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Abstract

Pedestrian navigation systems embody small, lightweight hardware, techniques, and

biomechanical information to provide positioning information in an architecture that substi-

tutes, or supplements, traditional systems such as GNSS. Two unique challenges of pedes-

trian navigation systems are the hardware size and weight constraints to keep the user

comfortable, while the other challenge is the ability to provide accuracy and stability of

the navigation solution in certain environments. Existing systems rely on the availability of

small, lightweight, GNSS and inertial hardware for position, velocity, and attitude informa-

tion in challenging environments. This thesis presents methods of integrating GNSS with a

torso-mounted IMU to estimate three physical parameters of the user and the system hard-

ware as a means of providing longer stability of the position, velocity, and attitude estimates

when GNSS is no longer available. The presented methods will include showcasing a method

of estimating the user’s step length with existing models, as well as a new model; a method

of hardware misalignment compensation for heading estimation; and an approach to detect-

ing erroneous magnetometer measurements to reduce errors in the user’s heading. GNSS is

utilized in conjunction with the IMU to provide discrete step length pseudo-measurements

for the user’s step length estimation; GNSS course measurements will be used to estimate

heading misalignment between the user and the IMU; and, finally, a threshold metric of

the magnetometer measurements is used to compensate for errors in heading that would

occur from perturbed magnetic field measurements. Performance analyses of each method

is shown using real data with simulated GNSS outages. The methods are implemented using

IMU data from a Vectornav 9-DoF VN-100 and a Ublox EVK-7 GNSS receiver for some

data sets, and a Ublox ZED-F9P GNSS receiver for other data sets. Conclusions drawn

from results of each method implementation are discussed and summarized.
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Chapter 1

Introduction

1.1 Background and Motivation

The problem of navigation has existed since the dawn of mankind. The goal of navigation

is to answer two important questions: where am I and where am I going [1]. The former

question is referred to as the problem of positioning, where one must determine a known

location on Earth [2]; while the latter question refers the problem of guidance, or the idea

of planning a path, or trajectory, to move to a new location. All advancements in science

and technology of this field are motivated by solving these problems.

Many modern advancements and applications require reliable information to solve the

problems of positioning and guidance such as: marine travel for ships, orbit determination

and characteristics of celestial bodies and hardware, and pedestrian navigation. The study

of pedestrian navigation has become a major area of interest in the last couple decades for

it’s many pragmatic applications. These applications are able to provide various means of

assistance to individuals like the blind and disabled community, geolocation of dismounted

ground soldiers, or even tracking first responders in emergencies. However, these applications

come with many difficulties and limitations. One such limitation is the degradation of

reliable GNSS signals in many urban and rural environments. For users that are indoors or

in dense foliage, this degraded signal can lead to errors in both positioning and guidance

that could have detrimental, or fatal, results. Other limitations such as satellite outages in

times of war, or signal jamming and spoofing can also greatly hinder the accuracy of these
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systems. With these limitations in mind, many alternative navigation methods have been

explored to help provide accurate solutions under various constraints.

As the technology of various handheld devices, such as smartphones, has advanced, the

ability to implement these alternative navigation systems has become very attractive. Mod-

ern smartphones are equipped with sensors like a global positioning system (GPS) receiver

that provides an individual with a reliable position solution with errors that remain bounded

over time. However, smartphone users are often operating in environments that can hinder

the accuracy and reliability of these GNSS signals and require external information, inde-

pendent of GNSS signals, to improve the desired navigation solution. These external sources

can be maps of the existing environment and often use signals or visual data to identify a

user’s location in reference to known landmarks within the environment. These signals can

be from bluetooth low-energy (BLE), wireless local area network (WLAN), ultra-wideband

radios (UWB), and even radio-frequency identification (RFID). Incorporation of these tech-

nologies into existing navigation systems can be valuable supplements or replacements for

GNSS signals when degraded or unavailable. However, much like the problems facing GNSS

signals, these systems are subject to vulnerabilities, blockages, and other factors that con-

tribute to a poor signal environment. Inclusion of map data also proves to be very costly

and can even be time-consuming when being installed. Therefore, the desire to incorporate

alternative techniques without these physical infrastructure references is very attractive.

A technique that operates independently of externally-referenced information is the tech-

nique of dead reckoning. In pedestrian navigation, dead reckoning involves propagating a

user’s position and orientation through the use of accelerometers and gyroscopes within an

Inertial Measurement Unit (IMU), and magnetometers worn by the pedestrian. With recent

advancements in technology, using inertial and magnetic sensors for pedestrian navigation

purposes have been made possible. Mainly, improvements in the processing power of mobile

computers for real-time implementations [3], and the advancements in sensor technology to

reduce the size and power consumption of the inertial and magnetic sensors to be worn by a

pedestrian [2]. These advancements have paved a path for implementing the dead reckoning

technique on a pedestrian without the need for external information about the pedestrian’s

environment.

However, this technique is faced with challenges that limit the accuracy of a pedestrian

navigation solution. The first challenge stems from the need of high quality IMU and mag-
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netometer measurements. While advancements in technology have allowed for sensors to be

worn on the body, erroneous measurements can compound over time and lead to a degraded

navigation solution. To aid this problem, research has been conducted to supplement these

measurements with models and assumptions of the human walking motion [4, 5, 6, 3, 7, 8].

Application of these walking motion models and assumptions to supplement inertial sensors

are based on the anatomical location of the sensors. Primarily, whether the inertial sensors

are mounted to the pedestrian’s foot, or body [4]. In the case of body mounted sensors,

the navigation solution is constructed by using a model of the pedestrian’s step length and

propagating position during the occurrence of a new step [7, 9, 10, 11]. These step length

models involve forming a mathematical relationship between the pedestrian’s step length

with various parameters and characteristics that are unique to an individual pedestrian, and

can be difficult to construct in real-time implementations.

Another challenge faced with dead reckoning for pedestrian navigation is the need for

position and orientation initialization information. Dead reckoning provides the necessary

information of how a pedestrian’s position and orientation changes from an original point

in space, but is unaware of this needed initialization information. Existing literature has

explored this problem by utilizing GNSS for position and velocity initialization, as well as,

measurements of the Earth’s gravitational force, magnetic field, transfer alignment from

external reference, or even user defined inputs to initialize orientation [9, 8, 12, 13]. Provid-

ing the necessary initialization information allows for the exploitation of dead reckoning to

construct a navigation solution without the need for any other external information.

The final challenge of dead reckoning for pedestrian navigation is the degradation of the

pedestrian’s estimated heading when hardware misalignment and disturbances in the local

magnetic field are present. While magnetometers measurements can be used to determine

heading with respect to magnetic north, these heading estimates are unique to the magne-

tometer, itself, and not the pedestrian. Simply put, the orientation of the magnetometer

and the pedestrian are not always the same. However, even if the magnetometer is perfectly

in line with the pedestrian’s orientation, the existence of magnetic declination between true

north and magnetic north will still lead to errors in heading over time [14]. Combining

this issue of misalignment with ferrous materials that corrupt the measurements of the local

magnetic field, introduce additional errors in heading that hinder the integrity of the naviga-

tion solution over time. Existing literature has explored methods of detecting disturbances
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in local magnetic field measurements to avoid deviations in true heading estimates [14, 15,

16].

In short, pedestrian dead reckoning is plagued with the problem of smaller, less accurate

inertial sensors being rigidly mounted to body parts that experience irregular motion, as well

as, pedestrian’s traveling in environments not conducive to traditional positioning methods

reducing validity of the navigation solution. To combat the challenges faced with dead

reckoning for pedestrian navigation, recent developments have aimed to integrate GNSS

hardware with inertial and magnetic sensors to produce a fused navigation solution [2, 17,

18, 6, 19, 20]. With these developments, this thesis will explore the integration of GNSS

with pedestrian dead reckoning, and the application of alternative methods in step length

estimation, magnetometer misalignment estimation, and magnetic fault detection.

1.2 Research Objectives and Contributions

In general, this thesis aims to develop an integration framework of GNSS with PDR to

improve the PDR solution when GNSS is no longer available. To develop this framework,

this thesis will:

� Present a novel step length estimation model, and the use of GNSS to estimate these

model parameters.

� Develop a method of using GNSS to estimate misalignment between the pedestrian

and the magnetometer.

� Examine an alternative approach to detecting faulty magnetometer measurements.

� Evaluate the performance of the proposed system framework on real-world data.

1.3 Thesis Outline

This thesis will discuss the general principles of navigation and how those principles are

applied to more specific and niche situations in the remaining chapters. Chapter 2 will

discuss the general navigation background, and will focus on the various coordinate frames

and the mathematical methods of transforming between these various frames. Chapter 3

will discuss the principles of inertial navigation and the Kalman Filter framework for state
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estimation. Chapter 4 will discuss the current methods of pedestrian dead reckoning for

foot mounted and torso mounted inertial sensors. Chapter 5 discusses the loosely coupled

architecture of integrating GNSS measurements with the pedestrian dead reckoning tech-

niques. Chapter 6 will present the proposed improvements on the integration of the torso

mounted pedestrian dead reckoning techniques with GNSS. Chapter 7 will show the results

of the system implementation. The final chapter will include a summary, conclusions, and

future work.
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Chapter 2

Coordinate Frames and

Transformations

2.1 Introduction

In navigation systems, there is a requirement for a particular frame, or frames, of refer-

ence and the ability to transform between them in order to construct an optimal navigation

solution. In particular, the ability to transform between the body frame of a pedestrian and

the navigating frame to capture the dynamics of the user relative to the Earth. However,

the dynamics of the user are rendered futile if they cannot be transformed into a navigation

frame. This chapter will cover the various coordinate frames that are used and how to

transform between them.

2.2 Coordinate Frames

This section will introduce the different coordinate frames used for navigation purposes.

They are ordered by establishing the frame of a measurement device, then the frame of a

body of interest, and then the global and local navigating frames. This order is meant to

mimic the order of how information is passed when used to construct the navigation solution.

Some additional global coordinate frames are provided to show the various reference frames

that can be used when developing a navigation solution.
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2.2.1 Sensor Frame

Sensors are often described as devices that detect, or measure, physical properties. Sen-

sors that quantify these properties as a vector(s), indicate the measurement with a mag-

nitude and direction in reference to a certain coordinate frame. For certain sensors, the

measurements are with respect to the sensor itself. This reference frame is defined as the

sensor frame, and describes the directional component of the vector quantities. This is of-

ten represented in a rectangular coordinate system (x, y, z ). Consider a LiDAR sensor that

measures a distant object’s range relative to the sensor. The measurement is provided in

the x, y, and z components of the range to describe the actual location of the object relative

to the sensor, rather than just the magnitude of the distance away.

Figure 2.1: Sensor Frame

Figure 2.1 shows a generic cartesian sensor frame. Establishing the sensor frame allows

for measurements to be quantified as a vector and becomes imperative when analyzing an

object relative to the sensor or vice versa.

2.2.2 Body Frame

The body frame refers to the object or body of interest that system is providing a

navigation solution for. In the case of pedestrian navigation, the body frame refers to the

reference frame of the user and is free to translate and rotate with the user while in motion.

This body frame of the user is typically defined where x is the forward facing direction of

the user, y lies parallel to the user’s shoulders and points in the direction of the user’s right
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shoulder, and z is given as the downward direction towards the user’s feet when standing

straight. Reference to the body frame will be denoted by the symbol b. In practice with

inertial navigation it is common to align the axes of inertial device to correspond with the

body frame, either physically or by means of an initial rotation during computation.

2.2.3 Local Tangent Plane Frame

As the body frame is free to move along in space, the navigation solution must resolve

these dynamics into a frame relative to a global position on Earth. The common solution

is to express a global solution in geodetic or geocentric latitude, longitude, and altitude.

Figure 2.2 shows the relationship between geodetic and geocentric, where geocentric is fixed

to the center of the earth and can be fully expressed by the latitude, longitude, and altitude

of the object in question, whereas, geodetic is based on a tangent plane relative to the

surface of the earth. The latter allows for the object in question to be represented by only

latitude and longitude and does not change based on the object’s altitude.

Figure 2.2: Geodetic and Geocentric Latitude

Another solution to resolving the body frame into a navigation frame is to use the local

tangent plane and fix it to an initial global position along the geodetic reference ellipsoid.

The local tangent plane allows for the dynamics of the user to be expressed relative to an

initial point of reference. This navigation frame is denoted by the symbol n and is typically

expressed in coordinates of North (x ), East (y), and Down (z ). This frame is referred

to as the NED frame and allows the user’s position and velocity to be transformed into

motion along the tangent plane. However, resolving in this frame makes the assumption

that dynamics are captured along a flat surface and not the spherical surface of the earth.
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Therefore, resolving in this frame should only be used for the positions and velocities close

to the origin of the local tangent plane to prevent growth of errors over large distances. The

navigation frame is viable for any right-handed tri-axes such as: East-North-Up (ENU),

North-West-Up, East-Down-South, etc. The two most common navigation frames are NED

and ENU, however, for simplicity, the NED frame will be used as the navigation frame for

the remainder of this thesis.

2.2.4 Global Frame

The global frame refers to the coordinate frame where positions and velocities are relative

to the Earth. One such frame is the Earth-Centered Earth-Fixed (ECEF) frame denoted

by the symbol e. This coordinate frame allows for a user to know his or her location with

reference to any point on earth in the form of cartesian, or rectangular, coordinates as shown

by Figure 2.3.

Figure 2.3: Earth-Centered Earth-Fixed

Where the z -axis is directed along the earth’s axis of rotation from the center of the

earth through the north pole and the x -axis is directed from the center of the earth through

the intersection of the equator and the prime meridian. For objects of interest on the surface

of the earth, this frame is stationary. However, for objects above the earth’s surface such as

aircraft and satellites, the reference frame is rotating at the earth’s rate of rotation ωie =
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7.292115× 10−5 rad/s. For pedestrian navigation, this reference frame is very attractive to

resolve in, since most applications desire a navigation solution relative to the surface of the

earth.

2.3 Coordinate Frame Transformations

As new data becomes available, it is important to be able to transform the data between

the various frames to better understand the motion and orientation of the user. In the

case of tracking a pedestrian, it can be very difficult to interpret the user’s motion in a

rectangular coordinate frame (i.e. ECEF frame); however, transforming the data into the

local tangent plane can better capture the motion of the user and make the data easier to

interpret. This conversion between frames is referred to as coordinate frame transformation

and can be expressed in several ways.

2.3.1 Direction Cosine Matrix

One method of transforming the data between reference frames is to use the direction

cosine matrix (DCM). A DCM allows a body’s orientation, or attitude, to be represented

with respect to another reference frame in the form of a matrix. This matrix representation

allows for a vector given in a specified coordinate frame to be transformed to produce the

same vector in a different reference frame by locating the unit vectors of the reference

frame. For a 2 dimensional case, as shown in Figure 2.4, a vector given in one reference

frame, denoted by the symbol a , can be transformed into a new reference frame, denoted

by b, based on the rotation angle(s) between the two frames.
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Figure 2.4: Vector resolved in two coordinate frames

The vector, k , is given in frame a but can also be expressed in frame b. In order to

generate the DCM to perform this transformation, the angle of rotation between the two

coordinate frames, θ, is used where,

kbx = kaxcos(θ) + kaysin(θ) (2.1)

kby = kaycos(θ)− kaxsin(θ) (2.2)

This transformation of the vector, k , into frame b, can now be represented by a 2-

dimensional square matrix that, when multiplied, gives the same vector within the rotated

coordinate frame.

kbx
kby

 = Cba

kax
kay

 =

 cos(θ) sin(θ)

−sin(θ) cos(θ)

kax
kay

 (2.3)

The generated DCM from frame a to frame b, Cba, does not require any information

about the magnitude of vector k , and is able to produce the transformed vector using only

the angle of rotation between the two coordinate frames. If the vector was to be rotated

back into frame a , the inverse of the DCM would need to be taken, which could be found

by taking the transpose of the matrix:

Cab = (Cba)
−1 = (Cba)

T (2.4)
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For the example given above, the DCM to rotate the vector back into frame a would be

determined to be,

kax
kay

 = (Cba)
T

kbx
kby

 =

cos(θ) −sin(θ)

sin(θ) cos(θ)

kbx
kby

 (2.5)

This example is a very simplified explanation and only looks at a case with a 2-dimensional

frame. Most real-world implementations look to generate the DCM for a 3-dimensional case

to track the orientation of a body relative to the earth. In the case of finding a body’s

orientation in the navigation frame (NED, ENU, ECEF, ECI, etc.), the DCM would need

to be constructed,

x⃗n = Cnb x⃗
b (2.6)

However, this formulation can prove to be very difficult for 3-dimensions since knowledge

of the rotation angle of each coordinate frame to the reference frame may not be inherently

obvious.

2.3.2 Euler Angles

A slightly more intuitive method of transforming vectors between reference frames is

through the use of Euler Angles. Euler Angles define a rotation as a consecutive rotation

around three axes [21]. A rotation about the z -axis is defined as the yaw angle, a rotation

about the y-axis is defined as the pitch angle, and a rotation about the x -axis is defined as

the roll angle. Figure 2.5 depicts a non-sequential ’right-hand’ rotation about each axis:

Figure 2.5: Euler angles in the convention (yaw, pitch, roll) or (ψ, θ, ϕ)
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Euler angles are not a unique representation of three-dimensional orientation. As men-

tioned, Euler angles define orientation by a sequential rotation about each axis. However,

the order in which the rotation sequence is performed will determine the final orientation.

In other words, the final orientation of an Euler angle rotation for one sequence will be

different than the final orientation of an Euler angle rotation for a different sequence. For

example, Figure 2.6 shows the sequential rotation of three-dimensional axes by an initial

yaw angle rotation of 15◦ (red), followed by a pitch angle rotation of 45◦ (blue), and a final

roll angle rotation of 60◦ (green). This rotation sequence is referred to as a ZYX rotation

where the initial frame (black) is rotated into the final frame (green).

(a) Yaw Rotation (b) Pitch Rotation (c) Roll Rotation

Figure 2.6: Euler Angle Orientation with ZYX Sequence

Now consider the same rotation angles performed in reverse order where the initial frame

(black) is, first, rotated by a roll angle of 60◦ (red), followed by a pitch angle rotation of 45◦

(blue), and, finally, a yaw angle rotation of 15◦ (green). This rotation sequence is referred

to as a XYZ rotation and is demonstrated in Figure 2.7.
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(a) Roll Rotation (b) Pitch Rotation (c) Yaw Rotation

Figure 2.7: Euler Angle Orientation with XYZ Sequence

The final orientation for a ZYX rotation sequence is different than the final orientation for

an XYZ rotation sequence. For the remainder of this thesis, the ZYX rotation sequence

will be used.

While maintaining a constant rotation sequence is important, Euler angle representations

are still subject to singularities. One singularity is the issue of angle wrapping. This

problem occurs due to the fact that rotations of 0 radians and 2π radians about an axis are

equivalent. For instance, a rotation of (ψ = 0, θ = 0, ϕ = 0) is equivalent to a rotation of

(ψ = 0, θ = 0, ϕ = 2π). The other singularity of Euler angles is referred to as gimbal lock

and occurs at pitch angles of θ = ±π
2 radians. This singularity poses a problem because

the yaw and roll axes become aligned and a yaw, or roll, rotation becomes indistinguishable

from the other.

2.3.3 Euler Angles and Direction Cosine Matrices

Euler angles can provide the necessary angles of rotation about each axis that are needed

to produce the DCM as mentioned in section 2.3.1. Both methods of coordinate transforma-

tions can be used in conjunction to produce a DCM from one coordinate frame to another

using the Euler angles. An individual DCM can be produced for the rotation about each

axis using the angles (ψ, θ, and ϕ) from Figure 2.5. The DCM’s produced are,

Cz(ψ) =


cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1

 (2.7)

14



Cy(θ) =


cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (2.8)

Cx(ϕ) =


1 0 0

0 cos(ϕ) sin(ϕ)

0 −sin(ϕ) cos(ϕ)

 (2.9)

Recall in section 2.3.2 that the order for which Euler angle rotations occur is imperative

for correctly performing the coordinate frame transformation. A common convention for

performing this rotation is to do an ZYX rotation, or a rotation about the yaw axis, then

the pitch axis, then the roll axis. To determine the full DCM to transform frame b into

frame n , the individual DCM’s need to be multiplied in the same ZYX convention yielding

a new DCM that is often referred to as a rotation matrix,

Cnb = Cz(ψ)Cy(θ)Cx(ϕ) =
cosψcosθ cosψsinθsinϕ− cosϕsinψ sinψsinϕ+ cosψcosϕsinθ

cosθsinψ cosψcosϕ+ sinψsinθsinϕ cosϕsinψsinθ − cosψsinϕ

−cosθsinϕ sinθ cosθcosψ

 (2.10)

The rotation matrix shown above is denoted as Cnb to indicate a transformation of vectors

in the body frame into the navigation frame. To transform vectors from the navigation

frame to the body frame the transpose, or inverse, of the matrix in equation 2.11 needs to

be taken. Extracting the corresponding Euler angles from the ZYX rotation matrix can be

accomplished by:

ψ = atan2

(
Cbn(3, 2)

Cbn(3, 3)

)
(2.11)

θ = −arcsin
(
Cbn(3, 1)

)
(2.12)

ϕ = atan2

(
Cbn(2, 1)

Cbn(1, 1)

)
(2.13)

It is also possible to construct a rotation matrix that transforms vectors from one co-

ordinate frame to another with an intermediate frame in between. One such case could be

to transform vectors from the body frame to the global frame by defining a rotation matrix
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from the body frame to the local tangent plane and then a transformation from the local

tangent plane to the global reference frame. This would be performed by,

Ceb = Cnb C
e
n (2.14)

This allows for transformations from the body frame b to the earth frame e to be performed

without the need to construct a single rotation matrix and, instead, use existing rotation

matrices to produce the equivalent transformation.

2.3.4 Quaternions

The final method for which a coordinate frame transformation can be expressed is

through the use of quaternions. Quaternions were first introduced in 1843 by the math-

ematician William R. Hamilton and were used to describe mechanics in three-dimensional

space by a generalization of complex numbers [22]. The common formulation of a quaternion

is by:

q = q0 + q1i+ q2j + q3k (2.15)

When using quaternions to describe spacial orientation and rotations, the unit quaternion

defines an angle of rotation about a unit axis and can be written in the form:

q⃗ =

 cos
(
ϕ
2

)
u · sin

(
ϕ
2

)
 (2.16)

where the terms ϕ represents the real part that expresses an angle of rotation in 3-D space,

and the terms u = uxi + uyj + uzk is the unit vector that generates an axis by which the

rotation is performed [23]. Unlike Euler angles, quaternions have no singularities for which

certain aspects of orientation become indeterministic making them very attractive for real-

world implementations. However, quaternions are not very intuitive and come with their

own set of properties such as: quaternions products, conjugates, and normalization.

A quaternion product, denoted by the symbol ⊗, is the product of two quaternions in

the typical formulation (1), and is expressed in vector notation as:
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q⊗ p =


q0

q1

q2

q3

⊗


p0

p1

p2

p3

 =


q0p0 − q1p1 − q2p2 − q3p3

q1p0 + q0p1 + q3p2 − q2p3

q2p0 − q3p1 + q0p2 + q1p3

q3p0 + q2p1 − q1p2 + q0p3

 (2.17)

This expression for the quaternion product does reveal that this operation is not commuta-

tive:

q⊗ p ̸= p⊗ q (2.18)

However this non-commutative aspect is limited to events where the two quaternions are

both real and have no imaginary parts, or if both quaternions have imaginary parts that

are parallel [23].

The quaternion conjugate, denoted by the symbol ∗, is the same form as (1) but has the

opposite sign on the imaginary parts and is defined as:

q∗ = q0 − q1i− q2j − q3k =


q0

−q1
−q2
−q3

 (2.19)

This operation reveals how the quaternion product of a quaternion and it’s conjugate pro-

duce a quaternion with no imaginary parts and is referred to as a real quaternion:

q⊗ q∗ = q∗ ⊗ q =


q20 + q21 + q22 + q23

0

0

0

 =


1

0

0

0

 (2.20)

The quaternion normalization is the process of scaling a quaternion vector into a unit

vector and is defined as:

∥ q ∥=
√
q⊗ q∗ =

√
q20 + q21 + q22 + q23 (2.21)

While quaternion properties and operations come with a different set of procedures

than that of rotation matrices, they have similar identities when being used to express
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orientation. Show below are some properties of rotation matrices and the corresponding

quaternion properties:

RB
A =

(
RA
B

)T ↔ q⃗BA =
(
q⃗AB
)∗

(2.22)

RA
C = RA

BR
B
C ↔ q⃗AC = q⃗AB ⊗ q⃗BC (2.23)

RA
B = RA

C

(
RB
C

)T ↔ q⃗AB = q⃗AC ⊗
(
q⃗BC
)∗

(2.24)

RA
B =

(
RA
C

)T
RC
B ↔ q⃗AB =

(
q⃗BA
)∗ ⊗ q⃗BC (2.25)

x⃗A = RA
Bx⃗

B ↔

 0

x⃗A

 = q⃗AB ⊗

 0

x⃗B

⊗
(
q⃗AB
)∗

(2.26)

Further details and proofs of quaternion properties can be found in [23]. As mentioned

above, quaternion representations are not always an intuitive means of interpreting orienta-

tion. Luckily, Euler angles can be extracted from quaternions by means of the conversion:

ψ = atan2
(
2qwqz + qxqy, q

2
w + q2x − q2y − q2z

)
(2.27)

θ = asin (2qwqy − 2qzqx) (2.28)

ϕ = atan2
(
2qwqx + 2qyqz, q

2
w − q2x − q2y + q2z

)
(2.29)

The conversion allows for quaternion operations and representations to be expressed in the

form of Euler angle rotations of a specific sequence. Quaternions can also be converted into

a rotation matrix, however, this is still dependent on the sequence of the construction of

the rotation matrix. Since the remainder of this thesis is based on the ZYX sequence for

constructing the rotation matrix, the conversion from a quaternion to a rotation matrix will

be given as:

R =


2qwqz + 2q2x q2w − q2x + q2y − q2z 2qzqy − 2qwqx

q2w + q2x − q2y − q2z 2qyqx − 2qwqz 2qwqy + 2qzqx

2qwqy − 2qxqz −2qwqx − 2qyqz q2x − q2w + q2y − q2z

 (2.30)
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Chapter 3

Inertial Navigation

3.1 Introduction

Navigation techniques and systems utilize various methods, or devices, to determine an

object of interest’s position, velocity, and direction of travel. While navigation systems are

developed with various sensors and devices, the methods used for navigation techniques are,

typically, based around two fundamental categories: position fixing and dead reckoning [2].

