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Abstract 

 

 As climate change continues to warm the waters of the Gulf of Mexico in the United 

States, tropical cyclone intensity in the region may increase which will threaten vulnerable 

communities. The goals of this project include estimating the physical damage risk to small- and 

medium-sized cities, the socially vulnerable populations therein, and the relationship between 

physical risk and social vulnerability for these communities. Hazus, FEMA’s risk-estimating 

tool, was used to determine the physical risk to each study site and showed higher risk areas were 

associated with severe winds. A principal component analysis was used on U.S. Census data to 

construct a social vulnerability index of each site. Spatial analyses determined that there were 

fewer areas of statistically significant correlations between risk and vulnerability than 

statistically significant areas, meaning vulnerability may not be as strong a determinant of risk. 

Studies on risk should include and explore other determinants beyond social vulnerability. 
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Chapter 1: Introduction to Thesis 

1.1 Introduction 

Tropical cyclones are well-known for being one of the most feared and destructive 

weather and climate hazards in the world. “Tropical cyclone” is an umbrella term that refers to 

an organized system of rotating thunderstorms with a low-pressure center that forms over warm 

ocean water (Roy and Kovordányi, 2012). Tropical cyclones include tropical depressions, 

tropical storms, and hurricanes; a categorization based on sustained wind speed (NHC, 2019; 

WMO, 2022). Tropical depressions have winds under 38 mph, and tropical storms have wind 

speeds between 39 mph and 73 mph (WMO, 2022). Once a storm has reached 74 mph, it is 

categorized as a hurricane: specifically, it is a Category 1 hurricane until wind speeds exceed 95 

mph (NHC, 2019). Category 2 hurricanes have wind speeds between 96 mph and 110 mph. 

Category 3, 4, and 5 hurricanes are known as “Major Hurricanes” (NHC, 2022). A Category 3 

hurricane has wind speeds between 111 mph and 129 mph (NHC, 2022). A Category 4 hurricane 

has wind speeds between 130 mph and 156 mph (NHC, 2019). A Category 5 hurricane must 

have winds that are at least 157 mph; being the deadliest storm category of the Atlantic Ocean 

tropical cyclones (NHC, 2019). Storms receive names once they have made it to at least tropical 

storm status (WMO, 2022). Threats such as storm surge, flooding, rip and storm tides, 

precipitation, damaging winds, landslides, and tornadoes can all be found within a tropical 

cyclone (WMO, 2022).  

The Gulf of Mexico, which has been hit by countless tropical cyclones, is the fastest-

growing coastline in terms of population in the United States, with a population increase of 

26.1% between 2000 and 2017 (Cohen, 2020). The population moving to this area has varied 
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demographics, and some of these demographics may be more susceptible to tropical cyclone 

damages. Socially vulnerable populations are social groups with the potential of loss based on 

the location of people and structures, how susceptible some individuals are, and their ability to 

prepare and recover based on demographic information (Cutter, 1996; Cutter et al., 2000; Yoon, 

2012). These groups, such as the elderly or very young, disabled, not English proficient, lower 

income, varying ethnicities and races, and females, can be found living in the study sites for this 

project (US Census Bureau, 2020). This is important because the presence of these groups will 

affect the area’s overall social vulnerability. Delineating the identified groups will be 

accomplished to better comprehend the vulnerability.  

The financial burden that tropical cyclones bring to the Gulf of Mexico are substantial. 

Between 1980 and July 9, 2021, there have been 39 tropical cyclones to hit the Gulf of Mexico 

that have individually cost $1 billion (NCEI, 2021). Since 1980, hurricanes cost the Gulf of 

Mexico an average of $16.2 billion a year, and over the past four decades, have cost the Gulf of 

Mexico a total of $680.9 billion (NCEI, 2021). In recent years, the average number of billion-

dollar weather and climate disasters in the United States has increased. In 2020 alone, 22 weather 

and climate disasters individually cost over $1 billion. Of these 22 extreme weather events, 7 

were tropical cyclones (NOAA, 2021). Tropical cyclones are the most destructive weather and 

climate disasters historically in the United States, in terms of lives lost as they have been directly 

responsible for 6,697 deaths, the most deaths out of any weather and climate hazard (NOAA, 

2021).  

This thesis will explore what the risk from tropical cyclones is to five small and medium-

sized coastal cities along the Gulf of Mexico in the United States. The study sites include 

Brownsville, Texas, Lafayette, Louisiana, Gulfport, Mississippi, Mobile, Alabama, and Cape 
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Coral, Florida. In addition to the physical risk, the social vulnerability of each study will be 

investigated by ranking each Census tract in the county, from “Very Low” to a “Very High” 

social vulnerability. Then, the risk and social vulnerability results are assessed for relationships, 

specifically if social vulnerability factors into the results of the risk analysis. The goal of this 

thesis is to take a deep dive into the understanding of the functions of risk and social 

vulnerability in overall risk assessments. The methodologies utilized in this thesis include Hazus, 

FEMA’s GIS-based risk-estimating program, constructing a social vulnerability index (SVI) 

designed from the results of a Principal Component Analysis (PCA), and the Bivariate Local 

Moran’s I spatial statistic test. The conclusions made from this thesis can be helpful for 

emergency managers, city and urban planners, disaster relief organizations, and policymakers by 

providing insight into where physical damage and socially vulnerable populations are located. 

This awareness will create a better outcome for recovery, mitigation, and preparedness planning 

and policies that will create more resilient coastal cities.  

1.2 Background 

1.2.1 Tropical Cyclones 

Tropical cyclones require necessary conditions to go from normal thunderstorms to a 

complex system of thunderstorms. To form, tropical cyclones require warm ocean water 

(specifically at least about 80º Fahrenheit), low pressure over the ocean due to an atmospheric 

disturbance, at least 200 miles away from the Equator, and low wind shear so storms can form 

(NOAA, 2020; NOS, 2021; Roy and Kovordányi, 2012). Tropical cyclones often begin as 

tropical waves, and as these waves move over warmer water, they become capable of forming 

thunderstorms that help to fuel the storm and create lower pressure (NSO, 2021). In the Northern 

Hemisphere (including the Gulf of Mexico), tropical cyclones rotate counterclockwise (WMO, 
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2022). There is consensus across the scientific community that there is a relationship between 

tropical cyclone intensity and sea surface temperature (Holland and Bruyère, 2014; Mudd et al., 

2014; Dinan, 2017) This is because sea surface temperature affects the intensity of tropical 

cyclones (NOAA, 2020; NOS, 2021). Recent models are supporting the idea that climate change 

will cause a spike in higher intensity tropical cyclones, such as fewer lower-category hurricanes, 

and more major hurricanes (Holland and Bruyère, 2014; Mudd et al., 2014; Dinan, 2017). This is 

due to an increase in tropical cyclone wind speeds related to rising sea surface temperatures 

(Holland Bruyère, 2014; Mudd et al., 2014). Additionally, hazards such as storm surge may 

increase due to climate change’s effect on sea level and tropical-cyclone wind intensity 

(Neumann et al., 2015; Dinan, 2017). The factor of climate change’s effect on storm surge can 

affect populations by increasing tropical cyclone costs, showing the need for climate change to 

be accounted for in future tropical cyclone risk research (Neumann et al., 2015).  

Besides their population size, the study sites (Brownsville (TX), Lafayette (LA), Gulfport 

(MS), Mobile (AL), and Cape Coral (FL)) were also chosen based on the number of times these 

cities were in the pathway of a tropical cyclone. Since 1980, within a 31-mile radius around each 

city, there have been 2 hurricanes that hit Cape Coral, 4 hit Mobile, 5 hit Gulfport, 5 hit 

Lafayette, and 3 hit Brownsville (NOAA, 2021). These hurricanes include well-known storms 

such as Hurricanes Irma, Charley, Andrew, Katrina, and Ivan (NOAA, 2021). Hurricane-force 

winds can extend up to 100 miles across a storm, and tropical storm-force winds can be felt up to 

300 miles from the eye of a tropical cyclone (URI, 2020). The strongest winds, those around the 

eye (the center of a storm where winds are at their weakest), can be felt up to 31 miles away 

from the edge of the tropical cyclone’s eye (URI, 2020).  Based on this, hurricane-force winds 

(winds 74+ mph) should be felt, at most, 31 miles away from the center of the storm. This is how 
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a radius of 31 miles for each study site was decided upon (URI, 2020). This was done to 

calculate the maximum distance for hurricane-force wind destruction that each study site could 

have felt by a storm.   

1.2.2. Social Vulnerability  

Social vulnerability is not hard conceptually to grasp, but it has had a plethora of 

definitions throughout the years (Cutter, 1996). For this project, social vulnerability will be 

considered as the potential of loss based on the location of people and structures, how susceptible 

some individuals are, and their ability to prepare and recover based on demographic information 

(Cutter, 1996; Cutter et al., 2000; Yoon, 2012). In general, an area of high social vulnerability 

would be an area where there would be great loss due to too many susceptible people that were at 

a high exposure and would not be able to recover. An area of low social vulnerability would be 

at a location not as likely to be damaged by a specific hazard with a population that can adapt 

and recover from the hazard (Bergstrand et al., 2014). Some definitions of vulnerability, define it 

as being a function of exposure and sensitivity to a hazard, with exposure being who or what is 

susceptible to the hazard, and sensitivity being how damaging can the hazard be to those affected 

by the hazard (Cutter et al., 2008; Dunning, 2020). Exposure can come from areas such as 

geographic location (being located closer to areas exposed to hazards), issues within the 

government’s framework, or a lack of effective planning. Sensitivity on the other hand can 

originate from a lack of proper insurance on physical assets. Different levels of exposure and 

sensitivity are necessary for comprehending how each study site will respond to a hazard 

(Dunning, 2020). 



19 

Several variables determine the social vulnerability of an area. These include the 

demographics of the areas, ages of the population, financial statuses, physical limitations, 

education levels, and technology and automotive availability, amongst others (Cutter et al., 2000; 

Yoon, 2012). Each variable can hold a different weight depending on what area of vulnerability 

is being examined. For example, some groups may have a harder time evacuating than 

recovering and vice versa. Someone who is over the age of 65 may have a physically hard time 

preparing for or evacuating, but if they are not in poverty, may have the money to recover. 

However, as will likely be seen later, no two variables are mutually exclusive, as an individual 

may have multiple variables factoring into their vulnerability. In coastal areas, policymakers and 

local governments understand how their areas are exposed and how sensitive they are critical in 

making their community less vulnerable to hazards. The response to the hazard is also critical in 

vulnerability since a community’s ability to respond effectively to a hazard overall reduces the 

vulnerability of a population while increasing resiliency (Dunning, 2020). 

Some drivers that impact social vulnerability to storms include race and ethnicity (black, 

Hispanic, Asian, Native), gender, language (English as a second language), age (the very young 

and the elderly), disability status and economic situations (poverty status), to name a few (Rufat 

et al., 2015). A lot of these drivers are not mutually exclusive. The level of income can affect 

one’s ability to prepare for and recover from a tropical cyclone since it costs money to do that. A 

factor such as level of education is more likely to affect one’s ability to prepare if the 

information is not presented understandably, but if they are able-bodied and physically capable, 

they may have an easier time recovering. Information such as age, ability, languages spoken, and 

education can be gathered by examining census data. (Tate, 2012). Identifying the major 
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vulnerable groups in these cities and understanding why these groups are vulnerable can clarify 

the social damage that could have afflicted them. 

  1.2.3 Risk Mitigation and Perception  

For this project, risk will be defined as the likelihood that a specific hazard is to occur in 

an area (Cutter, 1996). With this, the impact of the hazard and the source can also be factored in. 

Comprehending risk and combining mitigation techniques can create an overall hazard 

potential.  Mitigation, for this project, will be defined as fortifying anticipated “weak spots” 

based on previous occurrences and supporting recovery to reduce the effects of a natural hazard 

(Adger et al, 2005; Cutter et al., 2008; Cutter et al., 1996; Dunning, 2020). Mitigation involves 

having a community that can recover from hazards but improves itself after the hazard. In theory, 

this can range from updating building codes to withstand the hazard or creating evacuation and 

recovery plans tailored to those living in that area. Being able to mitigate a hazard can also lower 

vulnerability by decreasing exposure and risk (Adger et al., 2005). Mitigation also creates an 

increase in resilience (Cutter et al., 2008). These concepts are important as mitigation is 

hypothesized to affect the physical and social damage that arises after tropical cyclone impacts.  

As risk and mitigation can help us understand how a hazard is going to affect an area, 

understanding the hazard potential is key.  While the hazard potential’s main components are 

risk and mitigation, both of those are affected by other factors (Cutter, 1996). In this project, the 

biggest factors affecting hazard potential besides risk and mitigation will be geographic location 

and social vulnerability. Geographic location is important when discussing tropical cyclones, and 

the reason why is in the name: tropical. The threats of these storms in the United States are found 

within the southeastern United States. This means that people living in other areas of the country 
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are less likely to be affected by tropical cyclones. The Gulf of Mexico was chosen as the location 

to get study sites because these study sites are geographically in the pathway of hurricanes, 

making the potential for hazards here higher than for other areas. Social vulnerability is 

important because if there is a high population of one or several socially vulnerable groups high 

in one area, even a low magnitude of a specific hazard can have drastic effects. On the opposite 

end, in areas where social vulnerability is lower, a higher magnitude of a specific hazard may be 

required to inflict the same damage as a low magnitude hazard in a socially vulnerable area.  

Risk perception can factor into how vulnerable a population is, but it also affects 

resilience. Perceptions can vary based on the type of culture and society they were raised in, the 

hazard they are experiencing, the media source that provides their news for them, and their own 

experiences, and that a high-risk perception can lead to better perception of the hazard 

(Wachinger et al., 2013). Many people within a population who are moving directly on the coast 

may not have had much experience with tropical cyclones if any at all. The effects of experience 

on vulnerability work in two ways. The first is that the community is either new to the hazard, 

and over prepares and makes time to evacuate, or because they are new, they undermine the 

hazard since they haven’t experienced it. The other end of this is that people who have 

experienced a severe hazard will over prepare or evacuate, but if they have only experienced a 

weak hazard, they are more likely to be underprepared or not evacuate (Wachinger et al., 2013; 

Rufat et al, 2015). In terms of tropical cyclones, a great example would be a population that has 

experienced a major hurricane (Category 3 and above) or a tropical storm or depression (both are 

below Category 1 as far as wind speed). Communities that have a higher risk perception or 

understand the severity of the hazard will likely have more mitigation strategies and awareness 
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will be increased, and both can increase resilience by increasing adaptive capacity (Rufat et al., 

2015; Turner II et al., 2003). 

