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Abstract

Mathematical models of various astrodynamical systems in the Solar system and identifi-

cation of solutions within these models are crucial for the burgeoning space exploration efforts

carried out by the government agencies and the private industry in the 21st century. Often

times, these mathematical models are highly nonlinear and coupled. Closed-form analytical

solutions to these systems seldom exist, thus forcing the human experts to use numerical meth-

ods to identify solutions. However, random initial-conditions or guesses to these numerical

methods do not yield desired orbital motion solutions. And hence the identification of good

initial-guesses became a problem in itself in this realm of engineering. There is a great need for

novel techniques to identify good initial guesses to these powerful numerical methods. With

this dissertation work, I leverage the virtual reality platform to help human operators derive

good initial guesses for trajectory design problems in the cislunar space. The real three dimen-

sional visualization of orbital motion in a given dynamical model on the VR platform is quite

powerful for human operators to leverage their natural intuitive abilities to design trajectories.

Within this dissertation work, I present four new techniques on the VR platform to help

the human operator identify potentially good initial guesses for the periodic orbit identification

problem in the circular restricted three-body model (CR3BP) of orbital motion for the trajectory

design in the cislunar space. The four techniques are validated with periodic orbit identification

of four types of Lagrange point periodic orbits, Lyapunov, halo, axial and vertical. All four orbit

types are successfully identified with the initial guesses derived using the four techniques.

I also implement an orbit-chain method application on the VR platform for low-thrust

transfer trajectory identification in the cislunar circular restricted three-body model (CR3BP).

The low-thrust transfer trajectory identification problem is much more complex because of

the size of the search space of the problem. This problem requires finding dynamically feasi-

ble paths that are also optimal given some criteria. The orbit-chain method allows for taking

advantage of naturally feasible paths of orbital motion in the initial guesses to help ease the
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computational cost of finding optimal transfer trajectories. This VR based orbit-chain method

is successfully validated with two example transfer trajectory identification problems.

Together, these VR based initial-guess derivation methods prove to be a feasible option

for preliminary trajectory design in the cislunar space.
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Chapter 1

Introduction

Over the past seventy five years, humans have made incredible strides in exploring the Solar

system, starting with Sputnik to the more recent test flight of Orion (Artemis-I) to carry humans

to the Moon. Both the government space programs (such as Artemis program from NASA),

and the burgeoning private industry are attempting to build the space infrastructure to explore

farther and farther away from the low-Earth orbit (LEO) and geostationary equatorial orbit

(GEO) regions to the Moon and beyond, in search of natural resources (asteroid mining), water,

and habitable moons of other planets.

1.1 Motivation

To explore the Solar system, humanity needs a better understanding of the astrodynamical

models for motion in these vast regions populated with myriad of planets, moons, and aster-

oids. Humanity has a good understanding of orbital motion near the Earth in the LEO and GEO

regions, since all but a few handful space missions serving humanity are in these regions. This

does not mean the prediction of orbital motion in these regions is any easier, far from it. How-

ever, prediction of orbital motion in the regions beyond LEO and GEO, even between Earth

and the Moon (the cislunar region), is exponentially harder. The orbital motion in the LEO

and GEO regions is typically modelled with the ideal two-body model combined with various

perturbations, such as the atmospheric drag in LEO and solar radiation pressure in GEO. The

two-body model is no longer sufficient to predict orbital motion in the cislunar region due to the

significant gravitational effect of the Moon. The orbital motion in the cislunar region is typi-

cally modelled using an idealized system of motion called the “Circular Restricted Three-Body

Problem (CR3BP)”. This mathematical model of orbital motion is highly nonlinear and coupled
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and thus suffers from an initial-guess problem. In any nonlinear system, the initial-guess to the

system drives the solutions and random initial-guesses do not typically yield desired motion.

The solutions are highly unpredictable in these models. The work presented in this dissertation

is motivated by the desire to design mechanisms to provide better initial-guesses to the nonlin-

ear coupled mathematical models used to predict orbital motion in the complex cislunar region.

Often times, the process of trajectory design and optimization in the complex astrodynamical

systems is driven by human experts employing intuition and insight gained from years of ex-

perience in the field. Thus, the current work is also motivated to leverage human intuition and

insight into the problem of orbital trajectory design and optimization process in the cislunar

region.

1.2 Objectives

The orbital motion in the cislunar region is typically modelled with the CR3BP model. There

are good foundations for understanding and predicting orbital motion in this model from signifi-

cant contributions of various scholars. Various families of cislunar periodic orbits are identified

in literature. However, the process of identifying initial-guesses that yield either desired pe-

riodic orbits or orbital transfer trajectories in the CR3BP model is not standardized. Human

experts typically start with two-body orbits and convert them to the CR3BP model, or linear

approximations of CR3BP motion and apply differential corrections to achieve desired orbital

structures. There is no guarantee that this approach will yield required solutions. The process is

often iterative and computationally intensive. There is a lot of room for improvements in terms

of providing better initial-guess constructing mechanisms. The current work aims to improve

the initial-guess construction process with the hypotheses,

1. Human intuition and insight in the trajectory design and optimization process provides

better initial-guesses. More specifically, visualization of orbital motion structures in real

three dimensions is highly insightful to the human user designing trajectories for a space

mission.
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2. The initial-guess construction process can be simplified and expedited in the real three

dimensional space provided by a virtual reality (VR) platform. The initial-guess con-

struction for both periodic orbits and transfer trajectories can be more effective on a

virtual reality platform.

3. A coherent solution approach to the nonlinear cislunar CR3BP model can be constructed

and demonstrated on a virtual reality platform. The approach calls for leveraging proven

trajectory targeting and optimization techniques to identify solutions from good initial-

guesses constructed on the virtual reality platform.

1.3 Previous Contributions

1.3.1 The Virtual Reality Platform for Trajectory Design

The usage of a virtual reality platform for trajectory design and optimization is in nascent

stages. The first known mention of the usage of modern virtual reality platform for trajectory

design comes from Mathur [3] in 2015. Mathur developed the mechanisms to control param-

eters that dictate orbital motion in various NASA trajectory design tools such as GMAT [5]

and Copernicus [4] using 3D desktop widgets built into these tools. However, Mathur did not

extend the development of this concept to a virtual reality as of this writing based on a public

literature search. In 2018, Stuart et al. [2] experimented with the virtual reality platform to help

ease cognitive load for human users of various complex trajectory design phases and processes

in the realm of space mission design. Stuart et al. demonstrated how the orbital motion changes

for an interplanetary trajectory when certain control parameters for motion are changed in the

virtual reality platform. However, the development of the concept did not proceed further as

of this writing based on a public literature search. The VR platform makes visualization of

motion easier than a 2D desktop computer. It is especially powerful for enforcing geomet-

ric constraints on motion and the work in this dissertation leverages the platform to make the

initial-guess construction process simpler and more human-friendly.
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1.3.2 The Cislunar Dynamics

Humanity’s interest in astronomy and astrodynamics is ancient. Various calendars around the

world have been built around the motion of the Sun, the Moon and other visible objects in

the skies. The modern laws governing celestial motion were first postulated by Johann Kepler

between 1609 and 1619, during which he declared the three laws of planetary motion from

his mathematical fit to the observations of planets collected by Tycho Brahe [1]. With the

publication of the seminal work in 1687, the Principia, Sir Isaac Newton ushered in an era of

discoveries that expedited humanity’s understanding of astrodynamics governing the motion

of celestial objects in the Solar system and beyond [6]. Newton’s universal law of gravitation

initiated the long search for analytical solutions to the motion of celestial objects. In 1722,

Leonard Euler reduced the complex N-Body motion to the “Circular Restricted Three-Body

Problem (CR3BP)” [7]. With this reduction he also introduced an innovative notion of viewing

the problem space from a non-inertial rotating frame. This new model allowed for a drastic

increase in the understanding of motion in the cislunar region. In 1772, Joseph-Louis Lagrange

discovered the two planar triangular gravitational equilibrium points, the same year that Euler

discovered the three colinear gravitational equilibrium points in the CR3BP. In 1836, a single

integral of motion for CR3BP was discovered by Carl Gustav Jacob Jacobi [8]. Now known as

the Jacobi constant or integral, this led to another powerful discovery of allowable regions of

motion called the Zero Velocity Surfaces, by Hill in 1878 [9]. In 1899, French scientist Henri

Poincaré proved conclusively that no additional integrals of motion exist in CR3BP [10]. In

1881, the same Henri Poincaré devised a powerful tool for visualizing the complex solution

space of CR3BP now called “the Poincaré map” [8]. However, to this day, the CR3BP prob-

lem has no known fully closed-form analytical solutions and hence human experts resort to

numerical methods to explore and derive desired solutions in this problem space.

1.3.3 Cislunar Periodic Orbits

Periodic orbits are bounded solutions in the given dynamical model. Periodic orbits are an

important set of solutions for CR3BP model, because they allow for predictable motion in the
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system and are possible candidates for various space missions in the cislunar region. There

are no universally standard set of procedures available in the field to derive desired periodic

motion. In 1881, Henri Poincaré proved the existence infinite number of periodic orbits in the

CR3BP model. Since then many scientists and researchers have attempted to identify families

of periodic orbits in CR3BP. The dawn of the new computing era in the twentieth century ush-

ered in the discovery of many families of periodic orbits. Grebow [11] describes the numerical

methods that can identify a wide variety of related families of periodic orbits in an application

for lunar south pole coverage. Guzzetti et al. [12] constructed a rapid interactive catalog of

families of periodic and quasi-periodic orbits of CR3BP. Many experts in the academia and

industry are currently in pursuit of new periodic orbit families. Zimovan-Spreen [13] from

Purdue University most recently published period doubling and period multiplying families of

halo periodic orbits. Despite these efforts, identifying the initial-state for a predictable periodic

motion in CR3BP remains a difficult problem.

1.3.4 Cislunar Orbital Transfers

Orbital transfers are often required to get to a desired intermediate or final destination in various

space missions. There are two primary kinds of orbital transfers, high-thrust and low-thrust.

Typically in high thrust transfers, the spacecraft thruster(s) are equipped with imparting a large

near instantaneous change to the acceleration of the spacecraft. Hence, the high thrust or-

bital transfers can be modelled with instantaneous thrust maneuvers. Typically, human space

missions are equipped with the high thrust thrusters and carry out high-thrust impulsive maneu-

vers. In contrast, in low-thrust transfers, the spacecraft thruster(s) can only impart sub-Newton

thrust instantaneously while using very little fuel. As a result of this low-thrust capacity, more

low-thrust maneuvers over a longer time are needed to achieve the same desired change in ac-

celeration of the spacecraft as would from a high thrust capable thrusters. Typically low-thrust

transfers are not suitable for human missions and are frequently used to transfer cargo to a des-

tination. Low-thrust orbital transfers are more dynamically challenging because of the complex

search space for solutions and are a focus of this dissertation.
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In contrast to the theory of periodic orbits, the theory for low-thrust orbital transfers is not

as developed. Typically low-thrust orbital transfers in CR3BP are identified solely using numer-

ical methods. There are two different numerical approaches to the low-thrust orbital transfer

problem, indirect and direct. The indirect method uses the calculus of variations approach and

requires analytical derivatives for CR3BP equations of motion. The direct method discretizes

the transfer trajectory into segments. In the collocation-based direct method the trajectory seg-

ments are represented using known orthogonal polynomials, while enforcing the CR3BP dy-

namics along the polynomial solutions. Shooting methods (Single and Multiple-Shooting) are

also examples of direct methods. The direct method does not strictly need analytical derivatives

for CR3BP equations of motion. In this dissertation, a direct method called “the generalized

collocation method” is employed.

The orbital transfer problem is much harder to address than the identification of periodic

orbits in CR3BP, mainly due to the difficulty in identifying good initial-guesses to the transfer

solutions. In the identification orbital transfers, one has to first contend with identifying feasible

paths for motion in the CR3BP dynamics, and then attempt to optimize either fuel-consumption

or time-of-flight or both along these feasible paths. One effective method found in literature

for constructing good initial-guesses to the transfer problem is “the orbit-chain method”. The

orbit-chain method by definition combines a chain of feasible orbital paths in a given dynamical

system to form a global path from a source to a destination. The patched-conic method [1] is an

example of the orbit-chain method. The orbit-chain method in the CR3BP system is employed

to stitch together periodic orbits and invariant manifolds (natural feasible paths emanating from

and to a periodic orbit) to construct an orbital transfer [14]. Koon et al. [14] identified orbit-

chains composed of heteroclinic cycles and homoclinic orbits that reveal global flow of motion

in the CR3BP. Ross and Lo [15] describe the existence of a vast array of invariant manifold

tubes emanating from three-body systems throughout the solar system that, when linked to-

gether, form an “Interplanetary Superhighway”. Lo and Parker [16] demonstrated a method

to chain LPOs (Low-Prograde-Orbits) and their invariant manifolds to form new complex pe-

riodic orbits. Parker et al. [17] generalized this orbit-chain method for identifying feasible

paths of orbital motion. The orbit-chain method used in the current work is borrowed from
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Pritchett [19]. The orbit-chain method as described by Pritchett requires visual inspection of

energy-versus-time-of-flight plots and the corresponding orbits by a human user to compose a

good initial-guess to an orbital transfer solution. In the current work, a virtual reality platform

is employed to ease the burden of visualization in the orbit-chain method on 2D desktops to the

full 3D space of motion.

1.3.5 Differential Correction (DC) Methods for Trajectory Design

Differential Correction is a process that leverages the gradients of mathematical conditions/-

constraints for solutions with respect to the input variables to provide mathematically feasible

solutions for a given system of differential equations. Differential Correction goes as far back

as Newton’s Principia. Often, in spacecraft trajectory design problem domain, one particu-

lar type of differential calculus problems arises, “the two-point boundary-value problem” in

case of the periodic orbit and orbital transfer trajectory identification. The two-point boundary-

value problems can be defined as a set of differential equations together with boundary con-

ditions/constraints for solutions of the equations. Typically, trajectory design problems have

constraints on starting and ending points of the transfer, which are modelled as the bound-

ary conditions/constraints to the system of differential equations governing the orbital motion.

Several methods exist in literature that leverage differential corrections, chief among them are

called “the shooting methods”. Shooting methods iteratively target boundary conditions until

a desired tolerance is met for achieving such boundary conditions, while solving the system

of differential equations with a set of initial conditions. The initial conditions in the iterative

process are updated by making a correction to the previous initial conditions along the path

of a slope that minimizes overall error for boundary conditions. Researchers Keller [20] and

Osborne [21] presented shooting methods in which the solutions to two-point boundary value

problems are produced by integrating appropriate initial value problems. They also presented

limitations of shooting methods, as well as numerically stable treatments for these limitations

in 1968 and 1969 respectively. Since then, shooting methods became a staple of solution meth-

ods for solving nonlinear systems of equations for which no known analytical solutions exist.

The advent of faster computing technologies resulted in employment of the shooting methods
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in solving complex spacecraft trajectory design problems. In this dissertation, a free-variable-

constraint method presented by Pavlak [22] is utilized for trajectory design problems.

1.3.6 Generalized Collocation for Trajectory Optimization

Typically, the spacecraft trajectory design problems involve integrating complex nonlinear sys-

tem of differential equations. However, constants of integration in multi-body orbital models,

such as the cislunar model, are notoriously hard to come by, in fact there is only one con-

stant of motion ever discovered in the CR3BP model, making it very hard to find solutions by

employing direct integration of the system nonlinear differential equations of CR3BP model.

Collocation is a technique where the unknown solution function of a given system of equations

is approximated using a polynomial of degree, N . Collocation by definition is an implicit inte-

gration method, i.e., a future state of the system of equations is part of the integration/algebraic

formula to solve for the unknown solution function, in addition to the past or current state. Im-

plicit integration formulae are typically solved iteratively with numerical root finding methods,

such as the Newton methods. The generalized collocation method [24] emphasizes the selec-

tion of a subset of roots of the basis orthogonal polynomial that is approximating the solution.

This primary subset of roots are used to identify the coefficients of the said polynomial. The

remaining subset of roots are used to test for conformity with the system of equations govern-

ing the solution space of the problem. In the generalized collocation [24] method, a Newton

method is employed to find the coefficients of the orthogonal polynomial while reducing the

conformity error based on the driving system of equations for the problem. Typically in liter-

ature [25, 18, 19], the solution to the polynomial coefficients are identified from a Nonlinear

Programming Problem (NLP) formulated from the original problem. In this dissertation, I em-

ployed Grebow [25] and Pritchett’s [18, 19] formulation of the generalized collocation method.

The generalized collocation method is adapted to, 1) identify periodic orbit solutions, and 2)

fuel-optimal low-thrust transfer trajectories.
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1.4 Current Work

In this dissertation, novel techniques to derive initial-guesses for the solutions to periodic orbit

and transfer trajectory identification problems in the cislunar dynamics are hypothesized and

realized. This document presents four such novel techniques for periodic orbit identification

developed leveraging the VR platform. The document also presents an implementation of the

orbit-chain method [19] on the VR platform for transfer trajectory identification. The document

is organized as follows,

• Chapter 2: The Cislunar Dynamical System.

