mod n) ≡ s(r, c)− d (mod n)

(b) As in the proof of (a), we have that r = p+ qh = h−1+ qh and c = q+(h−1)d+ s′.

Then r + 1 = h+ qh = 0 + (q + 1)h when q < g − 1 (we will cover this case below). So,

c = q + (h− 1)d+ s′ = (q + 1) + 0d+ s′ − 1 + (h− 1)d
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⇒ s(r + 1, c) ≡ s′ − 1 + hd− d (mod n)

≡ s(r, c)− 1 +
nd

g
− d (mod n)

≡ s(r, c)− (d+ 1) (mod n)

As for the possibility that p = h− 1 and q = g − 1, we have that:

r = h− 1 + (g − 1)h = gh− 1 = h− 1

whereas r ≤ h− 2, by supposition.

Lemma 2.2.4. Let s(r, c) denote the symbol in cell (r, c). Suppose that 0 ≤ r ≤ n − 1 and

0 ≤ c ≤ n− 2. Then s(r, c+ 1) ≡ s(r, c) + 1 (mod n).

Proof. Let 0 ≤ p ≤ h − 1,≤ q ≤ g − 1 be such that r = p + qh, and let s′ be such that

c = q + pd+ s′. Then:

c+ 1 = q + pd+ (s′ + 1)

⇒ s(r, c+ 1) ≡ s′ + 1 ≡ s(r, c) + 1 (mod n)

Below is a visual of Lemmas 2.2.3 and 2.2.4:

Figure 2.5: Lemmas 2.2.3 and 2.2.4 for α ∈ {0, 1}
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Lemma 2.2.5. This construction forms an n× n Latin square.

Proof. It is obvious that this array is row-Latin (see Definition 1.1.1) due to Lemma 2.2.4. So,

we will show that this array is also column-Latin. Assume that there is a symbol i that appears

twice in column j in cells (k, j) and (l, j), with k = p1 + q1h and l = p2 + q2h. Then,

j = q1 + p1d+ i = q2 + p2d+ i

q1 + p1d = q2 + p2d

q1 − q2 = d(p1 − p2)

First, assume that p1 − p2 ̸= 0. This implies that d|(q1 − q2). However, |q1 − q2| < g and

g|d. Therefore, p1 − p2 = 0, so q1 − q2 = 0, and k = l.

So we see that we cannot have one symbol appearing more than once in each column.

Therefore, this array is column-Latin.

Lemma 2.2.6. This construction forms an Ld(n).

Proof. Using the previous lemma, we know that we are working with an n × n Latin square.

Suppose that symbol s is in cells (i, j) = (p1 + q1h, q1 + p1d + s) and (k, l) = (p2 + q2h,

q2 + p2d+ s). Note first that h > d since h = n
g
≥ d2+1

d
> d.

If |i− k| ≥ d− 1, we are done.

Suppose |i− k| ≤ d− 1. We will show that the columns are at least d apart, so these two

s symbols do not show up in the same d× d block. We can suppose that:

|i− k| = |(p1 + q1h)− (p2 + q2h)| ≤ d− 1

|(p1 − p2) + (q1 − q2)h| ≤ d− 1 (1)

• Case 1. Suppose q1 = q2. If p1 = p2, then (i, j) = (k, l). If p1 ̸= p2, then:

|d(p1 − p2)| ≥ d

14



⇒ |(q1 − q2) + d(p1 − p2)| = |j − l| ≥ d

• Case 2. Suppose q1 ̸= q2. If p1 = p2, then |i−k| = |h(q1−q2)| ≥ h > d, a contradiction

to (1).

So, assume that p1 ̸= p2. And, without loss of generality, that p1 > p2.

– Case 2.a. If q1 > q2, then (p1 − p2) + h(q1 − q2) > d since everything is positive

and h > d. This is a contradiction to (1).

– Case 2.b. Now suppose that q1 < q2. Assume that |j − l| < d for a contradiction.

Then we have that:

−d < (q1 − q2) + d(p1 − p2) < d

⇒ d(p1 − p2) < d− (q1 − q2)

Note that since 0 ≤ q1, q2 < g, we get that 0 < (q2 − q1) < g. So:

d(p1 − p2) < d+ g ⇒ d(p1 − p2 − 1) < g (2)

Since p1 > p2 and g ≤ d, if p1 − p2 > 1, then d(p1 − p2 − 1) > d ≥ g, which

contradicts (2).