1.3 Study Sites 

The preferred criteria for choosing the study sites for this research was a population 

between 100,000 to 500,000 people, which is referred to as a medium sized city. A city with a 

population under 100,000 people is considered a small sized city (Giffinger et al., 2007). Small 

and medium-sized cities were chosen as they are overlooked in studies that focus on the 

aftermath of Gulf of Mexico tropical cyclones. The chosen cities for study sites are Brownsville 

(Texas), Lafayette (Louisiana), Gulfport (Mississippi), Mobile (Alabama), and Cape Coral 

(Florida) (Figures 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6). All the cities besides Gulfport are medium-

sized cities; Gulfport is a small-sized city (Table 1.1) (US Census Bureau, 2020). Each city has 

been hit by at least one hurricane since 1980 (NOAA, 2021).  

When going by population, the definition of a medium-sized city can vary by country and 

relative size. A rule of thumb can be that a medium-sized city is at least 10% of the largest city in 

the country; this demonstrates a medium-sized city on a country level (Roberts and Hohmann 

2014). Another definition of a medium-sized city is global and requires a city to have a 

population of 100,000 – 500,000 people (Giffinger et al., 2007; Giffinger & Gudrun, 2010; 

Roberts and Hohmann., 2014). The largest city in the United States by population is New York 

City, with a population of 8,336,817 as of July 1, 2019 (US Census Bureau, 2021). 10% of New 

York City is 833,681; none of the Gulf of Mexico states have a city with a population over 

833,681 closest to the Gulf of Mexico as of.  
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One detail is note is that the shapefile boundary that is designated for Gulfport also 

includes nearby cities such as Biloxi. The reason for this is due to the definition by the US 

Census Bureau for Urban Areas, as this shapefile layer from the US Census Bureau was what 

was used to define the cities. The definition of an urban area changed for the 2020 Census, a 

normal process following all decennial censuses. Key changes to the definition were the 

minimum population requirement changing to a minimum housing unit requirement, population 

density being replaced by housing unit density, and distinguishing between Urbanized Areas and 

Urban Clusters (Ratcliffe, 2022). The last change is the one that applies to the situation with 

Gulfport. Previously, Urbanized Areas and Urban Clusters were differentiated based on 

population size (50,000 people being the defining characteristic). The population of Biloxi is 

slightly under the previous 50,000 people threshold (49,449) (US Census Bureau, 2021). The 

population of Gulfport is larger than Biloxi (Table 1.1). This means that based on previous 

definitions, Gulfport and Biloxi would have different urban classifications. The reason for no 

longer distinguishing between Urbanized Areas and Urban Clusters is that the economic 

influence of an urban area has more significance than simply population alone (Ratcliffe, 2022). 

Gulfport has a larger population, and the effect that this has on the economy goes beyond the city 

boundaries of Gulfport and reaches nearby cities like Biloxi. The change in this definition 

provides the most likely explanation for the grouping of Gulfport with smaller cities such as 

Biloxi.  
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Figure 1.1: A map of all five study sites along the United States Gulf of Mexico coastline. 

 

Figure 1.2: A map displaying Brownsville, Texas, and where Brownsville is in Texas. 
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Figure 1.3: A map displaying Lafayette, Louisiana, and where Lafayette is in Louisiana. 

 

Figure 1.4: A map displaying Gulfport, Mississippi, and where Gulfport is in Mississippi. 
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Figure 1.5: A map displaying Mobile, Alabama, and where Mobile is in Alabama. 

 

Figure 1.6: A map displaying Cape Coral, Florida, and where Cape Coral is in Florida. 



27 

City  Population  Location 
(Latitude, 
Longitude) 

Area 
(Square 
Miles, 
Total) 

State Percent of 
the 
population 
in county 
living in this 
city 

Hurricane 
Impacts 
since 1980 
(center 
within a 31- 
mile radius) 

Cape Coral 194,016 26.5629° N, 

- 81.9495° 
W 

106 Florida 26% 2 

Mobile 187,041 30.6954° N, 

 - 88.0399° 
W 

139 Alabama 45% 4 

Gulfport 72,926 30.3674° N,  

- 89.0928° 
W 

56 Mississippi 35% 5 

Lafayette 121,374 30.2167° N,  

- 92.0333° 
W 

269 Louisiana 50% 5 

Brownsville 186,738 25.9017° N,  

- 97.4975° 
W 

132 Texas 44% 3 

Table 1.1: A table describing the population, location, area, state, and percent of the population 
from the county residing in the city for each of the five study site cities (NOAA, 2021; US 
Census Bureau, 2021; LatLong, 2022). 
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While large cities such as New Orleans, Miami, Pensacola, and Houston get attention from 

tropical cyclones, they are not the only cities in those states that are affected by tropical cyclones. 

People in those coastal communities are spread throughout the Gulf of Mexico states; whether it 

is 100,000 people or 1,000,000 people, there are still people living there.  For this project, one 

medium-sized city from each of the Gulf of Mexico neighboring states that has experienced at 

least one hurricane since 1980 has been chosen. At times, these cities may be overlooked unless 

overwhelming damage is expected as the population is not large. Despite this, showing that they 

have been hit by tropical cyclones shows that they are at risk of tropical cyclones. 

1.4 Research Questions, Objectives, and Hypotheses 

As people continue to move to the Gulf of Mexico despite the threat of tropical cyclones, 

it is important to understand how people are at risk. There are three main questions this thesis 

will answer: 1) What is the potential for physical damage due to tropical cyclones to the five 

study sites? 2) What is the social vulnerability amongst the five study sites? 3) Are there any 

spatial relationships or correlations between tropical cyclone physical damage and social 

vulnerability at each study site?  

To answer the first research question, Hazus, a risk-estimating program developed by the 

Federal Emergency Management Agency (FEMA) that utilizes geographic information systems 

(GIS), will be used to map different types of physical damage, along with display varying wind 

speeds, amongst the study sites (FEMA, 2022). The objective is to show what areas of the study 

sites will be the most afflicted by tropical cyclones in terms of different physical damages. For 

this thesis, physical damage focuses on structural damage that affects the integrity of buildings 

and results in financial loss. It also includes damage to residential complexes (houses, 
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apartments, mobile homes) that would require the use of shelters to house people. The extent of 

the physical damage from a probable tropical cyclone (a model run in Hazus to model a storm 

that has not happened yet according to the authors knowledge) will also be examined. The 

hypothesis for this question is that the areas on the wind speed map will correspond to areas of 

structural damage to buildings on the maps. For example, if there are higher wind speeds 

predicted in the northeastern part of a study site, then the most damage will be found in the 

northeastern part of the study site. Mitigation policies, along with terrain, ecological 

relationships, building types, and financial support for fortifying buildings before impact, factor 

into potential physical damage. Even if winds are strong, if policies, build structures, and 

ecological relationships are strong, terrain is favorable, and financial support is amble, physical 

damage can be lowered. 

To answer the second research question, a Social Vulnerability Index (SVI) was created 

for all five study sites. SVI scores were calculated by running a Principal Component Analysis 

(PCA). A PCA is a statistical test that is used to determine components from a group of variables 

in a dataset that are causing variance in the dataset. A PCA is related to the construction of this 

thesis’ SVI because it provides insight into which socially vulnerable group is contributing the 

most to a specific social vulnerability score. The objective is that the SVIs can be used to 

visualize areas of varying levels of social vulnerability. The PCA results for the SVIs can show 

which socially vulnerable groups may be responsible for the SVI scores in the study site. The 

hypothesis is that the degree of social vulnerability will vary spatially amongst all five study 

sites. However, of the variables, a different variable will be the main factor in the social 

vulnerability for the study sites. 
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To answer the third question, a local bivariate Moran’s I spatial statistic was used to 

examine any relationship between the physical damage results from Question 1 and the social 

vulnerability results from Question 2. The objective is to determine if areas of high or low types 

of physical damage are associated with high or low social vulnerability scores. The hypothesis is 

that areas of higher physical damage will correspond to areas of higher social vulnerability 

scores and that areas of lower physical damage will correspond to areas of lower social 

vulnerability scores. 

1.5 Significance 

Despite the threat of tropical cyclones, people continue to move to the Gulf of Mexico 

coastline. This puts more lives and built systems at risk of damage from tropical cyclones. As of 

2017, 29.1% of the United States population lives in a county lying directly along a coastline 

region (this includes the Atlantic, Pacific, and Gulf of Mexico coastlines) (Cohen, 2020). From 

this, 4.9% of the United States population lives in any US county that directly touches the Gulf 

of Mexico. Between 2000 and 2017, the Gulf of Mexico coastline counties overall experienced a 

26.1% increase in population; this is faster than any other United States coastline, and even the 

average United States growth rate (United States Census, 2019).  

As tropical cyclones move inland, flooding can become a large issue due to all the 

precipitation that falls and has nowhere to run off to. There is the probability that more than 

4.9% of the United States population is affected by tropical cyclones that hit the Gulf of Mexico 

due to hazard such as inland flooding as hurricanes move over land. As the population continues 

to rise, more and more people are becoming susceptible to death from tropical cyclones, even if 

they are living inland. Tropical cyclones have been directly responsible for 6,697 deaths between 
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1980 and 2021, the most deaths out of any weather and climate hazard (NOAA Office of Coastal 

Management, 2021). As the population along the exposed and vulnerable parts of the Gulf of 

Mexico continues to increase, there is a possibility that the potential for loss of life from tropical 

cyclones to increase. 

The main outcome of this research is the ability to better understand the risk of tropical 

cyclones to coastal cities along the Gulf of Mexico in the United States, and the threats that the 

current citizens of those cities will face when tropical cyclones make landfall. A more thorough 

understanding of tropical cyclones, the hazards they bring, and how people living in affected 

areas are likely to interact with these storms, can help improve community planning, policy 

making, and mitigation efforts. For example, if there is a risk of hazards from tropical cyclones 

in an area, research like this can help show the highest-risk regions. Then, city officials and 

planners can take a closer examination of these regions by seeing who is living there, if and why 

they are socially vulnerable, and how to reduce their vulnerability. The ability to recognize 

vulnerability and know how to combat it can help save lives, prepare them to get back on their 

feet after a disaster hits the area. Besides the social benefits, understanding tropical cyclone risk, 

comprehending the extent of physical damage (which research like this can help) can help save 

the economy. Knowing the types of buildings that are the most likely to be affected, and the 

areas that they are in, can help to improve building standards for those buildings, or any future 

structures in those areas. A combination of understanding vulnerability and physical damage and 

their joint functions in risk analysis can help make coastal cities more resilient and sustainable as 

they learn the coping mechanisms of tackling the hazards of tropical cyclones when they arise. 
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1.6 Overview of Upcoming Chapters 

This thesis contains five main chapters, including this chapter. Chapter 2 will address the 

first research question, Chapter 3 will address the second research question, and Chapter 4 will 

address the third research question. Chapters 2, 3, and 4 will consist of a literature review, 

description of data, methods walkthrough, results, and discussion. Chapter 5 will be a conclusion 

chapter that summarizes the main conclusions of each research question, limitations of 

answering each question, future directions, and a brief reminder of the significance. 
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Chapter 2: The Risk of Physical Damages by Tropical Cyclones 

2.1 Introduction  

Due to its geographic location along the warm waters of the Gulf of Mexico, the 

surrounding Gulf of Mexico coastline, and its residents, are at the risk of impact from tropical 

cyclones (Liu and Fearn, 2000).  Recently, Hurricane Ian impacted the southwestern coast of 

Florida as a Category 4 hurricane. It was a major hurricane that caused significant damage to the 

southwestern part of the state. This included severe storm surges, wind, tornadoes, and inland 

flooding that has already been responsible for claiming the lives of over 100 people (Salahieh 

and Andone, 2022). This is only one example of the devastation that these storms can cause 

along this coastline, and as climate change continues to increase the temperature of the ocean, 

these storms are only likely to increase in intensity (Holland and Bruyère, 2014).  

The importance of this study is that the Gulf of Mexico coastline is, in terms of 

population, the fastest-growing coastline in the United States, and has been over the past 20 

years (Cohen, 2019). With millions of people now calling the Gulf Coast home, this puts these 

people at risk for the devasting impacts a hurricane can bring. Being able to understand the 

consequences of storms based on their severity can help city planners, emergency managers, and 

local officials make more effective decisions when it comes to policy and planning on how to 

handle these storms. In addition to legislators making better decisions, it will also allow residents 

to make more informed decisions when the officials make announcements of a potential storm 

coming their way.  

Hazus, a risk-estimating tool incorporating GIS developed by FEMA is the main 

methodology used in this thesis for estimating risk from physical damage of tropical cyclones, is 
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one way to better comprehend the risks that a tropical cyclone is likely to face. Hazus can be 

helpful in the visualization aspect of hazard research and make it easier to communicate hazards 

to nonscientists and help reach a wider audience. The data that is provided by Hazus can help the 

groups mentioned above, and even homeowners, understand the type of risk and the damages 

that they are likely to receive when the hazard occurs. 

2.2 Background 

 2.2.1 Hazus 

Hazus is a risk-estimating tool developed by FEMA to allow a wide audience to model 

risk in a specific area of the United States. Hazards that Hazus estimates the risk for include 

hurricanes as well as floods, tsunamis, and earthquakes. It can be used by emergency managers, 

city planners, policymakers, or homeowners to help them identify their risks and the losses that 

they are likely to suffer. Produced data examines physical damage, social impacts, and economic 

losses (FEMA, 2022). Hazus can use ArcMap 10.8.1 to map certain information, and this 

information will be the focus of this thesis. Hazus can run a probabilistic and historical tropical 

cyclone scenario (FEMA, 2022). For the Hurricane Model, all damage in a probable scenario is 

modeled by likely damage from wind only, and not from other hazards associated with 

hurricanes. The hurricane model takes into consideration global, historical tropical cyclones to 

generate the most reliable wind models. Storm surge can be modeled when the Hurricane Model 

is combined with the Flood Model of Hazus. The storm surge model also looks at the financial 

effects of tropical cyclones on buildings as the wind model does.  