The primary dynamical model employed in this work is presented in this chapter, with

the setup starting from the two-body dynamics, leading up to the CR3BP dynamics.

• Chapter 3: Trajectory Design and Optimization Techniques in the Cislunar System.

The primary numerical methods for periodic orbit targeting and transfer trajectory op-

timization are presented in this chapter. The setup for this chapter follows a structure

starting with fundamental tools needed for the numerical algorithms, followed by the

shooting methods and the generalized collocation method.

• Chapter 4: Trajectory Design and Optimization Techniques on the Virtual Reality Plat-

form.

The novel techniques devised in this work for facilitating good initial-guesses for periodic

orbit and transfer trajectory identification techniques on the VR platform are described

in this chapter.

• Chapter 5: Periodic Orbit Identification on the Virtual Reality Platform.

The verification results from all the periodic orbit techniques described in Chapter 4 are

presented in this chapter.

• Chapter 6: Transfer Trajectory Identification on the Virtual Reality Platform.

The verification results for the transfer trajectory identification technique described in

Chapter. 4 are presented in this chapter.
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• Chapter 7: Conclusion.

A set of conclusions from the results of various techniques and future work recommen-

dations are described in this chapter.
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Chapter 2

The Cislunar Dynamical System

Mathematical models are critical for prediction of orbital motion. The mathematical description

of the cislunar dynamical system begins with the mathematical model of the general N-Body

model using Newtonian mechanics. The ideal two-body and restricted three-body models are

then formulated with assumptions from certain known or assumed conditions of motion. Rel-

evant particular solutions to these idealized models are presented along with some important

characteristics and artifacts of orbital motion.

2.1 The N-Body Model

One of the most general model of the motion of a celestial body is the N-Body model. Any ce-

lestial body in space experiences gravitational effects of the other celestial bodies in the system

in which it resides. In his seminal publication, Philosophae Naturalis Principae Mathematica,

Sir Isaac Newton introduced the this Universal Law of Gravitation, stated as follows,

Fg = −G̃Mm

r3
r⃗ (2.1)

In this equation, Fg is the force experienced by body with mass m due to the gravitational

pull of a body with mass M . And r⃗ and r are the distance vector and the distance between

the two bodies. G̃ is the universal gravitational constant. Note that gravitational force acts in

the opposite direction of motion of a celestial body, pulling it towards the body exerting the

gravitational force. Inherent in equation 2.1 is the assumption that the both the bodies in the

equation are spherically symmetric.
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Figure 2.1 is showing a notional N-Body system in an inertial frame. The barycenter of

the N bodies in this system is represented by the vector, 0̂, and also represents the origin of the

inertial frame. Vectors r⃗1 through r⃗n are the position vectors of the N bodies with respect to

the barycenter. However, often we need to obtain the position vector of a spacecraft or another

celestial body with respect to a central celestial body such as the Earth, Mars or the Moon.

In this figure, the position vector r⃗ij represents the position vector of body j with respect to a

central body, i.

Figure 2.1: An N-Body System in an Inertial Frame

To derive the equations of motion for a spacecraft with respect to a central body, i, under

the influence of various celestial bodies in the Solar system in an inertial frame, we first need

to introduce the notations used to represent the position vectors of the spacecraft and various

other celestial bodies with respect to that central body, i. Figure 2.2 is showing the position

vectors of other celestial bodies and the spacecraft with respect to the central body, i. It is
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also showing the position vectors of the spacecraft with respect to other celestial bodies in the

N-Body system in an inertial frame.

Figure 2.2: A Representation of Position Vectors with respect to a Central Body, i, in an Inertial
Frame

Now we have the position vector of the spacecraft with respect to a central body, i, defined

as,

r⃗isc = r⃗sc − r⃗i (2.2)

and the position vector any arbitrary third celestial body, j, with respect to a central body, i,

defined as,

r⃗ij = r⃗j − r⃗i (2.3)

We also have the position vector of spacecraft with respect to any arbitrary third celestial body,

j, defined as,

r⃗jsc = r⃗sc − r⃗j (2.4)
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In an inertial frame, the acceleration of the spacecraft with respect to the central body, i,

can be represented as,

¨⃗risc = ¨⃗rsc − ¨⃗ri (2.5)

When the Newton’s universal law of gravitation shown in equation (2.1) and Newton’s second

law of motion are applied to the motion of the celestial body, i in the inertial frame, we get,

mi
¨⃗ri = −G̃mi

n∑
j=1,j ̸=i

mj

r3ji
r⃗ji

So the acceleration vector for the celestial body, i in the inertial frame can be represented as,

¨⃗ri = −G̃
n∑

j=1,j ̸=i

mj

r3ji
r⃗ji (2.6)

Similarly, the acceleration vector for the spacecraft in the inertial frame can be represented as,

¨⃗rsc = −G̃
n∑

j=1

mj

r3jsc
r⃗jsc (2.7)

Substituting equations (2.6) and (2.7) into equation (2.5), we get,

¨⃗risc = −G̃

n∑
j=1

mj

r3jsc
r⃗jsc + G̃

n∑
j=1,j ̸=i

mj

r3ji
r⃗ji

When all the vectors are represented with respect to the central body, i, this equation can be

rearranged as,

¨⃗risc = −G̃mi
r⃗isc
r3isc

+ G̃mj

n∑
j=1,j ̸=i

(
(r⃗ij − r⃗isc)

||r⃗ij − r⃗isc||3
− r⃗ij

r3ij
) (2.8)

Equation (2.8) does not have a known closed form analytical solution. Hence, there are var-

ious simplifications of this equation under some known conditions or assumptions for orbital

motion. In the next two sections, two such simplified models are presented.
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2.2 The Two-Body Model

The two-body model represents motion of a spacecraft with respect to only one single central

body, such as the Earth, Mars or the Moon, ignoring gravitational effects and other perturbing

effects of the remaining bodies in the Solar system. The Equation (2.8), when simplified to one

central body, i, becomes,

¨⃗risc = −G̃mi
r⃗isc
r3isc

(2.9)

Inherent in this representation of two body motion are two assumptions, 1) the central attracting

body, i, is spherically symmetric, 2) There are no external or internal forces acting on the

spacecraft other than the gravity of the central body, i.

2.2.1 Constants of Two-Body Motion

Equation (2.9) can be rewritten as follows,

¨⃗risc +
µ̃i

r3isc
r⃗isc = 0 (2.10)

Here, µ̃i = G̃mi, represents the gravitational parameter of the central body, i. There are three

constants of two-body motion that are conserved throughout orbital motion in this regime. They

are the specific mechanical energy and the specific angular momentum and linear momentum

of the center of mass of the two-body system.
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Specific Mechanical Energy: A Derivation [1]

Multiplying equation (2.10) by ˙⃗risc gives,

˙⃗risc.¨⃗risc + ˙⃗risc.
µ̃i

r3isc
r⃗isc = 0

Using the notation that v⃗ = ˙⃗risc and the fact that in general for any vector the dot product

is equal to a scalar, we get,

vv̇ +
µ̃i

r3isc
riscṙisc = 0

vv̇ +
µ̃i

r2isc
ṙisc = 0

We can use the following mathematical facts to further simplify this equation,

d

dt
(
v2

2
) = vv̇

d

dt
(− µ̃i

risc
) =

µ̃i

r2isc
ṙisc

The simplified equation is,

d

dt
(
v2

2
) +

d

dt
(− µ̃i

risc
) = 0

This implies, that the terms in the brackets are constant, yielding the equation for a

constant motion called the “Specific Mechanical Energy”,

E =
v2isc
2

− µ̃i

risc
(2.11)
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Specific Angular Momentum: A Derivation [1]

Cross multiplying equation (2.10) by r⃗isc yields,

r⃗isc × ¨⃗risc + r⃗isc ×
µ̃i

r3isc
r⃗isc = 0

Since self vector product of any vector is the zero vector, the second term in this equation

vanishes to yield,

r⃗isc × ¨⃗risc = 0

This can be represented using vector calculus as,

d

dt
(r⃗isc × ˙⃗risc) = 0

Hence the quantity in the bracket of this derivative is a constant, called the “Specific

Angular Momentum”, represented as follows,

h⃗isc = r⃗isc × v⃗isc (2.12)

2.2.2 Two-Body Trajectories (Keplerian Motion)

The equation for a two-body trajectory is given as [1],

r =
p

1 + e cos ν
(2.13)

In this equation, p is called the “semi-latus rectum”, e is the “eccentricity” and ν is the angular

position of the spacecraft along the trajectory called “true anomaly”. This two-body motion

in general is also referred to as the “Keplerian motion” after the German astronomer Johannes

Kepler who postulated the famous three laws for planetary motion. From this equation of a

two-body trajectory, which incidentally also represents a conic section, we can conclude that,

1. Conic sections (circle, ellipse, parabola and hyperbola) are the only possible shapes and

paths possible in equations governing the ideal two-body motion.
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2. The primary focus of the conic section representing the motion of the spacecraft is at the

center of the central body, i.

3. The specific mechanical energy (sum of potential and kinetic energies) of the spacecraft

remains constant throughout conic section representing the motion of the spacecraft, al-

beit with and exchange between the two forms of energy throughout the conic section.

4. The orbital plane that contains the conic section representing the spacecraft motion re-

mains fixed in an inertial frame centered on the center of the central body, i.

5. The specific angular momentum of the spacecraft about central body, i, remains constant

throughout the conic section, albeit with position and velocity changing along with the

flight path angle to keep the quantity constant throughout the conic section.

Other important definitions for the two-body motion are the expressions of specific mechanical

energy, orbital time period and the mean motion of the spacecraft respectively in terms of the

semi-major axis, a, of the conic section representing the motion of the spacecraft,

E = − µ̃

2a
(2.14)

T = 2π

√
a3

µ̃
(2.15)

N =

√
µ̃

a3
(2.16)

The two-body model is deemed adequate to represent motion of a spacecraft for low-Earth to

up to geostationary equatorial orbital (GEO) distances. The model is insufficient to represent

motion in the region beyond GEO, since the gravity of the Moon has significant impact on the

motion of a spacecraft in this region.

2.3 The Circular Restricted Three-Body Model

The sphere-of-influence of the Moon on the motion of any spacecraft or celestial object in the

Earth-Moon region is considered to be ten times the GEO distance (approximately 42165 km).
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In this sphere-of-influence, the gravitational effect of the Moon makes the two-body model of

orbital motion invalid. The motion in this region is not Keplerian, hence the orbits in this region

are no longer the predictable conic sections. To model the motion in this region, we need to

include the gravitational effect of the Moon in the orbital motion model. Although, the orbit

of the Moon around the Earth is slightly eccentric, we can take an instantaneous snapshot of

the Moon’s position around the Earth and approximate a circle for Moon’s motion with that

instantaneous radius. The approach taken to model orbital motion in the Earth-Moon system is

as follows,

1. Approximate the Moon’s orbit around the Earth to be a circle with an instantaneous radius

of the Moon around the Earth.

2. Assume that Earth and Moon are perfect spheres.

3. Assume that the body or spacecraft for which the orbital motion is modelled is infinites-

imally small when compared to the Earth and the Moon. It means that this third body or

spacecraft does not influence the motion of Earth or the Moon.

These assumptions allow us to model orbital motion in the Earth-Moon region with what is de-

fined as the “Circular Restricted Three-Body Model/Problem (CR3BP)”. The next few sections

illustrate the derivation of equations governing this model and resulting important characteris-

tics governing motion within this model.

2.3.1 The Equations of CR3BP Motion

Figure 2.3 is showing a model of the restricted three-body motion. There are two large primary

bodies, P1, P2, and a small third body, P3, that could represent a spacecraft. The inertial

coordinate system of the canonical N-Body model is represented by the capital letters, X̂ and

Ŷ . There is a new coordinate system centered at the barycenter of the two large primary bodies,

called the “rotating coordinate system”. This system is represented by the small letters, x̂ and

ŷ and is typically rotated in the inertial system by an angle of θ. The x-axis of this rotating

system is the line joining the two large primaries in the inertial system. The z-axis is aligned
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with the angular momentum vector of the second primary’s orbit around the first primary, and

the y-axis completes the orthogonal triad of the system. The position vectors of the three bodies

in the inertial system are represented by the vectors, D⃗1, D⃗2 and P⃗ respectively. The position

vectors of the third body with respect to the two large primaries are represented by the vectors,

D⃗ and R⃗ respectively. Incidentally all these vectors are the same vectors in the rotating system

as well, because of the definition of the rotating system.

Figure 2.3: A Model of the Restricted Three Body Motion

The derivation of the equations of the CR3BP motion in this rotating frame is presented us-

ing the Newtonian mechanics. The Newtonian mechanics are valid only in an inertial frame/sys-

tem. Using Newton’s second law of motion and the universal gravitational law, we can express

the motion of the third body in the inertial system as,

mI
3
¨⃗
P = −G̃m1m3

D3
D⃗ − G̃m2m3

R3
R⃗

I ¨⃗P = −G̃m1

D3
D⃗ − G̃m2

R3
R⃗

(2.17)
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The quantities in the equation (2.17) are highly varying in magnitude, i.e. they are not all in the

same order of magnitude. To make the problem more tractable numerically, all the quantities

in this equation are normalized using the following characteristic quantities. Several charac-

teristic quantities are defined, one for each type of fundamental measurement encountered in

the differential equations. Distance is nondimensionalized using the characteristic length, l⋆,

defined as the constant distance between the primaries.

l⋆ = D1 +D2 (2.18)

where Di is the scalar distance from the barycenter to the primary Pi. Likewise, the

characteristic mass, m⋆, is defined as the sum of the masses of P1 and P2, i.e.,

m⋆ = m1 +m2 (2.19)

The characteristic time is defined as follows:

t⋆ =

√
l⋆3

G̃m⋆
(2.20)

The characteristic time quantity is defined such that the nondimensional mean motion, n,

of P1 and P2 is equal to unity. The nondimensional mean motion is defined as:

n = Nt⋆ =

√
G̃m⋆

l⋆3

√
l⋆3

G̃m⋆
= 1 (2.21)

where N is the dimensional mean motion of P2 in it’s Keplerian orbit around P1. The

period, P, of a circular orbit is related to mean motion as P = 2π
n

, thus the nondimensional

period of the primaries in the CR3BP is 2π.

With the characteristic quantities defined, following nondimensional parameters are de-

fined and derived to simplify the equations of motion for CR3BP.

The nondimensional mass of P2 or mass parameter, µ, is defined using the characteristic

mass,
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µ =
m2

m⋆
(2.22)

In addition to simplifying the equations of motion, the mass ratio, µ, is useful to char-

acterize a CR3BP system. The Earth-Moon system, the primary focus of this investigation,

is represented in terms of a mass ratio µ = 0.01215, which is relatively large compared to

other CR3BP systems, for examples, Saturn-Titan where µ = 0.000237 and Sun-Jupiter with

µ = 0.000954. This difference in µ implies that dynamic features that appear in the Earth-

Moon system may not appear in lower mass ratio systems and vice versa.

Additionally, the nondimensional mass of P1 is defined as,

m1 +m2 = m⋆ = m1 + µm⋆

=⇒ 1− µ =
m1

m⋆

(2.23)

The nondimensional time, τ , is defined as,

τ =
t

t⋆
(2.24)

Here, any derivative with respect to dimensional time, t is converted to derivative with

respect to τ as follows:

dt = t⋆dτ (2.25)

For example, the rotation rate of the rotating frame, IWR is nondimensionalized as fol-

lows:
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IWR =
dθ

dt
Ẑ = NẐ

IWR =
dθ

t⋆dτ
ẑ = Nẑ

IWR =
dθ

dτ
ẑ = Nt⋆ẑ

IWR =
dθ

dτ
ẑ = nẑ

(2.26)

The goal is to derive simplified equations of motion for the CR3BP using nondimensional

quantities from equation (2.17). Non-dimensional vectors in CR3BP are as follow:

ρ⃗ =
P⃗

l⋆

r⃗ =
R⃗

l⋆

d⃗ =
D⃗

l⋆

(2.27)
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Kinematics of CR3BP Motion: A Derivation

The nondimensional position vector for the third body in CR3BP in the rotating frame

components is defined as,

ρ⃗ = xx̂+ yŷ + zẑ (2.28)

We know the basic kinematic equation (BKE) as,

I ˙⃗ρ =
Rdρ⃗

dτ
+ IWR × ρ⃗ (2.29)

Using the BKE, we get the velocity vector in the inertial system as:

Rdρ⃗

dτ
= ẋx̂+ ẏŷ + żẑ

I ˙⃗ρ = (ẋx̂+ ẏŷ + żẑ) + [nẑ × (xx̂+ yŷ + zẑ)]

I ˙⃗ρ = (ẋx̂+ ẏŷ + żẑ) + [nẑ × xx̂+ nẑ × yŷ + nẑ × zẑ]

I ˙⃗ρ = (ẋx̂+ ẏŷ + żẑ) + [nxŷ − nyx̂+ nz(0))]

In the rotating system coordinates:

I ˙⃗ρ = (ẋ− ny)x̂+ (ẏ + nx)ŷ + żẑ (2.30)
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Kinematics of CR3BP Motion: Derivation Continued...