If p1 − p2 = 1, then we get from (1) that

−d < 1 + h(q1 − q2) < d ⇒ −d− 1 < h(q1 − q2)

Since h > d and q1 − q2 < 0, we know that h(q1 − q2) < −d. So, we get that

−d− 1 < h(q1 − q2) < −d

which is a contradiction since h(q1 − q2) is an integer.

Therefore, if |i− k| ≤ d− 1, |j − l| ≥ d, so we will not have any symbol appearing more

than once in one B[d].
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Proof. Alternate proof of Lemma 2.2.6. Let L be the n × n Latin square formed by the

construction above. We will show that L in an Ld(n) by looking at the possible blocks of size

d inside.

Consider a block of size d, say B, in L. For simplicity, call the top left cell in B cell (0, 0).

Note that this is not necessarily cell (0, 0) of L. Let i be the symbol in cell (0, 0) of B. We will

show that there will be no repeated values in this block due to the construction.

We know, by Lemmas 2.2.3 (a) and 2.2.4 that if cell (0, 0) contains symbol i, then cell

(0, a) will contain symbol i + a (mod n) and cell (a, 0) will contain symbol i − ad for some

integer 0 ≤ a ≤ n. Below is a figure showing B filled out in this manner.

Figure 2.6: B filled out according to the Construction

Clearly, rows 1 through d− 1 of B will not have any repeated symbols. So, let’s compare

row 0 to the rest of the rows to make sure that there are no repeated symbols.

Ignoring row 0 of B, the smallest value (before being reduced modulo n is in cell (d−1, 0).

The symbol in this cell is i− d2 + d. Since m ≥ d2 + 1, we get that

i− d2 + d ≥ i−m+ 1 + d ∼= i+ 1 + d (mod n)
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Therefore, rows 1 through d−1 of B contain all the elements between i−d2+d and i−1.

Since the largest value in row 0 of B is i + d − 1 and the smallest value in the rest of B is at

least i+ 1 + d, we will have no repeated values.

This case will work if g = 1 or if q does not change throughout B. However, we could

have a case where g ≥ 2 and q does change inside of B. This transition will only occur one

time inside of any block of size d because 0 ≤ p ≤ h and h > b. So, lets consider this case and

call the block B1. Let symbol i be in cell (0, 0) of B1. Suppose q is incremented by 1 in row a

of B1. Lemma 2.2.3 (b) will help us with the following figure.

Figure 2.7: B filled out according to the Construction

We will fill in B1 similar to how we did before, as shown in Figure 2.6. This time, though,

row a will shift everything again by 1, by the construction. We know that rows 1 through

a − 1 do not repeat any symbols, and neither do rows a through d − 1. We also know that

i−ad+d−1 < i−(a−1)d, so there will not be any repeated symbols in rows 1 through d−1.

Now, let’s check that row 0 does not repeat any of the symbols from the other rows. Note that

rows 1 through d− 1 contain (nearly) consecutive values from i− (d− 1)d− 1 through i− 1.

Since n ≥ d2 + 1, have that

i− (d− 1)d− 1 ≥ i− n+ 1 + d− 1 ∼= i+ d (mod n)
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Since row 0 contains the consecutive values i through i + d − 1, there are no repeated

values and no repeated symbols when everything is reduced modulo n.

Example 2.2.2. Here, we will look at an example when n = 12, and d = 3.

row/column 0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 4 5 6 7 8 9 10 11
1 9 10 11 0 1 2 3 4 5 6 7 8
2 6 7 8 9 10 11 0 1 2 3 4 5
3 3 4 5 6 7 8 9 10 11 0 1 2
4 11 0 1 2 3 4 5 6 7 8 9 10
5 8 9 10 11 0 1 2 3 4 5 6 7
6 5 6 7 8 9 10 11 0 1 2 3 4
7 2 3 4 5 6 7 8 9 10 11 0 1
8 10 11 0 1 2 3 4 5 6 7 8 9
9 7 8 9 10 11 0 1 2 3 4 5 6

10 4 5 6 7 8 9 10 11 0 1 2 3
11 1 2 3 4 5 6 7 8 9 10 11 0

Figure 2.8: L3(12)

Example 2.2.3. Here is an example when n = 13, and d = 3.

row/column 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 2 3 4 5 6 7 8 9 10 11 12
1 10 11 12 0 1 2 3 4 5 6 7 8 9
2 7 8 9 10 11 12 0 1 2 3 4 5 6
3 4 5 6 7 8 9 10 11 12 0 1 2 3
4 1 2 3 4 5 6 7 8 9 10 11 12 0
5 11 12 0 1 2 3 4 5 6 7 8 9 10
6 8 9 10 11 12 0 1 2 3 4 5 6 7
7 5 6 7 8 9 10 11 12 0 1 2 3 4
8 2 3 4 5 6 7 8 9 10 11 12 0 1
9 12 0 1 2 3 4 5 6 7 8 9 10 11

