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Abstract

Spacecraft trajectory optimization is an essential task in space mission design. The propul-

sion system of the spacecraft can affect the type of trajectories that can be realized by a space-

craft. In the past few decades, electric propulsion systems (with their characteristic high specific

impulse values, but low thrust magnitudes) have revolutionized space trajectories. Low-thrust

trajectory design can be converted into boundary-value problems, which are typically chal-

lenging to solve because of a small domain of convergence and lack of knowledge about the

initial costates when indirect formalism of optimal control is adopted. Estimating missing val-

ues of the non-intuitive costates is an important step in solving the resulting boundary-value

problems. In this thesis, the initial costates are obtained using two methods: 1) random ini-

tialization, and 2) when costate initial values are constrained to lie on a unit 8-dimensional

hypersphere. Minimum-fuel trajectories are designed for a heliocentric maneuver from Earth

to comet 67P/Churyumov–Gerasimenko. The two costate initialization methods are compared

against each other in terms of the percent of convergence and accuracy of the results of the

associated boundary-value problems. After this analysis, the Adjoint Control Transformation

costate initialization method is considered. By leveraging costate vector mapping theorem,

the method of Adjoint Control Transformation (ACT) is extended to alternative sets of coordi-

nates/elements for solving low-thrust trajectory optimization problems, called Mapped Adjoint

Control Transformation (MACT) . The development of MACT is the main contribution of this

thesis. In particular, this extension is applied to the set of modified equinoctial elements and

an orbital element set based on the specific angular momentum and eccentricity vectors (h-

e). The computational and robustness efficiency of the MACT method is compared against

the traditionally used random initialization of costates by solving 1) interplanetary rendezvous

maneuvers, 2) an Earth-centered, orbit-raising problem with and without the inclusion of J2

perturbation, and 3) an Earth-centered, orbit-raising problem with a relatively large number of

revolutions around the central body. For the considered problems, numerical results indicate
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two to three times improvement in the percent of convergence of the resulting boundary-value

problems when the MACT method is used compared to the random initialization method. Re-

sults also indicate that the h-e set is a contender and suitable choice for solving low-thrust

trajectory optimization problems.
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Chapter 1

Introduction

NASA launched its New Millenium Program (NMP) in 1994 to test and validate new technolo-

gies that aimed to develop cost-effective approaches to design space missions. The NMP was

responsible for several notable technology demonstrations. Deep Space 1 (DS1) mission was

the first and one of the most significant missions of the NMP. Launched in 1998, DS1 tested

Solar Electric Propulsion (SEP) which was used to propel the DS1 spacecraft to encounter

an asteroid 3352 McAuliffe [1]. Since then, several missions like SMART-1 [2], Dawn [3]

and Hayabusa [4] have successfully demonstrated the use of electric propulsion systems. In

addition, Hall-effect thrusters are considered for one of NASA’s missions to asteroid (16) Psy-

che [5]. SEP is now used by nearly half of the satellites in Geostationary Earth Orbit (GEO)

for North-South station keeping [6]. SEP systems have considerable economic advantages in-

cluding reduced launch mass, increased payload mass, and increased operational lifetime. For

instance, fully fueled Dawn spacecraft had a total wet mass of about 1200 kilograms with 450

kilograms of xenon propellant. A conventional propellant chemical system would only take a

few hours to provide an equivalent total impulse but would require over 66,000 kilograms of

propellant [6]. Electric propulsion systems have higher specific impulse values than chemical

propulsion systems, making them appealing from a fuel-efficiency point of view. However, to

provide the required change in the energy of the spacecraft, thruster(s) has (have) to operate

for extended continuous time intervals (on the order of days or even a few months). Moreover,

long coasting arcs may separate the thrusting arcs and the sequence and number of thrusting

and coasting arcs are not known in advance. This thrust-coast-thrust control profile is a char-

acteristic of minimum-fuel low-thrust trajectories. Thus, generating minimum-fuel, low-thrust
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trajectories can become quite challenging [7]. Also unlike chemical propulsion systems, space-

craft trajectories with electric propulsion systems are affected by the launch vehicle, solar array

power, number and type of thrusters, total mission duration, and the sequence of main events

(e.g, number and sequence of the gravity-assist maneuvers in more complex mission scenar-

ios) [8, 9, 10, 11]. The selection of the electric propulsion system will also affect the overall

optimality of the resulting trajectories [9, 10, 12, 11].

A trajectory optimization problem can be set up while using a low-thrust propulsion sys-

tem that aims at maximizing or minimizing a particular cost functional (i.e., to minimize the

duration of flight time or maximize the final mass or net delivered payload mass). Multidis-

ciplinary design optimization problems [13, 14] and problems that take into account certain

scientific merits [15] are also considered by researchers. Multi- and single-objective optimiza-

tion of low-thrust trajectories with gravity-assist maneuvers are also considered [16, 17, 18, 19,

20, 21, 22, 23]. In Ref. [24], a minimum-fuel trajectory for orbital hopping missions is consid-

ered and the optimization problem is formulated as multiple-phase nonlinear Optimal Control

Problems (OCPs) . The problem formulation in [24] contains multiple exo-atmospheric and

atmospheric flight phases, which require consideration of two sets of flight dynamics.

In general, OCPs can be solved using direct or indirect optimization methods [25] or hy-

brid methods [26, 27]. Direct methods solve for the states and control inputs approximately

through the discretization of continuous-time equations of motion into their discrete counter-

parts to form a non-linear programming (NLP) problem [28]. The main disadvantage of the

direct method is that the solution is not guaranteed to be optimal due to the approximations

involved within its formulation of OCPs. Ref. [29] provides a review on the state-of-the-art

development in numerical multi-objective trajectory optimization algorithms and spacecraft

stochastic trajectory planning techniques.

A significant portion of this thesis has already been published and can be found in [30],

[31] and [32].
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1.1 Indirect Method Overview

The indirect method (typically) forms the set of first-order necessary conditions of optimality

using the principles of the calculus of variation and optimal control theory [33]. In essence, the

original (dynamic) optimization problem is converted into determining the value or time history

of the so-called costates (or Lagrange multipliers) through which the trajectory optimization

problem is converted into a Hamiltonian boundary-value problem (i.e., a multi-point boundary-

value problem or a two-point boundary-value problem (TPBVP)) [34].

Since first-order necessary conditions of optimality are used to form the Hamiltonian

boundary-value problems, the solutions to the Hamiltonian boundary-value problems are ex-

tremal/stationary solutions. In the remainder of the thesis, the words “extremal” and “sta-

tionary” are used interchangeably. The resulting extremal solutions are of high resolution (in

both states and controls vs. time) that are instrumental for not only certain aerospace appli-

cations but also provide valuable databases for methods that use supervised learning methods

for trajectory optimization [35]. By “high resolution”, we mean that we obtain a very accurate

(temporal) profile of control inputs and their corresponding states. While trajectory optimiza-

tion is a prevalent step in mission design, it is also possible to perform co-optimization (i.e.,

simultaneous optimization) of spacecraft power subsystem parameters (e.g., the solar array

size), optimal modes of a multi-mode thruster and trajectory for maximizing the net delivered

payload [36]. Although direct optimization methods are easier to implement and do not re-

quire derivations using calculus of variations, the accuracy of the solution is compromised by

considering approximations and there is no guarantee that the resulting solutions are extremal

[37]. The indirect methods, on the other hand, can become quite difficult to apply to complex

problems and the resulting Hamiltonian boundary-value problems exhibit extremely sensitive

to the value of unknown variables (i.e., have a small domain of convergence). The numeri-

cal solutions to the Hamiltonian boundary-value problems are difficult to obtain due to several

reasons:

1. In most of the TPBVPs, the costates at the initial time are unknown and an efficient

strategy has to be devised to guess their values. However, it is typically the case that
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some (or all) states are known at both initial time (initial constraints) and final time (final

constraints) in a rendezvous-type trajectory optimization problem. As part of the solution

scheme, an integration algorithm is required to propagate the state and costate dynamics

using the initial state values and the guessed costate values to check for the closeness of

the final propagated state values to the final constraints.

2. The solution of the resulting TPBVPs is highly sensitive to the value of the initial costates

and therefore the domain of convergence of the TPBVP is small. Even though costates

carry sensitivity information of the cost functional relative to the change in states, they

are not physically meaningful [38], which makes their estimation to be a difficult task.

3. In minimum-fuel low-thrust trajectory optimization problems, the optimal thrust pro-

file can exhibit multiple switches between maximum and zero values. The number of

switches as well as the time duration of the thrust and coast arcs are not known a priori.

The presence of these unknown numbers of non-smooth switches in control reduces the

domain of convergence of the resulting TPBVPs substantially.

4. Addition of state-only and mixed state-control equality and inequality constraints re-

quires the derivation of additional necessary conditions (and potential tangency condi-

tions through the addition of additional constant Lagrange multipliers). For the particular

case of inequality constraints, activation of the constraints, duration of the activation, and

the possibility of having multiple activation and inactivation periods, make the solution

of TPBVPs extremely difficult.

Briefly, indirect optimization methods face notable challenges such as the requirement

of an initial guess for the costates (typically at the initial time), convergence issues due to

discontinuous events (e.g., switches in control profiles or the presence of eclipse entry and

exit events [39]), small convergence radius, and more importantly, difficulty in handling state

path constraints. However, if appropriate regularization and numerical continuation techniques

are leveraged, indirect optimization methods possess attractive numerical features [40, 41, 12]

(e.g., rapid convergence and substantially fewer number of design variables compared to the
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direct method). These features become useful for spacecraft trajectory design, since the motion

of the spacecraft is predominantly governed by two-body dynamics during heliocentric phases

of space flights [42, 43].

1.2 Improving the Convergence of Indirect Methods

In general, a number of factors impact the convergence performance of the algorithms used

for solving TPBVPs, including, 1) the choice of coordinates (e.g., Cartesian versus other sets

of elements), 2) regularization of non-smoothness events (e.g., throttle switches and eclipse

entry and existing conditions), 3) proper scaling of states, and 4) leveraging homotopy/contin-

uation methods. All the aforementioned items can play significant roles in obtaining extremal

solutions to challenging OCPs.

To overcome the difficulties associated with solving OCPs using indirect methods, homo-

topy or numerical continuation techniques are frequently used [44, 40, 45, 46, 47, 48, 49]. In

fact, it is not exaggerated if we state that for solving practical OCPs, it is extremely difficult (if

not impossible) to find the solution of OCPs without resorting to numerical continuation/ho-

motopy methods [25, 50]. The principal idea behind numerical continuation and/or homotopy

techniques is to embed the original OCP into a one- or multiple-parameter family of neighbor-

ing OCPs and to approach the solution of the original OCP in an iterative manner by solving a

series of (potentially neighboring) TPBVPs. This multi-parameter family of neighboring OCPs

can be constructed through several mechanisms, for instance, by altering the cost functional,

dynamics, boundary conditions, and natural parameters of the system.

For instance, let r = [x, y, z]⊤ denote the position of the center of mass of a spacecraft

relative to the central body (e.g., Earth), equations of motion of the spacecraft can be written in

terms of the Cartesian coordinates as

r̈ = − µ

r3
r +∆ → r̈ = −κ1

µ

r3
r + κ2∆c + κ3∆p, (1.1)

where r = ||r||, µ denotes the gravitational parameter of the central body and ∆ = ∆c +∆p

denotes the sum of accelerations due to the propulsion system, ∆c, and all other perturbing
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accelerations, ∆p (e.g., non-spherical gravity model, solar radiation pressure and third-body

perturbations). At least, for motion “close” to the central body and during preliminary phases

of the trajectory design, the predominant nonlinearity is due to the µ/r3 term. Thus, a rea-

sonable step (to attenuate the impact of this nonlinearity) is to consider smaller values for the

gravitational parameter, κ1 ∈ [κ1,min, 1], and solve spacecraft trajectory optimization problems

starting from κ1 = κ1,min and its associated TPBVP. Once an extremal solution is obtained, it is

possible to increase the value of κ1 and use the converged solution of the previous TPBVP for

a new TPBVP (with slightly different values for the value of κ1). The successive solution of

neighboring TPBVPs can be extended to other terms that may impact the result substantially.

For instance, the control authority due to the propulsion system can be modulated as well as

the influence of perturbations through κ2 ∈ [0, 1] and κ3 ∈ [0, 1], respectively.

Adopting a similar methodology, the cost functional of an OCP can also be perturbed/mod-

ified to perform numerical continuation. Let ∆c = Tm

c
δα̂ denote the thrust produced by the

propulsion system, in which δ ∈ [0, 1] denotes the throttle input and α̂ denotes the thrust steer-

ing unit vector (i.e., ||α̂|| = 1). When the direction of the thrust vector is not constrained, all

the complexities of the control profile are attributed to the switches in the profile of δ. But, it is

possible to overcome the challenges due to non-smoothness of throttle. For instance, Bertrand

and Epenoy [44] modified the cost functional, J , of a minimum-fuel OCP as

J =
Tm

c

∫ tf

t0

[δ + F (ϵ, δ)]dt, (1.2)

where Tm denotes the maximum thrust produced by the propulsion system, c is the specific

impulse, δ is the throttle control, and F (ϵ, δ) represents a perturbing function to regularize

the control, where ϵ denotes the continuation parameter. Three different forms of functions

introduced by Bertrand and Epenoy are,

• Quadratic: F (ϵ, δ) = −ϵδ(1− δ)

• Logarithmic: F (ϵ, δ) = −ϵ[log(δ)− log(1− δ)]

• Extended Logarithmic: F (ϵ, δ) = −ϵ[−δ log(δ)− (1− δ) log(1− δ)]
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Since the control does not appear linearly in the Hamiltonian, we can use the strong form

of optimality while using the above functions. Note also that Bertrand and Epenoy have also

introduced the concept of probability density functions to smooth the control by convolution in

2002 for the first time [51].

Among the numerical continuation methods, a linear approximation of the gravitational

force and its utility for solving orbit transfer problems using indirect optimization methods is

investigated in Ref. [52]. Nevertheless, the embedding process and the numerical solution of

the resulting TPBVPs may still consist notable challenges and specialized numerical methods

have to be used to find extremal solutions, as is explained in Ref. [53, 54]. The idea of smooth-

ing enlarges the domain of convergence of the resulting TPBVPs. If smoothing is not adopted,

detailed event-detection algorithms (for zero-crossing of the switch function or detection of

other events) have to be developed and incorporated within the integration routines [18, 55].