Once again using the BKE, the derivation for the acceleration vector in the inertial frame

is as follows,

I ¨⃗ρ =
Rd2ρ⃗

dτ 2
+ 2IWR ×

Rdρ⃗

dτ
+ IWR × IWR × ρ⃗

I ¨⃗ρ = (ẍx̂+ ÿŷ + z̈ẑ) + 2[nẑ × ẋx̂+ nẑ × ẏŷ + nẑ × żẑ]

+[nẑ × (nẑ × xx̂+ nẑ × yŷ + nẑ × zẑ)]

I ¨⃗ρ = (ẍx̂+ ÿŷ + z̈ẑ) + 2[nẋŷ − nẏx̂+ nż(0)] + [nẑ × (nxŷ − nyx̂+ nz(0))]

I ¨⃗ρ = (ẍx̂+ ÿŷ + z̈ẑ) + 2[nẋŷ − nẏx̂] + [−n2xx̂− n2yŷ]

Thus the inertial acceleration vector in the rotating frame coordinates can be stated as:

I ¨⃗ρ = (ẍ− 2nẏ − n2x)x̂+ (ÿ + 2nẋ− n2y)ŷ + z̈ẑ (2.31)
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Kinetics of CR3BP Motion: A Derivation

I ¨⃗P = −G̃m1

D3
D⃗ − G̃m2

R3
R⃗

IdP⃗

dt
=

l⋆Idρ⃗

t⋆dτ
Id2P⃗

dt2
=

l⋆Id2ρ⃗

t⋆2dτ 2

t⋆2 =
l⋆3

G̃m⋆

l⋆

t⋆2

Id2ρ

dτ 2
= −G̃[

(1− µ)m⋆

(dl⋆)3
d⃗l⋆ +

µm⋆

(rl⋆)3
r⃗l⋆]

l⋆G̃m⋆

l⋆3
I ρ̈ = −G̃m⋆l⋆

l⋆3
[
(1− µ)

d3
d⃗+

µ

r3
r⃗]

We get the following expression for the right hand side of equation (2.17) in nondimen-

sional quantities as,

I ρ̈ = −(1− µ)

d3
d⃗− µ

r3
r⃗ (2.32)

Vector expressions for d⃗ and r⃗ in the rotating frame are,

d⃗ = (x+ µ)x̂+ yŷ + zẑ

r⃗ = (x− 1 + µ)x̂+ yŷ + zẑ

(2.33)

Now, by substituting these into the equation (2.32), we get the following:

I ρ̈ = −(1− µ)

d3
[(x+ µ)x̂+ yŷ + zẑ]− µ

r3
[(x− 1 + µ)x̂+ yŷ + zẑ]

I ρ̈ = −(1− µ)(x+ µ)x̂+ (1− µ)yŷ + (1− µ)zẑ

d3
− µ(x− 1 + µ)x̂+ µyŷ + µzẑ

r3

(2.34)
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Kinetics of CR3BP Motion: Derivation Continued...

Finally, we get the following equation for the right hand side in terms of 3 position

components in the rotating frame as,

I ρ̈ =

[
−(1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3

]
x̂+[

−(1− µ)y

r3
− µy

r3

]
ŷ +

[
−(1− µ)z

d3
− µz

r3

]
ẑ

(2.35)

Substituting equation (2.35) into equation (2.31) we get the following equations of motion

for the CR3BP expressed in the rotating frame coordinates:

ẍ− 2nẏ − n2x = −(1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3

ÿ + 2nẋ− n2y = −(1− µ)y

d3
− µy

r3

z̈ = −(1− µ)z

d3
− µz

r3

(2.36)

Equations (2.36) are expressed in rotating coordinates and the scalar acceleration and ve-

locity terms are evaluated relative to the rotating coordinate frame. The definitions of d and r in

equations (2.33) indicate that their magnitudes reflect the relative distance from each primary

to P3.

The system of equations (2.36) are nonlinear and coupled. There are no known closed

form analytical solutions for this system of equations. However, there are some solutions to

this system of equations under some known conditions. Specifically, there are known gravi-

tational equilibrium points in this system and there are known families of solutions of orbital

motion about these gravitational equilibrium points. To predict motion in the CR3BP system,

typically, the equilibrium point solutions are derived and are then converted to the inertial sys-

tem solutions for further analysis to assess the suitability for a spacecraft mission. It is also

important to note that the CR3BP system is time-independent, since time does not explicitly

appear in the system of equations governing the motion. The CR3BP motion solution structures

become time-dependent when converted to an inertial system.
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2.3.2 The Pseudo-Potential Function

Typically in Newtonian mechanics, the acceleration component due to the potential energy is

derived by taking the derivative of a gravitational potential function. In the CR3BP model,

there is no such gravitational potential function inherently available and the rotating-frame of

the CR3BP is not an inertial frame. So, as a substitute for a real gravitational potential function

in the rotating-frame, we identify a pseudo-potential function, the derivative of which provides

acceleration components based purely on the position components.

U⋆ =
1− µ

d
+

µ

r
+

1

2
n2(x2 + y2) (2.37)

The newly defined pseudo-potential function incorporates terms that accommodate the

rotation of the coordinate frame. The equations of motion are then available in a more succinct

form as follows,

ẍ− 2nẏ =
∂U⋆

∂x

ÿ + 2nẋ =
∂U⋆

∂y

z̈ =
∂U⋆

∂z

(2.38)

2.3.3 The Gravitational Equilibrium (Lagrange) Points

The gravitational equilibrium points are by definition the solutions at which the system of

differential equations of motion for CR3BP evaluate to zero. By definition, the velocity and

acceleration of P3 in the rotating frame are zero at the equilibrium points. From equations

(2.38), we can see that, at the equilibrium state, the gradient of the the pseudo-potential is

equal to zero. This implies the following,
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∂U⋆

∂xeq

= 0

∂U⋆

∂yeq
= 0

∂U⋆

∂zeq
= 0

(2.39)

where xeq, yeq, and zeq are equilibrium position components of P3. These equations eval-

uate to the following:

∂U⋆

∂xeq

= −(1− µ)(xeq + µ)

d3eq
− µ(xeq + 1− µ)

r3eq
+ n2xeq = 0 (2.40)

∂U⋆

∂yeq
= −(1− µ)yeq

d3eq
− µyeq

r3eq
+ n2yeq = 0 (2.41)

∂U⋆

∂zeq
= −(1− µ)zeq

d3eq
− µzeq

r3eq
= 0 (2.42)

It’s apparent from equation (2.42) that the equilibrium solutions are planar, since it is only

satisfied when zeq = 0. Similarly, equation (2.41) can be satisfied when yeq = 0, which means

that there are one or more equilibrium solutions along the x-axis of the rotating frame. To

locate the colinear equilibrium solutions along the x-axis, substitute zeq = yeq = 0 and n = 1

into equation (2.40), which yields the following result,

0 = −(1− µ)(xeq + µ)

(xeq + µ)3
− µ(xeq − 1 + µ)

(xeq − 1 + µ)3
+ xeq

xeq =
(1− µ)(xeq + µ)

(xeq + µ)3
+

µ(xeq − 1 + µ)

(xeq − 1 + µ)3
(2.43)
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Equation (2.43) does not have a closed form analytical solution. However, it is a fifth order

equation in terms of xeq and can therefore have five solutions. Two of the five solutions have

proven to be imaginary and are ignored. To find the rest of the 3 real solutions for xeq, Figure

2.4 is used as a reference.

Figure 2.4: The Gravitational Equilibrium (Lagrange) Points

The points Li in the figure are the equilibrium solutions, also known as the Lagrange

points of CR3BP. To solve equation (2.43) for L1 and L2, the distance of P3 from the smaller

primary is used as γ1 and γ2 respectively. To solve for L3, the distance of P3 from the larger

primary, γ3 is used. So the possible values of xeq are specified as follows:

x1 = 1− µ− γ1

x2 = 1− µ+ γ2

x3 = −µ− γ3

(2.44)

These equations, when substituted into equation (2.43), yield the following:
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1− µ− γ1 =
(1− µ)

(1− γ1)2
+

µ

γ2
1

1− µ+ γ2 =
(1− µ)

(1 + γ2)2
+

µ

γ2
2

−µ− γ3 =
(1− µ)

γ2
3

+
µ

(1 + γ3)2

(2.45)

The Newton-Raphson method can be used to solve each of the three equations above. Two

additional non-colinear equilibrium solutions when yeq ̸= 0. When d = r, two possible values

for the equilibrium solutions exist,

x4,5 =
1

2
− µ

y4,5 = ±
√
3

2

(2.46)

L4 and L5 are denoted as the “triangular” or “equilateral” Lagrange points.

2.3.4 The Jacobi Integral Constant and Zero-Velocity Surfaces

The system of equations (2.38) are nonlinear and coupled and there is no known closed form

analytical solution. However, with the aid of the pseudo-potential function, one can derive at

least one constant of CR3BP motion from the differential equations of motion. To derive such

a constant of motion, the dot product of acceleration with velocity is taken.

Rρ
′′
.Rρ

′
= ẋẍ+ ẏÿ + żz̈ =

∂U⋆

∂x
ẋ+

∂U⋆

∂y
ẏ +

∂U⋆

∂z
ż (2.47)

Here, ′ and ′′ indicate derivatives in the rotating frame with respect to the nondimensional

time τ . The pseudo-potential, U⋆, is autonomous and only a function of position, therefore,

the right side of equation (2.47) equals the total scalar derivative dU⋆

dτ
. Consequently, equation

(2.47) is integrated resulting in,

31



1

2
(ẋ2 + ẏ2 + ż2) = U⋆ + Integration constant

1

2
(ẋ2 + ẏ2 + ż2) = U⋆ − C

(2.48)

where the integration constant C is defined with a negative sign by convention. Equation

(2.48) is more succinctly expressed as,

v2 = 2U⋆ − C (2.49)

where v is the scalar Euclidean magnitude of the velocity of P3, v = ||R ˙⃗ρ||2, as viewed by

a rotating observer. Equation (2.49) is denoted Jacobi’s integral and the integration constant C

labeled the Jacobi constant after the mathematician, Carl Gustav Jacob Jacobi. This constant

represents an energy-like quantity in the CR3BP. The Jacobi constant has various uses, for ex-

ample, approximating the energy change necessary for transfers and as a check on the accuracy

of numerical integration. The Jacobi constant yields powerful insights into behavior within the

CR3BP particularly when combined with particular solutions to the differential equations.

The Equation (2.49) provides powerful insight into natural motion dictated by the equa-

tions of motion (2.38) of CR3BP model. We can derive possible regions of motion depending

on the Jacobi constant value. When we set velocity in this equation to zero (meaning that mo-

tion beyond this point is not feasible), and fix the Jacobi constant value to a desired value, we

can derive regions where motion obeys that particular Jacobi constant value. To illustrate this

concept, the zero velocity surfaces for the five known equilibrium points (Lagrange points) are

shown in Figure tables 2.1 and 2.2.

In these figures, the Zero-Velocity-Curve is showing permissible motion in the color in

the x-y plane, and the Zero-Velocity-Surface is showing the permissible motion in three di-

mensions. These two concepts are important for identification of periodic orbits in any CR3BP

system.
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Table 2.1: L1 and L2 Zero Velocity Curves and Surfaces

Zero-Velocity-Curve Zero-Velocity-Surface
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Table 2.2: L3 and L4,5 Zero Velocity Curves and Surfaces

Zero-Velocity-Curve Zero-Velocity-Surface
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2.3.5 Periodic Orbits in the CR3BP System

Periodic orbits are bounded solutions for a given dynamical system. The periodic orbits in the

pure two-body model are the closed conic sections. There are no such standard solutions in the

CR3BP model. The periodic orbits in CR3BP come about predominantly from known condi-

tions, such as about the five known gravitational equilibrium points. In the CR3BP system, if a

particular solution exists, there typically exists a family of such solutions. Most famous of such

families of orbits are the Lagrange point orbits, such as the Lyapunov, and halo orbit families

around L1 and L2, axial and vertical orbit families around all five Lagrange points [30]. There

are also Moon centered orbits such as the Direct Retrograde Orbits (DROs) and Low-Prograde

Orbits (LPOs) and system encompassing Resonant orbits [30]. In this dissertation, Lagrange

point orbit families are the primary focus, due to their popularity and ubiquity to establish the

verification procedures for the techniques developed for orbit identification on the VR platform.

2.3.6 Transformation of CR3BP Motion to an Inertial System

The CR3BP model serves as a good model for uncovering motion structures such as the periodic

orbits and manifolds for orbital transfers under the influence two primary bodies. However, to

assess the inertial effects of eclipses (of the Sun, Earth, Moon etc), other perturbing effects

such as the solar radiation pressure and nth body gravity, these motion structures of the CR3BP

system are more conveniently transformed to an inertial system. Typically the transformation

of motion structures from the CR3BP to an inertial system is performed with the aid of the

instantaneous Keplerian orbital parameters of the second primary. For example a periodic orbit

from the cislunar CR3BP to the Earth-centered J2000 inertial system is performed as follows,

35



CR3BP-J2000 Transformation (Position): A Method [22]

1. Center the position coordinates of the CR3BP state (r⃗) on Earth,

r⃗PC =


xPC

yPC

zPC


r⃗PC = r⃗ + µ

(2.50)

2. Retrieve the dimensional position (R⃗) and velocity (V⃗ ) vectors of the Moon from

JPL SPICE toolkit [26] and derive the instantaneous axes of the rotating frame as

follows,

x̂ =
R⃗

R

ŷ =
R⃗× V⃗

||R⃗× V⃗ ||

ẑ = x̂× ŷ

(2.51)

3. Compose the position transformation matrix as follows,

ICR =

[
x̂ ŷ ẑ

]
=


C11 C12 C13

C21 C22 C23

C31 C32 C33

 (2.52)

4. Compute the nondimensional inertial position vector, P⃗ , using the position trans-

formation matrix as follows,

P⃗ = ICRr⃗PC (2.53)

5. If dimensional inertial position is desired, multiply the nondimensional inertial

position vector with the magnitude of the instantaneous position vector, R⃗, of the

second primary,
˜⃗
P = ||R⃗||2P⃗ (2.54)
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CR3BP-J2000 Transformation (Velocity): A Method [22]

1. The instantaneous angular velocity, IWR, of the rotating frame with respect to the

J2000 frame is defined as follows from the Keplerian motion,

IWR = θ̇ẑ

θ̇ =
h⃗

R2
=

R⃗× V⃗

R2

(2.55)

2. Apply the Basic Kinematic Equation (BKE) to the Earth-centered position vector

of CR3BP state to define the velocity vector,

Id

dt
r⃗PC =

Rd

dt
r⃗PC + IWR × r⃗PC (2.56)

Id

dt
r⃗PC = (ẋPC − θ̇yPC)x̂+ (ẏPC + θ̇xPC)ŷ + żPC ẑ (2.57)

3. Compute the nondimensional inertial velocity, V⃗ , as follows,

V⃗ =


ẊPC

ẎPC

ŻPC

 =


θ̇C12 −θ̇C11 0 C11 C12 C13

θ̇C22 −θ̇C21 0 C21 C22 C23

θ̇C32 −θ̇C31 0 C31 C32 C33





xPC

yPC

zPC

ẋPC

ẏPC

żPC


(2.58)

4. If dimensional velocity is desired, compute the dimensional time and velocity as

follows,

T =

√
R3

µEarth + µMoon

(2.59)

˜⃗
V =

T

R
V⃗ (2.60)
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Chapter 3

Trajectory Design and Optimization Techniques in the Cislunar System

The system of differential equations (2.36) governing the CR3BP motion do not have known

closed form analytical solutions. To identify periodic orbit and orbital transfer solutions in

this system, numerical methods are used. The primary numerical method employed is the dif-

ferential corrections method, which is gradient based. The numerical differential corrections

methods such as the multi-variate Newton methods are highly susceptible to initial conditions.

Arbitrary initial conditions do not typically yield desired motion. Hence the problems ad-

dressed are two-fold,

1. Employment of numerical methods to identify orbital motion solutions robustly in pres-

ence of bad initial conditions.

2. Techniques and methods to provide good initial conditions to the numerical methods.

In this chapter, foundations for these robust numerical methods and the methods themselves

are discussed and presented.

