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Abstract 

 

This dissertation describes a program of research encompassing three studies that 

focused on examining the effects of enhanced expectancies and perceptions of success on 

motor learning. OPTIMAL theory (Wulf & Lewthwaite, 2016) proposes that practice 

manipulations that enhance a learner’s expectations for future successful outcomes lead to 

better motor performance and learning due to increased goal-action coupling and motor 

memory consolidation. These effects are expected to be achieved through an increase in 

motivation fostered by the fulfillment of a learner’s basic psychological need to feel 

competent. Establishing an easy criterion of success during practice is a way to decrease a 

learner`s perception of task difficulty and results in an enhanced expectancy of performing 

well, which is expected to cause reward anticipation at the neural level. Importantly, a 

learner’s expectations tend to be fulfilled, since performance outcomes will be interpreted as 

successful more frequently, which can affect the likelihood and the value of the achieved 

rewards, as well as the quantity of cognitive resources devoted to motor programming. Given 

that motor performance and learning influence and are influenced by feedback-related and 

motor-preparatory brain activity, we developed a research program combining a series of 

behavioral, psychophysiological, and meta-analytical studies to uncover how task 

manipulations that affect learners’ expectancies and perceptions of success can affect motor 

skill acquisition and its underlying neural processes. 

The first study (Chapter 1), published in the International Review of Sport and 

Exercise Psychology (Bacelar et al., 2022), used a meta-analytical method to estimate the 

average and individual effect size of six types of manipulations to enhance expectancies in 

motor learning research. Results showed that, on average, enhancing learners’ expectancies 

has a significant effect on skill retention (g = 0.54 (95% CI [0.38, 0.69]) that is dependent on 
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the type of manipulation adopted. However, evidence of reporting bias and small-study 

effects in this literature suggest that these effects are likely overestimated. The second study 

(Chapter 2), published in the Psychology of Sport and Exercise (Parma et al., 2023), is a 

behavioral experiment that sought to investigate the effect of perceived task difficulty, a 

manipulation to enhance expectancies, on learning. Learners with the same goal were 

provided with different criteria of success during the practice of a motor skill. Results showed 

that, contrary to the predictions of OPTIMAL theory, perceived task difficulty has a trivial, if 

any, behavioral effect on skill retention, even though learners with an easier criterion of 

success develop higher self-efficacy, perceived competence, and, for those performing more 

practice trials, increased intrinsic motivation. Lastly, the third study (Chapter 3) investigated 

how perceived and objective success affect psychophysiological measures of feedback 

processing (i.e., reward positivity [RewP] amplitude) and movement preparation (i.e., motor 

upper-alpha power). Specifically, we recorded learners’ electroencephalograms while they 

acquired a motor skill with an easy or difficult criterion of success. Mixed-effects regression 

models were used to uncover how perception of success, objective success (error magnitude), 

and practice trial number affect RewP amplitude and motor upper-alpha power on a trial-by-

trial basis. Results show that both subjective (perception of success) and objective (error 

magnitude) reward have a significant effect on feedback processing, with a larger effect from 

the former. Additionally, the relationship between feedback processing and error magnitude 

seems to depend on a learner’s assigned criterion of success. For motor-preparatory brain 

activity, the effects of subjective and objective success are dependent on experience with the 

task, and seem to affect motor programming more than motor execution. Also, assigning 

learners’ criteria for success moderates this relationship. 

Together, this sequence of studies indicates that, although the effects of practice 

manipulations of expectancies of success on performance and learning are negligible, if 
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existent, a learner’s perception of success affects underlying neurophysiological and 

psychological mechanisms of motor skill acquisition related to feedback processing, 

movement preparation, and motivation. 
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Chapter 1: Meta-analyzing enhanced expectancies on motor learning: positive effects 

but methodological concerns 

Motor skills are a crucial part of everyone’s life. Being able to effectively perform a 

motor action is facilitated by a thorough understanding of how motor skills are acquired and, 

more importantly, retained over time. Past attempts to uncover the bases of motor learning 

and the mechanisms underlying a variety of practice conditions (e.g., random vs. blocked 

practice; infrequent vs. frequent augmented feedback) relied on a cognitive perspective 

mainly grounded on the role played by information processing (Guadagnoli & Lee, 2004; Lee 

et al., 1994). More recently, however, a growing body of studies have shown that attentional 

and motivational factors may also need to be considered when it comes to understanding and 

promoting motor learning (Lewthwaite & Wulf, 2010; Pascua et al., 2015; Sanli et al., 2013), 

which culminated in the proposition of a new theory entitled: ‘Optimizing Performance 

Through Intrinsic Motivation and Attention for Learning (OPTIMAL) theory of motor 

learning’ (Wulf & Lewthwaite, 2016). 

According to this theory, learning is facilitated by practice conditions promoting 

enhanced expectancies, autonomy, and external focus of attention (i.e., focusing on the 

effects of one’s movement). More specifically, practice conditions wherein one’s 

expectancies for future positive outcomes are enhanced (e.g., Lewthwaite & Wulf, 2010), the 

feeling of autonomy is promoted (e.g., Sanli et al., 2013), and an external focus of attention is 

encouraged (e.g., Lohse et al., 2010) lead learners to focus on the task goal, which enhances 

motor performance and learning. Although each motivational and attentional factor outlined 

in the OPTIMAL theory has been shown to benefit performance and learning, here we focus 

on studies that investigated enhanced expectancies in a motor learning context.  

Different manipulations have been used to enhance learners’ expectancies for future 

success. One of the most studied approaches consists of providing learners with feedback 
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after more accurate trials. This approach has been shown to be effective when contrasted with 

both neutral (Chiviacowsky et al., 2019) and negative feedback (Chiviacowsky & Wulf, 

2007). In another frequently adopted paradigm, which might be considered a manifestation of 

feedback after good trials, learners are led to believe they are performing better than their 

peers via provision of positive (false) social-comparative feedback, typically in addition to 

veridical feedback (Ávila et al., 2012). Manipulations of perceived task difficulty have also 

been used to influence learners’ expectations. For instance, studies have reduced perceptions 

of task difficulty (i.e., made the task look easier) by implementing optical illusions (Palmer et 

al., 2016) or changing task criterion of success (Chiviacowsky et al., 2012). Other ways to 

enhance expectancies include influencing one’s conceptions of ability (i.e., making one 

believe successful performance is achievable with practice as opposed to being a fixed 

capacity; e.g., Harter et al., 2019), the use of self-modeling strategies (i.e., showing edited 

videos with learners’ best trials, e.g. (Ste-Marie et al., 2011), and extrinsic rewards (e.g., 

provision of monetary compensation; (Abe et al., 2011)).  

The goal of the present meta-analysis was to investigate the effect of enhancing 

learners’ expectancies for future successful outcomes on motor learning. As a secondary goal, 

we aimed to estimate the effect of each of the aforementioned manipulations on motor 

learning. To our knowledge, this meta-analysis is the first quantitative synthesis of the 

growing body of studies indicating enhanced expectancies facilitate motor learning. Thus, 

this analysis should provide the best estimate of the effect of enhanced expectancies on motor 

learning to date. Additionally, we use funnel plot analysis to investigate the risk that inflated 

effects in small studies (small-study effects) are distorting the extant literature. Our results 

can inform future investigations, for example by revealing shortcomings in the present 

research (e.g., small sample sizes). Our findings may also guide motor skill instruction, for 

example by providing coaches and physical therapists with the state of evidence about 
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recommendations that are easy to implement, such as reducing perceived task difficulty. 

Thus, our meta-analysis has implications for researchers and practitioners. 

Methods 

Prior to data collection, methods and main analyses were pre-registered and made 

available in the Open Science Framework (OSF) repository 

(https://osf.io/mbux2/?view_only=2dc9697af80342ebbaf4c86f562b8bdd). The PICO 

(Population, Intervention, Comparison, Outcome) model was used to define the meta-analysis 

objectives. The population of interest was human subjects of all ages. Studies investigating 

people with disabilities and/or impairments were not excluded from the meta-analysis. 

Interventions were those Wulf and Lewthwaite (2016) indicate have shown enhanced 

expectancies facilitate motor learning: feedback after good trials, comparative feedback, self-

modeling, perceived task difficulty, extrinsic rewards, and conceptions of ability. The main 

comparison of interest was between enhanced expectancies and control/neutral groups. In the 

absence of a control/neutral group, a comparison between enhanced expectancies and 

diminished or negative expectancies groups (e.g., feedback after good trials vs. feedback after 

poor trials) was considered. The outcome of interest was objective behavioral performance on 

a delayed (≥ 24-hr) retention test, which is a common and recognized learning evaluation 

(Kantak & Winstein, 2012).  

Study Eligibility Criteria 

Studies published in English and Portuguese were considered eligible if they met the 

following inclusion criteria: (1) it had an experimental design; (2) it used a task requiring 

movement to accomplish a goal that is increasingly likely to be achieved with practice 

(Schmidt & Lee, 2020); (3) it included at least one delayed (≥ 24-hr) retention test; (4) it was 

published in a peer-reviewed journal; (5) it assessed an objective behavioral measure; and (6) 

it included at least a positive enhanced expectancies group and a control group or a 

https://osf.io/mbux2/?view_only=2dc9697af80342ebbaf4c86f562b8bdd
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diminished (negative) expectancies group. Studies were excluded if they failed to meet the 

inclusion criteria and/or had insufficient data (i.e., did not report mean, standard deviation, or 

number of participants per group).  

Literature Search Strategy 

The electronic databases PsycINFO, Web of Science, and PubMed were searched 

from May 30, 2020, until June 19, 2020 (date of last search). Search terms included a 

combination of ‘motor learning’ or ‘skill acquisition’ and ‘expectancies’ or ‘positive 

feedback’ or ‘good trial’ or ‘successful trial’ or ‘accurate trial’ or ‘normative feedback’ or 

‘comparative feedback’ or ‘comparison feedback’ or ‘self-model’ or ‘self-as-a-model’ or 

‘self-video’ or ‘video model’ or ‘video edit’ or ‘conceptions of ability’ or ‘ability conception’ 

or ‘inherent ability’ or ‘entity theory’ or ‘incremental theory’ or ‘learnable skill’ or ‘natural 

capacity’ or ‘acquirable skill’ or ‘task difficulty’ or ‘target size’ or ‘visual illusion’ or 

‘hypnosis’ or ‘perceived difficulty’ or ‘mindset’ or ‘large target’ or ‘easy goal’ or ‘easy 

objective’ or ‘superstition’ or ‘reward’ or ‘incentive’ or ‘financial reward’ or ‘money’. String 

search was adjusted based on electronic database and intervention of interest. A detailed 

description of the search strategy, including limits used in each database, can be found in the 

OSF repository. These terms were chosen based on the terms and studies listed in the 

Enhanced Expectancies section of the OPTIMAL theory paper (Wulf & Lewthwaite, 2016). 

Further relevant papers were identified by searching through reference lists of previously 

selected papers and consulting personal archives. Publication period was unrestricted. 

Study Selection and Data Extraction 

A PRISMA flow chart with a detailed description of the study selection process can 

be found in Figure 1. The authors M.F.B.B and J.O.P. independently searched for studies in 

the databases. After removing duplicates, 821 papers were screened by title and abstract. 

Next, the remaining 125 papers were fully assessed for eligibility according to the inclusion 



16 
 

criteria. When there was a disagreement regarding study eligibility, the matter was discussed 

with the fourth author (MWM) until agreement was reached. At the end of the study selection 

process, 48 studies met the inclusion criteria and were included in the meta-analysis.  

Figure 1 

PRISMA Flow Diagram  

 

Note. Figure depicting the flow of information through the different steps of literature search 

and study selection (Moher et al., 2009). 

Risk of Bias Assessment 

The revised version of the Cochrane risk-of-bias tool (RoB 2) for randomized trials 

was used to assess the risk of bias in the studies included in the meta-analysis (Sterne et al., 
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2019). The tool is comprised of five bias domains, namely bias arising from the 

randomization process, bias due to deviations from intended interventions, bias due to 

missing outcome data, bias in measurement of the outcome, and bias in selection of the 

reported result. For the bias due to deviations from intended interventions domain, we 

focused on the effect of assignment to interventions (intention-to-treat effect). MFBB and 

JOP independently assessed the five bias domains and classified each one as low risk of bias, 

some concerns, or high risk of bias for each study following the proposed Cochrane 

algorithm. Next, an overall judgment of risk of bias was obtained for each study. Specifically, 

studies were classified as overall low risk of bias if they were judged to be at low risk across 

all individual bias domains; as “some concerns” if they raised some concerns in at least one 

domain but were not at high risk in any individual domain; and as overall high risk of bias if 

they raised some concerns in multiple bias domains or were judged to be at high risk in at 

least one domain. The robvis tool (McGuinness & Higgins, 2021) was used to plot the risk-

of-bias results.  

Data Extraction, Synthesis, and Analysis 

The main variable of interest was performance on delayed retention test 1. Retention 

test is here defined as the test performed at least 24-hr after the end of the acquisition phase, 

wherein all groups are tested under identical conditions and perform a task similar to the one 

performed during the acquisition phase (Schmidt et al., 2018). Only objective measures of 

performance were considered. When studies did not have a 24-hr retention test or contained 

 
1 Two reasons guided our decision to focus on performance on delayed retention test. First, there is no 

theoretical explanation as to why enhanced expectancies may affect retention and transfer test 

performance differently. Second, given the significant variability in types of transfers tests found 

in this literature, adding performance on delayed transfer test to our meta-analysis would likely 

introduce unnecessary heterogeneity to our data. 
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more than one retention test, the retention test closest to 24-hr was chosen to increase 

homogeneity among studies. For studies in which the 24-hr retention test was comprised of 

more than one block of trials, authors were contacted for data so an aggregate measure of 

retention test performance could be computed. In case of no response, we averaged across 

blocks (i.e., mean and standard deviation), which was the case for one study (Abbas & North, 

2018). For studies that reported more than one behavioral measure, the measure more closely 

associated with accuracy (e.g., radial error as opposed to bivariate variable error [(Hancock et 

al., 1995)]) was chosen, since accuracy typically reflects the task objective (e.g., hitting a 

target). For studies in which the results of the retention test were presented as a set of 

individual trials as opposed to a single performance score, corresponding authors were 

contacted for data that would allow us to compute an aggregate measure of retention test 

performance. In cases where no response was obtained, we opted for the inclusion of the 

middle trial among a set of trials (e.g., the fourth of seven trials). The rationale behind the 

inclusion of the middle trial stems from the idea that this trial is less susceptible to warm-up 

and online learning effects, compared to the first and last trial, respectively. (Considering that 

averaging across trials was also an option, in the supplementary material we present the 

results of a sensitivity analysis using an average of retention trials.) Two authors (M.F.B.B. 

and J.O.P.) were responsible for extracting sample sizes, means, and standard deviations from 

the selected papers and entering the information into an Excel spreadsheet (Excel 2016, 

Microsoft). When sample sizes, means, and standard deviations were unavailable in tables or 

throughout the text, the R package metaDigitise (Pick et al., 2018) was used to extract raw 

data and summary statistics from figures. Corresponding authors were contacted when 

sufficient data and/or relevant information was not provided in the article. Only one effect 

size was extracted per study, except when the study had more than one experimental and 

control group (Ghorbani & Bund, 2020; Pascua et al., 2015; Wulf et al., 2014), was 
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comprised of more than one experiment (Steel et al., 2016; Wulf et al., 2012), and/or assessed 

different populations (e.g., older vs younger adults; Drews et al., 2013; Grealy et al., 2019). 

In these cases, the number of effect sizes extracted exceeded the ratio one per study, but the 

assumption of independency among effect sizes was still met as the same experimental and/or 

control group was not used in multiple comparisons (Englund et al., 1999). In addition to 

statistical data, relevant information regarding population characteristics, study protocol, and 

experimental manipulation was also extracted. Table S1 provides information about 

experimental manipulation checks, which were conducted for 30 studies and at least 

somewhat successful in 22. 

Hedges’ g was chosen as the effect size metric since it considers the sample size of 

each study, being therefore considered an unbiased or corrected effect size (Lakens, 2013). 

Variables in which lower scores indicate better outcomes (e.g., radial error) were reversed in 

sign to ensure that effects favoring the experimental manipulation were positive (Harrer et al., 

2019). Data were fitted into a random-effects model estimated using restricted maximum 

likelihood. Alpha level was set at .05 and effect size followed the standard guidelines (small 

= 0.2, medium = 0.5, large = 0.8) suggested by Cohen (1988). Heterogeneity was assessed 

using the Cochran’s Q test. Since this test is influenced by sample size (Higgins et al., 2003), 

the I2 statistic, quantified as the percentage of total heterogeneity over total variability, was 

also computed. The presence of small-study effects was assessed via visual inspection of the 

funnel plot along with Egger’s regression test (Egger et al., 1997), which statistically assesses 

funnel plot asymmetry by predicting effect size from standard error. A trim-and-fill analysis 

was used to examine the sensitivity of the results to reporting bias (Duval & Tweedie, 2000). 

This technique iteratively trims studies from one side of the funnel plot until a criterion for 

symmetry is met, then fills the studies back into the plot while imputing ones that are 

identical except on the opposite side of the mean along the horizontal axis. The trim-and-fill 
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analysis was carried out using the default algorithm provided by the metafor package 

(Viechtbauer, 2010) in R (cran.r-project.org) software. Since the trim-and-fill analysis 

assumes the decision to publish a scientific finding depends solely on the size of an effect, 

but reporting bias is likely more influenced by whether the effect is significant (Fanelli, 

2012), we planned to p-curve the studies that had significant results (Simonsohn et al., 2014). 

However, we opted not to after determining that only 10 studies met the criteria to be 

included in a p-curve, due to the others not containing specific hypotheses, not reporting the 

types of post-hoc tests performed, reporting significant interactions, etc. Pre-specified 

moderator analyses were conducted to investigate how the type of manipulation moderated 

the estimated effect, and to investigate the effect of enhanced expectancies on motor learning 

when contrasted with different types of comparison groups (control or diminished 

expectancies). An exploratory moderator analysis was also conducted to investigate the effect 

of enhanced expectancies on learning in different populations (young adults, older adults, 

children/adolescents, and special populations). Visual inspection of funnel plots, studentized 

deleted residuals, and hat values were used to identify outliers and/or overly influential points 

in the dataset (Viechtbauer & Cheung, 2010). To ensure the robustness of the results, models 

were run with and without the studies identified as outliers and/or overly influential cases. 

The present meta-analysis was carried out using the metafor package (Viechtbauer, 2010) in 

R (cran.r-project.org) software. R code and dataset are available in the OSF repository. 

Results 

Risk of Bias 

Results of the risk of bias assessment are shown in Figure 2. All 48 studies included in 

the qualitative analysis were judged to be at high risk of bias. This was mainly due to some 

concerns being raised across all individual domains except for the bias due to missing 

outcome data domain. Specifically, some concerns were raised in the bias arising from the 
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randomization process domain mostly due to studies not providing a detailed description of 

the randomization process; in the bias due to deviations from intended interventions domain 

due to experimenters responsible for delivering the intervention being likely aware of 

participants’ group assignment; in the bias in measurement of the outcome domain due to the 

lack of information as to whether outcome assessors were aware of the intervention received 

by participants, which resulted in the assessment of outcome being possibility influenced by 

the assessors’ knowledge of group assignment; and in bias in selection of the reported result 

domain due to the absence of pre-specified analysis plans. Except for one (Barker et al., 

2010), studies were classified as being at low risk in the bias due to missing outcome data 

domain as there was no indication of missing data. 

Figure 2 

Risk of Bias Assessment Results 

 

Note. Figure depicting all 48 studies included in the qualitative analysis and their respective 

risk of bias for each bias domain as well as overall risk of bias.  
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Descriptive Analysis  

A summary of the main characteristics of the studies included in the meta-analysis can 

be found in Table 1. Forty-one studies contributed one data point each to the meta-analysis, 

whereas six contributed two data points each (Ghorbani & Bund, 2020; Grealy et al., 2019; 

Pascua et al., 2015; Steel et al., 2016; Wulf et al., 2012, 2014), and one study contributed 

three data points (Drews et al., 2013), resulting in a total of 56 effect sizes. The oldest studies 

included in the meta-analysis were published in 2007 (Barzouka et al., 2007; Chiviacowsky 

& Wulf, 2007), whereas the most recent ones were published in 2020 (Bacelar et al., 2020; 

Chung et al., 2020; Ghorbani & Bund, 2020), resulting in a publication period range of 14 

years. The average study sample size was 14.85/group (median = 14/group), ranging from 8 

to 28 participants per group.  

Of the 56 effect sizes included in the meta-analysis, 16 represent manipulations of 

feedback after good trials, 13 represent manipulations of perceived task difficulty, 15 

represent manipulations of comparative feedback, 7 represent manipulations of conceptions 

of ability, 4 represent manipulations of extrinsic rewards/punishments, and 2 represent 

manipulations of self-modeling 2. The effect sizes composing this meta-analysis were 

extracted from data pertaining to young adults (n = 34), older adults (n = 6), children and 

adolescents (n = 13), and special populations (n = 3) consisting of adults with a disability in 

at least one upper or lower extremity (Bahmani et al., 2018), adults with Parkinson’s disease 

(Chung et al., 2020), and autistic children (Navaee et al., 2018). Most of the effect sizes refer 

to a 24-hr retention test (n = 44), whereas the remaining refer to a retention test carried out 

 
2. If summed, the number of manipulations exceeds the total number of effect sizes included in the 

meta-analysis. This is because one effect size reflects two manipulations combined (i.e., feedback 

after good trials and conceptions of ability; Wulf et al., 2013).  
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between 24-hr and one week after the acquisition phase (n = 7), or to a retention test carried 

out at least one week after the acquisition phase (n = 5). 

Meta-analysis 

Before running the random-effects model to estimate the effect of enhanced 

expectancies on motor learning, funnel plot visual inspection and influence diagnostics 

statistics were carried out to identify the presence of outliers and/or overly influential cases in 

the dataset. Figure 3A shows a funnel plot depicting all 56 effect sizes as a function of their 

standard error distribution. Visual inspection indicated the presence of two outliers (see 

bottom right of plot), which was confirmed by inspection of studentized deleted residuals and 

hat values, resulting in the removal of the studies by Goudini et al. (2018; rstudent = 4.19, hat 

= 0.009) and Navaee et al. (2016; rstudent = 3.44, hat = 0.005) from the subsequent analyses. 

(Results of the main meta-analysis with all 56 effect sizes can be found in the supplementary 

material.) Figure 3B shows the funnel plot after removal of outliers/influential cases. 

Figure 3 

Funnel Plot and Funnel Plot with Outliers Removed 

 

Note. A) Funnel plot depicting cases as a function of effect size and standard error of all 56 

effect sizes. B) Funnel plot depicting cases as a function of effect size and standard error after 

outlier removal (n = 54). 
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Figure 4 depicts a forest plot with the 54 effect sizes included in the main analyses as 

well as a summary of the estimated effect. Results of the random-effects model revealed an 

overall effect size of medium magnitude (Hedges’ g = 0.54, 95% CI [0.38, 0.69], z = 6.85, p 

< .001), indicating a positive effect of enhanced expectancies on motor skill learning. The 

Cochran’s Q test was also significant (Q(53) = 118.27, p < .001), which suggests 

heterogeneity unlikely due to chance alone in the estimated effects across studies. This 

finding was corroborated by the results of the I2 statistics, which revealed heterogeneity of I2 

= 55.27%. Funnel plot visual inspection indicated asymmetry even after outlier/overly 

influential case removal, which was confirmed by the results of the Egger’s regression test (z 

= 3.49, p < .001). Notably, asymmetry does not necessarily reflect small-study effects, but 

rather can occur by chance, sampling variation, and/or heterogeneity (Sterne et al., 2011). 