Position fixing involves the determination of an object’s position based on the knowledge of

landmarks at known locations. This can be as simple as referencing a map of physical terrain

or infrastructure of a specific region or environment. For wilderness explorers, comparing

distances from physical features such as: rivers, mountains, and valleys with maps of the

physical environment can provide a relative position with respect to these landmarks. A

more precise and technical approach computes ranges and/or bearings to known objects

based on the time of arrival (ToA), received signal strength (RSS), or angle of arrival (AoA)

to determine an object’s position via trilateration. One such example of this precise position

fixing is through GNSS [2, 24].

Dead reckoning involves tracking an object’s position and orientation based on linear and

angular motion summation from a known reference point. This is commonly achieved by

either measuring the change in position or integrating measured linear and angular velocity

over time [2]. An intuitive example is comparing the change in a car’s odometer when

traveling from one place to another.

19



Both navigation techniques offer advantages and disadvantages for producing a navi-

gation solution. Position fixing can allow for accurate position determination, but this is

dependent on prior knowledge of the surrounding environment (e.g. mapping data), as

well as, existing infrastructure. Dead reckoning is often self contained and requires no pre-

existing knowledge of the surrounding environment. However, this is dependent on the

quality of measurements that can result in errors over time. Also, since dead reckoning

just determines a displacement in position and orientation, an initial absolute position and

orientation must be provided in order to navigate in the global frame. That being said,

dead reckoning is a very popular navigation technique based on it’s advantages.

3.2 Continuous-Time Inertial Navigation

A common implementation of the dead reckoning methodology is through inertial naviga-

tion. An inertial navigation system (INS) produces a 3-dimensional dead reckoning solution

from the sensor outputs of an inertial measurement unit (IMU). The IMU usually consists

of three orthogonal accelerometers that measure specific forces (f̃ bib), and three orthogonal

gyroscopes that measure angular velocity (ω̃bib). The fully realized dead reckoning solution

from IMU measurements determines the body’s position, velocity, and attitude states over

time. In a continuous-time domain, the instantaneous change of these states is given by:

Ċnb = Cnb Ω̃
b
nb (3.1)

v̇nb = f̃nnb (3.2)

ṙnb = vnnb (3.3)

The term Ω̃bnb is the skew-symmetric matrix of the angular velocity measurements, as well

as, the skew-symmetric matrix of the Earth’s rotation with respect to an inertial frame

and the transport rate of the local navigation frame with repect to the Earth. Cnb is the

rotation matrix from the body frame to the navigation frame, and f̃nnb is the accelerometer

measurements accounting for the force due to gravity.

When updating the position and velocity from accelerometer measurements, the IMU

is not experiencing positional displacement. However, the accelerometer is measuring the

reaction force exerted by the surface of the Earth due to the force of gravity. With this in

mind, a gravity model is used to compensate for this effect. While the true measure of the
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acceleration due to gravity is based on the IMUs location on Earth, a simplistic model in

the local navigation frame can be defined by:

γnnb =


0

0

9.81

m/s2 (3.4)

The z-axis component is perpendicular to the surface of the Earth and pointed downwards.

With the gravity model defined, the accelerometer measurements can be accounted for

yielding:

f̃nnb = ãnnb − γnnb (3.5)

The term ãnnb is the specific force measurements rotated into the local navigation frame.

Integrating the time derivative of the navigation states to obtain the actual position, velocity,

and attitude (PVA) is given by:

Cnb =

∫
Ċnb dt (3.6)

vnb =

∫
v̇nb dt =

∫
f̃nnbdt (3.7)

rnb =

∫
vnb dt (3.8)

This process stated above, provides the continuous-time domain for PVA determination

from an IMU. These equations provide the foundation of an inertial navigation system.

3.2.1 INS Error Modeling

The accuracy of the INS’s PVA determination is heavily dependent on the quality of

the IMU measurements. A conceptual way of modeling the IMU measurements is with the

inclusion of error terms:

f̃ bib = f bib + ba + wa wa ∼ N(0, σ2
a) (3.9)

ω̃bib = ωbib + bg + wg wg ∼ N(0, σ2
g) (3.10)

The terms f̃ bib and ω̃
b
ib are the measured specific force and angular velocity, f bib and ω

b
ib are

the true specific force and angular velocity, ba and bg are the accelerometer and gyroscope

biases, and wa and wg represent zero-mean, Gaussian white noise of the accelerometer
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and gyroscope measurements. It should be noted that these error models do not account

for potential misalignment of the axes that may exist. However, these misalignments are,

typically, removed by the manufacturer(s) during calibration and will be neglected in this

thesis.

As the PVA estimates are computed over time, errors in the IMU measurements will

cause the accuracy of these measurements to degrade over time too. The instantaneous

change in time of the error in the PVA states is given by:

δψ̇nnb = Cnb (bg + wg) (3.11)

δv̇nnb = − [fnnb]× δψ
n
nb + Cnb (ba + wa) (3.12)

δṙnnb = δvnnb (3.13)

The term [fnnb]× is the skew-symmetric matrix of the specific force and the terms (δψ̇,δv̇,δṙ)

represent the time derivative of the errors in attitude, velocity, and position. Integrating

these terms with respect to time yields the PVA errors. The errors in the PVA states are

related to the true PVA by:

Cnb =
(
I3 − [δψnnb]×

)
Ĉnb (3.14)

vnnb = v̂nnb + δvnnb (3.15)

rnnb = r̂nnb + δrnnb (3.16)

The terms (Ĉnb ,v̂
n
nb,r̂

n
nb) represent the estimated PVA from the INS in the navigation frame.

3.3 Discrete-Time Inertial Navigation

While the continuous-time INS equations (Equations (3.1) - (3.8)) and INS error equa-

tions (Equations (3.11) - (3.16)) provide the foundation for dead reckoning, these equations

are not very suitable for sensors and computers that operate in discrete periods. To handle

practical implementations of dead reckoning, the equations must be discretized based on

the sampling periods of the IMU and the digital computer. The discretization of the PVA

states is given by:

Cnb (t+∆t) = Cnb (t) + Cnb (t)Ω̃
b
nb∆t (3.17)

vnnb(t+∆t) = vnnb(t) + f̃nnb(t)∆t (3.18)
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rnnb(t+∆t) = rnnb(t) + vnnb(t+∆t)∆t (3.19)

The attitude update, Cnb (t+∆t), is computed with a first-order approximation. The same

full state PVA discretization method can be applied to the INS’s PVA errors by:

δψnnb(t+∆t) = Cnb (bg + wg)∆t+ δψnnb(t) (3.20)

δvnnb(t+∆t) = δvnnb(t)∆t− [fnnb(t)]× δψ
n
nb(t+∆t)∆t+ Cnb (ba + wa)∆t (3.21)

δrnnb(t+∆t) = δrnnb(t) + δvnnb(t+∆t)∆t (3.22)

3.4 Discrete-Time Linear Kalman Filter

The Kalman filter was first introduced in 1960 by a Hungarian-American engineer named

Rudolf E. Kalman, who developed a recursive solution to the discrete-data filtering prob-

lem [25]. The Kalman filter has many applications surrounding navigation and controls of

vehicles such as aircraft, marine ships, and ground vehicles. Due to innovations in digital

computing, the implementation of the discrete-time Kalman filter has gained major pop-

ularity. The goal of this algorithm is to estimate various states of a discrete-time linear

dynamic process from measurements observed in time. This discrete linear process is given

by:

xk+1 = Φkxk +Buk +wd,k (3.23)

The terms xk+1 is the (n× 1) state vector at time tk+1, Φk is the (n× n) state transition

matrix at time tk that relates the states at time tk to the states at time tk+1, B is the

(n × 1) vector relating the control inputs, uk, to the states at time tk. For this thesis, the

application of the Kalman filter is used to estimate INS errors and no inputs are included

in the process model. The term wd,k is the (n × 1) stochastic discrete process noise input

at time tk. The process noise input is a random variable with a zero-mean and Gaussian

probability distribution

p(wd,k) ∼ N(0, Qd,k) (3.24)

Qd,k = E[wd,kw
T
d,k] (3.25)

The term Qd,k is the (n× n) discrete process noise covariance matrix.

With the process model defined, an observation model is needed to describe the relation-

ship between the measurements and the desired states in discrete time. This observation

23



model is given as:

yk = Hkxk + vk (3.26)

The terms yk is the (m×1) measurement vector at time tk and Hk is the (m×n) observation

matrix that map the measurements to the state vector as a linear relationship at time tk.

The term vk is the (m×1) stochastic measurement noise vector at time tk. Like the process

noise input, the measurement noise vector is also a random variable with a zero-mean and

Gaussian probability distribution with a (m×m) measurement covariance matrix Rk.

p(vk) ∼ N(0, Rk) (3.27)

Rk = E[vkv
T
k ] (3.28)

The Kalman filtering algorithm is comprised of two major steps: the time update and the

measurement update. The time update uses the estimates of the current states to ’predict’

the estimates of the states a single time-step in the future, while the measurement update

uses the measurements of the current states to ’correct’ for errors in the predicted states of

the time update. The equations for the time update are given below with the state estimate

prediction and the state estimate covariance prediction:

x̂−
k+1 = Φkx̂k (3.29)

P−
k+1 = ΦkPkΦ

T
k +Qd,k (3.30)

the propagation of the state estimate and state estimate covariance are denoted by the

superscript (−) to represent them as an estimate before correction by the measurement

update. The measurement update computes a gain matrix that is used to correct the state

estimate and the state estimate covariance. The equations for the measurement update are

give as:

Kk =
P−
kH

T
k

HkP
−
kH

T
k +Rk

(3.31)

x̂k = x̂−
k +Kk(yk −Hkx̂

−
k ) (3.32)

Pk = (In×n −KkHk)P
−
k (3.33)

The term Kk is the (n ×m) gain matrix and In×n is a square identity matrix. The gain

matrix consists of scalars between 1 and 0 that can be thought of as a confidence metric of

whether to place higher “trust” in the measurements or the model prediction.

24



The implementation of the Kalman filtering algorithm requires that an initial estimate

of the state and state covariance be given where:

x̂0 = x̂t0 (3.34)

P0 = E[x̂0x̂
T
0 ]. (3.35)

Once initialized, the time update is recursively performed until measurements are made

available and the measurement update can make corrections to the state estimates. Further

explanations of the Kalman filter and its applications are given in [25].

3.5 The Extended Kalman Filter

A drawback to the linear Kalman filter from Section 3.3.5 is that the system model and

the measurement model are required to be linear in nature. In the presence of systems that

are defined by very nonlinear dynamics, the linear Kalman filter cannot properly estimate

the desired states. Therefore, an alternative to the linear Kalman filter is needed to estimate

states of a system with nonlinear dynamics. One such method is the extended Kalman filter

(EKF). Consider a system of nonlinear dynamics and a nonlinear observation model:

xk+1 = f(xk,wd,k) (3.36)

yk = h(xk,vk) (3.37)

The function f(•) describes a nonlinear relationship between the current state and process

noise at time tk to the future state at time tk+1. A different nonlinear function, h(•),

describes the relationship between the state and measurement noise to the measurement, y,

at time tk.

With this in mind, the state covariance (P) propagation is performed by linearizing

the nonlinear function, f(•), in order for the measurement update to be performed. The

linearization of the describing function is a first-order Taylor Series approximation, often

referred to as a Jacobian, given by:

Ak =
∂f

∂xk
(xk) (3.38)

Hk =
∂h

∂xk
(xk) (3.39)
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The term A is the first-order Taylor Series approximation of the nonlinear process model,

f(•), and H is the first-order approximation of the the nonlinear observation model, h(•).

The same steps from the linear Kalman filter are applied to the EKF with the inclusion

of the linearized process model and measurement model where the time update is given by:

x̂−
k+1 = f(x̂k) (3.40)

P−
k+1 = AkPkA

T
k +Qd,k (3.41)

The term Qd,k is the discrete process noise covariance matrix mapped onto each state. It

should be noted that the process noise cannot always be represented as a scalar matrix, in

which case, the Jacobian of the nonlinear process function will have to be found with respect

to the process noise w at time tk. The measurement update equations are given by:

Kk =
P−
kH

T
k

HkP
−
kH

T
k +Rk

(3.42)

x̂k = x̂−
k +Kk(yk − h(x̂k)) (3.43)

Pk = (In×n −KkHk)P
−
k (3.44)

where Rk is the discrete measurement noise covariance matrix. Again this noise term cannot

always be represented by a scalar matrix and the Jacobian of the nonlinear observation

function will have to be found with respect to the measurement noise v at time tk.

3.6 Error-State Kalman Filter for INS Aiding

The ability to dead reckon to estimate a position over time proves to be very beneficial

when position fixing systems and methods are not readily available. However, as mentioned

in Section 3.2.1, the quality of measurements within an INS directly affect the accuracy of

the dead reckoned solution. This inherent problem allows for a method of fusing a dead

reckoning system with a position fixing system to be implemented. The Kalman filter

algorithms discussed in Sections 3.4 and 3.5 allow for such an implementation to exist. The

Kalman filter framework provides a way of determining a PVA that minimizes the difference

between the INS PVA and an aiding system’s PVA based on the uncertainty within each

system.

An intuitive approach to applying the Kalman filter framework is to use the full PVA

as the states. However, this approach comes with the difficulty of the PVA states being
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nonlinear in the propagation equations. One solution is the use of the EKF framework as

shown in Section 3.5, or by using the PVA errors as the states of the Kalman filter in an

approach known as the error-state Kalman Filter (ESKF) [5, 3]. The ESKF assumes the

notion that the PVA errors are linear combinations of the state propagation equations as

shown in Section 3.3. The states of the ESKF are given by:

δx =
[
δrnnb δvnnb δψnnb ba bg

]
(3.45)

The terms for the accelerometer and gyroscope biases (ba, bg) are included in the state

vector. The estimation of the IMU biases help to reduce errors within the measurements

for the full PVA estimation.

The first step of the ESKF is to propagate the full PVA estimates forward in time with

the IMU measurements that had the estimated biases removed where:

Cnb (t+∆t) = Cnb (t) + Cnb (t)
(
Ω̃bnb − bg

)
∆t (3.46)

vnnb(t+∆t) = vnnb(t) +
(
f̃nnb − ba

)
∆t (3.47)

rnnb(t+∆t) = rnnb(t) + vnnb(t+∆t)∆t (3.48)

The accelerometer measurements have compensated for the reaction force due to gravity.

The next step is to propagate the error state vector forward in time as given by Equation

(3.29) where the state transition matrix, Φ, is given by:

Φ =



I3 I3∆t 03 03 03

03 I3 −
[
f̃ bnb

]
×
∆t Cnb ∆t 03

03 03 I3 03 Cnb ∆t

03 03 03 I3 03

03 03 03 03 I3


(3.49)

The rotation matrix, Cnb , is the propagated full state estimate from Equation (3.46). The

continuous process noise matrix is given as the variance of the IMU measurements, as well

as, the variance in the biases where:

Q =


σ2
a 03 03 03

03 σ2
g 03 03

03 03 σ2
ba

03

03 03 03 σ2
bg

 (3.50)
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with the continuous process noise being discretized and mapped onto the current states by:

Qd = GQGT∆t (3.51)

and a mapping matrix:

G =



03 03 03 03

Cnb 03 03 03

03 Cnb 03 03

03 03 I3 03

03 03 03 I3


(3.52)

Now that the states are being estimated, the next phase is providing a measurement

update from the INS aiding system. The goal of the aiding system is to provide measure-

ments that allow for reference insight into the PVA states being estimated. A common

approach is to aid the INS with GNSS due to the simplicity of GNSS position and velocity

measurements. This aiding method is commonly referred to as loosely coupled GNSS-INS

integration [2, 19]. The measurement update takes the error of the measured full state po-

sition and velocity with the estimated full state position and velocity and compares it with

the estimated error state position and velocity from the ESKF given by:

δy =

δyr
δyv

 =

(rnnG − rbnb
)
− δrnnb

(vnnG − vnnb)− δvnnb

 (3.53)

Since the measurement update is not directly using a measurement of the INS errors, the

measurement vector is denoted as δy. The subscript, G, represents measurements from the

GNSS receiver and result in the measurement model given by:

H =

−I3 03 03 03 03

03 −I3 03 03 03

 (3.54)

and a measurement noise matrix of:

R =

σ2
rG 03

03 σ2
vG

 (3.55)

While the time update and measurement update follow the same procedure as the EKF

and the Linear KF, the ESKF requires the state estimates be set back to zero after the

measurement update. This application does not take into account the offset between the

IMU’s location and GNSS receiver’s location. For more accurate implementations this offset,
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also known as lever arm and misalignment, will need to be taken into consideration. The

algorithm presented above makes the assumption that both sensors are mounted in such a

way that there is no misalignment or lever arm. This algorithm will be explored further in

the next chapter with an alternative aiding system approach.
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Chapter 4

Pedestrian Dead Reckoning

4.1 Introduction

Dead reckoning (DR) is a term used in navigation to describe the process of estimating

the current position of an object by utilizing a previously determined position, or fix, in

conjunction with the distance traveled and the direction of travel over a period of time [26].

This method of position estimation is most common with ships attempting to travel across

oceans or hikers searching for a destination in remote regions where certain technologies are

unavailable. In the case of tracking an individual person, this technique of dead reckoning

is applied to capture the motion of the individual in a method known as Pedestrian Dead

Reckoning (PDR). For a pedestrian, the knowledge of the distance and direction traveled

relative to the Earth is not always well known or available, therefore, many scenarios of

pedestrian tracking require some information about the pedestrian’s movement and orien-

tation. In practice, PDR allows the position, velocity, and attitude (PVA) of a pedestrian

to be estimated by fusing data from small micro-electric mechanical system (MEMS) grade

Inertial Measurement Units (IMU) with models of the pedestrian walking motion. The PVA

navigation state estimates use information from the accelerometer and angular velocity mea-

surements that make certain assumptions about the motion of the pedestrian based on the

location of the IMU on the body. Advancements in the technology of smaller grade IMUs

have made implementations of PDR more feasible and heavily explored area of research.

This has led to a variety of techniques and algorithms are being explored to better capture
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the pedestrian’s motion to reduce errors produced by the smaller and lower quality IMUs.

The rest of this chapter will cover an INS approach to dead reckoning for foot-mounted

IMUs, as well as a step detection approach to dead reckoning for chest and torso mounted

IMUs.

4.2 PDR-INS Approach

A popular approach to tracking a pedestrian’s motion is through an Inertial Navigation

System (INS) technique of dead reckoning. This technique uses a “beacon-free” method of

propagating a pedestrian’s position and orientation where no reference points or pre-existing

knowledge of infrastructure is needed [5]. This is performed by mathematical integration

of tri-axial accelerometer and gyroscope outputs from an IMU mounted on the foot of the

pedestrian, which allows for a navigation solution to be constructed by estimating the PVA

states. This mathematical integration is known as 6-DoF mechanization. However, as

mentioned previously, these IMU measurements are prone to errors that can cause the PVA

estimates to diverge, unbounded. In order to account for these errors and reduce the drift

of the PVA estimates, several techniques are used that estimate errors in the navigation

states, as well as estimate estimate sensor errors and biases. These techniques are:

1. Zero Velocity Update (ZVU)

2. Zero Angular Rate Update (ZARU)

3. Heuristic Drift Reduction (HDR)

The ZVU, or ZUPT, technique is performed by the assumption that the IMU is stationary

and the linear velocity in any direction is zero. The ZARU technique is similar to the ZVU

technique, except that the stationary assumption also has no angular velocity. The HDR

technique is based on the assumption that the direction of motion is held constant and

changes in the heading are solely due to sensor errors within the IMU.

For foot-mounted IMUs, the INS techniques can be applied by fusing the inertial mea-

surements with a model of the pedestrian’s walking pattern. The remainder of this section

will introduce the Gait Cycle model of the human walking motion for identifying periods of

application of the INS techniques, the PDR-INS system model, and an implementation and

summary of the system.
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4.2.1 Pedestrian Gait Cycle Events

The goal of PDR is to track a pedestrian as he or she moves from one point to another.

To achieve this, the motion of the pedestrian must be taken into account. This ambulatory

walking motion uses two legs providing support and propulsion in a fluctuating pattern

that is cyclical in nature. Human gait is referred to as the individual’s manner, or style, of

walking and is more unique to a single pedestrian instead of an all encompassing method of

locomotion.

Due to the cyclical nature of the human walking motion, this pattern is referred to as

a gait cycle. One full gait cycle consists of when one event in the cycle occurs and is then

repeated. While the gait cycle can examine the events at any point in the walking motion,

it is much more intuitive to think of one gait cycle as being the time of one foot coming in

contact with the ground to the time when that same foot strikes the ground again. For the

remainder of this thesis the gait cycle will be expressed by the latter explanation and the

foot that the cycle begins with will be referred to as the leader foot. As shown in Figure

4.1, a full gait cycle can be broken down into two major phases: the stance phase and the

swing phase. The stance phase of the gait cycle consists of the events when the leader foot

is in constant contact with the ground, and the swing phase consists of the events when the

leader foot is swinging in the air to take the next step. Within the stance phase of the gait

cycle there are several events that occur to define this phase:

1. Loading Response: Time of initial contact of the leader foot with the ground to the

toe of the opposite foot leaving the ground.

2. Mid-stance: Time from the toe of the opposite foot leaving the ground to the heel

rise of the leader foot.

3. Terminal Stance: Time from the heel rise of the leader foot to the initial contact of

the opposite foot with the ground.

4. Pre-swing: The time from initial contact of the opposite foot with the ground to the

point where the leader foot leaves the ground.

With the leader foot leaving the ground, the swing phase of the gait cycle begins. Similar

to the stance phase, the swing phase can also be broken down into separate events:
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1. Initial Swing: The time from the leader foot leaving the ground to the point where

the feet are adjacent with one another.

2. Mid-swing: The time from the feet being adjacent to the point where shin of the

leader foot is perpendicular to the ground.

3. Terminal Swing: The time from the shin of the leader foot being perpendicular to

the ground to the point where the leader foot makes contact with the ground.

Figure 4.1: Stance and Swing phases of Gait Cycle [27]

There are periods during both phases where only one foot is in contact with the ground,

and periods where both feet are in contact with the ground. During the periods where

both feet are in contact with the ground, the body of the pedestrian is being supported by

both feet in a period of double support. During this period of double support, one foot is

positioned in front of the other having made initial contact with the ground and the other

foot is positioned in the back about to be lifted off of the ground. When either foot is

suspended in the air to swing forward for the next step, there is a period when only one foot

is in contact with the ground. This period is known as single support where the pedestrian’s

body is being supported by only one foot.

When attempting to monitor and analyze the various phases of a pedestrian’s gait cycle

mentioned in the previous section, there are three cases that need to be considered. The
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first case is the determination of the stance phase where the foot is in a stationary state

during walking motion for the application of the ZVU technique, the second case is the

determination of still periods where the pedestrian is stationary and not walking for the

application of both the ZVU and ZARU techniques, and the final case is the determination

of when the pedestrian’s walking direction is held constant for the application of the HDR

technique.

4.2.2 Stance Detection

As mentioned in the previous, the stance phase occurs when one or both of the feet are

in contact with the ground or walking surface. During this phase, the linear velocity, as

well as, the angular velocity of the foot is very nearly zero. However, due to errors within

the IMU and the realization that the user’s foot is never truly stationary, the ability to

detect these periods of zero-velocity is an inherent problem. The detection of zero-velocity

periods can be performed using either the accelerometer measurements or the gyroscope

measurements from an IMU mounted on the pedestrian’s foot [5, 28]. When using one, or

both, of the measurements produced by the IMU, the magnitude of the measurements is

needed by calculating the Euclidean norm given by:

∥ ãbnb ∥=
√
(ãbnb,x)

2 + (ãbnb,y)
2 + (ãbnb,z)

2 (4.1)

∥ ω̃bnb ∥=
√

(ω̃bnb,x)
2 + (ω̃bnb,y)

2 + (ω̃bnb,z)
2 (4.2)

The terms ãbnb,x, ã
b
nb,y, and ã

b
nb,z are the linear acceleration measurements along each axis,

and ω̃bnb,x, ω̃
b
nb,y, and ω̃

b
nb,z are the angular velocity measurements along each axis. When

the quantity of the angular velocity norm calculation is near zero, or when the norm of the

acceleration calculation is near the acceleration due to gravity, the IMU can be assumed to

be in a stationary state. The stance and swing phases of the pedestrian’s gait cycle can be

determined by applying this principle with the angular velocity norm. The stance phase

can be seen from the point where the leader foot makes initial contact with the ground,

then the foot’s angular velocity flattens out near zero indicating that the foot is flat on the

ground. From there, the swing phase begins as the leader foot is lifted off of the ground.