10 9 10 11 12 0 1 2 3 4 5 6 7 8
11 6 7 8 9 10 11 12 0 1 2 3 4 5
12 3 4 5 6 7 8 9 10 11 12 0 1 2

Figure 2.9: L3(13)
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Chapter 3

Existence of MLd(n, k)

3.1 Necessary and Sufficient Conditions for the Existence of an MLd(n, k)

Theorem 3.1.1. If MLd(n, k) exists, then m ≥ d2. This implies that n ≥ kd2.

Proof. Suppose there exists an MLd(n, k) with blocks of size d with 1 < d ≤ n. Therefore,

there must be at least one B[d], say b. By Definition 1.1.10, the block b must contain d2 distinct

symbols, implying that m ≥ d2 and n ≥ kd2.

Theorem 3.1.2. If MLd(n, k) exists, then m ̸= d2.

Proof. Suppose there exists an MLd(kd
2, k) with blocks of size d with 1 < d ≤ n and 1 <

k < n. Consider just the first d rows of the multi-Latin square and consider symbol i ∈ Zm.

The symbol i must show up exactly k times in each row, meaning that it must appear exactly

kd times in just the first d rows. This implies that i must appear in each of the B[d]’s in Figure

3.1.

Figure 3.1: First d rows of an MLd(kd
2, k)

This will occur for all of the following sets of d rows, too. So, the arbitrary symbol i must

appear exactly once in each of the special blocks of size d shown in Figure 3.2.
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Figure 3.2: MLd(kd
2, k) broken down into sets of d− 1 rows

Since this argument works for any symbol i in the multi-Latin square, consider the symbol

j such that there is a j in the cell (d − 1, d − 1). Since the j in S(0, d − 1, 0, d − 1) is in row

d − 1, this forces the j in the block S(0, d − 1, d, 2d − 1) to be in column 2d − 1 in order for

them to be far enough apart to not be in a B[d] together. Similarly, the j in S(d, 2d−1, 0, d−1)

must be in row 2d− 1.

Figure 3.3: Special blocks in MLd(kd
2, k)

Consider two adjacent special blocks in the first d rows S(0, d− 1, (x− 1)d, xd− 1) and

S(0, d−1, xd, (x+1)d−1) such that the first one has a j in row d−1 and the next one does not.

Similarly, consider two adjacent special blocks in the first d columns S((y−1)d, yd−1, 0, d−1)

and S(yd, (y + 1)d − 1, 0, d − 1) such that the first one has a j in column d − 1 and the next

one does not. Note that the first block could be S(0, d − 1, 0, d − 1) if needed. This is shown

in Figure 3.4.
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Figure 3.4: S1 and S2 MLd(kd
2, k)

Consider the blocks S1 = S((y − 1)d, yd − 1, (x − 1)d, xd − 1) and S2 = S(yd, (y +

1)d− 1, xd, (x+ 1)d− 1). Because of the j in S(0, d− 1, (x− 1)d, xd− 1), the j in S1 must

be in row yd − 1. Similarly, because of the j in S((y − 1)d, yd − 1, 0, d − 1), the j in S1

must be in column xd− 1, forcing it to be in cell (yd− 1, xd− 1) which is in the bottom right

corner of S1. This will force the j in S2 to be in row (y+1)d− 1, column (x+1)d− 1, or cell

((y + 1)d− 1, (x+ 1)d− 1) because this must be an MLd(n, k).

Consider row (y + 1)d − 1. Note that since this is an ML(n, k), j will appear k times in

row d − 1, which will push the j in the special blocks below it to be in the bottom row of the

special blocks, as shown below. Similarly with column d− 1.

Figure 3.5: j gets pushed in the MLd(kd
2, k)
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This implies that j appears k times in row (y + 1)d − 1. Since j is not in row d − 1 in

S(0, d− 1, xd, (x+ 1)d− 1), if the j is in row (y + 1)d− 1 in S2, j would appear k + 1 times

in this row, creating a contradiction that this is an ML(n, k).

Similarly, we can conclude that j cannot be in column (x + 1)d − 1 in S2. This implies

that there is no j in S2, which is a contradiction. Therefore, we cannot get an MLd(n, k) where

m = d2.