Since our funnel plot included 54 effect sizes, we reasoned chance and sampling variation 

were unlikely to have caused asymmetry. Thus, we were most concerned with exploring 

heterogeneity as an alternative to small-study effects as a cause of asymmetry, especially 

given the evidence of heterogeneity, possibly stemming from the use of studies implementing 

six different types of manipulations. If the asymmetry was mostly due to different types of 

manipulations having different effect sizes and standard errors, then funnel plots for each 

type of manipulation should be symmetrical. However, this does not seem to be the case, as 

described in the supplementary material, and depicted in Figure S2. Similarly, the asymmetry 

does not appear due to different populations (young adults, older adults, children/adolescents, 

and special populations) having different effect sizes and standard errors, as the funnel plots 

were not symmetrical for each population (see supplementary material and Figure S3). The 

trim-and-fill analysis failed to add studies to either side of the main funnel plot (Figure 3B). 

Figure 4  

Forest Plot 
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Note. Forest plot depicting all 54 effect sizes and their respective 95% confidence interval 

along with the overall Hedge’s g effect size. Model summary is also presented on the bottom 

left side of the figure. Here, effect sizes favoring enhanced expectancies manipulations are 
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presented on the right side of the zero Hedges’ g line, whereas effect sizes not in favor of the 

manipulation in question are presented on the left side. 

A moderator analysis was carried out to investigate the estimated effect size of 

enhanced expectancies on motor learning as a function of type of manipulation. (The same 

analysis with the 54 effect sizes included in the main analysis plus those considered 

outliers/overly influential can be found in the supplementary material.) Thus, type of 

manipulation (feedback after good trials, comparative feedback, self-modeling, perceived 

task difficulty, conceptions of ability, and extrinsic rewards) was entered into a mixed-effects 

model as a predictor. The moderator analysis revealed that at least one of the types of 

manipulations significantly differed from zero (QM(6) = 66.15, p < .001). The estimated 

effect of feedback after good trials was of large magnitude (Hedges’ g = 0.84, 95% CI [0.54, 

1.14], z = 5.43, p < .001, n = 13), indicating a beneficial effect of feedback after good trials 

on motor learning. In the same direction, a medium effect of comparative feedback (Hedges’ 

g = 0.61, 95% CI [0.34, 0.88], z = 4.39, p < .001, n = 15) and a small effect of perceived task 

difficulty (Hedges’ g = 0.46, 95% CI [0.18, 0.74], z = 3.17, p = .002, n = 13) and conceptions 

of ability (Hedges’ g = 0.39, 95% CI [0.023, 0.76], z = 2.083, p = .037, n = 7 3) were found. 

 
3. The study by Wulf et al. (2013) manipulated both conceptions of ability and feedback after good 

trials. Until this point, the effect size of this study reflected a combination of these two 

manipulations (acquirable-better group vs. inherent-worse group). However, for the purposes of 

this moderator analysis, we decided to categorize this study as ‘conceptions of ability’ by 

comparing the acquirable-worse group and inherent worse-group given that this manipulation had 

fewer cases (n = 6) than the feedback after good trials one (n = 13). (We chose to compare the 

acquirable- vs. inherent-worse groups because we reasoned the acquirable- and inherent-better 

groups may both have enhanced expectancies, with the latter believing they are naturally good at 

the task.) In the supplementary material, we present the results of a sensitivity analysis in which 
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Extrinsic rewards showed a trivial positive effect (Hedges’ g = 0.15, 95% CI [-0.38, 0.68], z 

= 0.56, p = .577, n = 4), and self-modeling showed a moderate effect favoring the comparison 

group (Hedges’ g = -0.64, 95% CI [-1.40, 0.12], z = -1.64, p = .101, n = 2), thus failing to 

provide evidence that these manipulations improve motor learning. 

A second moderator analysis was conducted to identify the effects of enhanced 

expectancies as a function of the different types of comparison groups adopted (i.e., 

diminished expectancies group, n = 25; or control, n = 29). (The same analysis with the 54 

effect sizes included in the main analysis plus those considered outliers/overly influential can 

be found in the supplementary material.) We did not find evidence that adding type of 

comparison to the model helped explain variability in effect sizes across studies (QM(1) = 

1.32, p = .251). Specifically, we observed a medium positive effect when comparing 

enhanced expectancies to diminished expectancies (Hedges’ g = 0.63, 95% CI [0.41, 0.86], z 

= 5.53, p < .001) and a small effect when comparing enhanced expectancies to control 

(Hedges’ g = 0.45, 95% CI [0.24, 0.66], z = 4.23, p < .001), but the effect of enhanced 

expectancies was not significantly influenced by comparison group type (β = -0.18, 95% CI 

[-0.49, 0.13], z = -1.15, p = .251). 

Finally, to explore the effect of enhanced expectancies as a function of different 

populations, type of population (young adults, older adults, children/adolescents, and special 

populations) was entered into a mixed-effect model as the predictor. (The same analysis with 

the 54 effect sizes included in the main analysis plus those considered outliers/overly 

influential can be found in the supplementary material.) The exploratory moderator analysis 

revealed that at least one of the populations significantly differed from zero (QM(4) = 45.29, 

 
this study is classified as feedback after good trials (effect size reflecting the difference between 

the inherent-better and inherent-worse group). 
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p < .001). Specifically, a significant positive effect of medium magnitude was found for 

young adults (Hedges’ g = 0.61, 95% CI [0.40, 0.81], z = 5.70, p < .001, n = 32), older adults 

(Hedges’ g = 0.48, 95% CI [0.01, 0.96], z = 1.99, p = .046, n = 6), and children/adolescents 

(Hedges’ g = 0.44, 95% CI [0.12, 0.75], z = 2.71, p = .007, n = 13), suggesting enhanced 

expectancies has a beneficial effect for these populations. Although a medium positive effect 

was observed for special populations, we did not find sufficient evidence that enhanced 

expectancies improve learning in this population (Hedges’ g = 0.43, 95% CI [-0.27, 1.14], z = 

1.20, p = .231, n = 3). 

Discussion 

The present meta-analysis estimated that enhancing learners’ expectancies for future 

successful outcomes has a medium-sized benefit on motor learning (g = 0.54, 95% CI [0.38, 

0.69]). Specifically, when analyzing different methods of enhancing expectancies, we found 

that manipulating feedback after good trials (g = 0.84, 95% CI [0.54, 1.14]) results in large 

benefits, while comparative feedback (g = 0.61, 95% CI [0.34, 0.88]) entails medium-sized 

benefits, and perceived task difficulty (g = 0.46, 95% CI [0.18, 0.74]) as well as conceptions 

of ability (g = 0.39, 95% CI [0.023, 0.76]) result in small benefits to learning. We did not find 

evidence that manipulating extrinsic rewards or self-modeling affect motor learning (ps ≥ 

.101), but few studies implemented these manipulations (ns ≤ 4), precluding reliable 

estimates of their effects. Thus, the effects of these manipulations should be estimated again 

when/if more studies in this line of investigation are conducted. (Since only 7 studies 

manipulated conceptions of ability and the effect of this manipulation has a wide CI that 

includes 0 when estimated among all 56 effect sizes (see Table S2), these results should be 

interpreted with caution.)  Notably, enhanced expectancies benefitted motor learning 

similarly irrespective of whether the comparison group had diminished or neutral 

expectancies. This is consistent with Wulf and Lewthwaite (2016)’s suggestion that ‘neutral’ 
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practice conditions are not really neutral, but rather likely elicit negative expectancies due to 

learners’ concerns about having their performance assessed and compared with others’. 

Finally, we found that manipulating enhanced expectancies has a medium-sized positive 

effect on motor learning for young adults (g = 0.61, 95% CI [0.40, 0.81]), older adults (g = 

0.48, 95% CI [0.01, 0.96]), and children/adolescents (g = 0.44, 95% CI [0.12, 0.75]). We did 

not find evidence to support the benefits of enhanced expectancies for special populations (p 

= .231), which in the present meta-analysis consist of adults with a disability in at least one 

upper or lower extremity (Bahmani et al., 2018), adults with Parkinson’s disease (Chung et 

al., 2020), and children with autism (Navaee et al., 2018). However, only three studies 

examined these populations, preventing reliable estimates of effects in them. Future research 

should investigate the effect of enhanced expectancies on motor learning in these 

populations. 

Results emphasize the role of enhanced expectancies in facilitating motor learning, so 

it is worth considering potential underlying mechanisms of this effect. Practice conditions 

that enhance expectations for successful outcomes are motivating, which increases dopamine 

release during motor skill practice, thereby facilitating the consolidation of motor memories 

(Wise, 2004). This is because successful outcomes are intrinsically rewarding, activating the 

dopaminergic reward system (Lutz et al., 2012), and humans are motivated to pursue rewards 

during motor skill practice (Moskowitz et al., 2020). Importantly, the mere expectation of 

dopamine release modulates the dopaminergic reward system (Schmidt et al., 2014), which is 

crucial for motivation (Wise, 2004). 

The present meta-analysis also revealed evidence of small-study effects and 

underpowered studies, likely causing the effect of enhancing learners’ expectancies on motor 

learning to be overestimated. Specifically, funnel plot visual inspection revealed asymmetry 

that was confirmed by a significant relationship between study effect size and standard error 
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(Egger’s regression test). We believe the asymmetry is unlikely caused by chance or 

sampling variation, since 54 effect sizes were used in the funnel plot. We explored the 

probability that asymmetry was due to different manipulations (feedback after good trials, 

comparative feedback, etc...) or different populations (young adults, older adults, etc…) 

having different effect sizes and standard errors by constructing funnel plots for each 

manipulation and population. We did not observe symmetry in each manipulation and 

population’s funnel plot (Figures S2 and S3), making it unlikely that heterogeneity between 

manipulations or populations explains the asymmetry in the funnel plot with all 

manipulations and populations (Sterne et al., 2011). Evidence that small-study effects 

contribute to funnel plot asymmetry can be observed in the lack of relatively imprecise 

studies showing negative effects (Figure 3B). In particular, asymmetry may be due to inflated 

effect sizes in small studies, since the median sample size was n = 14/group, and such small 

studies are likely to have exaggerated effect sizes (Sterne et al., 2011). Notably, the 

combination of small samples and small-study effects may cause effect sizes to be severely 

overestimated in the extant literature. This follows because small studies are likely to be 

underpowered such that only those drastically overestimating an effect will be statistically 

significant and, consequently, published (Lohse et al., 2016). However, it is important to note 

that the present meta-analysis did not assess the gray literature, and, therefore, does not 

present direct evidence of reporting bias.  

The risk of bias assessment also raises the possibility that the effect of enhancing 

learners’ expectancies on motor learning could be misrepresented. Some concerns, such as 

those about the randomization process, may be due to authors not reporting procedures rather 

than not undertaking them (The Cochrane Collaboration, 2013), and other concerns are 

inherent to motor learning research, such as participant awareness of group assignment. 

However, certain concerns can be mitigated, such as those regarding bias in selection of the 
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reported result. Thus, to estimate the effect of enhancing learners’ expectancies on motor 

learning more accurately, we recommend researchers conduct pre-registered studies and 

registered reports with a priori sample size calculations (Caldwell et al., 2020; Lohse et al., 

2016). Specifically, pre-registered studies and registered reports may reduce reporting bias by 

committing researchers to reporting specific analyses and outcomes and journal editors to 

publishing studies irrespective of their results. Researchers conducting a priori sample size 

calculations should consider this meta-analysis’ effect sizes to be overestimated and are 

encouraged to power their studies to detect effects close to the lower bound of the 95% CI. 

According to G*Power 3.1.9.4 (Faul et al., 2007), a two-tailed independent sample t-test with 

α = .05, β = .20, equal n/group, and a Cohen’s d = 0.38 (lower bound of 95% CI) requires n = 

110/group. This number is reduced to n = 55/group if a Cohen’s d is set to 0.54, consistent 

with the effect size (likely overestimated) in the present study. Since these sample sizes will 

be large increases for most researchers, they are encouraged to consider ways to make their 

data collections more efficient, for example by using sequential analyses (Lakens, 2014). 

The present results suggesting enhanced expectancies may facilitate motor learning, 

with the effect possibly overestimated due to small-study effects and small sample sizes, are 

somewhat like other recent meta-analyses of effects predicted by OPTIMAL theory. Jimenez-

Diaz et al. (2020) investigated the effect of learner control of augmented feedback during 

acquisition, which may promote autonomy, on motor performance and learning. The authors 

reported learner-controlled feedback groups exhibited superior acquisition performance 

relative to experimenter-regulated feedback groups, and learner-controlled feedback groups 

demonstrated performance stability from acquisition to retention, whereas experimenter-

regulated feedback groups showed performance decrement from acquisition to retention. 

However, learner-controlled feedback groups did not significantly differ in performance or 

learning in comparison to yoked feedback groups, which consisted of participants who 
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received augmented feedback schedules matched to a counterpart in a learner-controlled 

group. Thus, results provide little support for the OPTIMAL theory prediction that promoting 

autonomy, via giving learners control of their augmented feedback, enhances motor 

performance or learning. Notably, the authors reported a small median sample size of 

approximately n = 12/group as well as funnel plot asymmetry and significant Egger’s 

regression tests for both acquisition and retention data, indicating the possibility of small-

study effects. Kim et al. (2017) examined the effect of external focus (on the effects of one’s 

movement) vs. internal focus (on one’s body movements) instructions on balance 

performance and learning. Consistent with OPTIMAL theory (Wulf & Lewthwaite, 2016), 

the authors reported external focus of attention groups exhibited superior balance during 

acquisition, retention, and transfer relative to internal focus of attention groups. The authors 

reported a small median sample size of approximately n = 14/group as well as funnel plot 

asymmetry and a significant Egger’s regression test in the acquisition data but not in the 

retention data, indicating the possibility of bias in the former. (Funnel plot asymmetry was 

not assessed for transfer data.) Makaruk et al. (2020) investigated the effect of external vs. 

internal vs. control (no) attentional focus instructions on jumping performance but not 

learning. Consistent with OPTIMAL theory, the authors reported external focus of attention 

was superior to internal focus of attention and control conditions. The authors reported a 

median sample size of approximately n = 24 (14 of 15 studies were within-subjects), which is 

larger than the other meta-analyses. Unlike the other meta-analyses, the authors did not assess 

bias. Taken together, these meta-analyses and the present one suggest that the many 

individual studies reporting effects consistent with OPTIMAL theory (Wulf & Lewthwaite, 

2016) exaggerate the supporting evidence, due to small-study effects and underpowered 

studies, which is common in motor learning (Lohse et al., 2016) and other fields (e.g., 

(Button et al., 2013). Aggregating individual studies to estimate effects more accurately with 
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meta-analyses is an important endeavor, but the presence of bias and an environment 

conducive to questionable research practices (e.g., conducting many statistical tests) in motor 

learning (Lohse et al., 2016) makes it difficult for OPTIMAL theory-based or other motor 

learning meta-analyses to establish whether even medium-sized effects, such as the one 

observed in the present study, are truly different from zero (Carter et al., 2019). 

An important question for future research is to what degree practitioners typically 

implement strategies that enhance expectancies in comparison to those that are neutral or 

diminish expectancies. If coaches/clinicians rarely create neutral practice conditions or those 

that diminish expectancies, then their adoption of strategies to enhance expectancies will 

have little added value. Notably, researchers have investigated whether coaches use external 

focus of attention instructions, as recommended by OPTIMAL theory, and revealed that they 

usually do not (Diekfuss & Raisbeck, 2016; Porter et al., 2010; Yamada et al., 2020). Thus, it 

is conceivable practitioners also fail to create practice conditions that enhance expectancies. 

The present meta-analysis suggests that enhancing learners’ expectancies for future 

successful outcomes may facilitate motor learning across young adults, older adults, and 

children/adolescents. The meta-analysis lacked studies manipulating extrinsic rewards and 

self-modeling (and, to a lesser degree, conceptions of ability), and studies investigating the 

effect in question in special populations, so these effects should be estimated again when/if 

more studies in this line of investigation are conducted. As the meta-analysis indicated small-

study effects and small sample sizes, pre-registered analyses and/or registered reports with 

greater statistical power are recommended. This final recommendation is critical to develop a 

body of studies conducive to accurately estimating the effect of enhanced expectancies on 

motor learning as well as other effects predicted by OPTIMAL theory and other motor 

learning theories. 
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Table 1 

Summary of the main characteristics of the studies included in the meta-analysis.  

Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 
Chosen 
Performance 
Outcome 

Abbas & North 
(2018) 

Feedback after 
good trials 

Adults (Age: M = 
29.67 years, SD = 
9.36; 14 females) 

KR-good: n = 10 

KR-poor: n = 10 

KR-neutral: n = 10 

(Total: N = 30) 

KR-good vs KR-
neutral (Control) 

 

 

Golf-putting 

 

5 blocks of 6 
trials at 2 meters 

5 blocks of 6 
trials at 5 meters 

 

24-hr (1 block 
of 10 trials at 2 
m and 1 block 
of 10 trials at 5 
m) 

1-week (1 block 
of 10 trials at 2 
m and 1 block of 
10 trials at 5 m) 

Radial error 

Abe et al. (2011) Extrinsic rewards Adults (Age: M = 
24.3 years, SD = 
5.2; 18 females) 

Rewarded training: n = 13 

Punished training: n = 12 

Control training: n = 13 

(Total: N = 38) 

Rewarded training 
vs Control training 
(Control) 

Tracking pinch 
force 

 

 

4 blocks of 10 
trials 

 

24h and 30 days 
(1 block 20 
trials) 

 

 

Error (distance) 

Ávila et al. (2012) Comparative 
feedback 

Children (Age: M = 
10.4 years, SD = 
0.36; 12 females) 

Positive feedback: n = 16 

Control: n = 16 

(Total: N = 32) 

Positive feedback vs 
Control (Control) 

Non-dominant 
arm beanbag 
throwing 

6 blocks of 10 
trials 

24-hr (1 block of 
10 trials) 

Accuracy score 

Bacelar et al. 
(2020) - Main exp. 

Extrinsic rewards 

 

Adults (Age: M = 
20.7 years, SD = 
2.63; 55 females) 

Reward: n = 25 

Punishment: n = 22 

Neutral: n = 22 

(Total: N = 69) 

Reward vs Neutral 
(Control) 

Golf-putting 

 

 

6 blocks of 8 
trials 

 

24h and 1 week 
(1 block of 8 
trials) 

Radial error 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 
Chosen 
Performance 
Outcome 

Badami et al. 
(2012) 

Feedback after 
good trials 

Adults (Age: M = 
19.5 years, SD = 
1.9; all females) 

More Accurate: n = 20  

Less Accurate: n = 20 

(Total: N = 40) 

More accurate vs 
Less accurate 
(diminished 
expectancies) 

Golf-putting 10 blocks of 6 
trials 

24 h (1 block of 
10 trials) 

Putting accuracy 
scores 

Bahmani et al. 
(2017) 

Perceived task 
difficulty 

Children (Age: M = 
10.66 years, SD = 
0.41; all males) 

Perceived large hole: n = 
15 

Perceived small hole: n = 
15 

(Total: N = 30) 

Perceived large hole 
vs Perceived small 
hole (Diminished 
expectancies) 

Golf-putting 5 blocks of 10 
trials 

48-hr (1 block of 
10 trials) 

Deviation 

Bahmani et al. 
(2018) 

Perceived task 
difficulty 

Adults with 
disability in ≥1 
upper or lower 
extremity (Age: M 
= 37.7 years, SD = 
9.8; 11 females) 

Large illusion: n = 9  

Small illusion: n = 8 

(Total: N = 17) 

Large illusion vs 
Small illusion 
(Diminished 
expectancies) 

Aiming task 
(shooting - 10-m 
air pistol and air 
rifle) 

5 blocks of 10 
trials 

24-hr (1 block of 
10 trials) 

Shooting accuracy 

Barker et al. (2010) Perceived task 
difficulty  

Adults (Age: M = 
21.50 years, SD = 
3.25; 4 females) 

Hypnosis: n = 14 

Video attention control: n 
= 14 

(Total: N = 28) 

Hypnosis vs Video 
attention control 
(Control) 

Soccer Wall-
Volley 

 

 

3 sessions each 
comprising 
soccer practice (3 
trials), 
manipulation (45 
min), and soccer 
practice (3 trials) 

4 weeks (1 block 
of 3 trials) 

Performance score 

 

 

Barzouka et al. 
(2007) 

Self-modeling  Adolescents (Age: 
M = 13.1 years, SD 
= 0.9; all females) 

Other-modeling: n = 18 

Self-modeling: n = 16 

Control: n = 19 

(Total: N = 53) 

Group 2 vs Group 1 
(Control) 

Volleyball 
reception 

12 practice 
sessions at a 
frequency of 
2x/week; four 
kinds of drills 
with 10 
repetitions each 

1-week (1 block 
of 10 trials) 

Performance 
outcome (score) 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 
Chosen 
Performance 
Outcome 

Carter et al. (2016) Feedback after 
good trials 

Adults (Age: M = 
22.72 years, SD = 
1.65; 22 females) 

KR-good-aware: n = 10 

KR-good-unaware: n = 10 

KR-poor-aware: n = 10 

KR-poor-unaware: n = 10 

(Total: N = 40) 

KR-good-unaware 
vs KR-poor-
unaware 
(Diminished 
expectancies) 

Mini Koosh-ball 
tossing 

10 blocks of 6 
trials 

24h (2 blocks of 
6 trials) 

 

Radial error 

 

 

Chauvel et al. 
(2015) 

Perceived task 
difficulty 

Adults (Age: M = 
21.7 years, SD = 
1.24; 20 females) 

Perceived large hole: n = 
18 

Perceived small hole: n = 
18 

(Total: N = 36) 

Perceived large hole 
vs Perceived small 
hole (Diminished 
expectancies) 

Golf-putting 5 blocks of 10 
trials 

24-hr (1 block of 
10 trials) 

Deviation 

Chiviacowsky & 
Drews (2014) – 
Exp. 2 

Conceptions of 
ability 

Children (Age: M = 
10.5 years, SD = 
0.51; 20 females) 

Generic feedback: n = 20 

Non-generic feedback: n 
= 20 

(Total: N = 40) 

Generic feedback vs 
Non-generic 
feedback 
(Diminished 
expectancies) 

Non-dominant 
arm beanbag 
throwing 

4 blocks of 10 
trials 

Retention 1: 24-
hr (1 block of 10 
trials) 4 

Retention 2: 24-
hr (1 block of 10 
trials) 

Accuracy score 

Chiviacowsky & 
Drews (2016) 

Comparative 
feedback 

Adults (Age: M = 
21.6 years, SD = 
1.98; 4 females) 

Positive self-comparison 
feedback: n = 10 

Negative self-comparison 
feedback: n = 10 

(Total: N = 20) 

Positive self-
comparison 
feedback vs 
Negative self-
comparison 
feedback 
(Diminished 
expectancies) 

Anticipatory 
coincident 
timing 

 

 

 

4 blocks of 10 
trials 

24h (1 block of 
10 trials) 

 

 

Absolute error 

 

 
4 For the purposes of the present meta-analysis only Retention 1 was used. 
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Study Manipulation Population Sample Size Comparison Group Type of Task Training Session Retention 
Chosen 
Performance 
Outcome 

 

Chiviacowsky & 
Harter (2015) 

Perceived task 
difficulty 

Adults (Age: M = 
24.4 years, SD = 
6.73; 24 females) 

