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Abstract 

 Osteosarcoma (OSA) is an aggressive malignant bone tumor that often affects pediatric 

humans as well as dogs. Canine OSA shares many similarities with the human condition, 

including clinical presentation and molecular profiles, and therefore serves as an excellent model 

to study the disease. OSA is a difficult tumor to dissociate and sequence due to its bony and 

brittle composition. Furthermore, it is characterized by extreme genetic complexity and 

significant intra- and inter-tumoral heterogeneity. While great strides have been made in 

identifying key mutations driving carcinogenesis, the treatment and prognosis for OSA have 

remained largely unchanged for 40 years. New approaches to studying OSA are critical for 

improving patient outcomes for both humans and dogs.  

Differential gene expression analysis represents one approach to analyzing important 

differences in the molecular profiles between normal and tumor tissue. A prerequisite to 

successful sequencing and differential analysis is the isolation of high-quality RNA from both 

normal and neoplastic tissue. In the case of OSA, normal bone corresponds to the non-neoplastic 

and pre-cancerous tissue representative of osteosarcoma. Bone is a dynamic tissue consisting of 

many different cell types embedded within a rigid matrix. Removal of the bone marrow is an 

important consideration for isolating RNA that is unique to OSA progenitors for an appropriate 

differential gene expression analysis. Therefore, a method to isolate RNA from normal canine 

bone was first established for subsequent transcriptomic sequencing of both unaffected tissue and 

tumorous lesions. 

Transcriptomic bulk sequencing of primary OSA provides a global view of the changes 

involved in OSA tumorigenesis. Differential gene expression analysis identifies dysregulated 

genes in the tumors compared to the normal bone. Patient-matched OSA and normal bone were 
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collected and sequenced to identify genes that were commonly dysregulated among the group. 

However, this approach requires a large sample size to accommodate the statistical analysis and 

fails to account for inter-individual differences. To circumvent this, we supplemented the group 

differential profile with a novel individual-level analysis by deriving individual fold-change 

differences from the group’s significant genes. The results confirm the hyper-variability in OSA 

and the need to study OSA at the individual level.  

Single-cell sequencing (SCseq) has emerged in the past five years as a valuable tool for 

interrogating the molecular changes occurring in diseased tissue at the level of individual cells. 

However, an essential requirement for this approach includes highly viable cells (>60% live 

cells) dissociated from the primary tissue. OSA has proved difficult to manipulate and dissociate 

due to the matrix composition, resulting in poor cell viability unsuitable for SCseq. Single-nuclei 

isolation and sequencing have recently evolved as an alternative using 10x Genomics 

technology. This approach requires high-quality nuclei but overcomes the need for viable whole 

cells as input. With protocol adjustments, we have successfully isolated high-quality nuclei from 

a primary canine OSA used for single-nuclei multiome sequencing. Multiome sequencing 

includes transcriptomic profiling using RNA sequencing as well as epigenomic profiling using 

ATAC (Assay for Transposase-Accessible Chromatin) sequencing. This dual sequencing 

approach was used to characterize the tumor microenvironment and elucidate changes occurring 

at single-nuclei resolution in an individual patient.  

This dissertation provides a thorough background of canine OSA, describes a novel 

method to isolate RNA from canine bone for proper comparative sequencing analysis, presents 

bulk RNA sequencing of 7 canine OSA tumors along with an individualized approach to 

differential gene analysis, and concludes with single-nuclei multiome sequencing of a primary 
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OSA tumor to characterize the tumor microenvironment. Importantly, these approaches can be 

translated to study human OSA for comparison to canine OSA molecular pathways and for the 

development of more targeted and effective therapies.  
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CHAPTER 1 

Review of Literature 

Reprinted (in part) from Nance RL, Sajib AM, Smith BF. Canine models of human cancer: 

Bridging the gap to improve precision medicine. Prog Mol Biol Transl Sci. 2022;189(1):67-99. 

1.1 Cancer and the precision medicine approach to treatment 

Cancer is a highly complex and heterogeneous disease characterized by extreme genomic 

instability, sustained cell proliferation, suppressed cell death, induced angiogenesis, stimulated 

cell invasion, and evaded immune destruction1. Mutations in oncogenes and/or tumor suppressor 

genes contribute to initial aberrant cellular properties and can result in the accumulation of 

additional genetic changes that drive tumor formation and progression. Our understanding of 

tumorigenesis has grown exponentially in the past decade as the molecular processes continue to 

be elucidated, largely due to the efforts of translational research made possible by the reduced 

cost of next-generation sequencing and the development of new technologies. In recent years, the 

study and treatment of cancer has evolved from an organ-centric approach to one that seeks to 

characterize tumors based on their molecular profile. Advances in the field of “omics” 

technologies have made it possible to integrate genomic, transcriptomic, and proteomic 

information to create a more comprehensive strategy to improve patient outcomes and lower 

treatment costs2. Extensive sequencing has exposed the overwhelming complexity of cancer and 

the overall genetic uniqueness of each individual tumor, regardless of type or stage, which often 

share common mutations in critical genes and dysregulated pathways. This observation gave rise 

to the concept of precision or personalized medicine, which seeks to overcome both intra- and 

inter-tumoral heterogeneity as well as inter-individual variation in drug response3–5. By 

providing insight into druggable targets such as pathways, receptors, or genes, critical 
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therapeutic decisions and the development of novel therapies are guided by the molecular 

landscape of an individual tumor.  

However, many obstacles compromise the adequate implementation of such treatment 

approaches, including the lack of appropriate infrastructure and communication among medical 

doctors and research scientists6. Additionally, the clinical validity of precision medicine faces 

some scrutiny due to the lack of appropriate or efficient standardization7. As such, the clinical 

utility is criticized, and additional evidence is needed to support the claim that “omics”-based 

personalized medicine generates an overall cost reduction8,9. There is a critical need for an 

infrastructure that supports the integration of a patient’s genomic data with relevant clinical 

information such as age, diagnosis, family history, symptom severity, and other confounding 

variables such as lifestyle, diet, and drug interactions2.  

In spite of these obstacles, many molecular-based treatments have been successfully 

implemented in humans. In fact, more than 1 out of 4 drugs approved by the U.S. Food and Drug 

Administration (FDA) since 2014 are precision medicine therapies10. According to an FDA news 

release, the first approved drug for cancer treatment based solely on molecular features rather 

than tumor type was released in May 2017. The drug, known as pembrolizumab, or more 

commonly as Keytruda, was granted accelerated approval for the treatment of unresectable or 

metastatic solid tumors with biomarkers for high microsatellite instability or deficient mismatch 

repair. Amid a global pandemic in the first half of 2020, the FDA approved a record total of 21 

precision drugs for cancer treatment; of these, 7 were characterized by novel molecular entities 

and 14 were previously approved drugs with expanded molecular indications11. These include 

the tyrosine kinase inhibitor imatinib, which was approved for use in chronic myeloid leukemia 

tumors bearing the t(9,22)(q34;q11) translocation which generates the fusion gene BCR-ABL112. 
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Breast cancer treatment has improved substantially with the identification of molecular subtypes, 

including the application of the anti-HER2 kinase inhibitor neratinib, monoclonal antibody 

trastuzumab that targets the HER2 receptor, and PI3Kα inhibitor alpelisib in patients bearing 

HER2 amplification and/or overexpression and PIK3CA mutations, respectively13–16 . These are 

just a few of the many successful applications of precision medicine in the treatment of cancer 

that continue to improve patient outcomes. 

 

1.2 Limitations of rodent models 

Despite significant progress in precision oncology research and treatment, development is 

hindered by the extremely low percentage of therapeutics that show similar outcomes in humans 

and pre-clinical rodent studies17,18. Indeed, the rate of effective translation from animal models to 

clinical trials is less than 8%19. The abundant failures of murine models are disappointing, time-

consuming, and expensive. While rodent models remain fundamentally important in the study of 

cancer, they frequently do not accurately recapitulate the full complexity of human cancer, 

including tumor heterogeneity, microenvironment, accumulated genomic instability, immune 

influence, and metastatic disease, and therefore suffer significant translational limitations19–23.  

The controlled environment of laboratory rodents is thought to contribute to the 

inaccurate representation of human disease. These inbred animals are typically homogeneous in 

terms of genetics, size, age, sex, and diet, and are housed in pathogen-free environments that are 

unrepresentative of natural environments24. The use of young mice is controversial given the 

age-related changes that occur to the immune system and the propensity of cancer occurrence in 

older humans25. Even patient-derived xenografts with implantation of humanized immune 
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system components lack critical functions and responses that are representative of human 

malignancies24.  

In the past decade, the discovery of the dynamic interactions between the immune system 

and gut microbiome has uncovered a new field of research26. The gut microbiome has emerged 

as an important and influential factor affecting immune function, and consequently, 

tumorigenesis and response to treatment27. In a 2015 study, Sivan et al uncovered significant 

differences in the growth rate of subcutaneous B16.SIY melanoma in genetically similar mice 

housed in two different facilities as a result of immune-mediated differences in tumor-specific T 

cells and intra-tumoral CD8+ cell accumulation. After cohousing the two groups of mice prior to 

tumor implantation, the team found these differences in tumor growth and immune response 

disappeared, suggesting an environmental effect. They evaluated the gut microbiome in both 

groups, performed fecal transplantations, and discovered that Bifidobacterium conferred an anti-

tumor immune response that was augmented with anti-PDL1 monoclonal antibody 

immunotherapy28. This data suggests that commensal gut microbiota can influence the immune 

response to tumor and immunotherapy effectiveness and, therefore, should be considered in the 

selection of disease models.      

In addition to the molecular and physiological dissimilarities in rodent models, 

differences in drug metabolism are also likely to blame for the poor translational outcomes. 

Tumor response to drugs, particularly chemotherapy, depends on a plethora of elements, 

including tumor-specific factors such as histology, growth rate, and drug-resistance mechanisms, 

as well as individual-specific features such as physiology, absorption efficiency, and 

immunologic response29. A 1976 study found differences in the drug sensitivities of human and 

murine bone marrow upon exposure to chemotherapeutic agents, calling into question the 
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applicability of mouse models in the evaluation of chemotherapy and combination therapy 

response30. Transgenic mice bearing alterations in metabolic enzymes, such as humanized 

cytochrome P450, and transplantation of human liver hepatocytes have been developed to better 

mimic in vivo drug response31,32. Despite these improvements, the implementation of these 

models does not generate improved translational benefits to human responses.   

Simply put, rodent models do not faithfully mimic the inherent tumor evolution and drug 

response observed in humans; a natural disease model exhibiting spontaneous tumor 

development is likely to generate more promising results33. The success of precision medicine is 

critically dependent upon a reliable and appropriate model for monitoring tumor development, 

progression to metastases, immune influence, and therapeutic safety and effectiveness. 

 

1.3 Emergence of the canine model 

In 2003, the National Cancer Institute’s Center for Cancer Research (CCR) recognized 

the value of spontaneously occurring tumors in pet animals as models of human disease and 

launched the Comparative Oncology Program (NCI-COP). The establishment of this program 

inspired many researchers to explore the genetics of companion dogs. Two years later, whole-

genome shotgun sequencing (WGS) of a boxer named Tasha resulted in the first high-quality 

draft sequence of the dog, covering ~99% of the genome (CanFam2.0)34. After the completion of 

the canine genome project in 2005, researchers had the genomic information necessary to launch 

a gene expression database of normal canine tissue34,35. The Canine Normal Tissue Database 

established the foundation for a more robust assessment of the biological functions of specific 

genes and cross-species comparisons of gene expression. In fact, during the development of this 
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database, Briggs et al found remarkable similarities in tissue-specific expression profiles between 

dogs and humans, thus providing additional support for the dog’s role in translational research.  

 

1.3.1 Evolution of the canine genome 

Man’s best friend, Canis lupus familiaris, has evolved alongside humans for centuries. 

Diverging from the gray wolf, the earliest record of a confirmed domestic dog was discovered in 

a maxillary fragment discovered in the Kesserloch Cave in Switzerland and dated to 12.225+/-45 

bp or c. 14,100-14,600 BP from a 2012 study36. First discovered in 1928 and later confirmed in 

1964, karyotype analysis reveals 38 pairs of autosomal acrocentric chromosomes and a pair of 

metacentric sex chromosomes in the dog37. Dogs were the first species to be domesticated, 

occurring more than 15,000 years ago when humans were hunter-gatherers38. Since then, 

selection for certain phenotypic traits such as temperament and function has resulted in over 400 

breeds that can be differentiated by distinct genetic components and morphological variation39–41. 

Linkage disequilibrium in the dog is roughly 20-50 times more extensive within breed groups 

than in the human population, even for isolated populations, which allows genome-wide 

association studies (GWAS) to be accomplished with significantly fewer SNPs. For example, 

only about 10,000 canine SNPs are necessary as opposed to the ~500,000 SNPs needed in 

humans, providing an economical advantage to disease mapping42.  

Conserved synteny analyses show that human and dog genomes are more closely related 

to each other in terms of nucleotide divergence and chromosomal aberrations than either one is 

to rodent genomes, including mice20,43. The average rate of nucleotide divergence in both 

humans and dogs is approximately 0.35 substitutions per site, a rate that is much more similar 

than that observed in the mouse42. Inter-chromosomal rearrangements occur less frequently in 
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the canine genome than in rodents but significantly more than in humans. However, the rate of 

intra-chromosomal reshuffling is more similar between humans and dogs than rodents42. Despite 

evolutionary divergence, the canine and human genomes share remarkable similarities that 

highlight the importance of the dog as an essential animal model. 

 

1.3.2 Similarities in canine and human immune system, drug metabolism, and  

microbiome 

The relatedness between dogs and humans extends beyond genetics to include immune 

system development and function. Unlike rodents, both human and canine immune systems are 

fully developed before birth and maturation is believed to continue postnatally44. Studies of X-

linked severe combined immunodeficiency caused by mutations in the common gamma chain, a 

component of at least six different cytokine receptors, have compared the outcomes on 

lymphocyte development and function in the human, dog, and mouse. These results have shown 

the effects on B cells, T cells, natural killer cells, and postnatal T cell development are almost 

identical in dogs and humans, while mice show distinctly different responses44. Similar findings 

of age-related changes in immune cell distribution have been found in humans and dogs. Age-

related decline in the absolute numbers of B-, T-, and CD4+ cells, but not in CD8+ cells, in dogs 

resemble previously published data in humans45,46. The major immune effector cells have been 

characterized in dogs, including CD4+, CD8+, CD90+, and dendritic cells, and show similar 

homology to humans47,48 

Differences in pharmacokinetics and pharmacodynamics has been observed in various 

dog breeds. Many breed-specific features affecting drug absorption and metabolism have been 

elucidated, including polymorphisms in cytochrome P450 enzymes and cyclooxygenase 2 
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inhibitors. Due to these differences which can lead to inconsistent results, caution should be used 

in studies employing multiple different breeds. All domestic dog breeds and other canids lack the 

n-acetyltransferase genes that detoxify many drugs and metabolites, including arylamine and 

hydrazine compounds49. While canine pharmacodynamics and metabolism are not perfect 

models for humans, the similarities can be useful for drawing comparative conclusions. 

The gut microbiome can influence drug pharmacokinetics and the immune system and 

therefore should be considered in experimental models. In a 2018 study cataloging the canine gut 

microbiome, researchers found more similarities to the human microbiome than to mouse or 

pig50. Furthermore, gut microbial changes associated with colorectal cancer, irritable bowel 

syndrome, and diabetes mellitus have shown comparable results between human and dog51–53.  

 

1.4 Cancer in the dog 

Dogs develop spontaneous tumors that share similar biological and histopathological 

properties as human neoplasms at comparable rates54. The predicted cancer incidence is similar 

in dogs and humans, with an estimated 300 per 100,000 people or dogs per year at risk of 

developing a tumor43. In addition to the relative ease of sample acquisition, dogs also share 

similar environments and are exposed to comparable risk factors as humans8. Age, nutrition, sex, 

and environment influence tumorigenesis in similar ways in both species55. While unfortunate 

for man’s best friend, the condensed lifespan of dogs allows the accelerated study of tumors that 

would normally take decades to develop in humans to be performed in 2-3 years56. Veterinary 

clinical trials are less expensive and patients are also typically more homogeneous in terms of 

pre-treatment and age than human clinical trials57. Owners can evaluate their dog’s quality of life 

in response to treatment within their natural environment, a task that is not easily accomplished 
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and often not considered in laboratory rodent studies. Additionally, with less stringent control on 

patient records and confidentiality, access to patient data is more easily available in dogs.  

Some tumors have also shown a significant breed disposition, providing the opportunity 

to study the genetic components, such as germline mutations, that influence the risk of tumor 

development58. Genome mapping studies have revealed breeds with significantly increased risk 

for specific tumor types, including osteosarcoma in the Greyhound and Rottweiler, 

hemangiosarcoma in the Golden Retriever, lymphoma in the Golden Retriever and Boxer, 

melanoma in the Scottish Terrier, mast cell tumors in the Pug and Golden Retriever, transitional 

cell carcinoma in the Scottish Terrier, brain tumors in Boxers, and stomach cancer in Chows59,60. 

Breed-specific cancers show patterns that reflect the inherited mutations that predispose human 

children and families to an increased risk of specific cancers61. Genome-wide association studies 

(GWAS) in breed groups have successfully identified inherited risk loci for several tumor types, 

which will be discussed in the sections below. Due to the genetic homogeneity within a breed, 

GWAS analysis can be accomplished using a smaller number of canine patients compared with 

human studies, providing a more efficient opportunity to identify risk loci that may be 

translational to humans61. 