Storm surge, while responsible for high amounts of deaths and financial costs from 

tropical cyclones, was not included in this thesis. Storm surge was excluded because it is easier 
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to standardize impacts based on wind speed over storm surge, as wind speed is the only way 

tropical cyclones are categorized. Storm surge can vary between the same category storms, 

which is why tropical cyclones are not categorized by this hazard. This makes storm surge not as 

consistent as wind speeds amongst different category tropical cyclones. Additionally, storm 

surge data in Hazus are only available in Historical Scenarios, and this thesis did not examine 

historical scenarios.  

In this project, Hazus was run on a probabilistic hurricane model. In a probabilistic 

scenario, a Monte Carlo approach is done to create a reliable statistical result for the model to run 

the parameters of radius to maximum winds, the translation speed, the distance of the closest 

approach, heading, and central pressure deficit. A single path line is created for the storm track, 

and winds are simulated at a constant speed until landfall is achieved. The track and model are 

created by using an axisymmetric balance model and incorporates historical storm tracks, 

humidity, and sea surface temperature. All of this is used to mimic the changes in intensity in a 

storm during its lifetime (Vickery et al., 2009). The physical damage analysis functions within 

Hazus have been an accomplishment for the program as it can determine losses that generally go 

beyond other models that attempt to do the same thing. This adds reliability to the model, 

especially since the damage can be broken down into building class and structure type 

(Schneider and Schauer, 2006).  

2.3 Research Question, Hypothesis, and Objective 

The research question that will be answered in this chapter is “What is the risk for 

physical damage due to tropical cyclones to the five study sites?” Hazus has been used to 

previously model potential physical damage from tropical cyclones (Schneider and Schauer, 

2006). Having Hazus be more closely examined in the context of how it applies to the study 
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sites, all of which are either of small or medium populations sizes, can help to show that it can be 

useful at any scale, no matter the size of the city and the population residing there. The 

hypothesis for this question is that the areas on the wind speed map will correspond to areas of 

damage on the maps. For example, if there are higher wind speeds predicted in the northeastern 

part of a hurricane, then the most damage will be found in the northeastern part of the study site. 

Areas of the highest wind speed may be observed in the northeastern portion of the storm track 

as this is, generally, where the strongest winds are in most Gulf of Mexico tropical cyclones (Liu 

and Fearn, 2000). The objective is that the visualization that will be provided from the geospatial 

data will help put into perspective the areas of highest risk for physical damage. It will also 

provide insight into the specific types of damage that will be generated. 

 2.4 Data  

The data that was used within Hazus to create hurricane wind fields and estimates for 

structural damage are provided to the user upon download as they are stored in an internal Hazus 

database. The data that Hazus provided were from the US Census Bureau, the National Structure 

Inventory, and the US Army Corps of Engineers. The spatial resolution of the data came at the 

US Census tract level and was run for each tract within a county. All data came from the 2010 

US Census. 

The National Structure Inventory, US Census Bureau, and the US Army Corps of 

Engineers data was used in estimating the damage to the buildings based on the result of the 

storm models. The other data that were used in this project are from the FEMA Flood Map 

Service Center. State specific data was downloaded from the FEMA Flood Map Service Center 

for the states of Florida, Alabama, Mississippi, Louisiana, and Texas. This data was used in 

creating the study regions for each of the five cities. However, it must be downloaded at the state 
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level, and then when in Hazus, it can be broken down into the Census tract level. To break it 

down to the city level, the city boundaries were downloaded from the US Census Bureau website 

to show Census tracts in each city. 

2.5 Methodology 

After the state data were downloaded from the FEMA Flood Map Service Center, and 

Hazus was installed, a study region was created within Hazus. The program prompts a region to 

be created and named. While data are at the Census tract level, the specific county that each city 

is in was selected when creating the region to make sure all Census tracts in the city were 

accounted for. Census tract units are included in the county region model. Next, the program 

asked for a hazard selection, and the “hurricane” option was selected.  

Once a study region was opened, several maps were generated. These included maps for 

10, 20, 50, 100, 200, 500, and 1,000-year storm event scenarios. For this thesis, the focus will be 

on 100-year storm scenarios. This is because a 100-year storm yielded more drastic results than 

the 10, 20, and 50-year storm scenarios when models were initially run in Hazus, but is more 

likely to occur than a 200, 500, or 1,000-year scenario (a 100-year storm has a 1% chance of 

occurring in any given year). Due to these reasons, the 100-year scenario served as a 

compromise between the severity of the storm along with the realistic probability of the storm 

occurring.  

The preset symbology for these maps is wind speed, but not by any category. However, 

this was manually changed to reflect the proper hurricane category ranking instead of displaying 

regular wind speed values. Wind speeds were described as a category because they are the only 

way that hurricanes are categorized, and this gives more context to the wind speeds. The map is 
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interactive; a polygon of a Census tract within a city can be clicked on, and information about the 

tract and the wind will appear. These were the maps of focus for this thesis as storm surge will 

not be run since the thesis only focuses on wind damage and Hazus cannot run probable storm 

surge data.  

Under “Hazard,” “Scenario” is selected, after which the Hurricane Scenario Management 

Wizard opens. Different options for Hurricane Scenarios were provided, and “Probabilistic” was 

selected, and on the next screen, the scenario was selected to be activated. A “Probabilistic” 

Scenario was selected over a “Historic” Scenario because this scenario focuses on storms that 

have already occurred and does not simulate potential ones (FEMA, 2018). Additionally, a 

“Determinist/User-Defined Storm Scenario” was not chosen for this thesis as these data must be 

provided by the user and should be provided by an expert and also only considers a single-risk 

scenario (FEMA, 2018). Once this is set, under the “Analysis” header, at the bottom, “Run” was 

selected so the model can run its results for the wind damage. Under the “Results” header, 

“Shelter” was selected, then from that, “Displaced Households,” was selected and mapped by 

clicking the “Map” button from the popup that was generated. Under “Results,” there was also 

an option for “General Building Stock,” where “Building Damage States” was selected, and 

under that “by Building Type” was selected and mapped to show total damage from the scenario 

by the type of building (residential, business, etc.). “Building Economic Loss” is also under 

“General Building Stock,” and “by Building Type” was used again to determine the total 

economic loss for the scenario and by the building type. For this thesis, instead of looking at the 

specific type of building, the total loss and damage from all building types were used. “100-Year 

Storm Track” was selected under “Results” to produce the most probable tropical cyclone track. 
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After each map was generated, to adhere to the city boundaries for each study site, the 

county maps were converted to city maps by using the “Clip” function in ArcGIS Pro 2.9. This 

left behind only the Census tracts that fit within the city boundaries. The Census tract boundaries 

provided by Hazus usually fit within the city boundaries provided by the US Census Bureau, but 

in rare cases, they may extend past the city’s boundaries. If this does occur, then it will leave out 

data, but due to the unlikeliness of this happening, the clipping was done. To categorize the 

output data, the wind speed results were grouped manually into classes by hurricane category 

based on their wind speed. Displaced Households, No Damage (gathered from “Building 

Damage States” to show the percentage of buildings with no damage), and Total Loss (in 

Thousands of Dollars, calculated from “Building Economic Loss”), were broken naturally into 

five classes using the Natural Jenks methods.  

2.6 Results  

The number of displaced households is important because, from a planning perspective, it 

is imperative to grasp how many temporary shelters may be needed if there are a lot of displaced 

households. The number of buildings with no damage is useful because it may show that 

buildings in the area are more structurally sound than in areas with high building damage. The 

total building loss is important because cities will need to budget losses and this result allows 

them to plan in time.  
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Figures 2.1 (left) and 2.2 (right): Figure 1 depicts wind speeds and track of a probable 100-year 
hurricane in Brownsville by Census tract. Figure 2 shows the number of displaced households 
within Brownsville following a 100-year hurricane by Census tract.  

  
Figures 2.3 (left) and 2.4 (right): Figure 2.3 shows the expected percentage of buildings with no 
damage from a probable 100-year storm within Brownsville by Census tract. Figure 2.4 depicts 
how much money is lost in thousands of dollars, by Census tract, from a probable 100-year storm 
within Brownsville. 

 In a 100-Year Scenario for Brownsville, Texas, Hazus predicts that the highest and 

lowest wind speeds will be within the Category 3 range (Figure 2.1). The storm track moves in a 

western direction (Figure 2.1). The highest number of displaced households seen is 498 

households (Figure 2.2). However, several Census tracts in Brownsville will not have any 

displaced households (Figure 2.2). The highest percentage of buildings that experienced no 

damage in a Census tract in this scenario was 97.4%, while the lowest percentage is 17.8% 

(Figure 2.3). This implies that the most heavily hit areas can expect up to 82.2% of all types of 
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buildings to experience some form of damage from that tropical cyclone. For the amount in total 

building loss, some Census tracts will experience a loss of as little as $22,000, while others can 

experience a loss of up to $209,596,000 (Figure 2.4).  

  
Figures 2.5 (left) and 2.6 (right): Figure 2.5 displays the wind speed by category within a Census 
tract and the storm track that is likely to be seen by a probable hurricane in a 100-year scenario 
in Lafayette. Figure 2.6 shows the number of displaced households within a Census tract that 
would be caused by a probable 100-Year Storm to Lafayette. 

  
Figures 2.7 (left) and 2.8 (right): Figure 2.7 shows the expected amounts of buildings within a 
Census tract that would experience no damage from a probable 100-year storm within Lafayette. 
Figure 2.8 depicts how much money is lost in thousands of dollars, by Census tract, from a 
probable 100-year storm within Lafayette. 
 
 

In a 100-Year Scenario for Lafayette, Louisiana, Hazus predicts that the highest and 

lowest wind speeds all fall within a Category 2 range (Figure 2.5). The storm track moves in a 
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northeastern direction (Figure 2.5). For the same scenario, the highest number of displaced 

households seen is 60 households and the lowest is zero (Figure 2.6). Most of the Census tracts 

will experience little damage to their buildings (as many as 85.3% of buildings remain 

untouched), but some will have most of the buildings damaged to some capacity (Figure 2.7). 

For the amount in total building loss, some Census tracts will experience a loss of $262,000, 

while others can experience a loss of up to $68,551,000 (Figure 2.8).  

  
Figures 2.9 (left) and 2.10 (right): Figure 2.9 shows the wind speed by category within a Census 
tract and the storm track of a probable hurricane in a 100-year scenario in Gulfport. Figure 2.10 
shows the number of displaced households that would be caused by a probable 100-year storm at 
the Census block level in Gulfport. 

  
Figures 2.11 (left) and 2.12 (right): Figure 2.11 displays buildings within a Census block that 
would experience no damage from a probable 100-year storm within Gulfport. Figure 2.12 
displays the financial loss in thousands of dollars, by Census block, from a probable 100-year 
storm within Gulfport. 
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In a 100-Year Scenario for Gulfport, Mississippi, Hazus predicts that the highest wind 

speeds will fall within a Category 4 range, and the lowest in the Category 3 range (Figure 2.9). 

The storm track is seen moving in a northwestern direction. Much of the city can expect to feel 

Category 3-force winds (Figure 2.10). For the same scenario, the highest number of displaced 

households seen is 114 households, and the lowest number is zero households (Figure 2.10). 

Some areas within Gulfport will have as many as 68% of buildings not receiving any damage, 

while others will have only 12% of buildings not damaged (Figure 2.11). For the amount in total 

building loss, some Census tracts will experience no financial loss, while others can experience a 

loss of up to $165,431,000 (Figure 2.12).  

  
Figures 2.13 (left) and 2.14 (right): Figure 2.13 shows within a Census tract the expected wind 
speed by category likely to be experienced by a probable hurricane in a 100-year scenario in 
Mobile, along with the storm track. Figure 2.14 shows the number of displaced households 
within a Census tract that would be caused by a probable 100-year storm in Mobile. 
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Figures 2.15 (left) and 2.16 (right): Figure 2.15 displays buildings within a Census tract that 
would experience no damage from a probable 100-year storm within Mobile. Figure 2.16 
displays the loss in thousands of dollars, by Census tract, from a probable 100-year storm within 
Mobile. 

 

In a 100-Year Scenario for Mobile, Alabama, Hazus predicts that the highest and lowest 

wind speeds will be within the Category 3 range (Figure 2.13). The storm track moves in a 

northeastern direction (Figure 2.13). The highest number of displaced households seen is 339 

households, and the lowest number is zero households (Figure 2.14). Some areas within Mobile 

will have 46.8% of buildings remain undamaged, while as few as 16.5% of buildings are 

undamaged (Figure 2.15). For the amount in total building loss, some Census tracts can 

experience a loss of $5,911,000, and others can experience a loss of up to $321,323,000 (Figure 

2.16).  
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Figures 2.17 (left) and 2.18 (right): Figure 2.17 depicts wind speeds from a probable 100-year 
storm by Census tract and the storm track in Cape Coral. Figure 2.18 shows the number of 
displaced households, by Census tract, following a 100-year hurricane in Cape Coral. 

  
Figures 2.19 (left) and 2.20 (right): Figure 2.19 displays buildings that would experience no 
damage from a probable 100-year storm within a Census tract in Cape Coral. Figure 2.20 
displays the loss in thousands of dollars from a probable 100-year storm by the Census tract in 
Cape Coral. 

In a 100-Year Scenario for Cape Coral, Florida, Hazus predicts that the highest wind 

speeds will fall within a Category 4 range, and the lowest in the Category 3 range (Figure 2.17). 

The storm track moves in a northeastern direction (Figure 2.17). Most of the city will experience 

Category 3-force winds (Figure 2.17). For the same scenario, the highest number of displaced 

households seen is 1,133 households, and the lowest number is zero households (Figure 2.18). In 

Cape Coral, some Census tracts have 87% of their buildings undamaged, while some Census 

tracts only have 6.27% of their buildings not damaged (Figure 2.19). Some Census tracts can 
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expect a total building financial loss of up to $551,466,000, while the lowest amount of loss is 

$1,465,000 (Figure 2.20).  

City Highest Winds (Category) Lowest Winds (Category) 
Brownsville 3 3 

Lafayette 2 2 
Gulfport 4 3 
Mobile 3 3 

Cape Coral 4 3 
Table 2.1: A table of the highest and lowest wind speeds by hurricane category experienced 
within at least one Census tract for all five cities. 

City Highest Households Displaced Lowest Households Displaced 
Brownsville 498 0 

Lafayette 60 0 
Gulfport 114 0 
Mobile 339 0 

Cape Coral 1,133 0 
Table 2.2: A table of the highest and lowest number of displaced households within at least one 
Census tract for all five cities. 