Adopting specialized costate initialization strategies can also have substantial ramifica-

tions on the class of problems that can be solved. For instance, Thorne and Hall [56] obtained

approximate initial costate values for a coplanar, circle-to-circle transfer by initially consider-

ing a continuous-thrust spacecraft and by neglecting the gravitational term in the equations of

motion (i.e, by setting µ to 0 in Eq. (1.1)). Similar ideas, assuming flat models of the Earth’s

gravity, are also investigated in Ref. [57]. The ACT method developed by Dixon and Biggs

[58] is an effective costate initialization method. The ACT method determines part of the

non-physical initial costates by mapping them to a set of more intuitive physical variables. In

essence, the initial costates are linked with physical variables (thrust vector angles and their

time rate of change) in a spacecraft-centered frame. Application of the ACT for spacecraft

trajectory optimization is demonstrated in Refs. [59, 60, 61]. Lee and Bang [62] presented

a new guess structure for the initial costates for solving optimal spiral trajectories by using

the initial costate characteristics of known minimum-fuel Earth escape trajectories. In Ref.

[63], a method for costate estimation for the indirect optimal control formulation is developed

by using the solution of the same problem formulated using a direct method. Yan and Wu

[64] demonstrated that approximate initial costates can be obtained by solving equations in the

neighborhood of the initial time by expressing the costates as first-order approximate value of
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the Taylor series. In Ref. [65], the initial costates of minimum-time rendezvous problems are

estimated using finite Fourier series shape-based methods [66] and it is shown that this method

outperforms the ACT method for the class of considered many-orbital-revolution problems.

Despite using numerical continuation methods and various techniques to guess the initial

costates, solving low-thrust trajectory optimization problems can still pose many challenges.

One notable solution strategy has been to enlarge the domain of convergence of the resulting

TPBVPs by using alternate sets of orbital elements [40, 67, 68]. In Ref. [69], a vectorial-form

dynamic model is developed based on orbital elements for solving trajectory optimization prob-

lems. In Ref. [70], the authors develop a modified version of the equinoctial elements based

on the works originally developed in Ref. [71]. By using the homotopy approach, alternate set

of orbital elements, and different costate initialization methods, the complexity of a low-thrust

trajectory optimization problem is greatly reduced from a computational point of view.
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Chapter 2

Coordinate and Element Sets

It is well-known that trajectory optimization problems can be formulated using different sets of

coordinates or elements. This section presents an overview of the three main coordinates and

elements used to describe the dynamics of spacecraft in this thesis. In addition, incorporation of

the perturbation due to the Earth’s second zonal harmonic, J2, is presented since it will be used

to investigate the solution of trajectory optimization problems in the presence of J2 perturbation

for Earth-centered problems.

2.1 Cartesian Coordinates

The Cartesian coordinates are easy to visualize and the resulting equations of motion and con-

trol expressions take their simplest forms compared to the other choice of coordinates/elements

[68]. Using Eq. (1.1), the time rate of change of Cartesian position and velocity vectors can be

written as

ṙ = v, v̇ = − µ

r3
r +∆c +∆J2, (2.1)

where r = [x, y, z]⊤ and v = [ẋ, ẏ, ż]⊤ denote position and velocity vectors of the spacecraft,

respectively, µ is the gravitational parameter of the central body, r = ||r|| denotes the Euclidean

norm of the position vector, ∆c is the (control) acceleration due to the propulsion system, and

∆J2 is the perturbing acceleration due to Earth’s second zonal harmonic. Perturbing accelera-

tions due to third-body perturbation (∆3body) and solar radiation pressure (∆SRP) are ignored.
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The position-velocity and control vectors for a Cartesian formulation can be written as

xcart = [r⊤,v⊤]⊤, ∆c = [ux, uy, uz]
⊤ =

T

m
δû, (2.2)

where T denotes the maximum thrust value, m denotes spacecraft mass, δ ∈ [0, 1] is the engine

throttling input, and û is the thrust steering unit vector. When δ = 0, no propellant is consumed

and when δ = 1, engine is operating at its maximum thrust. Acceleration due to Earth’s second

zonal harmonic can be derived as

∆J2 = −∂U

∂r
. (2.3)

The potential function ‘U ’ can be written as

U =
µ

r

[
J2

(
RE

r

)2(
3

2
sin2(ϕ)− 1

2

)]
, r =

√
x2 + y2 + z2, sin(ϕ) =

z

r
, (2.4)

where ϕ is the geocentric latitude. Eq. (2.1) can be written in a control-affine form as

ẋcart = Acart(x, t) + Bcart [∆c +∆J2] , (2.5)

whereAcart(x, t) and Bcart(x, t) are defined in Eq. (2.6), respectively, as

Acart =

 v

− µ
r3
r

 , Bcart =

03×3

I3×3

 , (2.6)

and I represents an identity matrix and 0 represents a zero matrix.

2.2 Modified Equinoctial Elements

The set of modified equinoctial elements (MEE) possess desirable features for solving orbital

mechanics problems. There are five elements, (p, f, g, h, k), that vary slowly as a function of

perturbations and there is one fast variable, the true longitude, l. Unlike the Classical Orbital

Elements (COEs) , MEEs do not exhibit any singularities at zero eccentricity and inclination
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[70]. Another desirable feature of these elements is that the number of orbital revolutions

around the central body can be enforced to be a specific integer value. This is an important

feature for a systematic study of fixed-time, minimum-fuel rendezvous-type maneuvers [72].

The control vector in an MEE formulation is expressed in a Local-Vertical Local-Horizontal

(LVLH) reference frame attached to the spacecraft [70]. The elements and control vectors for

the set of MEEs can be written as

xMEE = [p, f, g, h, k, l]⊤, ∆c = [ur, ut, un]
⊤. (2.7)

The MEEs can be expressed in terms of the COEs as p = a(1 − e2), f = e cos (ω + Ω),

g = e sin (ω + Ω), h = tan (i/2) cosΩ, k = tan (i/2) sinΩ, and l = Ω + ω + θ, where the

COEs are a, e, i, ω, Ω, and θ. Here, a, e, i, ω, Ω, and θ denote semi-major axis, eccentricity,

inclination, argument of periapsis, right-ascension of the ascending node, and true anomaly,

respectively. A representation of the Equinoctial coordinate frame is shown in Figure (2.1)

where [73]

W =
1

1 + h2 + k2


2k

2h

1− k2 − h2

 , (2.8)

F =
1

1 + h2 + k2


1− k2 − h2

2hk

−2k

 , (2.9)

G =
1

1 + h2 + k2


2hk

1 + k2 − h2

2h

 . (2.10)

(2.11)
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Figure 2.1: Definition of Cartesian and equinoctial coordinate frames.

Derivation of the Gauss variational equations for the set of MEEs is given in Appendix B.

The time rate of change of the MEEs can be written in a compact form as

ẋMEE = AMEE + BMEE [∆c +∆J2] . (2.12)

The expressions forAMEE and BMEE are

BMEE =



0 2p
w

√
p
µ

0√
p
µ
sin (l)

√
p
µ

1
w
[(w + 1) cos (l) + f ] −

√
p
µ

g
w
κ

−
√

p
µ
cos (l)

√
p
µ

1
w
[(w + 1) sin (l) + g]

√
p
µ

f
w
κ

0 0
√

p
µ
s2 cos(l)

2w

0 0
√

p
µ
s2 sin(l)

2w

0 0
√

p
µ

1
w
κ


, AMEE =



0

0

0

0

0

√
µp

(
w
p

)2


,

(2.13)
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where w = 1 + f cos (l) + g sin (l), s2 = 1 + h2 + k2, κ = h sin(l) − k cos(l), and µ is the

gravitational parameter of the central body. The perturbing acceleration due to the Earth’s

second zonal harmonic for the set of MEEs is written as [74]

∆J2 = [ar, at, an]
⊤, (2.14)

with

ar = −3J2
2r4

[
1− 12κ2

s2

]
, at = −12J2

r4

[
κ(h cos(l) + k sin(l))

s2

]
, an = −6J2

r4

[
κ(1− k2 − h2)

s2

]
,

(2.15)

where J2 denotes the second zonal harmonic and r = p/w.

2.3 h-e Orbital Elements

This set of elements is introduced in Ref. [75] with five slow elements (h, hx, hy, ex, ey) and

one fast element (ϕ) that represents a true-anomaly like angle in a Keplerian motion. These

elements are non-singular at equatorial orbits, but have singularity for polar orbits when right

ascension of the ascending node becomes 0 or π. This set of orbital elements are obtained

by rotating the inertial frame (like the Earth-centered inertial reference frame (Î, Ĵ , K̂)) by a

2-1-3 Euler sequence of rotations through angles ζ, η, and ϕ, respectively. The rotations can be

summarized as

I(Î, Ĵ , K̂)
ζ−−−→

Ĵ=Ĵ ′
I ′(Î ′, Ĵ ′, K̂′)

η−−−→
Î′=î′

O(̂i, ĵ, k̂)
ϕ−−→

k̂=ĥ
R(r̂, n̂, ĥ). (2.16)

Figure (2.2) gives a schematic for the rotations. The elements that are used to describe

the dynamics are the magnitude of specific angular momentum h, the components hX and

hY of specific angular momentum in the X − Y plane of the inertial reference frame I, the

components ex and ey of the eccentricity vector of the non-inertial reference frame O and the

true anomaly like angle ϕ.
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(a) First rotation. (b) Second rotation.

(c) Third rotation.

Figure 2.2: Sequence of 2− 1− 3 Euler rotations for the h-e Orbital Elements.
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The derivation details are given in Ref. [75]. Let xh-e = [h, hx, hy, ex, ey, ϕ]
⊤ and uh-e =

[ar, at, an]
⊤ denote the h-e element and control vectors, respectively. The time rate of change

of the h-e elements can be written as

ẋh-e = Ah-e + Bh-euh-e, (2.17)

whereAh-e and Bh-e are

Bh-e =



0 h2

µB
0

0 hhx

µB

h2
√

h2−h2
x−h2

y

µB
√

h2−h2
y

sϕ +
hhxhy

µB
√

h2−h2
y

cϕ

0 hhy

µB
−h

√
h2−h2

y

µB
cϕ

h
µ
sϕ

h
µ
(2cϕ +

A
B
sϕ)

hhyey

µB
√

h2−h2
y

sϕ

−h
µ
cϕ

h
µ
(2sϕ − A

B
cϕ) − hhyex

µB
√

h2−h2
y

sϕ

0 0 − hhy

µB
√

h2−h2
y

sϕ


, Ah-e =



0

0

0

0

0

(µB)2

h3


, (2.18)

where sϕ = sin(ϕ), cϕ = cos(ϕ), A = exsϕ − eycϕ, and B = 1 + excϕ + eysϕ. The perturbing

acceleration due to the Earth’s second zonal harmonic is also given in Ref. [75] as

∆J2 = −µJ2R
2
E

[
3z

r5
K̂ +

(
3

2r4
− 15z2

2r6

)
r̂

]
, (2.19)

where

r =
h2

µ(1 + excϕ + eysϕ)
, z = −rcϕ

hx√
h2
x + h2

z

− rsϕ
hyhz

h
√

h2 − h2
y

. (2.20)
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Chapter 3

Indirect Formulation of Minimum-Fuel Trajectory Optimization Problems

For this thesis, we have chosen minimum-fuel trajectory optimization problems because of

the complexity and difficulties associated with solving their associated TPBVPs. Specifically,

solving minimum-fuel trajectory optimization problems is harder than solving minimum-time

trajectory optimization ones because in the case of the latter, it is known that the thrust is always

going to be switched on along the trajectory (i.e., δ(t) = 1) excluding the eclipses in planet-

centric phases of flight. It is therefore important to understand the performance of the costate

initialization methods while solving minimum-fuel optimization problems. This ensures that

the costate initialization techniques are tested and compared under more difficult trajectory

optimization scenarios.

A Mayer form is considered for the performance index, which is written as

J = −m(tf ). (3.1)

As discussed in Chapter 2, the equations of motion for different coordinate/element sets

(Cartesian coordinates, MEE or the h-e element sets) can be written as

ẋ = A(x, t) + B(x, t) [∆c +∆J2] , ṁ = −T

c
δ, (3.2)

where x ∈ R6 denotes the coordinate/element vector associated with Cartesian coordinates,

MEEs or the h-e set of elements, m denotes the spacecraft mass, and c = Ispg0 denotes the

effective constant exhaust velocity. Here, Isp is the specific impulse and g0 is the acceleration
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due to gravity at sea level. Dropping the argument list of theA and B matrices, the (variational)

Hamiltonian can be written as

H = λ⊤
x [A+ B∆c + B∆J2]− λm

T

c
δ, (3.3)

where λx ∈ R6 represents the costates associated with the vector x and λm represents the

costate associated with mass. The costate dynamics are obtained using the Euler-Lagrange

equation

λ̇x = −
[
∂H

∂x

]⊤
, λ̇m = −∂H

∂m
. (3.4)

Eq. (3.3) shows that the Hamiltonian does not explicitly depend on time, and therefore, the

Hamiltonian will remain constant throughout any extremal solution. However, the Hamiltonian

is a bi-linear function of both thrust steering unit vector, û, and the throttle magnitude, δ.

Therefore, the strong form of optimality conditions ∂H/∂û = 0 and ∂H/∂δ = 0 cannot be

used. In order to obtain the optimal thrust steering unit vector, Pontryagin’s Minimum Principle

(PMP) has to be used. According to PMP, the optimal control vector is the one that minimizes

the Hamiltonian

û∗ = arg min
||û||=1

H(x∗,m∗,λ∗
x, λ

∗
m, δ

∗, û). (3.5)

The Hamiltonian can be minimized by defining the primer vector as p = −B⊤λx. The

optimal (denoted by ‘*’ as a superscript) thrust steering unit vector can then be written as

û∗ =
p

||p||
= − B⊤λx

||B⊤λx||
, (3.6)

where ||.|| denotes Euclidean norm. Equation. (3.6) characterizes the vector part of the thrust

vector; however, the throttling component has to be characterized too. Upon substituting

Eq. (3.6) into Eq. (3.3), the Hamiltonian can be rearranged, simplified and written as

H = H0 − S(x,m,λx, λm)δ, (3.7)
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where H0 ∈ R denotes the collection of terms that does not depend on δ and the thrust switching

function is defined as

S =
c||B⊤λx||

m
+ λm. (3.8)

The other component of the control vector, δ, appears linearly in the Hamiltonian in

Eq. (3.7). Therefore, according to PMP, δ∗ must minimize the Hamiltonian

δ∗ = arg min
δ∈[0,1]

H(x∗,m∗,λ∗
x, λ

∗
m, û

∗, δ) → δ∗ =


1, if S > 0,

∈ [0, 1], if S = 0,

0, if S < 0.