For implementation of a stance detection algorithm, certain conditions must be met by

using a thresholding methodology proposed by Jiménez [5] and Pierce [29]. When consid-
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ering both the accelerometer and gyroscope measurements, their are three conditions to

satisfy a stance phase:

1. The magnitude of the normalized acceleration must be within a specified upper and

lower bound for a window of measurements. The specified bounds are within small

deviations of the acceleration due to gravity (THa,min = 8.5m/s2 and THa,max =

11m/s2). This can be written in the form of a logical statement:

C1 =

1 if THa,max > ∥ ãbnb ∥> THa,min

0 if otherwise

(4.3)

If none of the acceleration norm measurements in the window are outside the upper

or lower bounds, then the logical expression will return a 1 for true. If any of the

measurements in the window are outside the upper and lower bounds, then the logical

expression will return a 0 for false. A window size of 11 samples at a sampling rate

of 100 Hz was used to produce a window roughly 0.1 seconds in length was chosen for

this thesis and produced the best results for step detection.

2. The magnitude of the normalized angular velocity must be less than a specified upper

bound for the window of measurements (THω,max = 0.7 rad/s). This can be written

in the form of a logical expression:

C2 =

1 if ∥ ω̃bnb ∥< THω,max

0 if otherwise

(4.4)

Again, if none of the angular velocity norm measurements in the sample window are

greater than the specified upper bound then the logical expression will return a 1 for

true. The lower bound for the angular velocity norm measurements can be thought

of as 0 rad/s since angular velocity measurements magnitudes can never be less than

zero. For the sake of simplicity, a lower bound is not specified. A window size of 11

samples at 100 Hz was also used for this condition.

3. The standard deviation of the acceleration norm must also be within a threshold.

However, this threshold is determined as a function of the current mean and standard

deviation of the acceleration norm measurements. This can be written in the form of
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a logical expression:

C3 =

1 if (∥ ãbnb ∥ −µwindow) < 1.5 · σwindow

0 if otherwise

(4.5)

The terms µwindow and σwindow are the current mean and standard deviation of the

acceleration norm measurements. A window size of 11 samples sampled at 100 Hz was

also used for this condition.

If all three of the conditions (C1, C2, and C3) are satisfied then the stance phase of the gait

cycle is occurring and the ZVU technique can be applied.

4.2.3 Still Detection

Still periods where the pedestrian is stationary is not part of the gait cycle as mentioned

in Section 4.2.1, since the gait cycle is based on the dynamic motion when walking. While it

is intuitive to think that the pedestrian is motionless during stationary periods, the reality

is that these periods are never truly motionless and there are errors within the sensor

measurements. These errors in the sensor measurements will be discussed in later sections.

Similar to the methodology described for stance detection, a thresholding technique specified

by [5, 28] is used to satisfy two conditions to register a still period:

1. The magnitude of the angular velocity norm measurements must be less than a speci-

fied upper bound for the window of measurements (THω,max = 0.2rad/s). This upper

bound is much less than the upper bound set for the stance detection as mentioned

in section 3.2.2. This can be written in the form of a logical expression:

C4 =

1 if ∥ ω̃bnb ∥< THω,max

0 if otherwise

(4.6)

If none of the angular velocity norm measurements in the sample window are greater

than the specified upper bound then the logical expression will return a 1 for true. A

window size of 11 samples sampled at 100 Hz was used for this condition.

2. The standard deviation of the angular velocity norm measurements must be within a

threshold that is a function of the current mean and standard deviation of the angular
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velocity measurements. This can be written in the form of a logical expression:

C5 =

1 if (∥ ω̃bnb ∥ −µwindow < 2 · σwindow

0 if otherwise

(4.7)

where the terms µwindow and σwindow are the current mean and standard deviation

of the angular velocity norm measurements. A window size of 11 samples sampled at

100 Hz was also used for this condition.

If both conditions (C4 and C5) are satisfied then a still period is occurring, allowing for

the application of both the ZVU and ZARU techniques.

Both the stance phase detection and the still period detection methods were applied to a

real-world data set where a pedestrian was fitted with a Vectornav VN-100 [30] mounted to

the right foot. Data was then recorded of the pedestrian beginning in a static position and

then walking around a parking lot. The results are shown below in Figure 4.2. For almost a

full minute the pedestrian is standing still with both feet planted on the ground. Detection

of this still period is represented by the black markers. Once the pedestrian begins walking,

the stance periods were detected and shown with the green markers. This test was used to

validate the performance of the stance and still phase detection algorithms and conditions

presented above.
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Figure 4.2: Still Period and Stance Phase Detection

4.2.4 Straight Walking Detection

As mentioned in Sections 4.2.2 and 4.2.3, the ability to detect periods of stance, swing,

and stillness allow for errors within the IMU measurements to be reduced when determining

the pedestrian’s PVA during propagation. However, a critical element of this error reduction

is determining the z -axis gyroscope bias for heading estimation. During the still period

detection, the heading drift can be reduced by estimating the bias along the z -axis, however,

if no still periods occur, then estimation of this bias becomes unachievable. In the case of a

pedestrian walking along a corridor in a building or along the side of the road on a sidewalk,

the assumption can be made that the direction of travel remains fairly constant. In order

to reduce the drift in the heading estimate from the z -axis gyroscope bias, the change in

the pedestrian’s heading between steps (δψs) can be assumed to be zero if the change is
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relatively small [5]. The change in the pedestrian’s heading between steps can be evaluated

as:

∆ψk = ψk −
1

2
(ψk,s + ψk,s−1) (4.8)

The term ψk is the pedestrian’s current heading, ψk,s is the pedestrian’s heading at the

previous instance of a detected stance, and ψk,s−1 is the pedestrian’s heading at the instance

of the detected stance prior to tk,s. Similar to the stance and still detection methodologies,

a threshold can be applied to the change in the pedestrian’s heading for Straight Walking

Detection (SWD). This can be written in the form of a logical expression:

C6 =

1 if | ∆ψk | ≤ THδψ

0 if otherwise

(4.9)

The threshold for the change in the pedestrian’s heading is specified as THδψ = 4 de-

grees [5] and the pedestrian’s heading is computed from the estimated attitude by ψk =

arctan(C̃nb (1, 2), C̃
n
b (1, 1)). If the condition above is satisfied and the change in the pedes-

trian’s heading is below the threshold, then the logical expression returns a 1 for true and

the change in heading is reduced to zero to allow for the application of the HDR technique.

4.2.5 INS-EKF-ZVU

The methodology for the PDR-INS presented in this thesis was developed by Jiménez et

al. [5] and the work from Foxlin [3]. This methodology utilizes a discrete-time error-state

Kalman filter (ESKF). Contrary to the full-state methods given by the linear Kalman filter

and the extended Kalman filter, the ESKF estimates the error between estimated states

and the true states instead of estimating the the states directly. The advantage of this

indirect filter formulation is that the error dynamics are low frequency and can suitably

represented as linear. The low frequency dynamics also allow for a lower sampling rate to

be used, whereas, the full-state EKF needs a much higher sampling rate to better capture

high frequency dynamics that are not linear. The rest of this section will discuss the state

selection, system model, and measurement models for the ESKF to estimate the PVA states

mentioned in Section 4.2.2.

1. State Selection
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The state vector for the ESKF is a 15 element column vector comprised of 9 navigation

error states and 6 IMU bias states given by:

δx = [δr δv δψ ba bg]
T (4.10)

The navigation states are defined as the (3×1) position error (δr), the (3×1) velocity

error (δv), and the (3×1) attitude error (δψ) in the North, East, Down navigation

frame. The IMU bias states are the (3×1) accelerometer biases (ba) and the (3×1)

gyroscope biases (bg) in the x, y, z sensor frame. With the states defined, their error

dynamic equations can also be defined.

2. Discrete-time System Model

The discretized inertial navigation error models in the local navigation frame are given

below as:

δr−k+1 = δrk + δvk∆t (4.11)

δv−
k+1 = δvk − δψk[â

n
k∧]∆t+ Cnb,kba,k∆t (4.12)

δψ−
k+1 = δψk + Cnb,kbg,k∆t (4.13)

b−
a,k+1 = ba,k (4.14)

b−
g,k+1 = bg,k (4.15)

The term [ânk∧] is the skew-symmetric matrix of the estimated acceleration in the

navigation frame after bias and gravity vector removal. It should be noted that the

IMU biases are modeled as random walk processes with a zero-mean and Gaussian

distribution. In matrix notation, the linear error equations are given as:

δx−
k+1 = Φkδxk +wd,k (4.16)

The term wd,k is the discrete system noise and Φk is the discrete state transition

matrix for time tk given by:

Φk =



I3 ∆tI3 03 03 03

03 I3 −∆t[f bk∧] Cnb,k∆t 03

03 03 I3 03 Cnb,k∆t

03 03 03 I3 03

03 03 03 03 I3


(4.17)
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The formulation of the discrete process noise covariance matrix (Qd,k) maps the con-

tinuous process noise covariance matrix (Q) to the corresponding states can be ap-

proximated by the noise input matrix, G, and is given by:

Qd,k = GkQGT
k∆t (4.18)

The process noise covariance matrix and the noise input matrix are given as:

Q =


σ2
aI3 03 03 03

03 σ2
gI3 03 03

03 03 σ2
ba
I3 03

03 03 03 σ2
bg
I3

 (4.19)

Gk =



03 03 03 03

Cnb,k 03 03 03

03 Cnb,k 03 03

03 03 I3 03

03 03 03 I3


(4.20)

The terms (σ2
a, σ

2
g) represent the variance of the noise of the acceleration and angular

velocity measurements, and (σ2
ba
, σ2

bg
) represent the variance of the accelerometer

and gyroscope biases, respectively.

3. ZVU Measurement Model

For the discrete-time linear system model of the ESKF, the measurement model is

given by:

δyk = Hkδxk + vk, vk ∼ N(0,Rk) (4.21)

The term δyk is the error measurement, Hk is the observation matrix, and vk is the

measurement noise at time tk. For a ZVU, the foot is stationary and the linear velocity

is assumed to be zero. Therefore, the measurement vector for the ZVU is given by:

δykZV U
= [v̂−

k+1 − 03×1] (4.22)

The error measurement is given as the difference between estimated velocity and the

true velocity. The corresponding measurement matrix for the ZVU is given by:

HkZV U
=
[
03 I3 03 03 03

]
(4.23)
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This allows the measurement update to correct the states based on the difference

between the true velocity error and the estimated velocity error.

4. ZARU/ZVU Measurement Model

During a still period where the pedestrian is not walking, both the linear velocity and

angular velocity of the foot can be assumed to be zero. This allows for both a ZARU

and ZVU measurement update to occur and is given by the measurement error update:

δykZARU
=

v̂−
k+1 − 03×1

ωbib − 03×1

 (4.24)

The angular velocity measurement error is defined by the difference between the gy-

roscope measurement and the true angular velocity. However, the angular velocity of

the pedestrian’s foot is not a state of the system model, so the angular velocity error

is said to be the gyroscope bias error. This yields the measurement matrix:

HkZARU
=

03 I3 03 03 03

03 03 03 03 I3

 (4.25)

5. SWD/Magnetic heading Measurement Model

During the periods where the pedestrian is walking, the assumption is made that

the pedestrian is walking forward. The SWD update and the magnetic heading up-

date constrain the forward motion to be either walking in a straight line, or turning

while walking. During periods where the pedestrian is walking in a straight line, the

measurement error update is given as:

δykSWD
=
[
ψs − ψs−1

]
(4.26)

The term ψs is the heading of the pedestrian’s foot at the most recent step occurrence,

and ψs−1 is the heading of the pedestrian’s foot at the previous step. This yields the

measurement matrix to be:

HkSWD
=
[
01×3 01×3

[
0 0 1

]
01×3 01×3

]
(4.27)

The SWDmeasurement update only applies an update to the heading in the navigation

frame rather than the full attitude of the pedestrian in the navigation frame to help

reduce the yaw drift. During periods where the pedestrian is turning, a magnetic

42



heading measurement update is needed to constrain the yaw drift. The measurement

error is given by:

δykMAG
=
[
ψnnb − ψn

]
(4.28)

The term ψn is the magnetic heading. The measurement matrix for the magnetic

heading update is the same as the measurement matrix for the SWD update since

only the heading is being corrected:

HkMAG
=
[
01×3 01×3

[
0 0 1

]
01×3 01×3

]
(4.29)

Measurement Covariance

The measurement noise is assumed to be zero-mean and Gaussian with a covariance

matrix Rk. Since the measurement associated with a ZVU during the stance phase is

not a true measurement from an external source but is, rather, an assumed measurement,

the measurement noise covariance matrix must be selected. The method for setting the

measurement noise covariance matrix was developed by Foxlin in [3], to give:

RkZV U
= I3 ·max(trace(HkZV U

P−
k+1H

T
kZV U

)) (4.30)

The term I3 is a 3×3 identity matrix. Intuitively, this formulation can be seen to be equal to

the current velocity covariance before the measurement update. This allows for the velocity

estimate to be corrected gradually during the stance phase to avoid any instabilities in large

covariance reduction that might occur if the foot is not truly stationary. For the ZARU

measurement correction during still periods, the measurement noise covariance matrix is

constructed similarly:

RkZARU
= I6 ·max(trace(HkZARU

P−
k+1H

T
kZARU

)) +

03 03

03 Qd,k(4:6,4:6)

 (4.31)

The measurement noise covariance also includes the discrete process noise associated with

the gyroscope. This results in a 6× 6 matrix as both the ZVU and ZARU are being applied

simultaneously. For the SWD measurement update, the measurement noise covariance is

formed by:

RkSWD
= max(trace(HkSWD

P−
k+1H

T
kSWD

)) (4.32)

where the result is a scalar value since the SWD measurement update is only being applied

to the error in the pedestrian’s heading.
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4.2.6 INS-EKF-ZVU Implementation and Summary

Implementation of the ESKF methodology presented in Section 4.2.5 was performed for

a real-world data set of a pedestrian walking a closed loop around a parking lot in the clock-

wise direction. The pedestrian was outfitted with a Vectornav VN-100 9-DoF IMU [30] and

a Ublox GPS receiver with a single antenna [31]. The IMU was mounted to the shoelaces

of the pedestrian’s right foot, and the antenna for the GPS receiver was mounted to the

pedestrian’s right shoulder. Measurements from the IMU were post-processed in the ESKF

implementation, while the GPS measurements were used as a truth reference of the walking

path. The results of the implementation will be shown in succession of the different measure-

ment models as they were introduced with only the ZVU measurement update first, then

the ZVU+ZARU measurement updates, and finally the ZVU+ZARU+HDR measurement

updates.

The architecture for the PVA estimation of the pedestrian is comprised of eight steps

that occur in the order they are presented in. This architecture is based on the work by

Foxlin in [3] and Jiménez [5].

1. PVA Initialization

To initialize the position, velocity, and attitude of the pedestrian, an external reference

is required. The position was initialized from the GPS and the initial velocity was

assumed to be zero indicating a still period for initialization. The initial attitude was

determined by obtaining the pitch and roll angles from the expected gravity vector in

the navigation frame in a process known as leveling. During a stationary period, the

accelerometers of the IMU measure the reaction to the force of gravity and can obtain

the pitch (θ) and roll (ϕ) angles using simple trigonometric equations:

θ = atan(−f bib,y/− f bib,z) (4.33)

ϕ = atan2
(
fib,x,

√
(f bib,x)

2 + (f bib,y)
2
)

(4.34)

The function atan() is the inverse tangent function and atan2() is the four-quadrant

inverse tangent function. The terms f bib,x,f
b
ib,y, and f

b
ib,z are the specific force measure-

ments from the IMU along the axes of the IMU sensor frame. For the initial heading,

the yaw angle is determined from the magnetometer.

2. IMU Bias Compensation
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The next step is to remove the estimated accelerometer and gyroscope biases from the

specific force and angular velocity measurements as described in Section 3.2 where the

estimated specific force and angular velocity are given by:

f̂ bib = f̃ bib − ba (4.35)

ω̂bib = ω̃bib − bg (4.36)

The terms f̂ bib and ω̂bib are the estimated specific force and angular velocity, and the

terms f̃ bib and ω̃
b
ib are the measured specific force and angular velocity.

3. Attitude Propagation

After removal of the estimated gyroscope biases, the attitude must be propagated from

the body frame to the local navigation frame. From Section 3.2, the continuous-time

attitude update of the rotation matrix from the body frame to the local navigation

frame is given by:

Ċnb = Cnb Ω
b
ib (4.37)

The term Ωbib is the skew-symmetric matrix of the bias compensated angular velocity

measurements. The skew-symmetric matrix is defined by:

Ωbib =


0 −ω̂bib,z ω̂bib,y

ω̂bib,z 0 −ω̂bib,x
−ω̂bib,y ω̂bib,x 0

 (4.38)

However, since the system hardware samples in discrete-time, the attitude propagation

is discretized by the use of a Padé approximation [5]:

Ĉn
−

bk+1
= Ĉnbk

(
2 · I3 +Ωbibk∆t

2 · I3 − Ωbibk∆t

)
(4.39)

The term Ĉn
−

bk+1
is the estimated rotation matrix from the body frame to the navigation

frame before a measurement update correction at time tk+1.

4. Gravity Compensation

With the updated rotation matrix defined, the accelerometer measurements can be ro-

tated into the local navigation frame. However, since accelerometers measure changes

in specific force and not gravity, the gravity vector in the local navigation frame must
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be removed in order to properly update the velocity and position estimates. This

compensation is given by:

ânibk+1
= Ĉn

−

bk+1
f bibk + gn (4.40)

The term gn is the gravity vector in the local navigation frame. While the acceleration

due to gravity is not constant around the Earth, it can be approximated as 9.81m/s2.

Since the PVA propagation is performed in a North, East, and Down local navigation

frame, the gravity vector is given as:

gn =


0

0

9.81

m/s2 (4.41)

In an ideal static case, after rotating the accelerometer readings into the local navi-

gation frame and removing the gravity vector, the measurements would be f bib,x = 0

m/s2, f bib,y = 0 m/s2, and f bib,z = 0 m/s2.

5. Velocity and Position Propagation

With the specific force measurements rotated into the navigation frame and compen-

sated for acceleration due to gravity, the estimated velocity is calculated by numerically

integrating the acceleration in the navigation frame over the sampling period:

v̂n
−

ibk+1
= v̂nibk + ânibk+1

∆t (4.42)

The term v̂n
−

ibk+1
is the estimated velocity in the navigation frame before a measurement

update correction at time tk+1. The propagation of the estimated position in the

navigation frame is given by:

r̂n
−

ibk+1
= r̂nibk + v̂n

−

ibk+1
∆t (4.43)

The same rectangular integration technique is used to determine the estimated position

before any measurement update correction is performed. It should be noted that the

superscript (−) is not present with the estimated acceleration because the ESKF does

not estimate the error in acceleration, and, therefore, no correction is made to the

acceleration estimate.

6. ESKF Time Update
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The order that the ESKF Time Update and the estimated position and velocity prop-

agation occur is not required to provide a unique solution. The time update is purely

a function of the estimated rotation matrix and acceleration in the navigation frame,

therefore, the order that steps 5 and 6 occur does not matter. The order given is how

they were implemented for this experiment.

The states of the ESKF are updated based on the discrete-time update equation in

Section 3.3. The estimated states and state covariances are given by:

δx−
k+1 = Φkδxk (4.44)

P−
k+1 = ΦkPkΦ

T
k +Qd,k (4.45)

The P−
k+1 term is the state covariance before a measurement update correction at

time tk+1 and Qd,k is the discrete process noise covariance matrix at time tk.

7. Measurement Update and PVA Correction

As measurements become available with the different measurement updates from the

ESKF, the estimated position, velocity, and attitude are corrected by removing the

error between the estimated PVA and the true PVA. The correction of the position

and velocity is given by:

r̂nbk+1
= r̂n

−

bk+1
− δrnbk+1

(4.46)

v̂nbk+1
= v̂n

−

bk+1
− δvnbk+1

(4.47)

and the attitude correction is given by:

Ĉnbk+1
=

(
2 · I3 + [δΨn

bk+1
∧]∆t

2 · I3 − [δΨn
bk+1

∧]∆t

)
Ĉn

−

bk+1
(4.48)

The term [δΨn
bk+1

∧] is the skew-symmetric matrix of the attitude errors:

[δΨn
bk+1

∧] =


0 −δψ̂nbk+1

δθ̂nbk+1

δψ̂nbk+1
0 −δϕ̂nbk+1

−δθ̂nbk+1
δϕ̂nbk+1

0

 (4.49)

The terms (δϕ̂, δθ̂, δψ̂) are the estimated errors in roll, pitch, and yaw.

8. Resetting Error State estimates
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After the corrections have been applied to the full states, the error states are set to

zero to avoid accumulating previous error after the full states have been corrected.

Since the PVA states are corrected from the error states, then it’s reasonable to claim

the error between the estimated and true states are zero.

δψ̂nbk+1
= 03×1

δv̂nbk+1
= 03×1

δr̂nbk+1
= 03×1

From here the steps are repeated beginning at step two.

With only the ZVU measurement update provided during implementation, the z -axis

gyroscope bias is unobservable and results in heading drift as shown in Figure 4.3. The

pedestrian begins at the bottom left corner of the plot and walks in a clockwise path around

the parking lot. Initially, the pedestrian’s heading is tracked properly until reaching the

first corner. From there, the pedestrian’s heading begins to drift clockwise to drive the

PDR solution more southward.

Figure 4.3: PDR-INS trajectory with only zero-velocity updates
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Now the ZARU measurement update is added in addition to the ZVU to estimate the z -

axis gyroscope bias in order to help reduce the drift in heading. Incorporating measurements

from both a ZVU and a ZARU help to estimate the gyroscope bias and constrain the drift

in heading as shown in Figure 4.4. However, the still periods are only detected at the

beginning and end of the route. While more observability of the z -axis gyroscope bias is

provided during the first still period, the heading drift still remains present and heading

estimates continue to be noisy.

Figure 4.4: PDR-INS trajectory with zero-velocity and zero-angular rate updates

Incorporating measurements from the ZVU, ZARU, and SWD allow for the drift in

heading to be constrained based on detection of constant heading as shown in Figure 4.5.

The incorporation of SWD updates help to smooth the noise in the heading estimates.

However, a significant amount of drift in heading can be observed.
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Figure 4.5: PDR-INS trajectory with ZVU, ZARU, and SWD

Figure 4.6 shows the position error and root mean squared error for the PDR-INS im-

plementation with ZVU, ZARU, and SWD. The inclusion of SWD updates from straight

walking detection help to smooth the noisy heading estimates when the pedestrian is walking

in a constant direction. However, SWD updates do not eliminate the drift in heading when

the pedestrian is walking around a bend. Filter tuning might help to reduce this effect.
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Figure 4.6: PDR-INS Position Error in North and East directions

The PDR-INS approach offers insight into errors that can corrupt the navigation solution

using the various techniques. However, this implementation can prove to be computationally

expensive, and is limited by the presence of events in the gait cycle that are needed to

perform these techniques. The next section introduces the step detection approach to PDR.

4.3 PDR Step Detection Approach

An alternative approach to PDR performs step detection, step length estimation, and

heading estimation of the pedestrian. Unlike the INS approach for a foot-mounted IMU, a

full 6-DoF mechanization is not performed. Rather, the step detection approach utilizes the

natural bouncing motion of the pedestrian’s torso while walking to construct a navigation

solution. This is done by fusing the data from an IMU mounted on the body with a model

of how the pedestrian’s torso moves between. Implementations of this approach have been

proven by [10, 4]. This approach provides a method of PDR that is more often simplistic

for implementation than that of the INS approach mentioned in the previous section, as full

IMU mechanization is not required. Rather than examining the phases of the pedestrian’s
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gait cycle, the PDR with step detection (PDR-SD) approach is broken into four different

methods: step detection, step length estimation, heading determination, and the navigation

position update. The remainder of this section will cover the different methods of the step

detection approach to PDR, the system model, and an implementation and summary of the

system.

4.3.1 Step Detection

The goal of the step detection aspect of the PDR-SD implementation is to determine

the occurrence of steps when the pedestrian is walking regularly. This is very critical to the

performance of the PDR-SD implementation since the step length estimation and navigation

position update are dependent on the ability to detect when steps occur. Steps can be

detected using only an accelerometer [17, 4, 10]. However, identifying step occurrences by

analyzing each axis of the accelerometer is often difficult and can lead to erroneous step

detections. Therefore, examining the Euclidean norm of the accelerometer can provide a

more simplistic means of detecting a step given by:

∥ f̃ bib ∥=
√(

f̃ bx,ib

)2
+
(
f̃ by,ib

)2
+
(
f̃ bz,ib

)2
(4.50)

The effectiveness of the step detection algorithm analyzing only one axis of the accelerom-

eter requires accurate measurements of the Earth’s force due to gravity. This requires the

analyzed axis of the accelerometer to be mounted perpendicular to the surface of the Earth

to capture this motion.

Figure 4.7 shows experimental data of an IMU mounted onto a pedestrian’s chest while

walking with the x -axis facing the upward direction of the pedestrian’s frame. Additionally,

Figure 4.8 shows the same plot but with the inclusion of the resulting Euclidean norm.