City Highest Percentage of No 
Building Damage 

Highest Percentage of 
Building Damage 

Brownsville 97.4 82.2 
Lafayette 85.3 46.2 
Gulfport 68.0 12.0 
Mobile 46.8 16.5 

Cape Coral 87.0 6.27 
Table 2.3: A table of the highest percentage of no building damage and the highest percentage of 
building damage (calculated by subtracting the lowest percentage of buildings with no damage 
from 100) within at least one Census tract for all five cities. 

 

City Highest Total Economic Loss 
(USD) 

Lowest Total Economic Loss (USD) 

Brownsville 209,596,000 22,000 
Lafayette 68,551,000 262,000 
Gulfport 165,431,000 0 
Mobile 5,911,000 321,323,000 

Cape Coral 551,466,000 1,465,000 
Table 2.4: A table of the highest total economic loss amount (in USD) and the lowest total 
economic loss amount (in USD) within at least one Census tract for all five cities. 
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 Based on the results, the highest wind speeds are seen at Category 4 in Gulfport and Cape 

Coral, and the lowest wind speeds are seen at Category 2 in Lafayette (Table 2.1). The highest 

number of displaced households is 1,133 in Cape Coral, and all cities experienced a displaced 

household rate as low as zero (Table 2.2). The highest percentage of buildings that experience no 

damage is in Brownsville at 97.4% and the lowest is in Mobile at 46.8% (Table 2.3). The highest 

percentage of buildings that experience some (minor to complete) damage is Brownsville at 

82.2% and the lowest is Cape Coral at 6.27% (Table 2.3). The highest total economic loss seen is 

in Cape Coral with $551,466,000 and the lowest is seen in Gulfport with $0 in loss (Table 2.4).  

2.7 Discussion 

Hazus has several ways of estimating risk, especially in the hurricane model, that can 

benefit coastal cities. The study site cities (besides Lafayette) are expected to see Category 3-

force winds, which is considered a major hurricane. This is important to note because this is 

when wind damage alone becomes extensive and can even lead to a higher loss of life (NOAA, 

2020). Lafayette experiences the lowest wind speeds at a Category 2 level and is the only city 

that has wind speeds as low (and as high as Category 2). This may be because Lafayette lies 

slightly more inland than the other cities (which all directly touch the Gulf of Mexico). This 

could mean that the city is not as subjected to the full intensity of the probable hurricane as other 

study sites are.  

In general, the location of the highest wind speeds appeared to line up with where the 

most damage in each of the three maps appeared. Even in areas where the highest and lowest 

wind speeds fall within the same hurricane category, the locations for the highest amount of 

damage, economic loss, and displaced households occur within the same geographic area. In 

Brownsville, the highest damage and impacts start in the north and progressively improve as you 
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move south in the city. In Lafayette, the highest damage occurred in the south and southeastern 

part of the city. Generally, the eastern portion of Gulfport is estimated to experience more 

damage than the western part. Cape Coral follows a gradual progression of the most damage 

occurring in the west and then decreasing as you move from western to eastern Cape Coral. 

Mobile is the only city where the damage tends to be more random. 

Another observation is the relationship between the storm track and the areas of the 

highest winds and the most damage. In Gulfport, the highest wind speeds were observed in the 

areas where the northeastern quadrant of the tropical cyclone would impact. This is the most 

prevalent in Gulfport since the windspeeds vary between Census tracts and the storm track’s 

course goes right through Gulfport. In all the study sites besides Mobile, the most severe damage 

is observed where the proximity between the storm track and the damage is close. Mobile is an 

interesting case as the storm track does cross into the city’s limits, but the wind speeds are 

uniform throughout the city (Category 3). Additionally, in Mobile, the damage is more 

haphazard when compared to most of the other study sites.  

One factor that could attribute to the risk results from Hazus is the number and quality of 

structures in a Census tract. For example, if a group of Census tracts are all subjected to the same 

wind speeds, and the quality and number of buildings are the same, then the amount of damage 

should be consistent across all Census tracts. However, that is not what is observed here, 

especially in the case of Mobile. Therefore, a conclusion can be drawn that another factor must 

be going on to cause the results to vary amongst Census tracts when wind speeds remain 

consistent. Poorly structured buildings will be more susceptible to damage from a tropical 

cyclone. A Census tract with a high number of poorly built structures over a Census tract with a 

low quantity of weak buildings is more likely to experience more damage. Similarly, if all the 
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buildings are of the same structural intensity, but one Census tract has more buildings than 

another, then the Census tract with more buildings is likely to experience more damage since 

there are, simply, more structures to be damaged. The results from this section show that areas of 

high damage tend to be in similar Census tracts within a city, no matter the type of damage, and 

the damage can be explained based on the wind speeds and storm track.  

An observation related to Gulfport is that it is the only city that had Census block data 

instead of Census tract data for all maps but wind speed. The methodology for the creation of 

each study region for each study site was consistent (choosing the Census tract for all study 

sites), and the wind speeds were created at the Census tract level, not the Census block level. 

Speculation for the results of the wind speed map based on knowledge of hurricanes may be that 

the Flood Model data will not have an impact on the wind speed results but will affect the type of 

damage caused by a probable tropical cyclone. The reason why three of the four maps are shown 

at the Census block resolution is that Hazus provides results at the Census block level when both 

wind and flood hazard scenarios can be modeled (FEMA, 2021b). In the future, a further 

explanation into why the Hurricane Model defaults to Census block data even when Census tract 

data are automatically selected should be examined.  

There are caveats that come with working with an estimation program such as Hazus. As 

the data is provided by the Census, there are inaccuracies that can arise from this and will 

influence the results of a Hazus output. Additionally, the data used in this thesis are from the 

2010 Census Bureau, and the number of buildings, along with their structural integrity, will have 

evolved in the 13 years after these data were initially collected. The Hurricane Model (when not 

coupled with the Flood Model) has the finest spatial resolution set to Census tracts, and if the 

units could be finer, better results can be yielded. Also, with all models, there is no guarantee 
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that the exact scenario for each study site modeled in this thesis will happen. These limitations 

will be discussed more in depth in Chapter 5, Section 5.2.1.  
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Chapter 3: Social Vulnerability Amongst the Study Sites 

3.1 Introduction 

There are specific socioeconomic and demographic groups within Gulf of Mexico 

communities affected by tropical cyclones that may struggle more with hurricane preparation and 

recovery more than others. Acknowledging who is socially vulnerable in a city can lead to a 

more resilient community. There is a known risk of tropical cyclone damage to those living 

along the Gulf of Mexico due to its geographic location, but the beautiful beaches and weather 

continue to attract people to become permanent residents of this coast. These residents come 

from a plethora of socioeconomic and demographic groups. Each will have their struggles 

depending on their socioeconomic and demographic statuses as this may impact their tropical 

cyclone preparation and recovery efforts. For this thesis, six socially vulnerable groups were 

identified and were used in a Principal Component Analysis to reduce the number of variables 

and determine statistically significance socially vulnerable groups. Research like this helps to 

bridge the gap between the academic world and the “real” world and allows for the application of 

science on a broader scale that can create a positive impact on people’s lives.  

3.2 Background 

3.2.1 Social Vulnerability 

In this thesis, social vulnerability is defined as a compounder of loss based on the 

susceptibility of a socioeconomic or demographic group when evacuating, preparing, or 

recovering from a tropical cyclone.  There is no one group alone that is more susceptible than 

another as each group has unique reasons for being vulnerable. These can range from being in a 

weak financial situation to not having a car or being physically unable to act (Cutter et al., 2000; 
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Yoon, 2012). The vulnerabilities of these groups can also be compounded by uninsured assets, 

weak planning, outdated building codes, poor funding, lack of support through public assistance 

programs, and lack of communication and enforcement (Dunning, 2020). The overall grouping 

of the socially vulnerable groups chosen for this thesis include age, gender, race, ethnicity, 

education, language proficiency, poverty status, and disability status.  

3.2.2 Factors Impacting Social Vulnerability 

Age, specifically under the age of five (young) and over the age of 65 (elderly), are 

important because people of these ages may rely on the help of others to take proper care of 

themselves (Bergstrand et al., 2014; Cutter et al., 2000; Rufat et al., 2015). For example, a young 

person, such as an infant, relies on their parents or other caregivers to do everything for them, 

and requires special supplies such as diapers. This is unanimous across those of a young age. An 

elderly person can find themselves in a similar situation, which is why some people end up with 

home health care or in nursing homes. However, not everyone who is considered elderly needs 

assistance or special supplies, although as their age increases from 65, these needs become more 

common (Bergstrand et al., 2014; Cutter et al., 2000; Rufat et al., 2015). 

Females in natural hazards and disasters have experienced a higher loss of property in 

value, and, if mothers, may have issues accessing childcare after the natural hazard’s impact 

(Bergstrand et al., 2014; Yoon, 2012). Again, depending on the level of disability, those that are 

not able-bodied may not be able to physically prepare themselves or their assets (like homes and 

cars) to withstand the damage of a hurricane. They may need help in doing this or may require 

technological assistance (a charged glucometer for diabetics) that relies on electricity at some 

level for functioning. Electricity will almost certainly go out in a hurricane, requiring these 

people to have some form of nonelectric backup, but not everyone may be able to afford this. 
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Some shelters may not be prepared to deal with the physically disabled, such as those in 

wheelchairs (Bergstrand et al., 2014; Cutter et al., 2000; Rufat et al., 2015). Language barriers 

can exist in communities where a significant portion of the population consists of immigrants, 

especially those who recently moved to the United States. In most communities across the 

United States, English is the dominant language. Some may assume that all community members 

of this city are proficient in English, but this is not always the case. These citizens will then 

become reliant on those who speak English, and even then, it is assumed that the English 

speakers will properly provide the correct information (Rufat et al., 2015).  

In every community, there will be a percentage of the population that, unfortunately, live 

in poverty. Here, it is likely that the financial resources to prepare, evacuate, and recover from a 

hurricane are not much. These people may be physically able to act but lack the financial 

resources to do so. They may not be able to afford cars, making them reliant on others to 

evacuate. They are not able to afford flood insurance in their homes (in homes with poor 

infrastructure if they cannot afford proper housing). Although they may be able to physically 

place window protection on their window, they may not be able to afford hurricane shutters. 

Evacuation is also harder in these areas if the area has a high population density, and the roads in 

those areas may not be capable of handling a large-scale evacuation (Cutter et al., 2000; Rufat et 

al., 2015).  

Race and ethnicity (specifically Hispanic/Latino groups for this research) factor into 

vulnerability in different ways. For Census data related to races, the United States Census Bureau 

follows the requirement of the United States Office of Management and Budget of requiring at 

least five races: white/Caucasian, black/African American, American Indian, or Alaska Native, 

Asian, and Native Hawaiian or Other Pacific Islander. The Census Bureau adds Two or More 
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Races and Other Races as additional options. While these race groups include people of multiple 

heritages, Hispanic, Latino, or Spanish can be of any race (U.S. Census Bureau, “Race”). This is 

because, by definition, being Hispanic, Latino, or Spanish are considered ethnic groups. 

Ethnicity is defined as how a person identifies based on experiences and cultural and traditional 

practices (Merriam-Webster Dictionary, 2023). This differs from race because race focuses more 

on physical characteristics while ethnicity focuses on cultural characteristics (Merriam-Webster 

Dictionary, 2023). One can be a part of one or more race groups while also being in an ethnic 

group, but not everyone identifies with being in an ethnic group. For example, one can identify 

of being of the Asian race and the Hispanic/Latino/Spanish ethnic group. 

Economic, immigration, and educational variances amongst different racial and ethnic 

groups can make individuals within these groups socially vulnerable. While overall poverty 

levels amongst different racial groups have declined over recent decades, most other races and 

the Hispanic ethnic group still experience higher rates of poverty when compared to the white 

race (Creamer, 2020). Another factor that related to how race and ethnicity influence 

vulnerability relates to immigration status. Approximately one million immigrants from all over 

the world move to the United States each year, with the United States housing about one-fifth of 

the world’s immigrant population. This makes the United States the country with the highest 

population of immigrants in the world (Budiman, 2020). As discussed previously, language 

proficiency can make someone socially vulnerable if they are not proficient in the dominant 

language. Despite the United States not having an official language, English is the most 

dominant language, with 78% of the population speaking only English at home (Deshmukh, 

2021). Not all immigrants migrate from a country where English is the dominant language or 

taught in school. In 2018, 53% of immigrants were identified as proficient English speakers, and 
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the most spoken language by immigrants that is not English is Spanish (Budiman, 2020). Races 

of immigrants tend to vary. Amongst some of the racial groups previously listed, 27% are Asian, 

22% are two or more races, 21% are white, 20% are another race, and 9% are Black (Ward and 

Batalova, 2023). Amongst these immigrants, 44% of immigrants to the United States identify as 

Hispanic or Latino (Ward and Batalova, 2023).  

3.2.3. Principal Component Analysis  

A Principal Component Analysis (PCA) is a statistical method used to reduce the data 

within large datasets but maintaining the variability and relationships amongst the data (Bucherie 

et al., 2022; Jolliffe and Cadima, 2016). It creates a fewer mount of variables to more accurately 

account for variability amongst all variables in large datasets (Aksha et al., 2019; Bucherie et al., 

2022; Rabby et al., 2019). These components will also help to further explain which variables are 

responsible for the most variance that influences the SVI scores, specifically the first principal 

component (PC1) (Bucherie et al., 2022; Rabby et al., 2019). Whichever socially vulnerable 

group appears to have the highest correlation value in PC1 will be considered the “driving” 

socially vulnerable group as this group explains most of the variance in PC1.  

For the results of a PCA to be considered statistically significant, it is recommended that 

the value from the Kaiser-Meyer-Olkin Measure of Sampling Adequacy (or, in this thesis, 

simply referred to as the KMO value), is ≥ 0.5 as this is the minimum KMO value for statistical 

significance (Analysis Inn, 2020). Another important test to acknowledge when conducting a 

PCA are the results of Bartlett’s Test of Sphericity, which provides insight on if your variables 

are related enough to conduct a successful PCA (Analysis Inn, 2020). A statistical significance of 

< 0.05 for the Bartlett’s Test of Sphericity was desired (Analysis Inn, 2020). An eigenvalue of at 

least 1 was considered when examining the principal components produced from the PCA. 
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Specifically, the PC1 of each study site should have the highest eigenvalue as it accounts for 

most of the variance in the dataset (Aksha et al., 2019; Bucherie et al., 2022; Dintwa et al., 2019; 

Rabby et al., 2019; Spielman et al., 2020). This was insured by implementing the Kaiser criterion 

for the PCA.  