3.1 The State Transition Matrix

The state transition matrix is a linear artifact of a system of equations, which could either be a

linear system or a nonlinear system. The state transition matrix allows for identifying solutions

of a nonlinear system with respect to a known reference trajectory.
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The state of the CR3BP motion is defined as,

s⃗ =



x

y

z

ẋ

ẏ

ż


(3.1)

The system of differential equations defining the CR3BP motion can be generalized as follows,

˙⃗s = f(τ, s⃗, λ) (3.2)

Here, τ represents the nondimensional time of the CR3BP, and λ represents the set of indepen-

dent parameters such as µ and n (= 1 in CR3BP). Let some initial state, s⃗⋆0 generate a valid

reference trajectory. Let δs⃗ be a small variation to this reference initial state. So we have the

perturbed differential equation as,

˙⃗s = ˙⃗s⋆0 + δ ˙⃗s = f(τ, s⃗⋆0 + δs⃗, λ)

When we take the Taylor series expansion of this equation and truncate the expansion to first

order terms, we have,

˙⃗s⋆0 + δ ˙⃗s = f(τ, s⃗⋆0, λ) +
∂f

∂s⃗
|s⃗⋆0δs⃗

δ ˙⃗s =
∂f

∂s⃗
|s⃗⋆0δs⃗

We have the following definitions from this equation,

A(τ) =
∂f

∂s⃗
|s⃗⋆0 =⇒ Jacobian of the system (3.3)

δ ˙⃗s = A(τ)δs⃗ (3.4)
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Equation (3.3) is called the Jacobian of the system represented by f(τ, s⃗, λ). The solution to

Equation (3.4) in a linear sense can be written in terms of the matrix derivative of the state of

the system at time τ with respect to the state of the system at the initial time τ0 as follows,

δ ˙⃗s =
∂s⃗(τ)

∂s⃗(τ0)
δs⃗ (3.5)

Since s⃗(τ0) and τ are independent of each other, we can express the matrix derivative ∂s⃗(τ)
∂s⃗(τ0)

, as

follows,
d

dτ

∂s⃗(τ)

∂s⃗(τ0)
=

d

ds⃗(τ0)

∂s⃗(τ)

∂τ
=

d

ds⃗(τ0)
˙⃗s(τ) (3.6)

When the chain rule of mathematical differentiation is applied to this equation, we have,

d

dτ

∂s⃗(τ)

∂s⃗(τ0)
=

d

ds⃗(τ0)
˙⃗s(τ) =

∂f(τ, s⃗, λ)

∂s⃗(τ)

∂s⃗(τ)

∂s⃗(τ0)
= A(τ)

∂s⃗(τ)

∂s⃗(τ0)
(3.7)

From this equation, we define the state transition matrix of the linear system as follows,

Φ(τ, τ0) =
∂s⃗(τ)

∂s⃗(τ0)
(3.8)

The equation governing evolution of the state transition matrix is as follows,

Φ̇(τ, τ0) = A(τ)Φ(τ, τ0) (3.9)

3.1.1 The State Transition Matrix for the CR3BP System

The variations in the CR3BP system can be expressed as,

δẍ− 2nδẏ =
∂U⋆

∂x∂x
δx+

∂U⋆

∂x∂y
δy +

∂U⋆

∂x∂z
δz

δÿ + 2nδẋ =
∂U⋆

∂y∂x
δx+

∂U⋆

∂y∂y
δy +

∂U⋆

∂y∂z
δz

δz̈ =
∂U⋆

∂z∂x
δx+

∂U⋆

∂z∂y
δy +

∂U⋆

∂z∂z
δz

(3.10)
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From equations (3.10) form the Jacobian matrix, A(τ), of the CR3BP system,

A(τ) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

∂U⋆

∂x∂x
∂U⋆

∂x∂y
∂U⋆

∂x∂z
0 2n 0

∂U⋆

∂y∂x
∂U⋆

∂y∂y
∂U⋆

∂y∂z
−2n 0 0

∂U⋆

∂z∂x
∂U⋆

∂z∂y
∂U⋆

∂z∂z
0 0 0


(3.11)

The second partial derivatives of the pseudo-potential function in equation (3.11) are defined

as,

∂U⋆

∂x∂x
= n2 − 1− µ

d3
− µ

r3
+

3(1− µ)(x+ µ)2

d5
+

3µ(x− 1 + µ)2

r5

∂U⋆

∂y∂y
= n2 − 1− µ

d3
− µ

r3
+

3(1− µ)y2

d5
+

3µy2

r5

∂U⋆

∂z∂z
= −1− µ

d3
− µ

r3
+

3(1− µ)z2

d5
+

3µz2

r5

∂U⋆

∂x∂y
=

∂U⋆

∂y∂x
=

3(1− µ)(x+ µ)y

d5
+

3µ(x− 1 + µ)y

r5

∂U⋆

∂x∂z
=

∂U⋆

∂z∂x
=

3(1− µ)(x+ µ)z

d5
+

3µ(x− 1 + µ)z

r5

∂U⋆

∂y∂z
=

∂U⋆

∂z∂y
=

3(1− µ)zy

d5
+

3µzy

r5

(3.12)

3.1.2 The Monodromy Matrix and Orbit Stability

The monodromy matrix of a periodic orbit is defined as,

M = Φ(τ0 + P, τ0) (3.13)

In equation (3.13), P is the one single orbital period of a periodic orbit. Following are important

properties of a monodromy matrix [27],

1. The Eigen values of the monodromy matrix always come in reciprocal pairs.

2. The determinant of the monodromy matrix is always unity.
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3. The monodromy matrix is simplectic.

3.2 Trajectory Targeting Methods

The system of differential equations (2.36) governing CR3BP motion is nonlinear and coupled.

Random initial conditions for this system does not yield desired motion. To derive desired

motion, one can target the desired conditions of motion and apply differential corrections to

the random initial conditions with respect to the desired conditions of motion. For periodic

orbit identification, the target condition is the periodicity, i.e. the motion should get back to

the initial state after a certain period of time called the orbital period. For orbital transfer

trajectory identification, feasibility of the trajectory (according to CR3BP equations of motion)

and reaching the target orbit are the target conditions.

3.2.1 The Multi-Variate Newton Differential Corrections

In this method, a free variable vector, and a constraint vector are employed. The free variable

vector is typically composed of the initial state guess variables, integration times for the state,

expected epochs for boundaries of the initial state variables. The free variable vector could
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contain slack variables in some cases. A minimal free variable vector is designated as,

X⃗ =



s⃗1

s⃗2

.

.

.

s⃗n

T1

T2

.

.

.

Tn−1



(3.14)

The constraint vector contains conditions of the desired motion. Typically these conditions

are enforcing continuity at the trajectory segment boundaries, conditions on velocity and time-

of-flight at a minimum. The vector can contain various other conditions such as enforcing a

minimum distance from the primaries in the orbital motion. A minimal constraint vector is

designated as,

F⃗ (X⃗) =



F⃗1(X⃗)

F⃗2(X⃗)

.

.

.

F⃗m(X⃗)


(3.15)

Typically the dimension of the free variable vector is designated as n and that of the constraint

variable vector is designated as m. The goal is to identify a desired initial conditions vector,

X⃗⋆, that drives the constraints vector to zero, i.e., F⃗ (X⃗⋆) = 0. An iterative process based on

Newton’s method is employed to identify X⃗⋆. The Newton’s method involves expressing the
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constraint functions vector, F⃗ (X⃗⋆) = 0, as Taylor series expansion, and then truncating the

higher order terms,

F (X⃗) = F (X⃗0) +
∂F (X⃗0)

∂X⃗0

(X⃗ − X⃗0) (3.16)

In this equation, X⃗0 is the initial-guess for the solution free variable vector, X⃗⋆. ∂F (X⃗0)

∂X⃗0
can

be designated as DF (X⃗0) for brevity in notation. For a solution, F (X⃗) = 0, hence, equation

(3.16) can be generalized as,

X⃗i+1 = X⃗i −DF (X⃗i)
−1F (X⃗i) (3.17)

where X⃗i is the current iteration of the free-variable vector, X⃗i+1 is the next iteration of the

free-variable vector, and F (X⃗i) is the value of the current constraint vector as evaluated after

propagating the equations of motion from the initial condition X⃗i. Since the current free vari-

able vector and value of the current constraint vector are known, DF (X⃗i) is also available. An

iteration process is initiated by employing equation (3.17) as the update equation. Iterations

continue until F (X⃗i+1) = F (X⃗⋆) = 0 to some acceptable tolerance.

Equation (3.17) in it’s basic form is only valid if the number of variables in the free variable

vector, n, is equal to the number constraints in the constraint vector, m. However, if n > m,

as is typical with spacecraft trajectory design problems, there exist infinitely many solutions

to equation (3.17). To resolve ambiguity, one can employ a minimum norm solution to the

initial-guess update problem as,

X⃗i+1 = X⃗i −DF (X⃗i)
T (DF (X⃗i)DF (X⃗i)

T )−1F (X⃗i) (3.18)

The minimum norm solution to the initial-guess update problem allows for as close of a solution

to the first initial-guess, X⃗0, as possible.

3.2.2 The Single-Shooting Method

The single shooting method is the simplest of shooting methods. The single-shooting method

utilizes a single integrated trajectory segment to solve a two-point boundary value problem.
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To employ the free-variable-constraint method [22], we can start with an expression for the

variation in state at final time from a variation at the initial time as,

δs⃗F = Φ(τF , τ0)|s⃗⋆δs⃗0 +
∂s⃗

∂τ
|s⃗⋆δτ (3.19)

where, δs⃗F , is the variation in the final state from the nominal/desired state. And, δs⃗0, is the

variation in the initial state from the current initial/reference state. Finally, δτ is the variation

in the time-of-flight from the nominal/reference value.

δs⃗F =



δxF

δyF

δzF

δẋF

δẏF

δżF

δτF



=



xF − xdesired

yF − ydesired

zF − zdesired

ẋF − ẋdesired

ẏF − ẏdesired

żF − ẏdesired


(3.20)

δs⃗0 =



δx0

δy0

δz0

δẋ0

δẏ0

δż0


=



x0 − x⋆

y0 − y⋆

z0 − z⋆

ẋ0 − ẋ⋆

ẏ0 − ẏ⋆

ż0 − ẏ⋆


(3.21)

δτ = τF − τ ⋆ (3.22)

Equation (3.19) can be rewritten as,
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

δxF

δyF

δzF

δẋF

δẏF

δżF


=



∂xF

∂x0

∂xF

∂y0

∂xF

∂z0

∂xF

∂ẋ0

∂xF

∂ẏ0

∂xF

∂ż0

∂yF
∂x0

∂yF
∂y0

∂yF
∂z0

∂yF
∂ẋ0

∂yF
∂ẏ0

∂yF
∂ż0

∂zF
∂x0

∂zF
∂y0

∂zF
∂z0

∂zF
∂ẋ0

∂zF
∂ẏ0

∂zF
∂ż0

∂ẋF

∂x0

∂ẋF

∂y0

∂ẋF

∂z0

∂ẋF

∂ẋ0

∂ẋF

∂ẏ0

∂ẋF

∂ż0

∂ẏF
∂x0

∂ẏF
∂y0

∂ẏF
∂z0

∂ẏF
∂ẋ0

∂ẏF
∂ẏ0

∂ẏF
∂ż0

∂żF
∂x0

∂żF
∂y0

∂żF
∂z0

∂żF
∂ẋ0

∂żF
∂ẏ0

∂żF
∂ż0





δx0

δy0

δz0

δẋ0

δẏ0

δż0


+



ẋF

ẏF

żF

ẍF

ÿF

z̈F


δτ (3.23)

Equation (3.23) is the most general form differential corrections applied in the single-shooting

method. An example targeting method using this scheme is now presented. In this example,

a single-shooting method is used to identify Lyapunov orbits in the CR3BP model of orbital

motion. Lyapunov orbits are planar periodic orbits that exist in the vicinity of the L1, L2 and

L3 Lagrange points. These orbits exist only in the fundamental x-y plane of motion of the

secondary around the primary. Another characteristic of these orbits is that the velocity is

perpendicular to the x-axis at the two x-axis crossings. The perpendicular crossing property

is leveraged to identify these orbits with the single-shooting method. The perpendicular x-axis

crossing condition enforces the following desired numerical conditions,

s⃗desired =


xdesired

ydesired

ẋdesired

 =


x⋆

0

0

 (3.24)

where, x⋆ is the desired x component of position at the perpendicular crossing of x-axis. ẋ

is zero at the perpendicular crossing since motion is perpendicular to x-axis. Finally, since

this condition is at the x-axis crossing, the y component of position is zero. Now for these

conditions, equation (3.23) becomes,


δxF

δyF

δẋF

 =


∂xF

∂ẋ0

∂xF

∂ẏ0

∂yF
∂ẋ0

∂yF
∂ẏ0

∂ẋF

∂ẋ0

∂ẋF

∂ẏ0


δẋ0

δẏ0

+


ẋF

ẏF

ẍF

 δτ (3.25)
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So the final differential correction equation for identifying Lyapunov orbits at the perpendicular

x-axis crossing is: 
δẋ0

δẏ0

δτ

 =


∂xF

∂ẋ0

∂xF

∂ẏ0
ẋF

∂yF
∂ẋ0

∂yF
∂ẏ0

ẏF

∂ẋF

∂ẋ0

∂ẋF

∂ẏ0
ẍF


−1 

xF − x⋆

yF

ẋF

 (3.26)

Typically in practice the Lyapunov orbits are identified by starting at a desired x position com-

ponent and targeting the next x-axis crossing for the final state. Once the desired half of the

orbit is corrected, by manipulating the x and y components of velocity and half of the time-

of-flight of the full periodic orbit, the full orbit is obtained by numerically propagating for the

remaining half of the orbit. Grebow [11] provided the single-shooting differential equations for

identifying the Lyapunov, halo, axial and vertical Lagrange point orbits.

One common issue with the single-shooting method is that the nonlinearities of the CR3BP

system are not captured well by the method, because of the linear approximations of equation

(3.19). The problem is exacerbated when the time-interval over which the method is applied to

the CR3BP system is increased. This problem can be addressed by a second kind of shooting

methods called the multiple-shooting method described in the next section.

3.2.3 The Multiple-Shooting Method

The multiple-shooting method divides the interval over which a solution is sought into several

smaller intervals, propagates the fully nonlinear equations of motion in each of the smaller

intervals, and imposes path constraints along the segment interval extremes and the boundary

conditions on the initial and final state. The method is effective for distributing the nonlinear-

ity and numerical instability along the solution over the single shooting method. Figures 3.1

and 3.2 are showing a notional initial-guess and the corresponding solution for the multiple-

shooting method. In Figure 3.1, the trajectory is divided into n − 1 segments time-wise. Ini-

tially the trajectory is discontinuous, but eventually the trajectory becomes continuous within

a certain tolerance upon an iterative application of a multi-variate Newton method called the

free-variable-constraint method to the initial-guess.
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Figure 3.1: A Depiction of an Initial-Guess for the Multiple-Shooting Method

Figure 3.2: A Depiction of a Solution for the Multiple-Shooting Method
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The general free-variable vector is designated as,

X⃗ =



s⃗1

s⃗2

.

.

.

s⃗n

T1

T2

.

.

.

Tn−1

τ1

τ2

.

.

.

τn−1

τn



(3.27)

where s⃗i, i = 1, ..., n is the initial state vector of segment i, Ti, i = 1, ..., n − 1 is the time-

of-flight in segment i and τi, i = 1, ..., n is the epoch of the initial state in segment i. The
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constraint vector is designated as (here, τi > 0, ∀i),

F⃗ (X⃗) =



s⃗t2 − s⃗2

s⃗t3 − s⃗3

.

.

.

s⃗tn − s⃗n

τ2 − (τ1 + T1)

.

.

τn − (τn−1 + Tn−1)



(3.28)

The Jacobian of the constraints with respect to the free-variables is designated as,

DF (X⃗) =



∂st2
∂s1

−∂s2
∂s2

∂st2
∂T1

−∂st2
∂τ1

. . . .

. . . .

∂st2
∂s1

−∂s2
∂s2

∂st2
∂T1

− ∂st2
∂τn−1

−∂T1

∂T1
−∂τ1

∂τ1

∂τ2
∂τ2

. . .

. . .

−∂T1

∂T1
−∂τ1

∂τ1

∂τ2
∂τ1


(3.29)
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This Jacobian can be more compactly expressed in terms of the state-transition-matrix as,

DF (X⃗) =



Φ1 −I6×6 ṡt2 −∂st2
∂τ1

. . . .

. . . .

Φn−1 −I6×6 ṡtn−1 − ∂st2
∂τn−1

−1 −1 1

. . .

. . .

−1 −1 1


(3.30)

The Jacobian is a non-square matrix, hence minimum norm update to the initial-guess provided

in equation (3.18) is employed in the multiple-shooting method.