(3.9)

It is possible for the thrust switching function to become zero over a finite time interval

(corresponding to the middle relation in Eq. (3.9)) and this condition corresponds to singular

arcs [49]. In this thesis, it is assumed that singular arcs are not present along the optimal

trajectory. Thus, the time history of the switching function determines the structure of the

throttling input (i.e., the sequence of thrusting and coasting arcs). In particular, the sign of the

switching function plays a key role, as is characterized in Eq. (3.9).

3.1 Hyperbolic Tangent Smoothing

To determine the throttle profile, precise zero-detection algorithms have to be developed to

identify possible multiple zero-crossings of the switching function [76] and to make appropriate

changes to the value of δ. However, a substantially easier-to-implement approach is to embed

the original non-smooth control into a one-parameter family of smooth curves such that the

original non-smooth bang-off-bang profile is approached in an asymptotic manner. For this

purpose, the Hyperbolic Tangent Smoothing (HTS) method [46] is leveraged in which a smooth

representation of optimal throttle input, δ∗, can be written as

δ∗(S) ≈ δ∗(S; ρ) =
1

2

[
1 + tanh

(
S

ρ

)]
, (3.10)
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where ρ ∈ (0,∞] is the smoothing parameter that will be used to regularize the non-smooth

throttle control. Figure (3.1) illustrates the smoothing process of the throttle profile by varying

the smoothing parameter. As the value of the smoothing parameter is decreased, the control

profile approaches the theoretical optimal bang-bang profile given in Eq. (3.9). Please note that

Figure (3.1) depicts one zero-crossing of the switching function, but the method is general in

handling multiple zero-crossings.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Switching Function

0

0.2

0.4

0.6

0.8

1
=1

=0.1

=0.01

=0.001

Figure 3.1: Smoothing of control using the HTS method with four values for ρ.

3.2 Single-Shooting Method

The TPBVPs considered in this thesis correspond to fixed-time, rendezvous-type maneuvers in

which the initial and final states are known. Since terminal states are known, it is not possible

to obtain any information regarding initial and final costates by using the transversality con-

ditions. The only exception is for the free final mass, whose costate can be determined using

the transversality conditions. There are seven final constraints that must be satisfied and are
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summarized as

Ψ(Λ; ρ) =
[
[x(tf )− xT ]

⊤, λm(tf ) + 1
]⊤

= 0, (3.11)

where xT denotes the target states and tf denotes the final time. Thus, a one-parameter family

of neighboring TPBVPs is set up with the unknown design variables collectively denoted as

Γ = [λ⊤
x (t0), λm(t0)]

⊤ at initial time. The resulting TPBVPs are solved by following a stan-

dard numerical continuation method, in which a large value for ρ (e.g., 1 or 0.5) is initially

considered. Upon finding a solution to the first TPBVP, its solution is used for finding the solu-

tion of a new TPBVP with a lower value of ρ. The only difference between the two neighboring

TPBVPs is the value of the continuation parameter, ρ. The solution to the original minimum-

fuel problem can be approached by reducing the continuation parameter to “relatively” small

values (e.g., ρ < 1.0× 10−3) below which the cost value does not show significant change.

As depicted in Figure 3.2, a single-shooting method treats a TPBVP as an initial-value

problem by guessing values for the unknown decision variables. There are several methods

using which the initial costates can be guessed, with each method having its own advantages. A

detailed review of some of the costate initialization methods is given in the next chapter. Using

the initial guesses, the set of state-costate differential equations are propagated forward in time

and the final values of states and costates are obtained. These values are then compared with the

final boundary conditions. The error in the final constraint is used to iteratively update the initial

costates to satisfy the final constraints within a prescribed user-defined tolerance. In this thesis,

MATLAB’s ode45 is used to integrate the state and costate differential equations, Eqs. (3.2)

and (3.4), respectively. Using the MATLAB ode45 can be slow. Hence, a mex version of the

ode45 function is used. This step makes the code run significantly faster, since the numerical

integration of the set of state-costate is the computationally expensive part of solving TPBVPs.

Figure 3.2 represents the forward-in-time propagation of the set of state-costate differential

equations, collectively denoted as ż, along with the extremal control expressions. Here, a

general form of dynamics is considered and the expressions are updated according to the set of

coordinates/elements. MATLAB’s built-in non-linear solver, fsolve, is used as the solver using
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which unknown values of the initial costates are iteratively improved using its in-built trust-

region dog-leg algorithm until a user-defined tolerance, ϵ, on the residual vector, ψ, is satisfied,

i.e., Tol =
√
ψTψ < ϵ.

Figure 3.2: A schematic of the single-shooting solution procedure.
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Chapter 4

Costate Initialization Techniques

4.1 Random Guessing

Random guessing of the initial costate values is the simplest approach to implement for solving

a TPBVP. However, this method requires experience to choose the correct range for the initial

costates. An educated guess for some of the initial costates is possible by analyzing their differ-

ential equations and final conditions (if it is known a priori from the transversality conditions).

For instance, if the cost functional of a minimum-fuel trajectory optimization problem is writ-

ten in Mayer form (i.e., J = −m(tf )), the final mass costate has a value of λm(tf ) = −1 (due

to transversality conditions under Minimum Principle assumptions). Since the mass costate has

a negative time derivative after substituting for the optimal thrust steering vector in the mass

costate differential equation (i.e., λ̇m = −T ||λv||δ/m2 ≤ 0), extensive numerical simulations

show that initial mass costate values close to zero lead to better convergence. However, such

insights are not available for the costates associated with the other states and guessing a good

initial value relies heavily on experience and also on the adopted units for scaling the prob-

lem. A pseudocode for solving a TPBVP using random initialization of costates is given in

Algorithm (1).
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Algorithm 1 Algorithm to solve a TPBVP using random initialization of costates.
Initialize ρ = 1

define a tolerance ϵ

randomly guess [λr,λv, λm]

for 1 : 5 do
solve the TPBVP by following the single-shooting method

if
√
ψTψ ≤ ϵ then

use the converged normalized initial costates as the guess for the next iteration

update the continuation parameter, ρ = ρ× 0.1

else
break and choose better initial costates

end

end

It is also known that the mass costate estimation can be entirely removed from the problem

formulation by multiplying the final mass by a constant positive factor (say k > 0) whose

value is not known in advance before solving the problem. However, multiplying the cost

functional with a constant positive factor does not affect the optimal solution [60]. Thus, by

setting λm(t0) = 0 (and removing it from the set of unknown initial costates) and after solving

the resulting TPBVP, the final value of costate associated with mass is known. Assume that

the final value of the costate associated with mass to be λm(tf ) = −k, which is precisely

the condition that has to be satisfied upon applying the transversality condition on the new

cost functional. For example, after solving the TPBVP and if we have λm(tf ) = −1.1 (while

the other constraints in ψ = 0 are satisfied), we can claim that we were minimizing J =

−1.1m(tf ) without affecting the optimal solution.

4.2 Costate Hypersphere Mapping

It is well-known that by multiplying the Lagrange cost functional (associated with the minimum-

fuel problem) with a positive constant coefficient, λ0, the solution of the OCP is not affected

due to the homogeneity of the costate differential equations [77]. Motivated by this idea, the
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costate values can be mapped to the surface of a hypersphere, as introduced by Jiang et al. [18].

By doing so, the cost functional (taken in Lagrange form) and the Hamiltonian will take the

following forms,

J = λ0

∫ tf

t0

T

c
δ, (4.1)

H = λ0
T

c
δ + λ⊤

x

[
A+ B

T

m
δα̂

]
− λm

T

c
δ. (4.2)

It can be shown that the switching function associated with the new cost functional takes

the following form

S =
c||B⊤λx||

λ0m
+

λm

λ0

− 1. (4.3)

Now let the positive factor λ0 together with the initial costates be considered as the new

set of costates as

λ = [λ0,λ
⊤
x , λm]

⊤. (4.4)

Multiplying the new set of costates with a positive constant does not change the value of

the switching function (see Eq. (4.3)). Also, costate differential equations are homogeneous

with respect to the cosates. Since we are free in selecting the positive constant coefficient, it is

possible to choose it to be the inverse of the Euclidean norm of the costate vector at the initial

time [18]. Thus, a normalized set of costates, λ̃, is formed as

λ̃ =
1

||λ(t0)||
λ =

λ

||λ(t0)||
, (4.5)

By definition, at the initial time, the resulting normalized vector is a unit vector in the

(N + 1)-dimensional space, given in Eq. (4.6) as

||λ̃(t0)|| = 1, (4.6)

and its components are bounded within [−1, 1]. Through this costate normalization procedure,

the normalized costate values are restricted to lie on a unit eight-dimensional hypersphere.

Thus, Eq. (3.11) has to be updated to take into account this additional constraint and is written
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as

Ψ(λ̃(t0); ρ) =
[
λ̃0, [x(tf )− xT ]

⊤, λ̃m(tf ), ||λ̃(t0)|| − 1
]⊤

= 0. (4.7)

Reference [18] further proposes a procedure to express the normalized costate variables in

terms of 7 angles (β1, · · · , β7). For instance, if a Cartesian coordinate system is considered to

represent the spacecraft motion, then the normalized costate variables, λ̃ = [λ̃0, λ̃
⊤
r , λ̃

⊤
v , λ̃m]

⊤,

can be expressed in terms of the angles as

λ̃0 = sin(β1), (4.8)

λ̃r(t0) = cos(β1) cos(β2) cos(β3)[cos(β4) cos(β6), cos(β4) sin(β6), sin(β4)]
⊤, (4.9)

λ̃v(t0) = cos(β1) cos(β2) cos(β3)[cos(β5) cos(β7), cos(β5) sin(β7), sin(β5)]
⊤, (4.10)

λ̃m(t0) = cos(β1) sin(β2), (4.11)

with ‘βi’ defined as follows,

β1,2,3 =
π

2
X1,2,3 ∈

[
0,

π

2

]
, (4.12)

β4,5 = π

(
X4,5 −

1

2

)
∈
[
−π

2
,
π

2

]
, (4.13)

β6,7 = 2πX6,7 ∈ [0, 2π] , (4.14)

where,

X1 ∈ (0, 1], X2,3,4,5,6,7 ∈ [0, 1]. (4.15)

Therefore, the new design variables are Xi (i = 1, · · · , 7) and these values have to be

iterated over to find a solution. A noticeable advantage of the above mapping is that it of-

fers a mechanism to search over the design variables within the [0,1] range. In addition, the

scaled costates are automatically guaranteed to lie on the hypersphere, which allows removing

||λ̃(t0)|| − 1 = 0 constraint from the set of constraints in Eq. (4.7). A pseudocode for solving

a TPBVP using the costate hypersphere mapping method is shown in Algorithm (2).
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Algorithm 2 Algorithm to solve a TPBVP using the hypersphere mapping of costates.
Initialize ρ = 1

define a tolerance ϵ

randomly guessXi (i = 1, · · · , 7)

find the normalized costate variables, λ̃ using Eqs. (4.8)-(4.11)

for 1 : 5 do
solve the TPBVP using λ̃ by following the single-shooting method

if
√
ψTψ ≤ ϵ then

use the converged normalized initial costates as the guess for the next iteration

update the continuation parameter, ρ = ρ× 0.1

else
break and choose betterXi (i = 1, · · · , 7) and repeat the algorithm

end

end

4.3 Adjoint Control Transformation

The ACT method maps the non-physical costates to physical variables in a spacecraft-centered

frame. A spacecraft-centered frame is taken with one axis in the direction of osculating space-

craft velocity (V̂ ), another axis parallel to the osculating angular momentum direction (ĥ), and

the third axis (b̂) completes the right-handed coordinate system as

V̂ =
v

||v||
, ĥ =

r × v
||r × v||

, b̂ = ĥ× V̂ . (4.16)

A representative diagram for the spacecraft-centered frame is shown in Figure (4.1). The

thrust steering unit vector (û) can be obtained in the spacecraft-centered frame by defining two

angles, α and β with α denoting an in-plane (V̂ − b̂) angle measured positively away from V̂

and β denotes an out-of-plane angle above or below the V̂ − b̂ plane. The thrust steering unit

vector and its derivative (in the spacecraft-centered frame denoted by the prime) can be written
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Figure 4.1: A schematic of the spacecraft-centered frame.

as

û′ =


cosα cos β

sinα cos β

sin β

 , ˙̂u′ =


−α̇ sinα cos β − β̇ cosα sin β

α̇ cosα cos β − β̇ sinα sin β

β̇ cos β

 . (4.17)

The thrust steering unit vector, û′, and its derivative, ˙̂u′, can then be transformed into the

Cartesian frame by following

û = Rû′, ˙̂u = R ˙̂u′ + Ṙû′, (4.18)

where R is the rotation matrix from the spacecraft-centered frame to the Cartesian frame and Ṙ

is its first-time derivative, i.e., Ṙ = dR/dt. The costate associated with the velocity vector can

be obtained by using the definition of the primer vector, see Eq. (3.6), and can be written as

û =
λv

λv

,→ λv = λvû, (4.19)
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where λv = ||λv||. The costate associated with the position vector can be obtained by using

the velocity costate differential equation in a Cartesian formulation. Using Eqs. (2.6) and (3.4)

we get

λr = λ̇v → λr = λ̇vû+ λv
˙̂u. (4.20)

By using an educated guess for λm, it is now possible to evaluate Eq. (3.8). By evaluating

and rearranging Eq. (3.8) we get

λv =
m

c
(S − λm). (4.21)

As discussed in [60] and by taking the derivative of Eq. (4.21), it is possible to estimate

λ̇v as

λ̇v =
ṁ

c
(S − λm) +

m

c
(Ṡ − λ̇m), (4.22)

where ṁ and λ̇m can be obtained using Eqs. (3.2) and (3.4) and Ṡ is guessed. Therefore, the

new initial variables are [λv, Ṡ, α, α̇, β, β̇, λm] → [λr,λv, λm]. The advantage of using these

new variables is that a larger number of them have a physical meaning. A pseudocode for

solving a TPBVP using the ACT costate initialization method is shown in Algorithm (2).