3.3 Research Question, Hypothesis, and Objective 

The research question that this chapter will answer is “What is the social vulnerability 

amongst the five study sites?” Six variable groups (females, age, race, poverty, language, and 

disability) were created, with some groups being a combination of individual demographic 

groups to form a larger variable group. These groups were identified as having the largest 

influence on all the study site’s social vulnerability. The hypothesis is that the degree of social 

vulnerability will vary spatially amongst all five study sites. However, of the six variables, a 

different variable will be the main factor in the social vulnerability for the study sites due to the 

demographic makeup being different for each study site. PC1 should have the highest eigenvalue 

of all components and make up much of the variance observed. All principal components should 

have an eigenvalue >1. The main objective of answering this question is to visualize through GIS 

and statistical methods the locations of different levels of social vulnerability amongst the study 

sites and compare the driving factors of each study site. 

3.4 Data 

 All Census data and shapefiles used for the composition of the Social Vulnerability Index 

(SVI) were downloaded from the National Historical Geographic Information System (NHGIS) 

from the Integrated Public Use Microdata Series (IPUMS) (Manson et al., 2022). Data was 

downloaded from the 2016-2020 Census (Manson et al., 2022). Data was downloaded from 
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NHGIS as the Census data and the shapefiles contained a GISJOIN Key, which allowed for the 

data to be joined as a table to the shapefiles in ArcGIS Pro. All data was downloaded at the 

Census tract level. 

Once all Census data were downloaded, the socially vulnerable groups were decided for 

the study. In total, 16 socially vulnerable groups were identified based on demographics and 

socioeconomic statuses. The groups were determined based on groups previously selected for 

other studies that focus on social vulnerability and the construction of SVIs, along for the reasons 

stated in Section 3.2.2 of this chapter (Bergstrand et al., 2014; Cutter et al., 2000; Rufat et al., 

2015; Yoon, 2012). These 16 groups are females, Black, Asian, Native (including Native 

Americans, Native Alaskans, Native Hawaiians, and Pacific Islanders), Hispanic/Latino, other 

races, two or more races (including two or more races, two races including some other race, two 

races excluding some other race, and three or more races), limited English speaking households 

(with the dominant languages being Spanish, other Indo/European, Asian and Pacific Islands, 

and other), under five years of age, over 65 years of age, disabled, and living below poverty. 

Census tract data for these groups by the county in which one of the five study sites resided was 

used in the analysis. 

3.5 Methods 

After the 16 socially vulnerable groups were selected, the data for each group were 

gathered at the Census tract level by the county that the study city resides in. The socially 

vulnerable populations were then all calculated to represent the percentage of the population that 

they represented. This was done to ensure that all the data are comparable and completed in 

Microsoft Excel (Equation 1). After this was completed, the data were uploaded into the 

Statistical Package for the Social Sciences (SPSS), and Descriptive Statistics were performed to 
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convert the new values to z-scores, along with provided data on the minimum, maximum, mean, 

and standard deviation of each variable. When running these descriptive statistics, any variable 

that had a minimum, maximum, mean, and standard deviation of zero was eliminated and not 

converted to a Z-score to be used in the analysis as it meant that the Census tract had a 

population of zero. Z-scores were calculated to ensure that there was even standardization 

amongst the variables (Equation 2). A z-score ensures normal distribution and allows for results 

to be evenly compared to and used in a Principal Component Analysis (Glen, S. “Z-Score: 

Definition, Formula, and Calculation”). Minimums, maximums, means, standard deviations, and 

z-scores were computed in SPSS by selecting the “Analyze,” selecting “Descriptive Statistics” 

from the options, choosing which variables to calculate this information for, and then clicking 

“Save standardized values as variables.” 

 

Equation 3.1: The equation used within Microsoft Excel to calculate the population percentage of 
each demographic group. 

 

Equation 3.2: The standard equation used when calculating a Z-score. 

A PCA was used to calculate the SVI score for each Census tract. The PCA was 

calculated in SPSS by selecting the “Analyze Header,” then “Dimension Reduction,” and finally 

“Factor.” The z-scores of the variables that needed to be included for all Census tracts in the 
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PCA were selected. “Initial Solution,” “Significance Levels,” and “KMO and Barlett’s Test of 

Sphericity” were selected from “Descriptives.” “Varimax,” “Rotated Solution,” “Loading Plots,” 

and a maximum iteration of 100 were selected from “Rotation.” “Save as Variables” and 

“Regression” were selected from “Factor Scores.” Finally, under “Options,” “Replaced Missing 

Values with Mean” was selected. This process resulted in the values for each Principal 

Component to be generated by Census tract. Then, to calculate the SVI score for each Census 

tract, the Principal Component values for all Principal Components were added together by 

selecting the “Transform” header, and “Compute Variables” was selected from the options 

provided (Equation 3). All groups were added instead of some being subtracted as all the 

variable groups contributed to social vulnerability instead of reducing it.  

 

Equation 3.3: The equation used to calculate the SVI scores, where PC1 is the first principal 
component, and PCF is the final principal component. The number of principal components 
between PC1 and PCF varies by study site. 

 

To yield results that fell above the ≥ 0.5 KMO value, from the original socially 

vulnerable group, some were combined to result in six variables. The six variables were females, 

limited English speaking household (including the four language groups previously identified), 

age (under 5 years old and over 65 years old), race/ethnicity (Black, Asian, Native, 

Hispanic/Latino, other races, and two or more races), disability, and poverty. While these groups 

are all different, they are grouped together based on similarity and different combinations within 

the groups were attempted to yield the needed KMO value. After several attempts of different 

combinations, these six groups provided the needed KMO value while still having different 

groups represented amongst the data. While calculating the KMO value for Brownsville, limited 



60 

English speaking households that identified as speaking a language that was not Spanish, 

Indo/European, nor Asian or Pacific Islands-based were removed as all the values for this group 

were zero, and this resulted in Brownsville having an unacceptable KMO value. After this group 

was removed, the KMO value moved into the acceptable threshold. Additionally, a change in 

these variables altered the significance value for Bartlett’s Test of Sphericity, placing all 

significance values below the 0.05 threshold. Components that yielded an eigenvalue >1 were 

considered in this thesis. Additionally, the variance explained by each component that produced 

an eigenvalue >1 was examined to make sure that PC1 explained the highest percentage of the 

variance observed. 

To construct the SVI map, the SVI scores and the corresponding GISJOIN codes for all 

the Census tracts were copied and pasted into a Microsoft Excel spreadsheet. From there, the 

shapefiles for the Census tracts and the table containing the SVI scores and GISJOIN codes were 

uploaded into ArcGIS Pro 3.1. Then, by clicking on the shapefile, “Joins and Relates” was 

selected, and “Add Join” was chosen from the options. The “Input Table” was the shapefile, the 

“Join Table” was the Microsoft Excel spreadsheet, and the “Input Join Field” and “Join Table 

Field” were the GISJOIN codes. From here, under “Symbology,” “Primary Symbology” was 

changed to “Graduated Colors.” The SVI scores (labeled as “SVI” in the maps) were selected as 

the “Field,” and “Natural Jenks” was selected as the “Method” because it creates ranges for 

classes based on groups already naturally in the data (ESRI, “Data classification methods”). Five 

classes for each SVI were used to represent the following levels of social vulnerability: “Very 

Low,” “Low,” “Moderate,” “High,” and “Very High.” 
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 3.6 Results 

Results from the PCA analysis were examined for statistical significance (≥ 0.5 KMO 

value) before the SVI scores were calculated and mapped. Once the PCA met the statistical 

significance threshold, the SVI scores for each Census tract were created. These scores were then 

uploaded to ArcGIS Pro 3.1 and used as the main symbology for determining each socially 

vulnerable ranking.   

City KMO Value Components PC1 Group 
Brownsville 0.548 2 Race 

Lafayette 0.521 2 Disabled 
Gulfport 0.581 3 Age 
Mobile 0.534 2 Race 

Cape Coral 0.653 2 Race 
Table 3.1: A table showing the KMO value, the number of components generated in the PCA, 
and the socially vulnerable group that is responsible for most of the variance in PC1, by city. 

 
Based on the results of the PCA, Cape Coral had the highest KMO value, and Lafayette 

had the lowest (Table 3.1). All KMO values fall above the significance threshold of 0.5 (Table 

3.1). All the cities besides Gulfport had 2 components, while Gulfport had 3 (Table 3.1). Female, 

Race, Age, and Disabled were the variable groups that were the driving variables in PC1, and 

they explain where most of the variance in the data comes from (Table 3.1). For the variables in 

PC1, Race (3/5) was the most frequently observed socially vulnerable group, while Disabled 

(1/5) and Age (1/5) had the lowest observed frequency. 
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City Component Eigenvalue Variance 
Explained (%) 

Component 
Group 

Brownsville 1 1.962 32.705 Race 
Brownsville 2 1.313 21.888 Age 

Lafayette 1 2.024 33.729 Disabled 
Lafayette 2 1.267 21.109 Race 
Gulfport 1 1.928 32.141 Age 
Gulfport 2 1.461 24.355 Race 
Gulfport 3 1.004 16.740 Language 
Mobile 1 1.767 29.450 Race 
Mobile 2 1.327 22.114 Age 

Cape Coral 1 2.460 40.992 Race 
Cape Coral 2 1.573 26.212 Disabled 

 Table 3.2: A table showing the component number for each city and its corresponding 
eigenvalue, variance explained (as a percentage), and dominant socially vulnerable group. 
Results for the Component Group are drawn from the Rotated Component Matrix. 

 

 The observed groups having the strongest influence on PC1 in all cities were Race 

(Brownsville, Mobile, and Cape Coral), Disabled (Lafayette), and Age (Gulfport), with all PC1s 

having the highest eigenvalue and percentage of variance explained for each city (Table 3.1, 

Table 3.2). The groups observed for Principal Component 2 (PC2) were Age (Brownsville and 

Mobile), Race (Lafayette and Gulfport), and Disabled (Cape Coral), with all PC2s having a 

eigenvalue over 1 (Table 3.2). Gulfport is the only city to have three components, and Principal 

Component 3’s (PC3) group is language, and also has a eigenvalue over one (although it barely 

meets the threshold) (Table 3.2). Brownsville’s components explained 54.593% of the variance 

in the data (Table 3.2). Lafayette’s components explained 54.838% of the variance in the data 

(Table 3.2). Gulfport’s components explained 74.236% of the variance in the data (Table 3.2). 

Mobile’s components explained 51.564% of the variance in the data (Table 3.2). Cape Coral’s 

components explained 67.204% of the variance in the data (Table 3.2). Cape Coral’s PC1 had the 

highest eigenvalue and percentage of variance explained, while Mobile’s PC1 had the lowest 

eigenvalue and percentage of variance explained (Table 3.2).  
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Figure 3.1: The SVI created for Brownsville, Texas. 

 
Figure 3.2: The SVI created for Lafayette, Louisiana. 
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Figure 3.3: The SVI created for Gulfport, Mississippi. 

 
Figure 3.4: The SVI created for Mobile, Alabama. 
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Figure 3.5: The SVI created for Cape Coral, Florida. 

 

City Sample 
Size 

Very Low Low Moderate High Very High 

Brownsville 67 1 16 26 22 2 
Lafayette 58 10 13 15 8 12 
Gulfport 75 7 24 21 14 9 
Mobile 126 11 38 40 24 13 

Cape Coral 199 40 60 52 25 22 
Table 3.3: A table showing each city and how many Census tracts were included in the SVI, 
along with how many Census tracts fell within each SVI rating. 

 

The sample size column in Table 3.3 represents the number of Census tracts used to 

create the SVI. For Brownsville, most Census tracts are within the “Moderate” SVI rating, with 

39% of all Census tracts measuring in this rating (Table 3.3, Figure 3.1). For Lafayette, most 

Census tracts are within the “Moderate” SVI rating, with 26% of all Census tracts measuring in 

this range (Table 3.3, Figure 3.2). For Gulfport, most Census tracts are within the “Low” SVI 

rating, with 32% of all Census tracts measuring in this range (Table 3.3, Figure 3.3). For Mobile, 

most Census tracts are within the “Moderate” SVI rating, with 32% of all Census tracts 
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measuring in this range (Table 3.3, Figure 3.4). For Cape Coral, most Census tracts are within 

the “Low” SVI rating, with 30% of all Census tracts measuring in this range (Table 3.3, Figure 

3.5). Proportional to the size of the city, Brownsville is the city with the lowest amount of the 

“Very Low” socially vulnerable composition and Mobile had the highest (Table 3.3, Figures 3.1 

and 3.4). Lafayette has the highest amount of the “Very High” socially vulnerable composition 

proportional to its city size, and Brownsville has the lowest amount (Table 3.3, Figures 3.1 and 

3.2). 

City Mean 
Age* 

Mean 
Race** 

Mean 
Language*** 

Mean 
Disabled 

Mean 
Poverty 

Mean 
Female 

Brownsville 24 23**** 5 ***** 12 26 50 
Lafayette 20 39 2 12 17 52 
Gulfport 17 42 2 16 18 50 
Mobile 23 52 1 14 20 53 

Cape Coral 37 37 4 14 11 51 
Table 3.4: A table displaying the mean values of each city for all six variables as a percentage of 
what they make up of the total population of their city. All values are rounded to the nearest 
whole number. 
*Consists of the total for both those under the age of five years old and those over the age of 65 years old used to 
compose the Age variable. 
** Consists of the total for the Black, Asian, Native, two or more races, other races, and Hispanic/Latino groups 
used to compose the Race variable. 
*** Consists of the total for the Spanish, Indo/European, Asian and Pacific Islands, and other, languages in a limited 
English-speaking household group that was used to compose the Language variable.  
**** Since the population of Hispanic/Latinos in Brownsville is larger when compared to the other study sites, it is 
split up in this figure as a combination of both races and ethnicity put the mean percentage for race over 100%. 
Therefore, the value in this table only reflects the race groups and not the ethnic group. 
***** All previously mentioned language groups besides the “other” language group are included in this 
calculation. 
 