High experience of 
success: n =18 

Low experience of 
success: n = 18  

Control: n = 18 

(Total: N = 54) 

High experience of 
success vs Control 
(Control) 

Anticipatory 
coincident 
timing 

6 blocks of 5 
trials 

24-hr (1 block of 
10 trials) 

Absolute error 

Chiviacowsky & 
Wulf (2007) 

Feedback after 
good trials 

Adults (Age: M = 
21.1 years, SD = 
NA; 18 females) 

KR good: n = 12 

KR poor: n = 12 

(Total: N = 24) 

 

KR good vs KR 
poor (Diminished 
expectancies) 

 

 

Non-dominant 
arm beanbag 
tossing 

 

 

10 blocks of 6 
trials 

24 h (1 block of 
10 trials) 

Accuracy score 

Chiviacowsky et al. 
(2009) 

Feedback after 
good trials  

Older adults (Age: 
M = 65.9 years, SD 
= NA; all females) 

KR-good: n = 11 

KR-poor: n = 11  

(Total: N = 22) 

KR-good vs KR-
poor (Diminished 
expectancies) 

Non-dominant 
arm beanbag 
tossing 

10 blocks of 6 
trials 

72-hr (1 block of 
10 trials) 

Accuracy score 

Chiviacowsky et al. 
(2010) 

Feedback after 
good trials 

Children (Age: M = 
10 years, SD = NA; 
ratio males/females 
not reported 

CRB (KR after good 
trials): n = 13 

CRM (KR after poor 
trials): n = 13 

(Total: N = 26) 

CRB vs CRM 
(Diminished 
expectancies) 

 

Pedalo 

 

8 blocks of 4 
trials (7 meters) 

24h (1 block of 4 
trials) 

 

Time 

Chiviacowsky et al. 
(2012) 

Perceived task 
difficulty 

Adults (Age: M = 
21.8 years, SD = 
3.36; 24 females) 

Self-30: n = 17  

Self-4: n = 17 

Self: n = 17 

Self-30 vs Self 
(Control) 

 

Anticipatory 
timing 

 

 

3 blocks of 10 
trials 

24h (1 block of 
10 trials) 

Absolute error 
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Performance 
Outcome 

(Total: N = 51) 

Chiviacowsky et al. 
(2018) 

Perceived task 
difficulty  

Older adults (Age: 
M = 66.1 years, SD 
= 4.78; all females) 

 

Negative stereotype: n = 
13 

Positive stereotype: n =13 

Control: n = 13 

(Total: N = 39) 

Positive stereotype 
vs Control (Control) 

Stabilometer 

 

1 block of 10 
trials 

24h (1 block of 5 
trials) 

Time in balance 

Chiviacowsky et al. 
(2019) 

Comparative 
feedback 

Adults (Age: M = 
23.2 years, SD = 
6.71; 14 females) 

Positive temporal-
comparative feedback: n 
= 14 

Control: n = 14 

(Total: N = 28) 

Positive temporal-
comparative 
feedback vs Control 
(Control) 

Golf-putting 5 blocks of 10 
trials 

24h (1 block of 
10 trials) 

 

 

Deviation 

 

Chung et al. (2020) Conceptions of 
ability 

Individuals with 
Parkinson's Disease 
(Age: M = 62.36 
years, SD = 9.80; 
18 females) 

Incremental theory: n = 
15 

Incremental theory plus 
success criteria: n = 15 

Control: n = 14 

(Total: N = 44) 

Incremental theory 
vs Control (Control) 

Stabilometer 1 block of 14 
trials (30-s trial) 

24-hr (1 block of 
7 30-s trials) 

Time in balance 

Drews et al. (2013) Conceptions of 
ability 

Children (Age 6: M 
= 6.2 years, SD = 
0.24; Age 10: M = 
10.1 years, SD = 
0.30; Age 14: M = 
14.4 years, SD = 
0.34; 54 females) 

Acquirable-skill-6: n = 20 

Inherent-ability-6: n = 20 

Acquirable-skill-10: n = 
20 

Inherent-ability-10: n = 
20 

Acquirable-skill-6 
vs Inherent-ability-6 
(Diminished 
expectancies – 
Drew et al. (2013a)) 

Acquirable-skill-10 
vs Inherent-ability-
10 (Diminished 

Overhand non-
dominant arm 
beanbag 
throwing 

4 blocks of 10 
trials 

24-hr (1 block of 
10 trials) 

Accuracy score 
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Chosen 
Performance 
Outcome 

Acquirable-skill-14: n = 
20 

Inherent-ability-14: n = 
20 

(Total: N = 120) 

 

expectancies – 
Drew et al., 2013b) 

Acquirable-skill-14 
vs Inherent-ability-
14 (Diminished 
expectancies – 
Drew et al., 2013c) 

Ghorbani & Bund 
(2020) 

Feedback after 
good trials 

Adults (Age: M = 
21.35 years, SD = 
1.86; all males) 

Good KR and High Self-
Efficacy (SE): n = 15 

Poor KR and High SE: n 
= 15 

Good KR and Low SE: n 
= 15 

Poor KR and Low SE: n = 
15 

(Total: N = 60) 

Good KR and High 
SE vs Poor KR and 
High SE 
(Diminished 
expectancies- 
Ghorbani & Bund., 
2020a) 

Good KR and Low 
SE vs Poor KR and 
Low SE 
(Diminished 
expectancies- 
Ghorbani & Bund., 
2020b) 

 

Non-dominant 
arm beanbag 
throwing 

10 blocks of 6 
trials 

 

 

24h (1 block of 
10 trials) 

Accuracy scores 

 

Ghorbani (2019) – 
Exp. 1 

Feedback after 
good trials 

Adults (Age range: 
18-24 years; all 
males) 

KR-good: n = 12 

KR-bad: n = 12 

Control: n = 12 

(Total: N = 36) 

KR-good vs KR-bad 
(Diminished 
expectancies) 

Underarm dart-
throwing 

10 blocks of 6 
trials 

24-hr (1 block of 
10 trials) 

Accuracy score 

Goudini et al. 
(2018) 

Feedback after 
good trials 

Adults (Age: M = 
24.66 years, SD = 
1.35; 4 females) 

KR after good trials: n = 9  

KR after poor trials: n = 9 

KR after good trials 
vs KR after poor 

Line tracking 11 blocks of 6 
trials (15-s trial) 

48h (1 block of 
10 trials) 

Duration of errors 
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Outcome 

(Total: N = 18) trials (Diminished 
expectancies) 

 

 

  

Grealy et al. (2019) Comparative 
feedback 

Adults (Age: M = 
22.38 years, SD: 
2.32; 28 females – 
Grealy et al., 
2019a) 

Older adults (Age: 
M = 71.65 years, 
SD: 4.28; 23 
females – Grealy et 
al., 2019b) 

Young false positive: n = 
21 

Young veridical: n = 21 

(Total: N = 42; Grealy et 
al., 2019a) 

Older false positive: n = 
17 

Older veridical: n = 17 

(Total: N = 34; Grealy et 
al., 2019b) 

Young false positive 
vs Young veridical 
(Control – Grealy et 
al., 2019a) 

Older false positive 
vs Older veridical 
(Control – Grealy et 
al., 2019b) 

Inhibitory-action 
task (Simon 
task) 

18 blocks of 50 
trials completed 
over 6 training 
sessions (3 
blocks/session) 

Two-week (3 
blocks of 50 
trials) 

Inhibition time 

Harter et al. (2019) Conceptions of 
ability 

Children (Age: M = 
9.6 years, SD = 
0.11; all females) 

Acquirable-skill: n = 20 

Inherent-ability: n = 20 

(Total: N = 40) 

Acquirable-skill vs 
Inherent-ability 
(Diminished 
expectancies) 

Pirouette en 
dehors 

3 blocks of 5 
trials 

24-hr (1 block of 
5 trials) 

Punctuation scores 

Jennings et al. 
(2013) 

Self-modeling Adolescents (Age: 
M = 13.6 years, SD: 
1.6; 7 females) 

Traditional approach: n = 
10 

Self-modeling 
intervention: n = 9 

(Total: N = 19) 

Traditional 
approach vs Self-
modeling 
intervention 
(Control) 

Cycling 
standing start 

4 one-hour 
training sessions 
over a 2-week 
period 

48-hr (1 trial) Standing start time 

Lessa et al. (2018) Comparative 
feedback 

Older adults (Age: 
M = 66.14 years, 
SD = 4.63; 30 
females) 

 

Positive temporal-
comparative feedback: n 
= 17 

Control: n = 17 

Positive temporal-
comparative vs 
Control (Control) 

 

4-meter walking 
speed 

4 blocks of 10 
trials 

24 h (1 block of 
10 trials) 

Absolute error 
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Performance 
Outcome 

(Total: N = 34) 

Lewthwaite & 
Wulf (2010) 

Comparative 
feedback 

Adults (Age: M = 
23.0 years, SD = 
2.26; 24 females) 

 

Better: n = 12 

Worse: n = 12 

Control: n = 12 

(Total: N = 36) 

 

Better vs Control 
(Control) 

Stabilometer 2 days with 7 
trials (90-s trials) 

24h (1 block of 7 
trials) 

Root Mean Square 
Error 

 

 

Navaee et al. 
(2016) 

Comparative 
feedback 

Adults (Age: M = 
22.60 years, SD = 
1.89; information 
about gender not 
reported) 

Normative positive 
feedback: n = 10  

Normative negative 
feedback: n = 10 

Control: n = 10 

(Total: N = 30) 

Normative positive 
feedback vs Control 
(Control) 

Balance 16 blocks of 10 
trials for 4 
consecutive days 
(40 trials/day) 

24-hr (number of 
trials not 
reported) 

Overall stability 

Navaee et al. 
(2018) 

Comparative 
feedback 

Autistic children 
(Age 5 range: 6-10, 
M = NA, SD: NA; 
information about 
gender not 
reported) 

Normative feedback: n = 
10 

Control: n = 10 

(Total: N = 20) 

Normative feedback 
vs Control (Control) 

Non-dominant 
arm overhead 
beanbag 
throwing 

6 blocks of 10 
trials 

24-hr (1 block of 
10 trials) 

Mean score 

Ong & Hodges 
(2018) - Exp 2a. 

Comparative 
feedback 

Adults (Age: M = 
21.1 years, SD = 
3.4; all females) 

Positive: n = 10 

Positive-control: n = 10 

(Total: N = 20) 

Positive vs Positive-
control (Control) 

 

Stabilometer 1 block of 7 
trials (60-s trial) 

 

 

24 h (1 block of 
7 trials) 

 

Root Mean square 
Error 

 

 
5 This paper reported mean and SD by group as follows: Normative feedback: 8.40±0.96, Control: 8.50±0.84. 
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Ong et al. (2015) Perceived task 
difficulty 

Adults (Age: M = 
NA, SD = NA; all 
females) 

Large target: n = 28 

Small target: n = 27 

(Total: N = 55) 

Large target vs 
Small target 
(Diminished 
expectancies) 

Dart-throwing 10 blocks of 9 
trials 

1-week (block of 
9 trials) 

Radial error 

Ong et al. (2019) Perceived task 
difficulty 

Adults (Age: M = 
21.4 years, Age 
range: 18-31 years; 
all females) 

Large-target: n = 14  

Small-target: n = 15 

(Total: N = 29) 

Large-target vs 
Small-target 
(diminished 
expectancies) 

Dart-throwing 10 blocks of 9 
trials 

24-hr (1 block of 
6 trials – no-
vision retention 
test) 6 

24-hr (1 block of 
9 trials – with 
vision) 

Absolute error 

Palmer et al. (2016) Perceived task 
difficulty 

Adults (Age: M = 
24.6 years, SD = 
5.20; 22 females) 

Large-target: n = 17 

Small-target: n = 17 

(Total: N = 34) 

Large-target vs 
Small-target 
(Diminished 
expectancies) 

Golf-putting 5 blocks of 10 
trials 

24-hr (1 block of 
12 trials) 

Deviation  

Pascua et al. (2015) Comparative 
feedback 

Adults (Age: M = 
21.5 years, SD = 
1.22; 31 females) 

External focus/enhanced 
expectancy: n = 13 

External focus: n = 13 

Enhanced expectancy: n = 
13 

Control: n = 13 

(Total: N = 52) 

Enhanced 
expectancy vs 
Control (Control – 
Pascua et al. 2015a) 
& 

External 
focus/enhanced 
expectancy vs 
External focus 
(Control - Pascua et 
al. 2015b) 

Non-dominant 
arm overarm 
throwing (tennis 
ball) 

6 blocks of 10 
trials 

24-hr (1 block of 
10 trials) 

Throwing accuracy 
scores 

 
6 For the purposes of the present meta-analysis only the 24-hr retention test with no vision was used. 
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Saemi et al. (2011) Feedback after 
good trials 

Children (Age: M = 
10.61 years, SD: 
0.88; information 
about gender not 
reported) 

KR-good: n = 14 

KR-poor: n = 14 

(Total: N = 28) 

KR-good vs KR-
poor (Diminished 
expectancies) 

Overhand non-
dominant arm 
beanbag 
throwing 

10 blocks of 6 
trials 

24-hr (1 block of 
10 trials) 

Accuracy score 

Saemi et al. (2012) Feedback after 
good trials 

Adults (Age: M = 
19.51 years, SD = 
1.09; all males) 

KR after good trials: n = 
12 

KR after poor trials: n = 
12 

(Total: N = 24) 

KR after good trials 
vs KR after poor 
trials (Diminished 
expectancies) 

Non-dominant 
arm tennis ball 
tossing 

10 blocks of 6 
trials 

24h (1 block of 
10 trials) 

 

Accuracy scores 

 

Steel et al. (2016) Extrinsic rewards Adults (Age: M = 
25 years, SD = 
4.25; 47 females) 7 

Serial Reaction Time 
Task (SRTT) (Steel et al., 
2016a): 

Reward: n = 12 

Punishment: n = 12 

Control: n = 12 

(Total: N = 36) 

Force-Tracking Task 
(FTT) (Steel et al., 
2016b): 

Reward: n = 9 

Punishment: n = 11 

Reward vs Control 
(Control) 

SRTT  

FTT   

SRTT (Steel et 
al., 2016a):  

Training: 6 
blocks of 96 trials 

FTT (Steel et al., 
2016b): 

Training: 6 
blocks of 8 trials 
(12-s trial) 

SRTT (Steel et 
al., 2016a):  

24-hr and 30-day 
(3 blocks of 96 
trials; sequence: 
random-fixed-
random) 

FTT (Steel et al., 
2016b): 

24-hr and 30-day 
(3 blocks of 8 
trials; sequence: 
random-fixed-
random) 

SRTT (Steel et al., 
2016a): 

Reaction time 

FTT (Steel et al., 
2016b): 

Squared error 

 
7 Authors did not provide information about age (mean and standard deviation) and gender separately for each task. Thus, the information presented is based 

on the total sample size of 72 participants. 
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Control: n = 10 

(Total: N = 30) 

 

Wulf et al. (2010) Comparative 
feedback 

Adults (Age: M = 
20.8 years, SD = 
3.53; 12 females) 

Better: n = 14 

Worse: n = 14 

(Total: N = 28) 

Better vs Worse 
(Diminished 
expectancies) 

Computerized 
sequential 
timing 

8 blocks of 10 
trials 

24-hr (1 block of 
10 trials) 

Overall timing 
error 

Wulf et al. (2012) – 
Exp 1. 

Comparative 
feedback 

Older adults (Age: 
M = 71.1 years, SD 
= 5.25; all females) 

Normative feedback: n = 
15 

Control: n = 14 

(Total: N = 29) 

Normative feedback 
vs Control (Control 
– Wulf et al., 2012a) 

Stabilometer 1 block of 10 
trials (30-s trial) 

24-hr (1 block of 
5 trials) 

Time in balance 

Wulf et al. (2012) – 
Exp 2.  

Perceived task 
difficulty  

Older adults (Age: 
M = 63.6 years, SD 
= 3.40; all females) 

Enhanced expectancies: n 
= 14 

Control: n = 14 

(Total: N = 28) 

Enhanced 
expectancies vs 
Control (Control - 
Wulf et al., 2012b) 

Stabilometer 1 block of 10 
trials (30-s trial) 

24-hr (1 block of 
5 trials) 

Time in balance 

Wulf et al. (2013) Conceptions of 
ability and 
feedback after good 
trials 

Adults (Age: M = 
22.3 years, SD = 
2.25; 36 females) 

Inherent-ability better: n = 
14 

Inherent-ability worse: n 
= 14 

Acquirable-skill better: n 
= 14 

Acquirable-skill worse: n 
= 14 

(Total: N = 56) 

Acquirable-skill 
better vs Inherent-
ability worse 
(Diminished 
expectancies) 

Stabilometer 

 

2 days with 7 
trials (90-s trials) 

 

24h (1 block of 7 
trials) 

 

Root Mean Square 
Error 
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Wulf et al. (2014) Comparative 
feedback 

Adolescents (Age: 
M = 16.7 years, SD 
= 1.14; 28 females) 

Autonomy 
support/enhanced 
expectancies:  n = 16  

Autonomy support: n = 16 

Enhanced expectancies: n 
= 16  

Control: n = 16 

(Total: N = 64) 

Enhanced 
expectancies vs 
Control 

(Control – Wulf et 
al. 2014a) & 

Autonomy 
support/enhanced 
expectancies vs 
Autonomy support 
(Control - Wulf et 
al. 2014b)  

Non-dominant 
arm overhand 
throwing (beach 
tennis ball) 

6 blocks of 10 
trials 

24-hr (1 block of 
10 trials) 

Accuracy score 

Wulf et al. (2018) Comparative 
feedback 

Adults (Age: M = 
22.8 years, SD = 
3.87; 20 females) 

Enhanced expectancy and 
autonomy support: n = 15 

Enhanced expectancy and 
external focus: n = 15 

Autonomy support and 
external focus: n = 15 

Enhanced expectancy, 
autonomy support, and 
external focus: n = 15 

(Total: N = 60) 

Enhanced 
expectancy, 
autonomy support, 
and external focus 
vs Autonomy 
support and external 
focus (Control) 

Beach tennis-
ball throwing 

 

 

6 blocks of 10 
trials 

 

 

24h (1 block of 
10 trials) 

Accuracy scores 

 

 

Ziv, Lidor, et al. 
(2019) 

Perceived task 
difficulty 

Adults (Age: M = 
23.90 years, SD = 
2.7; 32 females) 

Large circle: n = 15 

Small-circle: n = 15 

Control: n = 15 

(Total: N = 45) 

Large circle vs 
Control (Control) 

Golf-putting  5 blocks of 10 
trials 

48-hr (1 block of 
12 trials) 

Radial error 
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Ziv, Ochayon, et al. 
(2019) 

Perceived task 
difficulty 

Adults (Age: M = 
NA, SD = NA; all 
males) 

Large-circle: n = 15 

Small-circle: n = 15 

Control: n = 15 

(Total: N = 45) 

Large-circle vs 
Control (Control) 

Golf-putting 5 blocks of 10 
trials 

48-hr (1 block of 
12 trials) 

Absolute error 

Zobe et al. (2019) Comparative 
feedback 

Adults (Age: M = 
22.5 years, SD = 
2.8; 20 females) 

Normative-Positive-
Group: n = 14 

Normative-Negative-
Group: n = 14 

Passive-Control-Group: n 
= 14 

(Total: N = 42) 

Normative-positive-
group vs 
Normative-
negative-group 8 
(Diminished 
expectancies) 

Elbow-
extension-
flexion sequence 
with three 
movement 
reversals at 70°, 
20°, and 70° 

5 sessions (15 
blocks total): 
session 1 was 
comprised of 3 
blocks of 38 trials 
and sessions 2-5 
were comprised 
of 3 blocks of 48 
trials per session 

48-72-hr (1 block 
of 6 trials) 

Absolute error 

Note. NA indicates information was not available. KR indicates knowledge of results. The retention test closest to 24-hr was used in the meta-analysis.  

 

 

 

 
8 The Passive-Control-Group did not go through the training session, hence our decision to compare the Normative-Positive- Group to the Normative-

Negative-Group. 
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Chapter 2: That Looks Easy! Evidence against the benefits of an easier criterion of 

success for enhancing motor learning 

Designing motor skill practice to optimize learning is critical to many domains 

including clinical practice, military training, and sports, thus, researchers aim to uncover 

conditions that maximize learning. The Optimizing Performance Through Intrinsic 

Motivation and Attention for Learning (OPTIMAL) theory of motor learning predicts that 

practice conditions that foster motivation facilitate motor learning (Wulf & Lewthwaite, 

2016). Motivation, which refers to factors implicated in the direction and intensity of one’s 

effort, can enhance motor learning by driving learners to engage in additional practice (Wulf 

et al., 2014) and, during a fixed amount of practice, by increasing dopamine release, thereby 

facilitating the consolidation of motor memories (Wise, 2004).  

Practice conditions that enhance learners’ expectations for successful outcomes are 

expected to be motivating. This is because successful outcomes are inherently rewarding, 

activating the dopaminergic reward system (Lutz et al, 2012) and humans are motivated to 

pursue rewards during motor skill practice (Moskowitz et al., 2020). Importantly, the mere 

expectation of dopaminergic medication release modulates the dopamine reward system 

(Schmidt et al., 2014), which is crucial for motivation (Wise, 2004). 

Expectations for successful outcomes can be enhanced by lowering the criterion for 

success. This can be done by instructing learners that practice trials landing within a large 

area surrounding a target are considered good. A larger zone of success is hypothesized to 

influence several factors associated with enhanced expectancies and motivation. It should 

increase learners’ self-efficacy, specifically their confidence they can achieve successful 

outcomes, while decreasing psychological pressure related to their perceived ability to 

perform well. Importantly, it indeed adds successful outcomes, further enhancing self-

efficacy and reducing psychological pressure. Increases in task-related self-efficacy can also 
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lead to greater task effort (Frömer et al., 2021) and a reduced internal focus on body 

movements (Wulf & Lewthwaite, 2016) and reductions in psychological pressure are 

associated with less conscious processing of movements (more automaticity) (Baumeister, 

1984; DeCaro et al., 2011; Masters & Maxwell, 2008). Greater effort leads to better 

performance due to an increased allocation of neural resources toward the task (Frömer et al., 

2021), and an external focus of attention and automaticity are too linked with superior 

performance (Wulf & Lewthwaite, 2016; Baumeister, 1984), likely due to more efficient 

muscle activation and correlated effector movement (Lohse et al., 2010; Lohse et al., 2014; 

Lohse & Sherwood, 2012). This higher performance results in rewarding outcomes, 

activating the dopaminergic reward system, and improving learning (Wulf & Lewthwaite, 

2016). Further, successful performance may preclude learners from testing hypotheses about 

how to correct performance errors, consequently limiting the accrual of declarative 

knowledge about the learned motor skill, making it less susceptible to deterioration under 

conditions such as pressure and secondary task demands (Masters & Maxwell, 2008). Finally, 

successful performance increases learners’ perceived competence, thereby promoting 

intrinsic motivation (Deci & Ryan, 2000).  