Proof. Alternate Proof of Theorem 3.1.2: For a contradiction, assume that A is an MLd(kd
2, k)

such that d, k ≥ 2. Since there are exactly d2 symbols and each symbol may appear at most

once in each d×d block, each symbol will occur exactly once in each d×d block. Let Bd(a, b)

represent the subgrid S(a, a+ d− 1, b, b+ d− 1) such that 0 ≤ a, b ≤ kd2 − d.

Consider the top row of the d× d block Bd(r, b), and call it R(r, b) = S(r, r, b, b+ d− 1)

where 0 ≤ r ≤ kd2 − d − 1. Bd(r, d) shares d − 1 rows with Bd(r + 1, b), the bottom row

of which is R(r + d, b). Since each symbols appears exactly once in each of Bd(r, b) and

Bd(r + d, b), it follows that the set of d symbols in R(r, b) must be exactly the same as the

set of symbols appearing in R(r + d, b). Applying similar logic to the columns, we get that

C(a, c) = S(a, a+ d− 1, c, c) must contain exactly the same set of symbols as C(a, c+ d).

Figure 3.6: R(r, b) from Bd(r, b)
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Therefore, for any d consecutive cells in A, whether horizontal or vertical, any set of cells

in A obtained by transLating the given cells vertically or horizontally, respectfully, by an integer

multiple of d spaces will have the same set of entries as the given cells.

Let z be the symbol in cell (0, 0) of A. Then in the rows 0, ..., d − 1, the symbol z must

appear only in columns numbered 0, d, ..., (kd − 1)d. In each of the rows 0, ..., d − 1, z will

appear k times. Therefore, as x varies over 0, ..., d− 1, the number of the row that z appears in

in column xd will vary over 0, ..., d− 1, starting with 0 when x = 0.

So, we can find x ∈ {0, ..., kd − 2} and 0 ≤ i1 < i2 ≤ d − 1 such that z appears in cells

(i1, xd) and (i2, (x+ 1)d). Similarly, we can find y ∈ {0, ..., kd− 2} and 0 ≤ j1 < j2 ≤ d− 1

such that z appears in cells (yd, j1) and ((y + 1)d, j2).

Let S1 = S(yd, yd+ d− 1, xd, xd+ d− 1)

S2 = S(yd, yd+ d− 1, (x+ 1)d, (x+ 1)d+ d− 1)

S3 = S((y + 1)d, (y + 1)d+ d− 1, xd, xd+ d− 1)

S4 = S((y + 1)d, (y + 1)d+ d− 1, (x+ 1)d, (x+ 1)d+ d− 1)

Figure 3.7: S1, S2, S3, S4

We can see that S1 and S2 are horizontal translates of Bd(yd, 0) = S(yd, yd+d−1, 0, d−1)

by xd and (x + 1)d, respectively. Similarly, S3 and S4 are horizontal translates of Bd(0, xd)

by xd and (x + 1)d. Also, S1 and S3 are vertical translates of Bd(0, xd) by yd and (y + 1)d,
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respectively. Finally, S2 and S4 are vertical translates of Bd(0, (x + 1)d) by yd and (y + 1)d,

respectively.

Therefore, z appears in S1 in column xd+ j1 and row yd+ i1.

So, in S1, z is in cell (yd+ i1, xd+ j1)

in S2, z is in cell (yd+ i2, (x+ 1)d+ j1)

in S3, z is in cell ((y + 1)d+ i1, xd+ j2)

in S4, z is in cell ((y + 1)d+ i2, (x+ 1)d+ j2)

The distance between the row containing z in S2 and the row containing z in S3 is:

(y + 1)d+ i1 − [yd+ i2] = i1 − i2 + d

Since 0 ≤ i1 < i2 ≤ d− 1, we have that −1 ≤ i1 − i2 + d < d. So, since the distance between

the rows is not at least d, we will see if the columns will be far enough apart.

The distance between the column containing z in S2 and the column containing z in S3 is:

xd+ j2 − [(x+ 1)d+ j1] = j2 − j1 − d

Since 0 ≤ j1 < j2 ≤ d− 1, we have that −d < j2 − j1 − d ≤ −1.

Since neither the distance between the rows nor the distance between the columns of the

cells containing z in S2 and S3 are at least d apart, we have that z will appear twice in the same

Bd.

3.2 Construction

Theorem 3.2.1. If m ≥ d2 + 1, then MLd(n, k) exists.