28



Algorithm 3 Algorithm to solve a TPBVP using the ACT method.
Initialize ρ = 1

define a tolerance ϵ

make an educated guess for [λv, Ṡ, α, α̇, β, β̇, λm]

make the matrices û′ and ˙̂u′ using Eq. (4.17)

form R to transform û′ and ˙̂u′ to Cartesian frame using Eq. (4.18)

find λv and λr using Eqs. (4.19) and (4.20) respectively

for 1 : 5 do
solve the TPBVP using [λr,λv, λm] by following the single-shooting method

if
√
ψTψ ≤ ϵ then

use the converged initial costates [λr,λv, λm] as the guess for the next iteration

update the continuation parameter, ρ = ρ× 0.1

else
break and choose better [λv, Ṡ, α, α̇, β, β̇, λm] and repeat the algorithm

end

end
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Chapter 5

Costate Hypersphere Mapping Numerical Results

First, the Costate Hypersphere Mapping costate initialization method is compared against the

random initialization method. As a test case, a fixed-time, rendezvous maneuver from Earth to

comet 67P/Churyumov-Gerasimenko is considered. Comet 67P/Churyumov-Gerasimenko was

the target for the European Space Agency Rosetta mission [78]. The inclination, eccentricity

and semi-major axis values of the orbits of this comet are (taken from JPL small body database

and given in heliocentric ecliptic J2000 reference frame) given below as

inclination = 7.043449510613212 (deg),

eccentricity = 0.641180538092906,

semi-major axis = 3.463763991035476 (AU).

Any low-thrust trajectory should be able to achieve the required changes in the inclination,

eccentricity and semi-major axis values between the Earth and comet 67P. Such rendezvous

maneuvers are achievable only through multiple orbital revolutions around the Sun and over

multiple years for spacecraft equipped with solar-powered electric propulsion systems. As an

example, this test case is already solved when a variable thrust engine [79] or multiple engines

[11] are used. Optimal trajectories to this comet are also investigated in Ref [80].

Canonical units are used to normalize the states to guarantee a better convergence. In

canonical scaling, one distance unit (DU) is taken as one astronomical unit (AU) with a value

of 1.496 × 106 km and one time unit (TU) is set to 5.022 × 106 seconds. The gravitational

parameter of the Sun is set to µ = 1 DU3/TU2. The following values are considered for the
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spacecraft and its low-thrust propulsion system: initial mass, m0 = 3000 kg, maximum thrust,

Tmax = 0.6 Newtons and specific impulse, Isp = 3000 seconds. Maximum thrust and specific

impulse do not change along the trajectory. All computations were performed on an Intel

Core i5-6200U Laptop with a 2.30 GHz processor and 8 GB of RAM. The maximum number

of function evaluations and iterations for fsolve are set to 10,000. The absolute and relative

tolerances for ode45 are set to 1.0× 10−10.

The spacecraft is set to depart from Earth on 17 June 2024, and the total time of flight of

the mission is 1776 days. Spacecraft’s departure and arrival position and velocity data were

obtained using NASA’s Navigation and Ancillary Information Facility’s (NAIF) Spacecraft,

Planet, Instrument, Camera-matrix, Events (SPICE) packages for MATLAB (MICE). The po-

sition and velocity data of the Earth and comet are obtained using MICE’s ‘cspice spkezr.m’

function. The departure and arrival times in UTC are taken as ‘2024 JUN 17 00:00:00.000’ and

‘2029 APR 28 00:00:00.000’, respectively. The spacecraft’s departure position and velocity

vectors from the Earth are

r(t0) = [−10687809.15,−151602518.3, 8676.494013]⊤km,

v(t0) = [29.22497601,−2.197707221, 0.000972199]⊤km/s.

The position and velocity vectors of the spacecraft upon arrival at the comet 67P/Churyumov-

Gerasimenko (the target states denoted by subscript ‘T’) are

rT = [−536251927.7,−126576922.3, 14541016.26]⊤ km,

vT = [−6.858900316,−13.35248149,−0.453167946]⊤km/s.

Spacecraft’s set of MEEs at departure (from Earth) and upon rendezvous are

xi = [0.99924,−0.00343, 0.01668,−2.96314× 10−5,−1.44047× 10−5, 10.92519]⊤,

xT = [2.00321, 0.33835, 0.55443, 0.02720, 0.01996, 28.50531]⊤.
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Figure 5.1: Minimum fuel Earth-Comet67P problem: Final mass for different number of revo-
lutions around the Sun.

The value of maximum thrust, T , considered in this thesis is different from the one used

in Ref [11]. The minimum-fuel trajectory consists of two revolutions around the Sun when

variable thrust and multiple engines are used [11]. Since the number of revolutions can be

enforced when a TPBVP is formulated using MEEs, it is possible to perform a systematic

study on the number of revolutions, Nrev, to find the best minimum-fuel trajectory.

Figure 5.1 shows how final mass changes for different number of revolutions around

the Sun, Nrev. It was found that the maximum final mass corresponds to the trajectory with

Nrev = 2. Hence, all the simulations performed using the MEEs were achieved by fixing the

number of revolutions at Nrev = 2. However, this is not the case for Cartesian coordinates,

as the number of revolutions cannot be fixed in the Cartesian formulation. Therefore, some of

the simulations performed using Cartesian coordinates produced sub-optimal solutions and the

final mass obtained was less than the known optimal final mass.
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Figure 5.2: Minimum fuel Earth-Comet67P problem: Three-dimensional view of the optimal
trajectory with Nrev = 2.

Figure 5.2 shows the three-dimensional minimum-fuel trajectory and Figure 5.3 shows the

top view of the minimum-fuel trajectory from the Earth to comet 67P/Churyumov-Gerasimenko.

The time histories of optimal control and mass are shown in Figures 5.4 and 5.5, respectively.

There are seven switching events for this trajectory, and this can be seen clearly from the opti-

mal control profile. From Figure 5.4, it can be seen that the spacecraft leaves the Earth’s orbit

later than the initial time for this minimum-fuel trajectory. In other words, the best strategy is to

just coast along with the Earth in its orbit. The initial coast is part of a late-departure boundary

curve introduced in Ref [81].

Numerical results indicate that the set of MEEs led to better convergence than the Carte-

sian coordinates, and random initialization of costates produced better convergence than when

the initial costates were mapped to a unit hypersphere. Table 5.1 summarizes the statistical

results (all values correspond to mean values) that were obtained for ρ = 1 and by running

the simulations using 100 sets of random initial conditions for the different methods (where

∆rf = ||r(tf ) − rT || and ∆vf = ||v(tf ) − vT ||). It should be noted that the mass shown in

Table 5.1 corresponds to the average mass obtained from the 100 simulations and not the best

final mass. Cartesian coordinate best final mass will be equal to the case when the number of

revolutions is two. But it is not guaranteed that the Cartesian coordinates will always give a
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Figure 5.3: Minimum fuel Earth-Comet67P problem: Projection of the optimal trajectory with
Nrev = 2 onto the ecliptic.
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Figure 5.4: Minimum fuel Earth-Comet67P problem: Thrust history for the optimal trajectory
with Nrev = 2.

34



0 200 400 600 800 1000 1200 1400 1600 1800

Time(days)

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

m
a
s
s
 (

k
g

)

Figure 5.5: Minimum fuel Earth-Comet67P problem: Mass variation for the minimum-fuel
trajectory with Nrev = 2.

solution corresponding to two revolutions. Therefore, its average final mass is less than that of

the final mass corresponding to two revolutions. It can be seen that the rendezvous problem

when formulated using the set of MEEs with random initialization has a convergence of 99%.

This is followed by MEE with angle mapping that has a convergence of 67% and Cartesian co-

ordinates with random initialization that has a convergence of 30%. When the set of Cartesian

coordinates are used along with angle mapping of the initial costates, only 16 cases converged.

Table 5.2 summarizes the statistical results (all values correspond to mean values) that

were obtained for ρ = 1.0 × 10−3 and by running the simulations using 100 sets of random

initial conditions for the different methods. The ρ value is reduced from its initial value of 1

to its final value of 1.0× 10−3 by following the numerical continuation approach. The ρ value

is reduced by a factor of 0.1 after each iteration. Thus, four sub-problems are only solved.

The rendezvous problem with MEE formulation resulted in the same convergence as that of the

case when the final ρ value is 1. Cartesian formulation with random initialization resulted in

16% convergence, although it had 30% convergence when the numerical continuation method

was not used and the final value of ρ was fixed to 1. Similarly, Cartesian formulation with
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angle mapping initialization resulted in zero convergence, although it had 16% convergence in

the previous case. This suggests that a finer numerical continuation is needed. Therefore, the

reduction of ρ value by a factor of 0.1 is not enough when the costates are mapped to a unit

hypersphere and more sub-problems need to be solved to get an optimal solution. From Tables

Table 5.1: Statistical comparison of random initialization method with the costate hypersphere
mapping method for ρ = 1. (init. - initialization, func. - function, PST - Per Simulation Time)

Element set Total cases mf Total Total ∆rf ∆vf PST
converged (kg) iterations func. calls (km) (km/s) (s)

×10−3 ×10−10

Cartesian
(random init.) 30 1437.8 121 923 6.2 4.9 31.4

Cartesian
(angle map) 16 1796.8 416 3160 1.4 0.33 45.5

MEE
(random init.) 99 1821.8 82 697 0.015 0.0061 4.6

MEE
(angle map) 67 1821.8 97 688 0.25 0.051 3.3

5.1 and 5.2, it can also be observed that the error in final position and final velocity is, at least,

an order less when the TPBVP is formulated using MEE than when the problem is formulated

using the Cartesian coordinates. Also, the MEE formulation using random initialization of

costates has a lower error in the final position and final velocity when compared to the MEE

formulation with angle mapping of the initial costates. The final mass reported in Table 5.2 is

higher compared to the final mass in Table 5.1 since a smaller value of ρ is used for generating

the results in Table 5.2. The results indicate the superiority and utility of the set of MEEs for

solving spacecraft low-thrust trajectory optimization problems.

Usually, there are no bounds on the costates and hence it is highly improbable to randomly

guess a good set of initial costates that are close to the true initial costates. It is therefore

intuitive to assume that the hypersphere mapping will result in a better convergence of the

TPBVPs, since the costates are bounded between 0 and 1. But numerical simulations suggest

otherwise. It could be that the hypersphere mapping increased the sensitivity of the problem

to the value of the initial costates. While the 8D hypersphere approach is valid, it is possible

that the introduction of highly nonlinear transformations, (Eqs. (4.8)-(4.11)) have a negative

impact on finding the appropriate set of costates. This could be the reason that evolutionary

36



algorithms (e.g., particle swarm optimization) are typically used to zero in on the set of costates

as is discussed in [18]. Typically, a two-step solution methodology is used with numerical

continuation [18]. However, in this thesis, a second optimization algorithm is not used, and

instead, MATLAB’s fsolve is used, which uses a trust-region optimization method, i.e., a Quasi-

Newton method.

Table 5.2: Statistical comparison of random initialization method with the costate hypersphere
mapping method for ρ = 1.0 × 10−3. (init. - initialization, func. - function, PST - Per
Simulation Time)

Element set Total cases mf Total Total ∆rf ∆vf PST
converged (kg) iterations func calls (km) (km/s) (s)

×10−3 ×10−10

Cartesian
(random init.) 16 1440.5 113 879 27 0.91 22.5

Cartesian
(angle map) 0 – – – – – –

MEE
(random init.) 99 2092.1 116 822 0.26 0.16 8.6

MEE
(angle map) 67 2092.1 147 1012 297 132 6.1
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Chapter 6

Mapped Adjoint Control Transformation

The ACT method has not been implemented for coordinate systems or element sets other than

the set of Cartesian coordinates for which the original ACT method has been developed. Ex-

tension of the ACT method to other coordinates constitutes one of the important contributions

of this thesis. Specifically, the idea is to extend the ACT method to alternate sets of coordi-

nates/elements in a straightforward manner that offers implementation simplicity and can be

incorporated into existing tools (e.g., Copernicus [82]) that already use the ACT method.

In a recent paper [83], a compact relation has been proposed to map the costates between

two sets of coordinates/elements. For instance, the costates associated with Cartesian coordi-

nates can be mapped to the costates associated with the set of modified equinoctial elements

(MEEs). By leveraging costate vector mapping theorem, the ACT method is extended to alter-

native sets of coordinates/elements, called the MACT method, for solving low-thrust trajectory

optimization problems. Thus, it is possible to combine the advantages of the ACT method and

the use of alternative element sets when solving trajectory optimization problems.

In this thesis, the initial costates are still generated in a Cartesian formulation using the

ACT method, and by following [83], these costates are mapped to the initial costates of different

sets of orbital elements considered. Thus, codes that are developed based on the ACT method

require minimal modifications to incorporate the proposed method. The utility of the method

is demonstrated when two different sets of elements are used for solving low-thrust trajectory

optimization problems: the set of MEEs and an elemental set based on the specific angular

momentum and eccentricity vector, denoted as the h-e set of elements [75].

38



6.1 Derivation of Costate Vector Mapping Theorem

Detailed analyses of the utility of the costate vector mapping is presented in Ref. [83]. Consider

the set of state and control vectors denoted by x1 and u1, respectively. The cost functional can

be expressed in Bolza form as

minimize
x1∈X1,u1∈U1

J1 = Φ(x1(t0), t0,x1(tf ), tf ) +

∫ tf

t0

L(x1(t),u1(t), t)dt, (6.1)

where x1 and u1 represent the admissible values for the state and control vectors, respectively,

t0 and tf denote the initial and final times, respectively. The Hamiltonian can be written as

H1 = L(x1(t),u1(t), t) + λ
⊤
x1 f(x1(t),u1(t), t), (6.2)

where λx1 denotes the costate vector associated with the states and f(x1(t),u1(t), t) repre-

sents the state dynamics given as

ẋ1 = f(x1(t),u1(t), t). (6.3)

Next consider another coordinate system with the set of states and control vectors given

by x2 and u2, respectively. The Hamiltonian for this second coordinate system can be written

as

H2 = L(x2(t),u2(t), t) + λ
⊤
x2 g(x2(t),u2(t), t), (6.4)

where λx2 denotes the costate vector associated with the states and g(x2(t),u2(t), t) represent

the state dynamics given as

ẋ2 = g(x2(t),u2(t), t). (6.5)

For a local/global extremal trajectory, the Hamiltonian (as a scalar quantity) should re-

main invariant under any coordinate transformation. By equating the Hamiltonian for the two
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coordinate systems we get

λ⊤
x1 f(x1(t),u1(t), t) = λ

⊤
x2 g(x2(t),u2(t), t). (6.6)

Let ϱ represent a non-linear one-to-one continuous and invertible mapping between x1

and x2 such that

x1(t) = ϱ(x2(t)). (6.7)

If ϱ is not an explicit function of time, then the time derivative of the above equation can

be written as

ẋ1 =

[
∂ϱ(x2(t))

∂x2(t)

]
ẋ2 → f =

[
∂ϱ(x2(t))

∂x2(t)

]
g (6.8)

Substituting Eq. (6.8) in the left-hand side of Eq. (6.6), we obtain

λx1(t)
⊤
[
∂ϱ

∂x2

] ∣∣∣∣∣
t

= λx2(t)
⊤. (6.9)

Equation. (6.9) represents a mapping of costates between two different coordinate systems

at any time instant along local extremal trajectories. This mapping provides an important step

in extending the utility of the ACT method to any other sets of coordinates/elements.