Several studies have tested the prediction that a larger zone of success enhances motor 

learning, with mixed results (Chiviacowsky & Harter, 2015; Chiviacowsky et al., 2012; 

Iwatsuki & Regis, 2021; Ong et al., 2015, 2019, Palmer et al., 2016; Trempe et al., 2012; Ziv 

et al., 2019, 2021; Ziv & Lidor, 2021). Although zone of success has been manipulated in 

different ways, for example with modulation of the temporal bandwidth for a coincident-

timing task (Chiviacowsky & Harter, 2015; Chiviacowsky et al., 2012) or the size of an area 

surrounding a target in a golf putting task (Palmer et al., 2016; Ziv et al., 2019, 2021), results 

do not seem to depend on these features. Rather, the learning benefit of practicing with a 

larger zone of success may be just a result of chance factors; associated with small number of 
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participants or uneven differences in allocation to groups, or perhaps another covarying 

factor, such as the absolute number of successful outcomes achieved by the group practicing 

with the smaller zone of success. For example, Palmer et al. (2016)’s small zone group 

averaged only ~4 successful outcomes over 50 practice trials and had significantly worse 

learning than the large zone group, which averaged 11 successful outcomes. Conversely, Ong 

et al. (2019)’s small zone group averaged ~10 successful outcomes over 90 practice trials and 

exhibited similar learning in comparison to the large zone group, which averaged ~40 

successful outcomes. Importantly, the large zone groups in both studies had increased success 

compared to the small zone groups, with Ong et al. reporting a greater increase (290.36%) 

relative to Palmer et al. (178.48%). These results, wherein a learning benefit for the large 

zone group versus the small zone group is conditioned on the absolute number of successful 

outcomes achieved by the latter, reflects a pattern in the literature as detailed in Table 1.  

If the number of successful trials for the small zone groups is a factor moderating 

target size effects, this result would be incompatible with the OPTIMAL theory prediction 

that enhanced expectancies facilitate motor learning (Wulf & Lewthwaite, 2016). Because the 

large zone groups consistently achieve successful outcomes more often than the small zone 

groups, as shown in the Table, this should enhance the former’s expectancies. A possible 

explanation for why small and large zone groups do not differ in terms of learning outcomes 

is that a minimum number of trials is sufficient for learners to associate the outcome with the 

precipitating action. Specifically, each time an action leads to a successful outcome, a 

positive reward-prediction error occurs, bringing about a dopaminergic reward signal that 

increases the value of the action (Lohse et al., 2019). Once this process occurs a minimum 

number of times, the value of the action may be consolidated through dopaminergic activity 

(Wise, 2004). Importantly, a large zone group should have diminishing returns from 

additional successful outcomes because they become more predictable, reducing the 
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magnitude of reward-prediction errors (Lohse et al., 2020). This reduction in reward 

prediction errors reduces the value added to the precipitating action and the dopamine 

released for consolidation. 

Table 1 

 Absolute Number of Successes per Group in Studies Manipulating Zone of Success 

Study 
Absolute Success 

Small Large 

Trempe et al. (2012) 0.72 15.8 

Chiviacowsky & Harter (2015) 1.9 17.3 

Ziv et al. (2019) 2.5 7.4 

Ziv & Lidor (2021) 1 3.5 23.10 

Palmer et al. (2016) 3.95 11 

Iwatsuki & Regis (2021) 6.67 43.47 

Ong et al. (2019) 10.17 39.7 

Ziv et al. (2021) 14.4 25.6 

Ong et al. (2015) 29 74 
Note. Studies marked in bold showed a significant difference (p<.05) between the small and 

large success zones on at least one learning test. 

 

 To test the hypothesis that benefits associated with practicing with a larger 

zone of success depends on the absolute number of successful outcomes achieved by the 

small zone group, we manipulated both target size (large or small zone) and number of trials 

 
1 Ziv & Lidor (2021) did not use a truly neutral condition during retention. Participants 

observed the change in target either from a large to a medium target or from a small to a 

medium target and were informed that the task would be harder or easier than the previous 

day. This procedure might have threatened the perception of competence of the large target 

group. 
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(50 or 100 trials). This manipulation meant that half the participants practicing with the small 

zone would achieve few successful outcomes (small zone/50-trial group) and the others 

would achieve more successful outcomes (small zone/100-trial group). A main effect of zone 

size, where the large zone groups exhibit superior learning compared to the small zone 

groups, would indicate enhanced expectancies may explain the zone-size effect, consistent 

with OPTIMAL theory (Wulf & Lewthwaite, 2016). An interaction, such that the zone-size 

effect is moderated by the number of trials (i.e., only seen for 50-trial groups), would indicate 

that the zone-size effect is limited to conditions where small-zone learners fail to achieve a 

minimum number of successful outcomes. 

Methods 

Sample Size Calculation 

We used G*Power 3.1.9.4 (Faul et al., 2009) to calculate the sample size required to 

detect main effects and interactions in an ANCOVA. We set α = .05 2, power = .80, 

numerator df = 1; number of groups = 4 (small zone/50-trial, small zone/100-trial, large 

zone/50-trial, and large zone/100-trial); and covariates = 1 (pretest). To set the effect size, we 

computed the difference between the average zone-size effect in studies wherein the small 

zone group had few absolute successes (<10; Iwatsuki & Regis, 2021; Palmer et al., 2016; 

Ziv et al., 2019) and relatively many absolute successes (≥10; Ong et al., 2015, 2019; Ziv et 

al., 2021), reflecting the hypothesis that the zone-size effect is moderated by the small zone 

group’s absolute number of successes. This effect size computation yielded f = .226, and 

details of the computation can be found in the study’s pre-registration form 

(https://osf.io/9djrx/?view_only=0429bae1daaf4d53b77ca66a89f71a47, Pre-Registration). 

 
2 The alpha level should have been set to .0294 for the sample size calculation to be consistent with 

the alpha level that would have been used at the final analysis. 
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The power calculation yielded a sample size of 156, n = 39/group, which was rounded up to 

160, n = 40/group, to account for missing data. A sequential analysis with an interim analysis 

at N = 80 (n = 20/group) was conducted using the Pocock boundary (interim and final α ≤ 

.0294). The interim analysis was exclusively conducted on the main outcome measure and 

only involved the assessment of learning (see details below). Data collection would terminate 

at the interim analysis under any of the following conditions: (1) Zone Size x Number of 

Trials interaction is significant; (2) zone size main effect is significant AND Zone Size x 

Number of Trials interaction is f < .10; (3) Zone Size x Number of Trials interaction is f < .10 

AND zone size main effect is f < .10. The interim analysis revealed no statistically significant 

main effect of zone size nor a Zone Size x Number of Trials interaction (see Posttest section). 

Taking a conservative approach, we compared the Zone Size x Trial Number x Posttest 

interaction effect size against our stopping criteria, since this effect size was larger (f = .095) 

than the main effect of zone size and the Zone Size x Trial Number interaction effect size. 

Since this effect size still met our pre-established criteria to stop collecting data (i.e., f < .10), 

we stopped data collection. 

Participants 

Due to meeting our early stopping criterion, the final sample was composed of 80 

participants (M age = 21.52 years, SD = 2.70, 33 males). Participants were healthy 

undergraduate and graduate students with the preference to throw with their right hand, 

between the ages of 19 and 40 years, novices to the task, and persons who reported not being 

allergic to conductive gel, colorblind, at high-risk for serious complications from Covid-19 

infection, or having physical impairments precluding comfortable left-arm movements from a 

seated position. The study was approved by the University Institutional Review Board 

(Protocol #19-046 EP 1902) and was conducted in agreement with the 1964 Declaration of 



 

53 
 

Helsinki. Written informed consent was provided by all participants prior to the beginning of 

the experiment. 

Task 

Participants performed a mini-shuffleboard learning task using 10 mini-shuffleboard 

pucks, 1 at a time (as shown in Figure 1). The pucks consisted of a 1.5 cm diameter red 

plastic ring encompassing a metal sphere. Participants slid the pucks lengthwise on a 

rectangular table (213 cm long x 76 cm wide) covered in low-friction adhesive paper with 

auto-adhesive foam tape (1 cm x 1 cm x 1 cm) lining the side and back edges to prevent the 

pucks from falling off the table. The start line was drawn with a red marker 13 cm from the 

edge of the table and followed 10 cm later by the release line, drawn in blue. A 27 cm x 27 

cm grid divided in 81 squares of 3 cm x 3 cm was drawn in blue with its center 95 cm past 

the release line. The grid was connected to the edges of the table by two parallel horizontal 

lines and two parallel vertical lines that were extensions of the outer lines of the grid. 

Participants remained seated throughout the whole experiment in a chair positioned so that 

their left wrist could comfortably reach the release line. A laptop table supporting a computer 

screen and an occlusion board was positioned after the release line, restricting the 

participant’s vision to about 25 cm of the puck’s trajectory after release. The number pad of a 

keyboard rested on the left side of the shuffleboard table and was used by the participants to 

initiate the trial and receive feedback (see Procedures below). To perform the task, 

participants were asked to grip the sides of the puck with their left index finger and thumb 

and slide the puck under the occlusion board by extending their left arm in a straight line 

(complete instructions given to participants can be found at 

https://osf.io/9djrx/?view_only=0429bae1daaf4d53b77ca66a89f71a47, Instructions). Before 

each shot, participants prepared the puck by positioning it on the start line and were 

instructed to release it once it reached the release line. 
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Figure 1 

Illustration of Experimental Set-Up 

 

 

Procedures 

Pretest 

Before pretest, participants read and signed the informed consent and completed the 

Edinburgh Handedness Inventory (Oldfield, 1971). In the pretest, participants were instructed 

to position the puck when prompted by the word “Ready” from the computer monitor (Figure 

2). They then pressed the “enter” key on the keyboard with their left hand, which triggered 

the appearance of a representation of the grid and target on the screen. The image disappeared 

from the screen after 3000 ms, at which point participants were allowed to shoot the puck. In 

the pretest, participants were informed that the goal was to make the puck stop as close to the 

target as possible. The target was a red dot in the center of the grid. Before the first trial, the 

occlusion board was removed for approximately 5 s, allowing participants to observe the grid 

and the target. Next, two non-recorded trials without post-shot augmented feedback were 

performed, so the participants could get familiar with the procedures and movement. 
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Participants then completed the pretest self-efficacy questionnaire, marking their confidence, 

on a scale from 0 to 100, in making the puck stop on the red target (Bandura, 2006). Finally, 

participants performed 10 trials with no augmented feedback. (All questionnaires can be 

found at https://osf.io/9djrx/?view_only=0429bae1daaf4d53b77ca66a89f71a47, 

Questionnaires.)  

Figure 2 

Trial Initiation  

 

Note. This figure depicts the moments before participant was allowed to start a new puck 

shot. Once the “Ready…” image was shown on the screen by the experimenter, the 

participant was able to press “enter” on the keyboard positioned to their left and returned 

their hand to the puck. A representation of the grid with the target (represented as a blue dot) 

in the middle (during pretest and retention test) or beyond (during transfer test), or the 

participant’s assigned target zone (large or small during acquisition) then appeared on the 
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screen for 3000 ms. The participant was allowed to start the movement any time after the 

image disappeared from the screen.  

 

Acquisition 

Each participant was assigned to one of the four groups (large zone/50-trial, large 

zone/100-trial, small zone/50-trial, small zone/100-trial, 20 participants per group) and one of 

two posttest orders (retention-transfer/transfer-retention) based on a pre-determined list. 

Participants were randomly assigned to the eight group x order combinations, stratified by 

gender. Participants in the 50-trial groups practiced five blocks of ten trials and this was 10 

blocks of 10 trials for the 100-trial groups. Participants were informed there was a target zone 

they were trying to achieve, such that trials where the puck stopped inside this zone would be 

considered “good”. For participants in the small zone groups, the zone was a 9 cm x 9 cm 

square centered on the target in the middle of the grid, while for participants in the large zone 

groups, the zone was a 27 cm x 27 cm square centered on the target. Zone sizes and number 

of trials were defined after two pilot studies described in the supplementary material at the 

OSF repository (https://osf.io/9djrx/?view_only=0429bae1daaf4d53b77ca66a89f71a47, 

Supplementary Material). Before the first trial of acquisition, participants were shown the 

zone surrounding the target overlayed on the grid. Specifically, a green cardboard square the 

size of the participant’s assigned zone was positioned on the grid, and the occlusion board 

was removed for approximately 5 s. Participants then completed the acquisition self-efficacy 

questionnaire, marking their confidence, on a scale from 0 to 100, in making the puck stop in 

the zone. The experimenter pointed out the difference between the pretest self-efficacy 

questionnaire, which referred to the target, and the acquisition self-efficacy questionnaire, 

which referred to the zone. During acquisition, participants performed the task just like they 

did on the pretest, with a couple of exceptions. First, the image they saw on the computer 
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screen before shooting was a square outlined in black representing the zone, instead of the 

image of the grid and target (Figure 2). Second, augmented feedback was provided after 

every trial. To receive feedback, participants pressed “Enter” on the keyboard when prompted 

by the word “Ready” on the computer screen. Then, the representation of the zone appeared 

on the computer screen for 2000 ms (Figure 3). Next, the square in the grid where the puck 

stopped was highlighted in green or red for 1000 ms, depending on whether the puck landed 

within the zone (a good shot) or not (a bad shot), respectively. That is, participants in both 

groups were shown the square in the grid where the puck landed on every trial, unless it 

landed outside the grid. In this case, a rectangle was highlighted in red to indicate the shot 

was far-left, far-center, far-right, left, right, short-left, short-center, or short-right (see an 

example in Figure 3 column B). Subsequently, participants saw a green checkmark for 1000 

ms and heard a “correct” sound (sound length ≈300 ms), or a red “X” for 1000 ms with an 

“invalid” sound (sound length ≈450 ms), depending on whether the trial was good or not (all 

stimuli, including sound files can found at 

https://osf.io/9djrx/?view_only=0429bae1daaf4d53b77ca66a89f71a47, Stimuli). Participants 

had a 1-min break between blocks.  

Figure 3 

Feedback Presentation 
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Note. This figure depicts the moments after participants pressed enter on the keyboard to 

receive feedback. First, an image depicting their assigned target zone was presented for 2000 

ms, and then the square where the puck stopped was highlighted in green or red for 1000 ms. 

Column A represents the same outcome being considered positive for the large zone groups 

but negative for the small zone groups, while column B represents a negative outcome for all 

groups and column C depicts an outcome considered positive for all groups. Lastly, 

participants were presented with a red cross (1000 ms) and an invalid sound (≈450 ms) if the 

trial was considered negative, or a green checkmark (1000 ms) and correct sound (≈ 300 ms) 

if the trial was considered successful.  

 

Post-Acquisition Questionnaires 

After the last block, participants completed several questionnaires. They completed a 

task adapted version of the Conscious Motor Processing subscale of the Movement Specific 

Reinvestment Scale (Vine et al., 2013). There were six questions asking participants to 

indicate how often they had certain thoughts while shooting (e.g., “I reflected about my 

technique”). The scale had five points and was anchored by “1-Never” and “5-Always” with 
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“3-Sometimes” in the middle. A focus of attention questionnaire asked participants to best 

describe where they were focusing their attention while shooting the puck: arm, hand, fingers, 

puck, the path they wanted the puck to take, or the target. Participants could choose up to 3 

answers. Participants completed the Interest/Enjoyment (intrinsic motivation); 

Effort/Importance; Perceived Competence; and Pressure/Tension subscales of the Intrinsic 

Motivation Inventory (IMI; McAuley et al., 1989). Each subscale had five to seven 

statements about participants’ experience with the task and asked them to indicate how true 

the statements were on a seven-point scale anchored by 1 = “Not True at All” and 7 = “Very 

True” (with 4 = “Somewhat True” in the middle). The Interest/Enjoyment subscale included 

statements such as “I enjoyed doing this task very much”; the Effort/Importance subscale 

included statements such as “I put a lot of effort into this activity”; the Perceived Competence 

subscale included statements such as “I think I am pretty good at this activity”; and the 

Pressure/Tension subscale included statements such as “I felt pressured while doing this 

activity”. Finally, participants indicated their agreement with six statements about their 

objectives while performing the task and how they assessed their performance (e.g., “During 

the task, I was aiming to make the puck stop anywhere inside the target zone”; “During the 

task, I thought my performance was good when the puck stopped anywhere inside the target 

zone”). The order of the questions was randomized across participants. Participants 

responded with a five-point scale anchored by 1 = “Not at All” and 5 = “Completely”. This 

questionnaire was implemented for potential exploratory analyses.  

Posttests 

Approximately 24-hr after acquisition, participants returned to the lab to perform 

retention and transfer tests. The retention test was performed exactly like the pretest, except 

that the red dot representing the target was moved 13.5 cm farther away from the participant 

during transfer test. The order of the tests was counterbalanced across participants. The grids 
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and the respective targets were shown to the participants for approximately 5 s before each 

test. Before retention, after seeing the target, participants completed the retention test self-

efficacy questionnaire, which was the same as the one used before the pretest. After the 

posttests, participants completed a free recall questionnaire, which asked them to report, in as 

much detail as possible, any rules, methods, or techniques they recalled using to shoot the 

pucks on the second day. This questionnaire assessed declarative knowledge about the skill. 

Data Processing and Statistical Analysis 

Our main outcome measure of performance and learning was radial error (RE), 

representing accuracy (Hancock et al., 1995). As a secondary measure, we used bivariate 

variable error (BVE), given by the square root of the 10 shots’ mean squared distance from 

the centroid (Hancock et al., 1995), to assess precision. To extract the x and y coordinates of 

the puck’s stopping position on the table, an iPad was fixated to the ceiling above the table, 

and photographs were taken after each trial with a wireless clicker. These photographs were 

then analyzed with LabView® software using the virtual instrument ScorePutting (Neumann 

& Thomas, 2008) to determine the distance between the center of the puck and the target 

along the x- and y-axis and use these distances to calculate RE and BVE. RE and BVE were 

then averaged across trials for each participant on the tests (1 block of 10 trials for each test) 

and acquisition phase (5 or 10 blocks of 10 trials, depending on the participant’s group). To 

assess learning, a 2 (Zone Size: small/large) x 2 (Trial Number: 50/100) x 2 (Posttest: 

retention/transfer) ANCOVA with repeated measures on the last factor was conducted, with 

pretest RE or BVE serving as the covariate, depending on the outcome measure. To assess 

acquisition performance for the 50-trial groups, acquisition phase RE and BVE were 

analyzed with 2 (Zone Size) x 5 (Blocks) ANCOVAs with repeated measures on the last 

factor, with pretest RE or BVE serving as the covariate. A similar analysis was conducted for 

the 100-trial groups, but with 10 (Blocks). A one-tailed paired samples t-test was used to 
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evaluate whether there was change between pretest RE and retention RE, regardless of group, 

to assess whether participants learned the task.  

For the questionnaires, we averaged across single items in the Conscious Motor 

Processing subscale and IMI subscales as well as calculated their reliability with Cronbach’s 

alpha (described in detail in the supplementary material). These subscales were submitted to 

2 (Zone Size) x 2 (Trial Number) ANOVAs. Results of the self-efficacy scale given before 

pretest, acquisition, and retention test were analyzed with a 2 (Zone Size) x 2 (Trial Number) 

x 2 (Time: acquisition/posttest) ANCOVA with repeated measures on the last factor and 

pretest serving as the covariate. Results of the focus of attention questionnaire and the 

questionnaire about participants’ objectives while performing the task and how they assessed 

their performance were averaged by group and reported descriptively. Two indices of 

declarative knowledge use were extracted from participants’ responses on the free recall test. 

The first index, ‘all concepts,’ refers to the number of statements about a concept (rule) (e.g., 

“I would start with the puck as centered as possible in the exact position as the puck before 

it.”), ignoring statements irrelevant to technical performance (e.g., “Elbow sits comfortable 

before each shot”). The second index, ‘hypothesis testing’, refers to statements indicating the 

participant tested hypotheses related to their putting movement (e.g., “I tried to not extend my 

wrist flick as hard, so the puck had a better chance of gliding into the center.”). That is, 

hypothesis testing statements are those that indicate the participant made a prediction about 

the relationship between their putting movement and outcome (Maxwell et al., 2001). We 

ignored retrospective statements (e.g., "I used fingers of my left hand to push") that may not 

have been used or thought about while shooting, and/or that were included in the task 

instructions. We planned to analyze results from the Free Recall questionnaire using a 2 

(Zone Size) x 2 (Trial Number) MANOVA, with the two indices serving as dependent 

variables. However, given that the “all concepts” and “hypothesis testing” indices of 
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declarative knowledge did not meet the assumptions of multivariate normality (Mardia’s 

skeweness = 45.14, p < .001; Mardia’s Kurtosis = 2.67, p = .001) and homogeneity of 

variance-covariance matrices (M(9) = 17.17, p = .046) required to run a MANOVA, we ran 

two separate 2 (Zone Size) x 2 (Trial Number) ANOVAs. 

Considering that motivation is the main mechanism through which the OPTIMAL 

theory predicts criterion of success to affect performance and learning, we conducted an 

exploratory mixed-effects regression model with RE at the posttests and last block of 

acquisition as the dependent variables, to further investigate the influence of intrinsic 

motivation on learning tests and acquisition performance at the individual level. For the 

model, pretest RE, condition (zone size, trial number, and their interaction), time (last block 

of acquisition/retention/transfer), the interaction between condition and time, intrinsic 

motivation (IMI Interest/Enjoyment subscale score), and the interaction between intrinsic 

motivation and time were entered as fixed-factors, while participant served as a random-

effect. For this model, all continuous variables were mean-centered, and all categorical 

variables were contrast-coded.  

For all inferential analyses, alpha was set to .05, and Tukey HSD was used for post-

hoc tests when necessary. The Greenhouse-Geisser correction was applied when sphericity 

was violated, and we evaluated whether all other assumptions of statistical tests were met. All 

statistical analysis were conducted in R (cran.r-project.org) and can be found at the OSF 

repository (https://osf.io/9djrx/?view_only=0429bae1daaf4d53b77ca66a89f71a47, R 

Project). 
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Results 

Success Rate 

As shown in Table 2, our manipulation was successful in producing more successful 

trials for the large zone and 100-trial groups, as compared to the small zone and 50-trial 

groups, respectively. 

Table 2 

Average Number of Successful Trials Achieved by Each Group During the Acquisition Phase. 

Group Successful Trials % Successful Trials 
Large Zone/50-Trial 22.75 (SD = 7.03) 45.5 (SD = 14.06) 
Large Zone/100-Trial 47.05 (SD = 11.28) 47.05 (SD = 11.28) 
Small Zone/50-Trial 4.57 (SD = 2.61) 9.14 (SD = 5.22) 
Small Zone/100-Trial 10.00 (SD = 3.09) 10 (SD = 3.09) 

 

Posttests 

Radial Error  

To assess whether participants learned the task, we ran a one-tailed paired samples t-

test to assess the difference in performance between pretest RE and retention RE, regardless 

of training condition. Participants performed with less error on the retention test (M = 19.88 

cm, SD = 5.95) compared to the pretest (M = 29.15 cm, SD = 7.33, t(79) = 9.85, p < .001, 

Hedges’ g = 1.37, 95% CI [0.99, 1.75]), suggesting learning (Figure 4A).  

Figure 4 

Shuffleboard Task Accuracy (A) and Precision (B) as a Function of Study and Group 
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Note. Each large data point represents the group average, while smaller points represent 

individual data. Error bars represent 95% CIs. Lower values on the y-axis indicate greater 

accuracy or precision. Pre = pretest; Ret = retention test; Tran = transfer test. 

 

For the primary confirmatory analysis of interest, the mixed-factor ANCOVA 

assessing the effect of training conditions on posttest RE did not reveal main effects of zone 

size (F(1, 75) = 0.08, p = .782, η2
p < .01), trial number (F(1, 75) = 0.37, p = .544, η2

p = .01) 

or posttest type (F(1, 75) = 0.29, p = .593, η2
p < .01). Also, no Zone Size x Trial Number 
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(F(1, 75) = 0.16, p = .694, η2
p < .01), Zone Size x Posttest (F(1,75) < 0.01, p = .970, η2

p < 

.01), Trial Number x Posttest (F(1,75) = 0.08, p = .772, η2
p < .01), or Zone Size x Trial 

Number x Posttest interactions (F(1, 75) = 0.68, p = .411, η2
p = .01) were detected. 