Comparative gene expression studies in human and canine tumors have exposed the 

striking similarities in terms of genotypic and phenotypic properties, including specific germline 

and somatic mutations, chromosomal aberrations, physiological processes, enriched gene sets or 

pathways, and molecular markers in various cancers that are not naturally reflected in rodent 

models. In addition to the genetic and environmental aspects driving tumor formation, the 

immune system, gut microbiome, and drug metabolism play a critical role, especially for 

studying the effects of immunotherapy. Dogs and humans share more commonalities in their 
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immune system development, function, microbiome composition, and metabolism than rodents. 

In addition to genomic and pathophysiological similarities, dogs share similar environmental 

influences that may impact cancer. For these reasons, canine models of cancer are superior to 

rodents in oncological research. In the following sections, we will discuss these similarities in 

depth for each tumor type. While dogs also serve as valuable models for numerous other human 

disorders, including inherited retinal degeneration, dilated cardiomyopathy, cystinuria, Duchenne 

muscular dystrophy, chronic obstructive pulmonary disorder, and rare human disorders such as 

Caffey, van den Dende-Gupta, and Raine syndromes, the focus of this chapter will be on cancer 

specifically43,62–64. Ultimately, our canine companions serve as promising models for uncovering 

the molecular dynamics of tumorigenesis, improving clinical outcomes, lowering treatment 

costs, evaluating drug safety and efficacy, and advancing the era of precision medicine in the 

treatment of cancer – for both man and man’s best friend65.  

 

1.5 Canine osteosarcoma 

Osteosarcoma (OSA) is a highly aggressive bone tumor that typically originates in the 

appendicular skeleton of pediatric patients and large breed dogs. The canine model has been 

extensively studied and is perhaps the most well-known cancer model due to its striking 

similarity to human OSA. In both humans and dogs, primary tumors and metastases occur in 

similar sites, show comparable clinical presentations, and share treatment approaches66. 

Metastases primarily occur in the lungs and drug-resistance is exceedingly common. The 

standard of care for dogs involves amputation followed by chemotherapy, though the one-year 

survival rate is less than 50%67.  
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OSA is characterized by complex karyotypes with significant chromosomal aberrations68. 

In fact, in terms of gene expression, OSA is one of the most heterogeneous tumor types69. Flow 

cytometry analysis of multiple sections from 25 untreated human OSA tumors indicated DNA 

aneuploidies present in 86% and multiple aneuploid DNA stemlines in 48% of highly malignant 

cases, rates that far exceed those from other tumors70. Contrary to human disease, canine OSA 

shows a disposition for large breed dogs, suggesting a heritable component71. A genome-wide 

association study in Greyhounds, Rottweilers, and Irish Wolf Hounds identified 33 loci 

associated with OSA, accounting for 50-80% of the disease risk71. Notably, none of the genomic 

regions overlapped between the three breeds. A non-coding regulatory element upstream of the 

CDKNA2A/B locus was identified as a main causal variant, causing subsequent dysregulation of 

CDKN2A/ARF. CDKN2A/ARF encodes multiple cyclin-dependent kinase inhibitors, including 

INK4a/b and ARF, which inactivate D-cyclins to promote G1 progression and control 

senescence via the RB (Retinoblastoma) and p53 pathways71. Germline variants in the regulatory 

regions of CDKN2A may explain the observed heritability and predisposition of OSA 

development. Investigation of the copy number aberrations via comparative genomic 

hybridization arrays in 12 Greyhounds and 10 Rottweilers revealed substantial conservation in 

regional DNA copy numbers between the two breeds. Furthermore, the results showed striking 

similarities in both the frequency and distribution of copy number aberrations (CNAs) between 

dogs and humans, including MYC gain (dog=60%, human=67%), RB1 loss (dog=36%, 

human=33%), and CDKN2A/B loss (dog=73%, human=67%)71. 

Perhaps the most well documented genetic alteration in both human and canine OSA 

involves p53. Mutations in p53 have been reported in 41% of primary canine OSA tumors with 

the majority consisting of point mutations (74%) and fewer being deletions (26%)72. In contrast, 
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approximately 20% of primary human OSA tumors have been reported to harbor p53 mutations, 

most of which include genomic deletions73. 

At the gene expression level, canine and human OSA are nearly indistinguishable. A 

cross-species gene signature study using oligonucleotide arrays to examine a set of orthologous 

genes could not distinguish the human and canine diseases by hierarchical clustering74. The 

researchers identified two genes, interleukin-8 (IL-8) and solute carrier family I member 3 

(SLCIA3), which were expressed in all dogs, but only a subset of pediatric patients. These genes 

were validated by protein expression using tissue microarray immunohistochemistry and were 

found to be associated with poor outcomes in an independent population of pediatric OSA 

patients74. The identification of these progression-associated genes would likely not have been 

uncovered without the cross-species approach. In another study, Scott et al evaluated the tumor 

transcriptional profiles using RNA sequencing of OSA tumors and cell lines derived from 

human, mouse, and dog. Despite the complex genomic instability characterizing OSA, their 

results showed conserved inter-tumoral expression and patterns of transcriptional variation that 

were distinct from other tumor types68.  

In a 2011 study, genome-wide expression profiling revealed two molecular subtypes in 

27 OSA tumors obtained from dogs prior to any clinical intervention. The cell lines derived from 

the tumors clustered into two distinct branches; Branch A, consisting of 16 samples, and Branch 

B, consisting of 10 samples, with two reciprocally expressed groups of genes, defined as “gene 

cluster 1” and “gene cluster 2”. The pathways evident in gene cluster 1, which were 

overexpressed in the Branch A samples, consisted of genes responsible for mitosis, chromosome 

segregation, and mitotic spindle formation. The cluster 2 genes, overexpressed in Branch B dogs, 

were predicted to be associated with cancer cell-microenvironment interactions. Upon analysis of 
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patient outcomes, the researchers found that dogs from Branch A exhibited a worse survival than 

those from Branch B75. Scott et al proposed that this may be due to the greater metastatic 

potential of more aggressive tumors, resulting in their ability to overcome limitations established 

by the tumor niche and rapidly divide and survive regardless of their environment.  

Canine studies have demonstrated the practicality and effectiveness of precision medicine 

in the treatment of OSA. A multi-site feasibility study evaluated the turn-around time for the 

molecular analysis of 20 dogs with OSA76. The team established a processing pipeline that 

generated a report of tumor expression within 5 days of sample receipt, demonstrating that the 

practical application of precision medicine in the clinical setting is reasonable76. Another canine 

case study was used to show the efficacy of personalized therapy for OSA. Davis et al used a 

primary OSA tumor sample from a 7-year-old Golden Retriever to establish a cell line, which 

was then screened for sensitivity to a panel of kinase inhibitors. The molecule with the highest 

activity was the Src and Abl inhibitor dasatinib, which had not been previously administered in 

dogs. After immunohistochemical staining to confirm overexpression of Src, the dog began 

treatment with dasatinib and a dose of 0.75 mg/kg/day was established and well-tolerated. 

Twenty-four months after initial diagnosis and eight months after completion of the precision 

medicine adjuvant therapy, the canine patient remained disease-free with no evidence of 

metastases. For comparison, the average survival rate after initial diagnosis is 33-65% for 12 

months and 16-28% for 24 months77. While these results are based only on a single case, this 

2013 study confirms the critical role dogs play in demonstrating the efficacy and feasibility of 

precision medicine therapy.  

OSA is perhaps the most well-documented of tumors in canine comparative oncology. 

The shared characteristics with human OSA provide support for the canine model. In OSA, 
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where treatment has remained essentially unchanged for 40 years, there is an urgent need to 

develop and improve therapies, and it is likely that dogs hold the key to benefitting patient 

survival. 
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CHAPTER 2 

A Method for Isolating RNA from Canine Bone 

Reprinted from Nance R, Agarwal P, Sandey M, Starenki D, Koehler J, Sajib AM, Smith BF. A 

method for isolating RNA from canine bone. Biotechniques. 2020 Jun;68(6):311-317. 

2.1  Introduction 

Isolation of high-quality RNA from tissue is necessary to evaluate the molecular basis of 

gene expression in that tissue. Messenger RNA, as well as a variety of non-coding RNA, 

provides insight into gene activity and therefore cellular processes and pathways that are active 

in a given tissue. Common approaches to analysis of RNA include quantitative and end-point 

reverse-transcriptase PCR (RT-PCR) and transcriptomic sequencing. The quality of RNA 

obtained is a key factor in validating the significance of RNA sequencing and analysis78. While 

established methods for RNA isolation often provide sufficient yield, especially for soft tissues, 

they are not applicable to some tissues, such as bone.    

The single-step method of isolating total RNA using an acid guanidinium thiocyanate-

phenol-chloroform mixture has been a widely used and well-established technique for over thirty 

years79. This approach results in cell lysis as well as inhibition of RNases and DNases. With the 

addition of chloroform, phase separation allows for the isolation of RNA, DNA, and/or protein. 

RNA is precipitated using propanol and a high salt solution. This technique is flexible and 

variations in the protocol have accommodated many diverse tissues. For example, in tissues with 

high proteoglycan content such as cartilage, undesirable precipitates are often formed during the 

RNA precipitation step. In a modification described by Lee et al, an additional phase separation 

and high salt precipitation avoided the formation of unwanted precipitates80. While the 

traditional single-step “Chomczynski” method typically provides high yield, high quality RNA, 
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it requires meticulous technique to avoid carry-over of unwanted material when pipetting the 

aqueous layer. As a result, column-based methods have been growing in popularity as a quick 

and easy alternative, but are effectively limited in certain tissues with inadequate yield80. Higher 

yield of RNA is often obtained from the Chomczynski method in comparison to column-based 

methods80. A technique defined as the “TRIspin method” has been previously described that 

combines both approaches by following the initial steps of the Chomczynski method with a 

column-based method81. This method was originally developed to provide maximal reproducible 

amounts of high-quality RNA from dense, hypocellular connective tissue of rabbits81. 

Tissue homogenization is an essential step to releasing RNA from cells. Several methods 

have been described such as bead dissociation, liquid nitrogen grinding, cryogenic mill 

pulverization, and cryosectioning80,82–84. Some tissues present unique challenges for RNA 

isolation and require altered homogenization protocols to obtain sufficient RNA. Bone in 

particular is difficult to manipulate due to the rigid nature of the proteoglycan-rich matrix, which 

makes homogenizing the tissue challenging, and the low cell-to-matrix ratio, which provides 

little RNA to work with80. 

Bone is a dynamic, living tissue which is constructed and maintained by three types of 

cells: osteoblasts, osteoclasts, and osteocytes. Osteoblasts, which originate from mesenchymal 

stem cells, are responsible for the creation of new bone and represent 4-6% of the total cell 

population. Osteoclasts, which are of macrophage origin, remove old bone matrix, helping to 

remodel bone in response to external forces. Osteocytes, the most abundant cells in bone, are 

differentiated osteoblasts that have become embedded in the bone matrix and coordinate the 

bone remodeling activities of osteoblasts and osteoclasts. The extracellular bone matrix consists 

of inorganic salts, largely phosphate and calcium ions, and an organic matrix composed 
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predominantly of collagenous proteins and some noncollagenous proteins85. The majority of 

bone studies have utilized formalin fixation, decalcification, and paraffin embedding which 

results in a highly altered RNA profile and loss of RNA integrity78. Cryosectioning is widely 

considered the best source of intact bone RNA78. A method of isolating RNA from osteocytes in 

human femurs has been established by Eisenberger et al. Their technique employs the use of 

tape-assisted cryosectioning followed by hematoxylin-eosin staining to guide microdissection 

using an UVa-nitrogen laser. RNA was then isolated from the microdissected osteocytes via the 

TRIspin method of Reno et al78. While this method is appropriate for characterizing the profile of 

osteocytes specifically, it requires equipment that is not always readily available and excludes 

osteoblasts and osteoclasts, which are additional key components of bone composition. While 

osteocytes are the most abundant cell type in bone, characterization of all three cell types is 

important for evaluating the molecular basis of disease, particularly osteosarcoma.      

Contaminating tissue such as bone marrow and periosteum are problematic for isolating 

RNA that is unique to osteoblasts, osteoclasts, and osteocytes. The downstream transcriptomic 

analysis of cancerous versus noncancerous tissue requires the isolation of RNA from tissue of the 

same origin as that of the tumor. With the exception of a single murine study, current methods 

for isolating RNA from all three bone cell types do not account for the contaminating marrow 

RNA82. This is especially important as hematopoietic precursor cells express many stem cell 

markers that could be shared with neoplastic cells, especially the small subpopulation of radio- 

and chemoresistant neoplastic cells with a more stem-like phenotype86. 

Preventing RNA degradation prior to isolation is an important consideration. Snap 

freezing samples in liquid nitrogen as early as possible after harvesting has been utilized as a 

suitable means of reducing RNA loss80,83. 
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This study describes a technique to isolate sufficient quality RNA from canine bone cells 

for downstream transcriptomic sequencing. Samples were obtained from dogs undergoing limb 

amputation due to osteosarcoma. The phalanges were selected as the bone of choice due to their 

location distal and distant from the tumor as well as their relative ease of accessibility. 

Structurally, the phalanges are long bones, with an extended, bone marrow-filled diaphysis 

composed of dense cortical bone and epiphyseal caps of trabecular bone on either end. The 

periosteum is an external layer of connective tissue surrounding the bone87. A protocol to isolate 

RNA from bone should include adaptations to address these contaminating tissues and isolate 

only cellular bone matrix RNA. The resulting protocol yielded sufficient quality RNA suitable 

for downstream applications. 

 

2.2  Materials and Methods 

2.2.1  Sample preparation and bone marrow removal 

Phalanx bone specimens were obtained from seven dogs undergoing limb amputation for 

osteosarcoma at the Auburn University College of Veterinary Medicine. Since amputations were 

performed for clinical treatment of disease, the procurement of tissues from amputated legs were 

exempt from Auburn University Institutional Animal Care and Use Committee review. In all 

cases, the tumor was at least one joint space proximal to the phalanx. Upon amputation of the 

leg, the second phalanx was dissected free of the surrounding tissue. Typically, two to three 

phalanges were obtained from each amputated limb. Phalanx sizes varied based on the breed and 

size of the dog but were approximately 12 mm in length and 8 mm in width after trimming. After 

obtaining the phalanx, the exterior soft tissue and periosteum were removed using a scalpel, 

scissors, and clean laboratory wipes (Kimwipe, Kimberly Clark, USA). After sufficient soft 
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tissue removal, the epiphyses were removed and discarded using large shearing cutters. The 

diaphysis was placed into a 1.5 mL microcentrifuge tube and centrifuged at 10,000 x g for 10 

minutes at room temperature to remove the bone marrow, which was collected and stored at -

80°C. The bone was then transferred to a clean 1.5 mL microcentrifuge tube, covered with 1X 

phosphate buffered saline (PBS) (Corning), and centrifuged at 10,000 x g for 5 minutes. After 

transferring the bone to a clean 1.5 mL microcentrifuge tube, this PBS wash was repeated to 

ensure the least amount of contaminating bone marrow remained within the medullary cavity. 

The prepared bone was then snap frozen in liquid nitrogen and stored at -80°C for up to 8 

months prior to RNA extraction. The total time for bone preparation was approximately 30 

minutes. 

 

2.2.2 Histological staining 

To verify that the bone samples were free from contaminating tissue, histological staining 

was performed for both processed and unprocessed samples. The processed bones underwent the 

bone marrow and periosteum removal protocols, including the outer tissue removal, 

centrifugation, and PBS washing. For the unprocessed samples, the epiphyses were simply 

removed. The specimens were placed in 10% formalin, decalcified using 7% hydrochloric acid, 

and embedded in paraffin. They were cut in 5 μm transverse sections and stained using 

hematoxylin and eosin according to established standard methods. 

 

2.2.3 Bone tissue homogenization and RNA extraction 

A steel mortar and pestle and metal spatula were made RNAse-free by wiping with 

RNase Away (Thermo Fisher Scientific), wrapping individually in aluminum foil, baking at 
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350°F for 6 hours or overnight, and then storing in -80°C. Bone samples were removed from 

storage in -80°C, weighed to compare total yield across various sized dogs, and subsequently 

ground into a fine powder using the mortar and pestle on top of a bed of dry ice. The crushed 

bone powder was divided evenly into two 1.5 mL microcentrifuge tubes, each containing 1 mL 

of pre-chilled Tri-Reagent (Molecular Research Center) and approximately 0.5 g of zirconium 

oxide beads (Next Advance, ceria stabilized zirconium oxide, 0.5 mm diameter) and kept on ice. 

The samples then underwent 4 rounds of a 30 second spin in a Bullet Blender (Next Advance) at 

a speed of “5.5” with a 1-minute incubation on ice between rounds. After a 10-minute incubation 

at room temperature, 100 uL of bromochloropropane (BCP) (Molecular Research Center) was 

added to each microcentrifuge tube, vortexed thoroughly, incubated for 5 minutes at room 

temperature, and then centrifuged at 20,000 x g for 15 minutes at 4°C.  

Initially, after removal of the aqueous layer, a second extraction was performed by 

adding 100 uL of RNase-free water to the tubes containing the organic layer. After thoroughly 

mixing the contents, they were centrifuged again at 20,000 x g for 15 min at 4°C, and the 

aqueous layer was removed and combined with the aqueous layer from the first extraction. 