Construction. Let n,m, d, g, h, p, q, and t be integers such that n = mk, 0 ≤ p ≤ h − 1,

m ≥ d2 + 1, 0 ≤ q ≤ g − 1, g = gcd(n, d), 0 ≤ t ≤ k − 1, and h = n/g. Given a pair (r, c)

with r, c ∈ {0, ..., n− 1}, find p, q, and t such that p+ qh = r, and q+ pd+ tm+ s′ = c. Then,

place symbol s in cell (r, c) such that s ∼= s′ (mod m) and s ∈ {0, ...,m− 1}.
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Example 3.2.1. Here, we will look at an example when n = 10, k = 2, m = 5, and d = 2. So,

g = 2, h = 5, 0 ≤ p ≤ 4, 0 ≤ q ≤ 1, and 0 ≤ t ≤ 1. Similarly to the construction in chapter

two, let’s pick a few cells to fill in.

Consider cell (0, 0). We have that r = 0 = p + qh, forcing p and q to be 0. Then,

c = 0 = q + pd+ tm+ s′ = tm+ s′, so t = s′ = 0.

Now, look at cell (2, 5). r = 2 = p + qh. Since h = 5, q must be zero and p must be 2.

The we get: c = 5 = q + pd+ tm+ s′ = (2× 2) + (t× 5) + s′. Since m = 5, t = 0 :, and we

get: 4 + s′ = 5 ⇒ s ∼= 1 (mod 5).

Let’s walk through one more: cell (8, 3). r = 8 = p + qh. Since p ≤ 4, we need q = 1

and p = 3. Therefore, c = 3 = q+ pd+ tm+ s′ = 1+ (3× 2)+ (t× 5)+ s′. In order to make

this work, t = 0, and s′ = −4. Then we get that s ∼= −4 (mod 5) ∼= 1 (mod 5).

The example below shows the rest of the cells filled in similarly.

row/column 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 0 1 2 3 4
1 3 4 0 1 2 3 4 0 1 2
2 1 2 3 4 0 1 2 3 4 0
3 4 0 1 2 3 4 0 1 2 3
4 2 3 4 0 1 2 3 4 0 1
5 4 0 1 2 3 4 0 1 2 3
6 2 3 4 0 1 2 3 4 0 1
7 0 1 2 3 4 0 1 2 3 4
8 3 4 0 1 2 3 4 0 1 2
9 1 2 3 4 0 1 2 3 4 0

Figure 3.8: ML2(10, 2) formed by the construction above
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Before we prove our main theorem of this dissertation, we will cover some helpful notation

and lemmas. Consider an n× n array with each of the n2 cells occupied by one of the symbols

0, ...,m − 1, such that n = mk. For (r, c) ∈ {0, 1, ..., n − 1}2, an index of a cell in the array,

let p and q be the unique elements of {0, 1, ..., h − 1} and {0, 1, ..., g − 1}, respectively, such

that r = p + qh. Note that Lemma 2.2.2 proves that every r ∈ {0, ..., n − 1} is able to be

represented by p and q as stated. Then let s′ and t be integers such that 0 ≤ t ≤ k − 1 and

c = q + pd + tm + s′. Then, let (r, c) be occupied by the symbol s ∈ {0, 1, ...,m − 1} such

that s ≡ s′ (mod m) and s ∈ {0, ...,m− 1}. Let this s be denoted s(r, c).

Lemma 3.2.2. Suppose that 0 ≤ r ≤ n− 2 and 0 ≤ c ≤ n− 1.

(a) Suppose that r = p + qd for some 0 ≤ p ≤ h − 1 and 0 ≤ q ≤ g − 1. Then

s(r + 1, c) ≡ s(r, c)− d (mod m).

(b) Suppose that r = (h − 1) + qd for some 0 ≤ q ≤ g − 1. Then, s(r + 1, c) ≡

s(r, c)− (d+ 1) (mod m).

Proof. (a) Let r = p + qh for 0 ≤ p ≤ h − 2, 0 ≤ q ≤ g − 1 and let s′ and t be such that

c = q + pd+ tm+ s′. So, we have that:

c = q + pd+ tm+ s′ = q + (p+ 1)d+ tm+ s′ − d

⇒ s(r + 1, c) ≡ s′ − d (mod m) ≡ s(r, c)− d (mod m)

(b) As in the proof of (a), we have that r = p+qh = h−1+qh and c = q+(h−1)d+tm+s′.