Equivalence Test 

After completing the study, it came to our attention that manually specifying the 

effect size at which to stop data collection for futility, risks a type 2 error (Lakens et al., 

2021). To address this risk, we conducted an equivalence test for ANOVA. Specifically, we 

used the TOSTER package in R (Lakens et al., 2018) to compare the largest observed 

between-subjects effect size of interest (zone size or Zone x Trial Number) 3 against η2
p = 

.048594 (f = .226), which is the expected effect size used in our sample size calculation that 

yielded a sample size approximately as large as we were willing to collect. Based on this 

equivalence test, we rejected the presence of effects more extreme than η2
p = .049 (p =.047). 

Bivariate Variable Error  

The mixed-factor ANCOVA assessing the effect of training conditions on posttest 

BVE did not reveal a main effect of zone size (p = .339, η2
p = .01), trial number (p = .859, η2

p 

< .01) or posttest type (p = .136, η2
p = .03). Also, no Zone Size x Trial Number (p = .691, η2

p 

< .01), Zone Size x Posttest (p = .961, η2
p < .01), Trial Number x Posttest (p = .455, η2

p = 

.01), or Zone Size x Trial Number x Posttest interactions (p = .464, η2
p = .01) were found 

(Figure 4B). 

Acquisition Phase 

Radial Error  

 
3 Caldwell (2022, https://aaroncaldwell.us/TOSTERpkg) explains that TOSTER’s equivalence test for 

F-tests can be extended from one-way ANOVA to factorial ANOVA, but we believe this is limited 

to between-subjects factors. 
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For the 100-trial groups, the mixed-factor ANCOVA assessing the effect of zone size 

on accuracy in the acquisition blocks did not reveal a main effect of zone size (p = .524, η2
p = 

.01), block (p = .209, η2
p = .04), or Zone Size x Block interaction (p = .765, η2

p = .02). 

Similarly, for the 50-trials groups, no main effect of zone size (p = .803, η2
p < .01), block (p = 

.784, η2
p = .01), or Zone Size x Block interaction (p = .410, η2

p = .03) were found (Figure 

4A). Our ability to detect block effect in these analyses was likely constrained by including a 

covariate of pretest radial error, which explained a substantial amount of variance in radial 

error during practice (p < .138, η2
p ≥ .06), reducing the amount of variance that could be 

explained by block. 

Bivariate Variable Error 

For the 100-trials groups, the mixed-factor ANCOVA assessing the effect of zone size 

on precision in the acquisition blocks revealed no main effect of zone size (p = .307, η2
p 

=.03), block (p = .195, η2
p = .04) or Zone Size x Block interaction (p = .743, η2

p = .02). 

Similarly, for the 50-trials groups, no main effects of zone size (p = .239, η2
p = .04), block (p 

= .599, η2
p = .02), or Zone Size x Block interaction (p = .210, η2

p = .04) were found (Figure 

4B). 

Questionnaires 

Self-Efficacy 

The mixed-factor ANCOVA assessing the effect of training conditions and time on 

participants’ self-efficacy revealed a significant zone size effect, F(1, 75) = 33.94, p < .001, 

η2
p = .31 as illustrated in Figure 5. As predicted, participants practicing with the large zone 

reported increased self-efficacy than those practicing with the small zone. Increased self-

efficacy was also reported before acquisition, as compared to before retention, F(1, 75) = 

8.05, p = .006, η2
p = .10. There was no significant effect of trial number (p = .690, η2

p < .01), 

nor interactions (p’s > .189, η2
p’s < .02). 
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Figure 5 

Self-Efficacy as a Function of Phase and Group 

 

Note. Each large data point represents the group average, while smaller points represent 

individual data. Error bars represent 95% CIs. Higher scores indicate greater self-efficacy. 

Pre = pretest.  

 

Intrinsic Motivation Inventory 

For the Perceived Competence subscale (Figure 6A), participants who practiced with 

the large zone perceived themselves as more competent in the task than participants with the 

small zone F(1, 76) = 28.56, p < .001, η2
p = .27. There was, however, no effect of trial 

number (p = .379, η2
p = .01) or Zone Size x Trial Number interaction (p = .647, η2

p < .01). 

For the Interest/Enjoyment subscale (Figure 6B), there was no main effect of zone 

size (p = .063, η2
p = .04) or trial number (p = .326, η2

p = .01), but there was a significant 

interaction, F(1, 76) = 6.65, p = .012, η2
p = .08. Follow-up Tukey HSD tests indicated that 

participants with the large zone reported higher levels of intrinsic motivation than those with 
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the small zone, when a total of 100 acquisition trials were practiced (p = .012), but not with a 

total of 50 trials (p = .962). No other significant pairwise differences were found (p’s > .064). 

Regarding the Effort/Importance subscale (Figure 6C), there were no group 

differences as a function of zone size (p = .833, η2
p < .01) or trial number (p = .294, η2

p = 

.01), but there was a significant interaction, F(1, 76) = 5.23, p = .025, η2
p = .06. Tukey HSD 

post hoc test was not sensitive (p’s > .093) to differences between groups. 

For the Pressure/Tension subscale (Figure 6D), there were no significant main effects 

of zone size (p = .281, η2
p = .02), trial number (p = .668, η2

p < .01), nor an interaction (p = 

.571, η2
p < .01). 

Figure 6 

Intrinsic Motivation Inventory Subscale Scores as a Function of Group 

 

Note. Perceived competence (A), Interest/Enjoyment (B), Effort/Importance (C), and 

Pressure/Tension (D). Each large data point represents the group average, while smaller 

points represent individual data. Error bars represent 95% CIs. * indicates significant 

differences. 
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Conscious Motor Processing Subscale of the Movement Specific Reinvestment Scale 

The reliability was poor for this scale, thus raising issues about the validity of the 

data. There were no zone size (p = .898, η2
p < .01) nor trial number (p = .971, η2

p < .01) main 

effects, but there was an interaction, F(1, 73) = 9.91, p = .002, η2
p = .12. However, no 

pairwise comparisons were statistically significant following Tukey’s HSD test (p’s > .100). 

Free Recall  

The two-way ANOVA assessing the effect of training conditions on the “hypothesis 

testing” index of the declarative knowledge revealed a significant effect of zone size (F(1, 

76) = 4.85, p = .031, η2
p = .06), such that participants in the large zone group engaged in 

more hypothesis testing than participants with the small zone. No significant effect of trial 

number (p = .127, η2
p = .03) or Zone Size x Trial Number interaction (p = .274, η2

p = .01) 

was found. Regarding the second index, “all concepts” (Figure 7B), no main effect of zone 

size (p = .800, η2
p < .01), trial number (p = .078, η2

p = .04), or Zone Size x Trial Number 

interaction (p = .554, η2
p < .01) were found. 

Focus of Attention and Participant’s Objectives Questionnaires 

Descriptively, participants in the small-zone groups seem to distribute their attention 

more than participants in the large-zone groups, but no clear preference regarding the 

direction of their attentional focus was detected across groups. Lastly, participants accepted 

their assigned zone of success. 4 Given the lack of relevant group differences found, the 

 
4 Based on the suggestion of an anonymous reviewer, we conducted a sensitivity analysis to determine 

whether the degree to which participants reported their objective was to make the puck stop in the 

center of the target explained learning or moderated the effect of zone size or trial number on 

learning. Specifically, we added participants’ response to the item stating, “During the task, I was 
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detailed descriptive analysis of these questionnaires can be found in the supplementary 

material. 

Motivation x Performance – Exploratory Analysis 

Intrinsic motivation at the end of the acquisition phase did not predict practice or 

posttest performance. This conclusion was based on the absence of a significant main effect 

of intrinsic motivation (β = 0.19, SE = 0.50, t = 0.39, p = .699) and an Intrinsic Motivation x 

Time interaction (β = 0.079, SE = 0.40, t = 0.20, p = .84), after controlling for pretest RE, 

zone size, trial number, time, and Zone Size x Trial Number x Time interaction.  

Discussion 

OPTIMAL theory predicts that providing a learner with an easier criterion of success 

during practice should enhance learning (Wulf & Lewthwaite, 2016). Although some studies 

show benefits of practicing with a large zone of success (Iwatsuki & Regis, 2021; Palmer et 

al., 2016; Ziv et al., 2019), other studies, in which the group with the small zone achieved a 

 
aiming to make the puck stop in the center of the target zone” as an independent variable in the 

primary confirmatory analysis of interest (the ANCOVA that had radial error as the dependent 

variable, pretest radial error as the covariate, and zone size, trial number, and posttest type as 

independent variables). We did not find evidence that the degree to which participants reported 

their objective was to make the puck stop in the center of the target had a significant main effect (p 

= .169) or significantly moderated the effects of the other independent variables (ps ≥ .239). (We 

considered creating an independent variable based on the average of the item we used and two 

other items: “If the puck was off-center, I felt like I made a mistake even if I was in the target 

zone” and “The farther I was from the center, the more I tried to improve on the next trial”, but 

reliability among the items was not good (Cronbach’s α =  .61). Thus, we proceeded with the item 

we believed to be most consistent with the reviewer’s suggestion to assess the effect of task 

strategy.) 
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relatively large number of successes, have failed to find an effect (Ong et al., 2015, 2019; Ziv 

et al., 2021; Ziv & Lidor, 2021). This pattern in the literature could indicate that the number 

of successes achieved by the small zone group moderates the zone size effect on learning, 

which is incompatible with the predictions of the OPTIMAL theory. Thus, to investigate this 

possibility, we manipulated quantity of practice to affect the absolute number of successes 

achieved by learners practicing with different criteria of success. 

As expected, the large zone groups achieved more successful trials than the small 

zone groups during practice, despite showing the same overall accuracy and precision. 

Contrary to the predictions of OPTIMAL theory, we did not find evidence that practicing 

with a large zone of success facilitated learning. An equivalence test revealed that, even if the 

zone size effect existed, it would be considered small (f < .226, i.e., less than 2.62 cm 5). 

Importantly, we were unable to find benefits of the large zone even when the number of 

successes achieved by learners with the small zone was substantially restricted (average of 

4.57 good trials) and similar to experiments wherein the criterion of success effect was found 

(Chiviacowsky & Harter, 2015; Chiviacowsy et al., 2012, Iwatsuki & Regis, 2021; Palmer et 

al., 2016; Trempe et al., 2012; Ziv et al., 2019). These results add to the previous literature 

questioning the benefits of practicing with an easier criterion of success (Ong et al., 2015, 

2019; Ziv & Lidor, 2021; Ziv et al., 2021), and are supported by a recent meta-analysis on the 

effects of enhanced expectancies on learning. This meta-analysis showed that manipulations 

of perceived task difficulty, which include manipulations of criteria of success, have at best a 

small effect on learning (Hedges’ g = 0.46, Bacelar, Parma, Murrah, et al., 2022). 

 
5 To get to this estimation, we converted f = 0.226 to d = 0.452, and then multiplied 0.452 by the 

standard deviation of the average post-test performance across participants. The average post-test 

performance across participants was calculated by averaging retention and transfer performance 

for each participant and then taking the average of this value across participants. 
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Importantly, this effect was deemed overestimated by the authors due to evidence of 

reporting bias in the literature, consistent with our finding that the zone size effect is small, if 

existent. 

The zone size effect was not present, despite the success of our manipulation in 

increasing self-efficacy and perceptions of competence, which were also enhanced in 

previous studies on criterion of success (Chiviacowsky et al., 2012; Chiviacowsky & Harter, 

2015; Iwatsuki & Regis, 2021; Ong et al., 2015, 2019; Trempe et al., 2012; Ziv & Lidor, 

2021). According to OPTIMAL theory, increased self-efficacy and perceptions of 

competence should result in increased intrinsic motivation (Wulf & Lewthwaite, 2016). 

Indeed, the learners who performed 100 practice trials with the easier criterion of success 

were found to have higher levels of intrinsic motivation than those practicing with the 

difficult criterion. This result adds to mixed evidence regarding the effects of an easier 

criterion of success on intrinsic motivation (Chiviacowsky et al., 2012; Ong et al., 2019). 

Despite the proposed role of motivation in mediating the effect of a lower criterion of 

success on performance and learning, increasing motivation did not result in better 

performance or learning. Similarly, we also did not find evidence that, at the individual level, 

motivation predicted learning or acquisition performance. To the best of our knowledge, ours 

is the only study to assess the effects of motivation on performance and learning at the 

individual level in criterion of success paradigm. There are other studies, with different 

manipulations related to OPTIMAL theory, where motivation has been assessed and here the 

results are also quite mixed. Specifically, intrinsic motivation was positively associated with 

performance at the end of practice in Bacelar et al. (2020) and Grand et al. (2017), but most 

studies have failed to show a relationship between motivation and learning as assessed in 

delayed posttest (Bacelar et al., 2020; Grand et al., 2017; Leiker et al., 2016; and Leiker et al., 

2019), with the exception of Bacelar, Parma, Cabral et al. (2022), which is, notably, the study 
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with the highest sample size (N = 200). These results suggest that the relationship between 

intrinsic motivation and learning may be much smaller than that between intrinsic motivation 

and performance, thus requiring larger sample sizes to detect. 

Besides motivation, self-efficacy, and perceived competence, other psychological 

factors have been hypothesized to underlie learning effects in zone size studies, but we did 

not find evidence supporting these predictions. For instance, a large zone was not linked to 

increased effort or decreased tension during practice. Regarding focus of attention, although 

our data suggest the groups with the easier criterion distributed their attention to fewer 

factors, we did not find any clear pattern distinguishing the direction (external vs. internal) of 

the attentional focus among the different groups. The accrual of declarative knowledge or use 

of conscious processing were not significantly increased for the small zone group. In fact, 

participants with the large zone were shown to engage in activities of hypothesis testing to a 

greater extent than those with the small zone, indicating that they accrued more declarative 

knowledge. This result could be due to the large zone groups having approximately equal 

numbers of unsuccessful as successful trials, which afforded them the opportunity to compare 

movements strategies that precipitated both types of trial outcomes and hypothesize about the 

relationship between strategies and outcomes. Although mechanistic assumptions regarding 

effort, pressure, focus of attention, conscious processing, and declarative knowledge are often 

drawn in zone size studies and by proponents of OPTIMAL theory, this is one of the first 

studies to measure these variables (see Ong et al. 2015, 2019, who also used free recall 

questionnaires to assess explicit knowledge, showing no differences between groups). 

This study has strengths and a limitation worth noting. Although this study was pre-

registered and had the largest sample size among those investigating the effect of criterion of 

success on motor learning, a post-hoc sensitivity analysis revealed that we only had 80% 
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power to detect effect sizes of f  > .343 (Faul et al., 2009) 6. However, this limitation is 

mitigated by the result of the equivalence test, that showed that, even if the zone size effect is 

real, it is likely smaller than f = .226 (η2
p = .049).  

Conclusion 

Based on the current methods and data, we question the learning benefits of easing 

success criteria. We present evidence showing that the zone size effect is small, if existent. 

Although easing criteria of success resulted in increased self-efficacy, perceptions of 

competence, and, for participants with more practice trials, intrinsic motivation, the 

manipulation of these key psychological variables did not entail increased motor learning or 

performance. Moreover, at the individual level, intrinsic motivation did not explain motor 

learning or performance. Therefore, our results challenge key tenets of OPTIMAL theory and 

prevent us from broadly recommending easing criteria of success during practice, given that 

other theories hypothesize that ‘optimal’ learning may be associated with making errors 

(Lohse et al., 2019) and only modest success during practice (Guadagnoli & Lee, 2004; 

Hodges & Lohse, 2022).  

These data show that any direct effect of relaxing the criteria for success on long term 

learning is trivially small.  As such, these manipulations have little utility for practitioners 

looking to improve learning. The manipulation did, however, increase motivation which 

might be valuable tool for practitioners in and of itself. That is, if one learner is struggling 

with motivation, relaxing the criteria for success will not improve learning, but may increase 

their motivation, allowing them to persist in practice longer. These trivial effect sizes also 

have theoretical implications for researchers. Perceived competence, motivation, and learning 

 
6 For the sensitivity analysis, we used G*Power 3.1.9.4. We set the statistical test to ANCOVA, 

selected the option “sensitivity analysis”, and inputted α = .0294, power = .80, N = 80, numerator 

df = 1, number of groups = 4, and number of covariates = 1. 
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do not appear to be as tightly coupled as originally hypothesized in OPTIMAL theory. This is 

not to say that motivation or competence are unimportant for learning, but the moderating 

effect of motivation appears to be more complicated than we first thought and not easily 

manipulated. 
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Chapter 3: It’s Subjective! Effects of Perceptions of Success on Neural Correlates of 

Feedback Processing and Movement Preparation 

Motor performance is crucial for daily-life activities, labor skills, as well as sports, 

and many factors influence how one executes and adapts their movement to achieve task 

goals. One of the most important factors is how feedback is processed in the brain because it 

has been shown to have a bidirectional relationship with performance. For example, Lohse et 

al. (2020) showed that feedback about a performance outcome affects brain activity, which, 

in turn, can predict the learner’s likelihood of maintaining or changing their subsequent 

behavior. Similarly, prior motor performance influences the brain activity in preparation for 

the subsequent motor performance (motor-preparatory brain activity) (Cooke et al., 2015), 

and motor performance accuracy is affected by the motor-preparatory brain activity that 

precedes it (Dyke et al., 2014). Given the interrelationship between performance and 

feedback-related as well as motor-preparatory brain activity, it is important to understand 

how motor skill practice conditions affect these neural processes. 

Manipulating practice conditions, instructions, or feedback delivery to provide 

learners with an increased perception of success on the task is a strategy with the potential to 

affect feedback-related and motor-preparatory brain activity and, consequently, motor 

learning and performance. One way to give learners an increased perception of success is by 

providing them with easier criteria for success. Consider the following practical example: a 

golfer is practicing tee shots. Their instructor wants them to drive the ball to the center of the 

fairway and informs them that only such shots will be considered a success. If the golfer hits 

a shot on the fairway but off center, then they will likely process the outcome of the shot as a 

failure and reprogram their next swing in attempt to hit the ball in the center of the fairway. 

Conversely, if the instructor informs them that any shot on the fairway will be considered a 

success, then a shot on the fairway but off center will likely be processed as a success and the 
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golfer will not reprogram their next swing to a large degree. In that example, even though the 

goal of the task, its level of difficulty, and the error magnitude, represented by deviation of 

the ball from the center of the fairway, were unchanged in the two scenarios, the golfer’s 

perception of success would likely alter feedback processing and subsequent movement 

preparation. Importantly, these alterations would result from a simple manipulation of the 

task instruction given by the instructor. The effects of criteria of success on performance and 

learning have been studied at the behavioral and psychological level (e.g., Parma et al., 

2023). However, despite the potential effects of the manipulation of perceptions of success on 

feedback-related and motor-preparatory brain activity, to the best of our knowledge no study 

has investigated these effects nor how they interact with error magnitude and task experience. 

At the neurophysiological level, feedback processing can be investigated using the 

reward positivity (RewP), an event-related potential (ERP) component of the 

electroencephalographic (EEG) signal. RewP is characterized by a positive deflection in the 

EEG signal that occurs 230 ms to 350 ms after feedback onset and is maximal at fronto-

central electrodes (Sambrook & Goslin, 2015). RewP is suggested to reflect the activation of 

the midbrain reward circuit (Proudfit, 2015) and is a proxy for positive reward-prediction 

error (RPE; Holroyd & Coles, 2002). Given that RPE is the difference between the predicted 

and the actual outcome (Lohse et al., 2019), RewP amplitude is expected to be positively 

correlated with feedback valence (positive vs. negative) and magnitude (large vs. small), and 

inversely correlated with outcome likelihood. As such, feedback about more positive 

outcomes and/or more surprising positive outcomes is predicted to elicit larger RewPs than 

feedback about poorer and/or less surprising outcomes (Margraf et al., 2022).  

These predictions have been confirmed in the literature. Regarding valence, Meadows 

et al. (2016) revealed that participants exhibited larger RewPs after receiving positive 

feedback than negative feedback during a response time task. Concerning magnitude, Frömer 
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et al. (2016) had participants perform a virtual throwing task and demonstrated that, among 

successful (on-target) trials, throws closer to the center of the target resulted in larger RewP 

amplitudes than those farther from the center of the target. RewP responsiveness to error 

magnitude, however, seems to depend on feedback valence, such that the effect of magnitude 

is conditional on positive valence. For example, Meadows et al. (2016) demonstrated that 

RewP was responsive to feedback magnitude only when its valence was positive, but not 

negative, highlighting an interaction between these factors.  

The effect of outcome expectation on RewP has been confirmed both through the 

observation of different levels of expertise and manipulations of task difficulty. Regarding 

expertise, Frömer et al. (2016) demonstrated that, throughout practice, the higher the 

participant’s on-target frequency, the smaller the RewP, presumably because the participant 

starts to expect positive outcomes. Similarly, Williams et al. (2018) showed smaller RewPs at 

the end of the acquisition phase of a cognitive task, as compared to the beginning of practice. 

The effect of task difficulty was addressed in Williams et al. (2017), in which the same 

participants engaged in a time-estimation task under different conditions. In some of the 

conditions, participants’ responses were only considered correct if they fell within a narrow 

time window surrounding the target time, whereas in other conditions the responses were 

considered correct if they fell within a wider time window. In the easier conditions (wider 

time-windows), when participants had correct responses, smaller RewPs were observed in 

comparison to correct trials in harder conditions (narrower time windows), likely due to 

participants’ lower expectations for success in the latter.  

Although Williams et al. (2017) demonstrated that establishing different criteria of 

success can alter feedback processing, feedback was only provided in a qualitative binary 

way (correct vs. incorrect) and participants were not informed about their quantitative error 

(deviation from the target time), confounding the effects of error magnitude and feedback 
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valence. Interestingly, in Wilhelm et al. (2019), the perception of cognitive task difficulty, 

rather than task difficulty itself, affected the RewP. In this study, participants observed 

fictitious data regarding the performance of other people, leading them to believe that some 

blocks of trials were more difficult than others. During blocks participants believed to be 

difficult, positive feedback elicited larger RewPs than positive feedback during blocks 

considered to be easy, while perceived difficulty did not affect RewP on trials with negative 

feedback. These results suggest that the mere perception of success by the performer can 

affect feedback processing, and indicate that, like error magnitude, expectations for success 

only modulate the RewP for positive outcomes.  

Motor-preparatory brain activity, in turn, can be inferred from power in the upper-

alpha frequency bandwidth (10 – 13 Hz) recorded at electrodes overlying frontocentral and 

central scalp locations in the seconds preceding movement. Upper-alpha power reflects 

neuronal inhibition, so increased neural activity manifests as decreased power (Babiloni et 

al., 2008). Therefore, when cortical resources are dedicated to motor programming, upper-

alpha power decreases. For example, Daou et al. (2018) showed that upper-alpha power 

progressively decreased at frontocentral and central electrodes during the seconds preceding 

the backswing of a golf putt. Cooke et al. (2015) demonstrated that this effect is moderated 

by performance on the previous trial, such that this decrease in pre-movement upper-alpha 

power was larger after missed putts relative to made putts, indicating that more resources 

were allocated to movement preparation following errors.  