Subsequent experiments determined that this additional extraction step was unnecessary, and 

RNA yield was not largely affected by omitting this step. The genomic DNA column included in 

the Qiagen RNeasy kit was excluded because initial experiments showed a significant reduction 

in RNA yield when this column was included in the protocol. As a result, we incorporated 

DNAse to address genomic DNA contamination by treating the aqueous extract with 10 uL 

DNAse I with 1/10 volume 10x DNAse I Reaction Buffer (Thermo Fisher Scientific). The 

reaction was incubated for 10 minutes at room temperature. Following the manufacturer’s 

protocol, DNase was inactivated by adding 10 uL of 25 mM EDTA and heated for 10 minutes at 
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65°C. Following this step, 20 ug of RNA grade glycogen (Thermo Fisher Scientific) was added 

to each tube in an attempt to increase RNA yield in the subsequent steps. All data shown in this 

paper were obtained using glycogen; however, subsequent experiments have demonstrated that 

glycogen does not improve RNA yields (data not shown).  

An equal volume of 70% ethanol was added and mixed well by pipetting. The sample 

was then applied to an RNA column (RNeasy Micro Kit, Qiagen), placed in a 2 mL collection 

tube and centrifuged for 1 minute at 21,000 x g at room temperature (all subsequent 

centrifugations were performed at room temperature). In many cases, this step was repeated to 

include all of the sample due to the maximum loading capacity of 700 uL for the columns. After 

discarding the eluate, 700 uL of Buffer RW1 was added to each column, incubated for 2 minutes 

at room temperature, and centrifuged for 1 minute at 21,000 x g. The flow through was discarded 

and 500 uL of Buffer RPE was added to each column, incubated for 2 minutes at room 

temperature, and centrifuged for 1 minute at 21,000 x g. Then, the flow through was discarded 

and 500 uL of 80% ethanol (prepared using RNase-free water) was applied to each column, 

incubated for 2 minutes at room temperature, and centrifuged for 3 minutes at 21,000 x g. After 

the flow through was discarded and the collection tube was replaced, the columns were spun at 

21,000 x g for 5 minutes with the lids open. The collection tube was replaced and 17 uL of 

RNase-free water (preheated to 65°C) was applied to the center of the column membrane. After a 

10-minute incubation at room temperature, RNA was obtained via centrifugation for 5 minutes at 

21,000 x g. Due to the column retaining volume of 2 uL according to the manufacturer, the total 

eluted volume was 15 uL. 

 

2.2.4 RNA quantity and quality 
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The RNA was quantified using a Nanodrop 2000 instrument and assessed for purity using 

the absorbance values at 260, 280, and 230 nm. Pure RNA is considered to have absorbance 

ratios A260/280 of 2.0 and A260/230 ratios of 2.0-2.2. The samples were then analyzed using 

the Agilent Bioanalyzer 2100 (Agilent Technologies, Waldbronn, Germany) and an RNA 

Integrity Number (RIN) derived. 

 

2.3  Results and Discussion 

2.3.1  Bone Samples 

Bone specimens were obtained from the phalanges of seven dogs undergoing limb 

amputation for osteosarcoma at the Auburn University College of Veterinary Medicine. 

Immediately after receiving the sample, care was taken to remove all possible external 

contaminating non-bone tissue, such as periosteum and connective tissue. After cutting off the 

epiphyses, centrifugation of the diaphysis yielded a pellet of material assumed to be bone 

marrow and/or fat from the marrow cavity. Washes of the bone with PBS yielded additional 

visible material in the buffer. 

 

2.3.2  Histological staining 

Histological staining of processed and unprocessed bone indicated that the diaphysis was 

free from contaminating tissue. Processed samples were subjected to the contaminating tissue 

removal protocol, including the mechanical removal of exterior soft tissue and the centrifugation 

and PBS washing to remove contaminants within the diaphysis. The epiphyses were simply 

removed from the unprocessed samples, with no further manipulations to the bone. In the 

unprocessed sections, yellow bone marrow adipocytes can be seen within the diaphysis and 
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external connective tissue envelopes the bone (Figure 2.1 B,C). The processed section shows a 

clear diaphysis, free from bone marrow or fat, as well as an uncontaminated external surface 

(Figure 2.1A). 

 

Figure 2.1. Histological staining of processed vs. unprocessed samples to evaluate removal of 

contaminating non-bone tissue. 

 

Figure 2.1. H&E-stained cross section of phalanx bone after processing to remove contaminating 

tissue (A, B). Processing included physical manipulation to remove exterior connective tissue 

and the epiphyses, centrifugation to remove tissue within the diaphysis, and washes with PBS to 

further remove any non-bone tissue. The diaphysis and bone exterior appear free from 

contaminating tissue (C, D). H&E-stained cross section of phalanx bone with no manipulations 

aside from removal of the epiphyses. In addition to connective tissue surrounding the bone, the 

diaphysis contains what is presumed to be bone marrow or fat (indicated by arrows). 
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2.3.3  RNA preparation 

A steel mortar and pestle was used to hammer the frozen bone into a fine powder and 

zirconium oxide beads in combination with a Bullet Blender further aided in homogenizing the 

tissue. Keeping the samples on dry ice served to minimize the RNA lost to RNases. Alternating 

cycles of bead dissociation in the BulletBlender with incubations on ice was suitable to 

preventing sample overheating and thus RNA degradation. Tri-Reagent was used to liberate 

RNA from the bone cells and bromochloropropane (BCP) allowed phase separation of RNA, 

DNA, and protein so that RNA could be isolated. Our initial experiments utilizing the one-step 

acid guanidinium thiocyanate-phenol-chloroform extraction method yielded minimal RNA that 

was highly contaminated, presumably with guanidinium isothiocyanate, based on the absorbance 

ratios at 260/230. Thus, we implemented the “TRIspin” method developed by Reno and 

colleagues that employs the use of an RNA column following the single-step guanidinium 

isothiocyanate method. This adaptation produced significantly higher yield and quality RNA that 

proved suitable for downstream transcriptomic sequencing. The genomic DNA column included 

in Qiagen’s RNeasy column kit was omitted due to a lack of RNA yield when this column was 

used. Alternatively, we included a DNase treatment to the extracted RNA prior to applying to the 

RNA column to eliminate genomic DNA contamination. We attempted to increase RNA yield 

with a second extraction of the aqueous layer from the organic phenol-chloroform mixture, but 

further experiments showed that this did not significantly impact the yield. Glycogen was added 

in an attempt to further increase RNA yield, but this did not prove to increase the RNA obtained, 

and in some cases, resulted in a slight decrease in yield (data not shown). RNA was eluted from 

the column in RNase free water and evaluated for quantity and quality using a Nanodrop 
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instrument and the Agilent Bioanalyzer 2100. In all seven bones, RNA of sufficient quantity and 

quality, based on Nanodrop data and RIN values, was obtained for transcriptomic sequencing. 

 

2.3.4  Evaluation of RNA quantity and quality 

Sufficient RNA was obtained in each case to proceed with analysis. RNA concentrations 

ranged from a low of 3.7 ug per gram of tissue to a high of 38.1 ug per gram of tissue (Table 

2.1).  The mean RNA yield obtained from the bone samples was 14.7 ug/gram and the median 

RNA yield was 12.7 ug/gram. RNA purity was initially assessed by the ratio of absorbance at 

260 nm to the absorbance at 280 nm. These values ranged from 1.70 to 2.04, with only one value 

(1.70) below 2, indicating high-quality RNA. The ratio of absorbance at 260 nm to absorbance at 

230 nm ranged from 0.95 to 2.14, indicating possible carry-over of guanidinium isothiocyanate, 

which absorbs at about 260 nm, in the samples with 260/230 ratios below 2.   

 

Table 2.1. Bone RNA quantity and quality. 

Dog  Sample Weight (g) RNA yield (ug) A260/280 A260/230 RIN 

1 0.9778 5.5 2.01 1.52 6.90 

2 1.1300 14.3 2.04 1.93 6.60 

3 1.1828 16.8 2.01 1.41 6.50 

4 0.9788 10.2 2.03 1.82 4.50 

5 0.5952 2.2 1.70 0.95 7.10 

6 0.3933 15.0 2.00 2.14 7.20 

7 1.1372 20.8 * * 6.70 

 *data not available  
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As RNA degradation increases, the 18S and 28S ribosomal subunit peaks decrease while 

additional smaller peaks appear. In samples with significant degradation, 18S and 28S peaks will 

be difficult to distinguish. In the electrophoretograms pictured in Figure 2.2, 18S and 28S 

ribosomal subunits are visible as distinct peaks denoted with an asterisk (Figure 2.2). The initial 

peak present on the left in each electrophoretogram is the marker used as an internal standard. 

While there is variability between the height of rRNA peaks and the presence of additional, 

sometimes well-defined peaks (as seen in dog 7), these electrophoretograms demonstrate 

moderately intact RNA suitable for sequencing.  

 

Figure 2.2. Electrophoretograms of bone RNA. 

 

Figure 2.2. Electrophoretograms showing RNA quality and RIN values obtained for bone 

RNA using the Agilent Bioanalyzer 2100. Distinct peaks representing the 18S and 28S 

ribosomal subunits are indicated with asterisks (*). RIN values provide a more accurate 

level of RNA integrity and range from 1 to 10, with 10 indicating fully intact RNA and 1 
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being completely degraded RNA. The absence of additional significant spikes and 

anomalies indicates the RNA is of moderate integrity. 

 

RNA integrity number (RIN) is based on an algorithm that evaluates the entire 

electrophoretic signature to determine a more accurate level of RNA integrity than previous 

methods that rely on subjective interpretation of electrophoretogram data. RIN is reported as a 

number ranging from 1 to 10, with 1 corresponding to highly degraded RNA and 10 equating to 

mostly intact RNA. RIN values obtained from the seven bone samples ranged from 4.50 to 7.20, 

with a mean of 6.54 and a median of 6.70, indicating moderately intact RNA (Table 2.1). Dog 4, 

with the lowest RIN of 4.5, shows the poorest RNA quality as evidenced by the increased 

background and decreased rRNA peak distinction present in the electrophoretogram (Figure 2.2). 

Nonetheless, this RNA was judged to be of sufficient quality for sequencing. 

 

2.4  Conclusions   

Bone composition presents unique challenges to RNA isolation due to the rigid, 

hypocellular bone matrix and the presence of contaminating tissue, such as bone marrow, fat, 

and connective tissue. Homogenization of the brittle, mineralized matrix was accomplished using 

a combination of tissue pulverization using a mortar and pestle on dry ice and bead dissociation, 

which effectively disrupted the bone matrix prior to RNA liberation using acid guanidinium 

isothiocyanate-phenol. As expected in a hypocellular tissue such as bone, the total RNA quantity 

obtained from these samples was relatively low and therefore limits the downstream 

applications. In this case, sufficient amounts for transcriptomic sequencing were achieved. A 
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critical prerequisite for valid transcriptomic sequencing and analysis is high quality RNA. RIN 

values confirmed the RNA we obtained was of high integrity.           

Removal of unwanted tissue is a critical component of isolating RNA that is unique to 

bone cells. While a previous study by Kelly et al has shown that centrifugation is sufficient to 

remove bone marrow in the murine femur, a combination of PBS wash and centrifugation 

ensured the least amount of contaminating marrow possible82. While removal of the highly 

cellular bone marrow results in significantly lower RNA yield due to the low cell population 

present in bone, our technique yielded sufficient quantity for sequencing purposes. External soft 

tissue was removed using physical manipulation. Although histological staining indicated the 

bone samples were free from external and internal contaminating tissue, it is not possible to 

conclude that the samples consist solely of RNA from osteoblasts, osteoclasts, and osteocytes.  

As an alternative to the one-step method of RNA isolation using guanidinium 

isothiocyanate which yielded negligible RNA, we adapted the TRIspin method developed by 

Reno et al that combines the one-step method followed by an RNA column. This technique 

provided maximal amounts of high-quality RNA from all seven bone samples. 

RNA isolation is a key component to analyzing gene expression and disease 

characteristics. The difficulties associated with manipulating bone present unique challenges to 

RNA isolation. Extracting RNA from bone cells independent of contaminating cell types is 

essential for downstream comparison of gene expression specific to cells of the bone matrix. In 

this study, we have established a technique for isolating RNA from canine phalanges, 

independent on contaminating tissue, which successfully yields RNA of sufficient quantity and 

quality for downstream transcriptomic sequencing. 
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CHAPTER 3 

Transcriptomic Analysis of Canine Osteosarcoma from a Precision Medicine Perspective 

Reveals Limitations of Differential Gene Expression Studies 

Reprinted from Nance RL, Cooper SJ, Starenki D, Wang X, Matz B, Lindley S, Smith AN, 

Smith AA, Bergman N, Sandey M, Koehler J, Agarwal P, Smith BF. Transcriptomic Analysis of 

Canine Osteosarcoma from a Precision Medicine Perspective Reveals Limitations of Differential 

Gene Expression Studies. Genes (Basel). 2022 Apr 13;13(4):680. 

3.1  Introduction 

Osteosarcoma (OSA) is a highly aggressive and spontaneous tumor of the bone seen 

primarily in the appendicular skeleton of pediatric patients. Approximately 10–20% of patients 

exhibit macro-metastatic lesions at the time of diagnosis, while 80–90% of patients are presumed 

to harbor micro-metastases88. Metastases occur almost exclusively in the lungs and, once present, 

make management difficult. The 5-year survival rate for cases with detectable metastasis at the 

time of diagnosis is approximately 20–25%88,89. The current standard-of-care treatment includes 

surgical resection and combination chemotherapy88. However, 30–40% of patients will relapse 

within 3 years of starting treatment90. Metastectomy is considered the second-line treatment and 

improves 5-year survival rates to 40%91. Moreover, osteosarcoma is particularly proficient in 

acquiring multiple drug-resistant pathways, a major limiting factor for patient survival. 

Subsequent reoccurrence is exceedingly common and repeated systemic chemotherapy is 

frequently required; unfortunately, the eventual resistance of the metastases to treatment is 

inevitable91. Despite significant advances in the cancer therapy domain, the standard-of-care 

treatment and survival rates for OSA have remained essentially unchanged for 40 years88,92,93. 
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For these reasons, it is imperative to explore and implement improved models to develop more 

effective treatment approaches. 

Canine OSA has the potential to serve as an excellent model for the human disease due to 

similar clinical, histological, and molecular characteristics74,94,95. Primary tumors occur at similar 

sites with comparable histological presentation, response to treatment, and occurrence and 

distribution of metastases66. Further support for dogs as a valuable translational model is 

evidenced by a cross-species gene signature study which used oligonucleotide arrays to examine 

expression from a limited set of orthologous genes. The researchers found indistinguishable gene 

expression patterns between canine and pediatric OSA74. Studies utilizing whole genome and/or 

whole exome sequencing have reached similar conclusions94,95. The primary difference between 

canine and human OSA is the age of onset. Canine OSA has a bimodal age distribution, with 

peaks at 18–24 months and 7 years, though older, larger breed dogs are typically affected more 

often. On the other hand, human OSA primarily occurs in the second decade of life91. OSA 

prevalence is also greater in dogs, occurring 27 times more frequently than in humans, and 

progression occurs rapidly67. With amputation of the affected limb in combination with 

chemotherapy, the 1-year survival rate for dogs is approximately 45%67. 

New molecular tools, such as next-generation sequencing, have allowed significant 

improvements to be made in the identification of common genetic changes that are associated 

with specific types of cancer96. This technology has inaugurated the era of personalized or 

precision medicine, which utilizes an individual’s specific genetic changes to guide treatment. 

This approach seeks to classify individual patients into groups based on the presence of key gene 

mutations that directly impact the tumor’s sensitivity to specific chemotherapeutic agents. In this 
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manner, treatments can be selected that have a higher likelihood of efficacy due to a better 

understanding of the relevant functioning pathways in that particular tumor. 

At the molecular level, OSA, whether human or canine, is characterized by substantial 

genetic complexity and instability97. Relapsed OSA is considerably more complex, involving 

multiple drug-resistant pathways. The unique genetic complexity of OSA poses limitations for 

therapy, and precision medicine is not immune to these limitations98. The personalized treatment 

of two high risk human OSA patients based on comprehensive molecular profiling via next-

generation exome sequencing showed no significant benefit to overall health or disease 

progression99. However, the targeted therapy was implemented after chemotherapy and 

refractory disease appeared, when drug resistance mechanisms are highly convoluted and make 

interpretation difficult. Fortunately, precision medicine is now entering a new phase where the 

transcriptomic analysis of individual patients may provide unique perspectives for treatment by 

addressing the intrinsic heterogeneity of gene expression in tumors, both within and between 

patients. A common approach to identifying targetable components of a tumor involves the 

analysis of differentially expressed genes (DEGs) in tumors compared to normal tissue. 

Patient samples and clinical information are important factors to consider in differential 

gene studies and are unfortunately often overlooked. The source of normal tissue should be 

derived from the tumor’s cell-of-origin, and, in the case of OSA, that includes osteoblasts and 

osteocytes. Prior studies of differential gene expression in OSA have used RNA isolated from a 

canine osteoblast cell line95; tissues from unrelated organs such as liver, lymph node, and 

kidney74; tissue harvested adjacent to the tumor, potentially jeopardizing the normality of the 

sample100; bone tissue from unrelated patients101; or have not clearly described the origin of the 

matched normal samples102,103. While these data are undoubtedly useful to advancing our 
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understanding of the disease, evaluation using primary normal bone cells harvested distally from 

the tumor within the same patient may yield more appropriate results. Furthermore, consistency 

in chemotherapy status among patients at the point of sample collection is important for drawing 

conclusions related to tumor status. The administration of chemotherapeutic agents provides a 

selective pressure that alters the tumor’s cellular population and phenotype98,104. Analysis of 

tumor gene expression prior to any chemotherapy provides a snapshot of the tumor phenotype, 

independent of acquired drug resistance or variation in individual drug response. Many studies in 

human OSA have utilized tissues harvested from individuals after the onset of chemotherapy, 

making interpretation of the results difficult99,105,106. 