Then r + 1 = h+ qh = 0 + (q + 1)h when q < g − 1 (we will cover this case below). So,

c = q + (h− 1)d+ tm+ s′ = (q + 1) + 0d+ tm+ s′ − 1 + (h− 1)d

⇒ s(r + 1, c) ≡ s′ − 1 + hd− d (mod m)

≡ s(r, c)− 1 +
nd

g
− d (mod m)

= s(r, c)− (d+ 1) +mk

(
d

g

)
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≡ s(r, c)− (d+ 1) (mod m)

As for the possibility that p = h− 1 and q = g − 1, we have that:

r = h− 1 + (g − 1)h = gh− 1 = h− 1

whereas r ≤ h− 2, by supposition.

Lemma 3.2.3. Suppose that 0 ≤ r ≤ n− 1 and 0 ≤ c ≤ n− 2. Then s(r, c+ 1) ≡ s(r, c) + 1

(mod m).

Proof. Let 0 ≤ p ≤ h − 1,≤ q ≤ g − 1 be such that r = p + qh, and let s′ and t, with

0 ≤ t ≤ k − 1, be such that c = q + pd+ tm+ s′. Then:

c+ 1 = q + pd+ tm+ (s′ + 1)

⇒ s(r, c+ 1) ≡ s′ + 1 ≡ s(r, c) + 1 (mod m)

Below is a visual of Lemmas 3.2.2 and 3.2.3:

Figure 3.9: Lemmas 3.2.2 and 3.2.3 for α ∈ {0, 1}

Note that Lemmas 3.2.2 and 3.2.3 are mirrors of Lemmas 2.2.3 and 2.2.4.
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Lemma 3.2.4. This construction forms an n× n k-Latin square.

Proof. Let ML be the n× n array formed from the construction.

Based on Lemma 3.2.2, we know that ML is row-Latin. So, we will show now that it is

column-Latin.

Note first that each column 0 < j < n is the translate of column 0 by adding j (mod m)

to each entry in columns 0. Therefore, it suffices to show that each s ∈ {0, ...,m− 1} appears

exactly k times in row 0.

Let n and d be positive integers such that g = gcd(n, d) and h = n
g
. We will now prove

that the n numbers q + pd, as q ranges from 0 to g − 1 and p ranges from 0 to h− 1, represent

all n of the congruence classes modulo n.

Note that the following proof is not dependent upon m or k and has no restrictions on

n and d other than needing to be positive integers. Therefore, as long as n = mk, even if

m ≤ d2, if ML is formed according to the construction, it will be an ML(n, k) even if it is not

an MLd(n, k).

Let d′ = d
g
. Then n and d′ are relatively prime. Also, let a1, a2, ..., az ∈ Z be rep-

resentatives of different congruence classes modulo n. Therefore, a1d′, a2d′, ..., azd′ are also

representatives of different congruence classes modulo n.

As p ranges from 0 to h − 1, pg ranges over 0, g, ..., (h − 1)g = n − g, which are repre-

sentatives of h distinct congruence classes modulo n. Note that these congruence classes are

precisely the elements of the additive subgroup, H , of Zn generated by the congruence class of

g, let’s call it ḡ.

Therefore, as p varies, pd = (pg)d′ varies over h distinct congruence classes modulo n.

Since g divides every representative of each of these congruence classes, they must be the

elements of H . (Note that they may be in a different order than 0̄, ḡ, 2̄g, ..., ¯(h− 1)g.

The cosets of H in Zn are H = 0̄ +H , H = 1̄ +H , H = 2̄ +H , ..., H = ḡ+H and thus

the congruence classes of the n integers q + pd as q ranges from 0 to g − 1 and p ranges from

0 to h− 1 are the n distinct congruence classes modulo n. This finishes the proof.
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Lemma 3.2.5. This construction forms an MLd(n, k).

Proof. As stated in the construction, let n,m, d, g, h, q, t, s, and s′ be integers such that n =

mk, m ≥ d2 + 1 is the number of symbols. Let g = gcd(n, d), h = n
g
, 0 ≤ p ≤ h − 1,

0 ≤ q ≤ g − 1, and 0 ≤ t ≤ k − 1. We can prove that no symbol appears twice in any Bd in

the ML(n, k) using the construction if m ≥ d2 + 1.

Two cells (r, c) and (r + x, c + y) are in the same Bd if and only if 0 ≤ |x|, |y| ≤ d − 1.

Assuming this and that |x| + |y| ≥ 1, it suffices to show that s(r + x, c + y) − s(r, c) ̸≡

0 (mod m). Note that if both x, y < 0, then (r+x, c+y) = (r′, c′) and (r, c) = (r′+x, r′+y).

So, we can assume that they won’t both be negative, but they could both be positive.