6.2 Mapped Adjoint Control Transformation

Using Eq. (6.9), costates between two different sets of coordinates can be mapped. With this

mapping, it is now possible to extend the ACT method to different coordinate/element sets.

First, the costates are constructed using a Cartesian formulation. Next, the resulting costates

are mapped to their counterparts in a different coordinate system (i.e., MEE or h-e element

sets). The steps are given in Eq. (6.10)

[λv, Ṡ, α, α̇, β, β̇, λm] → [λr,λv]
Eq. (6.9)−−−−→ λMEE or λhe. (6.10)
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Please note that λm is removed from the costate mapping step since its value is invariant

under any coordinate transformation. In addition, the proper non-linear mapping from Carte-

sian coordinates to MEE or h-e element sets has to be used when using Eq. (6.9).
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Chapter 7

MACT Numerical Results

As discussed in Chapter 3, a numerical continuation approach based on the HTS method [46]

is followed. The TPBVPs are initially solved by setting the smoothing parameter ρ to 1 per

Eq. (3.10). To evaluate the performance of the MACT method against the random initialization

method, several simulations are performed using both approaches for ρ = 1. Finding a first

solution (with a smooth control profile) to the resulting TPBVPs is an important solution step.

Thus, the main focus is on comparing the costate initialization method’s performance for solv-

ing the first member of the one-parameter family of the neighboring TPBVPs. While using the

MACT method, the initial values for α, α̇, β, β̇ are set to zero, so that the initial thrust accelera-

tion is along the velocity direction. This is a common practice for generating initial guesses for

orbit-raising maneuvers using direct optimization methods. Similarly, the initial thrust vector

will be aligned against the velocity vector for orbit maneuvers to lower energetic orbits relative

to the initial orbit. The value of Ṡ is also fixed and set to zero, since the history of Ṡ is not

known a priori. The value for λm is guessed using the rand function in MATLAB as 0.5×rand

for both the MACT and random initialization methods. In the case of the MACT method, the

only other variable that needs to be guessed is λv. However, in the case of random initialization

of costates it is not possible to approximately fix the initial costates to a particular value and all

the costates associated with the states have to be guessed.

Therefore, the design variables (other than λm) that are to be guessed are λv in the case of

the MACT method and the costates associated with states in the case of the random initializa-

tion method). The costates ([λv(t0), Ṡ(t0), α(t0), α̇(t0), β(t0), β̇(t0), λm(t0)]) are initialized in

the following way for the MACT method:
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• [−1000×rand, 0, 0, 0, 0, 0, 0.5×rand]⊤(CS-1), [−750×rand, 0, 0, 0, 0, 0, 0.5×rand]⊤(CS-2),

• [−500×rand, 0, 0, 0, 0, 0, 0.5×rand]⊤(CS-3), [−250×rand, 0, 0, 0, 0, 0, 0.5×rand]⊤(CS-4),

• [−100×rand, 0, 0, 0, 0, 0, 0.5×rand]⊤(CS-5), [−10×rand, 0, 0, 0, 0, 0, 0.5×rand]⊤(CS-6),

• [−1× rand, 0, 0, 0, 0, 0, 0.5× rand]⊤(CS-7), [0.1× rand, 0, 0, 0, 0, 0, 0.5× rand]⊤(CS-8),

• [1× rand, 0, 0, 0, 0, 0, 0.5× rand]⊤(CS-9), [10× rand, 0, 0, 0, 0, 0, 0.5× rand]⊤(CS-10),

• [100×rand, 0, 0, 0, 0, 0, 0.5×rand]⊤(CS-11), [250×rand, 0, 0, 0, 0, 0, 0.5×rand]⊤(CS-12),

• [500×rand, 0, 0, 0, 0, 0, 0.5×rand]⊤(CS-13), [750×rand, 0, 0, 0, 0, 0, 0.5×rand]⊤(CS-14),

• [1000× rand, 0, 0, 0, 0, 0, 0.5× rand]⊤(CS-15).

Here, ‘CS’ followed by a number is used to distinguish the range of design variables in

the MACT method from the range of design variables in the random initialization method. In

practice, it is hard to have an estimate of the range of the design variables. This step relies

heavily on the practitioner’s experience and also on the units used for scaling. Thus, the fifteen

ranges of design variables are considered with the goal of considering a specific structure and

range for variables in order to make the entire simulations repeatable by other researchers. In

addition, the performance of the costate initialization methods is better determined when the

percent of convergence is compared over all ranges. For each of these initial design vectors,

50 simulations are performed and verified for convergence to a solution when ρ is fixed to a

value of 1. A pseudo-code for the MACT method is given in Algorithm 4. The value of ϵ is

set to 1.0 × 10−8. Please note that the proposed algorithm is less forgiving compared to the

algorithms used in References [67, 68] in which the initial guesses were randomly generated

within a “while” loop until a first solution was found. Here, each simulation corresponds to

one set of randomly generated set of design variables. If no convergence is achieved, that

simulation is immediately flagged as infeasible. Thus, more definitive and reliable conclusions

can be drawn on the utility of the considered costate initialization methods.
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Algorithm 4 Algorithm for the MACT method (ρ = 1).

for 1 : 50 do
costate initialization using the ACT method

map the costate values from Cartesian to MEE/h-e set

solve the TPBVP using the single-shooting method

if
√
ψTψ ≤ ϵ then

store the necessary data (costates, iterations, function calls, etc)

end

end

The initial costate vector for random initialization is generated as follows:

• [−1000× rand(6,1), 0.5× rand]⊤(CS-a), [−750× rand(6,1), 0.5× rand]⊤(CS-b),

• [−500× rand(6,1), 0.5× rand]⊤(CS-c), [−250× rand(6,1), 0.5× rand]⊤(CS-d),

• [−100× rand(6,1), 0.5× rand]⊤(CS-e), [−10.0× rand(6,1), 0.5× rand]⊤(CS-f),

• [−1.00× rand(6,1), 0.5× rand]⊤(CS-g), [0.10× rand(6,1), 0.5× rand]⊤(CS-h),

• [1.00× rand(6,1), 0.5× rand]⊤(CS-i), [10.0× rand(6,1), 0.5× rand]⊤(CS-j),

• [100× rand(6,1), 0.5× rand]⊤(CS-k), [250× rand(6,1), 0.5× rand]⊤(CS-l),

• [500× rand(6,1), 0.5× rand]⊤(CS-m), [750× rand(6,1), 0.5× rand]⊤(CS-n),

• [1000× rand(6,1), 0.5× rand]⊤(CS-o).

In the case of the random guessing of initial costates, 50 simulations are performed and

checked for convergence with ρ = 1. Pseudo code for the random initialization method is given

in Algorithm 5.
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Algorithm 5 Algorithm for the random initialization method (ρ = 1).

for 1 : 50 do
randomly initiate the costates

solve the TPBVP using fsolve

if
√
ψTψ ≤ ϵ then

store the necessary data (costates, iterations, function calls, and so on)

end

end

Once execution of fsolve leads to convergence, the following parameters are stored for

comparison: final mass, number of iterations, number of function evaluations, simulation time,

error in final position (||r(tf ) − rT ||)), and error in final velocity (||v(tf ) − vT ||)) (the target

states are denoted by subscript ‘T’).

After the simulations for MACT and random initialization are completed, the best initial

costate vector is chosen for both the MACT and random initialization methods. The best costate

vector range is the one with a higher convergence percentage, lower number of iterations, func-

tion evaluations, simulation time and error in final velocity and position. Once the best costate

vector is chosen, 50 simulations are performed for a ρ value of 0.001 and checked for conver-

gence. This is equivalent to finding the solution to the test case problems without following a

continuation approach and is therefore a harder-to-solve problem. This is the reason why the

simulations for ρ = 0.001 are done by only using the initial costate vector that gives the best

convergence during the simulations done using ρ = 1.

Performance of the MACT and random initialization methods are tested and compared on

four different multiple orbital revolution problems: 1) an interplanetary rendezvous maneuver

from Earth to the asteroid Dionysus, 2) transfer from a GTO to the GEO, 3) transfer from a

GTO to the GEO with J2 perturbation, and 4) transfer from a GTO to the GEO with a higher

number of revolutions. All computations are performed on an Intel Core i5-6200U DELL

Inspiron 5559 Laptop with a 2.30 GHz processor and 8 GB of RAM. The maximum number of

function evaluations and iterations for MATLAB’s fsolve is set to 500 and 200, respectively.
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For numerical integration of the differential equations, a MEX version of MATLAB’s ode45

is used with the absolute and relative tolerances set to 1.0× 10−10.

7.1 Earth-Dionysus Rendezvous Problem

This problem is already solved in Reference [67] and the boundary conditions that are reported

in that paper are used. For an epoch date of 53400 (Modified Julian Date) MJD, the Keplerian

orbital elements of the asteroid Dionysus are: a = 2.2 AU, e = 0.542, i = 13.6 degrees,

Ω = 82.2 degrees, ω = 204.2 degrees, and mean anomaly M = 114.4232 degrees. Asteroid

Dionysus is in a high eccentricity and inclination orbit, which makes the Earth-Dionysus trajec-

tory optimization problem difficult. In addition, the optimal solution to this problem is known,

which provides a basis for comparison and validation of the results obtained. The spacecraft’s

initial position vector is r(t0) = [−3637871.081, 147099798.784,−2261.441]⊤ km and the ini-

tial velocity vector is v(t0) = [−30.265097,−0.8486854, 0.0000505]⊤ km/s. The spacecraft’s

target position vector is rT = [−302452014.884247, 316097179.632028, 82872290.075518]⊤

km and velocity vector vT = [−4.53347379984029,−13.1103098008475, 0.65616382601745]⊤

km/s. All vectors are given in the Sun-centered Inertial frame. The state values are converted

into the MEE and the h-e element sets (see Table 3 in Ref [68]) in order to use them as boundary

conditions for the MEE and h-e minimum-fuel formulations. The mission’s total flight time is

3534 days. In the dynamics, ∆J2 is set to 0 for this problem. Initial mass is fixed at m0 = 4000

kg. The spacecraft’s low-thrust propulsion system has the following parameters: maximum

thrust, T = 0.32 Newtons and specific impulse, Isp = 3000 seconds. Maximum thrust value,

T , and specific impulse, Isp, are constant along the trajectory. The convergence of a TPBVP

can be improved by adopting proper scaling strategies. This is implemented by using Canonical

units, in which one distance unit (DU) is taken as one astronomical unit (AU) and one time unit

(TU) is taken as 5.022× 106 seconds. Sun’s gravitational parameter is µ = 1 DU3/TU2.

The global minimum-fuel trajectory for this problem is known with a final mass of 2718.16

kg [67], where the spacecraft makes five orbital revolutions around the Sun. The solution

that is reported in this thesis (with ρ = 1.0 × 10−5) matches with the expected solution and

the spacecraft trajectory along with the orbits of the Earth and asteroid Dionysus are plotted

46



in Figures 7.1a and 7.1b. It is assumed that the spacecraft is at the edge of the sphere of

influence of the Earth with zero excess velocity. The spacecraft initially coasts along with

the Earth on its initial orbit. Even though the problem was posed as a fixed-time rendezvous

problem, the spacecraft has a long coast arc at the end of the maneuver. Thus, the actual

optimal solution consists of both late-departure and early-arrival phases that are introduced

and studied extensively in [72]. The thrust and switching function time histories associated

with the minimum-fuel trajectory are also plotted in Figure (7.2).

As explained in the previous section, convergence for ρ = 1 is checked for the different

initial costate vectors mentioned for both the random initialization and MACT methods. The

simulation results for the MEE formulation are summarized in Table 7.1 and for the h-e set

formulation are summarized in Table 7.2. From Table 7.1. It can be seen that random initial-

ization of costates has higher convergence for first nine costate vectors and the MACT method

has higher convergence from CS-10 to CS-15. But while using the first nine costate vectors, the

difference in the number of converged cases between random initialization and MACT methods

is less than five for all the costate vectors except for the CS-5 and CS-8 cases. However, from

CS-10 to CS-15 it can be seen that the MACT method has higher convergence percentage than

the random initialization method and the difference in the convergence percentage is also very

high. Overall, of the 750 simulations performed using the set of MEEs, the MACT method

converged in 505 simulations and the random initialization method converged in 270 simula-

tions. The simulation time is also small for the MACT method compared to when the costates

are randomly initialized for most of the ranges (e.g., CS-4, CS-7, CS-9 to CS-15). The error in

final position and velocity are in the same order for both the methods.

Similar results for the h-e formulation can be seen from Table 7.2. The random initializa-

tion method performed better than the MACT method only for the costate vectors CS-b, CS-c,

CS-d, CS-e and CS-f. The MACT method is better over all other ranges considered. Of the

750 simulations performed using h-e formulation, the MACT method converged for 512 sim-

ulations and random initialization method converged for 251 simulations. The simulation time

using the MACT method is also better than the random initialization method for most of the
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(a) Earth-Dionysus problem: 3D view of the optimal trajectory.

(b) Projection of optimal trajectory onto the x− y plane.

Figure 7.1: Earth-Dionysus problem: Optimal trajectory with ρ = 1.0× 10−5.
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Table 7.1: Statistical comparison of the MACT and random initialization methods for the MEE
formulation of the Earth-Dionysus problem with ρ = 1 (func. - function, PST - Per Simulation
Time).

Costate Total cases mf Total Total ∆rf ∆vf PST
vector converged (kg) iterations func. calls (km) (km/s) (s)
chosen ×10−3 ×10−10

CS-1 3 2452.87 62 262 0.054 0.024 3.21
CS-a 0 - - - - - -
CS-2 1 2452.87 45 170 0.072 0.030 2.14
CS-b 2 2452.87 46 178 1.399 0.667 1.55
CS-3 2 2452.87 42 165 0.048 0.020 2.24
CS-c 4 2452.87 50 194 0.868 0.400 2.05
CS-4 8 2452.87 47 177 0.026 0.012 2.49
CS-d 12 2452.87 74 272 0.908 0.404 3.37
CS-5 15 2452.87 49 185 0.015 0.074 2.64
CS-e 42 2452.87 46 180 0.427 0.194 2.00
CS-6 46 2452.87 35 137 0.651 0.258 1.83
CS-f 50 2452.87 43 180 0.246 0.105 1.69
CS-7 47 2452.87 25 101 0.713 0.315 1.99
CS-g 50 2452.87 57 235 0.499 0.021 2.48
CS-8 37 2452.87 25 101 0.231 0.106 2.09
CS-h 49 2452.87 48 199 0.764 0.325 1.67
CS-9 46 2452.87 22 90 0.377 0.154 1.71
CS-i 49 2452.87 71 277 0.524 0.2488 3.24

CS-10 50 2452.87 20 81 0.652 0.277 1.03
CS-j 11 2452.87 73 290 0.133 0.054 3.53

CS-11 50 2452.87 16 67 1.268 0.556 0.93
CS-k 1 2452.87 120 418 0.011 0.004 6.50

CS-12 50 2452.87 15 65 0.845 0.383 0.83
CS-l 0 - - - - - -

CS-13 50 2452.87 15 65 1.014 0.464 1.41
CS-m 0 - - - - - -
CS-14 50 2452.87 15 64 0.516 0.290 1.33
CS-n 0 - - - - - -

CS-15 50 2452.87 15 64 0.283 0.208 1.35
CS-o 0 - - - - - -
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Table 7.2: Statistical comparison of the MACT and random initialization methods for the h-e set
formulation of the Earth-Dionysus problem with ρ = 1 (func. - function, PST - Per Simulation
Time).