DEG analysis combines the tumor and normal samples into two distinct groups to derive 

statistically meaningful DEGs that are generalizable across individuals. However, combining 

patients into a group implies that the samples are similar, if not identical, thereby contradicting 

and disregarding the intra- and inter-tumoral heterogeneity that forms the basis of precision 

medicine. While this type of analysis is critical for determining statistical differences in the 

group, individual-level analysis can provide additional insight into the differences among 

patients. 

Given these limitations of traditional group differential gene expression studies, we 

supplemented this analysis with a more novel approach of evaluating individual tumors based on 

genes identified in the group approach. This study uses transcriptomic sequencing of RNA 

derived from seven primary canine osteosarcoma tumors with patient-matched normal bone to 

identify DEGs and pathways. Importantly, the normal bone samples, which serve as the 

comparator for determining baseline gene expression levels, were harvested from the phalanges 

of each patient. Furthermore, all samples were obtained prior to chemotherapy or evidence of 
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macrometastatic lung disease. We explore the resulting DEGs in terms of group analysis for 

tumor vs. bone, as well as the discrete analysis of individual patients to identify the extent of 

heterogeneity in gene expression among individuals. These results highlight the phenotypic 

diversity of primary OSA among individuals and provide a supplemental approach to traditional 

methods of analyzing DEGs, particularly when the goal is an application in precision medicine. 

 

3.2  Materials and Methods 

3.2.1 Description of data 

Animals: Samples were obtained from seven dogs undergoing routine limb amputation 

for the clinical treatment of osteosarcoma (OSA) at the Auburn University College of Veterinary 

Medicine. Patient characteristics are briefly summarized in Table 3.1. The histopathology of 

tissue immediately adjacent to that used for RNA extraction was performed to confirm OSA and 

ensure that intact neoplastic tissue was entered into the experimental pipeline. Thoracic 

radiographs performed prior to amputation indicated no evidence of pulmonary macro-metastatic 

disease. In all cases, samples were obtained prior to chemo-therapy treatment. 

 

Table 3.1. Summary of canine osteosarcoma patients.  

Patient Sex 

Neuter 

Status 

Age Tumor Site Breed 

Tumor 

RIN 

Bone 

RIN 

A M Castrated 

10 yrs, 6 

mos 

Left distal radius Golden Retriever 

5.0 6.6 

B M Castrated 7 yrs Left distal femur Rottweiler 7.4 4.5 
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C M Castrated 7 yrs Left distal radius 

Doberman 

Pinscher 6.9 6.5 

D M Castrated 

11 yrs, 9 

mos 

Left proximal 

humerus 

Greyhound 

6.4 6.7 

E F Spayed 

7 yrs, 6 

mos 

Left distal radius Great Pyrenees 

6.9 6.9 

F M Castrated 7 yrs Right distal radius Golden Retriever 8.3 7.1 

G F Spayed 

9 yrs, 9 

mos 

Right distal tibia Greyhound 

6.7 7.2 

Table 3.1. Tumor and patient-matched normal bone samples were obtained from seven dogs  

undergoing limb amputation for osteosarcoma. Age is based on the date of limb amputation and 

breed is reported per the owner. (RIN = RNA integrity number, yrs = years, mos = months). 

 

3.2.2  RNA isolation and sequencing 

Normal bone RNA: Patient-matched samples were collected to obtain normal bone RNA 

to allow transcript levels to be compared with the tumors. The second phalanx was removed 

from the amputated leg within one hour of amputation. In all cases, the tumor was at least one 

joint space proximal to the phalanx. Due to the location, which was distal and distant from the 

primary tumor, it is unlikely that the normal bone sample had undergone any neoplastic events 

related to the tumor. For each dog, bone preparation and RNA extraction for the phalanx samples 

was performed according to Nance et al, as described in chapter two107. 

Tumor RNA: For each dog, the tumor was dissected into approximately 3 mm by 3 mm 

samples, flash frozen in liquid nitrogen, and stored at −80 °C until RNA extraction. RNA 

isolation was accomplished using a homogenizer in combination with acid guanidinium 
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thiocyanate-phenol-chloroform extraction. After weighing, approximately 100–200 mg of the 

frozen tumor samples was added to a 14 mL snap cap tube (Falcon) containing 2 mL of chilled 

Tri-Reagent (Molecular Research Center, Cincinnati, OH, USA). The sample was subjected to 

mechanical homogenization in short but frequent bursts until sufficiently homogenized, as 

determined visually. The samples were divided into two microcentrifuge tubes and after 10 min 

incubation at room temperature, 100 μL of bromochloropropane (BCP) (Molecular Research 

Center) was added to each, vortexed thoroughly, and incubated for 5 min at room temperature. 

After centrifugation at 20,000× g for 15 min at 4 °C, the RNA-containing aqueous layer was 

carefully transferred to a new tube. Contaminating DNA was removed by the addition of DNase 

I Reaction Buffer (10% of the total volume) and 10 μL DNase I (Thermo Fisher Scientific), 

followed by a 10 min incubation at room temperature. DNase was inactivated by the addition of 

10 μL of EDTA and heated at 65 °C for 10 min. Following this, 10% volume sodium acetate (3 

M, pH 5.2) (VWR International) was added to each tube, followed by 70% volume isopropyl 

alcohol, and the samples were briefly vortexed. Following a 15-min incubation at −20 °C, the 

samples were centrifuged at 20,000× g for 20 min at 4 °C. The supernatant was decanted, the 

pellet dislodged in 1 mL 70% ethanol, and centrifuged at 20,000× g for 30 min at 4 °C. After the 

supernatant was removed, the pellet was air dried for approximately 5–10 min and subsequently 

resuspended in 15 μL of RNase-free water. The RNA was quantified using a Nanodrop 2000 

instrument (Thermo Fisher Scientific, Waltham, MA, USA). 

RNA Sequencing: The samples were commercially prepared and sequenced (Hud-

sonAlpha Institute for Biotechnology, Huntsville, AL, USA). Initial quality control analysis was 

performed using the Agilent Bioanalyzer 2100 (Agilent Technologies,Santa Clara, CA, USA) 

and an RNA integrity number (RIN) was generated. RNA sequencing libraries were produced 
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with 500 ng of total RNA using the TruSeq PolyA library kit (Illumina) to deplete samples of 

any RNA aside from polyadenylated mRNA. They were pooled and sequenced on two lanes of 

the Illumina HiSeq v4 (PE, 50 bp, 25 M reads) yielding an average of 34 M reads per sample. 

 

3.2.3  Bioinformatic pipeline and data analysis 

The trimming of adapters and the first leading base was performed using Trimmomatic 

(v0.40)108 with a minimum length of 36 bp and raw quality was assessed using FASTQC 

(v0.10.1)109. After trimming, approximately 32–45 million sequence reads remained for each 

sample and FASTQC was used to ensure all bases had a Phred quality score above 28. Reads 

were mapped to the indexed canine reference genome (CanFam3.1) obtained from ENSEMBL 

(release 103) using HiSat2 (v2.2.1)110 and a table of mapped read counts was generated with 

Stringtie (v1.3.3)111. On average, 93% of the reads mapped to the canine reference genome. The 

bioinformatic pipeline is summarized in Figure 3.1. 

 

Figure 3.1. Overview of bioinformatic pipeline used to process and analyze data. 
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Figure 3.1. RNA sequence data were subjected to modest trimming with Trimmomatic and 

quality analysis with FASTQC prior to mapping to the reference canine genome with HiSat2, 

counting reads with Stringtie, and DEG statistics with DEseq2 to generate significant DEGs 

(FDR < 0.05, FC > 2, ≤2) which were carried forward in pathway and individual analyses. Using 

the significant DEGs from the group analysis, fold-change values were generated for each patient 

to produce the individual-level data. Bioinformatic tools and packages utilized are indicated. 

 

3.2.4  Group analysis 

The statistical analysis and identification of differentially expressed genes was performed 

using DEseq2 (v3.14)112 to generate the traditional group analysis results. These results provide a 
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list of genes that are broadly differentially expressed among samples. The DEseq2 package 

applies a general linear model with a negative binomial distribution and applies the Benjamini–

Hochberg procedure to control for the false discovery rate (FDR). The pre-filtering of genes with 

less than 1 read was per-formed prior to statistical analysis. A multi-factor design was used for 

statistical analysis to include patient ID as a term in the design formula (design = ~dog + tissue 

source). This design has been recommended in the DEseq2 vignette for analyzing paired samples 

because it accounts for differences between individuals. Log2 fold-changes were calculated 

relative to bone. To extract significant DEGs while minimizing noise, the data were filtered 

using a false discovery rate (FDR) less than 0.05, base mean greater than 10, and log2 fold-

change greater than 1 and less than −1 (corresponding to a fold-change of 2 and −2, 

respectively). The variance stabilizing transformation function in DEseq2 was used to transform 

the data to fit an approximately homoscedastic distribution and to remove the dependence of the 

variance on the mean112. The results of this transformation were used for the visualization and 

clustering of the results to generate a heatmap and a principal component analysis plot. Hallmark 

pathway analysis and gene ontology (GO) enrichment analysis of the upregulated genes was 

performed using Metascape with a p-value cut-off of 0.01, minimum overlap of 3, and minimum 

enrichment of 1.5113. Due to the constraints of gene nomenclature in Metascape, only the up-

regulated genes with identified human orthologs (total 670) were included in the analysis. Raw 

counts are available in the supplementary information. 

 

3.2.5  Individual analysis 

To explore how the DEGs varied among individual patients, we first filtered the data to 

include only the significant genes as defined by FDR < 0.05, base mean > 10, and an FC cut-off 



51 

 

of 2 from the classical group analysis. We then calculated log2 fold-change values for each gene 

by subtracting the variance-stabilized transformed counts (on the log2 scale) of bone from 

tumors for each dog. We used these results to determine the number one upregulated and 

downregulated gene in each patient. 

 

3.3  Results  

3.3.1  RNA quality 

RIN numbers were used to determine sequencing suitability based on RNA integrity. 

Samples with an RIN below 5 cannot guarantee reliable sequencing results; for all except two 

(patient B bone RIN = 4.5, patient A tumor RIN = 5.0), the RIN was above 5, indicating 

moderately intact RNA. The average RIN for tumor and bone was 6.8 and 6.5, respectively. 

 

3.3.2  Group analysis 

For the traditional group analysis, we compared the gene expression from all tumor 

tissues to all normal tissues and found a total of 3742 differentially expressed genes with a false 

discovery rate (FDR) of less than 0.05. After further filtering using a base mean great-er than 10 

and fold-change values greater than 2 and less than −2, there were 2031 significant DEGs. Of 

these, 803 genes were upregulated with a fold-change greater than 2, and 1228 genes were 

downregulated with a fold-change less than −2 in tumor compared to normal bone (Figure 3.2A). 

Hierarchical clustering of the 2031 significant DEGs shows that the normal and tumor samples 

cluster together in terms of over- and under-expression (Figure 3.2B). This is as expected based 

on studies in other organisms where as many as a third of genes show evidence for altered 

expression in tumors compared to normal tissue. 
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Figure 3.2: Differential gene expression analysis reveals over 3000 significant genes. 

 

Figure 3.2. Analysis of differential gene expression in tumor vs normal group data reveals over 

3000 significant DEGs. Volcano plot shows many genes are highly differentially expressed 

between tumor vs. normal (A). Genes indicated in red are significant in terms of both adjusted p-

value (<0.05) and fold-change (>2 and ≤2). The sign of fold-change (positive or negative) was 

retained and is reported in terms of tumor compared to bone. Heatmap of the significant genes 

(FDR < 0.05) shows that these DEGs easily differentiate tumor from normal tissue (B). Each row 

represents a gene and upregulation is indicated in red, while downregulation is shown in blue. 

Patient and sample ID is indicated underneath the corresponding column. PCA plot shows 
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grouping of normal bone samples (red circles) distinct from tumor samples (blue circles) as 

expected (C). The dispersion and variability of the tumor samples is thought to be related to 

intra- and inter-tumoral heterogeneity. 

 

Principal component analysis was performed to further evaluate sample clustering 

(Figure 3.2C). As expected, all bone samples clustered together, distinct from the tumor samples. 

To evaluate the biologically significant DEGs, we subset the significant results based on a fold-

change cut-off of 2 and sorted them based on the log2 fold-change or adjusted p-value (FDR). 

Ordering based on log2 fold-change allows us to evaluate the most highly over- or under-

expressed genes that still meet the adjusted p-value below 0.05. On the other hand, ordering the 

gene list based on an adjusted p-value provides DEGs with higher confidence in shared trends 

among individuals. The top 10 downregulated and upregulated genes are listed in Table 3.2. 

Many of the canine ENSEMBL gene identifications did not correspond to known gene symbols 

or human orthologs for the top 10 genes when ordered based on smallest and largest log2 fold-

change (Table 3.2A), but when ordered based on smallest adjusted p-value, all 10 genes 

corresponded to known gene symbols (Table 3.2B). Based on sorting by padj, the top 

upregulated genes included GTSE1, HELLS, SPAG5, RAD54L, and IQGAP3. The top 

downregulated genes included PLIN1, CL1, FMO2, CIDEC, and ESM1. 

 

Table 3.2. Top 10 up- and down-regulated genes from group analysis.  
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ENSEMBL SYMBOL log2FC padj GENENAME

ENSCAFG00000028799 ARHGEF1 -10.75 2.93E-03 Rho guanine nucleotide exchange factor 1

ENSCAFG00000041995 NA -10.25 6.33E-03 NA

ENSCAFG00000007622 NA -10.04 6.95E-03 NA

ENSCAFG00000005350 NA -9.69 9.07E-03 NA

ENSCAFG00000014986 FMO2 -9.35 4.40E-28 flavin containing dimethylaniline monoxygenase 2

ENSCAFG00000042006 NA -9.22 1.63E-02 NA

ENSCAFG00000049609 NA -8.94 1.84E-02 NA

ENSCAFG00000008109 NA -8.77 9.28E-04 NA

ENSCAFG00000029213 LOC607979 -8.67 2.22E-02 eukaryotic translation initiation factor 3, subunit L pseudogene

ENSCAFG00000011465 NA -8.59 3.20E-08 NA

ENSEMBL SYMBOL log2FC padj GENENAME

ENSCAFG00000044295 NA 13.49 1.31E-04 NA

ENSCAFG00000009135 LOC403585 12.75 4.34E-04 serum amyloid A1

ENSCAFG00000032019 NLRP12 11.36 1.85E-03 NLR family pyrin domain containing 12

ENSCAFG00000013213 NA 10.32 5.31E-03 NA

ENSCAFG00000043115 NA 9.20 5.53E-03 NA

ENSCAFG00000007173 NA 7.95 1.31E-03 NA

ENSCAFG00000006648 HOXC10 7.06 4.67E-20 homeobox C10

ENSCAFG00000015211 APOBEC3Z1 6.58 3.81E-06 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like

ENSCAFG00000008986 RASAL1 6.12 1.68E-06 RAS protein activator like 1

ENSCAFG00000035513 LOC111093651 6.11 7.53E-04 uncharacterized LOC111093651

Top 10 Downregulated Genes in Tumor, Ordered by Log2 Fold-Change

Top 10 Upregulated Genes in Tumor, Ordered by Log2 Fold-Change

A
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Table 3.2. When ordered by lowest and highest log2 fold-change, many of the ENSEMBL gene 

identifications do not correspond to known gene symbols. When ordered by smallest adjusted p-

value (FDR), all ENSEMBL IDs correspond to known symbols 

 

Hallmark pathway analysis of the upregulated DEGs revealed G2M checkpoint (M5901), 

E2F targets (M5925), MTORC1 signaling (M5924), and epithelial mesenchymal transition 

(M5930) as the most enriched pathways in tumors (Figure 3.3A). The top pathways from gene 

ontology (GO) enrichment analysis included the mitotic cell cycle (GO:0000278), regulation of 

cell cycle process (GO:0010564), DNA metabolic process (GO:0006259), and spindle 

ENSEMBL SYMBOL log2FC padj GENENAME

ENSCAFG00000011986 PLIN1 -4.61 1.91E-35 perilipin 1

ENSCAFG00000006248 CHL1 -6.90 1.11E-29 cell adhesion molecule L1 like

ENSCAFG00000014986 FMO2 -9.35 4.40E-28 flavin containing dimethylaniline monoxygenase 2

ENSCAFG00000005266 CIDEC -5.10 6.25E-28 cell death inducing DFFA like effector c

ENSCAFG00000018381 ESM1 -3.63 2.38E-27 endothelial cell specific molecule 1

ENSCAFG00000006392 ACKR4 -4.41 6.62E-27 atypical chemokine receptor 4

ENSCAFG00000030764 SLC25A29 -1.42 1.31E-25 solute carrier family 25 member 29

ENSCAFG00000003807 KLF15 -3.14 2.28E-23 Kruppel like factor 15

ENSCAFG00000001854 AQP7 -3.58 2.66E-23 aquaporin 7

ENSCAFG00000015323 PLIN4 -3.52 7.60E-22 perilipin 4

ENSEMBL SYMBOL log2FC padj GENENAME

ENSCAFG00000000782 GTSE1 2.88 8.51E-31 G2 and S-phase expressed 1

ENSCAFG00000008090 HELLS 2.34 1.54E-27 helicase, lymphoid specific

ENSCAFG00000018724 SPAG5 3.33 2.28E-23 sperm associated antigen 5

ENSCAFG00000004272 RAD54L 2.48 1.35E-21 RAD54 like

ENSCAFG00000016616 IQGAP3 3.04 1.41E-20 IQ motif containing GTPase activating protein 3

ENSCAFG00000010114 CIT 2.46 3.84E-20 citron rho-interacting serine/threonine kinase

ENSCAFG00000006648 HOXC10 7.06 4.67E-20 homeobox C10

ENSCAFG00000016090 TOP2A 3.26 6.47E-20 DNA topoisomerase II alpha

ENSCAFG00000013255 MKI67 3.04 2.35E-18 marker of proliferation Ki-67

ENSCAFG00000008478 MOGS 1.30 6.47E-18 mannosyl-oligosaccharide glucosidase

Top 10 Downregulated Genes in Tumor, Ordered by Adjusted p-value

Top 10 Upregulated Genes in Tumor, Ordered by Adjusted p-value

B
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organization (GO:0007051) (Figure 3.3B). These results are consistent with previously published 

data. 