Interestingly, Cooke et al. (2014) showed that expertise also affects alpha power. In 

their experiment, experts exhibited higher pre-movement upper-alpha power than novices, 

likely because the former executed the putts with greater automaticity, resulting in a lower 

demand for cortical resources during motor programming. This effect is consistent with del 

Percio et al. (2010), which showed higher alpha power over motor areas during the pre-
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movement and movement periods for elite athletes compared to non-athletes, suggesting that 

athletes have greater neural efficiency. Together, these studies suggest that motor upper-alpha 

power reflects neural resources allocated to movement preparation and is modulated by 

performance outcome and expertise. However, to the best of our knowledge, no study has 

investigated how perceptions of success may influence motor upper-alpha power. 

Since motor learning and performance are influenced by feedback-related and motor-

preparatory brain activity, understanding how they are affected by a simple task instruction 

that affects learners’ perceptions of success is important. Therefore, we recorded participants’ 

EEG while they practiced a motor skill under an easy or hard criterion of success. 

Specifically, we used mixed-effects models to analyze, on a trial-by-trial basis, how RewP 

and motor upper-alpha changed according to: (1) whether the outcome was considered good 

or bad based on the participant’s criterion of success; (2) error magnitude; (3) experience 

(trial number), and (4) the interaction of these factors.  

Regarding RewP amplitude, based on previous literature, we expected a main effect 

of success, such that trials within the participant’s zone of success would result in larger 

RewPs than trials outside of this zone; a main effect of error, such that larger errors would 

result in smaller RewPs; and a main effect of trial, such that RewP would become smaller 

with increased trial number, since experience should make movement outcomes less 

surprising. However, we also predicted interactions between these factors. Based on the idea 

that RewP amplitude is expected to be more responsive to error magnitude on successful 

trials than on unsuccessful trials, we predicted a success by error interaction. Specifically, 

successful trials should result in a stronger relationship between RewP amplitude and error 

than unsuccessful trials, since, for a small error, RewP should be large only if it falls within 

the participant`s zone of success; conversely, if a trial is considered unsuccessful, any error, 

even a small one, should result is a small RewP. We also predicted an error by trial 
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interaction and a success by trial interaction, such that later trials would result in a weaker 

relationship between error and RewP as well as success and RewP. This follows because 

successful trials and smaller errors should become more frequent and expected, resulting in 

smaller RewPs for a given outcome. Finally, we hypothesized a success by error by trial 

interaction, such that, in later trials, the relationship between error and RewP would be 

weaker, but this weakening should be more prominent for successful trials versus 

unsuccessful ones. In other words, unsuccessful trials were expected to have small RewPs for 

all magnitudes of error and across all trials. However, for successful trials, a large difference 

in RewP amplitude was expected between trials with smaller and larger errors, but mostly in 

the beginning of practice. With habituation brought by experience, a decrease in RewP 

amplitude was expected for small errors, making the elicited RewP amplitude less 

distinguishable from that elicited by larger errors.  

Regarding motor upper-alpha power on the current trial, we expected a main effect of 

success on the prior trial, such that alpha would be higher when the prior trial was successful, 

since the learner would not feel compelled to allocate more neural resources to motor 

programming. Similarly, a main effect of error on the prior trial was expected, such that 

larger errors would result in more resources allocated to motor programming and, 

consequently, less alpha power. Finally, we also predicted a main effect of trial, such that 

greater alpha power was expected with increased trial number, due to acquired automaticity. 

Although we had no precedent results in the literature to predict interactions among prior trial 

success, prior trial error, or trial number, interactions between these variables were tested in 

exploratory analyses. 
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Methods 

Participants 

Fifty-two individuals (M age = 21.52 years, SD = 2.70, 33 males) who were part of a 

larger project were included in this study, but two were excluded due to poor EEG recording. 

Participants were healthy undergraduate and graduate students with the preference to throw 

with their right hand, between the ages of 19 and 40 years, novices to the task, and persons 

who reported not being allergic to conductive gel, colorblind, at high-risk for serious 

complications from Covid-19 infection, or having physical impairments precluding 

comfortable left-arm movements from a seated position. The study was approved by the 

Auburn University Institutional Review Board (Protocol #19-046 EP 1902) and was 

conducted in agreement with the 1964 Declaration of Helsinki. Written informed consent was 

provided by all participants prior to the beginning of the experiment. 

Task 

Participants performed a mini-shuffleboard learning task using 10 mini-shuffleboard 

pucks, 1 at a time (as shown in Figure 1). The pucks consisted of a 1.5 cm diameter red 

plastic ring encompassing a metal sphere. Participants slid the pucks lengthwise on a 

rectangular table (213 cm long x 76 cm wide) covered in low-friction adhesive paper with 

auto-adhesive foam tape (1 cm x 1 cm x 1 cm) lining the side and back edges to prevent the 

pucks from falling off the table. The start line was drawn with a red marker 13 cm from the 

edge of the table and followed 10 cm farther by the release line, drawn in blue. A 27 cm x 27 

cm grid divided in 81 squares of 3 cm x 3 cm was drawn in blue with its center 95 cm past 

the release line. The grid was connected to the edges of the table by two parallel horizontal 

lines and two parallel vertical lines that were extensions of the outer lines of the grid. 

Participants remained seated throughout the whole experiment in a chair positioned so that 

their left wrist could comfortably reach the release line. A laptop table supporting a computer 
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screen and an occlusion board was positioned after the release line, restricting the 

participant’s vision to about 25 cm of the puck’s trajectory after release. The number pad of a 

keyboard rested on the left side of the shuffleboard table and was used by the participants to 

initiate the trial and receive feedback (see Procedures below). A photosensor was positioned 

on the left side of the table opposite a flashlight, both at approximately 6 cm from the starting 

line. To perform the task, participants were asked to grip the sides of the puck with their left 

index finger and thumb and slide the puck under the occlusion board by extending their left 

arm in a straight line (complete instructions given to participants can be found at 

https://osf.io/9djrx/, Instructions). Before each shot, participants prepared the puck by 

positioning it on the start line and were instructed to release it once it reached the release line. 

Figure 1 

Illustration of Experimental Set-Up 

 

Procedures 

Before Acquisition 

Before practice, participants read and signed the informed consent and completed the 

Edinburgh Handedness Inventory (Oldfield, 1971). Participants were then prepared for EEG 
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recording and had their resting brain activity recorded with their eyes open and closed for 

three minutes each while seated. Participants practiced the task 10 times without augmented 

feedback after observing the grid and the target for 5 s. To do so, participants were instructed 

to position the puck when prompted by the word “Ready” from the computer monitor (Figure 

2). They then pressed the “enter” key on the keyboard with their left hand, which triggered 

the appearance of a representation of the grid and target on the screen. The image disappeared 

from the screen after 3000 ms, at which point participants were allowed to shoot the puck. At 

this point in the experiment, participants were informed that the goal was to make the puck 

stop as close to the target as possible. The target was a red dot in the center of the grid.  

Figure 2 

Trial Initiation  

 

Note. This figure depicts the moments before the participant was allowed to start a new puck shot. Once the 

“Ready…” image was shown on the screen by the experimenter, the participant was able to press “enter” on the 

keyboard positioned to their left and returned their hand to the puck. A representation of the grid with the target 
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(represented as a blue dot) in the middle (during pretest and retention test) or beyond (during transfer test), or 

the participant’s assigned target zone (large or small during acquisition) then appeared on the screen for 3000 

ms. The participant was allowed to start the movement any time after the image disappeared from the screen.  

 

Acquisition 

Each participant was randomly assigned to one of two groups (large zone, n = 28; 

small zone, n = 22) based on a pre-determined list stratified by gender. Participants 

performed 10 blocks of 10 trials, before which they were informed there was a target zone 

they were trying to achieve, such that trials where the puck stopped inside this zone would be 

considered “good”. For participants in the small zone group, the zone was a 9 cm x 9 cm 

square centered on the target in the middle of the grid, while for participants in the large zone 

group, the zone was a 27 cm x 27 cm square centered on the target. Zone sizes and number of 

trials were defined after two pilot studies conducted before the start of this project, described 

in the supplementary material at the OSF repository, (https://osf.io/9djrx/, Supplementary 

Material).  

Before the first trial of acquisition, participants were shown the zone surrounding the 

target overlayed on the grid. Specifically, a green cardboard square the size of the 

participant’s assigned zone was positioned on the grid, and the occlusion board was removed 

for approximately 5 s. During acquisition, participants performed the task as in the 10 trials 

with no augmented feedback, with a couple of exceptions. First, the image they saw on the 

computer screen before shooting was a square outlined in black representing the zone, instead 

of the image of the grid and target (Figure 2). Second, augmented feedback was provided 

after every trial. To receive feedback, participants pressed “Enter” on the keyboard when 

prompted by the word “Ready” on the computer screen. Then, the representation of the zone 

appeared on the computer screen for 2000 ms (Figure 3). Next, the square in the grid where 

the puck stopped was highlighted in green or red for 1000 ms, depending on whether the 
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puck landed within the zone (a good shot) or not (a bad shot), respectively. That is, 

participants in both groups were shown the square in the grid where the puck landed on every 

trial, unless it landed outside the grid. In this case, a rectangle was highlighted in red to 

indicate the shot was far-left, far-center, far-right, left, right, short-left, short-center, or short-

right (see an example in Figure 3 column B). Subsequently, participants saw a green 

checkmark for 1000 ms and heard a “correct” sound (sound length ≈300 ms), or a red “X” for 

1000 ms with an “invalid” sound (sound length ≈450 ms), depending on whether the trial was 

good or not (all stimuli, including sound files can found at https://osf.io/9djrx/, Stimuli). 

Participants had a 1-min break between blocks. By the end of the acquisition phase, 

participants with the large zone had an average of 47.75 (± 11.32) good trials, while 

participants with the small zone had 10.05 (± 3.00) good trials. 

Figure 3 

Feedback Presentation 

 

Note. This figure depicts the moments after participants pressed enter on the keyboard to receive feedback. First, 

an image depicting their assigned target zone was presented for 2000 ms, and then the square where the puck 

stopped was highlighted in green or red for 1000 ms. Column A represents the same outcome being considered 
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positive for the large zone groups but negative for the small zone groups, while column B represents a negative 

outcome for all groups and column C depicts an outcome considered positive for all groups. Lastly, participants 

were presented with a red cross (1000 ms) and an invalid sound (≈450 ms) if the trial was considered negative, 

or a green checkmark (1000 ms) and correct sound (≈ 300 ms) if the trial was considered successful.  

 

EEG Recording 

EEG was recorded during the acquisition phase with 19 channels of an EEG cap 

housing a 64 channel BrainVision actiCAP system (Brain Products GmbH, Munich, 

Germany) labeled in accordance with an extended international 10–20 system (Oostenveld & 

Praamstra, 2001). EEG data were sampled at 250 Hz. EEG data were online referenced to the 

left earlobe, and the FPz electrode site was employed as the ground electrode. Electrode 

impedances were set below 25 kΩ before recording started and a high-pass filter was set at 

0.016 Hz. The EEG signal was amplified and digitized with a BrainAmp DC amplifier (Brain 

Products GmbH) linked to BrainVision Recorder software (Brain Products GmbH). 

Several events were marked every trial in the EEG signal, including the moment the 

image of the zone of success appeared or disappeared from the computer screen prior to trial 

initiation (see Figure 2). Since we aimed to investigate motor-preparatory brain activity, we 

also marked movement onset via the photosensor. The photosensor was connected to a 

BrainVision StimTrak device (BrainProducts GmbH) and was triggered every time a 

participant broke the light beam shining on it. Since participants broke the light beam 

multiple times each trial (e.g., when they pushed their hand forward and when they pulled 

their hand backward), we defined movement onset as the first photosensor marker after the 

disappearance of the zone of success image from the screen (see Figure 2). Finally, to 

investigate feedback processing, we marked the onset of feedback presentation (column 

A/B/C in Figure 3).  
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Data Processing 

EEG Processing 

 Resting Data and Individualized Alpha Frequency. Resting data with eyes closed 

were first visually inspected to determine whether any electrode needed to be interpolated, 

and data were re-referenced to an averaged ears montage. Then, a 0.1 – 40 Hz band-pass 

filter with 4th order roll-offs and a 60 Hz notch filter was applied to the data. Next, data were 

segmented in 1-s epochs with 0.5 s overlaps, and epochs containing any of the following in 

the midline electrodes (Fz, FCz, Cz, CPz, or Pz) were removed: change of more than 50 µV 

from one data point to the next, a change of 100 µV within a moving 200-ms window, or a 

change of less than 0.5 µV within a moving 200-ms window. Then, data were fast Fourier 

transformed with a 25% Hanning window and 0.977 Hz bin resolution. Next, data were 

averaged across segments for each electrode. Then, individual alpha frequency (IAF) was 

identified to account for individual differences in alpha frequency (Klimesch, 1996). 

Specifically, in the resting brain data with eyes closed, the spectral peak within the alpha 

bandwidth (8-13 Hz) at electrode Pz was used to determine the IAF, since alpha tends to peak 

at posterior electrodes.  

Acquisition Data Cleaning. All EEG data processing was conducted with 

BrainVision Analyzer 2.2 software (BrainProducts GmbH). EEG data were first visually 

inspected to determine whether any electrode needed to be interpolated, and data were re-

referenced to an averaged ears montage. Then, data were prepared for independent 

component analysis (ICA) cleaning. First, a 1 – 40 Hz band-pass filter with 4th order roll-offs 

and a 60 Hz notch filter was applied. Next, data from blocks 4 to 6 were visually inspected 

and non-stereotypical artifacts marked. Then, an ICA was conducted on the same blocks to 

identify stereotypical artifacts, such as blinks and saccades. The stereotypical artifacts 

identified by the ICA were then removed from all blocks of the unfiltered data.  
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RewP Processing. To assess feedback-related brain activity, we extracted single-trial 

RewP amplitude. Cleaned data were band-passed filtered between 0.1 and 30 Hz with 4th 

order roll-offs, and a 60 Hz notch filter was applied. Next, to define the individualized RewP 

time window for each participant, data were segmented from 200 ms prior to 800 ms after 

feedback onset. Then, these epochs were baseline corrected based on the pre-stimulus interval 

(-200 – 0 ms). Next, epochs containing any of the following in the midline electrodes (Fz, 

FCz, Cz, CPz, or Pz) were removed: change of more than 50 µV from one data point to the 

next, a change of 100 µV within a moving 200-ms window, or a change of less than 0.5 µV 

within a moving 200-ms window. Then, epochs time-locked to positive feedback (trials 

stopping within the zone of success) and negative feedback (trials stopping outside of the 

zone of success) were separately averaged. Then, the average of the negative feedback 

epochs was subtracted from the average of the positive feedback epochs to create a difference 

wave for each participant. We centered each participant’s RewP time window (length = 40 

ms) on their peak latency between 230 and 350 ms at the frontocentral electrode (Fz, FCz, or 

Cz) at which it peaked (Parma et al., in press). We also confirmed that this individualized 

window included a negative deflection in the negative feedback waveform. If it did not, we 

centered the window on the maximal negativity between 230 and 350 ms in the negative 

feedback waveform (Parma et al., in press). Then, we computed mean amplitude in each 

participant’s time window at Fz, FCz, and Cz for each epoch and then averaged across these 

electrodes, yielding one RewP for each trial. If Fz, FCz, or Cz malfunctioned during 

recording, it was not included in the average. 

Motor Upper-Alpha Processing. To assess motor-preparatory brain activity, we 

extracted single-trial motor upper-alpha power. Specifically, cleaned data were band-passed 

filtered between 0.1 and 40 Hz with 4th order roll-offs, and a 60 Hz notch filter was applied. 

Next, for each trial, four epochs were created within a motor preparatory time window: 1) 3-s 
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to 2-s prior to movement onset, 2) 2-s to 1-s prior to movement onset, 3) 1-s prior to 

movement onset to movement onset, and 4) movement onset to 1-s after movement onset 

(Daou et al., 2018). Then, epochs containing any of the following in the midline electrodes 

(Fz, FCz, Cz, CPz, or Pz) were removed: change of more than 50 µV from one data point to 

the next, a change of 100 µV within a moving 200-ms window, or a change of less than 0.5 

µV within a moving 200-ms window. Next, a fast Fourier transformation was employed 

using 0.977 Hz bins and a Hanning window (50% taper). Spectral power was averaged from 

IAF to IAF + 2 Hz (Wang et al., 2020), and then averaged across the right frontocentral 

electrodes, yielding one motor upper-alpha power value for each of the four epochs within 

each trial. If one of the frontocentral electrodes malfunctioned during recording, it was not 

included in the average. 

Motor Performance 

Our main outcome measure of performance was radial error (radial error = (x2 + y2)1/2, 

representing accuracy (Hancock et al., 1995). To extract the x and y coordinates of the puck’s 

stopping position on the table, an iPad was affixed to the ceiling above the table, and 

photographs were taken after each trial with a wireless clicker. These photographs were then 

analyzed with LabView® software using the virtual instrument ScorePutting (Neumann & 

Thomas, 2008) to determine the distance between the center of the puck and the target along 

the x and y axis and use these distances to calculate radial error. 

Statistical Analysis 

For all inferential analyses, alpha was set to .05. All statistical analyses were 

conducted in R (cran.r-project.org), and all models used can be found in Appendix A and B. 

 Prior to statistical analyses, we visually inspected density plots for single-trial RewP, 

motor upper-alpha, and radial error. We also inspected scatter and spaghetti plots for the 

effects of radial error, success, trial, epoch, and their interactions on RewP amplitude and/or 
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motor upper-alpha power. Before running mixed-effects regressions, we created the prior 

success and prior radial error variables by pairing trials with the values of success and radial 

error of the previous trial. Then, we contrast coded all categorical variables (success, prior 

success, and zone assignment ([small or large]), participant-mean centered radial error and 

prior radial error, and linear contrast coded trial. After centering these variables, we created 

the quadratic and cubic trial variables (i.e., trial² and trial³, respectively), the quadratic and 

cubic radial error variables (i.e., radial error² and radial error³, respectively), as well as the 

quadratic and cubic prior radial error variables (i.e., prior radial error² and prior radial error³, 

respectively). 

Feedback Processing Models 

Before running models, we excluded trials with missing data on the single-trial RewP 

(due to artifact rejection) and/or radial error (due to missed photographs of the puck’s landing 

position), which led to the loss of 78 of 5000 trials (1.56% of the data).   

Then, before building the main models related to feedback processing, we compared 

models fitted with maximum likelihood to explore whether the relationship between RewP 

amplitude and radial error as well as RewP amplitude and trial number should be modelled in 

a linear, quadratic, or cubic fashion. For both radial error and trial number, the models with 

quadratic terms to both the fixed- and random-effects were considered better fits to the data 

than linear or cubic models, or models with quadratic terms only on the fixed effects. 

Specifically, the models reduced AIC by ≥ 2 points in comparison to simpler models, 

whereas the models with cubic terms did not reduce AIC by ≥ 2 points in comparison to the 

models with quadratic terms. Lohse et al. (2020) used this approach to employ AIC for model 

selection, approximating Burnham and Anderson (2002)’s method that used effect sizes for 

model selection. 
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 Regarding main models, to analyze how feedback processing changed during practice 

according to perception of success, error magnitude, and experience, we used three separate 

mixed-effects models with single-trial RewP amplitude as their dependent variable. The first 

model was fitted with maximum likelihood and included fixed effects of success (in/out of 

the zone of success), trial number (1 – 100), its quadratic term, and their interactions, and 

included a random intercept of participant, and random slopes of success, trial number, and 

its quadratic term. 

 The second model was fitted with maximum likelihood and included fixed effects of 

radial error, its quadratic term, trial number, its quadratic term, and their interactions, and 

included a random intercept of participant, and random slopes of radial error, its quadratic 

term, trial number, and its quadratic term. 

We then used Wald likelihood ratio tests to assess the change in deviance between 

these models and a reference model that included only trial number and its quadratic term as 

fixed-effects, and random intercept of participant with random slopes of trial and its quadratic 

term to determine whether the additional RewP variance explained by success was different 

from the additional RewP variance explained by radial error. Complementary, to investigate 

which one (success or radial error) explained more of RewP’s variance, we also estimated the 

effect size of the Reference Model and Models 1 and 2 by using the conditional pseudo-R2 

computed using the MuMin package (Barton, 2018). These strategies were used to compare 

Models 1 and 2 given that they have different levels of complexity. Model 2 includes more 

terms, due to the quadratic term of radial error, making it more penalized by AIC, if that 

metric was used. 

Finally, we ran a third model to assess whether the learner’s perception of success 

could modulate the effect of objective success (as indexed by radial error) on the RewP. 

Initially, we tried to include success and radial error in the same model to investigate their 
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possible interaction. However, because of the presence of high multicollinearity between 

these variables, we ended up removing the variable success, and replacing it with the 

between-subjects zone variable (large group vs. small group). Therefore, for the final model, 

fitted with restricted maximum likelihood, we included fixed effects of zone, radial error, its 

quadratic term, trial number, its quadratic term, and their interactions, and included a random 

intercept of participant, and random slopes of radial error, its quadratic term, trial number, 

and its quadratic term. 

Movement Preparation Models 

Before running models, we excluded 8 participants for whom photosensor data were 

not recorded. For the remaining participants, we excluded the first trial because prior radial 

error and prior success (predictors in the main models) would be undefined for this trial. 

Next, we excluded epochs with missing data on prior radial error (due to missed photographs 

of the puck’s landing position) and/or motor upper-alpha power (due to artifact rejection or 

photosensor malfunction). These exclusions led to the loss of 1,791 of 16,800 total epochs 

(10.23% of the data).   

Then, before building the main models related to movement preparation, we 

compared models fitted with maximum likelihood to explore whether the relationship 

between motor upper-alpha power and prior radial error as well as motor upper-alpha power 

and trial number should be modelled in a linear, quadratic, or cubic fashion. For trial number, 

the model with quadratic terms to both the fixed- and random-effects was considered a better 

fit to the data (based on the 2 points criterion) than linear or cubic models, or than the model 

with the quadratic term only as a fixed- effect. For prior radial error, the model with cubic 

terms to both the fixed- and random-effects was considered a better fit to the data than the 

models with linear or quadratic terms, or the model with the cubic term only as a fixed- 

effect.  
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 Regarding main models, to analyze how movement preparation changed during 

practice according to perception of success on the previous trial, error magnitude on the 

previous trial, and experience, we used three separate mixed-effects models with single-trial 

motor upper-alpha power as their dependent variable. The first model was fitted with 

maximum likelihood and included fixed effects of prior success (previous trial in/out of the 

zone of success), epoch (1: -3 s to -2 s, 2: -2 s to -1 s, 3: -1 s to 0 s, 4: 0 s to +1 s), trial 

number (1 – 100), its quadratic term, and their interactions, and included a random intercept 

of participant, with a random slope of trial number, and a random intercept of participant by 

epoch 1. 

 The second model was fitted with maximum likelihood and included fixed effects of 

prior radial error, its quadratic and cubic terms, trial number, its quadratic term, epoch, and 

their interactions, and included a random intercept of participant, with a random slope of trial 

number, its quadratic term, prior radial error, and its quadratic term, and a random intercept 

of participant by epoch 2. 

We then used Wald likelihood ratio tests to assess the change in deviance between 

these models and a reference model that included only epoch, trial number and its quadratic 

term as fixed-effects, random intercept of participant with random slopes of trial and its 

quadratic term, and random intercept of participant by trial, to determine whether the 

 
1 Initially our model also let the slope of trial² to vary across participant and included a random 

intercept of participant by prior success. However, boundary warnings revealed that trial² was 

highly correlated to trial in the random-effects, and that there was minimal variance for the effect 

of prior success across participant. Thus, we dropped these terms from our random-effects.  