Analysis of the Euclidean norm of the tri-axial accelerometer allows for measurements of

the Earth’s force due to gravity to constantly be obtained. For the remainder of this thesis,

the Euclidean norm of the accelerometer mounted on the pedestrian’s chest will be examined.
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Figure 4.7: Tri-axial acclerometer measurements from chest-mounted IMU

Figure 4.8: Tri-axial acclerometer measurements with Euclidean Norm
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Methods for detecting steps range from peak detection [32, 33, 11, 12], autocorrelation

and spectral analysis [34], and thresholding [17, 35]. Due to the robustness and relative

simplicity of implementation, the thresholding method of step detection will be used for

this thesis. A simplistic approach to the thresholding method examines the zero-crossing of

the Euclidean norm of the accelerometer measurements with the acceleration due to gravity

(g = 9.81m/s2). This assumes that the step begins during the footfall of the leading foot

where the acceleration experienced by the body is equal to the acceleration due to gravity

(∥ f bib ∥= g).

A more advanced method of the thresholding technique uses a window of samples to

define a maximum, minimum, and average threshold [33]. For effectiveness, the sample

window is dependent on the sampling rate of the accelerometer. For example, an IMU

being sampled at 100Hz would have the thresholds updated every 100 samples. Within the

analyzed window of samples, four different criteria need to be met in order for a step to be

detected:

1. The current magnitude of the accelerometer signal must be less than the previous

magnitude of the accelerometer signal. In other words, the accelerometer signal must

have a negative slope.

2. The previous magnitude of the accelerometer must be greater than the average thresh-

old and the current accelerometer magnitude must be less than the average threshold.

3. The time difference between the current sample time and the most recent detected

step time must be greater than the specified time between steps. This ensures that

steps are detected at a reasonable walking rate.

4. The minimum and maximum thresholds must be below and above specified values

that are indicative of human walking motion. This is to ensure steps aren’t detected

during static periods where the torso is still in motion.

An implementation of the more advanced thresholding method, stated above, was performed

on the same segment of IMU data shown in Figure 4.7. The results of this implementation

are shown below in Figure 4.9. At each sample, the maximum, minimum, and average

threshold are determined over the 11 sample window. The average acceleration norm is

then computed and compared to the previous window. If the current acceleration norm
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average is less than the preivous; less than the previous average threshold; the time between

steps is less than 0.1 seconds; the minimum threshold is below 9.75 m/s2; and the maximum

threshold is above 10.25 m/s2 then a step has been detected. The detected steps are marked

in red.

Figure 4.9: Thresholding method of step detection for torso-mounted dataset

4.3.2 Step Length Estimation

With the step detection process of the PDR-SD defined, the next component is the esti-

mation of the pedestrian’s step length. This estimation process is important for propagating

the pedestrian’s position forward in time for the navigation solution. Many step length es-

timation methods attempt to relate the step length to different physical parameters. These

parameters range from the total distance traveled, the pedestrian’s height, accelerometer

measurements, and signal characteristics. In the case of relating step length to the total

distance traveled, the step length is defined as the total distance traveled divided by the

total number of steps taken:

SL1 =
d

n
(4.51)
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where n is the total number of steps taken over a distance, d. This method of step length

estimation is often referred to as constant step length. This approach is highly intuitive,

but requires good knowledge or estimation of the total distance traveled.

Another approach to step length estimation is based on defining a relationship between

the pedestrian’s step length and height. This method assumes a constant step length pro-

portional to the pedestrian’s height and some pre-defined constant:

SL2 = K · h (4.52)

where h is the pedestrian’s height andK is an empirically determined constant that typically

ranges from 0.413 to 0.415 [36]. While this method can prove to be useful for cases where

the user is walking at a constant speed and step length, the reality is that the pedestrian’s

step length can vary dependent on the pace of the walking pattern. Another method using

the pedestrian’s height was proposed by Zhao [33], where the step length was augmented

based on the speed of the pedestrian. The results were determined experimentally and are

shown below in Table 4.1:

Table 4.1: SL3 based on pedestrian pace

Steps per 2 seconds SL3

0-2 h/5

2-3 h/4

3-4 h/3

4-5 h/2

5-6 h/1.2

6-8 h

8+ 1.2 · h

The fixed height methodology requires that the pedestrian’s height be used as an input

into the estimator and must be described in the same units as the estimator.

Another method relates the pedestrian’s step length to the accelerometer measurements

between detected steps. This method was proposed by Weinberg [37] where a dynamic step

length estimator based on the vertical displacement of the pedestrian’s hip, referred to as

the “hip-bounce”. To reduce complexity, the formula was modified for estimation of step
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length rather than stride length. This relationship of the pedestrian’s step length to the

“hip-bounce” is given by:

SL4 = K · 4
√
amax − amin (4.53)

where amax and amin are the maximum and minimum measured vertical acceleration during

a step. One key assumption of this algorithm is the assumption of a constant angle of the hip

between the minimum and maximum positions of a step, which is often untrue. However,

the use of this technique without accounting for the angle of the hip positions still produces

estimates that are within 8% of the true step length [37].

Another dynamic method of estimating step length based on the user’s “hip-bounce”

was determined by Bylemans [36]. This method is derived from Kim [8] who empirically

determined step length from a foot mounted experiment of several walking tests. The

resulting model was determined as:

SL5 = 0.1 · 2.7

√√√√∑N
i=1|ai|
N

×

√
K

∆t · (amax − amin)
(4.54)

where i is the current sample, ai is the vertical acceleration made during the step, and N

is the number of samples in the step, ∆t is the duration of the step, and k is a calibration

constant. Similar to Equation 4.53 the difference between the maximum and minimum

acceleration is used.

A biomechanical model that utilizes knowledge of the pedestrian’s leg length is based on

work by [38], and presented by [10] and [39]. This model is given by:

SL6 = K ·
√
2LY − Y 2 (4.55)

where L is a fixed leg length, Y is the vertical displacement of the pedestrian’s hip, and K

is a calibration constant.

The final method of step length estimation methods presented in this thesis relate the

pedestrian’s step length to certain signal characteristics, such as step frequency and specific

force variance. One such algorithm was developed by Gusenbauer [7] and focused on the

step frequency:

SL7 = K1fs +K2 (4.56)

where fs is the step frequency (time between steps), and coefficients K1 and K2 are empir-

ically determined for each user. An experiment was conducted by Li in [40] where a linear
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trend was found between the pedestrian’s step length and the time between steps. Further

analysis of this method included the variance of the magnitude of specific force [11]:

SL8 = K1fs +K2σ
2
f +K3 (4.57)

where fs is the step frequency, σ2
f is the variance of magnitude of acceleration, and K1,

K2, and K3 are the coefficients determined for each user. Groves et al. continued on this

modification by taking the slope of the walking path into account [4]:

SL9 = K1fs +K2σ
2
f +K3S +K4 (4.58)

where the equation is identical to Equation 4.57 but includes the additional term, S, which

is the slope of the elevation change of the walking path. However, analysis of the results

showed that the step frequency and slope components of this formula were poorly identifiable

and the model was reduced to:

SL10 = K1σ
2
f +K2 (4.59)

where σ2
f is the variance of the specific force magnitude, and K1 and K2 are the model

coefficients.

For Equations (4.56 - 4.59), the step length estimates are governed by signal character-

istics of the walking pattern. The step frequency term fs is defined by the time between

successive steps and is given by:

fs,k =
1

ts,k − ts,k−1
(4.60)

the variance of the specific force is a function of the euclidean norm of the accelerometer

measurements between steps:

σ2
f =

(∑kstop
kstart

(
∥ f bib,b ∥ −µkstart:kstop

))2
kstop − kstart

(4.61)

and for Equation 4.58 the slope of the change in elevation, S, is given by:

S =
∆h√

(∆rE)
2
+ (∆rN )

2
(4.62)

where ∆h is the change in altitude in meters, and ∆rE and ∆rN are the changes in the

North and East position in meters.

A full comprehensive comparison of all the mentioned methods of step length estimation

is beyond the scope of this thesis. However, implementations of formulas 4.53, 4.56, and
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4.51 are analyzed for the methodology proposed in Section 6.3. Equation 4.53 has been

augmented as:

SL11 = K1
4

√
|f bib,b,max| − |f bib,b,min|+K2 (4.63)

where |f bib,b,max| and |f bib,b,min| are the maximum and minimum of the euclidean norm of

the specific force measurements, and K1 and K2 are the model coefficients.

4.3.3 Attitude Estimation

For the PDR-SD implementation, the pedestrian’s step length is used to propagate the

position in the navigation frame. In order to accurately perform this propagation, the

pedestrian’s attitude needs to be determined in order for the new position to be directed

properly. This can be conducted by dead-reckoning the angular velocity measurements from

the gyroscope, using the heading from magnetometer measurements with tilt angles, or

combining dead-reckoned angular velocity, magnetometer heading, and tilt angles together

in an attitude heading reference system (AHRS).

Angular Velocity Dead-Reckoning

Since IMUs are typically comprised of tri-axial accelerometers and tri-axial gyroscopes,

the accelerometer is used for step detection and the gyroscope can be used for tracking

changes in orientation. Parameterizing the pedestrian’s attitude as a rotation matrix allows

for the changes in yaw, pitch, and roll to be propagated in discrete time by:

Cnbk+1
= (I3 +Ωbnbk∆tk)C

n
bk

(4.64)

The inaccuracies of this method are due to errors within the gyroscope measurements.

As mentioned previously, gyroscope measurements are subject to multiple sources of error

which can cause the attitude solution to drift over time. These errors can be mitigated and

accounted for by the aid of ZVUs, ZARUs, and SWDs, however, implementations of these

techniques are not often available for PDR-SD approaches. With this in mind, the dead-

reckoning of angular velocity measurements alone does not provide the accuracy needed for

attitude determination.
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Magnetometer and Tilt Angle

Another method of attitude determination with the PDR-SD approach, is utilizing mod-

els of the Earth’s gravitational and magnetic field as a source of reference. The accelerometer

provides measurements of the Earth’s acceleration due to gravity to give the pitch and roll

angles of the IMU relative to the local navigation frame [2]:

θ = atan2

 f bnb,x√
(f bnb,y)

2 + (f2nb,z)
2

 ϕ = atan2

(
f bnb,y
f bnb,z

)
(4.65)

where f bnb is the accelerometer measurements for each axis. This method only works when

the IMU is not accelerating. This assumes that the only acceleration is due to gravity. With

pitch and roll defined, the yaw angle can be determined from calibrated measurements of the

Earth’s magnetic field from a calibrated magnetometer co-located with the IMU. A method

of magnetometer calibration is presented in the next chapter. Determining the yaw angle

from a magnetometer requires that the magnetometer be “leveled” where the z-axis of the

magnetometer is parallel to the z-axis of the local navigation frame [2, 5]. The heading can

then be determined by:

ψmag = atan

(
Bnnb,y
Bnnb,x

)
+ αm (4.66)

where Bnnb is the magnetic field strength measurement along each axis, and αm is a dec-

lination angle between magnetic north and true north. While this provides a consistent

reference for heading determination, the magnetometer is still subject to disturbances from

local magnetic fields such as: power lines, mobile phones, cars, generators, etc. [2]. With

this in mind, the use of magnetometers with tilt angle measurements can still produce

inaccuracies in the navigation solution.

Attitude Heading Reference System

Using either dead reckoned angular velocity measurements or measurements of the

Earth’s gravitational and magnetic fields for attitude determination come with their own

benefits and drawbacks. Angular velocity dead reckoning allows for short-term stability,

but is prone to drift over time due to measurement noise, biases, misalignment, and other

sources of error. Using magnetic and gravitational field measurements provide a consistent

reference for full attitude determination over longer periods of time, but are susceptible to

60



local perturbations and disturbances, as well as, acceleration that can produce erroneous

measurements causing the estimates to deviate. With this in mind, a methodology that

fuses the two techniques together proves to be much more beneficial. This methodology is

described as an attitude heading reference system (AHRS) [2].

The attitude for an AHRS is determined by, first integrating the angular velocity mea-

surements to determine the yaw, pitch, and roll angles. Next, the accelerometer measures

the Earth’s gravitational pull to correct the errors in the pitch and roll by the “leveling”

process mentioned in the previous section. With the pitch and roll corrected, the magne-

tometer measures the strength of the Earth’s magnetic field to provide a heading correction

for errors in the dead reckoned yaw angle. Low gain smoothing filters are used to reduce

the effect of short term errors in the gravitational and magnetic field measurements during

the correction of the dead reckoned gyroscope. Many AHRS utilize maneuver detection

for high dynamic cases to filter the accelerometer measurements, as well as, magnetic fault

detection for errors in the magnetic field measurements [41]. The integration of these mea-

surements within a Kalman filter allow for smoothing gains to be dynamically optimized

and estimation of the gyroscope biases.

The Kalman filter approach to attitude estimation allows for the Euler angles to be

estimated, while simultaneously reducing errors by removing gyroscope biases. The AHRS

Kalman filter is presented based on the work by [23] and [41], that use a quaternion-based

Kalman filter for attitude estimation. This is accomplished by tracking the orientation of

the IMU as a full-state quaternion (X), as well as tracking the attitude errors as Euler angle

error-states (x)and the gyroscope biases as full states where:

X =

 q
bg

 x =

δψ
bg

 (4.67)

Both state vectors are propagated in discrete time at the IMUs sampling rate based on the

continuous dynamic models given in [23] and [41] where:

Ẋ = FX ẋ = Ax+ w (4.68)

This yields the state transition matrices of:

Ad = expm

− [ωnib]× ∆t −I3∆t

03 03

 (4.69)
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Fd =

expm
 1

2

 0 −ωnT

ib ∆t

ωnib∆t − [ωnib∆t]×

 04×3

03×4 I3

 (4.70)

The function expm () is matrix exponential function, Ad and Fd represent the discretized

dynamic matrices based on the IMU sampling time ∆t, and ωnib is the angular velocity

measurements with respect to the navigation frame. It should be noted that no process

noise is considered for the full state model. This is because the measurement updates are

applied for correcting the errors in the Euler angle error estimates, which are then used to

correct the full state estimates. The discrete process noise matrix of the error state model

is given by:

Qd =

diag (σ2
g

)
03

03 diag
(
σ2
bg

) ·∆t (4.71)

The measurement updates are applied as they become available. In many cases, the

sampling rate of the magnetometer and the accelerometer are not always the same and are

not available at the same time. For simplicity the measurement updates are presented under

the assumption that both sensors are at the same sampling rate, and available at the same

time. The measurement update is applied in two steps: the accelerometer update, and the

magnetometer update. The accelerometer update rotates the gravity vector into the IMU

frame from the full state quaternion estimates for the pitch and roll angle corrections [41].

The rotation matrix derived from a quaternion is given by:

Cnb =


2q21 + 2q22 + 2q23 − 2q0q3 q20 + q21 + 2q22 + 2q23 −2q0q2 − 2q21 − 2q22 − 2q23

q20 + 2q21 + q22 + 2q23 2q0q3 + 2q21 + 2q22 + 2q23 2q0q1 − 2q21 − 2q22 − 2q23

2q0q1 + 2q21 + 2q22 + 2q23 2q21 + 2q22 + 2q23 − 2q0q2 −q20 − 2q21 − 2q22 − q33


(4.72)

This yields the measurement vector:

ya =
[
f b

T

ib − Cbn(q̂)g
]

(4.73)

The term f bib is the accelerometer measurements with respect to the body frame, and Cbn(q̂)

is the rotation matrix from the navigation frame to the body frame based on the estimated

quaternion. The magnetometer update rotates the magnetic field measurements into the

body frame for the yaw angle correction:

ym =
[
mbT

nb − Cbnm̃
]

(4.74)
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The term m̃ is given by:

m̃ =


cos(α)

0

−sin(α)

 (4.75)

The term α is the dip angle. The measurement errors are mapped onto the error states from

the measurement matrix:

H =

 [Cbn(q)g]× 03[
Cbn(q)m̃

]
× 03

 (4.76)

with a measurement covariance matrix of:

R =

diag(σ2
a) 03

03 diag(σ2
m)

 (4.77)

The final step of the AHRS Kalman filter is utilizing the corrected error states to update

the full state estimates. The quaternion states are updated from the Euler angle error

estimates [23] where:

q+k+1 = q−k+1 ⊗ q{δ̂ψ}k+1 (4.78)

The term q{δ̂θ} is the quaternion error from the Euler angle errors which can be approxi-

mated from a first-order expansion yielding:

q̂+k+1 = q̂−k+1 +
1

2

 0 −δψTk+1

δψk+1 − [δψk+1]×

 q̂−k+1 (4.79)

The corrected quaternion estimate must then be normalized to describe a rotation:

q̂+k+1 =
q̂+k+1

∥ q̂+k+1 ∥
(4.80)

The gyroscope biases are then set from the error state vector bias estimates, and the error

state vector is reset to zero:

X{5 : 7}k+1 = x{4 : 6}k+1 → bgk+1
= bgk+1

(4.81)

xk+1 = 06×1 (4.82)

A further analysis and implementation of this AHRS algorithm is explored in Chapter 6.
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4.3.4 Navigation Position Update

Combining the knowledge of step detection, step length estimation, and attitude de-

termination, the pedestrian’s position can be propagated in the navigation frame. The

PDR-SD approach relies on two key assumptions:

1. The pedestrian is walking along a planar surface (North and East) and the Downward

component is not considered.

2. The pedestrian is facing the walking direction. The PDR-SD system would fail if the

pedestrian were walk in a different direction from the direction the user is facing (i.e.

walking backwards, side stepping, spinning while walking, etc.).

With these assumptions in mind, the pedestrian’s position only needs to be updated by

mapping the step length from the heading in the navigation frame. From [19, 4] the position

propagation is given by: Ek+1

Nk+1

 =

Ek
Nk

+ SLk ·

sin (ψk)
cos (ψk)

 (4.83)

The new East and North positions at time tk+1 are propagated from the positions at time tk

by distance SLk in the direction of ψk. A major difference between the PDR-SD and PDR-

INS systems is the time update occurrences. The PDR-SD system maintains a constant

position estimate until a new step is detected. With all the sections of PDR-SD defined,

the PDR-SD methodology can be implemented for a chest-mounted IMU scenario.

4.3.5 PDR-SD Implementation and Summary

Performance examination of the PDR-SD implementation was conducted on two different

real-world data sets of a pedestrian walking a closed loop path along a sidewalk on one side

of a street, then going around a round about to walk back to the starting point. For both

data sets the pedestrian was equipped with a Vectornav VN-100 IMU [30] and a Ublox

ZED-F9P GPS receiver [31] with a single antenna. The IMU was mounted to a vest in

line with the pedestrian’s sternum and the antenna for the GPS receiver mounted on the

pedestrian’s right shoulder. A reference path is provided by the GPS receiver where the

reported positions were used for truth, and the IMU was used for step detection, as well

as, tracking the pedestrian’s attitude. For both of the results shown, the pedestrian’s step
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length is assumed constant at 0.8 meters and the heading is provided by the output of the

AHRS algorithm.

The first data set was conducted with the pedestrian traveling at a consistent pace and

step length with a recorded step count of 1, 289 steps taken. However, the second data set

was conducted with the pedestrian walking at a constant pace and step length from the

starting position at the beginning of the street to the position before the roundabout on the

other side of the street, then the pedestrian’s pace increased until reaching the crosswalk

where the pace was decrease to less than the initial pace with a recorded step count of

1, 089 steps taken. Figure 4.10 shows the path results of the first data set with the PDR-

SD implementation (cyan) with the GPS receiver positions (magenta) provided as a truth

reference.

Figure 4.10: PDR-SD Path Results
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Figure 4.11: PDR-SD Path Error in East and North directions

Figure 4.11 shows the path errors for the first data set implementation in the East and

North directions, as well as, the root mean squared error for each direction. The path errors

were calculated by interpolating the PDR positions at the recorded receiver header times.

The total distance traveled from the receiver positions was calculated to be 1, 040.63 meters,

while the estimated distance traveled from the PDR-SD implementation was calculated to

be 1, 074.41 meters. One thing to notice is the change in heading that results in most of the

path errors shown. This is due to the presence of disturbances in the local magnetic field

while walking.

Figure 4.12 shows GNSS positions and the portions of the route where the pedestrian

changes pace from normal, to fast, and then slow. Figure 4.13 shows the path results of the

second data set with the PDR-SD implementation (cyan) and the GNSS receiver positions

(magenta) provided as a truth reference.
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Figure 4.12: PDR-SD Path with Changing Pace

Figure 4.13: PDR-SD Path Results for Varying Walking Pace
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Figure 4.14 shows the path errors for the second data set implementation in the East and

North directions, and the corresponding root mean squared error for each direction. The

path errors were calculated the same way as the first data set. The total distance traveled

from the receiver positions was determined to be 901.13 meters, while the estimated distance

traveled from the PDR-SD implementation was calculated to be 914.17 meters.

Figure 4.14: PDR-SD Path Error in East and North directions

The PDR-SD approach utilizes the pedestrian’s torso bounce between steps, as well as,

the lower dynamics experienced by an IMU mounted on the torso, rather than the foot.

However, the accuracy of the PDR-SD approach is dependent on the accuracy of the step

length estimation and the assumption that magnetic disturbances are not present to corrupt

the heading estimates.

4.4 Drawbacks to PDR

As mentioned above, both approaches to PDR are prone to errors that will accumulate

over time, another drawback to both approaches is the problem of initialization. In the case

of the PDR-SD approach, initial pitch and roll estimates from gravitational measurements,
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and initial heading estimates from magnetic field measurements provide an initial attitude in

the navigation frame. The other requirement for initialization is an initial position estimate.

With this in mind, a standalone PDR-INS or PDR-SD system is not sufficient for a global

navigation solution. GNSS provides the missing link for both position initialization, and

the mitigation of dead reckoning error growth over time. The next chapter will discuss the

architecture of fusing GNSS and PDR for foot-mounted and torso-mounted implementations.
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Chapter 5

Loosely Coupled GNSS/PDR

Integration

5.1 Introduction

As mentioned in the previous chapter, GNSS measurements offer a solution to the ini-

tialization problem of pedestrian navigation. Due to its wide availability, GNSS provides

a solution of geolocation for challenging environments that other localization techniques

could not provide. For example, a maritime vehicle traveling across the ocean has little to

no landmarks that can be used as a reference point when estimating its location. Whether

reference landmarks are obtained by direct visibility, radios, or DR, their availability is not

always ensured. However, GNSS allows for such a maritime vehicle to obtain readily avail-

able positioning and guidance information almost anywhere. However, these solutions are

only readily available in environments that support visibility to the satellite system. In the

case of positioning objects of interest whose visibility of these satellites is heavily obstructed

(i.e. underground, indoors, urban cities, dense foliage, etc.), GNSS does not offer such a

solution. Therefore, the process of integrating GNSS with dead reckoning techniques can

offer a fused solution that provides such information for a much larger diversity of environ-

ments. This chapter presents the existing methods of integrating GNSS measurements with

DR techniques to produce a fused solution for pedestrian navigation.

One of the most simplistic and intuitive methods of integrating GNSS measurements with
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DR techniques is through a loosely coupled architecture. The term loosely coupled refers

to using position, velocity, and timing (PVT) measurements for the system integration [2],

rather than a tightly coupled integration that uses range and range-rate measurements be-

tween the receiver and the satellite. Such an integration allows for the GNSS measurements

to correct uncertainties in the navigation state estimates resulting from errors in the DR

estimates, and, in some cases, the DR estimates correcting navigation states due to errors

in GNSS measurements. However, correcting estimates from GNSS measurements with DR

estimates is not as common due to the higher fidelity in GNSS measurements and accumu-

lation of errors from the DR system. The next two sections will present the integration of

GNSS position and velocity measurements with the INS approach to PDR, and integration

with the step detection approach to PDR.

5.2 GNSS/PDR-INS Integration

The INS approach to pedestrian navigation with foot-mounted IMUs use mechanization

equations to produce estimates of the navigation states. Primarily, the position, velocity,

and attitude of the pedestrian within the navigation frame. Aiding these navigation state es-

timates with GNSS position and velocity measurements correct errors in the state estimates

from the INS. This aiding process, typically, falls into one of two architectures:

� Open-loop integration

� Closed-loop integration

Open loop integration estimates errors in the INS position and velocity states with GNSS

measurements of position and velocity, which are then used to correct the INS to produce an

integrated navigation solution [18, 2]. The open-loop term is based on the fact that the GNSS

measurements do not interfere with the INS, and a standalone INS solution is still produced

alongside the integrated solution. Closed-loop integration estimates the errors in the INS

states, and feeds the error estimates back to the INS equations to produce the integrated

solution. The closed-loop scheme offers better long term stability by, essentially, resetting

the INS to the corrected state estimates and prevent the errors in the INS from growing

unbounded. Generally, the closed loop integration scheme often includes the estimation

of the sensor biases in the IMU, though this is not a requirement. Figure 5.1 shows the
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closed-loop architecture for loosely coupled GNSS/INS integration, where the navigation

error state estimates from the INS Kalman Filter are:

ê =
[
δr̂nINS δv̂nINS δψ̂nINS b̂g b̂a

]T
(5.1)

The error states are used to correct the INS navigation states, as well as, estimate sensor

biases within the IMU error model to reduce errors in the IMU measurements.

Figure 5.1: Loosely Coupled GNSS/INS Integration with closed-loop scheme

In many frameworks for GNSS/INS integration, incorporating the lever arm distance

between the INS and the GNSS antenna may be required when constructing the measure-

ment updates. For vehicles where a GNSS antenna and INS have been rigidly mounted

at different positions, the measurement model would include the lever arm, to reduce the

position and velocity error and is given by:

r̂iia,G = r̂iib + Ĉiibl
b
ba (5.2)

The term r̂iib is the estimated position of the INS, Ĉiib is the orientation of the INS with

respect to the vehicle frame, and lbba is the position of the GNSS antenna with respect to

the INS. The inclusion of the lever arm when coupling is often taken into consideration

for systems where the INS and GNSS antenna relative positions are rather large and held

constant. With GNSS/INS integration for pedestrian navigation with foot-mounted inertial
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sensors, these criteria are, typically, invalid. When the pedestrian is walking, the lever arm

distance, as well as, the orientation between the IMU and the GNSS antenna are constantly

changing. When navigating along the horizontal plane, the horizontal lever arm is also

relatively small. Therefore, the lever arm is often not considered when integrating the

systems for foot-mounted pedestrian navigation.