 

Figure 3.3. Pathway analysis of upregulated DEGs. 

 

Figure 3.3. Pathway analysis of the upregulated DEGs using hallmark pathways (A) and gene 

ontology (GO) enrichment terms (B). 

 

The classical group analysis identifies DEGs that are broadly dysregulated among 

patients. As a whole, each of the tumors exhibited similar patterns in terms of DEGs and these 

are distinct from normal bone. However, expression was not necessarily consistent across 

patients for all DEGs. To observe how the top genes for the group analysis varied between 
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individuals, we plotted the normalized counts of the number one upregulated and downregulated 

gene according to the smallest adjusted p-values (Figure 3.4B,D) and the largest log2 fold-

change difference (Figure 3.4A,C). The top upregulated gene according to the largest fold-

change difference was ENSCAFG00000044295 (L2FC = 13.5, FDR = 1.3 × 10−4), which, 

according to ENSEMBL, encodes an uncharacterized protein of 120 amino acids in length. The 

top upregulated gene with the smallest FDR was GTSE1 (L2FC = 2.9, FDR = 8.6 × 10−31), or 

G2 and S phase-expressed protein 1, which encodes a protein that binds the tumor suppressor 

protein P53 to repress its ability to induce apoptosis in response to DNA damage. The top 

downregulated gene according to fold-change was ARHGEF1 (L2FC = −10.7, FDR = 2.9 × 

10−3), or rho guanine nucleotide exchange factor 1, which encodes a protein that may be 

involved in forming a complex with G proteins and the stimulation of rho-dependent signals. The 

top downregulated gene with the smallest FDR was PLIN1 (L2FC = −4.6, FDR = 1.9 × 10−35), 

or perilipin 1, which encodes a protein involved in adipocyte lipid metabolism. Visualization of 

these normalized gene counts shows some variation among patients, some even showing an 

inverse relationship despite having an FDR < 0.05 (Figure 3.4C). 

 

Figure 3.4. Top genes from group analysis. 
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Figure 3.4. Plots of the normalized counts of the top up- and down-regulated genes in the 

classical group analysis show some variation among individual patients. The number one gene 

when ordered by log2 fold-change shows variation among individual patients (A,C). The top 

gene when ordered by smallest adjusted p-value shows less variation in terms of direction of 

fold-change, but some variation between individuals is still evident (B,D). 

 

3.3.3  Individual analysis  

To supplement the classical group analysis, we sought to identify the top DEGs in each 

individual patient by calculating log2 fold-change values for each pair of tumor and normal 
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samples using the significant genes from the group analysis. Figure 3.5 depicts the normalized 

counts of the top upregulated gene in each patient. While the results show a general trend shared 

among individuals (Figure 3.5C–F), the top genes for patient A and B are heavily skewed by 

substantial counts in the tumor of that specific transcript, and minimal to no counts in the other 

patients (Figure 3.5A,B). The top upregulated gene for patient A, ENSCAFG00000041995, 

encodes a predicted long non-coding RNA of 1359 bp with unknown functions (Figure 3.5A). 

Interestingly, this gene was found to be the second top downregulated gene when ordered by 

fold-change for the group analysis, with a log2 fold-change of −10.25 and FDR of 0.006 (Table 

3.2). For patient B, the top upregulated gene was LOC403585, also known as serum amyloid A1, 

which encodes a protein that is ex-pressed in response to inflammation (Figure 3.5B). In the 

group analysis, this gene was found to be the second top upregulated gene when ordered by fold-

change, with a log2 fold-change of 12.75 and an FDR of 0.0004. The top upregulated gene for 

both patients C and G was TFPI2 (tissue factor pathway inhibitor 2), which encodes a serine 

proteinase inhibitor that has been identified as a tumor suppressor in a variety of cancers (Figure 

3.5C). The top upregulated gene in patient D, COL11A1 (collagen type XI α 1 chain), encodes a 

protein component of pro-collagen type XI, a major component of bone tissue (Figure 3.5D). For 

patient E, the top upregulated gene was SFRP2 (secreted frizzled related protein 2), which 

encodes a protein involved in Wnt signaling (Figure 3.5E). The top upregulated gene in Patient F 

was ENSCAFG00000028460, which encodes two long non-coding RNA transcripts with 

unknown functions (Figure 3.5F). These three genes, COL11A1, SFRP2, and 

ENSCAFG00000028460, were not observed in the top 20 down- or up-regulated genes from the 

group analysis. 
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Figure 3.5. Top upregulated gene in each patient. 

 

Figure 3.5. Plots of the top upregulated gene for each dog based on individual-level analysis 

reveal further variation among patients. The normalized counts of the top upregulated gene in 

each patient is shown. The top upregulated gene for patient A was ENSCAFG00000041995 (A). 

The top upregulated gene for patient B was LOC403585 (B). Patients C and G shared the same 

top upregulated gene, TFPI2 (C). The top upregulated gene for patient D was COL11A1 (D). The 

top up-regulated gene for patient E was SFRP2 (E). The top upregulated gene for patient F was 

ENSCAFG00000028460 (F). 

 

Similarly, the top downregulated gene for each patient was determined and more overlap 

among individuals was observed (Figure 3.6). The top downregulated gene for patient A was 

CYTL1 (cytokine-like 1), which encodes a protein that is expressed in bone marrow and cord 

blood mononuclear cells with the CD34 surface receptor114 (Figure 3.6A). The top 

downregulated gene for patients B, E, and G was ENSCAFG00000034058, which encodes a 
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1501 bp long non-coding RNA with uncharacterized function (Figure 3.6B). The top 

downregulated gene for patient C was MYOC (myocilin) which encodes a protein involved in 

cytoskeletal function (Figure 3.6C). The top downregulated gene in patients D and F was MEPE 

(matrix extracellular phosphoglycoprotein) which encodes a protein component of the 

extracellular matrix of bone (Figure 3.6D). 

 

Figure 3.6. Top downregulated gene in each patient. 

 

Figure 3.6. The top downregulated gene for each individual dog is shared among some patients. 

The normalized counts of the top downregulated gene in each patient are shown. The top 

downreg-ulated gene in patient A was CYTL1 (A). Patients B, E, and G share the same top 

downregulated gene, ENSCAFG00000034058 (B). The top downregulated gene in patient C was 

MYOC (C). Patients D and F share the same top downregulated gene, MEPE (D). 
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To compare the individual and group analysis results, we extracted the log2 fold-change 

values and adjusted p-values (FDR) from the group analysis for each top gene from the 

individual analysis (Table 3.3). While the results show similarities, the top upregulated gene in 

patient A (ENSCAFG00000041995) shows distinct opposition in terms of the direction of fold-

change from the group analysis (L2FC = −10.25). In fact, while this gene is significantly over-

expressed in patient A’s tumor, it is modestly downregulated in two tumors (patients B and C) 

and shows no evidence of expression in tumor or normal bone for the remaining patients (Figure 

3.5A). Furthermore, this gene was identified as the second most downregulated gene from the 

group results when ordered by log2 fold-change (Table 3.2). 

 

Table 3.3. Comparison of group and individual-level analyses.  

 

Table 3.3. The top up- and downregulated gene for each patient according to log2 fold-

change values from individual analysis shows some similarities to group analysis results. 

The top upregulated gene in patient A (ENSCAFG00000041995) shows distinct 

opposition in terms of direction of fold-change in the group results. 

 

Patient Gene FDR Log2FC

A ENSCAFG00000041995 6.39E-03 -10.25

B LOC403585 4.37E-04 12.75

C TFPI2 3.60E-06 3.23

D COL11A1 1.49E-09 3.18

E SFRP2 7.36E-06 3.19

F ENSCAFG00000028460 4.15E-02 1.79

G TFPI2 3.60E-06 3.23

A CYTL1 2.34E-04 -6.65

B ENSCAFG00000034058 3.31E-02 -5.92

C MYOC 2.58E-13 -7.97

D MEPE 1.06E-12 -7.47

E ENSCAFG00000034058 3.31E-02 -5.92

F MEPE 1.06E-12 -7.47

G ENSCAFG00000034058 3.31E-02 -5.92
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3.4  Discussion   

Osteosarcoma is a highly complex and volatile bone tumor primarily seen in pediatric 

patients for which treatment has remained stagnant for almost 40 years. It is well-established that 

canine OSA is an ideal model for studying the human disease, as well as developing and testing 

therapeutic alternatives, such as precision medicine concepts. Using dogs, we aim to fill gaps in 

the current knowledge of OSA tumorigenesis while identifying potential therapeutic targets that 

can be tested and evaluated in a clinical setting. 

While the technology of precision medicine has rapidly advanced, the overall clinical 

efficacy of such therapies leaves much to be desired, due primarily to the inherent heterogeneity 

and rapid evolution of drug-resistant mechanisms that define cancer115. Though cancer is 

traditionally considered a disease of genotypic origin, the phenotype reflects the accumulated 

genetic complexity and actionable targets that may be exploited. Transcriptomic sequencing 

provides a snapshot of gene expression and a link between genotypic and phenotypic landscape. 

In the context of cancer, where aberrant transcriptional patterns are pervasive, transcriptome 

profiling can identify and quantify changes in gene activity that are distinctive of tumors. Using 

this information, we can identify differentially expressed genes associated with various cellular 

processes and pathways that may be broadly expressed among patients to guide current treatment 

options and develop new therapies. 

Traditional differential gene analysis groups individuals together to derive statistically 

meaningful DEGs; however, this approach fails to account for intra- and inter-tumoral 

heterogeneity and therefore is limited in its application for precision medicine. Deriving 

individual fold-change values provides additional insight into the differences among patients and 
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potential targets that may be beneficial for a subset of patients. Individual-level analyses are 

difficult due to the lack of statistical inference that can be derived from a single sample. To 

address this limitation, we selected only the significant DEGs from the group analysis to be 

carried forward to the individual-level analysis, thereby providing some statistical basis for the 

individual results. However, it must be recognized that some distinctive gene expression 

alterations may be so specific to one individual that they will be lost from this analysis. 

Using this concept, we sequenced the transcriptomes of seven primary canine OSA 

tumors and patient-matched normal bone samples to derive differentially expressed genes 

(DEGs). In contrast to previously published studies, all samples were collected before 

chemotherapy and evidence of macro-metastatic lung disease to limit confounding interpretation 

of the results. Furthermore, normal bone samples were collected from each patient to generate 

suitable baseline gene expression levels. To our knowledge, this is the first study to derive 

normal expression for each patient using a biologically appropriate sample (bone) which is 

representative of the tumor’s cell-of-origin (osteoblasts and osteocytes, depleted of bone 

marrow) in primary osteosarcoma prior to chemotherapy. This pairwise comparison reduces 

biological variability, increases statistical power, and provides a more thorough perspective of 

differential gene expression. 

The clustering of the DEGs derived from the traditional group analysis showed dis-tinct 

relationships between tumor and normal samples as a group. The wide dispersion and variability 

in the tumor samples, as evidenced in the PCA plot (Figure 3.2C), is believed to be related to the 

intra- and inter-tumoral heterogeneity. The bone tissues were depleted of bone marrow and any 

cells other than those embedded within the bone matrix, whereas the tumor samples may contain 

many different types of cells at various stages of differentiation (for example, infiltrating 
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immune cells and de-differentiated cells with a more stem-cell-like phenotype). Furthermore, 

even tumors of the same type or source exhibit heterogeneity in their molecular profile116. 

We used traditional group analysis to statistically identify the top genes that are broadly 

dysregulated among the patients. Significant DEGs were selected based on padj < 0.05, FC > 2 

or < −2, and a base mean count > 10, and these results were ranked based on log2 fold-change as 

well as an adjusted p-value. The top upregulated genes from the group analysis included GTSE1 

(when sorted by padj) and ENSCAFG00000044295 (when sorted by log2 fold-change). GTSE1 

regulates the G1/S cell cycle transition and has been reported to be overexpressed in other human 

cancers117–120. GTSE1 has been implicated in conferring cisplatin resistance in human 

osteosarcoma, though more studies are necessary to confirm its role in OSA tumorigenesis121. 

ENSCAFG00000044295 encodes a 120 amino acid protein with uncharacterized functions that 

does not correlate to any human ENSEMBL IDs. The top downregulated genes included PLIN1 

(when sorted by padj) and ARHGEF1 (when sorted by log2 fold-change). The downregulation of 

PLIN1 mRNA has been reported in breast cancer and is considered a tumor suppressor in breast 

cancer progression122,123. The dysregulation of rho GTPases, including ARHGEF1, are 

commonly reported in a variety of cancers124. 

We showed that the group results can sometimes be misleading due to the heterogeneity 

among individuals. In some cases, a bi-directional change in expression was observed among 

patients. To circumvent this, we used individual-level analysis to derive log2 fold-change values 

for each patient using only the significant genes identified in the group analysis. We used this 

information to identify the top upregulated and downregulated genes in each patient and compare 

their expression across individuals. The top downregulated gene was shared between patients B, 

E, and G (ENSCAFG00000034058), as well as for patients D and F (MEPE). 
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ENSCAFG00000034058 encodes a long non-coding RNA with unknown functions. Co-

expression network analysis has revealed MEPE as a dysregulated gene in human 

osteosarcoma125. The top upregulated gene was different for all individuals (A: 

ENSCAFG00000041995, B: LOC403585, D: COL11A1, E: SFRP2, F: 

ENSCAFG00000028460), except for patients C and G (TFPI2). The upregulation of COL11A1 

and SFRP2 has been reported in human osteosarcoma106,126. TFPI2, a tumor suppressor gene, has 

been shown to be upregulated in other cancers, including colorectal, gastric, and prostate127–129. 

Both ENSCAFG00000041995 and ENSCAFG00000028460 encode uncharacterized long non-

coding RNAs that do not correlate to known human ENSEMBL gene IDs. More studies are 

needed to evaluate their role in OSA tumorigenesis. 

The top upregulated gene in patient A (ENSCAFG00000041995) showed an inverse 

relationship in terms of the direction of fold-change in the group analysis. In fact, this gene was 

the second-most downregulated gene according to the group results sorted by log2 fold-change, 

despite having an adjusted p-value less than 0.05. The observed differences in gene expression 

among individuals may be due to (1) the effects of different mutations in combination with 

genetic and/or environmental effects, (2) the stage of the tumor, or (3) initial RNA quality. This 

example represents the hallmark conclusion of this study; despite relatively stringent filtering 

conditions to minimize noise and confidently identify the top DEGs, traditional group analyses 

can be misleading and lead to the identification of therapeutic targets that may be ineffective for 

most patients. 

Consistent with the conventional theme of research, this study is not without limitations. 

With a small sample size of seven, the statistical power is limited. As with all next-generation 

sequencing studies, computational challenges may limit the downstream interpretation. For 
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example, the extent of gene annotation in the canine reference genome (CanFam3.1) limited our 

ability to identify the appropriate human orthologs. Additionally, it is becoming increasingly 

evident that non-coding RNAs such as micro-RNA and long non-coding RNA (lncRNA) play a 

dynamic role in tumor progression102,103. This study utilized a sequencing approach that excluded 

RNAs without poly-A tails. However, some lncRNAs are produced and processed with poly-A 

tails and as such were included in the sequencing. Furthermore, the heterogeneity of tumors 

makes it difficult to under-stand and characterize the phenotypic landscape, its components, and 

how those components affect tumor progression. It is also difficult to identify the distribution of 

these changes; for example, a highly upregulated gene may be vastly over-expressed, but only 

prevalent in only a small subset of cells. The clonal hypothesis implies a spatial distribution of 

different tumor cell populations, and using a single small section for sequencing may impair our 

ability to detect other cellular subsets. With the advancement of single-cell RNA sequencing and 

the development of accompanying bioinformatics tools, we may be able to elucidate the details 

of a tumor’s phenotype more clearly. While more studies are needed to evaluate the role these 

dysregulated genes play in tumorigenesis, these results support the notion that traditional group 

DEG analysis should be supplemented by individual-level analysis in the context of precision 

medicine for the identification of potential therapeutic targets. 

 

3.5 Conclusions 

Canine OSA serves as an excellent model for determining molecular targets and 

developing and evaluating personalized precision treatment. The relatively ample availability of 

dogs with spontaneously occurring OSA provides a powerful and underused translational model. 