2 Initially our model also let the slope of prior radial error³ to vary across participant. However, due to 

the lack of convergence, that revealed that prior radial error³ was perfectly correlated to prior radial 

error² in the random-effects, we dropped the cubic term from our random-effects.  
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additional alpha variance explained by prior success was different from the additional alpha 

variance explained by prior radial error. Complementary, to investigate which one (prior 

success or prior radial error) explained more of RewP’s variance, we also estimated the effect 

size of the Reference Model and Models 1 and 2 by using the conditional pseudo-R2 

computed using the MuMin package (Barton, 2018).  

Finally, we ran a third model to assess whether the learner’s perception of success in 

the previous trial could modulate the effect of objective success in the previous trial (as 

indexed by prior radial error) on alpha power. Initially, we tried to include prior success and 

prior radial error in the same model to investigate their possible interaction. However, 

because of the presence of high multicollinearity between these variables, we ended up 

removing the variable prior success, and replacing it with the between-subjects zone variable 

(large group vs. small group). Therefore, for the final model, fitted with restricted maximum 

likelihood, we included fixed effects of zone, prior radial error, its quadratic and cubic terms, 

trial number, its quadratic term, epoch, and their interactions, and included random intercepts 

of participant, with random slopes of prior radial error, trial number, and its quadratic term, 

and random intercepts of participant by epoch 3. 

Results 

Feedback processing 

Figure 4A depicts the grand average ERPs at electrodes Fz, Cz, and Pz for successful 

and unsuccessful trials. Figure 4B depicts the scalp topography of the grand average 

successful minus unsuccessful difference waveform during the RewP time window. 

 

 
3 Initially our model also let the slope of prior radial error² and prior radial error³ to vary across 

participant. However, due to the lack of convergence, we dropped the quadratic and cubic terms 

from our random-effects. 
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Figure 4  

Grand Average RewP Waveforms for Successful and Unsuccessful Trials 

 

Note. A: Grand average waveforms for the RewP time-locked to the onset of augmented feedback 

(time 0) at electrodes Fz, Cz, and Pz after successful (green line) and unsuccessful (red line) trials, as 

determined, respectively, by trials that stopped within or outside of the participant’s zone of success. 

Shaded area represents the RewP time window (230ms-350ms). B: Scalp topography of the grand 

average successful minus unsuccessful difference waveform during the RewP time window.  

 

Model 1 - Effects of Perception of Success on the RewP 

Results of the analysis of the effect of perceptions of success on RewP amplitude are 

presented in Table 1.  
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Table 1  

Random and Fixed Effects for the Analysis of the Effect of Success on the RewP 

Random Effects      

Group Effect SD Corr   

Participant Intercept 9.72    

 Success 3.96 .75   

 Trial 0.38 -.28 -.34  

 Trial² 0.10 -.41 -.35 .58 

Residual  9.87    

Fixed Effects      

Effects β SE df t-value p-value 

Intercept 7.50 1.40 4867 5.36 <.001* 

Success 2.86 0.76 4867 3.76 <.001* 

Trial -0.11 0.08 4867 -1.50 .135 

Trial² -0.02 0.03 4867 -0.86 .390 

Success:Trial 0.12 0.11 4867 1.00 .315 

Success:Trial² -0.03 0.04 4867 -0.59 .556 

Note. Number of observations: 4922, groups: 50. * indicates significant differences. SD = standard 

deviation. Corr = correlation. SE = standard error. df= degrees of freedom. 

 

The analysis revealed a significant main effect of success (p < .001), confirming the 

impression from Figures 4 and 5 that successful (in) trials resulted in more positive RewPs 

than unsuccessful (out) trials, even after controlling for trial. No main effect of trial number 

(ps ≥ .135) or interactions (ps ≥ .315) were found. Figure 5 depicts the relationship between 

success and RewP. Figure 6 depicts the relationship between trial number and RewP. 
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Figure 5  

Relationship Between Success and RewP Amplitude 

 

Note. Figure shows the positive relationship between RewP amplitude and trial. The black dots 

represent the average RewP for the sample for successful (in) and unsuccessful (out) trials, whereas 

the gray lines represent the intercept and slope for each participant. 

 

Figure 6  

Relationship Between Trial Number and RewP Amplitude 
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Note. A: Figure shows the average RewP across participant for every trial in gray and the quadratic 

line of best fit in black. B: Figure shows, as an example, the RewP amplitude for every trial of a 

single, randomly chosen participant (participant 2 of the large zone group). The black line represents a 

well-fitted quadratic relationship between RewP and trial for this specific participant. C:  Figure 

shows the relationship between RewP amplitude and trial. The black line represents the quadratic 

relationship between RewP and trial for the sample, whereas the gray lines represent the slope for 

each participant. 

 

Model 2 - Effects of Error Magnitude on the RewP 

Results of the analysis of the effect of error magnitude on RewP amplitude are 

presented in Table 2.  
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Table 2  

Random and Fixed Effects for the Analysis of the Effect of Radial Error on the RewP 

Random Effects       

Group Effect SD Corr    

Participant Intercept 8.57     

 Radial error 0.15 -.65    

 Radial error² 0.00 .54 -.94   

 Trial 0.41 -.25 .54 -.49  

 Trial² 0.11 -.33 .53 -.51 .62 

Residual  9.88     

Fixed Effects       

Effects β SE df t-value p-value  

Intercept 6.54 1.24 4864 5.29 <.001*  

Radial error -0.10 0.03 4864 -3.27 .001*  

Radial error² 0.00 0.00 4864 1.87 .061  

Trial -0.12 0.08 4846 -1.46 .145  

Trial² -0.01 0.03 4864 -0.34 .735  

Radial error:Trial -0.01 0.01 4846 -0.93 .355  

Radial error:Trial² -0.00 0.00 4846 0.36 .718  

Radial error²:Trial -0.00 0.00 4846 -0.68 .503  

Radial error²:Trial² -0.00 0.00 4846 -0.62 .534  

Note. Number of observations: 4922, groups: 50. * indicates significant differences. SD = standard 

deviation. Corr = correlation. SE = standard error. df= degrees of freedom. 

 

The analysis revealed a significant negative main effect of radial error (p = .001), such 

that trials with higher errors (lower accuracy) resulted in smaller RewPs than trials with 

smaller errors. No main effect of trial number (ps ≥ .145) or interactions (ps ≥ .355) were 

found. Figure 7 depicts the relationship between radial error and RewP. 
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Figure 7  

Relationship Between Radial Error and RewP Amplitude 

 

Note. A: Figure shows, as an example, the RewP amplitude as a function of the radial error of each 

trial of a single, randomly chosen participant (participant 16 of the small zone group). The black line 

represents a well-fitted quadratic relationship between RewP and radial error for this specific 

participant. B: Figure shows the relationship between RewP amplitude and radial error for the sample. 

The black line represents the quadratic relationship between RewP and radial error for the sample, 

whereas the gray lines represent the slope for each participant. 
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Comparing Model 1 and Model 2 

The Wald likelihood ratio tests indicated that both models (1 and 2) are an 

improvement above the reference (trial-only) model, and that Model 1’s likelihood ratio is 

significantly different from Model 2’s likelihood ratio (Table 3).  

Table 3  

Wald Likelihood Ratio Test for the Reference Model, Model 1, and Model 2 on RewP 

Amplitude 

Model df AIC logLik Test L.Ratio p-value 

Reference 10 36949.36 -18464.68    

Model 1 17 36849.36 -18407.68 Reference vs. Model 1 114.00 <.001* 

Model 2 25 36881.95 -18415.97 Model 1 vs. Model 2 16.59 .035* 

Note. * indicates significant differences. df= degrees of freedom. AIC= Akaike Information Criterion. 

logLik= log-likelihood. L.Ratio= Absolute likelihood-ratio. 

 

The conditional pseudo-R2 revealed that, overall, Model 1 has a higher effect size than 

Model 2, suggesting that perception of success explains more of the RewP variance than error 

magnitude (Table 4). 

Table 4  

Conditional Pseudo-R2 Test for the Reference Model, Model 1, and Model 2 on RewP 

Amplitude 

Model Conditional R2 

Reference .43 

Model 1 .47 

Model 2 .45 

 

Figure 8 depicts the relationship between success, radial error, and RewP. 
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Figure 8 

Relationship of Success and Radial Error on RewP Amplitude 

 

 
Note. Figure shows the relationship between RewP amplitude and radial error for successful (in) and 

unsuccessful (out) trials in traced blue and solid pink lines, respectively. The shaded areas represent 

95% confidence intervals. 

 

Model 3 - Effects of Zone of Success Assignment and Error Magnitude on the RewP 

Results of the analysis of the effect of assigned zone of success and error magnitude 

on RewP amplitude are presented in Table 5.  
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Table 5  

Random and Fixed Effects for the Analysis of the Effect of Assigned Zone of Success and 

Radial Error on the RewP 

Random Effects       

Group Effect SD Corr    
Participant Intercept 8.73     
 Radial error 0.15 -.63    
 Radial error² 0.00 .52 -.93   
 Trial 0.43 -.25 .55 -.50  
 Trial² 0.12 -.33 .52 -.50 .61 
Residual  9.88     
Fixed Effects       

Effects β SE DF t-value p-value  
Intercept 6.48 1.27 4856 5.11 <.001*  
Radial error -0.11 0.03 4856 -3.35 .001*  
Radial error² 0.00 0.00 4856 2.24 .025*  
Zone -0.59 2.54 48 -0.23 .818  
Trial -0.11 0.08 4856 -1.33 .183  
Trial² -0.00 0.03 4856 -0.16 .877  
Radial error:Zone -0.06 0.06 4856 -0.91 .365  
Radial error:Trial -0.00 0.01 4856 -0.79 .433  
Radial error:Trial² 0.00 0.00 4856 0.48 .634  
Radial error²:Zone 0.01 0.00 4856 1.98 .048*  
Radial error²:Trial -0.00 0.01 4856 -0.83 .409  
Radial error²:Trial² -0.00 0.01 4856 -0.91 .361  
Zone:Trial 0.03 0.17 4856 0.16 .874  
Zone:Trial² 0.06 0.06 4856 1.07 .284  
Zone:Radial error:Trial 0.004 0.011 4856 0.375 .708  
Zone:Radial error:Trial² 0.002 0.004 4856 0.465 .642  
Zone:Radial error²:Trial -0.0001 0.0004 4856 -0.319 .750  
Zone:Radial error²:Trial² -0.0002 0.0002 4856 -1.364 .173  

Note. Number of observations: 4922, groups: 50. * indicates significant differences. SD = standard 

deviation. Corr = correlation. SE = standard error. DF= degrees of freedom. 

 

The analysis revealed a significant negative main effect of radial error (p = .001), such 

that trials with higher errors resulted in smaller RewPs than trials with smaller errors. A 

positive significant main effect of radial error² (p = .025) was also found, but it was 

superseded by a significant interaction of Zone by Radial Error² (p = .048). The model’s 

estimate suggests that, in comparison to participants with a large zone of success, participants 
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with a small zone of success exhibit larger RewPs for small errors, but smaller RewPs for 

average to large errors. Participants with a small zone of success exhibit larger RewPs for the 

largest errors (≈ > 35 cm), but it is important to note that relatively few datapoints were used 

to estimate the RewP for these errors, as shown in Figure 9B, meaning that their effect on 

RewP should be interpreted with caution. No main effect of zone (p =.818), trial number (ps 

≥ .183), or any other interactions (ps ≥ .173) were found. Figure 9A depicts the effect of 

radial error on the RewP for each of the assigned zones of success in our data, while Figure 

9B represents the model’s predictions about the interaction between zone of success and 

radial error. 

Figure 9  

RewP Amplitude as a Function of Radial Error and Zone of Success 
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Note. A: Figure shows boxplots of RewP amplitude as a function of radial error (in increments of 10 

cm) and zone of success. B: Figure shows RewP amplitude as a function of radial error and zone of 

success. C: Figure plots Model 3’s estimates of the interaction between quadratic radial error 4 and 

zone on RewP amplitude. 

 
4 For the sake of better interpretation of the results, we also ran Model 3 with uncentered 

radial error and radial error², and we used the results of this model to plot Figure 9B. 

Different from the original model, we had to drop Trial² from the random effects for the 
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Movement Preparation 

Figure 10 depicts the average scalp topography across participants in the alpha 

frequency band for all four epochs. 

Figure 10  

Average Scalp Topography for the Alpha Frequency Band per Epoch 

 

Note. Figure represents the average scalp topography across participants in the alpha frequency band 

(7.8 Hz – 12.7 Hz) for each of the four epochs (3-s – 2-s prior to movement onset, 2-s – 1-s prior to 

movement onset, 1-s – 0-s prior to movement onset, and 0-s – 1-s after movement onset). Warmer 

colors represent higher power. 

 

Model 1 - Effects of Perception of Success on Motor Upper-Alpha 

Results of the analysis of the effect of perceptions of success on motor upper-alpha 

power are presented in Table 6. 

Table 6  

Model 1 Type III Analysis of Variance Table with Satterthwaite's method 

Effects Sum Sq Mean Sq NumDF DenDF F value p-value 
Prior Success 3.43 3.43 1 14921.00 1.88 .171 
Trial 11.37 11.37 1 44.6 6.23 .016* 
Trial² 3.00 3.00 1 14916.30 1.65 .200 

 
model to converge. Importantly, the reported results in the text refer to the model with 

centered radial error and centered radial error² and the random effect of Trial². 
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Epoch 31.367 10.46 3 193.90 5.73 <.001* 
Prior Success:Trial 5.43 5.43 1 10501.00 2.98 .085 
Prior Success:Trial² 3.24 3.24 1 14920.20 1.77 .183 
Prior Success:Epoch 1.74 0.58 3 14823.90 0.32 .813 
Trial:Epoch 57.40 19.13 3 14900.40 10.49 <.001* 
Trial²:Epoch 1.71 0.57 3 14930.20 0.31 .817 
Prior Success:Trial:Epoch 16.84 5.61 3 14908.90 3.08 .026* 
Prior Success:Trial²:Epoch 4.30 1.43 3 14937.7 0.79 .502 

Note. Number of observations: 15081, participants: 42. * indicates significant differences. Sum Sq = 

sum of squares. Mean Sq = mean square. NumDF = numerator degrees of freedom. DenDF = 

denominator degrees of freedom. 

 

The analysis revealed a significant main effect of trial (omnibus test p = .016), such 

that more experience in the task resulted in higher motor upper-alpha power. A main effect of 

epoch was also found, confirming the impressions from Figures 10 and 12 that later epochs 

resulted in decreased motor upper-alpha power (omnibus test p < .001). Figure 12 depicts the 

effect of epoch on motor upper-alpha power. These effects were superseded by significant 

interactions of Trial by Epoch (omnibus test p < .001), and Prior Success by Trial by Epoch 

(omnibus test p = .026). Figure 13 depicts the two- and three-way interactions and indicates 

that, over the course of practice trials, motor upper-alpha power increased during motor 

preparation (epochs 1 – 3), but not motor execution (epoch 4), resulting in the Trial by Epoch 

interaction. Crucially, this interaction was significantly stronger following successful trials, 

producing the Prior Success by Trial by Epoch interaction. No other main effects (ps ≥ .171) 

or interactions (ps ≥ .085) were found.  

Figure 11 

Relationship Between Trial Number and Motor-Upper Alpha Power 
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Note. A: Figure shows the relationship between motor upper-alpha power and trial. The black line 

represents the quadratic relationship between motor upper-alpha and trial for the sample, whereas the 

gray lines represent the slope for each participant. B: Figure shows, for every epoch, the average 

motor upper-alpha power across participant for every trial in gray and the quadratic line of best fit in 

black. 
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Figure 12  

Relationship Between Epoch and Motor Upper-Alpha Power 

 

Note. Figure shows, for each epoch, the average motor upper-alpha power across participant for every 

trial in gray, and the average across trial in black. 

 

Figure 13  

Motor Upper-Alpha Power as a Function of Prior Success, Trial Number, and Epoch 
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Note. A: Figure shows motor upper-alpha power as a function of trial number after successful (green 

line) and unsuccessful (red line) trials, separated by epoch. B: Figure shows motor upper-alpha power 

as a function of epoch in trials 2 to 25 (burgundy line), 26 to 50 (orange line), 51-75 (light blue line), 

and 76-100 (dark blue line), separated by prior success. Vertical bars represent 95% confidence 

intervals. 

 

Model 2 - Effects of Error Magnitude on Motor Upper-Alpha 

Results of the analysis of the effect of error magnitude on motor upper-alpha power 

are presented in Table 7. 
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Table 7  

Model 2 Type III Analysis of Variance Table with Satterthwaite's method 

Effects Sum 
Sq 

Mean 
Sq 

NumDF DenDF F value p-value 

Prior Radial Error 1.48 1.48 1 318.70 0.82 .365 
Prior Radial Error² 2.17 2.17 1 1841.20 1.21 .272 
Prior Radial Error³ 0.02 0.02 1 441.50 0.010 .920 
Trial 13.96 13.96 1 48.10 7.78 .008* 
Trial² 1.44 1.44 1 168.70 0.805 .371 
Epoch 39.86 13.29 3 262.30 7.41 <.001* 
Prior Radial Error:Trial 4.46 4.46 1 9658.50 2.49 .115 
Prior Radial Error:Trial² 0.13 0.13 1 8829.50 0.07 .791 
Prior Radial Error:Epoch 2.87 0.96 3 14876.90 0.53 .659 
Prior Radial Error²:Trial 8.78 8.78 1 8917.40 4.90 .027* 
Prior Radial Error²:Trial² 17.67 17.69 1 8604.80 9.85 .002* 
Prior Radial Error²:Epoch 6.63 2.21 3 14946.80 1.23 .297 
Prior Radial Error³:Trial 17.55 17.55 1 730.40 9.78 .002* 
Prior Radial Error³:Trial² 25.37 25.37 1 657.80 14.15 <.001* 
Prior Radial Error³:Epoch 0.94 0.31 3 14921.00 0.17 .914 
Trial:Epoch 27.16 9.05 3 14872.90 5.05 .002* 
Trial²:Epoch 3.08 1.03 3 14868.60 0.57 .633 
Prior Radial Error:Trial:Epoch 11.59 3.86 3 14884.60 2.15 .091 
Prior Radial Error:Trial²:Epoch 9.58 3.19 3 14883.20 1.78 .148 
Prior Radial Error²:Trial:Epoch 12.35 4.12 3 14880.90 2.29 .076 
Prior Radial Error²:Trial²:Epoch 3.19 1.06 3 14884.00 0.59 .620 
Prior Radial Error³:Trial:Epoch 36.47 12.16 3 14879.10 6.78 <.001* 
Prior Radial Error³:Trial²:Epoch 16.60 5.53 3 14877.80 3.09 .026* 

Note. Number of observations: 15081, participants: 42. * indicates significant differences. Sum Sq = 

sum of squares. Mean Sq = mean square. NumDF = numerator degrees of freedom. DenDF = 

denominator degrees of freedom. 

 

The analysis revealed a significant main effect of trial (omnibus test p = .008) and a 

significant main effect of epoch (omnibus test p < .001). These effects were superseded by 

significant interactions of Prior Radial Error² by Trial (omnibus test p = .027), Prior Radial 

Error³ by Trial (omnibus test p = .002), and Trial by Epoch (omnibus test p = .002). 

Significant interactions of Prior Radial Error² by Trial² (omnibus test p = .002), and Prior 

Radial Error³ by Trial² (omnibus test p < .001) were also found. Finally, we detected three-

way interactions of Prior Radial Error³ by Trial by Epoch (omnibus test p < .001), and Prior 

Radial Error³ by Trial² by Epoch (omnibus test p = .026). 
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 No other main effects (ps ≥ .272) or interactions (ps ≥ .076) were found. Figure 14 

depicts the effect of prior radial error and trial number on motor upper-alpha power for each 

epoch. 

Figure 14  

Motor Upper-Alpha Power as a Function of Prior Radial Error, Acquisition Phase, and 

Epoch 

 

Note. Figure shows the relationship between motor upper-alpha power and prior radial error in each 

epoch as a function of acquisition phase, where the early phase is in burgundy and represents trials 2 

to 50, and the late phase is in light blue and represents trials 51-100. 

 

Comparing Model 1 and Model 2 

The Wald likelihood ratio tests indicated that Model 2, but not Model 1, was a 

significant improvement above the Reference (trial and epoch-only) Model, and that Model 

2’s likelihood ratio was significantly different from Model 1’s likelihood ratio (Table 8). It is 
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important to notice, however, that Model 2 is more complex than both the Reference Model 

and Model 1, which can result in overfitting. 

Table 8  

Wald Likelihood Ratio Test for the Reference Model, Model 1, and Model 2 of Motor Upper-

Alpha Power 

Model npar AIC logLik Test L.Ratio p-value 

Reference 20 52432 -26196    

Model 1 29 52444 -26193 Reference vs. Model 1 5.77 .763 

Model 2 65 52263 -26067 Model 1 vs. Model 2 252.73 <.001* 

Note. * indicates significant differences. npar= number of parameters. AIC= Akaike Information 

Criterion. logLik= log-likelihood. L.Ratio= Absolute likelihood-ratio. 

 

The conditional pseudo-R2 revealed that, overall, Model 2 had a higher effect size 

than Model 1, suggesting that error magnitude explained more of the motor upper-alpha 

power variance than perceptions of success (Table 9). 

Table 9  

Conditional Pseudo-R2 Test for the Reference Model, Model 1, and Model 2 on Motor Upper-

Alpha Power 

Model Conditional R2 

Reference .29 

Model 1 .29 

Model 2 .31 

 

Figure 15 depicts the relationship between prior success, prior radial error, and motor 

upper-alpha power. 
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Figure 15 

Relationship of Prior Success and Prior Radial Error on Motor Upper-Alpha Power 

 

 

Note. Figure shows, for each epoch, the relationship between motor upper-alpha power and prior 

radial error for previous successful (in) and unsuccessful (out) trials in traced blue and solid pink 

lines, respectively. The shaded areas represent 95% confidence intervals. 

 

Model 3 - Effects of Zone of Success Assignment and Error Magnitude on Motor Upper-

Alpha Power 

Results of the analysis of the effect of assigned zone of success, error magnitude on 

the previous trial, and trial number on motor upper-alpha power are presented in Table 10. 