For the INS approach to pedestrian navigation, coupling GNSS measurements with INS

state estimates in a closed-loop scheme offer long-term stability, as long as GNSS measure-

ments remain available with high fidelity. In the event GNSS is no longer available, the

INS errors will continue to grow unbounded. Therefore, INS techniques such as: ZUPTs,

ZARUs, and SWDs from Section 4.2 are often included within the loosely coupled framework

to provide longer stability of the DR solution, as well as, observability of sensor biases in the

IMU. Figure 5.2 uses a similar framework to that of the generic loosely coupled framework

shown in Figure 5.1, with their measurement updates from the INS techniques supplied to

the INS Kalman Filter.

Figure 5.2: Loosely Coupled GNSS/INS Integration for PDR
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5.2.1 GNSS Measurement Update

The GNSS position and velocity measurements are derived from the receiver’s pseudo-

range and pseudorange rate measurements that have been passed through the receiver’s

Kalman Filter. Since this thesis uses the receiver’s position and velocity as the only mea-

surements from GNSS, the design of the GNSS KF and the derivation of these measurements

will not be included. Information on these derivations can be found in [2]. The GNSS mea-

surement update is used to provide observability of the position and velocity error states for

the discrete-time system model presented in Section 4.2.5, where the measurement model is

given by:

δyk = Hxk + νk νk ∼ N
(
0, σ2

)
(5.3)

The measurement vector (δyk) is given by:

δyk =

r̃nGNSSk
− r̂nINSk

ṽnGNSSk
− v̂nINSk

 (5.4)

and the measurement matrix (H) is given as:

H =

I3 03 03 03 03

03 I3 03 03 03

 (5.5)

The measurement covariance matrix is the variance in the position and velocity mea-

surements that are assumed to be uncorrelated in time given by:

R =

σ2
r 03

03 σ2
v

 (5.6)

These values are determined by the accuracy of the GNSS measurements and can be evalu-

ated by models relating various parameters such as: satellite geometry, signal-to-noise ratio,

clock errors, etc. Details of tuning the measurement noise covariance matrix can be found

in [2].

5.2.2 GNSS/PDR-INS Implementation and Summary

Implementation of integrating GNSS position and velocity measurements with a foot-

mounted INS in a loosely coupled framework was performed on a real-world data set with the

pedestrian walking a clock-wise path around a parking lot. The pedestrian was fitted with
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a Vectornav VN-100 IMU mounted to the right foot, and a Ublox ZED-F9P GNSS receiver

with a single antenna mounted on the left shoulder. Both devices reported measurements

that were post-processed in MATLAB and integrated in a loosely coupled framework. The

results will be shown for three different scenarios in the order they are presented where:

1. GNSS is constantly available for the duration of the implementation.

2. GNSS is initially available, then an outage is simulated for a period of time and then

becomes available again.

3. GNSS is initially available, then an outage is simulated for the rest of the implemen-

tation.

GNSS Constantly Available

The test for the first scenario examines the fused solution where GNSS measurements

are constantly available for the duration of the implementation. Figure 5.3 shows the path

results for this case.

Figure 5.3: GNSS/PDR-INS Path with constant GNSS availability

With the constant availability of GNSS, the PDR-INS estimates are corrected when a new

position and velocity measurement is recorded. The path errors for this scenario are shown

in Figure 5.4.
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Figure 5.4: North and East Path Errors

GNSS Partial Outage

The second scenario for the implementation examines the fused solution when GNSS is

not available for a small window of time during the experiment. Figure 5.5 shows the path

results for the implementation.
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Figure 5.5: GNSS/PDR-INS Path with GNSS partial outage

The outage is simulated 224 seconds into the integration, where no position or velocity

measurements from GNSS were used. The outage lasts for about 60 seconds before it

becomes available again to correct errors in the PDR-INS. The path errors for this scenario

are shown below in Figure 5.6.

Figure 5.6: North and East Path Errors
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GNSS Full Outage

The final scenario for implementation examines the fused solution when GNSS signal is

lost at a certain instance in time and does not return. This scenario shows how the fused

solution accuracy only relies on the PDR-INS solution for the remainder of the experiment

after GNSS signal is lost. Figure 5.7 shows the path results for the implementation.

Figure 5.7: GNSS/PDR-INS Path with Loss of GNSS

Initially, the INS position and velocity estimates are corrected by the GNSS measurements.

However, once GNSS is lost entirely, the navigation solution, solely, relies on the PDR-INS

techniques to DR. The path errors for this scenario are shown below in Figure 5.8.
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Figure 5.8: North and East Path Errors

As expected, without GNSS measurements to correct errors in the INS solution, the

resulting path errors grow unbounded. This scenario of total loss in GNSS would be most

likely to occur after the pedestrian moves into an environment where no satellite visibility

exists (i.e. indoors, underground, dense foliage, etc.). Simulating this scenario shows how

quickly the pedestrian’s error in position grows without GNSS to aid it. The next section

will discuss the integration of GNSS and PDR using a body-mounted approach.

5.3 GNSS/PDR-SD Integration

As discussed in Section 4.3, the step detection approach to pedestrian navigation utilizes

a chest-mounted IMU to propagate the pedestrian’s position when steps are detected. Unlike

the INS approach, the IMU is not fully mechanized. Rather, the accelerometer acts as

a pedometer to propagate the pedestrian’s position based on the detection of steps and

estimated heading. Coupling the step detection approach with GNSS position and velocity

measurements correct errors in these navigation state estimates that arise from errors in step

length estimation, as well as, heading estimation. The coupling architectures for GNSS with

79



the step detection approach to PDR vary based on the step length and heading estimation

algorithms and have been proven in existing literature. A comprehensive analysis of the

loosely coupled architectures is beyond the scope of this thesis. For simplicity, a zero-

order hold system model with a constant step length estimator and dead reckoned angular

velocity measurements is used in this thesis. Consider the discrete time navigation states

from Section 4.3.4:

Ek+1 = Ek + SLk · sin (ψk) (5.7)

Nk+1 = Nk + SLk · cos (ψk) (5.8)

The current heading, ψk, is determined from dead reckoning angular velocity measurements

as shown in Equation (4.64) and the step length estimate, SLk, is determined by the constant

step length model in Equation (4.51).

Figure 5.9: Loosely Coupled GNSS/PDR Integration Framework

Figure 5.9 shows the architecture for the loosely coupled integration of GNSS measure-

ments with PDR. Since the position state estimates are held constant until a new step is
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detected, a velocity state is not considered. Thus, GNSS velocity measurements are not

necessary. Contrary to the GNSS/INS framework that estimates 15 states, only two states

are estimated for this framework. The computational efficiency is improved, however, the

accuracy of the navigation solution is determined by the fidelity in the step length and

heading estimation.

5.3.1 GNSS Measurement Update

For the zero-order hold model, only the position measurements from the GNSS receiver’s

Kalman Filter are needed to update the current position in the North and East components,

as well as, update the step length estimates. For the discrete-time system model in Section

4.3.4, the GNSS measurement model is given as the position measurement in the East and

North directions:

yk =

ẼnGNSSk

Ñn
GNSSk

+ νk νk ∼ N
(
0, σ2

)
(5.9)

The measurement matrix (H) is given as:

H =

1 0

0 1

 (5.10)

Constructing the measurement noise covariance matrix (R) is done with the variance

in each component of the position measurement that are assumed to be uncorrelated and

given by:

R =

σ2
E 0

0 σ2
N

 (5.11)

However, the variance in each component is not always available or simple to determine.

Therefore, the measurement noise covariance matrix is given as:

R =

σ2
r 0

0 σ2
r

 (5.12)

where the variance in the East and North directions are just the variance in the position

measurement.
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5.3.2 GNSS/PDR Implementation and Summary

Implementation of integrating GNSS position measurements with a body-mounted IMU

in a loosely coupled framework is performed on a real-world data set with the pedestrian

walking the same clock-wise path along a sidewalk as shown in the PDR-SD implementation

in Section 4.3. This data set was selected due to a lack in observed magnetic disturbances,

and for the changing step length at different intervals of the route. The pedestrian was

fitted with a Vectornav VN-100 IMU mounted to the right of the pedestrian’s sternum, and

a Ublox ZED-F9P GNSS receiver [31] with a single antenna mounted on the left shoulder.

Both devices reported measurements that were post-processed in MATLAB and integrated

in the loosely coupled architecture. The results will be shown for three similar scenarios

as the foot-mounted approach on a different route. However, the results will include three

different step length estimation approaches discussed in Section 4.3.2:

� The constant step length model

� The waist-swing model

� The step frequency model

The three step length estimation models will be shown for each of the scenarios. To reiterate,

the scenarios are given as:

1. GNSS is constantly available for the duration of the implementation.

2. GNSS is initially available, then an outage is simulated for a period of time and then

becomes available again.

3. GNSS is initially available, then an outage is simulated for the rest of the implemen-

tation.

The three scenarios will be presented in succession and the results for each step length model

will be discussed.

GNSS Constantly Available

The first scenario for implementation examines the fused solution where GNSS position

measurements are constantly available for the duration of the implementation. Figure 5.10

shows the results of the implementation with all three step length estimation approaches.
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Figure 5.10: GNSS/PDR-SD Path with constant GNSS availability

As expected, the constant availability of GNSS allows for the position estimates from

the PDR-SD to be corrected to reduce path errors. Figure 5.11 shows the individual path

errors for each step length estimation method.

83



Figure 5.11: North and East Path Errors

Table 5.1: Step Length Estimation RMSE

Step Length Method
RMSE (m2)

East North

Constant 0.159 0.070

Waist Swing 0.154 0.071

Step Frequency 0.157 0.071

The step length estimation path errors in the North and East directions are shown above

in Figure 5.11. Additionally, the root mean squared error in each direction is provided in

Table 5.1. With the constant availability of GNSS, all three methods perform to produce

path errors of less than half a meter.

GNSS Partial Outage

The second scenario for implementation examines the fused solution when a GNSS outage

occurs for a brief period of time. Figure 5.12 shows the path results for the implementation.
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Figure 5.12: GNSS/PDR-SD Path with GNSS partial outage

It can easily be seen that the constant step length estimation method deviates from the

true path, significantly, while the waist swing method and the step frequency method stay

much closer to the true path during the outage. The corresponding path errors in the North

and East directions are shown below in Figure 5.13.
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Figure 5.13: North and East Path Errors

Table 5.2: Step Length Estimation RMSE

Step Length Method
RMSE (m2)

East North

Constant 4.117 2.919

Waist Swing 5.348 2.723

Step Frequency 5.985 2.848

During the partial outage, the constant step length estimation method shows less error in

the Eastward direction once the outage begins. However, once the pedestrian’s step length

increases, the waist swing method shows a consistent error. Due to the comparatively shorter

path changes in the North and South directions, as well as consistent heading estimates

from the AHRS heading, path errors are constrained in the North direction for all three

step length estimation methods.
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GNSS Full Outage

The final scenario examines the fused solution when a GNSS outage occurs indefinitely.

The GNSS outage begins at the same instance as the partial outage, except GNSS does not

become available again. Figure 5.14 shows the path results for the full GNSS outage.

Figure 5.14: GNSS/PDR-SD Path with full outage of GNSS

After the full GNSS outage, the navigation is produced solely by the PDR-SD with each

step length estimation method for the remainder of the experiment. The path error results

are shown below in Figure 5.15 for the North and East directions and summarized in Table

5.3.
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Figure 5.15: North and East Path Errors

Table 5.3: Step Length Estimation RMSE

Step Length Method
RMSE (m2)

East North

Constant 18.443 3.236

Waist Swing 7.629 3.221

Step Frequency 15.767 3.198

Once the full outage begins, the Eastward path error for the constant step length esti-

mation method outperforms the other step length estimation methods. However, once the

pedestrian’s step length increases and decreases, the waist swing method outperforms the

other two methods in the East direction, while, simultaneously, being outperformed in the

North direction.
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Chapter 6

Extended Loosely Coupled

GNSS-SD Integration for PDR

Improvement

6.1 Introduction

The INS and Step Detection methods to PDR, as described in Chapter 4, offer techniques

to mitigate the effect of sensor errors on the navigation solution. However, these techniques

only offer knowledge of the pedestrian’s change in position and orientation, and not an

initial absolute position and orientation. Thus, the PDR system is faced with the additional

problem of requiring a known initial global position and attitude in order to navigate within

a global frame.

For initializing the pedestrian’s attitude (heading, pitch, and roll), measurements of

the Earth’s gravitational pull and unperturbed magnetic field measurements can provide

this necessary information. Using the Earth’s gravity model allows for an initial pitch and

roll angle to be determined, assuming that the pedestrian is standing perpendicular to the

Earth’s surface, while unperturbed magnetometer measurements provide a reference for the

pedestrian’s global heading with respect to magnetic north [3, 42, 21, 41]. However, this

heading reference requires that the magnetometer’s frame be in line with the pedestrian’s
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frame. For the problem of initializing the global position, GNSS measurements again provide

such information when satellite visibility is high (i.e. outdoors with full view of the sky)

[42, 43].

However, when GNSS is not readily available, the PDR system will act alone to con-

struct the navigation solution whose accuracy is reflected in the system’s ability to properly

determine change in position and orientation. When comparing a foot-mounted and torso-

mounted PDR system, the higher dynamics experienced by the pedestrian’s foot combined

with the changes in relative position and orientation of the IMU and GNSS receiver require

high grade hardware and faster software to construct a robust PDR solution. Whereas, a

torso-mounted system experiences lower dynamics and fewer changes in relative position and

orientation. With this in mind, the remainder of this chapter presents the proposed novel

methods of integrating GNSS measurements with PDR techniques for a torso-mounted IMU

to provide an improved PDR solution when GNSS is no longer available.

6.2 System Architecture

The proposed methods of GNSS and PDR integration are based on the loosely coupled

approach where GNSS position and velocity measurements are used in conjunction with

the PDR-SD techniques to produce a fused navigation solution [2]. The overall system is

divided into three subsystems:

1. Step length estimation

2. Modified AHRS for heading estimation

3. Navigation state estimation

While these subsystems embody the same navigation techniques as shown for the loosely

coupled GNSS/PDR-SD integration from Section 5.3, each subsystem has been extended

and use GNSS for parameter estimation.

The block diagram of the system architecture is shown below in Figure 6.1. The three

subsystems, indicated by the green blocks, extend on the loosely coupled architecture de-

scribed in Section 5.3. The standard loosely coupled architecture only utilizes GNSS posi-

tion measurements to mitigate the errors in the PDR navigation states from Equation (5.7).
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The architecture for the proposed integration system extends and modifies the standard

architecture in four ways:

1. The step length estimator subsystem utilizes GNSS measurements to estimate param-

eters of a novel step length model in a KF framework.

2. The AHRS subsystem utilizes GNSS measurements to correct for misalignment be-

tween the pedestrian and hardware.

3. The AHRS subsystem utilizes a novel algorithm for detecting and rejecting faulty

magnetometer measurements.

4. The navigation subsystem produces a navigation solution using alternative PDR nav-

igation equations and utilizes GNSS measurements to correct errors in the PDR solu-

tion.

Figure 6.1: Loosely Coupled Architecture for GNSS/PDR-SD Integration

The following sections will present the modifications and extensions to each subsystem

in succession of how they are listed above.
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6.3 Step Length Estimation

In order to estimate the pedestrian’s step length, a reference for the measured step length

needs to be compared with the estimated step length to ensure accuracy of the step length

estimates. One approach to providing a reference step length measurement is to interpolate

GNSS position measurements at the times that the steps are detected. In the case of a

constant step length estimator, averaging the interpolated GNSS positions converges to a

step length that can be assumed to be constant when a new step is detected. However, a

constant step length estimate can lead to erroneous position propagation when considering a

change in the pedestrian’s gait cycle. As discussed previously in Section 4.3.1, a waist-swing

approach to step length estimation can provide a more robust estimate for erroneous steps.

Consider the proposed waist-swing method given by Equation 6.1:

SL = K1W +K2 (6.1)

where the step length is a function of a scale factor constant (K1) multiplied by the fourth

root of the difference between the maximum and minimum acceleration norm (W ), and a

constant (K2).

6.3.1 Interpolated GNSS Position RLS Approach

In order to determine the appropriate values of the constants in Equation 6.1, a recursive

least squares (RLS) estimator is used for the model:

SLk = Φxk (6.2)

The state vector (x) and the state transition matrix (Φ) are given by:

x =

K1

K2

 Φ =
[
Wk 1

]
(6.3)

Using the interpolated GNSS positions as true step length measurements, the measurement

model is given as:

yk = Φkxk (6.4)

The RLS method was performed on a data set where a total of 424 steps were taken and

the reported GNSS positions were interpolated to provide measurements of the pedestrian’s
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step length. Figure 6.2 shows the RLS results of the step length model estimates and the

difference in interpolated GNSS position measurements as step length measurements of the

RLS algorithm. After the final GNSS step length measurement updates the model, the

parameters reach a final value of:

K1 = 0.2939 K2 = 0.2270 (6.5)

Figure 6.2: Recursive Least Squares Step Length Estimation

While using interpolated GNSS positions is an intuitive approach to measuring the pedes-

trian’s step length, GNSS does not provide the accuracy needed to directly measure step

length. As shown in Figure 6.2, the interpolated GNSS positions often reported step lengths

greater than one meter, and occasional step lengths greater than a meter and a half. Inter-

polated GNSS positions also prove to be difficult to perform in real time, especially when

GNSS is unavailable. An alternative method is to provide a pseudo-measurement of the

pedestrian’s step length using GNSS position and velocity.
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6.3.2 GNSS Step Length Pseudo-Measurements

If a GNSS position and velocity measurement is available in between steps, then a step

length pseudo-measurement of the pedestrian’s step length can be determined and utilized

as a measurement update for the step length estimator.

Position-Velocity Pseudo-Measurement

The first method determines the pedestrian’s step length by calculating the distance

between the position of the previous step and the measured GNSS position, and adding the

integrated GNSS velocity measurement over the time between the measurement and the next

step. This method makes the assumption that the pedestrian’s velocity is constant between

the time the measurement is received and the time the next step occurs. For example, in

Figure 6.3 if a new step is detected at time t = ts+1, a pseudo-measurement of step length

can be provided by the GNSS:

S̃LGNSS = dr + dv + η (6.6)

where η is represented as zero-mean and Gaussian measurement noise, dr is the change in

position from time ts to tn, and dv is the integrated GNSS velocity measurement from time

tn to ts+1 given by:

dr =

√
(En − Es)

2
+ (Nn −Ns)

2
dv = Vn ·∆t =

√
Ė2
n + Ṅ2

n · (ts+1 − tn) (6.7)

Figure 6.3: GNSS Step Length Position-Velocity Pseudo-measurement

This method is referred to as the position-velocity pseudo-measurement due to the fact

that the GNSS step length is a function of the previous estimated step position and not
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a true measurement of the pedestrian’s step length. It should also be noted that GNSS

step length pseudo-measurements are not always available even under ideal conditions for

GNSS measurements. For example, from time ts+1 to ts+2, as shown in Figure 6.3, a GNSS

position and velocity measurement is not obtained during the time between steps. In this

case, a step length measurement update is not performed and the step length is estimated

by the model in Equation 4.63.

Velocity Pseudo-Measurement

The second method determines the pedestrian’s step length by integrating the GNSS

velocity measurement over the total time between steps. This method makes the assumption

that the pedestrian’s velocity is constant over the difference in time between steps, rather

than the difference in time between receiving the GNSS measurement and the next step

occurrence. For example, in Figure 6.4 if a new step is detected at time t = ts+1, a pseudo-

measurement of step length can be provided by the GNSS:

S̃LGNSS = dv + η (6.8)

where η is represented as zero-mean and Gaussian measurement noise and dv is the inte-

grated GNSS velocity measurement from time ts to ts+1 given by:

dv = Vn ·∆t =
√
Ė2
n + Ṅ2

n · (ts+1 − ts) (6.9)

Figure 6.4: GNSS Step Length Velocity Pseudo-measurement

This method is referred to as the velocity pseudo-measurement due to the fact that

the GNSS step length is only a function of the integrated velocity measurement between
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steps and not a true measurement of the pedestrian’s step length. Similar to the position-

velocity pseudo-measurement, a measurement update is only applied when a GNSS velocity

measurement is obtained between successive steps.

A drawback to the step length pseudo-measurements is the accuracy of the position and

velocity measurements from the GNSS receiver. Inaccuracies in these measurements can

cause large variations in the GNSS step length that are not indicative of realistic step lengths.

As seen in Figure 6.5, there are still step length position-velocity pseudo-measurements that

exceed what would be in the realm of a realistic step length (i.e. step lengths greater than

1.5 meters).

Figure 6.5: RLS Step Length Estimator with GNSS pos-vel pseudo-measurements

In Figure 6.6 below, an RLS approach was examined using the step length velocity

pseudo-measurements. It can be seen that the variation in measurements is much lower

than the position-velocity pseudo-measurements. However, there appear to be outliers that

report step length measurements much larger than the largest position-velocity pseudo-
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measurements.

Figure 6.6: RLS Step Length Estimator with GNSS velocity pseudo-measurements

The accuracy of the RLS approach is dependent on the quality of the GNSS step length

pseudo-measurements, as well as the initialization of the model parameters and their uncer-

tainties. The RLS measurement update is given by:

xk = xk + PkΦk(yk − Φkxk) (6.10)

Pk = Pk − PkΦ
T
k (I +ΦkPkΦ

T
k )

−1ΦkPk (6.11)

The term PkΦk ∈ (0, 1) can be seen as the gain term that adjusts the state estimate (xk)

by an amount proportional to the measurements innovation (yk − Φkxk). If Pk is very

small, PkΦk will approach zero and the adjustments made to the model parameters by the

measurement innovation will also be very small. This phenomenon is referred to as the filter

“going to sleep”. If Pk is very large, PkΦk will approach 1 and the adjustments made to the

model parameters will be the result of the measurement innovation. As new measurements
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are received, Pk gets diminished over time resulting in smaller adjustments to the model

parameters. This will introduce a problem in the RLS estimator that the model parameters

will no longer be adjusted as new measurements are received. One method to prevent

this problem is to introduce a forgetting factor term to “de-weight” older error samples.

Another alternative is the use of a Kalman filter framework. The next section will introduce

a Kalman filter framework for the step length model parameter estimation.

6.3.3 Step Length Kalman Filter (SLKF)

The linear Kalman filter framework accomplishes the same goal as the RLS algorithm,

by estimating model parameters as states that evolve over time. As discussed in the RLS

algorithm, no process noise is considered on the model parameters. As the term Pk is

minimized with new measurements, the filter will “go to sleep” and new measurements will

have little to no effect on the estimation of parameters. Using the KF approach, uncertainty

in the model parameters and the measurements can be taken into account to allow new

measurements to make adjustments to the model parameter estimates. The SLKF models

the step length parameters as constants in a linear system with additive noise:

xk+1 = Φxk + wk (6.12)

yk = Hkxk (6.13)

where the state transition matrix, Φ, and observation matrix, Hk, are given by:

Φ =

1 0

0 1

 Hk =
[
Wk 1

]
and the process noise, w, is zero-mean and Gaussian white noise:

wK1 ∼ N
(
0, σ2

K1

)
(6.14)

wK2
∼ N

(
0, σ2

K2

)
(6.15)

Determining the process noise of the model parameters is not intuitive. The advantage of

the step length model is the adaptive nature of determining the pedestrian’s step length.

This is due to the influence of the leading term K1 ·W , where the estimated step length

changes based on the acceleration experienced between steps. If the K1 term is estimated to

zero, then the resulting step length model becomes a constant step length estimator where:

SL = K2 (6.16)
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This is not ideal for scenarios where the pedestrian’s step length fluctuates. The evolution of

the model parameters in the KF can be studied based on the ratio of the model parameters’

noise terms:

γ =
σ2
K1

σ2
K2

(6.17)

In the measurement update of the KF, the adjustment of the step model parameters is

given by:

xk = xk +Kk(yk −Hkxk) (6.18)

Kk =
PkH

T
k

HkPkHT
k +R

(6.19)

The term Pk is the state covariance that is propagated forward in time by:

Pk = ΦPkΦ
T +Q (6.20)

The term Q represents the process noise matrix. Increasing the process noise of one param-

eter will result in a larger Kalman gain that adjusts that model parameters estimate more

than the other.

A real-world data set was used to examine the effect of the process noise ratio on the

resulting step length model. Figure 6.7 shows the results of the experiment when γ <<

1 and how the model parameters converge in such a way that the step length estimates

become constant with little to no variation. This would lead to large errors in the event the

pedestrian changes pace.

(a) Step Length Estimates (b) Model Parameters

Figure 6.7: SLKF with γ << 1
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Considering the effect of γ = 1, as shown in Figure 6.8, where the process noise terms

of the model parameters are equivalent. In this case, both model parameters are able to

converge in such a way that the step length estimates vary as the pedestrian changes pace.

Around 340 seconds the pedestrian accelerates and increases the step length, and decelerates

around the 550 second mark to a slower pace with a smaller step length. However, it can

also be seen that the K2 coefficient is estimated to be less than zero at several points during

the estimation.