Limb amputation offers the opportunity to easily collect tumor samples for sequencing as well as 
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appropriate normal tissue, for example, from the distal phalanges, to allow comparisons within 

the same patient prior to chemotherapy107. 

The goal of precision medicine is to use an individual tumor’s molecular profile, rather 

than tumor category or stage, to inform therapeutic decisions and design novel treatments. Group 

DEG analysis has been traditionally used to identify relevant genes, but these results do not 

account for intra- or inter-tumoral differences. Despite using a multi-factor paired design to 

account for differences between individuals, as well as strict filtering parameters to minimize 

noise, our results showed some conflicting elements and variation in DEG expression. These 

results suggest that identifying significantly up- or downregulated genes as potential therapeutic 

targets using traditional group analysis may not always be appropriate, even when stringent 

filtering conditions are used. While these conclusions may be well established in the 

bioinformatics community, they may be lesser known in the precision oncology field, where 

DEG analysis is pervasive. Supplementing DEG analyses with individual-level analyses provides 

additional insight into the intra- and inter-tumoral heterogeneity. 

The novelty of this study lies in the sample set as well as the analytical workflow. In 

contrast to other published studies, (1) all samples were obtained prior to chemotherapy, which 

can alter the phenotype; (2) normal bone samples (depleted of contaminating tissue) from each 

patient were used as the comparator tissue for baseline gene expression; and (3) DEG analysis 

was supplemented by individual-level analysis and compared to group DEG analysis. This study 

demonstrates that the variation in DEG expression be-tween individuals, obtained using 

traditional group DEG analysis, is sufficient to warrant further individual-level analysis to 

identify more effective targets for precision therapy. 
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CHAPTER 4 

Single-Nuclei Multiome (ATAC + Gene Expression) Sequencing of a Primary Canine 

Osteosarcoma Elucidates Intra-Tumoral Heterogeneity and Characterizes the Tumor 

Microenvironment 

4.1  Introduction 

 Osteosarcoma (OSA) is a highly malignant bone tumor occurring most often in pediatric 

and adolescent humans as well as large breed dogs. It is highly heterogeneous and aggressive, 

with poor survival rates for both species. The median survival time for dogs undergoing 

amputation of the affected limb in combination with chemotherapy is approximately one year 

after diagnosis, with most dogs succumbing to metastases130. Due to its similarities, canine OSA 

represents a powerful translational model for understanding the human disease as well as 

designing and testing clinical therapeutics.  

 Tumor heterogeneity makes treatment difficult due to the evolution of cell subsets that 

impact tumor growth, metastasis, and drug resistance131. Both intrinsic and extrinsic factors 

contribute to tumor heterogeneity, including the accumulation of genetic mutations, epigenetic 

factors affecting cellular activity and identity, and microenvironmental influences such as cell-

cell interactions131. Single-cell sequencing is a powerful approach to evaluating tumor 

heterogeneity by identifying various cell types and states within a tumor. Identifying the relative 

proportion of cells with aberrant transcription patterns provides critical information regarding the 

potential effectiveness of therapies.  

However, obtaining viable cells after tissue dissociation is a prerequisite for single-cell 

sequencing and represents a major limitation to this technology, particularly for difficult tissues 

such as osteosarcoma. Since OSA is derived from bone, it often contains bone matrix which is 
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very rigid and difficult to homogenize. The dissociation procedure selects for cells that survive 

this process, potentially excluding rare cell types, and may also result in RNA degradation. 

Furthermore, enzymatic and/or mechanical tissue dissociation may alter the cell’s phenotype by 

inducing a transcriptional stress response, resulting in artifacts upon sequencing132,133. In our 

laboratory, efforts to isolate single-cell suspensions from primary canine OSA, including various 

mechanical and enzymatic protocols, have resulted in poor cell viability unsuitable for single-cell 

sequencing. Additionally, removal of dead cells to increase viability may not accurately reflect 

the true biology of the tumor due to the selection of surviving cells.  

In contrast, single-nuclei sequencing circumvents the cell viability challenge by lysing 

the cells to obtain nuclei. However, nuclei quality is a critical factor to consider, and nuclear 

membranes should appear intact and with minimal blebbing under high power microscopy after 

isolation. Importantly and in contradistinction to single-cell, single-nuclei sequencing can be 

performed on frozen archived samples.       

Gene expression sequencing of single-nuclei differs from single-cell in the information it 

provides. Single-nuclei sequencing captures polyadenylated RNA transcripts that are actively 

being transcribed in the nucleus, whereas single-cell sequencing captures all polyadenylated 

RNA within the cell’s cytoplasm. Despite these differences, single-nuclei sequencing has been 

shown to provide equivalent gene detection signatures and accurate cell identification while 

minimizing bias compared to single-cell sequencing132–135.  

10x Genomics uses a microfluidic-based approach to partition single nuclei into gel beads 

containing barcoded primers and enzymes. This technology allows single nuclei to be captured 

and barcoded so that after sequencing, reads can be traced back to the corresponding 



71 

 

cell/nucleus. Identifying individual cell phenotypes and genotypes can reveal the inherent intra-

tumoral heterogeneity at high resolution and provide insight into tumorigenesis.   

 To date, this is the first study to use single-nuclei multiome sequencing, including 

ATAC (Assay for Transposase-Accessible Chromatin) and GEX (Gene Expression) sequencing, 

of a treatment-naïve primary canine osteosarcoma, to simultaneously capture the transcriptomic 

and epigenomic profiles in the same nucleus.  

 

4.2  Materials and Methods 

4.2.1  Patient/Sample Description  

Osteosarcoma tissue was obtained from a 7-year-old male Doberman Pinscher presenting 

to the Wilford and Kate Bailey Small Animal Teaching Hospital at Auburn University for limb 

amputation. Importantly, the samples were obtained prior to chemotherapy, radiation, or 

evidence of pulmonary macro-metastatic disease. A sample was subjected to histopathology and 

confirmed to be osteoblastic osteosarcoma. The tumor specimen was diced into approximately 

50 mg pieces, immediately flash frozen in liquid nitrogen, and stored at -80C. This sample was 

stored at -80C for approximately 5 years prior to nuclei isolation.  

 

4.2.2  Nuclei Isolation  

 Nuclei were isolated from 42 mg flash frozen OSA tissue by following the Nuclei 

Isolation kit protocol from 10x Genomics (Pleasanton CA, USA, CG000505 Rev A) with minor 

adjustments to enhance homogenization while retaining nuclear morphology. The Lysis Buffer 

provided with the kit was diluted with phosphate buffered saline (PBS) to 0.5 strength and the 

sample was briefly homogenized (1-2 sec) using a bladed homogenizer on ice, followed by a 5-
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minute incubation on ice. The nuclei isolation protocol from 10x Genomics was then followed 

according to the manufacturer’s directions. Nuclei were visualized and counted using trypan blue 

(ThermoFisher Scientific, Waltham, MA, USA) and ViaStain acridine orange/propidium iodide 

(AO/PI) (PerkinElmer, Waltham, MA, USA) to determine quality and quantity using the 

Keyence BZ-X810 microscope with 100x oil-immersion objective. Nuclei were counted by hand 

using a hemocytometer in addition to using the Biorad TC20 automated cell counter (Biorad, 

Hercules, CA, USA) to determine the concentration for library preparation.  

 

4.2.3  Library Preparation  

 Approximately 10,000 nuclei were used to generate ATAC and gene expression libraries. 

Libraries were prepared according to the Chromium Next GEM single-cell multiome ATAC + 

gene expression user guide (10x Genomics, Pleasanton, CA, USA, CG000338 Rev F). Briefly, 

the single-nuclei along with a master mix, 10x barcoded gel beads, and partitioning oil are 

loaded onto the Chromium Next GEM Chip J to generate single-nuclei gel bead-in-emulsions 

(GEMs). Pre-amplification PCR was performed and the GEX and ATAC libraries were split for 

further processing separately. The prepared libraries were shipped to Novogene (Sacramento, 

CA, USA) for 150 bp paired-end sequencing on the Illumina NovaSeq 6000 platform using the 

sequencing parameters recommended by 10x Genomics.   

 

4.2.4  Bioinformatic Processing, Dimensional Reduction, and Weighted Nearest Neighbor 

Analysis  

 The canine reference genome “canFam6”, also known as Dog_10K_Boxer_Tasha 

(GCF_000002285.5), was used to align and count reads using Cell Ranger (v7.1.0). Analysis was 
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accomplished using the Cell Ranger ARC Count (v2.0.2) pipeline and the output was loaded into 

Seurat (v4.3.0) for further processing. Seurat was used to filter the data using a feature threshold 

(200 < n < 30000) and counts threshold (50 < n < 50000). The SCTransform function in Seurat 

was used to normalize and transform the GEX data using a regularized negative binomial 

regression model, as described previously136. Dimensionality reduction was accomplished using 

PCA and UMAP embedding was used to visualize clusters using Seurat. ATAC data was 

processed using latent semantic indexing (LSI), which combines term frequency inverse 

document frequency (TF-IDF) normalization followed by singular value decomposition (SVD) 

of the top identified features. A weighted combination of the GEX and ATAC data was used to 

construct a Weighted nearest neighbor (WNN) graph and clusters were identified using the SLM 

algorithm in Seurat.  

 

4.2.5  Cell Cluster Annotation  

  ScType was used to annotate cell clusters based on a given reference set of 

upregulated/downregulated markers and designated cell types137. A custom annotation set was 

created using single-cell markers accessed from CellMarker2.0 and annotated using ScType138. 

Annotation of “tumor” vs. “normal” clusters was based on differential expression analysis of the 

bulk RNA sequencing results produced in Nance et al139. This dataset included bulk RNA 

sequencing of 7 primary canine osteosarcoma tumors, including the tumor in the current study, 

along with patient-matched normal bone. Using this data, a custom annotation set was created to 

designate “tumor cells” from “normal cells” based on upregulated genes (log2 fold-change>2 

and padj<0.05) in tumor and bone, respectively. ScType was then used to annotate the cell 
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clusters and overlay the results on the weighted nearest neighbor UMAP plot. All markers used 

for cluster annotation are listed in Supplemental Table 4.2.  

 

4.2.6  Copy Number Variation (CNV) Analysis 

Genomic copy number was inferred for the osteoblast clusters using the Bioconductor 

package inferCNV with cluster 2 (fibroblasts), cluster 3 (endothelial cells), cluster 4 (myeloid 

cells), cluster 5 (osteoclasts), cluster 6 (osteocytes), and cluster 8 (memory CD4+ T cells) as the 

normal reference140.  

 

4.2.7  Differential Gene Expression for Identification of Cluster Markers  

 Using the variance-stabilized GEX data, the ‘FindAllMarkers’ function in Seurat was 

used to identify positive markers for clusters compared to all remaining cells using the 

roc/standard AUC classifier test (min.pct=0.25 and logfc.threshold=0.25). The positive markers 

for each cluster were subjected to subsequent pathway analysis using all genes in the canine 

database as the reference.  

   

4.2.8  Enriched Pathway Analyses 

Gene set enrichment analysis using Hallmark and Canonical pathways in the Canis lupus 

familiaris genome was accomplished using the R package singleseqgset (v0.1.2.9000). To 

identify enriched GO Biological Processes among clusters, PANTHER (v17.0) was used to 

perform a statistical overrepresentation test (Fisher’s exact test with FDR correction) using the 

GO Ontology database (DOI: 10.5281/zenodo.6799722 Released 2022-07-01)141,142.  
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4.3  Results 

To explore the cellular heterogeneity and microenvironment of canine OSA, single-nuclei 

multiome (ATAC + Gene Expression, GEX) sequencing was conducted on a primary canine 

OSA tumor lesion obtained prior to chemotherapy or macro-metastatic lung disease.  

 

4.3.1  Quality and Dimensionality of the Single-Nuclei and Sequencing Data 

 After isolation and prior to library preparation, nuclei were assessed for quality and 

quantity using high power microscopy in combination with AO/PI fluorescent staining. The 

majority of nuclear membranes appeared intact with minimal blebbing (Figure 4.1).  The nuclei 

were in sufficient quantity for library preparation, sequencing, and downstream analysis. 

 

Figure 4.1. High-power microscopy to evaluate single-nuclei quality. 
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Figure 4.1. Phase contrast (A, C) and AO/PI-stained nuclei under fluorescent microscopy (B, D) 

shows nuclear membranes are intact with minimal blebbing.  

 

Approximately 10,000 nuclei were used for multiome (ATAC + GEX) library preparation 

using 10x Genomics technology and sequenced (150 bp PE) on the Illumina NovaSeq 6000 

platform. After classification of each barcode into cell and non-cell groups, there were an 

estimated 5969 total nuclei sequenced with 8462 median ATAC high-quality fragments per cell 

and 2603 median GEX genes per cell (Fig 4.2A). To examine true nuclei, filtering parameters 

(feature threshold 200-30000 and count threshold 50-50000) were applied to both ATAC and 

GEX data to eliminate empty droplets and doublets. After filtering, 5849 total nuclei and 23784 

genes were included in the downstream analysis (Fig 4.2B).  

 

Figure 4.2. Quality filtering to eliminate doublets and empty droplets.  

 



77 

 

Figure 4.2. Violin plots of the total features and counts detected per nucleus for both 

GEX and ATAC data prior to filtering (A). Scatterplots of the number of features by counts per 

nucleus before and after filtering for both GEX and ATAC data (B). Each dot on the figure 

represents a single nucleus. “Features” refers to the number of genes detected in each nucleus, 

whereas “counts” refers to the number of molecules (UMIs, Unique Molecular Identifiers) 

detected in each nucleus. 

 

4.3.2  Unsupervised Clustering to Evaluate Cellular Heterogeneity of Primary Canine 

OSA Reveals 9 Distinct Clusters 

Based on unsupervised clustering using principal component analysis (PCA) and graph-

based dimensional reduction, we identified 9 total cell clusters (c0-8) in the GEX (Fig 4.3A) and 

ATAC data (Fig 4.3B). The weighted nearest neighbor (WNN) procedure in Seurat v4 integrates 

multimodal data from the same cell to generate a unified representation of the dataset143. Using a 

weighted combination of the GEX and ATAC data, a WNN UMAP plot was generated to 

elucidate additional structure in the cellular clustering of canine osteosarcoma (Fig 4.3C).  

Clusters 0, 1, and 2 were more closely grouped together and less discrete in the ATAC 

data, whereas the GEX data shows a more distinct relationship among these clusters (Fig 4.3C). 

These results suggest a relationship in the epigenetic programming of clusters 0, 1, and 2, despite 

differences in gene expression patterns. Conversely, the ATAC UMAP plot shows more 

separation between clusters 1 and 7, while the GEX UMAP plot shows a closer relationship and 

less clear distinction. This suggests that clusters 1 and 7 are closely related based on RNA 

expression, but display different accessible motifs.  
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Figure 4.3. Cellular heterogeneity in primary canine OSA reflected by 9 cell clusters. 

 

Figure 4.3. UMAP plot shows 9 total clusters (c0-8) for GEX (A), ATAC (B), and weighted 

nearest neighbor (WNN) graph which combines both modalities (C). Each dot represents a single 

nucleus, and the color corresponds to the cluster. 
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Clusters were numbered 0-8 and contained increasing numbers of cells. For example, 

cluster 0 contained the most cells (1284/5849 cells, 21.9%), while cluster 8 contained the least 

number of cells (162/5849 cells, 2.8%) (Table 4.1).  

 

4.3.3  Cluster Annotation in Primary Canine OSA  

To identify clusters based on cell type, a reference set containing single-cell markers for 

bone, osteosarcoma, and immune cells was used to annotate the clusters using ScType (Fig 

4.4A)137. Osteoblasts were associated with clusters 0, 1, and 7 (2713/5849 cells, 46.4%); 

Fibroblasts were associated with cluster 2 (1023/5849 cells, 17.5%); Endothelial cells were 

associated with cluster 3 (798/5849 cells, 13.6%); Myeloid cells were associated with cluster 4 

(548/5849 cells, 9.4%); Osteoclasts were associated with cluster 5 (333/5849 cells, 5.7%); 

Osteocytes were associated with cluster 6 (272/5859 cells, 4.6%); and Memory CD4+ T cells 

were associated with cluster 8 (162/5849 cells, 2.8%) (Fig 4.4A, Table 4.1).   

 

Figure 4.4. Cluster annotation with known cell markers and bulk OSA tumor/normal bone 

RNAseq markers.  
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Figure 4.4. Cell cluster annotation based on known single-cell marker genes (A) and upregulated 

genes in the corresponding bulk OSA tumor/normal bone dataset (B). Each dot represents a 

single nucleus, and the color corresponds to the annotated cell group name. 

 

To annotate the clusters based on “tumor” vs. “normal bone”, we generated an in-house 

annotation set using significantly upregulated genes and downregulated genes (padj<0.05 and FC 
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< -2 and >2) in the bulk canine OSA tumor vs. patient-matched normal bone dataset generated in 

Nance et al (Fig 4.4B)139. Based on these results, tumor cells were related to clusters 1 

(osteoblasts), 7 (osteoblasts), and 8 (memory CD4+ T cells) (1591/5849 cells, 27.2%), which is 

consistent with the diagnosis of osteoblastic OSA. Normal bone was related to clusters 3 

(endothelial cells) and 6 (osteocytes) (1070/5849 cells, 18.3%). Clusters 0 (osteoblasts), 2 

(fibroblasts), 4 (myeloid cells), and 5 (osteoclasts) had unknown relation to the bulk RNA seq 

data (3188/5849 cells, 54.5%) (Fig 4.4B, Table 4.1).  