Given Lemmas 3.2.3 and 3.2.4, we have that:

s(r + x, c+ y)− s(r, c) = (s(r + x, c+ y)− s(r + x, c)) + (s(r + x, c)− s(r, c))

= y − (xd+ α) (mod m)

where α ∈ {0, 1} is the number of integers z ∈ {0, 1, ..., |x|−1} such that r+z = h−1+qd

for some q ∈ {0, 1, ..., g − 1}. So, it suffices to show that −m + 1 ≤ y − (xd + α) ≤ −1 or

that 1 ≤ y − (xd+ α) ≤ m− 1 which will imply that s(r + x, c+ y)− s(r, c) ̸≡ 0 (mod m).

• If x = 0, then α = 0, 0 < |y| ≤ d− 1, and we get that

s(r + x, c+ y)− s(r, c) ≡ y ̸≡ 0 (mod m)

• If 0 < x ≤ d− 1, then since −d+ 1 ≤ y ≤ d− 1,

−m+ 1 ≤ −d2 = (−d+ 1)− ((d− 1)d+ 1) ≤ y − (xd+ α) ≤ d− 1− (d) = −1

⇒ s(r + x, c+ y)− s(r, c) ̸= 0
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• If −d+ 1 ≤ x < 0, then 0 ≤ y ≤ d− 1

d− 1 = 0− (−d+ 1) ≤ y − (xd+ α) ≤ (d− 1) + (d− 1)d = d2 − 1 ≤ m− 2

Note that this proof, with k = 1, will also suffice for the proof that the construction in

Theorem 2.2.1 will create an Ld(n).

Example 3.2.2. Here, we will look at an example when n = 20, k = 2,m = 10, and d = 3

r/c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
1 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
2 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
3 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
4 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
5 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
6 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
7 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
8 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
9 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

10 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
11 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
12 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
13 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
14 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
15 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
16 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
17 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
18 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
19 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2

Figure 3.10: ML3(20, 2)
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Chapter 4

Multi-Latin Squares Versus Latin Squares

4.1 Definitions [10]

Definition 4.1.1. A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and

a relation that associates to each edge two vertices called its endpoints.

Definition 4.1.2. A simple graph is a graph with no loops or multiple edges.

Figure 4.1: Examples of graphs with 4 vertices.

Definition 4.1.3. A vertex is incident with an edge if the vertex is one of the two vertices the

edge connects.

Definition 4.1.4. The degree of a vertex is the number of edges incident with the vertex.

31



Definition 4.1.5. A graph is k-regular if each vertex has degree k.

Figure 4.2: Examples of regular graphs.

Definition 4.1.6. Two vertices in a graph are said to be adjacent if an edge connects them.

Definition 4.1.7. An independent set is a set of vertices, no two of which are adjacent.

Definition 4.1.8. A graph G is bipartite if V (G) is the union of two disjoint (possibly empty)

independent sets called partite sets of G.

Figure 4.3: Example of a properly 2-edge-colored bipartite graph.

Definition 4.1.9. A k-edge-coloring is a labeling f : E(G) → S, where |S| = k. The labels

are colors.

Definition 4.1.10. A k-edge-coloring is proper if incident edges have different labels.

2-Edge-Colored Bipartite Graph Proper 2-Edge-Colored Bipartite Graph

Figure 4.4: Bipartite Graph
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4.2 Theorems

4.2.1 Latin Squares to Multi-Latin Squares

Theorem 4.2.1. If L is an n × n Latin square and k is a real integer such that k|n, then an

n× n multi-Latin square, ML(n, k), exists.

Construction

Let L be an n× n Latin square and let k be a real integer such that k|n. For each symbol

i in L, replace it with the symbol j ∈ {0, 1, ...,m− 1} such that j = i (mod m = n
k

).

Lemma 4.2.2. This construction forms a multi-Latin square.

Proof. Let L be a Latin square as described above. Since k|n, let n = mk for some integer

m ≥ 1. For each symbol i ∈ {0, 1, ...n−1} in L, replace it with the symbol j ∈ {0, 1, ...m−1}

such that j ≡ i (mod k). To prove that this creates a multi-Latin square, ML, we will prove the

following: Each symbol appears exactly k times in each (a) row and (b) columns

(a) Since each symbol i ∈ {0, 1, ..., n− 1} appeared in each row of L exactly once and

k|n, when we reduce the symbols modulo m, each new symbol j ∈ {0, 1, ...m − 1} appears

exactly k times in each row.

(b) This proof is similar to (a).

Example 4.2.1. Using the above construction, we can turn the following 6 × 6 Latin square

into the ML(6, 2) shown.