(a) Step Length Estimates (b) Model Parameters

Figure 6.8: SLKF with γ = 1

In the case where γ >> 1, as shown in Figure 6.9, a similar effect is found with the

model parameters behavior when γ << 1. But, instead of the leading term approaching

zero, the constant term of the step length model converges to zero. This results in the step

length model being represented very close to the waist-swing model in Equation (4.53) with

a large variance in the step length estimates.
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(a) Step Length Estimates (b) Model Parameters

Figure 6.9: SLKF with γ >> 1

Ideally, both coefficients should be estimated to be greater than zero, while still yielding

variable step length estimates. Consider the input term of the step length model:

W = 4

√
max

(
∥ f bib ∥

)
−min

(
∥ f bib ∥

)
(6.21)

Taking the squared inverse of the input term with each new step results in a nonzero value

that is less than one, as shown in Figure 6.10. Using this information as the process noise

of the leading coefficient, K1, the process noise of coefficient K2 can be set to always be

less than that of K1 by taking the inverse cubed of the input term. This allows for both

coefficients to be estimated without forcing either coefficient to converge to zero.
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Figure 6.10: Step Length Model Inputs by Step Count

Figure 6.11 shows the implementation of selecting the process noise and how both model

parameters converge to be nonzero, and neither coefficient is estimated to be less than zero.

While the results of this implementation are very similar to that of the scenario where

γ >> 1, the variation in estimated step lengths is much lower. During periods where the

pedestrian maintains a relatively constant pace, the step length variance should be relatively

low.
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(a) Step Length Estimates (b) Model Parameters

Figure 6.11: SLKF with γ > 1

The measurement model is similar to the RLS approach, but with the inclusion of mea-

surement noise where:

yk = Hkxk + νk (6.22)

where the measurement matrix and measurement noise are given by:

Hk =
[
Wk 1

]
ν ∼ N

(
0, σ2

GNSS

)
(6.23)

The advantage of the SLKF approach is that the inclusion of process noise on the dynamic

model prevents the filter from “going to sleep” and new measurements will continue to adjust

the model parameters as they are provided. Additionally, the inclusion of measurement noise

provides the opportunity of weighting the step length pseudo-measurements to prevent bad

measurements from being considered. In the case of pseudo-measurements that measure the

step length to be greater than 1 meter, the measurement noise can be set as large to indicate

a bad measurement and not have a great effect on the model parameters. Similarly, pseudo-

measurements than measure a step length to be less than 0.5 meters can be weighted to also

have a large measurement noise. This ensures that only measurements of good quality will

effect the estimation of the model parameters.

This thresholding technique to weight the GNSS step length pseudo-measurements can

103



be given in the form of a logical expression where:

RGNSS =

0.1 if 0.5m ≤ SLGNSS ≤ 1m

1000000 if otherwise

(6.24)

The large value of RGNSS based on whether the pseudo-measured step length was too large

or too small, is arbitrarily set to indicate a low level of trust and mimic the idea of rejecting

the measurement. The small value of RGNSS was set to indicate a higher level of trust in

the pseudo-measurement.

6.4 AHRS Heading Correction

As previously discussed in Section 4.3.3, the utilization of a magnetometer aids an AHRS

by providing measurements of the Earth’s magnetic field strength to give a global heading

reference. While the incorporation of these measurements are useful to constrain the drift

in heading from dead reckoning angular velocity measurements, the accuracy of this imple-

mentation relies on two key assumptions:

1. The magnetometer measurements are aligned with the body frame of the pedestrian.

2. Measurements of the Earth’s magnetic field strength are static and are not perturbed

by local magnetic disturbances.

These assumptions are critical for effective performance of an AHRS integrated with PDR.

6.4.1 Misalignment Estimation

The first assumption requires that the measurements of the IMU and the magnetometer

be aligned with the body frame of the pedestrian at all times. As shown in Figure 6.12,

if the forward direction of the magnetometer (ψm) differs from the forward direction of

the pedestrian (ψp) by some offset angle (ψo), the PDR system will not propagate the

pedestrian’s position in the direction of the true heading.
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Figure 6.12: Heading offset from Magnetometer mounting

One method of reducing the offset angle between the magnetometer and pedestrian

heading is to mount the magnetometer to be perfectly in line with the body frame. While this

is an intuitive solution, it can often be difficult to achieve as knowledge of the pedestrian’s

true heading is not always known. However, even minute offsets will introduce errors that

grow over time.

With this problem in mind, a novel method is proposed to reduce the heading offset

with GNSS course measurements. While course and heading angles can often be the same,

they have very different definitions. Course refers to the angle of the path traveled from one

location to another, while heading is the angle that the body of interest is facing. This key

difference is best realized when considering an aircraft in motion as depicted in Figure 6.13.

Figure 6.13: Aircraft heading and course angle
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While the aircraft’s nose is directed in one angle, the effect of the direction of the oncoming

wind causes the aircraft to travel in a different direction. In the case of ground vehicles

and pedestrian’s, the heading angle and course angle are often equal due to the fact that

vehicles and pedestrian are, typically, facing in the direction of travel. Therefore, course

measurements from GNSS can be directly calculated in two ways:

1. The change in at least two position measurements in the North and East direction.

2. Velocity measurements in the North and East direction.

Both methods provide insight to the direction the pedestrian is traveling with different

degrees of accuracy.

Determining course from the change in position measurements requires two position

measurements at separate epochs in time given by:

ϕ = tan−1

(
rEk

− rEk−n

rNk
− rNk−n

)
(6.25)

The terms rEk−n
and rNk−n

are the east and north position measurements from the receiver

at epoch tk−n. It should be noted that the change in position measurements do not require

sequential epochs. For example, if a GNSS receiver reported position measurements using a

single antenna traveling straight towards north with no deviation in eastern position, then

the angle of travel would be determined to be 0 degrees N from epoch tk to tk+1, as well as,

from epoch tk to tk+2. However, the effectiveness of this method for course determination is

dependent on the accuracy of the position measurements, as well as the position differences

between epochs. To examine the effectiveness of this implementation, the same data set

from Section 5.3.2 was examined using a Vectornav VN-100 IMU [30] with an onboard

magnetometer mounted to the right of the pedestrian’s sternum, as well as, a Ublox ZED-

F9P GNSS receiver [31] with a single antenna mounted to the pedestrian’s right shoulder.

The pedestrian travels due west for about 400 meters, and then crosses a street and walks

due east back to the initial position.

Figure 6.14 and 6.15 shows the results of the experiment with the heading from the

AHRS compared to the course measurements from position differences. Initially, the course

measurements from position are erroneous due to the small differences with respect to the

initial position measurement. However, over larger position differences, the course measure-

ments approach the true heading (90 degrees W). After the pedestrian has traveled about
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32 meters west, 32 position measurements have been received and the course error is 0.89

degrees, or 1% of error. However, the course measurements from position differences are

not able to consistently stay within 1% of error until the pedestrian has traveled about 117

meters and 97 position measurements have been received.

Figure 6.14: Heading and Course from Position Measurements Comparison
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Figure 6.15: Position Difference Course Error

Examining the error in course measurements from position differences reveals brief peri-

ods where the error suddenly increases and begins to approach zero again. Over the distance

of 25 meters to 125 meters, there are four periods showing these sudden increases in course

error. The root of this trend can be found when examining the changes in the north direction

during this period. Figure 6.16 shows the north position measurements over the walking

distance. Changes in the pedestrian’s north position are very small while walking directly

west. However, examining the north position from 50 to 125 meters reveals a sudden change

in the north position by about 0.4 meters at each interval. From Equation (6.25) a course

measurement of 90 degrees west requires that the change in north position relative to the

origin be zero degrees. As the difference in north positions increase over these intervals,

the measured course drifts away from 90 degrees west and begin to approach zero as the

difference in east positions grow larger.

108



Figure 6.16: North Position Over Walking Distance

Using larger position differences proves to be more suitable for determining course. How-

ever, if the pedestrian is not traveling in a constant direction, this method will diverge from

the true course and the misalignment will no longer be apparent. Figure 6.17 shows the

results of course determination for the same data set when the pedestrian changes the direc-

tion of travel. The course measurements show a constant direction of travel for the first 300

seconds when the pedestrian is traveling due west. After about 300 meters, the pedestrian

crosses a street and changes direction walking due east and returns to the initial starting

point.
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Figure 6.17: Course from Large Position Differences with Changing Direction

The use of position differences for course measurements prove to be accurate and stable

over large distances when the pedestrian is traveling in a constant direction. However, the

need for long distances in a constant direction may not always be available.

Determining course from the measured velocity in the north and east direction can be

calculated with single velocity measurements at a single epoch with a single antenna. The

velocity derived course measurement is given by:

ϕ = tan−1

(
VE
VN

)
(6.26)

where VE is the measured velocity in the eastward direction, and VN is the measured velocity

in the northward direction from GNSS.

The ability to account for the misalignment between the magnetometer’s measured head-

ing and the pedestrian’s heading requires an assumption that the magnetometer is rigidly

mounted to the pedestrian and not free to sway. If this criteria is met, the offset between

the magnetometer heading and the pedestrian’s heading is constant. To visualize this effect

of constant offset, the same data set from Section 6.3 was used where a Vectornav VN-
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100 IMU [30] with an onboard magnetometer was mounted to the right of the pedestrian’s

sternum. As seen in Figure 6.18, the misalignment results in a constant offset between

the magnetometer heading and the velocity derived course measurements from a walking

experiment.

Figure 6.18 shows the experimental results of using the course from velocity measure-

ments. The first 7 velocity measurements produce course measurement errors that are over

15% of the true heading and remain within 8% of the true heading for the remainder of the

route.

Figure 6.18: Heading and Velocity Course comparison

A drawback to using course measurements to estimate the misalignment is the variance

of the course measurements. Figure 6.19 shows the error in course measurements over time.

The first 7 course measurements are not due to large errors ranging from 12 to 163 degrees

during the initial static period. 235 velocity measurements are received over the 300 meter

walking distance. Excluding the first 7 velocity measurements during the static period,

the average error over 300 meters is 2.7 degrees, or 3% of error. Only 35 of the velocity

measurements were able to achieve a course measurement error below 1%. The maximum

error after the static period is almost 8 degrees, or almost 9% of error.
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Figure 6.19: Velocity Course Error

With this in mind, course measurements from single GNSS velocity measurements show

no improvement over the position difference method for capturing the misalignment angle.

However, an average window of measurements can improve to capture the misalignment

angle. A large window to be averaged reduces the noise of the resulting course measurements.

However, it requires that the pedestrian walk in a constant direction for a longer duration

of time. Figure 6.20 shows the results of the window averaging for a 10, 20, and 30 sample

window. The pedestrian’s average speed over the experiment was determined to be 1.3 m/s.

With the GNSS sample rate set to 1 Hz this corresponds to the pedestrian traveling 13

meters for the 10 sample window, 26 meters for the 20 sample window, and 39 meters for

the 30 sample window.

The 10 sample window has a total average error of 3.2 degrees, or 3.6%. However, the

erroneous course measurements during the initial static period of the experiment produce

errors between 11 and 160 degrees for the first 15 samples of the window average. These

large errors are a result of the window average being buffered for the first 10 velocity mea-

surements. After the first 15 samples of the window average, the average error for the rest

of the walking route reduces to 0.5 degrees, or 0.57% error. For the 20 sample window,
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the total average error is 4.3 degrees, and does not begin to drop below 1% of error until

after the first 26 samples. The average error after 26 samples of the route is 0.48 degrees,

or 0.54% error. A similar trend is visible for the 30 sample window where the total average

error is about 5 degrees and does not begin to drop below 1% error until after the first 36

samples of the route. After this period, the average error for the remainder of the route is

0.48 degrees, or 0.52%.

Figure 6.20: Course Error with Window Averages

Averaging the course measurements from GNSS velocity over a window of samples re-

duces the noise in the measurements and improves the average error for a larger sample

window. However, a large sample window averages older samples that are erroneous and

reduce the accuracy of the window average. The large sample window results in the im-

provement of the window average accuracy being delayed in time based on the size of the

sample window. Additionally, the average error after the delay only improves by about

0.02% as the window size increases by an additional 10 samples.

Compared to the position difference method, averaging a 10 GNSS velocity measure-

ments window improves the accuracy of course measurements over a smaller period of time

and distance. Additionally, the examination of the spread of course measurements in the
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sample window allows for analysis on changes in the pedestrian’s heading. For these reasons,

the average moving window of GNSS course measurements will be used for the remainder

of this thesis.

6.4.2 Magnetometer Fault Detection

The other key factor on the effectiveness of an AHRS implementation relies on unper-

turbed measurements of the Earth’s magnetic field. These perturbations are often caused

by structures and devices that generate magnetic fields using ferrous materials that per-

turb the local magnetic field [14]. Consider the data set analyzed above, where a constant

misalignment angle was determined between the magnetometer and the pedestrian. Figure

6.21 shows how the presence of a local magnetic disturbance causes the AHRS heading to

almost match the GPS velocity course measurements.

Figure 6.21: AHRS Heading Corrupted by Magnetic Disturbance
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Around 240 seconds the AHRS heading drifts closer to the course measurements for about

40 seconds and then again around 300 seconds for another minute. This change in offset is a

result of a disturbance in the local magnetic field from some unknown source. The strength

and proximity of the source of the magnetic disturbance is often unknown and difficult

to estimate. Therefore, it’s more practical to disregard the magnetometer measurement

entirely if it’s being affected by a local disturbance. However, this requires the ability to

recognize instances where the magnetic field has been disturbed.

A common approach to detecting faulty magnetometer measurements is examining the

magnitude of the normalized innovation squared (NIS) [44]. The NIS is given by:

ϵz = (yk −Hxk)
TS−1

k (yk −Hxk) (6.27)

where S−1 is the innovation covariance given by:

Sk = HkP
−
k H

T
k +Rk (6.28)

The NIS approach provides a method for checking if the KF is consistent with the mea-

surement innovation and the innovation covariance. If the magnetometer measurements are

corrupted by a disturbance, the normalized innovation squared metric will compute a large

value due to large error between the estimated rotation of the magnetic field vector and the

measured magnetic field vector.
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Figure 6.22: Normalized Innovation Squared of Magnetometer Innovation

The normalized innovation squared for the data shown in Figure 6.21 is shown in Figure

6.22. Notice the large NIS value in the x and y axes during the time intervals of the

magnetic disturbance. For these intervals, the magnetometer measurements in the X and

Y components need to be discarded as they have become corrupted. A simple thresholding

technique can be applied to discard magnetometer measurements that exceed a specified

NIS value. In this case, a NIS threshold of 50 will be used for this thesis.
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Figure 6.23: NIS Thresholding for Magnetometer Fault Detection (TH = 50)

Figure 6.23 shows how the magnetometer measurements that exceed the specified NIS

threshold are discarded from the measurement update. With these measurements discarded,

the accelerometer is the only measurement update applied to correct the pitch and roll an-

gles, and the heading is determined from the dead reckoned angular velocity measurements.

Figure 6.24 shows the results of applying the magnetic fault detection method.
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Figure 6.24: AHRS Heading with Magnetic Fault Detection

The rejection of the disturbed magnetometer measurements allow the trends for the

AHRS heading to better match the GPS course, and the misalignment between the mag-

netometer frame and the pedestrian frame is held constant for the duration of the walking

route. However, only using the NIS metric threshold to reject faulty magnetometer measure-

ments relies on the initial estimate of the heading covariance, as well as, the initial estimate

of the heading itself. If the covariance is initialized to be too small and the heading is

erroneously initialized, then the NIS metric will be very large for all, or most, of the walking

route. Figure 6.25 shows how a bad initial heading estimate with a low initial covariance will

cause all magnetometer measurements to be rejected and the heading will be determined

by only dead reckoning angular velocity measurements.
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(a) AHRS Heading vs. GPS Course (b) Normalized Innovation Squared (NIS)

Figure 6.25: AHRS Heading with Low σ2
ψ Initialization

With this in mind, the initial covariance can be set to be very large. However, this can

cause the heading to converge much slower and may allow faulty magnetometer measure-

ments to be used if the covariance has not converged low enough. Therefore, an additional

constraint is added to ensure faulty magnetometer measurements are not considered: The

misalignment angle is well estimated with a low covariance. Providing this additional con-

straint ensures that magnetometer measurements are not discarded during sudden changes

in heading and allows for flexibility when initializing the heading covariance.

The proposed AHRS with misalignment correction and magnetic fault detection is similar

to the AHRS methodology presented in Section 4.3.3, but with the inclusion of an additional

heading misalignment state on the error state vector:

X =

 q
bg

 x =


δψ

bg

ψo

 (6.29)

where (ψo) represents the misalignment between the magnetometer heading and the pedes-

trian heading. The discrete time propagation of both states from the continuous dynamic

models remain the same, with the augmentation of the state transition matrix for the error

state propagation given by:
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Ad =

expm
− [ωnib]× ∆t −I3∆t

03 03

 06×1

01×6 1

 (6.30)

The misalignment state is assumed to be constant with additive zero-mean Gaussian

noise as governed by the continuous time model:

ψ̇o = w (6.31)

The magnetometer and accelerometer measurement updates remain the same as described

in Section 4.3.3. After the measurement update and full state corrections are applied, the

error state vector is reset to zeros for all states except for the misalignment state which is

held constant where:

x =

06×1

ψo

 (6.32)

The misalignment angle is then added to the magnetometer heading angle calculated from

the conversion of quaternion to Euler angles as derived by Equation 2.27 where:

ψ = ψAHRS + ψo (6.33)

Course Measurement Update

As mentioned previously, a moving average window filter is implemented to reduce the

errors that result from noisy course measurements. For implementation in this thesis, a

window size of 10 samples is used when two conditions are satisfied:

� The window of samples does not exceed a specified variance threshold. This can be

expressed as a logical expression where:

Cσ2
ϕ
=

1 if σ2
ϕ < THσ2

0 if otherwise

(6.34)

This condition is included for sudden changes in heading that are not due to measure-

ment errors.
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� The speed of the pedestrian exceeds a specified threshold. This can be expressed as a

logical expression where:

C∥v∥ =

1 if ∥ v ∥< TH∥v∥

0 if otherwise

(6.35)

where ∥ v ∥ is the Euclidean norm of the north and east components of the GNSS

velocity vector. This condition accounts for erroneous course measurements during

periods where the pedestrian is stationary.

The above conditions are best satisfied when the pedestrian is walking in a constant direction

to capture the misalignment angle and are determined by the quality of GNSS measurements

available. For this thesis, the variance and speed thresholds were set to be:

THσ2 = 0.005 rad2 TH∥v∥ = 0.5 m/s (6.36)

A window of 50 samples is averaged for the AHRS heading to account for the variance in

the estimates, however, a constraint of the AHRS heading variance is neglected due to the

high sampling rate. The measurement model for the misalignment angle is given by:

y = Hx+ v (6.37)

The term v represents zero-mean Gaussian noise and the observation matrix is given as:

H =
[
01×6 1

]
(6.38)

and the measurement vector is given as:

y =

[
1

10

10∑
n−10

ϕGNSSn − 1

20

20∑
n−20

ψmn

]
(6.39)

The measurement noise covariance matrix is given as a single scalar equating to the

calculated variance of the course measurement window where:

Rϕ = σ2
ϕ rad

2 (6.40)

This method of calculating the measurement noise covariance allows a higher weight to

be applied to measurement windows that provide more consistent course measurements
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during the misalignment correction. With the measurement update parameters defined, the

misalignment angle estimate is corrected and then applied to the global heading estimate:

ψ+
n = ψAHRS,k + ψ+

o (6.41)

where ψ+
n represents the corrected global heading using the corrected misalignment angle

ψ+
o . After the correction is applied, the error state vector is reset to all zeros, except for the

misalignment angle state that is set to the corrected angle.

Magnetometer Fault Detection Update

Before a magnetometer measurement update is applied at each epoch, the magnetometer

measurements are examined to determine if they are unperturbed by a local disturbance.

This requires calculating a NIS value of the measurement innovation:

ϵmag = (δyk −Hmagx)
T · S−1

k · (δyk −Hmagx) (6.42)

where δyk is given as the measurement error between the magnetometer measurement in the

body frame and the magnitude of the local magnetic field strength rotated into the body

frame from the estimated quaternion:

δyk =
[
mb
ib − Ĉbnm̃

n
]

(6.43)

The term Hmag is the magnetometer observation matrix given below:

Hmag =

[[
Ĉbnm̃

n
]
×
03×4

]
(6.44)

After the NIS value is calculated, it must satisfy the conditions stated previously to

verify if the magnetometer measurements are viable:

C1 =

1 if ϵmag < 50 AND σ2
ψo
> 0.0001

0 if otherwise

(6.45)

If the logical statement, returns a 1, then the magnetometer measurement is utilized. If the

logical statement returns a 0, then the magnetometer measurement is considered faulty and

the measurement update is not applied.
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6.5 Navigation System Update

The pedestrian navigation system requires that the navigation states be estimated in

order to provide a stable navigation solution. The PDR-SD approach in Section 4.3.4 uses

the step length and heading to propagate the pedestrian’s position in the north and east

components. The proposed navigation system is based on the work from Rehman et al. [19]

that uses an EKF approach and extends the estimated states to include the pedestrian’s

velocity magnitude and the rate of change in the heading angle as given by the state vector:

x =



E

N

V

ψ

ψ̇


(6.46)

with the states listed as east position (E), north position (N), magnitude of north and east

velocity (V ), heading angle (ψ), and the rate of change in the heading angle (ψ̇). These

states are propagated forward in discrete time by the dynamic model:

xk+1 = Φkxk +wk (6.47)

where the state transition matrix from time tk to tk+1 is derived as:

Φk =



1 0 sin (ψk)∆t 0 0

0 1 cos (ψk)∆t 0 0

0 0 1 0 0

0 0 0 1 ∆t

0 0 0 0 1


(6.48)

As can be seen from the state transition matrix, the dynamic model for the system is

nonlinear, and must be linearized about the current state estimate using a first order Taylor

Series approximation in order to propagate the state covariance matrix forward in time.

123



The linearized state transition matrix is given as:

Ad =
δΦk

δxk
=



1 0 sin (ψk)∆t Vk · cos (ψk)∆t 0

0 1 cos (ψk)∆t −Vk · sin (ψk)∆t 0

0 0 1 0 0

0 0 0 1 ∆t

0 0 0 0 1


(6.49)

and the state covariance propagation is performed as shown in Equation (3.41) with the

discrete process noise matrix:

σ2
d,k =



σE 0 0 0 0

0 σN 0 0 0

0 0 σV 0 0

0 0 0 wψ 0

0 0 0 0 wψ̇


·∆t (6.50)

The system state estimates are propagates by the time step (∆t), which is set by the

sampling period of the IMU. The state estimate corrections are performed in two separate

measurement updates:

1. GNSS measurement update

2. PDR measurement update

These two measurement updates utilize measurements output from the GNSS receiver, as

well as, pseudo-measurements from the step detector, step length estimator, and AHRS

filter discussed in the previous sub-sections.

GNSS Measurement Model

The GNSS measurement update corrects the estimates of the east and north position

states, and the estimates of the magnitude of horizontal velocity in the north and east frame

using position and velocity measurements. The GNSS measurement model is given by:

yGNSS = HGNSSxk + vGNSS,k (6.51)
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where the measurement vector (yGNSS) and observation matrix (HGNSS) are given as:

yGNSS =


EGNSS

NGNSS

VGNSS

 HGNSS =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 (6.52)

The east and north position measurements are derived from the LLA measurements con-

verted into the local navigation frame. The process of converting LLA measurements to

the local NED frame is often conducted by calculating the equivalent Cartesian position in

the ECEF frame and its distance from the initial ECEF position, followed by a rotation

of this cartesian distance into the local navigation frame. For this thesis, the conversion is

performed using MATLAB’s lla2ned() function.

The measurement update for the magnitude of horizontal velocity requires taking the

norm of the GNSS velocity measurements in the north and east directions where:

VGNSS =

√
(VGNSS,E)

2
+ (VGNSS,N )

2
m/s (6.53)

This calculation produces a positive scalar quantity that is more akin to receiver’s measured

speed since only the velocity magnitude is considered, rather than the direction. However,

for the sake of simplicity and notation, the speed measurement update will be referred to

as the velocity measurement update. The GNSS measurement noise covariance matrix is

given by:

RGNSS =


σ2
E 0 0

0 σ2
N 0

0 0 σ2
V

 (6.54)

The GNSS measurement update allows for position and velocity state estimates to be

bounded by errors that can arise from a pure PDR-SD solution.

PDR Measurement Update

The second measurement update uses the step detection, GNSS aided step length esti-

mation, and GNSS aided AHRS methods discussed in Sections 4.3.1, 6.3, and 6.4 to correct

the estimates in the velocity, heading, and rate of change in heading states. The PDR

measurement model is given by:

yk = HPDRxk + vPDR,k (6.55)
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where the measurement vector (yPDR) and the observation matrix (HPDR) are found to

be:

yPDR =


VPDR

ψPDR

ψ̇PDR

 HPDR =


0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 (6.56)

The PDR velocity measurement update is defined as the change in distance traveled

from the current estimated step length over the time between steps taken where:

VPDR,k =
SLk

tstepk − tstepk−1

m/s (6.57)

This formulation utilizes the step detection algorithm from Section 4.3.1 to determine the

time difference between steps taken, and the adaptive step length estimation algorithm from

Section 6.3 to determine the magnitude of the distance traveled between detected steps. This

measurement update only occurs when a new step has been detected.

The PDR rate of change in the heading angle measurement update calculates the change

in heading angle over the change in time between detected steps where:

ψPDR,k =
ψstepk − ψstepk−1

tstepk − tstepk−1

rad/s (6.58)

The change in heading uses the step detection and GNSS aided AHRS algorithms to calculate

this pseudo-measurement. This measurement update is also only applied during a time of

a detected step.