Since bulk RNAseq is derived from a mixed population of cells, it is likely the tumor 

dataset included tumor-initiating cells that drive tumor formation, tumor-associated cells such as 

fibroblasts and immune infiltrates, and a small proportion of normal bone cells such as 

osteoclasts and endothelial cells. Therefore, we cannot distinguish between tumor cells that drive 

tumorigenesis vs. those that are passengers in the process based solely on these results. It is 

apparent, however, that bulk RNA sequencing captures only about 27% of the tumor’s total cell 

population compared to single-nuclei RNA sequencing.  

The sample processing technique to obtain normal bone for bulk RNA sequencing 

involved removal of bone marrow, which would include myeloid cells. Furthermore, osteoclasts 

also typically reside in the bone marrow, and while they can be recruited to the bone matrix, they 

occur in a much smaller proportion in comparison to other cell types144. Thus, we suspect that the 

inability to distinguish cluster 4 (myeloid cells) and cluster 5 (osteoclasts) as normal bone using 

markers derived from bulk RNA sequencing is due to sample processing which removed the 

majority of these cell types. Regardless, as cells of the tumor microenvironment, they are likely 

to play an important role in tumorigenesis.  
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Table 4.1. Cluster annotation using marker genes.  

Cluster 
# of 

Cells 

% of Total 

Number of 

Cells 

Bone/OSA/Immune 

Markers  

(ScType score) 

Bulk Tumor/Normal 

Markers 

(ScType score) 

0 1284 21.9% 
Osteoblast 

(992) 

Unknown  

(172) 

1 1249 21.3% 
Osteoblast 

(1452) 

Tumor cells  

(1287) 

2 1023 17.5% 
Fibroblast 

(1113) 

Unknown  

(136) 

3 798 13.6% 
Endothelial cell  

(6914) 

Normal bone cells  

(419) 

4 548 9.4% 
Myeloid cell 

(3622) 

Unknown  

(-4.84) 

5 333 5.7% 
Osteoclast 

(5236) 

Unknown  

(-3.74) 

6 272 4.6% 
Osteocyte 

(700) 

Normal bone cells  

(1276) 

7 180 3.1% 
Osteoblast 

(325) 

Tumor cells  

(318) 

8 162 2.8% 
Memory CD4+ T cell 

(1364) 

Tumor cells  

(77.7) 

 

Table 4.1. Nine clusters (c0-8) were identified in primary canine osteosarcoma based on ATAC 

and GEX sequencing of 5849 individual nuclei. Clusters were annotated using known cell 

marker genes as well as marker genes derived from the bulk OSA tumor/normal bone dataset, 

which also contained the same patient’s tumor and patient-matched normal bone. 

 

 Cluster annotation for each cell type was further inspected by plotting the expression of 

several marker genes derived from the CellMarker2.0 database that were used for annotation 

with ScType (Fig 4.5). Although this is not an exhaustive list of markers used for annotation, 

osteoblast markers included RUNX2, CDH11, PCNA, ACAN, MKI67, TOP2A, and COL1A1 (Fig 
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4.5A); Fibroblast markers included LUM, DCN, VIM, THY1, FAP, PRRX1, and COL1A1 (Fig 

4.5B); Endothelial markers included CDH5, PECAM1, EGFL7, CD93, ENG, and EMCN (Fig 

4.5C); Myeloid markers included CD14 and CD74 (Fig 4.5D); Osteoclast markers included 

ATP6V0D2, DCSTAMP, CTSK, OCSTAMP, MMP9, and ACP5 (Fig 4.5E); Osteocyte markers 

included GBLAP (osteocalcin), SPP1 (osteopontin), CD86, and IBSP (bone sialoprotein) (Fig 

4.5F); Memory CD4+ T cell markers included CD3E, CD3D, CTLA4, LCK, LTB, and CD2 (Fig 

4.5G).  

 

Figure 4.5. Markers for cell type based on cluster annotation. 
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Figure 4.5. Marker gene expression based on cluster annotation for each cell type identified. 

Only some of the annotation marker genes are shown. Darker shades of purple indicate 

upregulated expression, gray indicates zero change. 

 

Cluster annotation using the upregulated genes in bulk OSA tumor vs. corresponding 

normal bone RNAseq dataset included tumor markers HOXC10, SPAG5, TOP2A, IQGAP3, 

HELLS, MKI67, CLSPN, and RAD54L (Fig 4.6).  

 

Figure 4.6. Markers for OSA tumor based on cluster annotation with bulk RNA sequencing 

results. 

 

Figure 4.6. Expression of markers used for annotation based on upregulated genes in primary 

canine OSA/normal bone bulk RNA sequencing dataset. Darker shades of purple indicate 

upregulated expression, gray indicates zero change. 

 

4.3.4  Copy Number Variation  
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 OSA is characterized by significant genomic instability resulting in large-scale 

chromosomal copy number variations. To evaluate chromosomal structure, CNV analysis was 

performed for the osteoblasts (clusters 0, 1 and 7) using the remaining clusters as the normal 

reference. Significant amplifications were observed in chromosomes 12-14 and deletions were 

present in chromosomes 5, 18, and 20 in the osteoblast clusters (Fig 4.7A). Cluster 7 cells 

contain more CNVs compared to clusters 0 and 1 and their hierarchical relationship is reflected 

by the dendrogram. Compared to clusters 0 and 1, cluster 7 shows a distinct amplification of 

chromosome 24 and deletion of chromosome 26.  

Figure 4.7. Heatmap of CNVs in osteoblastic clusters. 
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Figure 4.7. Heatmap of the CNVs identified in the osteoblast clusters 0, 1, and 7 using remaining 

clusters as the reference (A). Expression values for the normal cell clusters (depicted in the top 

heatmap) are subtracted from tumor cluster expression data (depicted in the bottom heatmap) to 

visualize differences. Rows are individual nuclei, columns are genes (ordered from left to right 

across the chromosomes); amplifications are colored red and deletions are colored blue.  

 

4.3.5  Differentially Expressed Genes Define Clusters 
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After normalizing the UMI counts using a regularized negative binomial regression, 

highly variable features (genes) were identified to be used in downstream principal component 

analysis. Using the FindAllMarkers function in Seurat, markers were identified for every cluster 

compared to all remaining cells. The top 10 most highly variable genes according to the GEX 

data were LDB2, PTPRG, ACP5, MMP9, CHRM3, CHAD, F13A1, SLC9B2, GPC5, and SLIT2 

(Fig 4.8A). The top 5 differentially expressed genes defining each cluster were plotted on a 

heatmap (Fig 4.8B). Cluster 4 (myeloid), cluster 5 (osteoclasts), and cluster 8 (memory CD4+ T 

cells) share similar patterns of differential gene expression on the heatmap in Figure 4.8B, which 

is likely due to their related immunological functions and origins.  

 

Figure 4.8. Differentially expressed genes define clusters in primary canine OSA. 
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Figure 4.8. Volcano plot of the top 3000 variable genes in the dataset with the top 20 

most highly variable genes labeled. Red dots indicate the differentially expressed genes 

(n=3000), black dots represent the non-variable genes (n=20784) (A). Heatmap of the top 5 

differentially expressed genes in each cluster. Clusters are identified by color and number on the 

top x-axis, gene symbols are listed on the y-axis; yellow indicates upregulation and pink/purple 

indicates downregulation (B). 
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4.3.6  Gene Set Enrichment Analysis using Hallmark and Canonical Pathways 

Using the markers identified for each cluster, gene set enrichment analysis was 

performed using Hallmark and Canonical pathways to identify variation among clusters (Fig 

4.9A, B).  

Interestingly, clusters 1 and 7 (tumorous osteoblasts) showed upregulation of G2M 

transition, E2F targets, MYC targets v2, and glycolysis, but cluster 0 (osteoblasts with unknown 

relation to tumor/normal) showed downregulation of these pathways. Cluster 0 also showed 

upregulation of the hypoxia response. Collectively, these results suggest that clusters 1 and 7 

consist of actively dividing osteoblasts driving tumor expansion while cluster 0 may consist of 

necrotic and hypoxic osteoblasts.  

Cluster 8 (memory CD4+ T cells) and cluster 4 (myeloid cells) share similar patterns of 

Hallmark and Canonical pathway expression, likely due to shared immunological functions (Fig 

4.9A). Similarly, cluster 5 (osteoclasts) and cluster 4 (myeloid cells) displays similarities in 

Hallmark and Canonical pathways, which is explained by their shared macrophage functions.  

Cluster 2 (fibroblasts) shared patterns of enriched Canonical pathways with cluster 6 

(normal osteocytes), with the exception of Regulation of the Actin Cytoskeleton by Rho 

GTPases, G1 and S Phases, and Regulation Cascade of Cyclin Expression, which were all 

downregulated in osteocytes relative to fibroblasts (Fig 4.9B).  

 

Figure 4.9. Gene set enrichment analysis among clusters using hallmark and canonical pathways. 
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Figure 4.9. Heatmap of the Z-scores produced from gene set enrichment analysis using Hallmark 

Pathways (A) and Canonical Pathways (B). Red indicates upregulation, blue indicates 

downregulation. Clusters are numbered on the x-axis.  

 

Collectively, the enriched Hallmark and Canonical pathway results validate the clustering 

and annotation results by confirming shared relationships and functions among common cell 

types and aid in the elucidation of osteoblast heterogeneity. Cluster 0 osteoblasts show distinct 

downregulation of cell cycle and upregulation of hypoxia pathways in comparison to osteoblasts 

in clusters 1 and 7, which suggests that the largest cell cluster identified is responding to the 

body’s natural anti-tumor response. Furthermore, targeting this cluster of cells would likely not 

produce an effective response because these cells are not contributing to the active expansion of 

the tumor.  

 

4.3.7  Enriched Pathway Analysis using GO Biological Processes  

Using all genes in the canine genome database as a reference, a statistical 

overrepresentation test was performed on the significantly upregulated genes from each cluster to 

identify enriched pathways based on GO biological processes. Using a false discovery rate 

(FDR) cut-off of 0.05, the top 5 pathways based on fold enrichment for each cluster are depicted 

in Figure 4.10.  

Enriched GO Biological Processes in cluster 0 osteoblasts included several pathways 

involved in regulation of cell adhesion. Cluster 1 osteoblasts were enriched for regulation of 

PI3K signaling, skeletal system development, and transmembrane receptor protein tyrosine 

kinase signaling. Upregulated pathways in cluster 2 (fibroblasts) were related to increased 
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cellular activity and protein production, including ribosomal assembly, mitochondrial electron 

transport, and translation. Cluster 3 (normal endothelial cells) was enriched for negative 

regulation of Rho-dependent protein serine/threonine kinase activity, regulation of macrophage 

colony-stimulating factor production, and cell migration involved in endocardial cushion 

formation (a specialized region of mesenchymal cells that give rise to heart structures). The 

upregulated GO Biological processes in cluster 4 (myeloid cells) included membrane raft 

localization/distribution, synapse pruning, negative regulation of granulocyte differentiation, and 

cell junction disassembly. Enriched pathways for osteoclasts in cluster 5 included macrophage 

fusion, dendritic cell homeostasis, positive regulation of CD8+ T cells, and glucuronoside 

metabolic/catabolic processes. Cluster 6 (normal osteocytes) upregulated processes included 

regulation of negative chemotaxis and cell-cell interactions and migration. Cluster 7 (tumor 

osteoblasts) was enriched for pathways related to anatomical structure and system/organism 

development. Enriched pathways for cluster 8 (memory CD4+ T cells) were related to antigen 

processing and presentation via MHC class I and positive regulation of T cell-mediated 

cytotoxicity (Fig 4.10).  

  

Figure 4.10. Enriched GO biological processes among clusters. 
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Figure 4.10. The top 5 enriched GO Biological Processes and their associated fold enrichment 

and false discovery rate (FDR) for each cluster. Dot size correlates to the corresponding fold 

enrichment.   

   

4.3.8 Comparison to Bulk Transcriptomic Sequencing Including the Same Tumor  

 In addition to characterizing the single-nuclei sequencing results of this tumor, we also 

sought to compare these results to bulk RNA sequencing of the same patient’s tumor. Our lab 

has previously published bulk RNA sequencing results of the same patient’s tumor along with 

six additional canine OSA tumors and patient-matched normal bone. The results, published in 

Nance et al, 2022, provide individual log2 fold-change values for each dog, in addition to bulk 

differential gene expression analysis. The patient belonging to the current study corresponds to 

patient C in the aforementioned manuscript139.   

 The top upregulated genes in OSA tumor compared to normal bone based on bulk RNA 

sequencing included GTSE1, HELLS, SPAG5, RAD54L, IQGAP3, CIT, HOXC10, TOP2A, and 

MKI67 (Fig 4.11A). The top upregulated genes in this patient based on bulk RNA sequencing of 

tumor and patient-matched normal bone included TFPI2, DDX60, OAS1, CD5L, TERT, OAS2, 

RFGRIP1L, OAS3, and ANLN (Fig 4.11B). Based on these results, the marker genes based on 

individual-level analysis capture more of the tumor’s heterogeneity than marker genes derived 

from bulk RNA sequencing. These results validate our previously published approach to 

individual-level analysis using bulk RNA sequencing of tumor and patient-matched normal.  

 

Figure 4.11. Expression of the top upregulated genes from the bulk OSA tumor/normal bone 

RNAseq results. 
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Figure 4.11. Expression of marker genes derived from the bulk OSA tumor/normal RNAseq 

dataset for the top upregulated genes in the group (A). Marker gene expression for the top 
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upregulated genes in the same patient from the bulk OSA tumor/normal RNAseq dataset (B). 

Darker shades of purple indicate upregulated expression, gray indicates zero change. 

 

4.4  Discussion 

 To our knowledge, this is the first study to utilize single-nuclei multiome (ATAC + GEX) 

sequencing to characterize the molecular landscape of a treatment-naïve primary canine OSA 

tumor. Additionally, the results were compared to bulk RNA sequencing, including the same 

tumor and patient-matched normal bone to further evaluate intra-tumoral heterogeneity.  

Since osteosarcoma is a difficult tumor to homogenize, a modification was made to the 

10x Genomics nuclei isolation protocol which resulted in high-quality nuclei suitable for 

sequencing. This protocol variation included the use of a bladed homogenizer in 0.5 strength 

Lysis buffer (included with the 10x Genomics kit). Upon observation with fluorescent dye, the 

nuclear membranes appeared mostly intact with minimal blebbing. Despite the recommendations 

from 10x Genomics to store the samples long term in liquid nitrogen, storing them at -85°C did 

not appear to affect the quality of our results. While approximately 10,000 nuclei were subjected 

to library preparation, only 5969 nuclei were actually sequenced. This is expected due to the 

microfluidic partitioning process which relies on dilution to prevent multiple nuclei in one 

droplet145.  

Unsupervised clustering and weighted nearest neighbor analysis identified 9 cell clusters 

in primary canine OSA. As expected, the most abundant cell type present was osteoblasts, 

though these cells formed three distinct subclusters (clusters 0, 1 and 7). The second most 

abundant cell cluster contained fibroblasts (cluster 2) followed by endothelial cells (cluster 3). 
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The tumor immune microenvironment included myeloid cells (cluster 4), osteoclasts (cluster 5), 

and memory CD4+ T cells (cluster 8).  

Cluster annotation using upregulated genes from bulk RNA sequencing of primary canine 

OSA and patient-matched normal bone resulted in the identification of cluster 1 (osteoblasts), 

cluster 7 (osteoblasts), and cluster 8 (memory CD4+ T cells) as OSA tumor while cluster 3 

(endothelial) and cluster 6 (osteocytes) were associated with normal bone. Clusters 0 

(osteoblasts), 2 (fibroblasts), 4 (myeloid), and 5 (osteoclasts) had unknown relation to the 

tumor/normal bone annotation. The inability of the annotation package to distinguish osteoclasts 

(cluster 5) and myeloid cells (cluster 4) as normal bone derivatives could be due to the relatively 

low proportion of these cells in comparison to osteocytes present in normal bone matrix. Markers 

for endothelial cells and myeloid cells are predicted to be expressed at low levels in this RNA 

dataset due to the bone processing technique to remove bone marrow, which contains the 

majority of myeloid cells and osteoclasts. It is also plausible that normal, non-transformed cells 

have altered gene expression patterns in response to the tumor microenvironment and signals 

from surrounding cells. The GEX profile of a normal cell in a normal environment would likely 

differ from that of a normal, non-neoplastic cell within the TME. 

Secondly, while cluster 0 did not reflect the pattern of previously bulk sequenced OSA 

tumor, it is unlikely that cluster 0, which contains the most cells, contains normal osteoblasts due 

to the small percentage of osteoblasts in normal bone. Osteoblasts also undergo age-related 

decline, and these bone samples were obtained from geriatric dogs146. Furthermore, CNV 

analysis showed this cluster contains many large-scale chromosomal rearrangements. Hallmark 

and Canonical pathway analysis suggest these cells are hypoxic, necrotic, and not actively 

dividing. Therefore, we predict this cluster consists of dying osteoblastic tumor cells in response 
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to the body’s apoptotic immune signals and intrinsic anti-tumor response. Alternatively, or 

perhaps in conjunction, the tumor could simply be outgrowing its blood and nutrient supply. On 

the other hand, the activities of clusters 1 and 7 indicate these cells are highly active and thus 

more likely to be contributing to tumor growth and expansion.  