Costate Total cases mf Total Total ∆rf ∆vf PST
vector converged (kg) iterations func. calls (km) (km/s) (s)
chosen ×10−3 ×10−10

CS-1 2 2452.87 57 408 0.158 0.069 2.82
CS-a 2 2452.87 26 195 0.139 0.061 1.51
CS-2 0 - - - - -
CS-b 4 2452.87 24 186 0.121 0.053 6.82
CS-3 5 2452.87 55 406 0.516 0.023 3.00
CS-c 7 2452.87 29 211 0.103 0.045 1.60
CS-4 2 2452.87 44 325 0.008 0.003 2.43
CS-d 15 2452.87 24 184 0.816 0.356 4.81
CS-5 13 2452.87 51 379 0.287 0.122 4.31
CS-e 42 2452.87 26 195 0.289 0.125 1.61
CS-6 44 2452.87 31 248 0.158 0.069 2.02
CS-f 50 2452.87 25 208 0.074 0.032 1.43
CS-7 47 2452.87 29 225 0.244 0.105 2.09
CS-g 46 2452.87 24 193 0.001 0.005 1.15
CS-8 49 2452.87 27 212 0.130 0.056 1.84
CS-h 48 2452.87 26 210 0.281 0.119 2.32
CS-9 50 2452.87 23 188 0.086 0.037 1.17
CS-i 35 2452.87 38 298 0.181 0.079 2.13

CS-10 50 2452.87 20 170 0.211 0.100 1.20
CS-j 2 2452.87 28 228 0.309 0.134 1.66

CS-11 50 2452.87 18 149 0.088 0.046 1.03
CS-k 0 2452.87 - - - - -

CS-12 50 2452.87 18 146 0.088 0.047 1.03
CS-l 0 2452.87 - - - - -

CS-13 50 2452.87 17 141 0.668 0.296 1.00
CS-m 0 2452.87 - - - - -
CS-14 50 2452.87 16 137 0.628 0.198 0.97
CS-n 0 2452.87 - - - - -

CS-15 50 2452.87 16 134 0.234 0.104 0.97
CS-o 0 2452.87 - - - - -
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Figure 7.2: Earth-Dionysus problem: Thrust and switching function time histories for ρ =
1.0× 10−5.

ranges considered (e.g., CS-4, CS-8 to CS-15). The error in final position and velocity for both

the initialization methods using h-e formulation are in the same order.

From Table 7.1 the best initial costate vector for MEE formulation using the MACT

method is CS-12 and using random initialization method is CS-f. These two initial costate

vectors are then used to perform 50 simulations for a ρ value of 0.001 without using the contin-

uation approach. It was observed that both the initialization methods were not able to converge

to a solution and hence require some continuation approach (like the HTS method) to be fol-

lowed. From Table 7.2 the best initial costate range for the h-e formulation using the MACT

method is CS-15 and using the random initialization method is CS-f. Similar to the MEE for-

mulation these two costate vectors are then used to perform 50 simulations for a ρ value of

0.001. The results are summarized in Table 7.3. Both the initialization methods have the same

convergence performance. This also indicates that the h-e set of elements has a better per-

formance than the set of MEEs since the latter has zero convergence when used without any

continuation.
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Table 7.3: Statistical comparison for h-e using MACT and random initialization methods with
ρ = 0.001 for the Earth-Dionysus problem. (func. - function, PST - Per Simulation Time).

Range Total cases mf Total Total ∆rf ∆vf PST
Chosen converged (kg) iterations func. calls km) (km/s) (s)

×10−3 ×10−10

CS-15 9 2718.33 44 305 51.69 2.14 4.53
CS-f 9 2718.33 44 301 15.83 6.59 3.57

7.2 GTO-GEO Problem without J2 Perturbation

This is an orbit-rising problem from a Geostationary Transfer Orbit (GTO) to the Geostationary

Earth Orbit (GEO) and is solved in [68]. The orbital elements for the initial and final orbit are

given in Table 7.4. The initial true anomaly of the spacecraft in the GTO is taken as zero and

the final true anomaly on the GEO is taken as 180 degrees. The spacecraft’s initial and target

position and velocity vectors in the Earth-centered frame are

r(t0) = [6378.9, 0.0, 0.0]⊤km, rT = [−42165, 0.0, 0.0]⊤ km,

v(t0) = [0.0, 10.0258, 1.231]⊤km/s, vT = [0.0,−3.0746, 0.0]⊤km/s.

Table 7.4: Classic orbital elements for the GTO and GEO orbits.

Orbit a (km) e i (deg) Ω (deg) ω (deg)
GTO 24505 0.725 7.0 0.0 0.0
GEO 42165 0.0 0.0 – –

The state values are converted into the MEE and the h-e element sets (see Table 8 in

Ref [68]) in order to use them as boundary conditions for the MEE and h-e minimum-fuel

formulations. The orbit-rising maneuver time is fixed to be 6 days with an initial fuel mass

of m0 = 100 kg. The spacecraft’s low-thrust propulsion system has the following parameters:

maximum thrust, Tmax = 0.5 Newtons and specific impulse, Isp = 3100 seconds. It is possible

to consider an engine with variable specific impulse value and thrust value as is studied in

[12], but, for simplicity, in this work, thrust and specific impulse values are constant along the

trajectory. Similar to the interplanetary test case, Canonical units are used to scale the states

and boundary conditions. For this problem, one distance unit (DU) is taken as one Earth radius
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(6378 km) and one time unit (TU) is taken such that the gravitational parameter of the Earth

becomes one (i.e., µ = 1 DU3/TU2). The minimum-fuel solution for this problem corresponds

to the trajectory that makes 8 orbital revolutions around the Earth and the optimal final mass is

94.155 kg (for ρ = 0.03125) as reported in [68]. Different views of the optimal trajectory are

plotted in Figures 7.3a and 7.3b and the associated thrust and switching function time histories

are plotted in Figure 7.4.

Table 7.5: Statistical comparison of the MACT and random initialization methods for the MEE
formulation of GTO-GEO transfer with ρ = 1 (func. - function, PST - Per Simulation Time).

Costate Total cases mf Total Total ∆rf ∆vf PST
vector converged (kg) iterations func. calls (km) (km/s) (s)
chosen ×10−7 ×10−10

CS-1 18 93.59 31 222 0.126 0.009 4.66
CS-a 1 93.59 53 334 0.029 0.002 11.24
CS-2 24 93.59 30 212 0.118 0.008 4.48
CS-b 5 93.59 67 405 0.092 0.007 16.19
CS-3 34 93.59 29 207 0.110 0.008 6.47
CS-c 6 93.59 51 325 0.041 0.003 7.19
CS-4 50 93.59 27 192 0.097 0.007 5.90
CS-d 8 93.59 39 250 58.30 4.100 7.33
CS-5 50 93.59 30 223 0.112 0.008 6.22
CS-e 18 93.59 37 241 0.149 0.011 6.06
CS-6 50 93.59 16 120 0.089 0.007 1.87
CS-f 22 93.59 32 223 0.095 0.007 5.01
CS-7 47 93.59 14 110 0.099 0.007 1.74
CS-g 8 93.59 29 199 0.078 0.006 4.38
CS-8 47 93.59 21 151 0.227 0.017 3.85
CS-h 4 93.59 35 234 0.108 0.008 4.17
CS-9 20 93.59 37 261 0.121 0.011 7.11
CS-i 17 93.59 28 195 0.119 0.009 8.59

CS-10 3 93.59 28 192 0.124 0.009 4.21
CS-j 9 93.59 37 259 0.188 0.0142 14.06

CS-11 0 - - - - - -
CS-k 2 93.59 36 237 0.063 62.98 13.04

CS-12 0 - - - - - -
CS-l 3 93.59 58 367 0.180 0.013 12.98

CS-13 0 - - - - - -
CS-m 2 93.59 36 230 0.140 0.010 14.59
CS-14 0 - - - - - -
CS-n 2 93.59 46 285 0.218 0.016 14.35

CS-15 0 - - - - - -
CS-o 1 93.59 76 483 0.080 0.005 21.06
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(a) Three-dimensional view of the optimal trajectory.

(b) Projection of the optimal trajectory onto the x− y plane.

Figure 7.3: Minimum-fuel GTO-GEO problem: optimal trajectory of the transfer problem with
ρ = 1.0× 10−5.
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Table 7.6: Statistical comparison of MACT and random initialization methods for the h-e for-
mulation of GTO-GEO problem with ρ = 1 (func. - function, PST - Per Simulation Time).

Costate Total cases mf Total Total ∆rf ∆vf PST
vector converged (kg) iterations func. calls (km) (km/s) (s)
chosen ×10−7 ×10−10

CS-1 0 - - - - - -
CS-a 3 93.59 69 427 0.137 0.009 11.13
CS-2 0 - - - - - -
CS-b 5 93.59 55 340 0.072 0.005 12.46
CS-3 0 - - - - - -
CS-c 6 93.59 54 335 0.134 0.009 7.92
CS-4 0 - - - - - -
CS-d 2 93.59 44 273 0.057 0.004 5.32
CS-5 5 93.59 30 210 0.161 0.011 5.38
CS-e 18 93.59 43 273 0.165 0.012 5.38
CS-6 2 93.59 38 260 0.162 0.018 4.89
CS-f 47 93.59 32 207 0.177 0.013 3.87
CS-7 15 93.59 35 240 0.143 0.010 6.45
CS-g 50 93.59 31 203 0.166 0.022 3.54
CS-8 49 93.59 15 113 0.014 0.009 1.83
CS-h 40 93.59 35 236 0.133 0.009 5.55
CS-9 50 93.59 16 119 0.139 0.010 1.79
CS-i 36 93.59 36 231 0.020 0.015 6.24

CS-10 50 93.59 18 128 0.127 0.009 2.26
CS-j 16 93.59 40 264 0.170 0.017 10.28

CS-11 50 93.59 32 218 0.161 0.012 4.54
CS-k 13 93.59 41 271 0.278 0.021 13.49

CS-12 50 93.59 28 191 0.121 0.008 5.79
CS-l 3 93.59 60 373 0.160 0.015 19.31

CS-13 50 93.59 29 202 0.171 0.012 7.36
CS-m 1 93.59 60 369 0.189 0.019 37.72
CS-14 41 93.59 33 232 0.260 0.018 8.25
CS-n 2 93.59 58 349 0.012 0.009 18.15

CS-15 31 93.59 33 230 0.149 0.011 8.48
CS-o 5 93.59 57 358 0.156 0.011 17.54
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Figure 7.4: Minimum-fuel GTO-GEO problem: thrust and switching function time histories
for ρ = 1.0× 10−5.

The simulation results for the MEE formulation are summarized in Table 7.5 and the simu-

lation results for the h-e formulation are summarized in Table 7.6. It can be seen from Table 7.5

that the MACT method completely outmatches the random initialization method for the MEE

formulation by having a higher convergence percentage. Of the 750 simulations performed,

random initialization method converged for only 108 simulations, but the MACT method con-

verged for 325 simulations. The MACT method has three times more convergence percentage

than the random initialization method. The simulation time, total iterations and function calls

are also lower for the MACT method for most of the ranges for design variables. The error in

final position and velocity is almost in the same order for both the costate initialization meth-

ods. However, random initialization has higher error for some costate vectors like CS-d and

CS-k.

The MACT method also proved to be effective in the h-e formulation for the GTO-GEO

transfer problem, and this is evident from the results summarized in Table 7.6. Of the 750 sim-

ulations performed random initialization method converged for 247 simulations but the MACT

method converged for 393 simulations. The simulation time, number of iterations and function
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calls is much better for MACT method from CS-8 to CS-15. Using the h-e elements, the er-

ror in final position and velocity is almost in the same order for both the costate initialization

methods.

Results summarized in Table 7.5 indicate that the best initial costate vector for the MACT

method is CS-6 and for the random initialization method is CS-f. 50 simulations are then

performed by taking the value of ρ directly as 0.001 and without following the continuation ap-

proach. It was observed that none of the simulations converged for both initialization methods.

The best initial costate vector for both methods is then chosen for the h-e formulation,

and 50 simulations are performed for a ρ value of 0.001 without following the continuation

approach. Table 7.7 summarizes the simulation results. The indirect ACT method did not con-

verge to a solution, but the random initialization method converged for one simulation. Both the

costate initialization method seems to have poor performance when the continuation approach

is not used. However, it looks like random initialization has an edge over the MACT method

since it converged for one simulation. It was observed that both of the costate initialization

methods were not able to converge to a solution. Thus, it is important to start the continuation

process using a relatively large value of ρ (e.g., ρ = 1 or ρ = 0.5).

Table 7.7: Statistical comparison for h-e using the MACT and random initialization methods
with ρ = 0.001 for GTO-GEO transfer (func. - function, PST - Per Simulation Time).

Costate Total cases mf Total Total ∆rf ∆vf PST
vector converged (kg) iterations func. calls (km) (km/s) (s)
chosen ×10−3 ×10−7

CS-9 0 - - - - - -
CS-g 1 94.15 78 485 0.991 0.724 9.07

7.3 GTO-GEO Problem with J2 Perturbation

The GTO-GEO trajectories are also generated by considering the J2 perturbation. The value for

the J2 coefficient is considered as 1082.63 × 10−6 in this thesis. In this case, the optimal final

mass is 94.145 kg. The optimal trajectory profile and thrust time history are visually identical

to the case when the J2 perturbation is not included and hence they are not shown here. The

simulation results for the MEE formulation are given in Table 7.8 and for the h-e formulation
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are given in Table 7.9. Table 7.8 strongly suggests that the MACT method performed better

than the random initialization method when the value of ρ is taken as 1. Random initialization

of costates performed better than the MACT method only for two initial costate vectors: CS-j

and CS-m. Of the 750 simulations performed MACT method converged for 337 simulations

and random initialization method converged for 108 simulations. The MACT method has an

overall better performance in terms of the simulation time, number of iterations and function

calls.