The PDR heading angle measurement update uses the estimated GNSS aided AHRS

heading algorithm from Section 6.4 to update the navigation system heading state:

ψPDR,k = ψAHRS + ψo rad (6.59)

One key difference between the heading update and the velocity and rate of change of heading

updates is the constant availability of the GNSS aided AHRS heading estimates. Since the

AHRS filter is continuously updated at the rate of the IMU sampling time, the navigation

system heading state is constantly corrected immediately following the time update of the

navigation system states. It seems intuitive to apply the rate of change in heading update

at the same rate as the heading update, but the high noise characteristics of the GNSS

aided AHRS heading estimates introduce high variance in rate of change in heading when

differentiating over smaller intervals of time. Constraining the occurrence of the heading
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rate update to occur during periods of detected steps help to constrain these errors due to

differentiation.

The measurement noise covariance matrix is given by a diagonal matrix of the variance

in the measurements given by:

RPDR =


σ2
V 0 0

0 σ2
ψ 0

0 0 σ2
ψ̇

 (6.60)

Still Detection

One caveat to the velocity update is to account for periods where the pedestrian is no

longer walking. This is necessary to prevent the position being propagated continuously

from the PDR velocity update during stationary periods. One method to account for this

is to use the same still detection methodology from Section 4.2.3, where thresholds are set

for signal characteristics of the Euclidean norm of the angular velocity measurements. If

still periods are detected at any point, then a zero-velocity update (ZVU) is applied for the

PDR velocity update where:

VPDR,k =


SLk

tstepk−tstepk−1
, if still = 0

0, if still = 1

(6.61)

However, due to the lower dynamics experienced by an IMU mounted to the pedestrian’s

chest, rather than the foot, identifying these stationary periods requires a lower threshold of

the maximum angular velocity norm. Figure 6.26 shows how the still detection threshold for

the foot mounted scenario (left) continues to detect still periods during the walking phases,

while the modified threshold for the body mounted scenario (right) is able to avoid detecting

still periods during walking phases.

Applying a threshold of THω,max = 0.1 rad/s allows for still periods to be determined

more effectively for body mounted scenarios in order to apply ZUPTs when the pedestrian

is not walking.

6.6 System Summary

The presented loosely coupled architecture for GNSS/PDR-SD integration analyzes the

extensions of each subsystem to improve upon the PDR-SD solution in the event GNSS mea-
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(a) Still Detection THω,max = 0.2rad/s (b) Still Detection THω,max = 0.1rad/s

Figure 6.26: Still Detection for Chest Mounted IMU

surements are no longer available. Rather than using GNSS to only correct errors in position

estimates from the PDR-SD methodology in Section 5.3, velocity and course measurements

are also utilized to provide parameter, and state, estimation of each subsystem.

For the step length estimation subsystem, a novel step length model is presented, as

well as the use of GNSS step length pseudo-measurements to estimate parameters of the

new step length model. Utilization of step length pseudo-measurements allows for the step

length model parameters to be adjusted to fit the discrete step lengths of a pedestrian with

unknown physical characteristics (i.e. height, leg length, and average walking pace).

For the AHRS heading estimation subsystem, methods of misalignment correction and

magnetometer fault detection were presented. The use of GNSS course measurements pro-

vide estimates of the the misalignment angle between the pedestrian frame and the leveled

magnetometer. The misalignment estimation and correction allows for placement of the

co-located IMU and magnetometer to be rigidly mounted in any position and orientation on

the pedestrian’s torso. The magnetic fault detection algorithm proposes a method of reject-

ing magnetometer measurements that have been corrupted by the presence of a disturbance

in the local magnetic field when GNSS is, either available or not available.

Finally, the Navigation state estimation subsystem uses velocity state estimates from

the step length estimation subsystem, heading state estimates from the AHRS subsystem,

and position and velocity measurements from GNSS to produce a fused navigation solution.

When GNSS is no longer available, the step length estimation subsystem continues to provide
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velocity state estimates to the navigation system, in order to account for when the pedestrian

is no longer in motion. A modified still period detection algorithm prevents the position

state estimates from propagating when the pedestrian is stationary. The next chapter will

present the experimental results for the implementation of this system for various real-world

scenarios.
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Chapter 7

Extended Loosely Coupled

GNSS-SD Implementation and

Results

7.1 Introduction

The implementation of the GNSS/PDR-SD system is conducted on multiple real-world

data sets to examine the performance of each subsystem in different environmental condi-

tions. The results will be compared to the implementation of the loosely coupled GNSS/PDR-

SD system described in Section 5.3.2 as a test case in the same environments. The examined

environmental scenarios will include:

1. Unperturbed magnetic field measurements with no magnetometer misalignment.

2. Unperturbed magnetic field measurements with magnetometer misalignment.

3. Perturbed magnetic field measurements with magnetometer misalignment.

For each environmental condition, the implementation will include different scenarios of

GNSS availability.

The first environmental condition will examine the proposed system performance against

the step length estimation methods from the test case when the magnetometer is fully aligned
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with the pedestrian frame, and no magnetic disturbances affect the heading estimates from

the AHRS. The goal of this experiment is to validate the performance the proposed step

length model based on the accumulation of step length pseudo-measurements for different

periods of GNSS availability.

The second environmental condition will examine the performance of the magnetometer

misalignment correction with GNSS course measurements. The goal of this experiment is

to validate the method of misalignment estimation, as well as determine periods of GNSS

availability that yield the best misalignment estimates.

The final environmental condition will examine the performance of the magnetometer

fault detection algorithm in conjunction with the magnetometer misalignment estimation

and correction. The goal of this experiment is to evaluate if corrupted magnetic field mea-

surements can be detected and rejected to reduce heading errors with varying periods of

GNSS availability.

All the presented results will include the test case implementation for performance eval-

uation, and experimental setup and procedure for the data sets in each environmental con-

dition. For all the experimental results that will be shown, certain assumptions are made

about the pedestrian:

� The pedestrian is walking in the same direction the pedestrian is facing.

� The pedestrian makes no irregular steps or motions (i.e. tripping, side stepping, sitting

down, shrugging shoulders, etc.).

� The pedestrian exhibits only a walking motion (no running, skipping, jumping, etc.).

7.2 Step Length Model and Pseudo-Measurement Test

The data set for the first environmental condition was collected by a pedestrian walking

a closed loop along a sidewalk up and down a section of a road as shown in Figure 7.1.
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Figure 7.1: GNSS reference path

The pedestrian starts at the top right position (green), then walks West along the sidewalk

to the top right left position and cross the street to the bottom left position. From there,

the pedestrian walks East to the bottom right position and cross the street to return back

to the top right position (green) to conclude the route. This is the same data set used in

Section 5.3.2 where no magnetic field disturbances were observed in the post-processed data,

and the misalignment and magnetic declination angle were initially corrected to be in line

with the pedestrian frame. This data set also includes periods of varying step length and

walking pace. Figure 7.2 shows the reference path with the change in the pedestrian’s pace.
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Figure 7.2: GNSS reference path with different walking paces

For the first leg of the walking route (blue), the pedestrian maintains a normal walking

pace for about 345 seconds. In the second leg of the walking route (red), the pedestrian

accelerates and increases the step length for 217 seconds. For the final leg of the walking

route (black), the pedestrian’s walking pace and step length reduces to be slower and smaller

than the first leg of the walking route for the remaining 64 seconds. These periods will help

to examine the subsystem’s performance in the presence of varying step length.

The pedestrian was fitted with a tightened military vest to ensure rigidity between the

hardware and the pedestrian. A Vectornav VN-100 9-DoF IMU [30] was mounted to the

right of the pedestrian’s sternum, and a Ublox EVK-7P GNSS receiver [31] was included with

a single antenna mounted to the pedestrian’s left shoulder. The IMU and magnetometer

are sampled at 100 Hz, and the GNSS receiver is sampled at 1 Hz. As mentioned, the

implementation will be evaluated for different periods of GNSS availability. The step length

estimation methods from the test case assume static model parameters that are estimated

assuming three different step length models:

� Constant step length model.

� Waist swing step length model.
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� Step frequency model.

The constant step length model parameter is calculated by Equation (7.1)

SLc =
d

s
(7.1)

where d is the total distance traveled from the origin at the current epoch, and s is the

total number of step detected at the current epoch. The waist swing model parameter

and step frequency model parameters are determined experimentally with a RLS approach

using the GNSS step length pseudo-measurements. The experimental results for the SLKF

implementation will be shown using the position-velocity pseudo-measurements, and then

the velocity pseudo-measurements.

7.2.1 GNSS Constant Availability

Position-Velocity Pseudo-Measurements

For the first scenario of the environmental condition, GNSS is assumed to be constantly

available for the duration of the experiment. Figure 7.3 shows the path error results for

constant GNSS availability. Additionally, Table 7.1 shows the RMSE in the east and north

directions for all 4 step length models.
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Figure 7.3: North and East Path Errors

Table 7.1: Step Length Estimation RMSE

Step Length Method
RMSE (m2)

East North

Proposed 0.378 0.225

Constant 0.156 0.056

Waist Swing 0.193 0.056

Step Frequency 0.155 0.058

With constant GNSS availability, the proposed step length model produces position

errors within 1 meter of the true positions from GNSS. However, the model parameters

are initialized at zero and estimated over time using viable GNSS step length pseudo-

measurements. Therefore, the accuracy of the proposed step length model is dependent

on the number of viable step length position-velocity pseudo-measurements. Figure 7.4

shows the results of the proposed step length model estimates with the GNSS step length

position-velocity pseudo-measurements.
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Figure 7.4: Step Length Estimation for constant GNSS availability

The total number of steps taken for the walking route was 1, 089, however, when estimating

the step length model parameters, GNSS step length position-velocity pseudo-measurements

are only available when a position and velocity measurement is received between successive

steps. Therefore, the use of step length position-velocity pseudo-measurements is dependent

on the update rate of the GNSS receiver and the walking pace of the pedestrian. With

GNSS available for the entire duration of the walking path, 620 step length position-velocity

pseudo-measurements were available, and of those only 198 step length position-velocity

pseudo-measurements were viable to be used for model parameter estimation.

Table 7.2: Walking Pace with Position-Velocity Pseudo-Measurements

Pace
SLKF GNSS Position-Velocity Pseudo-Measurements

steps µ (m) σ (m) total µ (m) σ (m) good µ (m) σ (m)

Normal 577 0.73 0.12 340 0.94 0.31 126 0.74 0.11

Fast 413 0.72 0.1 219 1.17 0.36 51 0.89 0.27

Slow 98 0.7 0.12 61 0.9 0.32 21 0.88 0.28
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Table 7.2 shows the comparison between of the SLKF with the GNSS step length

position-velocity pseudo-measurements during the different walking paces of the route. Dur-

ing the first leg of the route, the pedestrian takes a total of 577 steps and the proposed step

length model estimates an average step length of 0.73 meters with a standard deviation of

0.12 meters using 126 viable pseudo-measurements from GNSS. However, during the second

leg, the pedestrian’s average estimated step length reduces to 0.72 meters even with the 51

viable pseudo-measurements that indicate an increase in step length. For the final leg of

the route, the average estimated step length reduces to 0.7 meters when the pedestrian is

walking slower when the viable pseudo-measurements indicate an average step length that

still exceeds the average step length during the first leg of the route.

The high variance in the step length position-velocity pseudo-measurements introduce a

large variance in the estimation of the step length model parameters. Figure 7.5 shows the

change in step length model coefficients with new pseudo-measurements.

Figure 7.5: Step Length Model Coefficients

Initially, the scaling coefficient, K1, is larger than the constant coefficient, K2, then as

more pseudo-measurements are used, the constant coefficient is increased to be greater and

has less variation. The larger process noise of the scaling coefficient introduces the higher
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variance when applying the pseudo-measurement. The final coefficient terms yield a step

length model of:

SL = 0.193 ·W + 0.461 (7.2)

The resulting step length model will be examined in the final results of the unperturbed

magnetic field with no misalignment condition.

Velocity Pseudo-Measurements

Using the GNSS step length velocity pseudo-measurements, the experimental path errors

are shown below in Figure 7.6. Table 7.3 also shows the corresponding RMSE in the north

and east directions for the four step length models. It can be seen in that performance is

slightly reduced for the proposed step length method. However, the step frequency approach

shows dramatic errors in both the east and north directions.

Figure 7.6: North and East Path Errors
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Table 7.3: Step Length Estimation RMSE

Step Length Method
RMSE (m2)

East North

Proposed 0.370 0.258

Constant 0.156 0.056

Waist Swing 0.211 0.057

Step Frequency 250.193 18.367

The large errors in the step frequency method are primarily attributable to the initial

static period where the large delay in time from when the pedestrian is stationary to walking

improperly calibrating the step length model coefficients.

Figure 7.7 shows the results of the proposed step length model estimates with the GNSS

step length velocity pseudo-measurements. The trends of the pedestrian’s change in step

length is now much more apparent as the step length velocity pseudo-measurements increase

and decrease at the periods where the pedestrian’s pace changes.

Figure 7.7: Step Length Estimation for constant GNSS availability
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While the performance of the proposed step length model appears to have reduced in

east and north accuracy, the number of viable velocity pseudo-measurements is much greater

than the position-velocity pseudo-measurements. Table 7.4 shows the comparison of viable

velocity pseudo-measurements relative to the total pseudo-measurements available. It can

be seen that the majority of velocity pseudo-measurements are viable and lower in variance

for each pace of the route. However, during the fast paced leg of the route fewer velocity

pseudo-measurements are considered viable as they are clustered close to the maximum

threshold of 0.9 meters.

Table 7.4: Walking Pace with Velocity Pseudo-Measurements

Pace
SLKF GNSS Velocity Pseudo-Measurements

steps µ (m) σ (m) total µ (m) σ (m) good µ (m) σ (m)

Normal 577 0.78 0.06 340 0.78 0.09 335 0.78 0.05

Fast 413 0.85 0.04 219 0.91 0.13 126 0.77 0.07

Slow 98 0.70 0.06 61 0.71 0.13 59 0.77 0.09

Figure 7.8 shows the evolution of the proposed step length model coefficients over time

when being estimated using the velocity pseudo-measurements. The variance in the model

coefficients is much lower compared to the model coefficients when using the position-velocity

pseudo-measurements.
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Figure 7.8: Step Length Model Coefficients with Velocity Pseudo-Measurements

After the last measurement update is applied at the end of the slow pace of the route

the step length model coefficients reach a final value that produces a step length model of:

SL = 0.2868 ·W + 0.3260 (7.3)

The resulting step length model will be examined in the final results of the unperturbed

magnetic field with no misalignment condition. The next scenario will examine the same

environmental conditions when GNSS signal is fully unavailable towards the end of the

walking route.

7.2.2 GNSS Mostly Available

Position-Velocity Pseudo-Measurements

The second scenario simulates a loss of GNSS signal just before the pedestrian reduces

the pace in the final leg using the same walking route. The goal of this scenario is to examine

the accuracy of the PDR solution with the converged step length model parameters once

GNSS pseudo-measurements are no longer available during the final leg of the route. For

this scenario GNSS was simulated to be unavailable about 64 seconds before the end of the
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walking path. Shown below in Figure 7.9 are the path error results for the second scenario.

Additionally, the RMSE in the east and north directions are given in Table 7.5.

Figure 7.9: North and East Path Errors

Table 7.5: Step Length Estimation RMSE

Step Length Method
RMSE (m2)

East North

Proposed 0.876 0.273

Constant 2.442 0.219

Waist Swing 0.664 0.381

Step Frequency 2.280 0.212

With GNSS being available for the majority of the walking route, the proposed step

length model produces errors of up to 5 meters in the East direction after GNSS is no

longer available, while the constant and step frequency step length models maintain East

errors less than 15 meters. However, the step length model shows a lower RMSE in the

North direction, which can be attributed to the modified AHRS removing any errors in

142



misalignment or faulty magnetometer measurements that were not accounted for. Figure

7.10 shows the results of the proposed step length model estimates with the GNSS step

length pseudo-measurements.

Figure 7.10: Step Length Estimation for GNSS mostly available

Lowering the amount of time that GNSS is available during the walking route, also

lowers the number of step length pseudo-measurements that can be obtained. The total

number of step length pseudo-measurements that were recorded was 558, and of those, only

176 were viable to be used for parameter estimation. Figure 7.11 shows the change in the

step length model parameters for each step. Table 7.6 provides the SLKF results for the

different walking paces of the route.
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Table 7.6: Step Length Estimation RMSE

Pace
SLKF

steps mean sigma

Normal 577 0.73 0.12

Fast 413 0.72 0.10

Slow 98 0.74 0.02

In the final leg of the walking route, the pedestrian’s average step length is estimated to

be 0.74 meters with a standard deviation of 0.02 meters. Contrary to expectation, the

pedestrian’s average step length is estimated to be larger than the average step length

during the first two legs of the walking route.

After 970 steps have been taken in the walking route, the model coefficients converge to

a final estimate to determine the pedestrian’s step length for the remainder of the route.

The final coefficient terms yield a step length model of:

SL = 0.184 ·W + 0.425 (7.4)

Again, the resulting step length model for when GNSS is mostly available will be examined

at the end of this environmental condition.
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Figure 7.11: Step Length Model Coefficients

Velocity Pseudo-Measurements

Using the GNSS step length velocity pseudo-measurements, the experimental path errors

are shown below in Figure 7.12 to show the evolution in the PDR errors when GNSS is no

longer available. Table 7.7 also shows the corresponding RMSE in the north and east

directions for the four step length models. With GNSS being available for the majority

of the walking route, the proposed step length model produces greater errors in the East

direction with a maximum of 6.2415 meters. With GNSS unavailability being simulated just

before the start of the slow pace of the route, the path errors indicate that the proposed step

length model is not able to adapt to the pedestrian’s step length when the pace abruptly

changes from fast to slow when compared to the results using the position-velocity pseudo-

measurements.
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Figure 7.12: North and East Path Errors

Table 7.7: Step Length Estimation RMSE

Step Length Method
RMSE (m2)

East North

Proposed 1.648 0.752

Constant 2.446 0.313

Waist Swing 1.009 0.333

Step Frequency 250.195 18.370

Figure 7.13 shows the results of the proposed step length model estimates with the GNSS

step length velocity pseudo-measurements. While the number of viable velocity pseudo-

measurements is reduced when simulating GNSS unavailability, the proposed step length

model shows only a slight downward trend once the slow pace section begins. This trend is

desirable as the pedestrian’s step length was reduced during this portion.
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Figure 7.13: Step Length Estimation for GNSS mostly available

Table 7.8 below shows the results of the SLKF during the different paces of the route.

Initially, the average estimated step length during the different paces of the route show more

desirable trends than when using position-velocity pseudo-measurements. The average step

length estimate goes up from 0.78 meters during the normal pace to 0.85 during the fast

pace; and goes down from 0.85 meters during the fast pace to 0.81 meters during the slow

pace. However, the pedestrian’s average estimated step length is still 0.03 meters greater

during the slow pace than the normal pace.

Table 7.8: Step Length Estimation RMSE

Pace
SLKF

steps mean sigma

Normal 577 0.78 0.06

Fast 413 0.85 0.04

Slow 98 0.81 0.03

Figure 7.14 below shows the evolution the proposed step length model coefficients during
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the walking route. Additionally, Figure 7.15 shows the results of the step length estima-

tion and the change in average estimated length over time. The model coefficients show a

somewhat constant average in estimated values for the first 300 steps of the route and then

a slight linear increase for the remainder of the normal pace. A more logarithmic trend

can be seen in the step length estimation results during the normal pace where the average

estimated step length quickly grows from 0 meters to about 0.75 meters. After the first

300 steps, the average step length continues to grow at a slower rate. This growth trend

indicates that the total average step length during the normal pace of the walking route is

most likely greater than 0.78 meters.

Figure 7.14: Step Length Model Coefficients
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Figure 7.15: Step Length Estimation for GNSS mostly available

After 970 steps have been taken the step length model coefficients reach a final estimate

to determine the pedestrian’s step length for the remainder of the walking route. The

resulting step length model is given by:

SL = 0.2915 ·W + 0.3059 (7.5)

The resulting step length model for when GNSS step length velocity pseudo-measurements

are mostly available will be examined at the end of this section. The next scenario will

examine the same environmental condition when GNSS is unavailable for the majority of

the walking route.

7.2.3 GNSS Rarely Available

Position-Velocity Pseudo-Measurements

The final scenario for the specified environmental condition simulates a loss of GNSS

signal before the start of the second leg of the route when the pedestrian’s pace increases.

The goal of this scenario is similar to the goal of the previous scenario, but with only step

length pseudo-measurements available during the normal walking pace of the route. For this
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scenario, GNSS was simulated to be available for only the first 345 seconds of the walking

route. Shown below in Figure 7.16 are the path error results for GNSS being available for a

shorter amount of time. Additionally, the RMSE for the east and north directions are given

in Table 7.9.

Figure 7.16: North and East Path Errors

Table 7.9: Step Length Estimation RMSE

Step Length Method
RMSE (m2)

East North

Proposed 69.506 1.673

Constant 21.018 2.924

Waist Swing 39.745 3.221

Step Frequency 2.779 2.827

With GNSS being unavailable for almost half of the walking route, the proposed step

length model produces a maximum of over 150 meters of error in the East direction. The

proposed step length model underestimates the path traveled greatly underestimates the
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distance traveled for the final two legs of the walking route. However, from Table 7.9, it

can be seen that step frequency step length model outperforms all of the other step length

models for RMSE for the East direction and estimates the remaining distance traveled with

a higher level of accuracy.

Figure 7.17: Step Length Estimation for GNSS rarely available

Figure 7.17 shows the results of the proposed step length model estimates with the

GNSS step length pseudo-measurements. With GNSS only being available for the first 344

seconds of the walking route, only 339 pseudo-measurements were recorded. Of the 339 total

pseudo-measurements, only 125 were viable to be used for parameter estimation. However,

the final viable step length pseudo-measurement used for parameter estimation was recorded

as 0.537 meters which is within 2 standard deviations of the mean. Table 7.10 shows the

SLKF results for the different legs of the route.
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Table 7.10: Step Length Estimation RMSE

Pace
SLKF

steps µ (m) σ (m)

Normal 577 0.73 0.12

Fast 413 0.54 0.01

Slow 98 0.53 0.01

During the second leg of the walking route, the pedestrian’s average step length is estimated

to be 0.54 meters, which is almost 0.2 meters less than the average step length during the

normal walking pace in the first leg.

Figure 7.18 shows the change in the step length model parameters with only 125 viable

step length pseudo-measurements used for estimation.

Figure 7.18: Step Length Model Coefficients

The total number of steps taken before the model coefficients converge to constant values

is 577. From there, the final coefficient terms yield a resulting step length model of:

SL = 0.087 ·W + 0.381 (7.6)
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The resulting model coefficients are much closer in values than the previous two scenarios.

The next section will examine the PDR solution using the three resulting step length models

shown above.

Velocity Pseudo-Measurements

Using the GNSS step length velocity pseudo-measurements, the experimental path errors

are shown below in Figure 7.19 to show the evolution in the PDR errors when GNSS is no

longer available. Additionally, Table 7.11 shows the corresponding RMSE in the north and

east directions for the four step length models. With GNSS only being available for about

the first 344 seconds of the route, the proposed step length model produces a maximum error

in the east direction of almost 100 meters. While this is marginally better than the waist-

swing step length model, the constant step length model outperforms all the other models

overall, and especially during the PDR period. However, this is still an improvement over

the errors when using step length position-velocity pseudo-measurements. Not shown in the

plot is the large errors produced by the step frequency model much earlier in the route.

Although, this model appears to show improvements during the PDR period.

Figure 7.19: North and East Path Errors
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Table 7.11: Step Length Estimation RMSE

Step Length Method
RMSE (m2)

East North

Proposed 31.664 2.223

Constant 21.092 3.624

Waist Swing 44.300 3.672

Step Frequency 253.584 18.721

Figure 7.20 below shows the results of the proposed step length model estimates with the

GNSS step length velocity pseudo-measurements. When simulating the GNSS loss for this

scenario, only 5 velocity pseudo-measurements were not considered to be viable. However,

the step length estimation results show that the estimated step length is underestimated

during the fast pace of the route and no visible change can be seen when transitioning to

the slow pace of the route. This is very undesirable as the model should estimate a higher

step length during the fast pace, and a lower estimate during the slow pace.

Figure 7.20: Step Length Estimation for GNSS rarely available
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Table 7.12 below shows the results of the SLKF during the different paces of the route.

It can be seen that the step length model is not able to adapt to the change in step length

during the fast pace of the walking route. However, the step length model is able to estimate

the reduction in step length during the slow pace. While it is desireable for the model to

estimate smaller step lengths when the pace decreases, the step lengths are underestimated

during the fast pace of the route.