Table 10 

Model 3 Type III Analysis of Variance Table with Satterthwaite's method 

Effects Sum 
Sq 

Mean 
Sq 

NumDF DenDF F value p-value 

Zone <0.01 <0.01 1 41.30 <0.01 .983 
Prior Radial Error 0.84 0.84 1 661.80 0.47 .494 
Prior Radial Error² 3.41 3.41 1 13622.70 1.90 .169 
Prior Radial Error³ 0.80 0.80 1 8485.20 0.45 .504 
Trial 12.94 12.94 1 47.30 7.19 .010* 
Trial² 1.12 1.12 1 165.90 0.62 .432 



 

116 
 

Epoch 39.20 13.07 3 248.20 7.26 <.001* 
Zone:Prior Radial Error 0.98 0.98 1 661.80 0.54 .462 
Zone:Prior Radial Error² 0.15 0.15 1 13622.70 0.08 .773 
Zone:Prior Radial Error³ 0.27 0.27 1 8485.20 0.15 .701 
Zone:Trial 0.30 0.30 1 47.30 0.17 .685 
Zone:Trial² 1.31 1.31 1 165.90 0.73 .394 
Zone:Epoch 8.48 2.83 3 248.20 1.57 .197 
Prior Radial Error:Trial 2.67 2.67 1 14512.30 1.48 .224 
Prior Radial Error:Trial² 0.23 0.23 1 13628.60 0.13 .720 
Prior Radial Error:Epoch 3.08 1.03 3 14794.10 0.57 .634 
Prior Radial Error²:Trial 7.26 7.26 1 11507.40 4.03 .045* 
Prior Radial Error²:Trial² 14.70 14.70 1 9859.40 8.17 .004* 
Prior Radial Error²:Epoch 3.14 1.05 3 14852.50 0.58 .627 
Prior Radial Error³:Trial 4.99 4.99 1 8917.10 2.78 .096 
Prior Radial Error³:Trial² 10.00 10.00 1 7954.00 5.56 .018* 
Prior Radial Error³:Epoch 3.39 1.13 3 14780.30 0.63 .596 
Trial:Epoch 23.20 7.73 3 14787.70 4.30 .005* 
Trial²:Epoch 3.26 1.09 3 14779.20 0.60 .613 
Zone:Prior Radial Error:Trial 0.18 0.18 1 14512.30 0.10 .750 
Zone:Prior Radial Error:Trial² 4.86 4.86 1 13628.60 2.70 .100 
Zone:Prior Radial Error:Epoch 6.55 2.18 3 14794.10 1.21 .303 
Zone:Prior Radial Error²:Trial 0.03 0.03 1 11507.40 0.02 .894 
Zone:Prior Radial Error²:Trial² 0.30 0.30 1 9859.40 0.17 .681 
Zone:Prior Radial Error²:Epoch 9.43 3.14 3 14852.50 1.75 .155 
Zone:Prior Radial Error³:Trial 0.02 0.02 1 8917.10 0.01 .921 
Zone:Prior Radial Error³:Trial² 0.60 0.60 1 7954.00 0.33 .564 
Zone:Prior Radial Error³:Epoch 9.57 3.19 3 14780.30 1.77 .150 
Prior Radial Error:Trial:Epoch 3.55 1.19 3 14814.50 0.66 .578 
Prior Radial Error:Trial²:Epoch 2.82 0.94 3 14791.00 0.52 .667 
Prior Radial Error²:Trial:Epoch 11.32 3.78 3 14803.20 2.10 .098 
Prior Radial Error²:Trial²:Epoch 1.77 0.59 3 14797.20 0.33 .806 
Prior Radial Error³:Trial:Epoch 3.59 1.20 3 14822.10 0.67 .574 
Prior Radial Error³:Trial²:Epoch 0.61 0.20 3 14801.40 0.11 .952 
Zone:Prior Radial 
Error:Trial:Epoch 

15.17 5.06 3 14814.50 2.81 .038* 

Zone:Prior Radial 
Error:Trial²:Epoch 

8.41 2.80 3 14791.00 1.56 .197 

Zone:Prior Radial 
Error²:Trial:Epoch 

1.58 0.53 3 14803.20 0.29 .831 

Zone:Prior Radial 
Error²:Trial²:Epoch 

7.35 2.45 3 14797.20 1.36 .253 

Zone:Prior Radial 
Error³:Trial:Epoch 

6.61 3.20 3 14822.10 1.78 .148 

Zone:Prior Radial 
Error³:Trial²:Epoch 

9.63 3.21 3 14801.40 1.79 .148 

Note. Number of observations: 15081, participants: 42. * indicates significant differences. Sum Sq = 

sum of squares. Mean Sq = mean square. NumDF = numerator degrees of freedom. DenDF = 

denominator degrees of freedom. 
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The analysis revealed a positive significant main effect of trial (omnibus test p = .010) 

and a main effect of epoch (omnibus test p < .001). These effects were superseded by 

significant interactions of Trial by Epoch (omnibus test p = .005), Prior Radial Error³ by Trial 

(omnibus test p = .045), and Zone by Prior Radial Error by Trial by Epoch (omnibus test p = 

.038). Significant interactions of Prior Radial Error² by Trial² (omnibus test p = .004), and 

Prior Radial Error³ by Trial² (omnibus test p = .018) were also found. No other main effects 

(ps ≥ .169) or interactions (ps ≥ .096) were found. To unpack the Zone by Prior Radial Error 

by Trial by Epoch interaction, we conducted post-hoc tests where we ran the same model 

(without zone as a predictor) for each zone of success 5. A significant Prior Radial Error by 

Trial by Epoch interaction was only found for the large zone group (omnibus test p = .011). 

For the small zone group, only a significant Trial by Epoch interaction (omnibus test p = 

.035) and significant main effect of trial (omnibus test p = .013) were found (Figure 16).  

Figure 16 

Relationship Between Zone of Success, Prior Radial Error, Trial Number, Epoch, and Motor-

Upper Alpha Power 

 

 
5 Because the model did not converge with trial² in the random-effects of the large zone group model, 

we removed it from the random-effects of both the large zone group and the small zone group 

models. 
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Note: Figure A shows, for the large zone group, the relationship between motor upper-alpha power 

and prior radial error in trials 2 to 25, 26 to 50, 51-75, and 76-100 (represented by different rows) for 

every epoch (represented by different columns). The black line represents the cubic relationship 

between motor upper-alpha and prior radial error for the sample, whereas the gray lines represent the 

cubic slope for each participant. Figure B shows, for the small zone group, the relationship between 

motor upper-alpha power and prior radial error in trials 2 to 25, 26 to 50, 51-75, and 76-100 

(represented by different rows) for every epoch (represented by different columns). The black line 

represents the cubic relationship between motor upper-alpha and prior radial error for the sample, 

whereas the gray lines represent the cubic slope for each participant. 
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Discussion 

Performance success has a bidirectional relationship with feedback-related and motor-

preparatory brain activity. Feedback about a successful movement serves as a positive RPE 

that reinforces the precipitating action, so that it can be repeated in future trials. On the 

contrary, feedback about an unsuccessful action signals that neural resources should be 

allocated to reprogramming the movement in future trials, so that the unsuccessful action is 

avoided and the goal can be achieved (Margraf et al., 2022). Importantly, an objective 

outcome can lead to feedback that is subjectively perceived as successful or unsuccessful. 

Therefore, it is important to investigate how objective and subjective outcomes affect 

feedback-related and motor-preparatory brain activity. Thus, we recorded participants’ EEG 

while having them practice a motor skill with an objective outcome (how far from the center 

of a target a puck that they shot landed [error magnitude]) and a subjective outcome (whether 

the puck landed in a zone of success surrounding the center of the target). Some participants 

had a relatively large zone of success and others had a relatively small zone of success. We 

explored how the objective and subjective success of trials as well as their interaction 

influenced the EEG measures of RewP amplitude, a proxy of RPE, and motor upper-alpha 

power, an index of motor programming. We also examined how experience (practice trial 

number) and its interaction with objective and subjective success influenced RewP and motor 

upper-alpha power.  

Based on previous literature showing that feedback with a positive valence elicits 

larger RewPs than feedback with a negative valence (Margraf et al., 2022; Weinberg et al., 

2014), we hypothesized that trials that stopped within participants’ zone of success would 

elicit larger RewPs than unsuccessful trials. Results from our first model confirm this 

hypothesis and are consistent with the assumption that feedback with positive valence is 

interpreted as rewarding. Crucially, the zone of success assigned to participants was arbitrary, 
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indicating that giving subjective meaning to learners’ performance outcomes can be an 

effective and simple way to manipulate the brain reward system during practice. This result is 

consistent with past research showing that a simple manipulation of performers’ perceptions 

is capable of affecting RPEs (RewPs) during practice. In Wilhelm et al. (2019), fictitious 

information about the performance of other participants in the task led performers to believe 

some blocks of trials were more difficult than others. Even though task difficulty remained 

the same in each block and participants had about the same number of successful trials in 

each block, positive feedback during “difficult” blocks led to larger RewPs. We add to these 

results by showing that not only the perceived likelihood of success but also the actual 

perception of success during practice can be modulated by task instructions to affect feedback 

processing. 

Crucially, RewP seems to be responsive not only to binary and subjective feedback 

(e.g., in or out of zone of success) but also to graded, objective feedback (e.g., error 

magnitude [radial error]), as revealed by Frömer et al. (2016). In that study, successful trials 

with smaller error magnitudes produced more positive RewPs than successful trials with 

larger error magnitudes. Similar conclusions can be drawn from Model 2 in our study, which 

showed that smaller errors resulted in larger RewPs, supporting our hypothesis that error 

magnitude would show a negative relationship with RewP amplitude.  

RPEs are expected to be affected by the valence and value of the reward, but are also 

expected to be negatively affected by reward likelihood. For instance, Williams et al. (2017) 

reported smaller RewPs following good trials in easier conditions wherein good performance 

was expected, as compared to difficult conditions in which successful trials were rare. Thus, 

we hypothesized that there would be a decrease in RewP amplitude throughout practice, 

given that performers should expect more positive outcomes later in practice as they improve. 

However, although trial had a negative effect on RewP when alone in the model, no effect of 
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trial was found when controlling for radial error and success. The mini-shuffleboard task used 

in this experiment was difficult, as evidenced by an average success rate below 50% for 

participants, even for those with the easier criterion of success (Table 2 of Chapter 2), and by 

a non-significant performance improvement during the acquisition phase (Figure 4 of Chapter 

2). Given the small performance improvement during acquisition, it is possible that 

participants’ expectations for positive outcomes did not change considerably from the 

beginning to the end of acquisition, explaining the lack of a trial number effect on RewP. It is 

possible that a main effect of trial number could still be found in lengthier practice sessions or 

for an easier motor task, similar to the effects of practice found on a cognitive task in 

Williams et al. (2018). 

After observing that both perception of success and radial error explain RewP 

variance, we compared models to identify which one explained more variance. Interestingly, 

we observed that, although the radial error model (Model 2) was more complex (i.e., had 

more parameters due to the quadratic terms of radial error added to both the fixed and random 

effects), the success model (Model 1) had a larger effect on feedback processing. To the best 

of our knowledge, this is the first study that compared the effects of subjective and objective 

success on RewP during skill acquisition. Our results indicate that, to the RewP, the 

subjective interpretation of the outcome matters more than its objective level of accuracy. 

Beyond the main effects of perception of success, error magnitude, and experience on 

feedback processing, we also expected these predictors to interact with each other. However, 

we did not observe interactions involving experience. These interaction hypotheses were 

largely based on the premise that participants would perform better from the beginning to the 

end of acquisition. Specifically, we expected that unsuccessful trials and inaccurate trials 

would result in small RewPs throughout practice, but successful and accurate trials would 

initially result in high RewP amplitudes that would progressively decrease as participants 
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came to expect these outcomes later in practice. However, that participants probably did not 

change their expectations for success and accuracy during acquisition likely precluded trial 

number from moderating the effects of error magnitude or perception of success. We also 

expected an interaction between perception of success and error magnitude and an interaction 

between perception of success, error magnitude, and experience. Unfortunately, we were 

unable to test these hypotheses directly, due to multicollinearity between perception of 

success and error magnitude. Instead, we tested whether the criterion of success assigned to 

the performer moderated the effect of radial error on RewP. Interestingly, our results revealed 

an interaction between the quadratic term of radial error and zone of success. Specifically, for  

trials with the smallest errors, participants with a small zone of success exhibited larger 

RewPs than participants with a large zone of success. Conversely, for trials with more 

moderate errors, participants with a large zone of success exhibited larger RewPs than 

participants with a small zone of success. For trials with the largest errors, participants with a 

small zone of success exhibited larger RewPs, but this result is based on relatively few data 

points and is likely forced by our quadratic model; thus, it should be interpreted with caution. 

Our results are consistent with the reinforcement learning theory prediction that when reward 

is infrequent, as was the case for participants with the small zone of success, positive 

feedback is surprising and results in large RPEs. For participants with the large zone of 

success, moderately accurate trials were often successful, which explains why these 

participants had larger RewPs for these trials than participants with a small zone of success. 

Overall, our results suggest that simple task instructions provided by an instructor, 

coach, or physical therapist can shape the way learners interpret performance outcomes, and 

consequently their rewarding value. A task that has a difficult criterion for success will make 

successful outcomes rare but highly rewarding. A task that has an easier criterion for success 

will make successful outcomes more frequent but less rewarding. Increasing the value of an 
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action is expected to result in increased dopaminergic activity in the midbrain and to be 

associated with motor memory consolidation, increasing the likelihood that the action is 

selected in the future (Lohse et al., 2019). Importantly, however, frequent activation of the 

neural reward system may promote long-term retention. Therefore, in practice, a moderately 

challenging criterion of success should be adopted, such that learners have their reward 

system activated when they achieve successful outcomes, and these outcomes are somewhat 

frequent. This conclusion is aligned with the optimal challenge point framework, which 

posits that the functional level of task difficulty has an inverted-U relationship with the 

potential learning benefit of a practice session, such that the optimal challenge point does not 

coincide with the highest nor the lowest level of success on the task (Guadagnoli & Lee, 

2004). 

In addition to mechanisms of feedback processing, motor-preparatory brain activity 

was also shown to be affected by perceptions of success. We expected that higher motor 

upper-alpha power would be observed on trials following those perceived as successful in 

comparison to those perceived as unsuccessful, given that participants would be less inclined 

to reprogram successful movements, thus requiring fewer neural resources for movement 

preparation. Although we did not directly confirm this hypothesis, a prior success by trial 

number by epoch interaction in Model 1 showed that this effect is dependent on task 

experience, being mostly observed later in practice. This result is likely due to the fact that in 

initial stages of learning, learners have a weak internal model (Callan et al., 2014), making it 

difficult to understand how to repeat the movement that resulted in success. Additionally, 

movement preparation generally is consciously controlled and inefficient in that stage (Fitts 

& Posner, 1967), resulting in a large allocation of neural resources regardless of the previous 

outcome. As the learner gains control over their movement and performs it with more 

automaticity, successful outcomes progressively result in less motor programming activity, 
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while unsuccessful outcomes still compel learners to allocate substantial neural resources to 

movement preparation, so that the previous movement can be corrected, and the goal can be 

achieved. Importantly, the change in motor upper-alpha power across practice for trials 

following successful outcomes was only observed in the seconds preceding movement onset, 

not in the second following the start of the movement. This result indicates that the decreased 

allocation of resources throughout practice is strictly reserved for movement preparation, 

rather than for movement execution. Along the same lines, Cooke et al. (2015) found that 

experts showed higher upper-alpha power following successful trials than unsuccessful trials 

in the three seconds that preceded movement initiation (but not in the second after movement 

initiation), while no effect of outcome was found for novices. We expand upon these results 

by showing that the effect of objective performance outcomes can be created with subjective 

performance outcomes, using simple and arbitrary task instructions, and that the effect of 

experience can be observed on a trial-by-trial basis, over a single practice session.  

Interestingly, when determining the quantity of resources to allocate to motor 

programming, the neural system seems to consider the performance outcome of the prior trial 

in a graded fashion in addition to a binary one. Although we did not find a main effect of 

radial error on motor upper-alpha power as we hypothesized, our Model 2 results showed that 

error magnitude affected movement preparation in a non-linear fashion, when experience and 

epoch were also considered. Crucially, this model had a larger effect size than the success 

model (Model 1), suggesting that prior radial error explains more of motor upper-alpha power 

variance than prior success. Although this result should be taken with caution, given the 

difference in complexity between these two models, we provide some evidence that, different 

from feedback processing, objective success seems to matter more than subjective success for 

movement preparation. As far as we know, this is the first study to compare these effects and 

the first study to show that motor upper-alpha power is responsive to graded feedback. The 
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strict use of binary measurements (e.g., made vs. missed shots) confounded the effects of 

outcome success and error magnitude in previous studies. 

Although we wanted to test, in an exploratory way, whether perception of success and 

error magnitude interact to affect movement preparation, we were unable to do so, due to 

multicollinearity between these variables. Instead, we tested whether the criterion of success 

assigned to the performer moderated the effect of prior radial error on motor upper-alpha 

power. We found that providing learners with a criterion of success further complicates the 

relationship between error magnitude, trial number, and epoch, such that this interaction was 

present for participants with the large zone, but not for participants with the small zone. 

Therefore, for learners with an easy criterion of success, motor-preparatory brain activity 

seems to be modulated by interactions of objective success, experience, and epoch, while 

learners with a more difficult criterion appear to have their motor-preparatory brain activity 

influenced by experience and epoch. Once again, these results confirm that task instructions 

that affect learners’ perceptions of success can affect the way movement is programmed 

during practice. 

Finally, based on previous studies that showed effects of expertise on motor upper-

alpha power (Cooke et al., 2014, 2015; Percio et al., 2010), we predicted a positive main 

effect of trial number, such that the more experienced the participants became, the fewer 

resources would be allocated for motor programming. The effect of trial was indeed 

consistent across models, but it was also shown to be moderated by other variables (prior 

success, prior radial error, epoch, and zone), sometimes assuming a quadratic relationship in 

these interactions. It can be concluded that, overall, motor upper-alpha power tends to 

increase throughout practice, but this increase can be larger or smaller depending on the 

outcome of the previous trial, the determined criterion of success, and epoch. Interestingly, 

even though the performance of the participants did not improve significantly across 
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acquisition blocks (see Chapter 2), fewer resources were used to achieve similar outcomes, 

indicating higher neural efficiency as a function practice (Neubauer & Fink, 2009). 

In conclusion, the results of this study make it clear that both subjective success and 

objective success have significant and important effects on mechanisms of feedback 

processing and movement preparation that underlie motor skill acquisition, such as 

modulating the value and frequency of RPEs received in a practice session, and the quantity 

of neural resources dedicated to motor-preparatory brain activity. Importantly, we 

demonstrated that these effects can be achieved by the establishment of arbitrary criteria for 

success with simple task instructions that give subjective meaning to learners’ outcomes. 
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APPENDIX A 

Feedback Processing Models 

 

Variables:  
 

→ RewP = single-trial RewP amplitude 

→ Success.c = contrast-coded success (in/out) in the current trial 

→ Trial.c = linear contrast-coded trial (1-unit change = 10 trials) 

→ Trial.c.sq = (Trial.c)² 

→ Radial.error.c = group-mean-centered single-trial radial error 

→ Radial.error.c.sq = (Radial.error.c)² 

→ Zone.c = contrast-coded criterion of success (large zone/small zone) 

→ SubID = participant identification 

 

Model 1 - Effects of Perception of Success on the RewP             

Model.1 = lme ( RewP ~  
                       

# fixed-effects 
                      Success.c * Trial.c + 
                      Success.c * Trial.c.sq, 
                       

 # random-effects 
                       random = ~ 1 + Success.c + Trial.c + Trial.c.sq | SubID, 
                       method='ML', data = dat1) 
 

Model 2 - Effects of Error Magnitude on the RewP 

Model.2 = lme (RewP ~  
                       

# fixed-effects 
                       Radial.error.c * Trial.c + 
                       Radial.error.c.sq * Trial.c + 
                       Radial.error.c * Trial.c.sq + 
                       Radial.error.c.sq * Trial.c.sq, 
                       

 # random-effects 
                       random = ~ 1 + Radial.error.c + Radial.error.c.sq + Trial.c + Trial.c.sq | SubID, 
            method='ML', data = dat1) 
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Model 3 - Effects of Zone of Success Assignment and Error Magnitude on the RewP 

Model.3 = lme (RewP ~  
                       

# fixed-effects 
                       Trial.c * Radial.error.c * Zone.c + 
                       Trial.c.sq * Radial.error.c * Zone.c + 
                       Trial.c * Radial.error.c.sq * Zone.c + 
                       Trial.c.sq * Radial.error.c.sq * Zone.c, 
                        

# random-effects 
                       random = ~ 1 + Radial.error.c + Radial.error.c.sq + Trial.c + Trial.c.sq | SubID, 
                       method='REML', data = dat1a) 
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APPENDIX B 

Movement Preparation Models 

 

Variables:  
 

→ Alpha = single-trial motor upper-alpha power 

→ Prior.Success.c = contrast-coded success (in/out) in the previous trial 

→ Trial.c = linear contrast-coded trial (1-unit change = 10 trials) 

→ Trial.c.sq = (Trial.c)² 

→ Prior Radial.error.c = group-mean-centered radial error in the previous trial 

→ Prior.Radial.error.c.sq = (Prior Radial.error.c)² 

→ Prior.Radial.error.c.cb = (Prior Radial.error.c)³ 

→ Epoch = epoch (-3s - -2s, -2s - -1s, -1s - 0s, 0s - 1s)  

→ Zone.c = contrast-coded criterion of success (large zone/small zone) 

→ SubID = participant identification 

 

Model 1 - Effects of Perception of Success on Motor-Upper Alpha 

Model.1 = lmer (Alpha ~  
                       

# fixed-effects 
Prior.Success.c * Trial.c * Epoch + 
Prior.Success.c * Trial.c.sq * Epoch + 

                                   
# random-effects 

(1 + Trial.c | SubID) + (1 | SubID:Epoch), 
                       REML= FALSE, dat2, optCtrl=list(maxfun=5e5))) 
 
 

Model 2 - Effects of Error Magnitude on Motor-Upper Alpha 

Model.2 = lmer (Alpha ~  
                       

# fixed-effects 
Prior.Radial.Error.c * Trial.c * Epoch + 
Prior.Radial.Error.c * Trial.c.sq * Epoch + 
Prior.Radial.Error.c² * Trial.c * Epoch + 
Prior.Radial.Error.c² * Trial.c.sq * Epoch + 
Prior.Radial.Error.c³ * Trial.c * Epoch + 
Prior.Radial.Error.c³ * Trial.c.sq * Epoch + 
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# random-effects 

(1 + Trial.c + Trial.c.sq + Prior.RE.c + Prior.RE.c.sq | SubID) +  
(1 | SubID:Epoch), 
REML= FALSE, dat2, optCtrl=list(maxfun=5e5))) 

 
 
Model 3 - Effects of Zone of Success Assignment and Error Magnitude on Motor Upper 

Alpha 

Model.3 = lmer (Alpha ~  
                       

# fixed-effects 
Zone.c*Prior.Radial.Error.c * Trial.c * Epoch + 
Zone.c*Prior.Radial.Error.c * Trial.c.sq * Epoch + 
Zone.c*Prior.Radial.Error.c² * Trial.c * Epoch + 
Zone.c*Prior.Radial.Error.c² * Trial.c.sq * Epoch + 
Zone.c*Prior.Radial.Error.c³ * Trial.c * Epoch + 
Zone.c*Prior.Radial.Error.c³ * Trial.c.sq * Epoch + 

 
# random-effects 

(1 + Trial.c + Trial.c.sq + Prior.RE.c | SubID) +  
(1 | SubID:Epoch), 
REML= TRUE, dat2, optCtrl=list(maxfun=5e5))) 

 
 

Post-Hoc Models - Effects of Error Magnitude, Trial, and Epoch on Motor Upper Alpha 

for each Zone 

 
Model.3.Zone = lmer (Alpha ~  
                       

# fixed-effects 
Prior.Radial.Error.c * Trial.c * Epoch + 
Prior.Radial.Error.c * Trial.c.sq * Epoch + 
Prior.Radial.Error.c² * Trial.c * Epoch + 
Prior.Radial.Error.c² * Trial.c.sq * Epoch + 
Prior.Radial.Error.c³ * Trial.c * Epoch + 
Prior.Radial.Error.c³ * Trial.c.sq * Epoch + 

 
# random-effects 

(1 + Trial.c + Prior.RE.c | SubID) +  
(1 | SubID:Epoch), 
REML= TRUE, dat2_Zone, optCtrl=list(maxfun=5e5))) 
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