3.3 Trajectory Optimization Methods

To identify periodic orbits and transfer trajectories, the nonlinear coupled differential equations

of motion of the CR3BP model need to be integrated, and constants of integration discovered.

However, out of the six remaining constants of integration required to solve for motion of the

third body in the CR3BP model, only one (the Jacobi constant) is discovered, and others are

proven to not exist. In the absence of unidentified integration constants, traditionally, numer-

ical integration techniques are used to solve the CR3BP equations of motion. However, there

is no guarantee that desired motion is achieved with pure numerical integration techniques. To

achieve desired motion, an optimization problem is posed to satisfy desired conditions of mo-

tion, which typically include path constraints on orbital motion, minimization of fuel and/or

time-of-flight for orbital motion. In the solution methods for the optimization problem, in-

ternally orbital motion is solved for from the CR3BP equations of motion using numerical

integration, while also searching for initial-conditions that yield the desired motion as dictated

by the path constraints and conditions for fuel and/or time-of-flight minimization.

The solution methods for optimization problems are traditionally categorized as “indi-

rect” and “direct” methods. Indirect optimization methods are generally based on analytical

techniques derived from the calculus of variations. The solutions retrieved using the indirect
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methods are guaranteed to be locally optimal. However, the keys to indirect methods are the

doubling of unknown variables to solve for (i.e. the costate variables) and the need for deriv-

ing analytical equations for costate from the equations of motion. The classical formulation

of the indirect methods also does not allow for enforcement of path constraints for orbital mo-

tion, when necessary. Due to these limitations, an alternate approach of solving optimization

problems, especially with the advent of computers. In the direct optimization method, the ex-

pected orbital path is discretized into multiple sub-segments, where each segment is implicitly

integrated. The resulting sub-segments may not be continuous and hence the path constraints

to ensure continuity along the segment boundaries and within the segments are enforced. The

discretization process is called “direct transcription”. The direct transcription results in a vector

of discretized input variables that need to satisfy the path constraints of orbital motion while

also optimizing for fuel and/or time-of-flight. This problem formulation results in a nonlinear

programming problem (NLP) that can be solved on a computer efficiently.

3.3.1 The Generalized Collocation Method

The generalized collocation method is a type of collocation method that can approximate the

unknown solution function with any arbitrary degree orthogonal polynomial basis function.

The goal of this method is to use arbitrary degree orthogonal polynomial functions to construct

a nonlinear programming problem that can be solved using any NLP solver. In this algorithm,

a candidate trajectory is divided into n arcs time-wise as,

Π : t0 < t1 < t2 < .... < tn = tf (3.31)

and each ith arc is approximated by an N th degree polynomial as shown,

Pi(τ) = Ci ×
[
1 τ τ 2 ... τN

]
(3.32)

Here, τ is the normalized time that spans the time interval [-1, 1] for all of the trajectory arcs

and Ci are the coefficients of the polynomial approximation. Note that dimension of Pi(τ) and

hence that of Ci is l× (N + 1), where l is the number of state variables and N is the degree of
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the polynomial. The conversion from dimensional time t to normalized time τ in each arc, i, is

given by,

τ =
2

ti+1 − ti
(t− ti)− 1 (3.33)

Because of time normalization, the dimensional time derivatives of state variables are computed

from the normalized time derivatives of state variables as follows,

ṡi =
∆ti
2

f(τi, si) (3.34)

where f includes the set of Equations (2.36). If there are l variables in the state describing the

trajectory arc, then the polynomial Pi is an l-dimensional vector, and the matrix of coefficients

Ci is of dimension l×(N+1). The points where states are collocated are selected corresponding

to the roots of a particular representation of polynomials Pi(τ) [25].

The version implemented in this dissertation uses the 7th degree Legendre-Gauss (LG)

polynomials due to the simplicity of implementation while also preserving the accuracy of the

solutions. The matrix of polynomial coefficients in each arc, Ci, is constructed using states

at one or more root nodes on arc i for the polynomial. For odd degree polynomials, each arc

is subdivided into N+1
2

variable nodes and N−1
2

defect points. The index of a variable node

or defect point is indicated by the subscript j = 1, 2, ..., N , and the variable nodes and defect

points occur at odd and even numbered j, respectively. The purpose of dividing roots of the

LG polynomial into odd and even nodes is to have the freedom to vary the variable nodes as

dictated by the underlying algorithm while enforcing CR3BP dynamics at the defect points to

ensure that the resulting polynomial is a good approximation of the solution for the CR3BP

dynamics. Figure 3.3 shows the division of a polynomial segment into variable and defect

points/nodes.
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Figure 3.3: Node Placement Strategy for Collocation with 7th Degree Polynomial

A nonlinear programming problem (NLP) is constructed as follows,

1. Construct a nonlinear constraints function,

(a) Compute the matrix of coefficients, Ci, from the variable nodes in each arc.

(b) Using the matrix of coefficients, Ci, compute the states at the defect nodes.

(c) Compute the CR3BP dynamics violations at all the defect nodes.

(d) Compute the segment continuity violations.

(e) In case of periodic orbit identification, compute the periodicity violation.

(f) In case of transfer trajectory identification, compute the initial and final state viola-

tions for the transfer.

(g) Compose all the violations into an equality constraint vector.

2. Construct a cost function. This is problem specific. The desired cost functions are listed

Sections 4.3 and 4.6 for the problems in this dissertation.

3. Define the NLP problem using the nonlinear constraints and cost function in any desired

programming language NLP solver. In this dissertation, fmincon NLP solver in MAT-

LAB and Python IPOPT are employed.

4. Define the initial-guess construction mechanisms for each problem addressed with the

NLP problem. The initial-guess construction mechanisms for each of the problems in

this dissertation are listed in Sections 4.3 and 4.6.
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Computation of the Coefficient Matrix, Ci

For each polynomial root node, j, along a given trajectory arc, i, the state and state derivatives

are given as,

si,j = Pi(τj) = Pi,j, i = 1, 2, ..., n and j = 1, 2, ..., N (3.35)

where Pi is as defined in Equation (3.32), and

ṡi,j = Ṗi,j =
∆ti
2

f(τj, si,j) (3.36)

In Equation (3.36), f includes the set of Equations (2.36). Based on these equations, we can

arrive at the following expression for variable nodes:

Ci[τ τ̇ ] =

[
si,1 si,3 si,5 si,7 ṡi,1 ṡi,3 ṡi,5 ṡi,7

]
(3.37)

where τ and τ̇ represent matrices:

τ =



1 1 1 1

τ1 τ3 τ5 τ7

τ 21 τ 23 τ 25 τ 27

τ 31 τ 33 τ 35 τ 37

τ 41 τ 43 τ 45 τ 47

τ 51 τ 53 τ 55 τ 57

τ 61 τ 63 τ 65 τ 67

τ 71 τ 73 τ 75 τ 77



(3.38)
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and

τ̇ =



0 0 0 0

1 1 1 1

2τ1 2τ3 2τ5 2τ7

3τ 21 3τ 23 3τ 25 3τ 27

4τ 31 4τ 33 4τ 35 4τ 37

5τ 41 5τ 43 5τ 45 5τ 47

6τ 51 6τ 53 6τ 55 6τ 57

7τ 61 7τ 63 7τ 65 7τ 67



(3.39)

The states at the variable nodes are supplied as part of the initial guess. The unknown

coefficients are then computed by solving Equation (3.37) as follows:

Ci =

[
si,1 si,3 si,5 si,7 ṡi,1 ṡi,3 ṡi,5 ṡi,7

]
A−1 (3.40)

where A is given by [τ τ̇ ]8×8.

Computation of States at Defect Nodes

The normalized times at the location of the defect points are used to create the matrices B and

D as follows:

B =



1 1 1 1 1

−1 τ2 τ4 τ6 1

1 τ 22 τ 24 τ 26 1

−1 τ 32 τ 34 τ 36 1

1 τ 42 τ 44 τ 46 1

−1 τ 52 τ 54 τ 56 1

1 τ 62 τ 64 τ 66 1

−1 τ 72 τ 74 τ 76 1



(3.41)
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and,

D =



0 0 0

1 1 1

2τ2 2τ4 2τ6

3τ 22 3τ 24 3τ 26

4τ 32 4τ 34 4τ 36

5τ 42 5τ 44 5τ 46

6τ 52 6τ 54 6τ 56

7τ 62 7τ 64 7τ 66



(3.42)

The first and last columns of B are included to compute the states at the boundary nodes

along an arc because, in the LG node placement scheme, the boundary nodes of a segment are

not used to construct the polynomial for that arc. It is convenient to compute the boundary

node states as well so that they are available toward the evaluation of constraints for feasibility

of the trajectory. The matrix B and the polynomial coefficients are then employed to construct

the states at the defect points and boundary nodes as follows:

[
si,0 si,2 si,4 si,6 si,f

]
= CiB (3.43)

Computation of Constraint Violations for Periodic Orbit Identification

The constraint matrix, F , is computed using the state at the defect and boundary points, the

coefficients Ci, and matrix D as follows:
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F⃗ =



s1,0 − sn,f

s2,0 − s1,f

.

.

.

sn,0 − sn−1,f

[C1D −
[
ṡ1,2 ṡ1,4 ṡ1,6

]
]×W1

[C2D −
[
ṡ2,2 ṡ2,4 ṡ2,6

]
]×W2

.

.

.

[CnD −
[
ṡn,2 ṡn,4 ṡn,6

]
]×Wn



(3.44)

The first n constraints enforce continuity and periodicity on the trajectory. The second

n constraints enforce dynamical feasibility (Equations (2.36). The matrices Wi represent the

quadrature weights of the LG polynomial roots.
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Chapter 4

Trajectory Design and Optimization Techniques on the Virtual Reality Platform

One of the main pain points in trajectory design and optimization is the lack of universally stan-

dard and intuitive procedures for construction of initial-guesses to the numerical algorithms.

The focus of this dissertation is two fold,

1. Provide procedures on the virtual reality platform to construct good initial-guesses to the

numerical trajectory design and optimization algorithms.

2. Design and implement robust numerical algorithms to use the initial-guesses from the

virtual reality platform to identify solutions.

4.1 The Simulation of the Cislunar CR3BP System

The first of the two goals this dissertation is achieved entirely on a virtual reality platform. To

achieve this goal, the cislunar CR3BP system is simulated on the VR platform in it’s full 3D

glory. The cislunar CR3BP system, with the Earth, the Moon, the five Lagrange points and the

three coordinate axes of the rotating coordinate frame is simulated. The system is simulated as

a Unity3D [28] C# application on a Windows-10 computer to be played out on a HTC VIVE

Pro VR headset [29]. Figure 4.1 is showing the elements of the cislunar CR3BP system played

out on the VR headset to the human user.
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Figure 4.1: A Depiction of the Earth-Moon CR3BP System in VR

4.2 Periodic Orbit Identification Techniques

There are four different techniques developed in this dissertation for periodic orbit identification

in the cislunar CR3BP system. For techniques II through IV, a CR3BP look-ahead trajectory

is displayed to the human operator, and this trajectory is computed using a fixed step Runge-

Kutta-4 integration method implemented in C# inside the Unity applications.

4.2.1 Technique-I: Initial-Guess from a Non-Dynamical User-Drawing

In this technique, a human user immersed in the cislunar CR3BP system is prompted to draw

a periodic orbit from their imagination with the HTC VIVE controller. The VR application for

this technique records only position points along the human drawing. The drawing is missing

the velocity and time-of-flight part of the orbital state for the periodic orbit represented by the

drawing. The challenge for the numerical trajectory optimization algorithm is to solve for the

missing velocity and time-of-flight from the drawing. The goal of the corrector algorithms is

to find a fit for the human drawing to a closest dynamically feasible CR3BP periodic orbit. The

human drawings are known to have distortions from the intended periodic orbits represented by

the drawings. For example, Figures ?? and ?? are illustrating the said distortions in the human

drawings collected in the VR application. Figure 4.2 is showing the VR user interaction menu

for Technique-I.
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Figure 4.2: VR User-Interaction Menu for Technique-I

In the VR menu there are actions that a human user can take by pointing the laser pointer

from the right controller to the appropriate menu item and pressing trigger, to generate the

initial-guess in Technique-I. Figure 4.3 is illustrating a flow-chart for the screenplay of the VR

application for Technique-I. The screenplay is described after this flow-chart.
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Figure 4.3: A Flow-Chart of Periodic Orbit Identification in Technique-I
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Identification of Periodic Orbits in Technique-I: A Screenplay

The screenplay for the VR scene for periodic identification in Technique-I is,

1. Mount the VR headset and enter the VR scene with the right controller turned on.

Human user sees the scene in Figure 4.1.

2. Adjust the height of the system as desired from the system menu. The system menu

can be accessed from the menu button of the right controller. Refer to Figure A.1

for a snapshot of this action.

3. Adjust the energy level of CR3BP system as desired from the system menu. Refer

to Figure A.2 for a snapshot of this action.

4. Close the system menu to start drawing. The drawings can only be drawn when

menu is not active in the scene.

5. Start drawing the periodic orbit of desired shape with the right controller trigger

button. The drawing appears in the scene in yellow color. Refer to Figure A.10 for

a snapshot of this action.

6. Check if the drawing so far is satisfactory for the shape of the orbit originally

intended. If not, reset the scene and start over. If yes, continue drawing the orbit.

Refer to Figure A.11 for a snapshot of this action.

7. While drawing the orbit, continuously keep verifying the drawing for originally

intended shape.

8. Upon completion of the drawing, select and adjust the desired number of patch

points along the initial-guess using the system menu. The number of patch points

should capture the curvature of the initial-guess properly to find a good solution

orbit. Refer to Figure A.4 for a snapshot of this action.
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Identification of Periodic Orbits in Technique-I: A Screenplay continued....

9. Next, select the desired optimizer from the drop-down menu of options for the

optimizer in the system menu. It is okay to experiment with all the options for a

single drawing, but each option can only be used one at a time. Refer to Figure

A.5 for a snapshot of this action.

10. Next, run the optimizer from the system menu button dedicated to it. Refer to

Figure A.6 for a snapshot of this action.

11. Now, wait for the optimizer to finish and the solution orbit to appear in the scene

in color magenta. Refer to Figure A.7 for a snapshot of this action.

12. When the solution periodic orbit appears in the scene, review it for the quality of

the solution with respect to the initial-guess, which also simultaneously appears in

the scene. The quality of the solution can also be assessed based on the solution

parameters that appear along with the scene in text form. Of particular importance

is the constraint violation parameter. Typically, a value of at or below 1e − 6 is

considered to be good. Refer to Figure A.8 for a snapshot of this action.

13. If the solution orbit is satisfactory, then archive the solution using the system menu

option for it. Refer to Figure A.9 for a snapshot of this action.

14. If the solution is not satisfactory, but experimentation with different energy levels

is desired, then reset the solution and adjust to the new energy level and return to

step 8 and follow the steps from there. If no experimentation is desired, reset the

scene and return to step 3.

4.2.2 Technique-II: Initial-Guess from a Dynamical User-Drawing

In this technique, the human user is still prompted to draw a CR3BP periodic orbit. However,

the user is also shown a look-ahead CR3BP trajectory that emanates from the user drawing.

This look-ahead CR3BP trajectory is expected to help the user provide a better drawing. The
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initial-guess in this technique is captured from sampling the first one or two points along the

look-ahead CR3BP trajectory. Hence, the initial-guess constructed in this technique contains

valid CR3BP position, velocity and time-of-flight information for a drawing. However, the

CR3BP based initial-guess could still be discontinuous and may not represent a perfect CR3BP

periodic orbit. The generalized collocation method is applicable here as well. In addition to the

collocation method, multiple-shooting method can also be applied to identify periodic orbits

from these initial-guesses. Figure 4.4 is showing the VR user-interaction menu for Technique-

II.

Figure 4.4: VR User-Interaction Menu for Technique-II

In the VR menu there are actions that a human user can take by pointing the laser pointer

from the right controller to the appropriate menu item and pressing trigger, to generate the

initial-guess in Technique-II. Figure 4.5 is showing the flow-chart for this technique as imple-

mented in VR, followed by the screenplay of the VR application for this technique.
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Figure 4.5: A Flow-Chart of Periodic Orbit Identification in Technique-II
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Identification of Periodic Orbits in Technique-II: A Screenplay

The screenplay for the VR scene for periodic identification in Technique-II is,

1. Mount the VR headset and enter the VR scene with the right controller turned on.

Human user sees the scene in Figure 4.1.

2. Adjust the height of the system as desired from the system menu. The system menu

can be accessed from the menu button of the right controller. Refer to Figure A.1

for a snapshot of this action.

3. Adjust the energy level of CR3BP system as desired from the system menu. This

action is fixed per drawing/orbit, i.e., once the energy is fixed for the drawing, it

cannot be adjusted again until the drawing is erased or reset. Refer to Figure A.2

for a snapshot of this action.