Table 7.12: Step Length Estimation RMSE

Pace
SLKF

steps µ (m) σ (m)

Normal 577 0.78 0.06

Fast 413 0.73 0.02

Slow 98 0.70 0.03

Figure 7.21 below shows the evolution of the proposed step length model coefficients

during the walking route. Additionally, Figure 7.22 shows the results of the step length

estimation and the change in average estimated length over time. Initially, both models ap-

pear to evolve in a linear trend while velocity pseudo-measurements are available. However,

the final velocity pseudo-measurement before the loss occurs drives the model coefficients

to final values that are smaller than their average trend would suggest. The final step

length velocity pseudo-measurement is calculated to be 0.6723 meters. Recall in Table 7.4

from Section 7.2.1 that the average step length velocity pseudo-measurements during the

normal pace was 0.78 meters with a standard deviation of 0.05 meters. This means that

the final step length velocity pseudo-measurement used for estimating the model coefficients

is greater than 2σ less than the average velocity pseudo-measurements during the normal

pace. This indicates a flaw in the SLKF measurements update since all viable velocity

pseudo-measurements have equivalent measurement covariances.
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Figure 7.21: Step Length Model Coefficients

Figure 7.22: Step Length Estimation for GNSS rarely available
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After the last velocity pseudo-measurement is applied to the SLKF, the model coefficients

reach a final value for the remainder of the walking route. The final step length model is

given by:

SL = 0.2535 ·W + 0.2594 (7.7)

The resulting model will be evaluated for performance in the next section.

7.2.4 PDR Solution

For the final scenario of the specified environmental condition, the three resulting step

length model for different periods of GNSS availability will be compared to the test case

step length models for PDR alone. The goal of this scenario is to examine the performance

of the proposed step length model, and to examine the performance of the use of the GNSS

step length pseudo-measurements.

Position-Velocity Pseudo-Measurements

Shown below in Figure 7.23 are the path and path errors for the PDR-SD solution for

the three proposed step length model results using step length position-velocity pseudo-

measurements, and the test case step length models. The satellite basemap is not included

in the path plot to show all the resulting paths.
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Figure 7.23: PDR-SD Path with Step Length Models

Figure 7.23 shows the path results where proposed step length models are listed in succession

of how they were presented:

� SL1 is the resulting model with constant GNSS availability.

� SL2 is the resulting model when GNSS is mostly available.

� SL3 is the resulting model when GNSS is rarely available.
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Figure 7.24: North and East Path Errors

Table 7.13: Step Length Estimation RMSE

Step Length Method
RMSE (m2)

East North

SL1 17.415 2.128

SL2 28.562 3.273

SL3 15.333 2.777

Constant 24.854 3.009

Waist Swing 13.779 3.157

Step Frequency 25.359 3.044

Velocity Pseudo-Measurements

Figure 7.25 below shows the PDR solution for the proposed step length model of varying

GNSS availability, and test case step length models. Additionally, Figure 7.26 shows the

resulting path errors of each model’s PDR solution. The results are shown in succession of

how they were presented:
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� SL1 is the resulting model with constant GNSS availability.

� SL2 is the resulting model when GNSS is mostly available.

� SL3 is the resulting model when GNSS is rarely available.

Interestingly, the proposed step length model when GNSS is rarely available shows large

positive errors in the east direction. This indicates that the proposed step length model

overestimated the step length more frequently than the other step length models. However,

this model appears to perform better in the north direction than most of the other models.

Figure 7.25: PDR-SD Path with Step Length Models
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Figure 7.26: North and East Path Errors

Table 7.14 below shows the RMSE in the east and north directions for all six step length

models. The waist-swing model continues to show the best performance in the PDR solution

when compared to the other models. The proposed step length model when GNSS is mostly

available has the best RMSE of the three scenarios using velocity pseudo measurements with

a maximum error of 31.45 meters in the east direction. The resulting model from GNSS being

rarely available when using position-velocity pseudo-measurements has the lowest RMSE of

all the proposed models. However, the resulting models from using step length velocity

pseudo-measurements have a much lower variation than the models using position-velocity

pseudo-measurements. The lower variation in step length velocity pseudo-measurements

show an RMSE difference of 8.483 m2 between the best performing step length model (SL2)

and the worst step length model (SL3); whereas, the RMSE difference between the best and

worst performing step length models using position-velocity pseudo-measurements is 13.23

m2.
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Table 7.14: Step Length Estimation RMSE

Step Length Method
RMSE (m2)

East North

SL1 20.461 2.013

SL2 17.259 1.891

SL3 25.742 1.855

Constant 25.014 3.372

Waist Swing 13.940 3.701

Step Frequency 25.515 3.472

The lowest RMSE in the PDR solution from the proposed step length models using

position-velocity pseudo-measurements was when the leading coefficient (K1) was more than

four times less than the second coefficient (K2), and the highest RMSE was when the leading

coefficient was only 2.3 times smaller than the second coefficient. However, the resulting

step length model from constant GNSS availability has an RMSE much closer to the better

performing model with the leading coefficient being only 2.4 times less than the second

coefficient. Overall, this would indicate a higher performance when the leading coefficient

is less than the second coefficient.

The lowest RMSE in the PDR solution from the proposed step length models using

velocity pseudo-measurements was when the leading coefficient was 1.05 times less than

the second coefficient. Unlike the analysis of the models using position-velocity pseudo-

measurements, the RMSE increased as the ratio increased to 1.14 for SL1 and increased

even larger as the ratio decreased to 1.02. This differs from the expected trend of the

position-velocity step length models, as the RMSE did not improve as K2 grew larger than

K1. These results indicate that the performance of the step length model may not be

defined by the difference in the coefficients. Additionally, all of the resulting step length

models from both pseudo-measurement approaches show a smaller leading coefficient than

second coefficient.
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7.3 Misalignment Estimation Test

The second environmental condition examines the performance of the system when head-

ing misalignment between the magnetometer and the pedestrian is present. The experimen-

tal setup for this test is the same data set from the first environmental condition with a

Vectornav VN-100 9-DoF IMU [30] rigidly mounted to the right of the pedestrian’s sternum,

and a Ublox EVK-7P GNSS receiver with a single antenna mounted to the pedestrian’s left

shoulder. The IMU and magnetometer are sampled at 100 Hz, and the GNSS receiver

is sampled at 1 Hz. Two of the same scenarios of GNSS availability from the previous

environmental condition will be examined for this scenario where:

� GNSS is constantly available.

� GNSS is rarely available.

The results of this experiment will focus on the system’s ability to estimate the misalignment

angle for various periods of GNSS availability. With this in mind, the alternative step length

estimation methods from the previous section will not be examined.

With the misalignment angle between the magnetometer and pedestrian unaccounted

for, the pedestrian’s position is propagated in the heading direction determined by the

magnetometer. Figure 7.27 shows the PDR path results without removing the misalignment.
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Figure 7.27: PDR Path with Magnetometer Misalignment

The path was generated using the proposed step length model with constant GNSS avail-

ability. The heading is determined by the AHRS subsystem and does not account for the

misalignment between the magnetometer and the pedestrian. Figure 7.28 shows the results

of the heading estimated by the AHRS compared to the reference GNSS course measure-

ments. As shown, there exists a, relatively, constant misalignment angle of about 20 degrees

for the duration of the walking route. The following scenarios of GNSS availability will

examine the performance of the AHRS subsystem’s ability to estimate the misalignment

angle in order to account for it.
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Figure 7.28: Heading and GNSS Course comparison with Misalignment

7.3.1 GNSS Constant Availability

For the first scenario of the environmental condition, GNSS is assumed to be constantly

available for the duration of the experiment. Figure 7.29 shows the results of the pedestrian’s

heading estimation with constant GNSS availability. With the misalignment estimation, the

heading from the AHRS subsystem is constantly corrected by estimates of the misalignment

angle. This results in the estimated heading and GNSS Course to be very similar. Results

of the misalignment estimation are shown below in Figure 7.30. The misalignment angle has

a final convergence value of −20.6 degrees. The total average of the estimated misalignment

angle is determined to be −20.3 degrees with a standard deviation of 2.4 degrees.
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Figure 7.29: Heading and GNSS Course comparison

Figure 7.30: Misalignment Estimation
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The misalignment angle estimate converges to within 1σ of the average after about 13

seconds, or 13 GNSS Course measurement updates and remains within 1σ for the remainder

of the route. However, the time to convergence is based on the availability of viable GNSS

measurements when the pedestrian is traveling over 0.5 m/s. With the pedestrian beginning

in a static position for the first 6 seconds of the route, the first 6 GNSS Course measurements

are not viable for misalignment estimation. With this in mind, the misalignment estimation

converged with only 7 Course measurement updates.

In Figure 7.31, the dead reckoned path errors in the North direction are shown for zero,

one, two, and three standard deviations from the average misalignment angle when GNSS

is constantly available. For the majority of the route, the pedestrian is traveling in the

Eastern direction where path errors are primarily attributed to errors in the selected step

length estimation model. Examining the errors in the North direction allow greater insight

into how the misalignment angle affects the performance of the system. Misalignment angle

estimates 3σ from −20.3 degrees introduce heading errors that result in path errors greater

than 50 meters in the North direction.

Figure 7.31: North Error with Misalignment Error bounds
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7.4 Magnetic Disturbance Test

The final environmental condition examines misalignment between the magnetometer

and the pedestrian, and the system’s ability to detect and reject magnetometer measurement

affected by disturbances in the local magnetic field. The experimental setup for this test uses

a clockwise walking route in a parking lot where the pedestrian walks a single loop beginning

and ending at the southwest corner of the path. This route also includes a period where

the magnetometer measurements are perturbed by a disturbance in the local magnetic field.

The pedestrian is outfitted with a Vectornav VN-100 9-DoF IMU [30] rigidly mounted to the

right of the pedestrian’s sternum and a Ublox EVK-7P GNSS receiver with a single antenna

mounted to the pedestrian’s left shoulder. The IMU and magnetometer are sampled at 100

Hz, and the GNSS receiver is sampled at 2 Hz. This test examines three levels of GNSS

availability:

� GNSS is constantly available

� GNSS is lost during the period of magnetic disturbance.

� GNSS is lost before the period of magnetic disturbance.

The results of this test will focus on the system’s ability to account for the misalignment

angle between the magnetometer and the pedestrian, as well as, detect periods of magnetic

disturbances and reject those measurements.

For the preliminary results, the pedestrian’s dead reckoned position is shown in Figure

7.32, where the misalignment angle is unaccounted for and the disturbed magnetometer

measurements are not removed. The path is generated using the converged step length

model parameters when GNSS is constantly available given by Equation (7.8) below.

SL = 0.267 ·W + 0.325 (7.8)

Again, this test focuses on the system’s ability to account for misalignment and reject

magnetometer measurements influenced by local disturbances. Therefore, this step length

model will be used for the remainder of this test and will not be evaluated for performance.
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Figure 7.32: PDR Path with Misalignment and Magnetic Disturbance

The results for the heading without accounting for misalignment or magnetic distur-

bances is shown below in Figure 7.33. Initially, a relatively constant misalignment angle of

about 17 degrees is present while the pedestrian is walking. However, around 230 seconds

into the route, the misalignment angle reduces closer to 10 degrees of misalignment. While

this appears as though the heading is correcting itself, it’s actually due to the presence of a

disturbance in the local magnetic field for the remainder of the route.

Figure 7.34 below shows the measured magnetic field strength from the calibrated mag-

netometer for the route. During the periods where the pedestrian’s heading is held relatively

constant on straightaways, the magnetic field strength is also relatively constant. However,

around the 240 seconds mark, the magnetic field strength becomes less consistent with the

expected trends due to a local disturbance. The remainder of this section will examine the

periods of GNSS availability and the subsystem’s performance of misalignment estimation

and rejection of faulty magnetometer measurements.
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Figure 7.33: Heading and GNSS Course comparison

Figure 7.34: Measured Magnetic Field Strength
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7.4.1 GNSS Constantly Available

The first scenario will examine the subsystem performance when GNSS is constantly

available. Without rejecting the disturbed magnetometer measurements, the misalignment

angle estimate would deviate from the converged value due to the effect of the magnetic

disturbance on the estimated heading. Figure 7.35 below shows the misalignment estimation

when disturbed magnetometer measurements are not rejected. After about 230 seconds,

the estimated misalignment angle has converged to about −17 degrees. From there, the

disturbed magnetometer measurements drive the misalignment estimate to about −13.7

degrees.

Figures 7.36 and 7.37 show the PDR position and heading solution when the misalign-

ment angle is held constant at −17 degrees. Using the first converged misalignment angle

estimate removes the errors in the heading estimates for the first three straightaways of the

route. However, once the pedestrian turns and begins traveling South on the fourth straight-

away, the misalignment estimate does not remove the errors in the heading estimates from

the disturbed magnetometer measurements for the remainder of the route.

Figure 7.35: Misalignment Estimation with Constant GNSS Availability
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Figure 7.36: PDR Path With Misalignment Angle (ψo = −17 degrees)

Figure 7.37: AHRS Heading and GNSS Course With Misalignment Angle (ψo = −17 de-

grees)
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With the inclusion of the magnetic fault detection, the misalignment angle should remain

constant, even after the magnetometer measurements have become corrupted. Recall from

Section 6.4.2, the conditions for detecting a disturbed magnetometer measurement require

the calculated NIS value to be below a threshold of 50, and the misalignment covariance

must be below 0.0001 rad2. Shown below in Figure 7.38 is the estimated misalignment

angle covariance crossing this specified threshold. Around 134 seconds into the route, the

estimated misalignment angle covariance drops below the required threshold and remains

below the threshold for the remainder of the route. From this point on, if the NIS value

is calculated to be above a threshold of 50, then a faulty magnetometer measurement is

detected and the magnetometer measurement is rejected for that epoch. Figure 7.39 shows

the calculated NIS value for each axis when none of the measurements are rejected. From

134 seconds and beyond, any axis that computes a NIS value greater than 50 will be rejected.

With this in mind, magnetometer measurements will start being rejected along the second

straightaway, rather than the fourth.

Figure 7.38: Misalignment Covariance with Constant GNSS Availability
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Figure 7.39: Calculated NIS value for each axis (NISTH = 50)

For constant GNSS availability, the results of the estimated heading are shown in Figure

7.40. With the magnetic fault detection algorithm implemented, the estimated heading

is much closer to the trends shown by the GNSS Course measurements during the route

and 9, 803 faulty magnetometer measurements were detected. However, during the final

straightaway from 300 seconds to 350 seconds, a considerable amount of misalignment is

still present. This is an indication that the magnetic disturbance is still not fully accounted

for.

Figure 7.41 shows the misalignment angle estimation for constant GNSS availability. For

the ideal case, the misalignment angle estimate would converge to a relatively constant value

and not deviate even in the presence of the magnetic disturbance.
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Figure 7.40: Heading Estimates and GNSS Course with Fault Detection

Figure 7.41: Misalignment Estimation With Magnetometer Fault Rejection
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To attempt to obtain the desired misalignment estimation response, a NIS threshold of 30

is examined. Lowering the NIS threshold indicates that magnetometer measurements with a

smaller amount of error with the estimated orientation from the gyroscope will be rejected.

The misalignment angle estimation covariance will remain unchanged at σ2
TH = 0.0001 rad2.

Figure 7.42 shows the results of the heading estimation with a NIS threshold of 30. With the

NIS threshold lowered to 30, the estimated heading matches the heading from GNSS Course

much closer than when the NIS threshold was set at 50 and 13, 507 faulty measurements

were detected.

Figure 7.42: Heading Estimates With Fault Detection (NISTH = 30)

Figure 7.43 shows the misalignment angle estimation when the NIS threshold is adjusted

to 30. The final misalignment angle estimate is calculated to be −17.5◦ with much less

deviation from the true misalignment angle to produce results much closer to the ideal

case. Due to the preferred performance of the magnetic fault detection when the NIS

threshold is set to 30, the remaining tests will use the new threshold for fault detection. The

next scenario will examine the same environmental condition when GNSS signal becomes

unavailable during the magnetic disturbance.
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Figure 7.43: Misalignment Estimation (NISTH = 30)

7.4.2 GNSS Loss During Magnetic Disturbance

The next scenario for the specified environmental condition simulates a loss of GNSS

signal during the period of the magnetic disturbance. The goal of this scenario is to evaluate

the system’s ability to reject faulty magnetometer measurements after the misalignment

angle has converged to the final estimate using GNSS. For this scenario the loss of GNSS

signal will occur at about 273 seconds into the route when the pedestrian is walking South

and the magnetic disturbance has already begun.

Shown below in Figures 7.44 and 7.45 are the heading estimation and misalignment

estimation results when a total loss of GNSS is simulated after 273 seconds.
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Figure 7.44: Heading Estimation with GNSS Loss at 273 seconds

Figure 7.45: Misalignment Estimation with GNSS Loss at 273 seconds
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The total number of detected magnetometer faults is 17, 356, which is almost 4, 000 more

than when GNSS was constantly available. The final misalignment angle estimate con-

verges to −17.03◦ and remains there for the remainder of the route. Again, this implemen-

tation uses a NIS threshold of 30, and a misalignment estimation covariance threshold of

0.0001 rad2. Recall from Section 6.4.2 that the additive process noise of the misalignment

angle is given by

wψ̇o
∼ N(0, 0.00001 rad2) (7.9)

Once the loss of GNSS is simulated the misalignment angle covariance grows by 1.2 ×

10−10 rad2 and still remains below the threshold. With this in mind, the rejection of the

magnetic disturbances is entirely dictated by the NIS condition. The final scenario will

simulate a loss of GNSS before the magnetic disturbance begins.

7.4.3 GNSS Loss Before Magnetic Disturbance

The final scenario for the specified environmental condition simulates a loss of GNSS

signal before the period of the magnetic disturbance. The goal of this scenario is to evaluate

the system’s ability to reject faulty magnetometer measurements before and after one of

the conditions is no longer satisfied. In this case, the loss of GNSS is simulated to occur

after 134 seconds into the route. This time was chosen because the misalignment angle

covariance drops below the threshold almost half a second prior to this epoch. This will

show the converged misalignment angle estimate near the covariance threshold.

Figures 7.46 and 7.47 show the heading estimation and misalignment estimation for a

loss of GNSS simulated at 134 seconds.
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Figure 7.46: Heading Estimation with GNSS Loss at 134 seconds

Figure 7.47: Misalignment Estimation with GNSS Loss at 134 seconds
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A total of 18, 295 faulty magnetometer measurements were detected and rejected, which is

almost 1, 000 more than when GNSS was cut after 273 seconds. The final misalignment

angle estimate was calculated to be −14.5◦. The true misalignment angle is closer to −17◦

indicating that the misalignment angle is not fully estimated when the covariance crosses

the specified threshold.
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Chapter 8

Summary and Conclusions

8.1 Summary

Pedestrian navigation has proved to come with challenges that many systems are not

subject to, or are more simplistic to solve. Pedestrians are often limited to the amount of

sizable hardware that can be carried, as well as the level of comfort desired for mounting

such hardware. While many navigation systems for ground, marine, and aerial vehicles can

improve the navigation solution with higher quality sensors and devices, the problem of

pedestrian navigation is often faced with sacrificing accuracy for comfort and vice versa.

Pedestrian’s are also faced with challenges of navigating in environments that other systems

are not always exposed to and require alternative methods of positioning. In the case of

GNSS, this positioning system does not always accommodate the modern environments

that a pedestrian would travel in (i.e. indoors, dense foliage, urban canyons, underground).

However, the improvements in modern technology of body worn inertial sensors offer an

alternative method of navigation through PDR.

PDR is faced with the challenge of initialization information and the unbounded growth

of errors over time. Position initialization can be obtained through GNSS receivers, while

orientation initialization can be obtained from gravity and magnetic field measurements of

the Earth. When attempting to mitigate the unbounded growth of errors over time, several

techniques were shown for incorporating knowledge of the pedestrian walking motion with

the anatomical location of inertial sensors. To better constrain the growth of errors over
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time, the modern methods of integrating PDR with GNSS in a loosely coupled framework

were presented. An evaluation of how the PDR solution performed after GNSS was no

longer available was also provided.

Several methods of extending the loosely coupled integration of GNSS and PDR for IMUs

mounted to the torso was introduced. The first extension of this integration presented a

novel step length estimation model along with a method of GNSS pseudo-measurements to

discretely measure the pedestrian’s step length for model parameter estimation. The next

extension presents a method of estimating the misalignment angle between the pedestrian

and the magnetometer with GNSS Course measurements. The final extension proposed a

method of detecting and rejecting magnetometer measurements that have become corrupted

by local disturbances in the magnetic field. The integration of these subsystem extensions

with GNSS position and velocity measurements in an overarching EKF framework was

introduced to attempt to mitigate errors that would be seen in a more traditional torso

mounted PDR navigation system.

The proposed GNSS/PDR-SD-EKF integration was then implemented on real-world

data sets that examined different periods of GNSS availability for specific environmental

scenarios to better analyze the performance of each subsystem. The step length estimation

with GNSS pseudo-measurements subsystem was evaluated by negating the effects of magne-

tometer misalignment and disturbances in the local magnetic field. Next, the misalignment

estimation subsystem was evaluated without the effects of local magnetic field disturbances.

Finally, the magnetometer fault detection and misalignment estimation subsystems were

evaluated for data that included a disturbance in the local magnetic field.

8.2 Conclusions

This thesis provides a detailed background of the current methods for PDR systems.

This focused on the classic PDR-INS methods for foot mounted IMU approaches, and the

more recent developments in PDR-SD methods for torso mounted IMU approaches. Both

of these approaches and methods were integrated with single-antenna GNSS receivers to

reveal their drawbacks. Next, proposed extensions to the loosely coupled GNSS/PDR-SD

approach were presented to account for additional sources of error that degrade the PDR

solution when GNSS is no longer available. These methods and extensions reduce errors that
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result from incorrect step length estimates, heading errors due to misalignment between the

inertial sensors and the pedestrian, and heading errors that result from faulty magnetometer

measurements.

The first environmental scenario showed that the proposed step length estimation model

using position-velocity pseudo-measurements may offer some improvements of step length

estimation for variable step sizes when the model leading coefficient is determined to be

much less than the following coefficient. However, the results from using velocity pseudo-

measurements show that this relationship is not valid and the ratio of coefficient values does

not determine the step length model performance. Additionally, no scenarios were examined

for when the leading coefficient is larger than the second coefficient. This scenario would

need to be examined to identify a relationship between the model coefficients.

The GNSS step length position-velocity pseudo-measurements provide very little ben-

efit for measuring discrete step lengths regardless of the pedestrian’s pace and step size.

The position-velocity pseudo-measurements are much noisier than the velocity pseudo-

measurements and had much fewer valid measurements. The velocity pseudo-measurements

are less noisy and are able to show changes in step length more effectively. With this in mind,

velocity pseudo-measurements should be considered as a reference step length measurement

for a desired model.

The next environmental test scenario proved the improvements of reducing heading errors

when misalignment between the magnetometer and the pedestrian is present. The use of

an average moving window of course measurements from GNSS velocity are able to quickly

determine the pedestrian’s true heading that can be utilized to remove any heading errors

as a result of hardware misalignment. Accounting for hardware misalignment allows for co-

located inertial sensors and magnetometers to be mounted in any position and orientation

on the pedestrian’s torso.

The last environmental scenario validated the performance of both the misalignment

estimation and magnetometer fault detection subsystems when misalignment and local dis-

turbances in the magnetic field are both present. Using the NIS metric to detect faulty

magnetometer measurements improved heading estimates when the magnetometer was cor-

rupted. However, the effectiveness of this algorithm is dependent on the ability to estimate

the hardware misalignment and requires that the pedestrian be initialized in a disturbance-

free area.
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8.3 Future Work

Below are potential areas of future work to improve upon the work presented in this

thesis. These potential areas include:

� RTK Corrections: Real-time kinematic (RTK) positioning provide corrections to

GNSS position and velocity measurements that result in a higher accuracy of GNSS

measurements. Incorporating RTK for GNSS step length pseudo-measurements may

offer improvements in step length model parameter estimation and better capture the

true discrete step lengths of the pedestrian. Likewise, the higher fidelity velocity mea-

surements may reduce the time to convergence of the misalignment angle estimation.

� Lower Quality IMUs: The real-world data sets used for implementation use MEMS

grade IMUs of much higher quality than that of common handheld devices like cell-

phones and smartwatches. An evaluation of the system performance using lower grade

IMUs would provide insight into the performance of the presented PDR-SD approach

when inertial measurements become less accurate.

� Magnetometer Fault Detection Conditions: The performance of the magne-

tometer fault detection algorithm is based on the estimation of the misalignment

angle, as well as the assumption that the local magnetic field is not disturbed dur-

ing initialization. Alternative, or additional, conditions for detecting local magnetic

disturbances should be examined. A potential method might be in the examination

of differentiated heading measurement from the magnetometer with z -axis angular

velocity measurements from a gyroscope.

� Magnetometer Yaw Rate: While disturbed magnetometer measurements are not

ideal when estimating the pedestrian’s heading, the discrete differentiation of magne-

tometer measurements may offer estimation of errors and biases in angular velocity

measurements from the gyroscope on the yaw axis. This could increase the stability

of estimating heading with dead reckoned gyroscope measurements during periods of

magnetic disturbances.

From the magnetic fault detection results shown in Section 7.4, the calibrated magne-

tometer measurements were differentiated along each axis. Figure 8.1 below shows a
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comparison of the resulting differentiated tri-axial magnetometer measurements dur-

ing the magnetic disturbance with the tri-axial angular velocity measurements during

the magnetic disturbance. The magnetic disturbance begins around 150 seconds into

the route and lasts around 200 seconds. In the bottom plot, the angular velocity

measurements along the z -axis drift downwards as the magnetic disturbance begins,

while the magnetometer measurements remain centered around 0 rad/s.

Figure 8.1: Gyroscope Measurements and Differentiated Magnetometer Measurements

Figure 8.2 below shows the estimates of the gyroscope biases along each axis over time.

In the bottom plot, the z -axis gyroscope bias fluctuates as the corrupted magnetometer

measurements update the orientation estimation. Utilizing the differentiated magne-

tometer measurements could potentially benefit the estimation of the gyroscope biases

and reduce gyroscope drift even when a magnetic field disturbance is present.
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Figure 8.2: Tri-Axial Gyroscope Bias Estimates
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