Table 7.8: Statistical comparison of the MACT and random initialization methods for the MEE
formulation of the GTO-GEO problem with ρ = 1 and J2 perturbation considered (func. -
function, PST - Per Simulation Time).

Costate Total cases mf Total Total ∆rf ∆vf PST
vector converged (kg) iterations func. calls (km) (km/s) (s)
chosen ×10−7 ×10−10

CS-1 12 93.58 34 244 0.866 0.006 8.31
CS-a 2 93.58 50 317 0.120 0.008 11.76
CS-2 21 93.58 31 227 0.120 0.008 6.53
CS-b 5 93.58 57 361 0.061 0.004 16.39
CS-3 35 93.58 30 216 2.800 0.385 5.92
CS-c 8 93.58 47 305 0.095 0.005 9.63
CS-4 50 93.58 27 191 0.124 0.009 6.41
CS-d 11 93.58 44 284 0.111 0.008 12.12
CS-5 50 93.58 29 212 0.130 0.009 5.46
CS-e 20 93.58 45 282 0.122 0.008 11.68
CS-6 49 93.58 17 127 0.085 0.006 2.67
CS-f 20 93.58 29 200 0.094 0.006 5.17
CS-7 49 93.58 15 118 0.117 0.015 2.49
CS-g 9 93.58 25 171 0.068 0.005 4.83
CS-8 48 93.58 21 150 0.099 0.007 3.35
CS-h 2 93.58 45 316 0.147 0.010 8.80
CS-9 23 93.58 31 224 0.073 0.005 8.09
CS-i 19 93.58 31 213 0.119 0.008 9.46

CS-10 0 - - - - - -
CS-j 9 93.58 48 323 0.151 0.011 23.24

CS-13 0 - - - - - -
CS-m 2 93.58 46 292 0.789 0.005 33.49

Next, the best initial costate vector using random initialization and MACT method is deter-

mined from Table 7.8 and 50 simulations are performed for a ρ value of 0.001 without using the

continuation approach. The simulation results are summarized in Table 7.10. For the MACT
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Table 7.9: Statistical comparison of the MACT and random initialization methods for the h-
e formulation of the GTO-GEO problem with ρ = 1 and J2 perturbation considered (func. -
function, PST - Per Simulation Time).

Costate Total cases mf Total Total ∆rf ∆vf PST
vector converged (kg) iterations func. calls (km) (km/s) (s)
chosen ×10−7 ×10−10

CS-1 0 - - - - - -
CS-a 1 93.58 71 436 0.191 0.014 30.47
CS-2 0 - - - - - -
CS-b 5 93.58 48 302 0.102 0.007 12.53
CS-3 0 - - - - - -
CS-c 4 93.58 47 293 0.228 0.016 20.82
CS-4 0 - - - - - -
CS-d 8 93.58 44 277 0.187 0.013 14.35
CS-5 0 - - - - - -
CS-e 19 93.58 52 324 0.105 0.008 20.06
CS-6 3 93.58 44 309 0.079 0.006 13.54
CS-f 47 93.58 33 210 0.143 0.010 8.26
CS-7 21 93.58 39 263 0.099 0.007 12.62
CS-g 50 93.58 27 178 0.156 0.011 6.93
CS-8 50 93.58 15 115 0.136 0.009 3.29
CS-h 33 93.58 37 243 0.136 0.009 17.06
CS-9 50 93.58 14 109 0.118 0.008 3.10
CS-i 24 93.58 44 293 1.37 0.116 39.97

CS-10 50 93.58 17 126 0.171 0.012 3.76
CS-j 8 93.58 48 313 0.195 0.021 32.25

CS-11 50 93.58 35 234 0.128 0.009 13.18
CS-k 2 93.58 33 227 0.156 0.011 26.39

CS-12 50 93.58 30 209 0.132 0.009 29.86
CS-l 4 93.58 55 341 0.220 0.015 46.30

CS-13 49 93.58 30 213 0.180 0.0130 10.29
CS-m 1 93.58 53 327 0.254 0.018 36.38
CS-14 45 93.58 34 240 0.130 0.009 11.95
CS-n 1 93.58 79 500 0.329 0.023 49.39

CS-15 33 93.58 35 247 0.222 0.016 11.69
CS-o 1 93.58 46 313 0.063 0.005 116.99
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method, CS-7 is chosen as the best initial costate vector, although it does not have 100% con-

vergence (like CS-4 and CS-5) because it has a far lower number of iterations and function

calls. The best range for the random initialization method is taken as CS-f on the basis of the

results given in Table 7.8. Table 7.10 shows that the random initialization method has a bet-

ter convergence (however not a large difference in convergence) for a ρ value of 0.001. The

MACT method resulted in zero convergence, and this implies that the MACT method for the

MEE formulation needs a continuation approach to be followed to obtain a solution for lower

values of ρ.

Table 7.10: Statistical comparison for MEE using MACT and random initialization methods
with ρ = 0.001 for the GTO-GEO problem with J2 perturbation considered. (func. - function,
PST - Per Simulation Time).

Costate Total cases mf Total Total ∆rf ∆vf PST
vector converged (kg) iterations func. calls (km) (km/s) (s)
chosen ×10−3 ×10−7

CS-7 0 - - - - - -
CS-f 2 94.14 45 294 0.130 0.095 11.85

The simulation results for the h-e formulation are summarized in Table 7.9, which indicate

that random initialization performed better than the MACT method from CS-1 to CS-7 and

beyond CS-7, the MACT method performed well. Of the 750 simulations, the MACT method

converged for 401 simulations and the random initialization method converged for 208 cases.

Similar to previous simulation results, the MACT method requires less simulation time, number

of iterations and function calls when compared to the random initialization method. As done

before, the best initial Costate vectors are chosen as CS-9 and CS-g for the MACT and random

initialization method respectively.

A summary of the results for all the simulations is given in Table 7.11.

Table 7.11: Summary of convergence percentage of the problems simulated using the MACT
and random initialization methods (conv. - convergence, RI - Random Initialization).

Test Problem MEE set h-e set
MACT conv. (%) RI conv. (%) MACT conv. (%) RI conv. (%)

Earth-Dionysus 67.33 36.00 68.67 33.47
GTO-GEO w/o J2 44.93 14.40 53.47 27.73
GTO-GEO w/J2 43.33 14.44 43.33 14.40
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7.4 GTO-GEO Problem with higher number of revolutions

The total number of orbital revolutions in the test problems of the previous sections is less

than ten. In order to compare the utility of the MACT method with the random initialization

method for more complex problems, the GTO-GEO Problem with J2 perturbation is modified

by increasing the total time of flight of the maneuver. The maximum thrust Tmax is reduced to

0.45 Newtons. The maximum number of function evaluations and iterations for MATLAB’s

fsolve is set to 750 and 300 respectively. All other spacecraft parameters, boundary con-

ditions and the manner in which different initial costates are found are identical to that of the

problem considered in Section 7.3. Since the time of flight is increased, the spacecraft will

make more revolutions around the Earth. The transfer times that are considered include 10, 12,

15, 17 and 20 days and the corresponding optimal revolutions that must be made around Earth

are 15, 18, 23, 26 and 30, respectively. The projection of the optimal trajectory onto the x− y

plane when the number of revolutions is taken as 30 in Figure 7.5. The convergence summary

for the MACT and random initialization methods for the MEE formulation is given in Table

7.12.

Table 7.12: Summary of convergence of the MACT and random initialization methods for the
MEE formulation and for different number of revolutions around the Earth and different times
of flight.

Nrev tf (days) MACT Convergence (%) Rand init. Convergence (%)
15 10 25.87 3.47
18 12 11.6 0.93
23 15 4.27 0
26 17 2.53 0
30 20 0.53 0

Numerical results indicate an improvement in the percentage of convergence of the result-

ing BVPs by a factor of 2 or 3 for the considered test cases. Results also indicate that the MACT

method is suitable for solving low-thrust minimum-fuel trajectory optimization problems that

involve a higher number (up to 30 in case of the considered GTO-GEO problem) even without

considering any homotopy approach on the number of revolutions. The poor performance of

the random initialization method is compensated by the ease of its implementation. However,
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Figure 7.5: Projection of the Optimal trajectory of the minimum-fuel GTO-GEO transfer prob-
lem with 30 revolutions onto the x− y plane.

the results indicate that as the complexity of the problem increases either due to longer time

of flight and more number of orbital revolutions, a proper strategy for costates initialization

becomes more distinguished.
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Chapter 8

Concluding Remarks

The results from Chapter 5 indicate that when the costates are normalized to lie on a unit

hypersphere, poor convergence is achieved if a Quasi-Newton based solver is used to find the

ensuing OCPs. Also, the set of MEEs demonstrated a far superior convergence compared to the

case where the set of Cartesian coordinates was used to formulate the optimal control problems.

For the test case considered, it was found that MEE with random initialization of costates has

the best performance, followed by MEE with the costates mapped to a hypersphere. The worst

convergence is obtained by Cartesian coordinates with costates mapping.

In Ref. Chapter 6, the ACT method originally developed for solving trajectory optimiza-

tion problems using Cartesian coordinates is extended to different sets of coordinates or el-

ements with the help of costate vector mapping theorem. In Ref. Chapter 7, the percent of

convergence of the MACT is compared against the standard random initialization method over

a wide domain of initial design variables to remove any possible bias towards the MACT or the

random initialization methods. Application of the MACT method is demonstrated by solving

two classes of problems, i.e., interplanetary and planet-centric low-thrust minimum-fuel tra-

jectory optimization problems. Numerical results indicate an improvement in the percentage

of convergence in solving the resulting boundary-value problems by a factor of 2 or 3 for the

considered test cases when the MACT method is used. This extension is advantageous since it

is possible to solve trajectory optimization problems while leveraging the features offered by

the ACT method.

Results support the usability of the MACT method compared to the random initializa-

tion method for more complex planet-centric maneuvers involving many orbital revolutions.
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Results also indicate that the set that consists of the elements of the specific angular momen-

tum and eccentricity (h-e) and the set of modified equinoctial elements (MEEs) have similar

convergence. But the h-e element set performed better than the MEE set for the GTO-GEO

transfer problem (without J2 perturbation). The results indicate that the h-e element set can

also be considered as a contender while designing low-thrust trajectories. Our future work will

investigate the utility of the MACT method for solving more complex trajectory optimization

problems from orbits around the Earth to orbits around the Moon and multiphase interplanetary

trajectories.
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Chapter 9

Future Work

A potential future work is to investigate the utility of the MACT method for solving more

complex trajectory optimization problems. For instance, the convergence of a TPBVP prob-

lem becomes difficult when a three-body dynamical model is considered [84, 19]. The interest

in transfers between Earth and Low Lunar Orbits has increased because of NASA’s Gateway

program. It will be worth finding such transfers using the indirect method, as they offer finer

thrust (and potentially more optimal) solutions. The main challenge in finding optimal tra-

jectories for the Gateway program is due to the low acceleration associated with the Gateway

main propulsion module. The maximum acceleration the Gateway is capable of providing is

2.904× 10−5m/s2 [85], considering its mass and thrust capabilities.

It will also be interesting to investigate the application of the MACT method to spiral

trajectories, as they are essential for transfers like Low Earth Orbit (LEO) to Low Mars Orbit

(LMO) [86]. Also, problems involving round-trip transfers between Earth-Mars and Earth-

Jupiter can be considered [17].
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Appendix A

Costate mapping from Cartesian coordinates to the MEE set

This section provides an example for mapping the costates from Cartesian coordinates to the set

of MEEs. Let xMEE = [p, f, g, h, k, l]⊤ and xCart = [r⊤,v⊤]⊤ denote the MEE and Cartesian

state vectors, respectively. Let α = h2 − k2, w = 1+ f cos(l) + g sin(l), s2 = 1+ h2 + k2 and

M = 1
s2

√
p
. The Cartesian coordinates can be written in terms of MEEs as

xCart =



p
ws2

{cos(l) + α cos(l) + 2hk sin(l)}
p

ws2
{sin(l)− α sin(l) + 2hk cos(l)}

2 p
ws2

(h sin(l)− k cos(l))

−M{sin(l) + α sin(l)− 2hk cos(l) + g − 2fhk + αg}

−M{− cos(l) + α cos(l) + 2hk sin(l)− f + 2ghk + αf}

2M{h cos(l) + k sin(l) + fh+ gk}


= ϱ(xMEE).

By following Eq. (6.9), the costates from the Cartesian coordinates (λcart) can be mapped

to the costates of the set of MEEs (λMEE) as

λCart(t)
⊤
[
∂ϱ(xMEE)

∂xMEE

] ∣∣∣∣∣
t

= λMEE(t)
⊤. (A.1)

The required Jacobian matrix, (∂ϱ/∂xMEE), is calculated symbolically. As an example,

for the interplanetary test problem and using the Canonical units, the optimal costate vectors

(of a converged case) for the Cartesian coordinates (λCart) for ρ = 1 is given in the first column

of Table (A.1). By applying the costate vector theorem, the initial costates (at t = 0) in the
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Cartesian coordinates can be mapped to the costates of the MEE set, and the mapped costates

(λmapped
MEE ) are given in the second column of Table A.1.

Table A.1: Comparison of the mapped costate vector with the optimal costate vector for the
MEE set of Earth-Dionysus rendezvous problem.