4. Adjust the CR3BP look-ahead time-of-flight as desired from the system menu.

This action is not fixed per drawing/orbit. The value can be adjusted throughout

the drawing process. Refer to Figure A.3 for a snapshot of this action.

5. Close the system menu to start drawing. The drawings can only be drawn when

menu is not active in the scene.

6. Start drawing the periodic orbit of desired shape with the right controller trigger

button. The drawing appears in the scene in yellow color. Refer to Figure A.10 for

a snapshot of this action.

7. After a slight delay, the CR3BP look-ahead trajectory emanating from the drawing

should appear in color white. Refer to Figure A.10 for a snapshot of this action.
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Identification of Periodic Orbits in Technique-II: A Screenplay continued....

8. Check if the drawing is satisfactory. If it’s not, check if only part of the drawing

is bad. If only part of the drawing is bad, then erase the bad part and continue

drawing the desired orbit. If all of the drawing is bad, then reset the scene and

start fresh from Steps 2 through 4. If the drawing so far is satisfactory, then verify

if the CR3BP look-ahead trajectory is satisfactory. If yes, accept the look-ahead

trajectory into the initial-guess. If no, continue drawing the desired periodic orbit

with the right controller. Refer to Figures A.11 or A.12 for a snapshot of these

actions.

9. Throughout the drawing process, the CR3BP look-ahead path appears along with

the drawing. So keep verifying if the initial-guess can be completed with the look-

ahead path or if the drawing is bad partly or wholly and acting accordingly.

10. Upon completion of the drawing, or acceptance of the look-ahead path to complete

the drawing, select and adjust the desired number of patch points along the initial-

guess using the system menu. The number of patch points should capture the

curvature of the initial-guess properly to find a good solution orbit. Refer to Figure

A.4 for a snapshot of this action.

11. Next, select the desired optimizer from the drop-down menu of options for the

optimizer in the system menu. It is okay to experiment with all the options for a

single drawing, but each option can only be used one at a time. Refer to Figure

A.5 for a snapshot of this action.

12. Next, run the optimizer from the system menu button dedicated to it. Refer to

Figure A.6 for a snapshot of this action.
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Identification of Periodic Orbits in Technique-II: A Screenplay continued....

13. Now, wait for the optimizer to finish and the solution orbit to appear in the scene

in color magenta. Refer to Figure A.7 for a snapshot of this action.

14. When the solution periodic orbit appears in the scene, review it for the quality of

the solution with respect to the initial-guess, which also simultaneously appears in

the scene. The quality of the solution can also be assessed based on the solution

parameters that appear along with the scene in text form. Of particular importance

is the constraint violation parameter. Typically, a value of at or below 1e − 6 is

considered to be good. Refer to Figure A.8 for a snapshot of this action.

15. If the solution orbit is satisfactory, then archive the solution using the system menu

option for it. Refer to Figure A.9 for a snapshot of this action.

16. If the solution is not satisfactory, reset the scene and start from steps 2 through 4

again.

4.2.3 Technique-III: Initial-Guess from Patch-Points

In this technique drawings are not employed, but instead the human user immersed in the

cislunar CR3BP system is prompted to select position points along the intended periodic orbit.

After the first two position patch points are placed by the user in the VR scene, the user is

allowed to manipulate a lookahead CR3BP trajectory emanating from the first two patch points,

by maneuvering the velocity direction vector so the CR3BP trajectory can match both the patch

points along the way. The user can then continue to place patch points in the scene continuously

to complete a periodic orbit initial-guess from the patch points. Figure 4.6 is showing the VR

user interaction menu for Technique-III.
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Figure 4.6: VR User-Interaction Menu for Technique-III

In the VR menu there are actions that a human user can take by pointing the laser pointer

from the right controller to the appropriate menu item and pressing trigger, to generate the

initial-guess in Technique-III. Figure 4.7 is showing the flow-chart for this technique. The

screenplay for this technique as implemented in VR is shown immediately after the Figure 4.7.
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Figure 4.7: A Flow-Chart of Periodic Orbit Identification in Technique-III
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Identification of Periodic Orbits in Technique-III: A Screenplay

The screenplay for the VR scene for periodic identification in Technique-III is,

1. Mount the VR headset and enter the VR scene with the right controller turned on.

Human user sees the scene in Figure 4.1.

2. Adjust the height of the system as desired from the system menu. The system menu

can be accessed from the menu button of the right controller. Refer to Figure A.1

for a snapshot of this action.

3. Adjust the energy level of CR3BP system as desired from the system menu. This

action is fixed per orbit, i.e., once the energy is fixed for the orbit, it cannot be

adjusted again until the all the patch points are erased or reset. Refer to Figure A.2

for a snapshot of this action.

4. Adjust the CR3BP look-ahead time-of-flight as desired from the system menu.

This action is not fixed per orbit. The value can be adjusted throughout the drawing

process. Refer to Figure A.3 for a snapshot of this action.

5. Close the system menu to start placing the patch points. The patch points can only

be added when menu is not active in the scene.

6. Start adding the patch points along the periodic orbit of desired shape with the

right controller trigger button. The patch points appear in the scene in white color.

Refer to Figure A.13 for a snapshot of this action.

7. After a slight delay, the CR3BP look-ahead trajectory emanating from the patch

points should appear in color white. Refer to Figure A.13 for a snapshot of this

action.
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Identification of Periodic Orbits in Technique-III: A Screenplay continued....

8. Now, manipulate the velocity direction vector with the right controller trigger but-

ton to align the CR3BP look-ahead path with the two initial patch points. The

velocity direction vector has all 3 degrees of freedom. However, the velocity mag-

nitude is fixed for the two patch points based on the energy level chosen and a

forward finite difference method used to compute velocity magnitude. Refer to

Figure A.14 for a snapshot of this action.

9. The patch points are considered good if the CR3BP path can be aligned with the

patch points using velocity direction vector manipulation. If a patch point is not

good, erase the patch point and continue to adding a new patch point. If the current

patch point is good, capture the patch point into the initial guess for the intended

periodic orbit. Refer to Figure A.16 for a depiction of this action in VR.

10. Next, verify if the whole initial guess is good or not. If the CR3BP path captured

from all the patch points is resembling the intended orbit shape, then the whole

initial guess is considered good. If it is not, reset the scene and start from the

beginning with step 3.

11. If the whole initial guess is good, next verify if the initial guess construction is

complete, if not continue to adding the next patch point and repeat the steps 8

through 10. Refer to Figure A.15 for a snapshot of this action.

12. Upon completion of the construction of the initial guess using patch points, select

the desired optimizer from the drop-down menu of options for the optimizer in the

system menu. It is okay to experiment with all the options for a single initial guess

using the patch points, but each option can only be used one at a time. Refer to

Figure A.5 for a snapshot of this action.

13. Next, run the optimizer from the system menu button dedicated to it. Refer to

Figure A.6 for a snapshot of this action.
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Identification of Periodic Orbits in Technique-III: A Screenplay continued....

14. Now, wait for the optimizer to finish and the solution orbit to appear in the scene

in color magenta. Refer to Figure A.7 for a snapshot of this action.

15. When the solution periodic orbit appears in the scene, review it for the quality of

the solution with respect to the initial-guess, which also simultaneously appears in

the scene. The quality of the solution can also be assessed based on the solution

parameters that appear along with the scene in text form. Of particular importance

is the constraint violation parameter. Typically, a value of at or below 1e − 6 is

considered to be good. Refer to Figure A.8 for a snapshot of this action.

16. If the solution orbit is satisfactory, then archive the solution using the system menu

option for it. Refer to Figure A.9 for a snapshot of this action.

17. If the solution is not satisfactory, reset the scene and start from step 3 again.

4.2.4 Technique-IV: Initial-Guess from the Simulation of Pure CR3BP Dynamical Motion

In this technique, pure CR3BP dynamical motion is leveraged to construct initial-guesses. In

the VR scene for this technique, the human user manipulates the initial position and velocity

(magnitude and direction) as desired to get an approximate shape for the desired periodic orbit.

Once an approximate shape is achieved in the CR3BP dynamics that resembles the desired

periodic orbit, the human user can then proceed to choose the patch points along the CR3BP

path and use an optimizer to correct for the exact desired orbit from the initial-guess. Figure

4.8 is showing the VR user interaction menu for Technique-IV.
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Figure 4.8: VR User-Interaction Menu for Technique-IV

In the VR menu there are actions that a human user can take by pointing the laser pointer

from the right controller to the appropriate menu item and pressing trigger, to generate the

initial-guess in Technique-IV. Figure 4.9 is illustrating the flow-chart for this technique. A

screenplay for the technique follows immediately after.
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Figure 4.9: A Flow-Chart of Periodic Orbit Identification in Technique-IV
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Identification of Periodic Orbits in Technique-IV: A Screenplay

The screenplay for the VR scene for periodic identification in Technique-IV is,

1. Mount the VR headset and enter the VR scene with the right controller turned on.

Human user sees the scene in Figure 4.1.

2. Adjust the height of the system as desired from the system menu. The system menu

can be accessed from the menu button of the right controller. Refer to Figure A.1

for a snapshot of this action.

3. Adjust the CR3BP look-ahead time-of-flight as desired from the system menu.

This action is not fixed per orbit. The value can be adjusted throughout the initial-

guess construction process. Refer to Figure A.3 for a snapshot of this action.

4. Close the system menu to start manipulating initial position and velocity. The

manipulation can only be done when menu is not active in the scene.

5. Start adding the initial position point with the right controller trigger button. The

initial position appears in the scene in white color. Refer to Figure A.17 for a

snapshot of this action.

6. After a slight delay, the CR3BP look-ahead trajectory emanating from the initial

position and a random velocity appears in color white. Refer to Figure A.17 for a

snapshot of this action.

7. Now, manipulate the velocity vector with the right controller trigger button to

achieve the desired CR3BP path with the initial position point. The velocity vector

has all 3 degrees of freedom for direction and length of the vector represents the

magnitude. Refer to Figure A.18 for a depiction of this action in VR.
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Identification of Periodic Orbits in Technique-IV: A Screenplay continued....

8. Next, verify if the whole initial guess is good or not. If the CR3BP path captured

from the initial position point and velocity is resembling the intended orbit shape,

then the whole initial guess is considered good. If it is not, change the initial

position point location and repeat step 7. If yes, proceed to next step.

9. Upon completion of the construction of the initial guess, select and adjust the

desired number of patch points along the initial-guess using the system menu. The

number of patch points should capture the curvature of the initial-guess properly

to find a good solution orbit. Refer to Figure A.4 for a snapshot of this action.

10. Next, select the desired optimizer from the drop-down menu of options for the

optimizer in the system menu. It is okay to experiment with all the options for a

single initial guess, but each option can only be used one at a time. Refer to Figure

A.5 for a snapshot of this action.

11. Next, run the optimizer from the system menu button dedicated to it. Refer to

Figure A.6 for a snapshot of this action.

12. Now, wait for the optimizer to finish and the solution orbit to appear in the scene

in color magenta. Refer to Figure A.7 for a snapshot of this action.

13. When the solution periodic orbit appears in the scene, review it for the quality of

the solution with respect to the initial-guess, which also simultaneously appears in

the scene. The quality of the solution can also be assessed based on the solution

parameters that appear along with the scene in text form. Of particular importance

is the constraint violation parameter. Typically, a value of at or below 1e − 6 is

considered to be good. Refer to Figure A.8 for a snapshot of this action.

14. If the solution orbit is satisfactory, then archive the solution using the system menu

option for it. Refer to Figure A.9 for a snapshot of this action.

15. If the solution is not satisfactory, reset the scene and start from step 3 again.
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4.3 The Numerical Algorithms for Periodic Orbit Identification

There are two types of numerical optimization algorithms employed for periodic orbit identifi-

cation. They are the multiple-shooting method (Section 3.2.3) and the generalized collocation

method (Section 3.3.1). Here, I present the initial-guess construction methods and the cost

function for periodic orbit identification VR schemes.

4.3.1 The Cost Function for Periodic Orbit Identification

The selected cost function for the optimization is the average Euclidean distance of all patch-

points along the discrete candidate solution trajectory to the closest points along the cost refer-

ence. In case of Technique-I, the cost reference is a collection of patch-points along the human

drawing. In case of all the other techniques, the cost reference is the collection of initial set of

CR3BP patch-points from the initial-guess. Formally, the cost function is defined as,

J =
1

n

n∑
i=1

√
(xi − xrefi)

2 + (yi − yrefi)
2 + (zi − zrefi)

2 (4.1)

In Equation (4.1), xref, yref and zref are the components of closest position points along the

cost reference. xi, yi, zi, are the components of position points along the candidate optimal

trajectory as calculated in the optimizer. Here, n is total number of patch-points along the

candidate optimal trajectory. The goal of the optimizer is to minimize J subject to the dynamics

specified in Equations (2.36). It is important to note that the cost function does not include any

conditions on velocity and time-of-flight because these are not directly specified by the human

user.

4.3.2 Initial-Guesses for Technique-I

In this technique the variable-time collocation optimizer and multiple-shooting correctors are

employed. The collocation optimizer takes (N+1)
2

variable nodes per each arc in the input vec-

tor for the NLP solver, where N is the degree of the orthogonal polynomials employed. In this
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dissertation, seventh degree Legendre-Gauss polynomials are employed. From the VR envi-

ronment, the application only records positional data. A method is needed to generate a good

initial guess for velocity at the variable nodes and the time-of-flight of each arc. Along with

the positional data, having velocity and time-of-flight produces the complete set of information

to initiate the drawing-to-orbit mapping process. Given that the trajectory energy measure for

the CR3BP, called the Jacobi constant, complementing the position data-set, we employ finite-

differences method to fill in the missing velocity and time-of-flight data in the initial guess.

There are n− 1 trajectory arcs chosen from the user-drawn trajectory for position data, where

n is the number of patch points given as input in the VR menu. At arc patch-points si along the

trajectory, a central difference scheme is used for computing the velocity direction ( v⃗i
|v⃗i| ), and a

forward difference scheme is used for computing the time-of-flight (∆ti). These are given by

the Equations,

v⃗i
|v⃗i|

=
p⃗i+1 − p⃗i−1

|p⃗i+1 − p⃗i−1|
, with p⃗ =


x

y

z

 (4.2)

|v⃗i| =

√
x2
i + y2i +

2(1− µ)

di
+

2µ

ri
− C (4.3)

∆ti =
|p⃗i+1 − p⃗i|

|v⃗i|
(4.4)

for all integer i values in [1, n − 1]. In these Equations, the subscript i denotes the identifier

for the patch points. In Equation (4.3), µ denotes the mass parameter, C denotes the Jacobi

constant, d and r denote distances of the spacecraft from the larger and the smaller primaries

respectively. The Jacobi constant is chosen by the human user in the VR menu. It’s also worth

noting that the central difference scheme is employed for the velocity direction guess, because

a higher accuracy is needed in this case than for the time-of-flight where a forward difference

scheme is sufficient. Once the initial guesses for velocity and time-of-flight are computed at

the arc boundaries, the values of state at the variable nodes in each arc of the collocation input

vector are computed with linear interpolation.The input vector for the variable time collocation
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optimizer is,

X⃗ =



x1,1

.

.

x1,N+1
2

.

.

.

xn,1

.

.

xn,N+1
2

.

.

żn,N+1
2

T1

.

.

Tn−1



(4.5)

The input vector for the multiple-shooting variable time corrector is,

X⃗ =



s⃗1

s⃗2

.

.

.

s⃗n−1

s⃗n

T1

.

.

Tn−1



(4.6)
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4.3.3 Initial-Guesses for Technique-II

For this technique, variable time collocation, fixed and variable time multiple-shooting algo-

rithms are employed. The collocation optimizer takes (N+1)
2

variable nodes per each arc in

the input vector for the NLP solver, where N is the degree of the orthogonal polynomials em-

ployed. In this dissertation, the Legendre-Gauss polynomials are employed. The initial-guess

input vector is constructed by dividing the entire CR3BP trajectory input into n patch points

first. Second, the in each of the trajectory arcs outlined by the patch points, a free CR3BP

trajectory is propagated to obtain the variable nodes in the input per each arc. The input vector

is of the form given in Equation (4.5) for variable time collocation optimizer. The input vector

for multiple-shooting fixed time corrector is,

X⃗ =



s⃗1

s⃗2

.

.

.

s⃗n−1

s⃗n

T



(4.7)

and is of the form for variable time multiple-shooting corrector,

X⃗ =



s⃗1

s⃗2

.

.

.

s⃗n−1

s⃗n

T1

.

.

Tn−1



(4.8)
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4.3.4 Initial-Guesses for Technique-III

For technique-III, variable-time collocation optimizer and fixed-time and variable-time multiple-

shooting corrector algorithms are employed for identifying periodic orbits from the patch-point

based initial guesses. The input vectors for all these three algorithms are as given in Equations

(4.5), (4.7) and (4.8) respectively. The input vectors are constructed directly from the CR3BP

state emanating from the patch-points given in the initial-guess in this technique from the VR

platform.