 

Cape Coral has the highest percentage of their population consisting of people over the 

age of 65 or under the age of five when compared to the other cities, and Gulfport has the lowest 

(Table 3.4). Mobile has the highest percentage of their population being made up by Race 

variable (which includes five race groups and one ethnic group), with Brownsville having the 

lowest (Table 3.4). However, it is important to note that Brownsville has a significantly high 

population of Hispanic/Latino identifying population members, which put the percentage of the 
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population falling into the Race group over 100%. For this reason, it is the only city that had 

Hispanics/Latinos removed from the race calculation, and the percentage in Table 4 represents 

only race groups. Brownsville has the highest percentage of their population living in a limited-

English speaking household, while Mobile has the lowest (Table 3.4). Gulfport has the highest 

percentage of their population identifying as disabled, while Brownsville and Lafayette have the 

lowest (Table 3.4). Brownsville has the highest percentage of their population living at or below 

the poverty line, and Cape Coral has the lowest percentage (Table 3.4). Mobile has the highest 

percentage of their population identifying as female, while Brownsville and Gulfport have the 

lowest (Table 3.4). 

3.7 Discussion 

The KMO values for each study site, while still considered statistically significant, are 

low, being closer to 0.5 (the minimum) than 1. It is ideal that the KMO be closer to 1 than to 0.5 

to enhance the statistical significance and reliability of the results (UCLA: Statistical Consulting 

Group, 2021). One reason that the KMO values can be low has to do with the number of 

variables used in tandem with the sample size (the number of Census tracts within each city). 

The highest KMO value was produced for Cape Coral, which had the highest sample size, and 

the lowest KMO value was produced for Lafayette, which had the lowest sample size (Tables 1 

and 3). Variable groups were combined and separated to produce the most successful KMO 

values. While the separation of components within a group or additions of other 

demographic/socioeconomic populations may have increased the KMO value, there was a desire 

to keep uniformity amongst the variable groups used in this thesis. This resulted in only this 

combination of demographic groups into different variables that yielded a KMO value >0.5 at all 

five study sites. Additionally, PC1 and PC2 explained the most variance in Cape Coral over the 
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PC1s and PC2s in all study sites (Gulfport is excluded as it had three PCs, and having more PCs 

results in more variances being explained) (Table 3.2). As with any statistical test, the larger the 

sample size, the more robust and reliable the results are. For this thesis, the sample size and 

variable ratio affected the KMO value along with the percentage of variance explained by the 

principal components. The number of principal components does not appear to be directly 

influenced by the sample size as all cities except Gulfport had two principal components (and 

Gulfport had three).  

The percentage of the population made up of a specific demographic/socioeconomic 

group appears to have mixed influences on explaining the variances on the data. The only study 

sites where the PC1s were the same as the highest mean makeup of that group in relation to the 

other study sites was Mobile with the Race group (Tables 3.1, 3.2, and 3.4). No PC2s correlated 

to the percentage of that socially vulnerable group’s composition in a study site in relation to the 

other study sites (Tables 3.2 and 3.4). This also holds true for Gulfport’s PC3 (Tables 3.2 and 

3.4). From the opposite perspective, Gulfport, Mobile, and Cape Coral had the lowest makeup of 

the Age and Females, Language, and Poverty group compositions when compared to the other 

study sites (Table 3.4). None of these groups appeared as a principal component in their city’s 

PCA results (Table 3.2). An observation that can be drawn from this is that a high presence of a 

socially vulnerable group may not result in it being a component, but a low presence of a socially 

vulnerable group may result in that group not being a component. This can be observed in 

Brownsville, Gulfport, Mobile, and Cape Coral. Respectively, each had the lowest percentage of 

the population being classified into the disabled, females, language, and poverty groups, and 

these groups were not a main component of each city’s principal components. To counter the 

previous statement, Lafayette has the lowest composition of its population identifying as 
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disabled compared to the other study sites, but the disabled population is the most prevalent 

socially vulnerable group in PC1 (Tables 3.2 and 3.4). Therefore, a low presence of a socially 

vulnerable group in a population does not mean that it has a low influence on its social 

vulnerability. 

From the SVI rankings, all study sites had more “Very Low” ranking Census tracts than 

“Very High” Census tracts (Figures 3.1 - 3.5). Along with this, all cities had most of their Census 

tracts fall into either the “Moderate” or “Low” rankings. These are both promising results as a 

lower social vulnerability ranking is better regarding community resiliency as higher social 

vulnerability rankings. The spatial disbursement based only on the SVIs appears to be at random 

amongst all study sites (Figures 3.1 - 3.5). However, this perception may change based on the 

results of Question 3, which will be examined in Chapter 4. The PCA results, once statistical 

significance was achieved, were used to visualize areas of varying degrees of social 

vulnerability, along with provide insight into which of the six socially vulnerable groups 

contributed the most to the SVI score of each Census tract. 
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Chapter 4: The Relationship Between Risk for Physical Damage and Social Vulnerability 

4.1 Introduction 

As discussed in previous chapters, social vulnerability affects the ability for a population 

to prepare for and recover from a tropical cyclone. Knowing if someone will need to relocate to a 

shelter, their building is likely to be damaged, and the expected financial damage will influence 

how someone prepares for a tropical cyclone and helps them know what to do to successfully 

recover. The Hazus maps created in Chapter 2 incorporate Census data, but Hazus is not aimed at 

specifically incorporating social vulnerability into its calculations. Similarly, as seen in Chapter 

3, the SVIs for the study sites were constructed independently of the information provided by the 

Hazus maps. This chapter aims to look and see if there are any spatial relationships, such as 

spatial autocorrelation, between areas of high risk, low risk, high social vulnerability, and low 

social vulnerability.  

4.2 Background 

4.2.1 Social Vulnerability’s Influence on Risk for Physical Damage  

 It has long been thought that risk may not be influenced solely by physical components 

like geographic location, but that social vulnerability may influence this. Lower social 

vulnerability scores imply that the population may not struggle as much in tropical cyclone 

preparation and recovery when compared to higher social vulnerability scores. Social 

vulnerability can describe how people interact with their environment, making it important when 

looking at the risk of a natural hazard like tropical cyclones as it can also reveal social problems 

in a particular area (Singh et al., 2014). All but one of the Hazus maps from Chapter 2 relate to 

some form of infrastructure damage. The quality of a structure can be affected by who is living 
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in those areas and the integrity of infrastructure can affect the ability to prepare for and recover 

from a tropical cyclone (Chakraborty et al., 2005; Singh et al., 2014). Understanding the 

influence of social vulnerability on risk may be the key to creating resilient communities that can 

be impacted by tropical cyclones (Bergstrand et al., 2015; Singh et al., 2014; Spielman et al., 

2020). It has also been theorized that social vulnerability can change between different 

geographic locations depending on the demographic makeup of the socially vulnerable group in 

that area (Spielman et al., 2020). Regardless of the socially vulnerable makeup, areas of high risk 

from physical damage should still be given great consideration as damage can be expected 

(Chakraborty et al., 2005). In the case of tropical cyclones, areas that are closer to the coastline 

are at a higher physical risk from tropical cyclone impacts. Areas of high social vulnerability and 

high risk for physical damage should be given top priority, making identifying their location 

critical in mitigation planning. 

The National Risk Index (NRI), designed by FEMA, was developed to look at the risk of 

many different natural hazards at the Census tract and county level in the United States. Unlike 

traditional risk maps, the goal of the NRI was to include other potential components that may 

affect risk (Zuzak et al., 2022). One of these components to be included was social vulnerability 

as little attempts have been made to include social vulnerability in previous risk assessments 

(Zuzak et al., 2022). Social vulnerability is identified as being a component that increases risk, 

explaining how it fits into the NRI’s risk equation (Equation 1). While the NRI’s equation for 

risk is not used in this thesis, it is important to note as it shows that social vulnerability is now an 

identifiable influence on risk from a federal emergency management standpoint. 
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Equation 4.1: The formula that was developed by FEMA to calculate risk for the National Risk 
Index (Zuzak et al., 2022). 

 

4.2.2 Bivariate Local Moran’s I Spatial Statistic  

In 1969, Tobler’s First Law of Geography was coined by Waldo Tobler, who stated that 

“everything is related to everything else, but near things are more related than distant things” 

(GISGeography, 2022). Essentially, objects or places that are closer in geographic proximity to 

each other will exhibit more similar attributes. Places or objects that are farther in geographic 

proximity will share fewer common attributes. This is the basis for the concept of spatial 

autocorrelation, which describes the intensity and linearity of spatial patterns and relationships 

between a variable with itself while considering the feature’s value and locations at the same 

time (Dubé and Legros, 2014; ESRI). Simply, spatial autocorrelation describes if features are 

randomly dispersed or if there is a pattern to their dispersal.  

Moran’s I is a spatial statistical test that will describe the amount of spatial 

autocorrelation observed between a variable and its statistical significance (Dubé and Legros, 

2014; ESRI; GISGeography, 2022; Lee, 2001). Moran’s I can be used at a global or local level. 

Global Moran’s I looks at the overall spatial autocorrelation, while Local Moran’s I compares 

the local spatial autocorrelation to the global autocorrelation as it focuses on near neighbors 

(Dubé and Legros, 2014; ESRI). Local Moran’s I was chosen over Global Moran’s I as it 

provides a way to better identify patterns of varying values (Dubé and Legros, 2014; Lee, 2001). 

Local Moran’s I produce four groupings: High-High, Low-Low, High-Low, and Low-High. 
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High-High and Low-Low are considered spatial clusters and imply a (positive) high degree of 

spatial autocorrelation. High-Low and Low-High are considered spatial outliers and imply that 

there is (negative) little to no spatial autocorrelation (Dubé and Legros, 2014). All four are 

considered to have statistical significance; features that are not statistically significant are labeled 

as so.  

For this thesis, a Bivariate Local Moran’s I analysis is used to examine the spatial 

autocorrelation between the Hazus maps and the SVIs. Bivariate Local Moran’s I examines the 

statistical relationship between two nearby features and demonstrates spatial autocorrelation 

between both variables (Livings and Wu, 2020; Lee, 2001). A Weights Matrix must be 

computed, and the contiguity method was used as it works well for polygon data (which the 

Census tracts are) that are located near each other. There are two options for contiguity: Queen’s 

case and Rook’s case (Livings and Wu, 2020). Like the chess pieces that are their namesakes, 

each case uses a different way of defining near neighbors. The Queen’s case allows for neighbors 

to be defined by features sharing a side and corner, while the Rook’s case defines neighbors as 

features sharing only a common side (Livings and Wu, 2020). To incorporate more data, 

Queen’s contiguity was chosen. The Bivariate Local Moran’s I requires the identification of an X 

(independent or explanatory) variable and a Y (the dependent) variable. SVI is selected as the X 

variable because SVI is not influenced by physical risk. The Hazus map risk factor is assigned as 

the Y variable as it should be influenced by the SVI value.  

4.3 Research Question, Hypothesis, and Objective  

The research question that will be answered in this chapter is “Are there any spatial 

relationships between the risk of tropical cyclone physical damage and social vulnerability at 

each study site?” One hypothesis is that areas of higher risk for different physical damages will 
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correspond to areas of high social vulnerability, while areas of lower risk for different physical 

damages will correspond to areas of low social vulnerability. Another hypothesis is that there 

will be more areas of high damage-high vulnerability and low damage-low vulnerability over 

areas of high damage-low vulnerability and low damage-high vulnerability. The objective is that 

the Bivariate Local Moran’s I spatial statistic will map and count areas where the four 

relationships between damage and vulnerability above appear in each city. 

      4.4 Data 

The data that are used in this chapter are the same sources used in Chapters 2 and 3 as the 

maps created to answer this question are based on the maps from Chapters 2 and 3. These data 

sources include the US Census Bureau, the National Structure Inventory, and the US Army 

Corps of Engineers.  

      4.5 Methodology 

Similar to what was done for Question 2 (in Chapter 3), the Hazus maps and the SVI 

maps must be linked by a unique identifier. For the maps in this chapter, the linking unique 

identifier is going to be the Census tract numbers, or “Tract_1” in the data files. In ArcGIS Pro, 

the spreadsheet with the SVI data was joined to three of the four generated Hazus maps for 

Question 1 (Chapter 2) for each study site. These three maps were for Displaced Households, 

Percentage of Buildings with No Damage, and Total Loss. The windspeeds map was left out as 

the windspeeds from a tropical cyclone are not influenced by social vulnerability, whereas the 

other maps’ outcomes may be affected by social vulnerability. Once this join was complete, the 

shapefile was saved with the updated corresponding SVI information. Then, that shapefile is 

uploaded into GeoDa (Anselin, 2020b). Under “Tools,” “Weights” is selected, which is 
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necessary for a Bivariate Local Moran’s I test to run. “Create” was selected, and from the options 

that appear, “Tract_1” was selected as the ID variable, and “Queen” was selected for Contiguity. 

Queen was selected over Rook because the Queen will include more neighbors in the analysis 

and will help provide the best results in the case of any inaccuracies in the dataset (Anselin, 

2020a). All other values remain untouched. After this weight file was created and saved, under 

“Space,” “Bivariate Local Moran’s I” was selected. “SVI” is selected as “X” and the Hazus 

variable is selected as “Y.” A “Cluster Map” was selected to be created, as these maps represent 

the clusters for High-High (high social vulnerability-high risk), High-Low (high social 

vulnerability-low risk), Low-Low (low social vulnerability-low risk), Low-High (low social 

vulnerability-high risk) and Not Significant (not statistically significant). Due to a difference in 

spatial resolution between the SVI and the Hazus maps used for Gulfport, Mississippi, this 

methodology was not able to be done for this study site (refer to Section 2.7 for more 

information). However, this methodology was completed in the other four study sites. 

4.6 Results 

After the Bivariate Local Moran’s I analysis was completed, cluster maps were produced 

to visualize areas of statistically-significant clusters or outliers, and areas of no statistical 

significance. Areas were visualized by each Census tract unit within the city.  
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Figure 4.1: A cluster map generated by the Bivariate Local Moran’s I spatial statistic that 
demonstrates the relationship between Social Vulnerability and Displaced Households due to a 
tropical cyclone in Brownsville, Texas. 

 

 

Figure 4.2: A cluster map generated by the Bivariate Local Moran’s I spatial statistic that 
demonstrates the relationship between Social Vulnerability and the Percentage of Buildings with 
No Damage due to a tropical cyclone in Brownsville, Texas. 
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Figure 4.3: A cluster map generated by the Bivariate Local Moran’s I spatial statistic that 
demonstrates the relationship between Social Vulnerability and Total Financial Loss due to a 
tropical cyclone in Brownsville, Texas. 