λCart λmapped
MEE

178.451232047246
−2064.16011615921
−349.575926331475
1353.58251261986
−84.6061809237475
−638.174235536129




−1347.90134742511
−134.085754847598
646.824779833027
−651.160791168936
−1313.94659559597
−0.491214765547389



78



Appendix B

MEE Differential Equations Derivation

The set of MEEs [p, f, g, h, k, L]⊤ can be written in terms of COEs [a, e, i, ω,Ω, ν]⊤ in the

following manner,

p = a(1− e2), f = e cos(ω + Ω), g = e sin(ω + Ω), (B.1)

h = tan

(
i

2

)
cos(Ω), k = tan

(
i

2

)
sin(Ω), L = Ω+ ω + ν, (B.2)

where ‘a’ is the semi-major axis, ‘e’ is the eccentricity, ‘ω’ is the argument of periapsis, ‘Ω’

is the right ascension of the ascending node, ‘i’ is the inclination, ‘ν’ is true anomaly, ‘p’ is

semi-latus rectum and ‘L’ is the true longitude. Gauss variational equations are given by [87],

ȧ =
2a2

H

(
e sin(f)ar +

p

r
aθ

)
, ė =

1

H
(p sin(f)ar + ((p+ r) cos(f) + re)aθ), (B.3)

i̇ =
r cos(θ)

H
ah, Ω̇ =

r sin(θ)

H sin(i)
ah, (B.4)

ω̇ =
1

He
(−p cos(f)ar + (p+ r) sin(f)aθ)−

r sin(θ) cos(i)

H sin(i)
ah, (B.5)

where ar, ah and aθ are the external acceleration along the radial direction, orbit normal di-

rection and perpendicular to both radial and orbit normal direction, H is the specific angular

momentum, and

θ = ω + ν. (B.6)
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The COEs can be written in terms of the MEEs in the following manner,

e =
√

f 2 + g2, a =
p

1− e2
=

p

1− (f 2 + g2)
, (B.7)

tan

(
i

2

)
=

√
h2 + k2, i = 2 tan−1(

√
h2 + k2), (B.8)

cos(Ω) =
h√

h2 + k2
, sin(Ω) =

k√
h2 + k2

. (B.9)

Below are some useful equations that are used throughout the derivations for simplifying

the math,

s2 = 1 + h2 + k2, (B.10)

w =
p

r
, (B.11)

w + 1

w
=

p+ r

p
, (B.12)

r =
p

1 + e cos(ν)
, (B.13)

H =
√
pµ. (B.14)

Eq. (B.8) can be rewritten as,

tan

(
i

2

)
=

√
s2 − 1, (B.15)

sec2
(
i

2

)
= 1 + tan2

(
i

2

)
= s2, (B.16)

sin(i) =
2 tan

(
i
2

)
sec2

(
i
2

) =
2
√
h2 + k2

s2
, (B.17)

tan
(
i
2

)
sin(i)

=
1

2
sec2

(
i

2

)
, (B.18)

1− cos(i)

sin(i)
= tan

(
i

2

)
. (B.19)
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Below are some useful identities that are used throughout the derivations,

cos(ν) = cos(L− (ω + Ω))

= cos(L) cos(ω + Ω) + sin(L) sin(ω + Ω)

=
f

e
cos(L) +

g

e
sin(L),

(B.20)

sin(ν) = sin(L− (ω + Ω))

= sin(L) cos(ω + Ω)− cos(L) sin(ω + Ω)

=
f

e
sin(L)− g

e
cos(L).

(B.21)

Eqs. (B.20) and (B.21) use Eq. (B.1) to rewrite cos(ω + Ω) and sin(ω + Ω) as

cos(θ) = cos(ω + ν) = cos(ω) cos(ν)− sin(ω) sin(ν) (B.22)

=
cos(ω)

e
(f cos(L) + g sin(L))− sin(ω)

e
(f sin(L)− g cos(L)), (B.23)

sin(θ) = sin(ω + ν) = sin(ω) cos(ν) + cos(ω) sin(ν) (B.24)

=
sin(ω)

e
(f cos(L) + g sin(L)) +

cos(ω)

e
(f sin(L)− g cos(L)), (B.25)

sin(θ) = sin(L− ω) = sin(L) cos(Ω) + cos(L) sin(Ω) (B.26)

=
h sin(i)− k cos(L)

tan
(
i
2

) . (B.27)

Eqs. (B.23) and (B.25) use Eqs. (B.20) and (B.21) to rewrite cos(ν) and sin(ν).

B.1 Time derivative of p

With the above equations, it is possible to derive the Gauss variational equations for MEEs.

Going order-wise, the time derivative of Eq. (B.1) can be written as (by using the chain rule),

ṗ = ȧ(1− e2)− 2aeė. (B.28)
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Substituting for e, a, ȧ ė from Eqs. (B.7) and (B.3) respectively, we get,

ṗ =
2a2

H
(1− e2)

(
e sin(ν)ar +

p

r
aθ

)
− 2ae

H
(p sin(ν)ar + ((p+ r) cos(ν) + re)aθ) . (B.29)

Collecting out the terms along ar direction we get,

2a2

H
(1− e2)e sin(ν)ar −

2ae

H
p sin(ν)ar. (B.30)

Now upon using Eq. (B.1) we get,

2ae

H
p sin(ν)ar −

2ae

H
p sin(ν)ar = 0. (B.31)

Therefore, there are no contributions from the acceleration along the ar direction. Next,

by considering the terms along aθ direction we can simplify ṗ as

ṗ =
2a2

H
(1− e2)

p

r
aθ −

2ae

H
((p+ r) cos(ν) + re)aθ, (B.32)

ṗ =
2ap2

Hr
aθ −

2ae

H
((p+ r) cos(ν) + re)aθ, (B.33)

ṗ =
2a

H

(
p2

r
− e ((p+ r) cos(ν) + re)

)
aθ, (B.34)

ṗ =
2ap

Hr

(
p−

(
er cos(ν) +

r2e

p
cos(ν) +

r2e2

p

))
aθ. (B.35)

Using equation (B.13) and evaluating we get,

ṗ =
2apr

Hr

(
p

r
−

(
e cos(ν) +

e cos(ν)

1 + e cos(ν)
+

e2

1 + e cos(ν)

))
aθ, (B.36)

ṗ =
2ap

H

(
1 + e cos(ν)−

(
e2 cos2(ν) + 2e cos(ν) + e2

1 + e cos(ν)

))
aθ, (B.37)

ṗ =
2ap

H

(
1 + e2 cos2(ν) + 2e cos(ν)− e2 cos2(ν)− 2e cos(ν)− e2

1 + e cos(ν)

)
aθ, (B.38)

ṗ =
2p

H

(
a(1− e2)

1 + e cos(ν)

)
aθ, (B.39)

ṗ =
2p

H

(
p

1 + e cos(ν)

)
aθ. (B.40)

82



By using Eqs. (B.13), (B.14) and (B.11) we get,

ṗ =
2pr
√
pµ

aθ, (B.41)

ṗ =
2p

w

√
p

µ
aθ. (B.42)

B.2 Time derivative of k

The time derivative of k, see Eq. (B.2), can be written as,

k̇ =
1

2
sec2

(
i

2

)
i̇ sin(Ω) + tan

(
i

2

)
cos(Ω)Ω̇, (B.43)

k̇ =
1

2
sec2

(
i

2

)
r cos(θ)

H
sin(Ω)ah + tan

(
i

2

)
cos(Ω)

r sin(θ)

H sin(i)
ah. (B.44)

Using Eq. (B.18), we can write the above expression as,

k̇ =
r

2H
sec2

(
i

2

)
(cos(θ) sin(Ω) + sin(θ) cos(Ω))ah, (B.45)

Using equations (3.3), (B.11) and (B.16) we can further simplify as

k̇ =

√
p

µ

s2

2w
sin(θ + Ω)ah, (B.46)

k̇ =

√
p

µ

s2

2w
sin(L)ah. (B.47)

B.3 Time derivative of h

The time derivative of h, see Eq. (B.2), can be written as,

ḣ =
1

2
sec2

(
i

2

)
i̇ cos(Ω)− tan

(
i

2

)
sin(Ω)Ω̇, (B.48)

ḣ =
1

2
sec2

(
i

2

)
r cos(θ)

H
cos(Ω)ah − tan

(
i

2

)
sin(Ω)

r sin(θ)

H sin(i)
ah. (B.49)
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Using equation (B.18), we can write the above expression as

ḣ =
r

2H
sec2

(
i

2

)
(cos(θ) cos(Ω)− sin(θ) sin(Ω))ah, (B.50)

Using equations (B.11), (B.14) and (B.16) we get,

ḣ =

√
p

µ

s2

2w
cos(θ + Ω)ah, (B.51)

ḣ =

√
p

µ

s2

2w
cos(L)ah. (B.52)

B.4 Time derivative of g

The time derivative of g, see Eq. (B.1), can be written as,

ġ = ė sin(ω + Ω) + e cos(ω + Ω)(ω̇ + Ω̇). (B.53)

Substituting for ė, ω̇ and Ω̇ we get

ġ =
1

H
(p sin(ν)ar + ((p+ r) cos(ν) + re)aθ) sin(ω + Ω)+

e cos(ω + Ω)

(
1

He
(−p cos(ν)ar + (p+ r) sin(ν)aθ)−

r sin(θ) cos(i)

H sin(i)
ah +

r sin(θ)

H sin(i)
ah.

(B.54)

By considering the terms along ar direction, ġar, we get,

ġar =− p

H
(cos(ω + Ω) cos(ν)− sin(ω + Ω) sin(ν))ar, (B.55)

ġar =− p

H
cos(L)ar, (B.56)

ġar =−
√

p

µ
cos(L)ar. (B.57)
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Next consider the terms along aθ direction, ġaθ,

ġaθ =
1

H
((p+ r) cos(ν) + re) sin(ω + Ω)aθ +

1

H
cos(ω + Ω)(p+ r) sin(ν)aθ. (B.58)

By multiplying and expanding the terms we get

ġaθ =
1

H
(p(cos(ν) sin(ω + Ω) + cos(ω + Ω) sin(ν)) + r(cos(ν) sin(ω + Ω)+

cos(ω + Ω) sin(ν)) + re sin(ω + Ω))aθ.

(B.59)

By using trigonometric identities, we can further simplify the above equation as

ġaθ =
1

H
(p sin(L) + r sin(L) + rg)aθ, (B.60)

ġaθ =
p

√
µp

(
sin(L)(p+ r) + rg

p

)
aθ. (B.61)

Finally, using Eqs. (B.11) and (B.12) we get,

ġaθ =

√
p

µ

(
(w + 1) sin(L) + g

w

)
aθ. (B.62)

Next, consider the terms along the ah direction, ġah,

ġah =e cos(ω + Ω)

(
r sin(θ) cos(i)

H sin(i)
+

r sin(θ)

H sin(i)

)
ah, (B.63)

ġah =
re

H sin(i)
cos(ω + Ω)(1− cos(i)) sin(θ)ah. (B.64)

By using Eqs. (B.1), (B.19) and (B.25) we get,

ġah =
re

H

f

e
tan

(
i

2

)
h sin(L)− k cos(L)

tan
(
i
2

) ah, (B.65)

ġah =
rf
√
pµ

(h sin(L)− k cos(L))ah. (B.66)
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Rewriting the above expression using Eq. (B.11), we get

ġah =

√
p

µ

(
f(h sin(L)− k cos(L))

w

)
ah. (B.67)

By using Eqs. (B.57), (B.62) and (B.67) we can write

ġ =

√
p

µ

(
− cos(L)ar +

(
(w + 1) sin(L) + g

w

)
aθ

)
+√

p

µ

(
f(h sin(L)− k cos(L))

w

)
ah.

(B.68)

B.5 Time derivative of f

The time derivative of Eq. (B.1) can be written as

ḟ = ė cos(ω + Ω)− e sin(ω + Ω)(ω̇ + Ω̇). (B.69)

Substituting for ė, ω̇ and Ω̇ we get

ḟ =
1

H
(p sin(ν)ar + ((p+ r) cos(ν) + re)aθ) cos(ω + Ω)−

e sin(ω + Ω)

(
1

He
(−p cos(ν)ar + (p+ r) sin(ν)aθ)−

r sin(θ) cos(i)

H sin(i)
ah +

r sin(θ)

H sin(i)
ah.

(B.70)

By considering the terms along ar direction, ḟar, we get,

ḟar =
p

H
(cos(ω + Ω) sin(ν)− sin(ω + Ω) cos(ν))ar, (B.71)

ḟar =
p

H
sin(L)ar, (B.72)

ḟar =

√
p

µ
sin(L)ar. (B.73)
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By considering the terms along aθ direction, ḟaθ, we get,

ḟaθ =
1

H
((p+ r) cos(ν) + re) cos(ω + Ω)aθ −

1

H
sin(ω + Ω)(p+ r) sin(ν)aθ. (B.74)

By multiplying and expanding the terms we get

ḟaθ =
1

H
(p(cos(ν) cos(ω + Ω)− sin(ω + Ω) sin(ν))+

r(cos(ν) cos(ω + Ω)− sin(ω + Ω) sin(ν)) + re cos(ω + Ω))aθ.

(B.75)

By using trigonometric identities, we can further simplify the above equation as

ḟaθ =
1

H
(p cos(L) + r cos(L) + rf)aθ, (B.76)

ḟaθ =
p

√
µp

(
cos(L)(p+ r) + rf

p

)
aθ, (B.77)

Using Eqs. (B.11) and (B.12), we get,

ḟaθ =

√
p

µ

(
(w + 1) cos(L) + f

w

)
aθ. (B.78)

By considering the terms along ah direction, ḟah, we get

ḟah = e sin(ω + Ω)

(
r sin(θ) cos(i)

H sin(i)
− r sin(θ)

H sin(i)

)
ah, (B.79)

ḟah =
re

H sin(i)
cos(ω + Ω)(1− cos(i)) sin(θ)ah, (B.80)

by using Eqs. (B.1), (B.19) and (B.25), we simplify the above equation as

ḟah =
re

H

g

e
tan

(
i

2

)
h sin(L)− k cos(L)

tan
(
i
2

) ah, (B.81)

ḟah =
rg
√
pµ

(h sin(L)− k cos(L))ah. (B.82)
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Rewriting the above expression using Eq. (B.11), we get

ḟah =

√
p

µ

(
g(h sin(L)− k cos(L))

w

)
ah. (B.83)

Finally by using equations (B.73), (B.78) and (B.83) we get,

ḟ =

√
p

µ

(
sin(L)ar +

(
(w + 1) cos(L) + f

w

)
aθ

)
+√

p

µ

(
g(h sin(L)− k cos(L))

w

)
ah.

(B.84)

B.6 Time derivative of L

The time derivative of L (see Eq. (B.2)) can be written as

L̇ = ω̇ + Ω̇ + ν̇, (B.85)

L̇ = ω̇ + Ω̇ +

√
µp

r2
− (ω̇ + Ω̇ cos(i)), (B.86)

L̇ = Ω̇(1− cos(i)) +

√
µp

r2
, (B.87)

L̇ =
r sin(θ)

H sin(i)
(1− cos(i))ah +

√
µp

r2
. (B.88)

Using Eqs. (B.19) and (B.27), we can simplify the above equation as

L̇ =
r

H

h sin(l)− k cos(L)

tan
(
i
2

) tan

(
i

2

)
ah +

√
µp

r2
, (B.89)

L̇ =

√
µp

r2
+

r

H
(h sin(L)− k cos(L))ah, (B.90)

L̇ =
√
µp

(
w

p

)2

+

√
p

µ

(
h sin(L)− k cos(L)

w

)
ah. (B.91)
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