4.3.5 Initial-Guesses for Technique-IV

For technique-IV, fixed-time and variable-time multiple-shooting corrector algorithms are em-

ployed for identifying periodic orbits from the pure CR3BP state based initial guesses. The

input vectors for the two algorithms are as given in Equations (4.7) and (4.8) respectively. The

input vectors are constructed directly from the CR3BP state emanating from the initial position

and velocity given in this technique from the VR platform.

4.3.6 Implementation Details

The fixed time and variable time multiple-shooting and the variable time collocation algorithms

are implemented in MATLAB, leveraging the fmincon tool with the IPOPT NLP solver. For

multiple-shooting implementations, the MATLAB version is supplied with analytical deriva-

tives for the Jacobian matrix. The variable time multiple-shooting and collocation algorithms

are also implemented in Python, leveraging the CasADi [31] package. However, the Jacobian

matrix is constructed automatically by the CasADi package using the automatic differentiation

feature.

4.4 System Architectures for Periodic Orbit Identification Techniques

Figures 4.10 and 4.11 are showing the system architectures for the periodic orbit identification

techniques. Note that the four periodic orbit identification techniques each have a single VR

application that implements both these architectures together.
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Figure 4.10: Periodic Orbit Identification System Architecture with MATLAB Support

Figure 4.11: Periodic Orbit Identification System Architecture with Python (CasADi) Support

4.5 Transfer Trajectory Identification Technique

For transfer trajectory identification, the orbit-chain method as described by Pritchett [19] is

employed. In the orbit-chain method, there are six steps for composition of a good initial guess

to transfer problem between two orbits. The six steps of this method are,
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1. Analyze: In this step, the energy versus time-of-flight plots for various families of multi-

body orbits are analyzed to identify intermediate orbits that gradually increase/decrease

the energy of the spacecraft path from the source to the target orbit.

2. Select: In this step, the intermediate orbits are selected from the energy plots to stitch

together to form an initial guess that can take the spacecraft from source energy level to

the target energy level.

3. Clip: In this step, the intermediate orbits are clipped into parts that can together form a

reasonable initial path for the orbital transfer.

4. Subdivide: In this step, the parts of the intermediate orbits are divided into a reasonable

number of arcs for the direct collocation algorithm that processes the initial guess.

5. Stack: In this step, the initial guess input vector to the collocation optimizer is composed

by stacking the arcs of the individual parts of the transfer trajectory initial guess from

previous step.

6. Define Control History: In this final step, a reasonable guess for control history along

the initial guess is made to finish the problem formulation for the collocation optimizer.

The first three steps from above list are implemented in the VR scene for the transfer tra-

jectory identification. A human operator can inspect the energy versus time-of-flight plots of

various families of cislunar CR3BP system and compose a reasonable initial guess for a trans-

fer. While the operator is exploring the plots, the corresponding orbits from selections in the

plots are also shown to the operator. This allows for the operator to interactively choose inter-

mediate orbits that make sense in the physical space of the cislunar CR3BP system. The op-

erator can then clip the chosen intermediate orbits at the appropriate positions in the simulated

cislunar CR3BP system. Steps 4 through 6 are conducted offline in the attached collocation

optimizer. The human operator can trigger the collocation optimizer from the VR controller.

The result of the collocation optimizer is eventually displayed to the human operator in the VR

scene. A flow-chart for a representative flow of actions in transfer trajectory identification VR

scene are shown in Figure 4.12. A screenplay for this flow-chart is presented after this Figure.
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Figure 4.12: A Flow-Chart of Transfer Trajectory Identification in VR
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Identification of Low-Thrust CR3BP Transfer Trajectories: A Screenplay

The screenplay for the VR scene for periodic identification from pure CR3BP dynamical

motion is,

1. Mount the VR headset and enter the VR scene with the right controller turned on.

Human user sees the scene in Figure A.19.

2. Adjust the height of the system as desired from the system menu. The system menu

can be accessed from the menu button of the right controller. Refer to Figure A.1

for a snapshot of this action.

3. From the list of energy-versus-time-of-flight plots, select the plot for the source

orbit family, with the right controller trigger button. Refer to Figure A.20 for a

depiction of this action in VR.

4. In this plot, scroll through the energy points and review the corresponding CR3BP

orbits displayed in the scene. Refer to Figure A.21 for a depiction of this action in

VR.

5. Select a desired source orbit from the menu option designated for orbit selection.

Refer to Figure A.22 for a depiction of this action in VR.

6. Go back to the list of energy-versus-time-of-flight plots and then select the plot for

the desired intermediate orbit family. Refer to Figure A.23 for a depiction of this

action in VR.

7. In this intermediate family energy plot, scroll through the energy points and review

the corresponding CR3BP orbits displayed in the scene. Refer to Figure A.24 for

a depiction of this action in VR.

8. Select a desired intermediate orbit from the menu option designated for orbit se-

lection. Make sure to select an orbit with either higher or lower energy depending

on whether the source orbit energy is lower or higher than the intended target orbit

energy level. Refer to Figure A.25 for a depiction of this action in VR.
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Identification of Low-Thrust CR3BP Transfer Trajectories: A Screenplay contin-

ued....

9. Verify whether all necessary intermediate orbits are selected. If not, repeat steps 6

through 8 as many times as necessary.

10. If all intermediate orbits are selected, proceed to selecting the energy-versus-time-

of-flight plot for the family of orbits for the target orbit. Refer to Figure A.26 for

a depiction of this action in VR.

11. In this plot, scroll through the energy points and review the corresponding CR3BP

orbits displayed in the scene. Refer to Figure A.27 for a depiction of this action in

VR.

12. Select a desired target orbit from the menu option designated for orbit selection.

Refer to Figure A.28 for a depiction of this action in VR.

13. Now, switch the scene mode to clipping mode from the menu. In this mode, step 2

from the orbit-chain method is realized. In this mode, human operator selects the

parts of the source, intermediate and target orbits that are part of the initial-guess

for the transfer. To do so, the human operator clips each orbit with starting and

ending points of the part that becomes part of the initial-guess. Refer to Figures

A.29 and A.30 for a depiction of these actions in VR.

14. Upon completion of clipping step, switch the scene mode to optimization mode

from the menu. Refer to Figure A.31 for a depiction of this action in VR.

15. Now, run the optimizer from the menu option designated for this action. Refer to

Figure A.32 for a depiction of this action in VR.
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Identification of Low-Thrust CR3BP Transfer Trajectories: A Screenplay contin-

ued....

16. Wait for the final solution to appear in the scene. While the optimizer is running,

the intermediate solutions are displayed to the human operator in the scene, so the

progression of the solution towards the final solution can be seen. Refer to Figure

A.7 for a depiction of this action in VR.

17. Upon completion of optimization and display of the final solution, review the

transfer solution. To facilitate the review, a solution parameter panel is displayed

to the human operator, along with the transfer trajectory path shown to the operator

in the scene. Refer to Figure A.34 for a depiction of this action in VR.

18. If the solution is acceptable, archive the solution using the menu option and quit.

Refer to Figure A.35 for a depiction of this action in VR.

19. If the solution is not acceptable, reset the scene from the menu option and start

from step 3 again.

4.6 The Numerical Algorithm for Transfer Trajectory Identification

The generalized collocation algorithm described in Section 3.3.1 is able treat inputs and con-

straints for periodic orbit identification only. To reuse the generalized collocation algorithm

for the transfer trajectory identification (Collocation Optimization for Low-Thrust [COLT] as

defined by Pritchett [19]), control variables are introduced in the input vector to this algorithm

and the constraint formulation is modified to use the control variables from the input vector to
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enforce control based constraints of the problem. The new input vector is given as,

X⃗ =
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(4.9)
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In Equation (4.9), variables mI and mF represent initial and final masses in each segment of the

transfer trajectory in kilograms. Variables u1, u2 and u3 represent the x, y and z components of

the thrust vector ui in each of the n−1 transfer trajectory segments. There is a thrust component

of acceleration enforced in the system dynamics as follows,

ẍ = 2nẏ + n2x− (1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3
+

T

m
u1

ÿ = −2nẋ+ n2y − (1− µ)y

d3
− µy

r3
+

T

m
u2

z̈ = −(1− µ)z

d3
− µz

r3
+

T

m
u3

(4.10)

In addition the following constraints are enforced on mass consumption and thrust vector in

each transfer trajectory segment,

σi =
mI,i −mF,i

ṁmax∆ti

0 ≤ σi ≤ 1

||ui|| =
√

u2
1,i + u2

2,i + u2
3,i = 1

(4.11)

In this dissertation the low-thrust transfer problem is solved with constant thrust thrust en-

gines with constant maximum mass flow rate, mmax. Constant thrust value used is 200 milli-

Newtons. mmax computed assuming an engine Isp of 2000 seconds. The initial mass of the

spacecraft is always assumed to be 1000 kilograms.

4.7 System Architecture for the Transfer Trajectory Identification Technique

Figure 4.13 is showing the system architecture for the VR application built to implement the

transfer trajectory identification technique. The MATLAB optimizer shown in this figure uti-

lizes a Jacobian constructed using automatic differentiation feature provided by ADiGator [32]

tool.
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Figure 4.13: Transfer Trajectory Identification System Architecture with MATLAB Support
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Chapter 5

Periodic Orbit Identification on the Virtual Reality Platform

This chapter presents the verification results for four periodic orbit identification techniques

from Chapter 4. For the verification of the techniques, four types of L1 Lagrange point orbits,

{Lyapunov, halo, axial, and vertical}, are identified. This is done so to establish a baseline

for the validity of the periodic orbit identification techniques developed in VR. Note that even

though results are only presented for L1 orbits, the techniques are capable of recovering any

type of periodic orbit, if one exists. After all the results for the verification are presented, a

comparison of the results from all four techniques is also presented.

5.1 Technique-I Periodic Orbits

In the verification experiments, an energy level of 3 is used for all four orbit types, for the initial-

guess generation for the corrector algorithms using the method described in Section 4.3.2.

Figure 5.1 is showing a set of four of the common types of Lagrange point orbits identified

using this technique. Tables 5.1 through 5.4 are showing the solution parameters for the orbit

solutions in Figure 5.1.
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Table 5.1: Solution Parameters for an L1 Lyapunov Solution from Technique-I

Parameter Value

Arcs 11

Time-of-Flight [NTU] 3.9530031092839035

Jacobi-Constant [NDIM] 3.0205700269380142

Constraint-Violation [NDIM] 2.1083972943537736e− 14

Corrector-Type Variable-Time-Collocation

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Drawing-Energy [NDIM] 3

Execution-Time [Seconds] 2.1621222496032715

Table 5.2: Solution Parameters for an L1 Halo Solution from Technique-I

Parameter Value

Arcs 10

Time-of-Flight [NTU] 2.78069602990958

Jacobi-Constant [NDIM] 3.0678526605049323

Constraint-Violation [NDIM] 4.542315695888056e− 06

Corrector-Type Variable-Time-Multiple-Shooting

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Drawing-Energy [NDIM] 3

Execution-Time [Seconds] 29.089023113250732
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Table 5.3: Solution Parameters for an L1 Axial Solution from Technique-I

Parameter Value

Arcs 12

Time-of-Flight [NTU] 3.9684431832861664

Jacobi-Constant [NDIM] 3.0163973684023855

Constraint-Violation [NDIM] 8.964209003599562e− 14

Corrector-Type Variable-Time-Collocation

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Drawing-Energy [NDIM] 3

Execution-Time [Seconds] 2.667895793914795

Table 5.4: Solution Parameters for an L1 Vertical Solution from Technique-I

Parameter Value

Arcs 8

Time-of-Flight [NTU] 3.3565818626122734

Jacobi-Constant [NDIM] 3.0704190440173043

Constraint-Violation [NDIM] 5.868312963342263e− 06

Corrector-Type Variable-Time-Collocation

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Drawing-Energy [NDIM] 3

Execution-Time [Seconds] 3.953247547149658
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(a) Lyapunov (b) Halo

(c) Axial (d) Vertical

Figure 5.1: Sample Collection Periodic Orbits Identified in Technique-I

5.2 Technique-II Periodic Orbits

In the verification experiments, an energy level of 3 is used for all orbit type drawings. The

initial-guess is constructed using the CR3BP state emanating from the drawing. In this tech-

nique, the drawing and the CR3BP-guess seem to overlap, but in actuality they do not, but

are very close to each other in position space. However, the drawing does not have any valid

velocity and epoch components associated with it, but the CR3BP-guess does, making it easier

for the optimizer to find solutions.
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Figure 5.2 is showing a set of four of the common types of Lagrange point orbits identified

using this technique. Tables 5.5 through 5.8 are showing the solution parameters for the orbit

solutions in Figure 5.2.

Table 5.5: Solution Parameters for an L1 Lyapunov Solution from Technique-II

Parameter Value

Arcs 12

Time-of-Flight [NTU] 4.568494857060037

Jacobi-Constant [NDIM] 2.9891794430643097

Constraint-Violation [NDIM] 2.9406406316202887e− 13

Corrector-Type Variable-Time-Collocation

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Drawing-Energy [NDIM] 3

Execution-Time [Seconds] 3.0364768505096436

Table 5.6: Solution Parameters for an L1 Halo Solution from Technique-II

Parameter Value

Arcs 8

Time-of-Flight [NTU] 2.751940538195498

Jacobi-Constant [NDIM] 3.045357990174661

Constraint-Violation [NDIM] 8.139646118042634e− 07

Corrector-Type Variable-Time-Multiple-Shooting

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Drawing-Energy [NDIM] 3

Execution-Time [Seconds] 28.4535710811615
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Table 5.7: Solution Parameters for an L1 Axial Solution from Technique-II

Parameter Value

Arcs 12

Time-of-Flight [NTU] 3.9862388626505454

Jacobi-Constant [NDIM] 3.0109441531197811

Constraint-Violation [NDIM] 6.0127116847896948E − 7

Corrector-Type Variable-Time-Collocation

Corrector-Platform MATLAB (fmincon)

NLP-Solver IPOPT

Drawing-Energy [NDIM] 3

Execution-Time [Seconds] 6.5581

Table 5.8: Solution Parameters for an L1 Vertical Solution from Technique-II

Parameter Value

Arcs 8

Time-of-Flight [NTU] 3.177359636047557

Jacobi-Constant [NDIM] 3.0979839861887917

Constraint-Violation [NDIM] 8.203740390221706e− 06

Corrector-Type Variable-Time-Multiple-Shooting

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Drawing-Energy [NDIM] 3

Execution-Time [Seconds] 29.990614414215088
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(a) Lyapunov (b) Halo

(c) Axial (d) Vertical

Figure 5.2: Sample Collection Periodic Orbits Identified in Technique-II

5.3 Technique-III Periodic Orbits

In the verification experiments for this technique, for Lyapunov and halo orbits an initial-guess

energy of 3 is used. For axial and vertical orbits, an initial-guess energy of 2.8 is used, since

these two types of orbits are hard to come by using this technique for initial-guess construction.

Essentially, the CR3BP look-ahead trajectory turned out to be hard to produce matching an axial

or vertical orbits.
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Figure 5.3 is showing a set of four of the common types of Lagrange point orbits identified

using this technique. Tables 5.9 through 5.12 are showing the solution parameters for the orbit

solutions in Figure 5.3.

Table 5.9: Solution Parameters for an L1 Lyapunov Solution from Technique-III

Parameter Value

Arcs 8

Time-of-Flight [NTU] 3.951551255222032

Jacobi-Constant [NDIM] 3.0209635460202797

Constraint-Violation [NDIM] 1.647503211476864e− 05

Corrector-Type Variable-Time-Multiple-Shooting

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Initial-Guess-Energy [NDIM] 3

Execution-Time [Seconds] 36.97302293777466

Table 5.10: Solution Parameters for an L1 Halo Solution from Technique-III

Parameter Value

Arcs 6

Time-of-Flight [NTU] 2.7548273687696936

Jacobi-Constant [NDIM] 3.046827083821511

Constraint-Violation [NDIM] 0.00017639290069655105

Corrector-Type Variable-Time-Collocation

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Initial-Guess-Energy [NDIM] 3

Execution-Time [Seconds] 2.902064085006714
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Table 5.11: Solution Parameters for an L1 Axial Solution from Technique-III

Parameter Value

Arcs 8

Time-of-Flight [NTU] 3.983774820288912

Jacobi-Constant [NDIM] 3.012268589220998

Constraint-Violation [NDIM] 2.5398364467679184e− 13

Corrector-Type Variable-Time-Collocation

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Initial-Guess-Energy [NDIM] 2.8

Execution-Time [Seconds] 1.0503809452056885

Table 5.12: Solution Parameters for an L1 Vertical Solution from Technique-III

Parameter Value

Arcs 8

Time-of-Flight [NTU] 3.6043309905671284

Jacobi-Constant [NDIM] 3.0389920834644744

Constraint-Violation [NDIM] 1.4987946001563528e− 06

Corrector-Type Variable-Time-Collocation

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Initial-Guess-Energy [NDIM] 2.8

Execution-Time [Seconds] 3.974919319152832
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(a) Lyapunov (b) Halo

(c) Axial (d) Vertical

Figure 5.3: Sample Collection Periodic Orbits Identified in Technique-III

5.4 Technique-IV Periodic Orbits

In this technique, the verification experiments do not need an input for the energy-level of

the initial-guess being constructed. The energy-level is implied from the initial-position and

velocity chosen for the initial-guess. Also, from these experiments, it became evident that

providing a reasonable match to half of the typical orbit shape is enough to identify solutions

in this method.
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Figure 5.4 is showing a set of four of the common types of Lagrange point orbits identified

using this technique. Tables 5.13 through 5.16 are showing the solution parameters for the orbit

solutions in Figure 5.4.