 

Risk Factor High-High Low-Low Low-High High-Low Not 
Significant 

Displaced 
Households 

0 6 4 9 32 

% of Buildings 
with No Damage 

13 6 4 1 27 

Total Financial 
Loss 

0 5 4 11 31 

Table 4.1: The number of Census tracts in the four statistically significant groups and one not 
statistically significant group for each risk factor map for Brownsville, Texas. 

 

Three cluster maps were created for Brownsville, Texas for three of the four Hazus maps 

created in Chapter 2, with each map examining the relationship between the SVI score and the 

specific risk factors. For Displaced Households, the most prominent cluster or outlier, besides 

Not Significant, was the High-Low outlier (17.6% of all Displaced Household Census tracts) 

(Figure 4.1, Table 4.1). For the Percentage of Buildings with No Damage, the most prominent 
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cluster or outlier, besides Not Significant, was the High-High cluster (25.5% of all Percentage of 

Buildings with No Damage Census tracts) (Figure 4.2, Table 4.1). For the Total Financial Loss, 

the most prominent cluster or outlier, besides Not Significant, is the High-Low outlier (21.6% of 

all Total Financial Loss Census tracts) (Figure 4.3, Table 4.1). The cluster or outlier amongst all 

three risk factors that had the most Census tracts is Not Significant (Table 4.1 top-to-bottom risk 

factors, 62.7%, 52.9%, and 60.8% for each risk factor, respectively), and the clusters or outliers 

amongst all three risk factors that had the least Census tracts are Low-High (7.8% for Percentage 

of Buildings with No Damage) and High-High (0.0% for Displaced Households and Total 

Financial Loss) (Table 4.1). Percentage of Buildings with No Damage had the most High-High 

clusters (100% of all High-High cluster Census tracts), Displaced Households and Percentage of 

Buildings with No Damage had the most Low-Low clusters (70.6% of all Low-Low cluster 

Census tracts), all three risk factors had the same amount of Low-High outliers (100% total of all 

Low-High cluster Census tracts), and Total Financial Loss had the most High-Low 

outliers(52.4% of all High-Low outlier Census tracts) (Table 4.1). Displaced Households had the 

most Not Significant outliers (35.6% of all Not Significant Census tracts), and Percentage of 

Buildings with No Damage had the least amount of Not Significant outliers (30.0% of all Not 

Significant Census tracts) (Table 4.1).  
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Figures 4.4 (left), 4.5 (middle), and 4.6 (right): Figure 4.4 is a cluster map generated by the 
Bivariate Local Moran’s I spatial statistic that demonstrates the relationship between Social 
Vulnerability and Displaced Households due to a tropical cyclone in Lafayette, Louisiana. Figure 
4.5 is a cluster map generated by the Bivariate Local Moran’s I spatial statistic that demonstrates 
the relationship between Social Vulnerability and the Percentage of Buildings with No Damage 
due to a tropical cyclone in Lafayette, Louisiana. Figure 4.6 is a cluster map generated by the 
Bivariate Local Moran’s I spatial statistic that demonstrates the relationship between Social 
Vulnerability and Total Financial Loss due to a tropical cyclone in Lafayette, Louisiana. 

 

Risk Factor High-High Low-Low Low-High High-Low Not Significant 
Displaced 

Households 
0 4 5 2 32 

% of Buildings 
with No Damage 

4 5 4 0 30 

Total Financial 
Loss 

0 4 6 6 27 

Table 4.2: The number of Census tracts in the four statistically significant groups and one not 
statistically significant group for each risk factor map for Lafayette, Louisiana.  

 

Three cluster maps were created for Lafayette, Louisiana for three of the four Hazus 

maps created in Chapter 2, with each map examining the relationship between the SVI score and 

the specific risk factors. For Displaced Households, the most prominent cluster or outlier, besides 

Not Significant, was the Low-High outlier (18.6% of all Displaced Household Census tracts) 

(Figure 4.4, Table 4.2). For the Percentage of Buildings with No Damage, the most prominent 
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cluster or outlier, besides Not Significant, was the Low-Low cluster (11.6% of all Percentage of 

Buildings with No Damage Census tracts) (Figure 4.5, Table 4.2). For the Total Financial Loss, 

the most prominent clusters or outliers, besides Not Significant, are the Low-High and High-Low 

outliers combined (27.9% of all Total Financial Loss Census tracts) (Figure 4.6, Table 4.2). The 

cluster or outlier amongst all three risk factors that had the most Census tracts is Not Significant 

(Table 2 top-to-bottom risk factors, 74.4%, 69.8%, and 62.8% for each risk factor, respectively), 

and the clusters or outliers amongst all three risk factors that had the least Census tracts are 

High-High (0.0% for Displaced Households and Total Financial Loss) and High-Low (0.0% for 

Percentage of Buildings with No Damage) (Table 4.2). Percentage of Buildings with No Damage 

had the most High-High clusters (100% of all High-High cluster Census tracts), Displaced 

Households and Total Financial Loss had the most Low-Low clusters (total 61.5% of all Low-

Low cluster Census tracts), Total Financial Loss had the most Low-High outliers (40.0% of all 

Low-High cluster Census tracts), and Total Financial Loss had the most High-Low outliers 

(75.0% of all High-Low cluster Census tracts) (Table 4.2). Displaced Households had the most 

Not Significant outliers (36.0% of all Not Significant Census tracts), and Total Financial Loss 

had the least amount of Not Significant outliers (30.3% of all Not Significant Census tracts) 

(Table 4.2).  
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Figures 4.7 (left), 4.8 (middle), and 4.9 (right): Figure 4.7 is a cluster map generated by the 
Bivariate Local Moran’s I spatial statistic that demonstrates the relationship between Social 
Vulnerability and Displaced Households due to a tropical cyclone in Mobile, Alabama. Figure 4.8 
is a cluster map generated by the Bivariate Local Moran’s I spatial statistic to show the relationship 
between Social Vulnerability and the Percentage of Buildings with No Damage due to a tropical 
cyclone in Mobile, Alabama. Figure 4.9 is a cluster map generated by the Bivariate Local Moran’s 
I spatial statistic that demonstrates the relationship between Social Vulnerability and Total 
Financial Loss due to a tropical cyclone for Mobile, Alabama. 

 

Risk Factor High-High Low-Low Low-High High-Low Not Significant 
Displaced 

Households 
6 8 11 5 79 

% of Buildings 
with No Damage 

4 14 20 17 54 

Total Financial 
Loss 

2 4 9 8 86 

Table 4.3: The number of Census tracts in the four statistically significant groups and one not 
statistically significant group for each risk factor map for Mobile, Alabama. 

 

Three cluster maps were created for Mobile, Alabama for three of the four Hazus maps 

created in Chapter 2, with each map examining the relationship between the SVI score and the 

specific risk factors. For Displaced Households, the most prominent cluster or outlier, besides 

Not Significant, was the Low-High outlier (10.1% of all Displaced Households Census tracts) 
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(Figure 4.7, Table 4.3). For the Percentage of Buildings with No Damage, the most prominent 

cluster or outlier, besides Not Significant, was the Low-High outlier (18.3% of all Percentage of 

Buildings with No Damage Census tracts) (Figure 4.8, Table 4.3). For the Total Financial Loss, 

the most prominent cluster or outlier, besides Not Significant, is the Low-High outlier (8.3% of 

all Total Financial Loss Census tracts) (Figure 4.9, Table 4.3). Based on percentages, the cluster 

or outlier amongst all three risk factors that had the most Census tracts is Not Significant (Table 

4.3 top-to-bottom risk factors, 72.5%, 49.5%, and 78.9% for each risk factor, respectively), and 

the cluster or outlier amongst all three risk factors that had the least Census tracts is High-High 

(5.5% for Displaced Households and 1.8% for Total Financial Loss) (Table 4.3). Displaced 

Households had the most High-High clusters (50.0% of all High-High cluster Census tracts), 

Percentage of Buildings with No Damage had the most Low-Low clusters (53.8% of all Low-

Low cluster Census tracts), Percentage of Buildings with No Damage had the most Low-High 

outliers (50.0% of all Low-High cluster Census tracts), and Percentage of Buildings with No 

Damage had the most High-Low outliers (56.7% of all High-Low cluster Census tracts) (Table 

4.3). Total Financial Loss had the most Not Significant outliers (39.2% of all Not Significant 

cluster Census tracts), and Percentage of Buildings with No Damage had the least amount of Not 

Significant outliers (24.6% of all Not Significant cluster Census tracts) (Table 4.3).  
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Figure 4.10: A cluster map generated by the Bivariate Local Moran’s I spatial statistic that 
demonstrates the relationship between Social Vulnerability and Displaced Households due to a 
tropical cyclone in Cape Coral, Florida. 

 

Figure 4.11: A cluster map generated by the Bivariate Local Moran’s I spatial statistic that 
demonstrates the relationship between Social Vulnerability and the Percentage of Buildings with 
No Damage due to a tropical cyclone in Cape Coral, Florida. 
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Figure 4.12: A cluster map generated by the Local Bivariate Moran’s I spatial statistic that 
demonstrates the relationship between Social Vulnerability and Total Financial Loss due to a 
tropical cyclone for Cape Coral, Florida. 

 

Risk Factor High-High Low-Low Low-High High-Low Not Significant 
Displaced 

Households 
2 28 17 24 78 

% of Buildings 
with No 
Damage 

20 31 21 8 89 

Total Financial 
Loss 

3 27 18 24 77 

Table 4.4: The number of Census tracts in the four statistically significant groups and one not 
statistically significant group for each risk factor map for Cape Coral, Florida. 

 

Three cluster maps were created for Cape Coral, Florida for three of the four Hazus maps 

created in Chapter 2, with each map examining the relationship between the SVI score and the 

specific risk factors. For Displaced Households, the most prominent cluster or outlier, besides 

Not Significant, was the Low-Low cluster (17.5% of all Displaced Household Census tracts) 

(Figure 4.10, Table 4.4). For the Percentage of Buildings with No Damage, the most prominent 

cluster or outlier, besides Not Significant, was the Low-Low cluster (19.3% of all Percentage of 

Buildings with No Damage Census tracts) (Figure 4.11, Table 4.4). For the Total Financial Loss, 

the most prominent cluster or outlier, besides Not Significant, is the Low-Low cluster (16.9% of 
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all Total Financial Loss Census tracts) (Figure 4.12, Table 4.4). Based on percentages, the cluster 

or outlier amongst all three risk factors that had the most Census tracts is Not Significant (Table 

4.4 top-to-bottom risk factors, 48.8%, 55.6%, and 48.1% for each risk factor, respectively), and 

the cluster or outlier amongst all three risk factors that had the least Census tracts is High-High 

(Table 4.4 top-to-bottom risk factors, 0.01%, 12.5%, and 0.01% for each risk factor, 

respectively) (Table 4.4). Percentage of Buildings with No Damage had the most High-High 

clusters (80% of all High-High cluster Census tracts), Percentage of Buildings with No Damage 

had the most Low-Low clusters (36.0% of all Low-Low cluster Census tracts), Percentage of 

Buildings with No Damage had the most Low-High outliers (37.5% of all Low-High cluster 

Census tracts), and Displaced Households and Total Financial Loss had the most High-Low 

outliers (42.9% individually, or 85.7% total of all High-Low cluster Census tracts (Table 4.4). 

Percentage of Buildings with No Damage had the most Not Significant outliers (36.5% of all Not 

Significant cluster Census tracts), and Displaced Households had the least amount of Not 

Significant outliers (31.6% of all Not Significant cluster Census tracts) (Table 4.4).  

4.7 Discussion 

When looking at the maps, it is evident that certain cluster groups are favoring being 

spatially near another outlier group over the others. Specifically, High-High clusters are seen 

occurring near Low-High outliers, and Low-Low clusters and High-Low outliers are observed 

being near each other. This is a distinct feature visible on almost every map at all the study sites, 

regardless of what the specific damage or risk was. High-High clusters and Low-High outliers 

are related as there is a high risk for physical damage in the Census tracts in these clusters and 

outliers. Conversely, Low-Low clusters and High-Low outliers are similar in the sense that the 

risk for that specific type of damage or loss is low. This may suggest that the areas where the 
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four cluster and outlier groups are broken up into these two smaller groups, a High Risk and a 

Low Risk group, based on their geographic proximity to one another are areas of either higher or 

lower risk for physical damage or loss, regardless of social vulnerability. This supports Tobler’s 

First Law of Geography as spatial autocorrelation is observed since the High Risk and Low Risk 

group are composed of clusters and outliers that are more related to each other than the clusters 

in the other group.  

When assessing whether a specific physical risk is more prevalent in one cluster than the 

other, some risks are common across all four study sites. The Percentage of Buildings with No 

Damage dominates the High-High cluster in all study sites besides Mobile; in Brownsville and 

Lafayette, it is the only risk that is in this cluster. In Mobile, The Percentage of Buildings with 

No Damage has more Census tracts in a cluster than the other two risk factors. The Percentage of 

Buildings with No Damage has a quite different prevalence across the High-Low outliers for 

every study site, as it is only the dominant risk factor in this cluster or outlier for Mobile. Except 

for Mobile, the Low-High outliers are mostly evenly distributed between all three risk factor 

groups.  

The Percentage of Buildings with No Damage is the most prevalent (besides a tie with 

Displaced Households in Brownsville) risk factor in the Low-Low cluster, as well as the High-

High cluster (excluding Mobile). This may mean that, when about the integrity of infrastructure, 

social vulnerability may influence how likely a building is to be damaged. This may hold in 

some cases as socially vulnerable populations who are struggling financially may only be able to 

afford to live in older, weaker buildings. Additionally, they may not have the money to recover if 

the building they reside in is destroyed in a storm. For resilient community purposes, the number 

of displaced households and the total financial needs to be kept as minimal as possible. On the 
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other hand, it is good to have a high number of Census tracts in the High-High cluster or Low-

High outlier for the Percentage of Buildings with No Damage, as a high number in this risk 

factor implies resiliency as fewer buildings are sustaining damage. This may explain why the 

High Risk and Low Risk groups, when looking at it from the Percentage of Buildings with No 

Damage risk perspective, are experiencing clustering. Wealthier areas typically have stronger 

infrastructure and are the home to affluent community members who are less socially vulnerable. 