0 1 2 3 4 5
1 2 3 4 5 0
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 0 1 2 3 4

0 1 2 0 1 2
1 2 0 1 2 0
2 0 1 2 0 1
0 1 2 0 1 2
1 2 0 1 2 0
2 0 1 2 0 1

6×6 Latin square ML(6, 3)

Figure 4.5: Transition from an n× n Latin square to a ML(n, k)
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Theorem 4.2.3. Using the construction from Theorem 4.2.1, we can turn an Ld(n) into an

MLd(n, k), assuming that k|n and n
k
= m ≥ d2 + 1.

Proof. Since the proof of Lemma 3.2.5 where k = 1 also proves the construction for an Ld(n)

in chapter 2, we know that for any two cells (r, c) and (r + x, c + y) in the Ld(n) formed by

the construction in chapter 2,

0 < |s(r + x, c+ y)− s(r, c)| ≤ d2

Let k be a positive integer such that k|n and n
k
= m ≥ d2 + 1. Therefore, if we use the

construction from Theorem 4.2.1 on this Ld(n), we know that:

0 < |s(r + x, c+ y)− s(r, c)| ≤ d2 < m

Therefore, this construction will produce an MLd(n, k).

4.2.2 Multi-Latin Squares to Latin Squares

Theorem 4.2.4. If ML(n, k) is an n × n multi-Latin square and k is a real integer such that

k|n, then an n× n Latin square, L, exists.

Construction

Let ML(n, k) be an n × n multi-Latin square. For each symbol i in 0, 1, ...m = n/k,

create a simple bipartite graph, Gi, where one set of vertices, r0, r1, ..., rn−1, represents the

rows and the other set of vertices, c0, c1, ..., cn−1, represents the columns of ML(n, k). Let the

edges of Gi correspond to the cells containing symbol i. See Figure 4.6 for an example of this

process.
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ML2(10, 2) G0

Figure 4.6: Creating G0 from the ML2(10, 2)

Since each symbol appears exactly k times in each row and column, each of the graphs,

Gi will be k-regular. Properly edge color Gi with k colors and assign each color a symbol,

ki, ki+1, ki+2, ..., k(i+1)− 1. Now, replace each occurrence of symbol i in ML(n, k) with

the corresponding symbol from proper edge coloring of Gi. Figure 4.7 below properly edge

colors G0 from Figure 4.6 into red and black edges. Then we can create the Latin square in

Figure 4.7 by corresponding the red edges to 0 and the black edges to 1. Figure 4.7 shows the

entire Latin square filled in, according to this construction.

Properly Edge Colored G0 L2(10)

Figure 4.7: Forming L2(10)
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Lemma 4.2.5. This construction forms a Latin square.

Proof. Clearly, with the way the reassigning works, each symbol 0, 1, ..., km = n appears at

least once in each row and column since each color from each graph Gi will appear on every

vertex. Since we created a proper coloring, no symbol will appear in each row or column more

than once.

Note. The Latin square in Figure 4.7 is an L2(10). This leads us to the following theorem.

Theorem 4.2.6. Using the construction from Theorem 4.2.3, we can turn an MLd(n, k) into

an Ld(n).

Proof. Let ML be an MLd(n, k) as described, and let L be the Latin square which results from

using the construction from Theorem 4.2.4 on ML. For a contradiction, suppose L is not an

Ld(n). Then there exists some Bd, say B, and a symbol i in L such that i appears at least twice

in B.

Consider the corresponding block, B, in ML. Let c1and c2 in ML correspond to the

locations of the two cells in B in L containing the symbols i. By the construction above, the

only way that two symbols would be the same in L is if they were originally the same in ML.

This comes from the way we form each graph Gi. Therefore, c1 and c2 contain the same symbol

and are in the same block B. This results in a contradiction to ML being an MLd(n, k).
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Chapter 5

Summary and Path Forward

5.1 Summary

We have shown that we can construct an Ld(n) and an MLd(n, k) given that the number of

symbols is at least d2 + 1, for integers 0 < d < m ≤ n. We have also created a construction

for forming an MLd(n, k) given an Ld(n) and integers k,m such that k|n and m ≥ d2 + 1.

Finally, given an MLd(n, k), we have found a construction that forms an Ld(n).

5.2 Path Forward

A possible extension to this problem would be considering blocks of size c × d where c ̸= d.

Using rectangular blocks like this would be similar to square blocks, but has not been looked

into yet.

There is a possible application to this problem in error correcting code, specifically on

power lines transmitting internet. [4] [6]
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