Table 5.13: Solution Parameters for an L1 Lyapunov Solution from Technique-IV

Parameter Value

Arcs 12

Time-of-Flight [NTU] 3.956193580122918

Jacobi-Constant [NDIM] 3.0198670702577557

Constraint-Violation [NDIM] 1.781961565091783e− 13

Corrector-Type Variable-Time-Collocation

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Execution-Time [Seconds] 0.5978765487670898

Table 5.14: Solution Parameters for an L1 Halo Solution from Technique-IV

Parameter Value

Arcs 9

Time-of-Flight [NTU] 2.5802468264395753

Jacobi-Constant [NDIM] 3.010086672919797

Constraint-Violation [NDIM] 5.659152423229619e− 06

Corrector-Type Variable-Time-Collocation

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Execution-Time [Seconds] 4.3062803745269775
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Table 5.15: Solution Parameters for an L1 Axial Solution from Technique-IV

Parameter Value

Arcs 12

Time-of-Flight [NTU] 4.906360299206213

Jacobi-Constant [NDIM] 2.9454014561047486

Constraint-Violation [NDIM] 1.1090985896426956e− 12

Corrector-Type Variable-Time-Collocation

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Execution-Time [Seconds] 0.5252444744110107

Table 5.16: Solution Parameters for an L1 Vertical Solution from Technique-IV

Parameter Value

Arcs 14

Time-of-Flight [NTU] 5.369606653563848

Jacobi-Constant [NDIM] 2.8406308069096884

Constraint-Violation [NDIM] 1.8711825435906043e− 07

Corrector-Type Variable-Time-Collocation

Corrector-Platform Python (CasADi)

NLP-Solver IPOPT

Execution-Time [Seconds] 6.21152925491333
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(a) Lyapunov (b) Halo

(c) Axial (d) Vertical

Figure 5.4: Sample Collection Periodic Orbits Identified in Technique-IV

5.5 Comparison of the Techniques

All four techniques are yielding periodic orbits from their respective initial-guess construction

techniques. However there are some conditions under which one technique is better over the

other. In technique-I, the user can freely draw a desired periodic orbit and then experiment with

various different energy levels for the drawing to find a solution. However, some energy levels

may not yield an initial guess from this method because the drawing may have crossed the

zero-velocity-surface for those energy levels. Current VR application for this technique does

not display the zero-velocity-surface for the user chosen energy level for the drawing, resulting

in the user potentially drawing in the infeasible space of the system dictated by the energy level.
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This same problem prevents certain drawings from becoming an initial-guess to solve for the

periodic orbit in Technique-II as well. Recall that the CR3BP look-ahead trajectory emanating

from the drawing is dependent upon the energy level specified by the user prior to the start of the

drawing in this technique. If the CR3BP look-ahead trajectory is crossing the corresponding

zero-velocity-surface for the input energy level, the initial-guess becomes infeasible. While

this same issue of crossing zero-velocity-surfaces is not encountered in technique-III, it did

turn out harder to produce initial-guesses for axial and vertical orbits in technique-III at certain

energy levels beyond 2.9. Although a formal human subject experiment is not conducted as

part of this dissertation, the users of technique-III did report additional difficulty and time-

consumption in constructing initial-guesses in this technique. Technique-IV on the other-hand

is reported to be the easiest to use and find solutions, since there are only initial-position and

velocity to be manipulated by the user to construct an initial-guess. Moreover, in the technique

an initial-guess resembling the desired orbit for only half a revolution is proven to yield a good

solution as can be seen from results presented in Section 5.4. In all four of the techniques,

the convergence rate is very high. A solution is almost always found using one or more of

the corrector algorithms. Also, the convergence constraint violation of the order of -4 or less

is yielding good solutions. However, no correlation among the corrector algorithms could be

found with these four techniques. In general, I have had to use all the corrector algorithms to

produce results in these four techniques. Despite that, the collocation algorithm from Python

(CasADi) implementation seems to do better in terms execution time among all the corrector

algorithms.
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Chapter 6

Transfer Trajectory Identification on the Virtual Reality Platform

This chapter presents the verification results for the transfer trajectory identification technique

from Chapter 4. For the verification of the technique, two example transfers from Pritchett’s

dissertation are considered. In the first example, an implementation flow-chart 4.12 is consid-

ered with a sample transfer from a distant retrograde orbit (DRO) to an L3 Lyapunov orbit, with

the aid of either L4 or L5 short-period orbits (SPOs). The choice of source, intermediate and

target orbit families comes from one of Pritchett’s verification examples for COLT [19].

An example transfer for this implementation is shown in Figures 6.1, 6.2, 6.3 and 6.4. In

Figure 6.1, one can see the source, intermediate and target orbits along with the clipped parts of

those orbits to compose the initial-guess for the transfer. In Figure 6.2, one can see the solution

blue trajectory that starts from the chosen starting point on the source DRO and ends at the

chosen end point on the L3 Lyapunov. Figure 6.3 is showing the mass consumption over the

time-of-flight taken for the transfer. Figure 6.4 is showing the thrust profile for the transfer.

Table 6.1 is listing the solution parameters from the COLT transfer algorithm.
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Figure 6.1: Initial-Guess Construction on the VR Platform for a DRO to L3 Lyapunov Transfer
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Figure 6.2: The Solution for a DRO to L3 Lyapunov Transfer

Figure 6.3: Mass Consumption for a DRO to L3 Lyapunov Transfer
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Figure 6.4: Thrust Profile for a DRO to L3 Lyapunov Transfer

Table 6.1: Solution Parameters for a DRO to L3 Lyapunov Transfer

Parameter Value

Arcs 75

Time-of-Flight [days] 68.218365976461058

Mass Consumed [kg] 8.6112706695555516

Constraint-Violation 9.414111e− 07

In the second example, an implementation flow-chart 4.12 is considered with a sample

transfer from a 9:2 Synodic resonance northern rectilinear halo orbit (NRHO) to a distant ret-

rograde orbit (DRO), with the aid of 3 : 4 resonant orbit family. The choice of source, inter-

mediate and target orbit families comes from one of Pritchett’s verification examples for COLT

[19].

An example transfer for this implementation is shown in Figures 6.5, 6.6, 6.7 and 6.8. In

Figure 6.5, one can see the source, intermediate and target orbits along with the clipped parts of

those orbits to compose the initial-guess for the transfer. In Figure 6.6, one can see the solution

blue trajectory that starts from the chosen starting point on the source NRHO and ends at the

chosen end point on the target DRO. Figure 6.7 is showing the mass consumption over the
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time-of-flight taken for the transfer. Figure 6.8 is showing the transfer thrust profile. Table 6.2

is listing the solution parameters from the COLT transfer algorithm.

Figure 6.5: Initial-Guess Construction on the VR Platform for an NRHO-to-DRO Exterior
Transfer
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Figure 6.6: The Solution for an NRHO-to-DRO Exterior Transfer
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Figure 6.7: Mass Consumption for an NRHO-to-DRO Exterior Transfer

Figure 6.8: Thrust Profile for an NRHO-to-DRO Exterior Transfer

Table 6.2: Solution Parameters for an NRHO-to-DRO Exterior Transfer

Parameter Value

Arcs 90

Time-of-Flight [days] 122.83050385584505

Mass Consumed [kg] 9.7394677774597085

Constraint-Violation 9.051082e− 07
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6.1 Comparison of Results

The transfer trajectory solutions in Figures 6.2 and 6.6 with those of Pritchett’s [19] are pre-

sented here. Pritchett’s results in comparison are shown in Figures 6.9 and 6.10.

Figure 6.9: Pritchett’s [19] Solution for a DRO to L3 Lyapunov Orbit Transfer
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Figure 6.10: Pritchett’s [19] Solution for an NRHO-to-DRO Exterior Transfer

For the first example of a DRO to L3 Lyapunov orbit transfer, the engine parameters and

the spacecraft initial mass are kept the same as that of Pritchett’s work. However, the source,

intermediate and target orbits are not exactly the same. This deviation is taken to prove that the

VR transfer technique is resilient to any arbitrary orbits. Despite this deviation, one see that

in comparison, the general shape of the solution orbits between the two are similar. Pritchett

reported that it took 79 days for this orbital transfer with 55 kg of fuel consumption. Whereas

in my example, one can see from Table 6.1 the orbital transfer was completed in approximately

68.22 days and with a far less fuel consumption of approximately 8.61 kg.

For the second example of an NRHO to DRO exterior transfer, the engine parameters and

initial mass are not kept the same as that of Pritchett’s work. This is because Pritchett employs

thrust continuation to arrive at his solution in this case and this process is deemed too slow for

a VR application. However, unlike the first example, the source and target orbits are same as

that of Pritchett’s work. But the intermediate orbits are different than his work. As expected

115



the comparison of results illustrates that the optimal transfer trajectory structures are different

owing to the different engine parameters, initial mass and lack of thrust continuation technique.

Despite this dissimilarity, one can see in current optimal trajectory in blue in Figure 6.6 that the

solution is reasonably good.
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Chapter 7

Conclusion

The virtual-reality technology platform continues to evolve to make the use of the hardware

more convenient. It is envisioned that the technology will eventually integrate seamlessly into

human lives and activities. As it stands today, as is shown in the work from this dissertation, the

real-3D aspect of virtual-reality technology opens up new avenues of solution methodologies

in fields that are highly visual and demand high human cognitive load.

7.1 Investigation Summary

Frameworks and VR applications for efficiently producing initial guesses for periodic orbit and

orbital transfer trajectory identification are designed, developed and verified as part of this dis-

sertation. The complex and chaotic cislunar CR3BP system demands good initial-guesses to

the powerful numerical algorithms available to solve trajectory design and optimization prob-

lems in this realm. This dissertation provides new approaches to the construction of good

initial-guesses leveraging the powerful third spatial dimension provided by the virtual reality

platform.

7.2 Periodic Orbit Identification Techniques

There are four techniques presented for the problem of periodic orbit identification. The first

technique is free of all dynamical structures during the initial-guess construction process. And

this makes the orbit identification algorithms execute for a longer time, however, there is more

freedom to explore the search space of the problem. However, the initial-guess construction

process is still subject to what dynamics allow for motion, and hence the technique could be
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enhanced to let the human user see the zero-velocity-surfaces in the 3D space. Technique-II

is an augmented version of Technique-I where the human user is provided some direction for

the drawing via a CR3BP look-ahead trajectory emanating from the drawing. This technique

provides a CR3BP conformant initial-guess for the numerical corrector algorithms to identify

the matching periodic orbit faster, while still suffering from the same zero-velocity-surface

crossing problem as that of Technique-I. Technique-III provides a more granular control over

the initial-guess construction by allowing intermediate patch point selection for the initial-

guess. This method is useful for when there are way points that one needs in the periodic orbit.

Although this technique is also potentially subject to the zero-velocity-surface crossing problem

theoretically, in practice no human user ran into this problem. Finally, technique-IV is a pure

CR3BP dynamical approach to the good initial-guess construction problem. In this method,

there are no restrictions on the energy level of the initial-guess. The energy level is purely

dictated by the initial-position and velocity chosen by the human user. This technique proved

to be the fastest in terms of initial-guess construction and periodic orbit identification. It also

turned out that matching first half of the intended periodic orbit is sufficient in this technique.

In practice all four techniques provided good periodic orbits from the initial-guesses, except

for when running into the zero-velocity-surface crossing problem in the first three techniques.

7.3 Transfer Trajectory Identification Technique

There is one technique presented for the problem of orbital transfer trajectory identification.

In this technique, the orbit-chain method is implemented to leverage the real 3D space of the

virtual-reality platform, making the technology a good fit for the Analyze, Select and Clip

steps of the method. The technique produced results that are comparable to baseline test results

from Pritchett’s dissertation, from where the orbit-chain method and test cases are borrowed.

Compared to the traditional transfer trajectory identification methods, this VR based method

seems to benefit from faster identification of the initial-guess.
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7.4 Future Work Recommendations

There is one obvious choice for future work for the periodic orbit identification techniques. The

obvious choice is to improve them with the display of the zero-velocity-surfaces to the human

user during the initial-guess construction process. There is also another obvious choice for the

transfer trajectory identification technique is to leverage the manifolds in addition to the orbits

for the initial-guess construction.

One not so obvious or perhaps a grandiose choice for future work is to build a system like

GMAT or Copernicus in VR. Tools like GMAT and Copernicus allow for manipulation of the

control parameters easily for the initial-guess construction but on the 2D desktops with some

3D augmentations to the initial-guess construction process. This 2D or the trying to operate in

a 3D manner on a desktop is not highly intuitive for the human user. Making a general mission

design tool like GMAT or Copernicus in VR has the potential to make the space trajectory

design not only intuitive, but also fun and easily accessible.
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Appendix A

The VR Snapshots

A.1 Common Snapshots

Figure A.1: AOH - A Depiction of the Adjustment of Height of CR3BP System in VR

Figure A.2: AOE - A Depiction of the Adjustment of Energy of CR3BP System in VR
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Figure A.3: AOTOF - A Depiction of the Adjustment of Time-of-Flight of CR3BP Look-Ahead
Path in VR

Figure A.4: AOPP - A Depiction of the Adjustment of Patch-Points in the Initial-Guess in VR

Figure A.5: SOP - A Depiction of the Selection Optimizer in VR
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Figure A.6: ROP - A Depiction of the Running of Optimizer in VR

Figure A.7: WFS - A Depiction of the Waiting for Solution in VR

Figure A.8: ROS - A Depiction of the Review of Solution in VR
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Figure A.9: AOS - A Depiction of the Archival of the Solution in VR

A.2 Periodic Orbit Identification Snapshots

A.2.1 Snapshots for Technique-II

Figure A.10: SDRWG-II - A Depiction of the Starting of the Drawing in VR
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Figure A.11: CDRWG-II - A Depiction of the Continuation of the Drawing in VR

Figure A.12: ALKHD - A Depiction of the Acceptance of the CR3BP Look-Ahead Path in VR
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A.2.2 Snapshots for Technique-III

Figure A.13: AIPPT - A Depiction of the First Two Patch-Point Placement

Figure A.14: MVAPPT - A Depiction of the Velocity Direction Vector Manipulation
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Figure A.15: ANPPT - A Depiction of the Continued Patch-Point Placement

Figure A.16: CLKIG - A Depiction of the Capture of Initial Guess Action
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A.2.3 Snapshots for Technique-IV

Figure A.17: APPT - A Depiction of the Placement of Initial Position Point

Figure A.18: MVV - A Depiction of the Manipulation of the Velocity Vector
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A.3 Transfer Trajectory Identification Snapshots

Figure A.19: A VR Orbital Transfer Scene with Energy Plots

Figure A.20: SOSOP - A Depiction of the Source Orbit Energy Plot

133



Figure A.21: SCRL-S - A Depiction of the Source Orbit Energy Plot Scrolling Action

Figure A.22: SOSO - A Depiction of the Selection of the Source Orbit

Figure A.23: SOIOP - A Depiction of the Intermediate Orbit Energy Plot
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Figure A.24: SCRL-I - A Depiction of the Source Orbit Energy Plot Scrolling Action

Figure A.25: SOIO - A Depiction of the Selection off the Intermediate Orbit

Figure A.26: SOTOP - A Depiction of the Target Orbit Energy Plot
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Figure A.27: SCRL-T - A Depiction of the Target Orbit Energy Plot Scrolling Action

Figure A.28: SOTO - A Depiction of the Selection of the Target Orbit

Figure A.29: SWTCLP - A Depiction of the Action to Switch to the Clipping Mode
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Figure A.30: CLIP - A Depiction of the Orbit Clipping Action

Figure A.31: SWTOPT - A Depiction of the Action to Switch to Optimization Mode

Figure A.32: ROP - A Depiction of the Action to Run Optimizer
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Figure A.33: WFS - A Depiction of the Action tO Wait for the Solution

Figure A.34: ROTS - A Depiction of the Review of the Solution

Figure A.35: AOTS - A Depiction of the Archival of the Solution

138