Osteosarcoma has been predicted to be a poorly immunogenic tumor and therefore 

immunotherapies have been ineffective at managing OSA147. Based on upregulated pathway 

analysis, immune cells in the TME (cluster 8) are actively participating in tumor antigen 

presentation via MHC class Ib and stimulating T-cell mediated cytotoxicity (Fig 4.9). The 

consequence of these actions is perhaps the dying osteoblasts in cluster 0. However, more studies 

are needed to understand how and why some cells escape the immune response.  

Despite their prevalence in the tumor microenvironment, the inability to distinguish 

fibroblasts as tumor using the bulk data could be due to the low sample size (n=7) of the bulk 

RNA sequencing data. Fibroblasts are also present in a smaller proportion in comparison to 

osteoblastic OSA cells. This reflects a limitation in differential gene expression analysis of bulk 

RNA sequencing data, where differences are obtained from averages across the entire 

population. The top marker gene for cluster 2 fibroblasts was TMSB10, which encodes a protein 

involved in cytoskeleton organization and cell migration. According to The Human Protein Atlas 

(https://www.proteinatlas.org/ENSG00000034510-TMSB10/single+cell+type), TMSB10 is 

typically expressed at low frequency in fibroblasts. Many of the other top marker genes for 

cluster 2 were involved in ribosomal assembly and function, including RPS14, RPLP1, RPL36, 

RPS11, and RPS28. These results suggest this cluster consists of highly active cells that are 

generating and secreting a large number of products that modulate the surrounding tumor 

microenvironment, consistent with the activities of cancer-associated fibroblasts (CAFs). As a 
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major component of the tumor microenvironment, CAFs secrete a variety of factors that play a 

key role in tumorigenesis, and their activation is predicted to be controlled via epigenetic 

regulation148. Factors secreted by fibroblasts have been shown to modulate osteoblasts and their 

extracellular matrix remodeling functions149. This dynamic relationship is reflected in the 

clustering of the ATAC data, where the osteoblast and fibroblast clusters are less defined, closely 

interconnected, and show significant overlap (Fig 4.3B). However, additional analyses are 

needed to elucidate this relationship.  

  Compared to single-cell sequencing, bulk RNA sequencing of the same sample captures 

only about 28% of the tumor’s heterogeneity, highlighting one of the major limitations of bulk 

sequencing. On the other hand, single-cell/nuclei sequencing is quite expensive and remains a 

limiting factor in applying this technology. Nonetheless, single-nuclei multiome sequencing 

provides an unparalleled view into the TME and intra-tumoral landscape. This approach is 

critical to improving targeted therapies and patient outcomes. Although this study consisted of a 

sample size of one, the computational framework can be applied to additional tumors and as 

novel computational tools are developed, this data can be conveniently reanalyzed.  

In summary, we have successfully applied single-nuclei multiome sequencing to 

characterize the intra-tumoral heterogeneity and immune landscape of a treatment-naïve primary 

canine osteosarcoma.  
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4.6  Data and Code Availability  

All coding scripts used in this manuscript can be found at 

https://github.com/rln0005/OSA_snMultiomeSeq. The data will be deposited into the NCBI 

GEO repository.  

 

4.7  Supplemental Data  

Supplemental Table 4.2. All markers used for annotation with ScType. 

Cell Type Markers 

ScType: Bone/OSA/Immune 

Antigen-

presenting 

cell 

CD83, CCR7, CD83 

Articular 

chondrocyte  

COL22A1, COL22A1 

B cell CD19, Siglech, SIGLECH, CD19 

Cancer stem 

cell 

PROM1 

Cartilage cell COL2A1 

Cartilage 

progenitor 

cell 

CENPF, UBE2C, PCLAF, CDC20, CDKN3, BIRC5, CKAP2 

Chondrocyte SCRG1, ACAN, SOX6, SOX5, SOX9, COL2A1 

Dendritic 

cell 

SIGLECH, Siglech 

Distal 

proliferative 

progenitor 

cell 

H1F3, JAG, MSX1, Hoxd13, TBX3, TBX2 

Early 

mesenchyma

l cell 

LY6A, CD34  

Embryonic 

stem cell 

LHX3, LSL1, ISL1, ISL2, ABCAM, Mnx1, FOXP1  

Endothelial 

cell 

CDH5, PECAM1, EGFL7, CD93, VWF, MYL1, ENG, EMCN 

Epithelial 

cell 

KRT42, KRT14, PERP 

Fibroblast LUM, DCN, COL1A1, THY1, FAP, PDPN, VIM, PRRX1, MSX1 

https://github.com/rln0005/OSA_snMultiomeSeq
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Hemtopoieti

c stem cell 

CD34, HOXB5 

Lymphocyte SET 

Mesenchyma

l progenitor 

cell 

PDGFRB, CSPG4, ITGB1 

Mesenchyma

l stromal cell 

CDH2, PDGFRB, THY1, ENG, ITGAV, NES, NT5E, SPP1, HEY1, ITGB1, 

LY6A, VIM 

Natural killer 

cell 

IL7R, NKG7, CD3D, KLRD1 

Osteoblast MKI67, ACAN, PCNA, CDH11, COL1A1, TOP2A, RUNX2, COL2A1, 

SOX9 

Osteoclast ACP5, ATP6V0D2, DCSTAMP, MMP9, ATP6V1B1, CTSK, OCSTAMP, 

PPARGC1B 

Progenitor 

cell 

CD34, LGR5 

T cell CD69, CD3D, CD3G, TRRDC, ICOS, CD3G, IRF8 

Myeloid cell CD14, FCGR3A, CD74 

Memory 

CD4+ T cells 

CD4,CD2,CD3D,CD3E,CD3G,CD3Z,CD25,CD45RA,CD62L,CD27,CD127,

FOXP3,CCR7,CD45,CCR6,CD11b,CD30,CD45RO,CD6,CTLA4,IL2RA,GZ

MB,SELL,CCR7,S100A4,TRAC,LTB,CD52,TRBC2,SHISA5,LCK,THY1,D

APL1 

Myeloid 

dendritic 

cells 

ITGAX,CD83,CD1C,NRP1,CLEC4C,CD86,IL3RA,CD80,CD1A,ITGAX,C

D40,HLA-DQA1,CD11c,HLA-DR,HLA-DPB1,HLA-

DPA1,CLEC10A,CST3,GPR31,ODF3L1,PRB2,CD207,ARSE,CLEC141,M

RC,EBLN1,CRIP3 

Osteocyte BGLAP, SPP1, CD86, CD14, IBSP 

ScType: Bulk OSA Tumor/Normal Bone 

OSA tumor 

cells 

HOXC10,GTSE1,SPAG5,TOP2A,IQGAP3,HELLS,MKI67,CLSPN,RAD54

L,CDCA3,DPYS,RECQL4,CIT,SHCBP1,SLC6A2,CDC45,DEPDC1,HOXC

6,BUB1,UBE2C,CCNB3,CDC6,DNPH1,NEK2,KIF18B,FOXM1,MMP12,T

PX2,ORC1,PRC1,TERT,DIAPH3,MYBL2,KIF20A,KIF4A,UCHL1,CEP72,

TACC3,CCR7,HTRA3,CENPT,ORC6,CCNB1,PKMYT1,CENPF,KIFC1,W

DR62,TROAP,AURKA,COL11A1,DLGAP5,KIF23,SLC15A1,RASAL1,NC

APG,PLAUR,E2F8,KIF15,APOBEC3Z1,RRM2,CD5L,CDC20,CDCA2,SG

O1,TONSL,KNL1,CCNB2,SERPINB2,POLE,FANCM,CDCA8,HOXC4,RA

D51AP1,RACGAP1,TK1,UBE2T,PLK1,CCL2,PITX1,KIF14,BIRC5,ERCC

6L,MCM10,OIP5,PAX1,SPON1,VEGFD,ANLN,HJURP,DOK5,NUF2,HRO

B,KIF22,ZWINT,KIF11,SAA1,PBK,LOC100855995,PIMREG,CDK1,DUSP

9,BUB1B,CCNA2,CDC25C,CDCA5,MIS18A,NDC80,E2F2,TFPI2,CKAP2

L,CCNO,PANX2,IL6,KPNA2,ARSJ,SPEF1,DNA2,ECT2,SPC24,MASTL,I

GF2BP3,EXO1,SFRP2,LOC608024,ASPM,TNFRSF4,CENPU,PTTG1,INPP

5J,LOC612762,ACOT7,ARHGEF39,NLRP12,ESCO2,LOC100688904,E2F7

,ESPL1,LOC111093651,CENPK,KNSTRN 
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Normal bone 

cells 

FMO2,CHL1,PLIN1,CIDEC,ACKR4,NALCN,ESM1,IGFBP2,COL20A1,L

YPD1,AQP7,KRT23,PLIN4,ANGPTL7,KLF15,RBP7,CIDEA,GALNT15,M

YOC,CAMK1G,LOC100686507,GPR39,AGT,COCH,PLP1,CALCR,MEPE,

APOD,TRARG1,SBSN,SOST,CNKSR2,EPHA7,CLDN11,PLK5,CES2,COL

4A4,SCN7A,GPD1,ESR1,NRG2,SCD5,CDH19,LEP,COL4A3,LGI1,CNTN1

,ASPA,NPY,NGFR,AATK,RNF207,FABP4,ZBTB16,RHPN2,PLD5,CLGN,

PROM2,GPR1,PCK1,TOX3,SLITRK3,PPP1R1B,CALB2,VIT,BMP3,DGK

B,NRXN1,ALDH1A3,SEMA3E,OLFM2,EPHX2,HIF3A,LIPE,GPC5,NPY1

R,MYRIP,FN3K,GRIA4,LOC100686484,PNPLA2,EPHA1,NAP1L2,KIAA1

755,S100B,GFRA4,GPM6A,LOC486151,WSCD2,SYN2,ECRG4,LOC1110

91389,CHAD,RARRES1,EPCAM,TMEM52,GPIHBP1,ALK,FMO3,ADAM

TSL1,LOC607776,LOC475605,TIMP4,LOC491723,NDRG2,CD36,CCDC3,

MYOZ2,AIF1L,AMIGO2,LYZF2,TYR,LETM2,MPZ,LOC100686073,DMP

1,GRIP1,MYORG,SHISA9,GDF10,CADM3,GOLT1A,PATJ,CCN5,ACSBG

1,WDR88,AK5,SV2B,LEPR,BGLAP,CLEC3A,NMNAT3,ACSM5,CP,DPP1

0,LOC480425,KCNMB2,SPHKAP,BTNL9,SGK2,CCDC85A,RGN,PTGDS,

HLF,NPY2R,NPR3,RDH16,LOC607314,FRZB,LIMCH1,MLXIPL,EVX2,P

LLP,GYG2,TXNIP,ITIH1,PTX3,SNCA,ACSM3,DNAH3,ARMC4,LOC608

319,EFHD1,WASF3,RERGL,CYTL1,PCDH20,BSPRY,LOC607487,ABCC

6,FGL1,SPP1,KCNU1,LOC480825,LOC607460,ARMC3,FAM163A,AGBL

3,EPHA5,MT1E,APOE,WIPF3,LOC477699,SH3RF2,GNA14,SCUBE1,PER

2,UCN3,CNTFR,SPOCK3,LOC111089969,NKX6-

1,LHX9,RSPO1,WIF1,LOC100856005,CLSTN2,RETN,PLPPR3,NPFFR2,N

TF3,IFITM10,ASS1,TMC2,TRIM67,ITGBL1,PIP,FGF12,FMN2,PFKFB1,A

DRA1D,LOC486353,MAPT,WNT6,HPSE2,PRKAR1B 
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CHAPTER 5 

Conclusions and Future Directions 

 Osteosarcoma (OSA) is a complex tumor derived from bone that typically occurs 

spontaneously in young adults and large breed dogs. In both species, significant intra- and inter-

tumoral heterogeneity make treatment difficult. Precision medicine seeks to optimize therapeutic 

efficiency by classifying tumors based on genetic or molecular profiling. Canine and human 

OSA share many similarities in terms of tumorigenesis, molecular characteristics, risk factors, 

treatment, and clinical and histological presentation. Genetic structure of the canine breed system 

has enabled the elucidation of complex diseases. Thus, dogs serve as a powerful translational 

model of naturally occurring cancer, particularly osteosarcoma. In dogs, OSA occurs more 

frequently than humans and standard treatment involves amputation and chemotherapy. 

Amputation enables researchers to collect tumor as well as corresponding patient-matched 

normal bone to identify differentially expressed genes which can be useful for guiding and 

designing therapies.  

An often over-looked but critical component of differential expression analysis is the 

source of normal comparator tissue. With OSA arising from bone, the initial goals of this project 

were to develop and optimize a method to isolate RNA from normal canine phalanges, as 

described in chapter two. This process involved removing and washing the exterior periosteum 

and interior bone marrow cavity contents to generate RNA specific to the bone matrix. Due to 

the rigid, crystallized, and hypocellular nature of bone, several modifications were made to 

enable tissue homogenization and RNA extraction while minimizing degradation. These 

adjustments included use of a steel mortar and pestle on dry ice along with beaded 

homogenization. After tissue dissociation, the ‘TRIspin method’ was used to extract RNA, which 
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combined acid guanidinium thiocyanate-phenol-chloroform extraction with the use a column-

based kit. This technique resulted in the isolation of RNA from normal canine bone in sufficient 

quantity and quality for sequencing.  

In chapter three, I described differential gene expression analysis using RNA extracted 

from seven primary canine OSA tumors and, using the method developed in chapter two, from 

patient-matched normal bone samples. Using a traditional bulk approach in addition to a novel 

individual approach, I showed the limitations of bulk sequencing in capturing inter-tumoral 

heterogeneity between patients. While increasing the sample size would surely identify 

additional variation, bulk RNA sequencing fails to identify signals from rare yet important cell 

types, such as those within the tumor microenvironment (TME). Many cancer therapeutics are 

now targeting cells within the TME, such as immune-associated cells, to combat tumors and 

metastases. Furthermore, the significant intra-tumoral heterogeneity inherent in OSA suggests an 

important role in the TME in modulating tumor progression.  

Single-cell sequencing provides extraordinary resolution of intra-tumoral heterogeneity 

by capturing the genome and/or transcriptome of individual cells. However, high cell viability 

(>60%) after tissue dissociation is critical to obtaining valuable and informative sequencing data. 

Numerous attempts were made to isolate viable single cells from primary canine OSA using a 

variety of mechanical and enzymatic dissociation techniques. However, these approaches 

consistently yielded poor cell viability (<30%), which suggests the loss of potentially important 

cell subtypes.  

To overcome viability obstacles associated with single-cell sequencing, individual nuclei 

can be isolated rather than cells, though nuclei quality is still an important factor to consider. In 

the chapter 4 methods, I describe a modified approach to isolate nuclei from a primary canine 
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OSA involving brief bladed and chilled homogenization in 0.5 strength lysis buffer. Using high-

power fluorescent microscopy, the nuclei were determined to be in sufficient quantity and quality 

for multiome (ATAC + GEX) library preparation and sequencing.  

Single-nuclei multiome sequencing of a treatment-naïve primary canine OSA revealed 

nine cell clusters and their proportions based on unsupervised clustering of the ATAC and GEX 

data. Among the cell types identified included osteoblasts, fibroblasts, endothelial cells, 

osteoclasts, osteocytes, and immune-associated cells. Interestingly, approximately half of the 

osteoblastic cell clusters showed hypoxic and necrotic trends, while the other half showed high 

replication and cell cycle activities. Cancer-associated fibroblasts and macrophages composed 

about 17% and 9% of the tumor, respectively. The smallest cluster was identified as memory 

CD4+ T cells (3%), and while expression of CD4 was limited, these cells expressed several 

genes involved in antigen recognition by T cells.  

Comparison with single-nuclei multiome sequencing of the same primary tumor shows 

limitations of bulk sequencing in capturing intra-tumoral heterogeneity, particularly from a 

precision medicine approach where the genome and/or transcriptome informs therapy. However, 

in the absence of single-cell sequencing data, individual-level differential expression data using 

bulk tumor and patient-matched normal are informative of the intra-tumoral heterogeneity.  

Future directions of this project involve the identification of enhanced motifs using the 

ATACseq data to elucidate the shared regulatory regions and relationship between osteoblasts 

and cancer-associated fibroblasts in canine OSA. Further elucidation of the role that immune-

associated cells, including the clusters defined as myeloid and memory CD4+ T cells, play in 

tumorigenesis is also necessary. 
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 Additional tumors can be collected and sequenced using this pipeline to further define 

intra- and inter-tumoral heterogeneity in primary canine OSA. Moreover, sequencing and 

analysis of canine OSA metastases would be critically informative of disease progression and 

identification of druggable targets. Since amputation removes the entire primary tumor, 

subsequent treatment is targeted at the metastases. While metastases are derived from the 

original tumor, their migration process and altered microenvironment suggest there may be 

clonal differences in the tumor’s cell population. Therefore, I believe obtaining canine OSA 

metastases for single-nuclei sequencing is the most critical component for identifying precision-

based druggable targets moving forward.  

 To summarize, I have characterized the molecular landscape of primary canine 

osteosarcoma using single-nuclei multiome sequencing and compared the results to bulk RNA 

sequencing of the same tumor and patient-matched normal bone. These results provide an 

unprecedented perspective of the intra-tumoral heterogeneity in primary canine osteosarcoma 

and can be useful for designing precision medicine therapeutics.   
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