These areas of lower social vulnerability are more likely to be focused in one location instead of 

several smaller or more randomly dispersed clusters.  
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Chapter 5: Conclusions, Limitations, Future Directions, and Significance 

 

5.1 Conclusions 
 

5.1.1 Question 1 

When estimating risk, this thesis shows that it is important to pay attention to the 

locations of the strongest winds in a hurricane as this can be an indicator of where the most 

damage will occur.  The highest category windspeeds modeled was at the Category 4 level 

(Gulfport and Cape Coral), and the lowest category was modeled at the Category 2 level 

(Lafayette). Cape Coral had the highest amount of potentially displaced households, which can 

mean that Cape Coral, of all the study sites, should plan for needing more storm shelter, and 

potentially evacuation routes, s in the event of a tropical cyclone. Mobile will experience the 

lowest percentage of buildings that receive no damage (46.8%) of all the study sites. This can 

imply that the Mobile building codes and standards may need to be updated and increased and 

that more shelters may need to be in place if more buildings are likely to be damaged. Cape 

Coral is most likely to experience the highest total economic loss ($551,466,000), and this 

should inspire planners and emergency managers to budget accordingly. The geospatial 

component of Hazus is particularly of use as it shows the exact location where damage is likely 

to occur. 

5.1.2 Question 2 

Six socially vulnerable groups were used to run a PCA that was used to create an SVI. 

Sample size appeared to influence the KMO. The dominant demographic/socioeconomic group 

for a study site was not always the group that was having the heaviest influence on the SVI 

results. The most common socially vulnerable group explaining the variance in PC1 was “race”, 
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which was the group for the PC1 in three study sites (Brownsville, Cape Coral, and Mobile). 

Gulfport was the only city to have three principal components (age, race, and language). Females 

and Poverty were the only groups that did not appear as the group explaining the variance in any 

principal component for any study site. In almost all the study sites, the least prevalent socially 

vulnerable group was not a group that had a heavy influence on the SVI values. For all the study 

sites, most of the Census tracts fall into the “Moderate” or “Low” SVI rating. Brownsville is the 

city with the lowest amount of “Very Low” socially vulnerable tract ratings, and Mobile had the 

highest amount, for their sample size. Lafayette has the highest amount of “Very High” socially 

vulnerable tract ratings, and Brownsville had the lowest amount, for their sample size.  

5.1.3 Question 3 

Spatial autocorrelation was observed when the Bivariate Local Moran’s I spatial 

statistical test was used to see if areas of similar social vulnerability or risk levels would appear 

to be next to each other. Some risk factors, such as the Percentage of Buildings with No Damage, 

made up large portions of varying clusters across all study sites; in this case, it was the High-

High cluster. There is a great variance in how much each of the three risk factors composed of 

the High-Low outliers throughout all four study sites where this test was computed for. Apart 

from Cape Coral, the High-High and Low-Low clusters for each of the three risk factors had a 

smaller number of Census tracts when compared to the other outliers.  

5.2 Limitations 
 

5.2.1 Question 1 
 

The building data used is from the 2010 Census and has not been updated to have 2020 

Census information. While this does not apply to all the data needed or used in the predictions, it 
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is important since Census data supply some of the information regarding buildings, shelters, and 

total losses. However, the data is still reliable as it has a real basis but would need to be updated 

with the 2020 data to provide a more up-to-date risk estimate. There is a way to input user-

generated data, which would require traveling to each study site to evaluate buildings and 

conduct interviews and surveys, but that was not possible for this thesis given time and money 

constraints. The user-generated data would have allowed for a more advanced level analysis that 

would have yielded more accurate results, but due to this constraint, the analysis was done at the 

basic (Level 1) level (FEMA, 2022).  

Hazus functions at different resolutions of spatial data, and in this thesis, it is used at the 

Census tract level as this was the smallest spatial unit available for Hazus’ Hurricane Model. 

Other Hazus models work at a smaller spatial level, such as at the Census block level. The finer 

the spatial resolution is, the more accurate the results are as it creates a larger sample size for the 

model to utilize. Despite this, the Census tracts will still yield usable and informative results as 

the data are directly input for that level, and there are multiple Census tracts featured at each 

study site. The issues with conflicting data between the Hurricane and Flood Models of Hazus 

may be why some results for Gulfport, Mississippi are automatically generated at the Census 

block level even when the Census tract level is selected.  

Since Hazus is a model, it is always important to examine the information generated with 

caution. Hazus relies on the data it is provided along with the equation designed to give the most 

accurate predictions. Albeit it is used by risk-estimating practitioners around the United States, it 

has its flaws as with any model. There is no guarantee that what is seen in these 100-year 

scenarios for each city is certainly going to happen exactly as predicted. The benefit of models, 

however, is that they are constantly evolving as new data are gathered and equations are 
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improved upon. All model and estimating program designers create their programs based on the 

most accurate information at the time. Hazus has been updated several times since it originally 

came out years ago, showing that the Hazus creators are dedicated to making sure it produces the 

most accurate information possible.  

5.2.2 Question 2 

A problem with Census data is that it is self-reported, and the data may not be accurate or 

complete as not all parts of the Census are required to be filled out. This affects the SVI results 

as it may not provide accurate insight into the population residing in each of the study sites. 

Additionally, there may be temporary residents in each study site that permanently reside 

elsewhere, even if they spend half of the year or more in the study site. If they spend much of the 

year in the study site but declare residency elsewhere, then they are not accounted for by the 

Census in that study site. This can cause issues with the results as they do not paint a picture of 

what the population appears to be for most of the year. This is likely as some people who declare 

residency in northern states go to the Gulf of Mexico states in the winter since the weather is 

warmer there. 

Another way that social vulnerability of an area is affected is the number of tourists visiting the 

cities throughout the year. The Gulf of Mexico is a popular tourist destination, and there is no 

way to account for tourists in the Census data. This is of importance because tropical cyclones 

occur in the Gulf of Mexico during the summer and fall months, which tends to be when 

vacationers are prevalent in the study sites. A study site may experience a high number of 

vacationers that fall within socially vulnerable populations at the landfall of a tropical cyclone.  
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5.2.3 Question 3 

The limitations presented in answering Questions 1 and 2 are limitations to this question 

as the results of those outputs were used to answer Question 3. Inaccuracies or incompleteness 

amongst the data will affect the results of the analysis done to answer this question. In this case, 

the question could not be answered for Gulfport, Mississippi, since the Hazus maps were 

generated at the Census block level, while the SVI was created at the Census tract level. Due to 

this difference, examining the influences of SVI on the different Hazus factors was impossible. 

Additionally, more statistically significant results may have been identified for the other study 

sites if the spatial resolution was increased (go to Census block instead of Census tract). 

However, this is impossible for the Hurricane Model of Hazus as it only goes down to the 

Census tract spatial resolution. 

5.3 Future Directions 
 

5.3.1 Question 1 

Expanding the specific results that are produced within Hazus to incorporate all possible 

results would be a strong place to take this project in the future. Many options exist for looking 

at building losses (both economically and structurally), debris types and amounts, shelter 

requirements, and numerous more. Being able to examine all the outputs that Hazus has to offer 

can be beneficial to a scientific study, along with a general user who wants to learn more about 

the risk in their area.  It would also provide a wider understanding of the risk to each of the study 

sites and would help in pinpointing where areas of future focus should be.  

If capable, being able to do a more advanced study by inputting user-gathered 

information instead of the nationalized data that are pre-uploaded into Hazus can produce a more 

accurate and advanced study. This does not negate the use of the work done in this thesis, but 
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user-generated data are more up-to-date and location-specific, and as previously discussed, the 

data in Hazus used for this thesis are from the 2010 US Census. In the future, if the Hazus 

Hurricane Model can work at a smaller spatial unit, then this study could be recreated at that 

smaller spatial unit and produce more accurate results. On this note, answers on why a default to 

the Hazus Hurricane Model is Census blocks over Census tracts in some cases can be further 

investigated. 

Additionally, if storm surge data could be incorporated into a risk-estimation model, then 

the results of the model may change as storm surge will contribute in varying amounts to the 

damage. Storm surge data are not included in this model as Hazus only incorporates storm surge 

data in the historical model and not the probabilistic model. Tropical cyclones also bring other 

hazards beyond storm surge and wind including tornadoes and inland flooding from extensive 

rainfall. None of these data are currently incorporated into Hazus, and could, therefore, not be 

included in these results. If a model could be run that estimates the damage from all these 

hazards, then the results of the model can be more accurate. 

5.3.2 Question 2 

If possible, the ability to gather additional Census data, whether this is through surveys or 

another method, would yield more accurate SVI scores and create a better SVI. However, time 

and money constraints, along with participation, can pose problems for this occurring. Results 

can be improved upon by using a smaller spatial unit, such as a Census block or Census block 

group, as this creates a greater sample size that would allow for more variables to be included in 

a PCA-based SVI. Although this change can enhance the results of an SVI, it comes with its 

challenges as data may not be as evenly disbursed at this level, and some assumptions would be 

necessary. There are other methodologies besides conducting a PCA that can be used to 
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construct an SVI, and choosing a different methodology may either confirm the results in this 

thesis or yield conflicting results. Another option to consider is adding information about 

residents who are in the study site for more than six months of the year, but still claim residency 

in another state. This information would provide a different perspective as it may portray a more 

accurate image of social vulnerability for most of the year. If data could be gathered monthly, 

specifically for June through November, this would prove to be beneficial when examining 

tropical cyclone social vulnerability. Hurricane Season is during these months in the Gulf of 

Mexico, and accounting for all potential residents during this period would help when 

considering the socially vulnerable populations exposed to tropical cyclones. A survey of the 

tourists visiting each study site can be helpful as well. 

Something that was not a particular problem for this thesis, but could be improved on, is 

increasing the statistical significance of the PCA results by increasing the KMO value. One way 

to do this would be to increase the sample (spatial unit) quantity and leave the variables (the 

socially vulnerable groups) the same. Additionally, if the sample size is increased, the variables 

can be diversified (dividing amongst languages, races, ages, etc.) or even add other socially 

vulnerable groups such as those that lack certain educational levels, access to cars or the internet. 

Groups like these were not included in this thesis as, in some cases, it lowered the KMO below 

the 0.5 threshold. The higher the KMO value, the more reliable the PCA results will be, creating 

a more reliable SVI. 

5.3.3 Question 3 

While this thesis only focuses on one type of spatial statistic and concept, other spatial 

statistics can be performed on the data. Moran’s I, while used in this thesis at the local level, can 

also be done at a global level. Both the local Moran’s I and the global Moran’s I test for spatial 
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autocorrelation and spatial relationships amongst a dataset. This might produce different results 

that can be built on the information gathered from this thesis. A future project could add to the 

results for this question by examining the relationship between several variables, including ones 

that were not able to be used in this study. Working at a smaller spatial resolution can provide 

more insight into the specifics of the relationships observed in these results. In future versions of 

Hazus’s Hurricane Model, modeling at the Census block level may be possible for all study sites 

used in this thesis. This could potentially create a more accurate representation of the 

relationship between the Hazus variables and the SVI results as a finer spatial resolution can 

create better results, and this may turn some areas that were deemed as not being statistically 

significant into being statistically significant.  

The most prevalent cluster or outlier at all study sites for this question was the ‘Not 

Significant’ outlier. The high number of Census tracts in this outlier did not diminish the results 

of this question, but if this question were to be re-examined, more Census tracts in a cluster of 

significance over an outlier of no significance would be beneficial. More significant Census 

tracts can create a better image of the extent of the spatial autocorrelation in each study site. To 

reiterate this idea, increasing the number of spatial units, whether it be by working at a smaller 

spatial resolution or by creating a large site, may be beneficial in further attempts to answer this 

question. Additionally, incorporating flood and storm surge data, amongst other tropical cyclone-

related hazards, may change the number of significant clustering.  

5.4 Significance 

On September 28, 2023, Hurricane Ian made landfall in southwestern Florida as a 

Category 4 hurricane (Bucci et al., 2023). Cape Coral, like most of southwestern Florida, was 

severely affected by Hurricane Ian. In Cape Coral, sustained windspeeds of Category 1 strength 
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were measured, but there was instrumental failure near the areas of where the eyewall made 

landfall, and maximum sustained winds are estimated to be at least Category 4 in strength (Bucci 

et al., 2023). A storm surge of six to nine feet was observed in the Cape Coral area. In nearby 

areas of southwestern Florida, a storm surge height of 15 feet was observed (Bucci et al., 2023). 

In Florida alone, rainfall up to 26.95 inches and an EF-2 tornado were recorded (Bucci et al., 

2023). 156 lives were claimed by Hurricane Ian; 66 deaths were direct. All the direct deaths 

occurred in Florida, and 36 of the 41 storm surge-related direct deaths occurred in Lee County, 

the county that Cape Coral resides in (Bucci et al., 2023). $109.5 billion in damages occurred in 

Florida alone, making it the costliest tropical cyclone in Florida’s history. The total financial cost 

of Hurricane Ian in the United States, around $112.9 billion, makes Hurricane Ian the third 

costliest tropical cyclone in United States history (Bucci et al., 2023). 52,514 buildings sustained 

damage in Lee County, and approximately 3.28 million people in Florida lost power (Bucci et 

al., 2023).   

While Cape Coral is only one of five study sites in this thesis, it shows that these study 

sites are at significant risk for severe impacts from tropical cyclones. Cape Coral was chosen 

before Hurricane Ian made an impact, but it was chosen because it was susceptible to impacts 

from tropical cyclones. The landfall of Hurricane Ian near Cape Coral shows the validity of the 

study site being chosen, and how realistic the situations dealt with in this thesis are. Cape Coral 

is a medium-sized city that directly touches the Gulf of Mexico. It has been impacted by other 

hurricanes besides Ian, and, unfortunately, will likely be impacted in the future. Tragedy may 

have struck this study site, but with it comes valuable information that can create more resilient 

communities. The work done in this thesis involves modeling and predicting, but these results 

have implications that go beyond the realm of furthering scientific knowledge to broaden our 
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scientific understanding. The methods of this thesis can be applied to other cities, especially 

small and medium-sized cities, that are at risk for impact from tropical cyclones. Understanding 

what the risks from tropical cyclones are, the socially vulnerable populations living in 

susceptible geographic locations, and how social vulnerability influences risk, are critical to 

saving the lives and assets of the United States Gulf of Mexico residents. 
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