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ABSTRACT 

 

This dissertation includes three empirical essays in three chapter by addressing issues 

related to Resource Economics, Agricultural Policy, and Recreational demand. I contribute to the 

literature by adopting nonlinear panel estimation methods, causal inference analysis, and quantile 

regression to address issues of resource management, environmental resources allocation, and 

econometric issues. 

Chapter 1 addresses the impact of the Conservation Reserve Program rental rates on 

program enrollment under different crop price environments using a nonlinear approach. High 

crop prices decrease landowners’ incentives to enroll land in the Conservation Reserve Program 

(CRP), as returns from crop production become more favorable, relatively. We explore how CRP 

rental rates affect CRP land enrollment decisions under varying crop-price regimes. We use 

county-level data from 1986 to 2019 and employ a land-use framework estimated empirically with 

a Panel Smoothing Transition Regression. Our results suggest that the impact of CRP rental rate 

on CRP land enrollment varies depending on the level of crop prices. When crop prices are low, a 

10% increase in CRP rental rates is associated with a 2.7% increase in CRP land enrollment; 

whereas when crop prices are high, a 10% increase in CRP rental rates causes a 1.9% increase in 

CRP land enrollment. We conclude that substantial carbon-sequestration and water-quality 

benefits are foregone under high crop price regimes.  

Chapter 2 addresses the effect of the Transition Incentive Program on Beginning farmers 

and ranchers in the United States. This paper examines the effect of the Transition Incentive 

Program (TIP) on beginning farmers and ranchers (BFRs) in the midwestern agricultural region. 

BFRs are important for the agricultural industry in the United States as they have the potential to 

enhance its productivity and efficiency. The TIP is a federal program that seek to transfer near–

expiring Conservation Reserve Program (CRP) lands to a beginner farmer, rancher, veteran, or 

socially disadvantaged farmer. We evaluate if availability of TIP affected the number of BFRs 

using quasi–experimental methods and pre and post implementation county–level data for the 

period 2002-2017. Results provide strong evidence that TIP encourages entry into agriculture that 

translates into more BFRs in counties with abundant CRP lands. Specifically, we find that TIP 
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stimulates entry by 34 more BFRs per county in the agricultural sector in the region. Similar 

outcomes were observed for the different subgroups of BFRs. By exploring the effects of TIP, we 

conclude that landowners in high-CRP counties are willing to transfer CRP lands to BFRs. 

Although this paper is the first to explore the effectiveness of TIP in achieving its mandate, we 

suggest future research to examine factors that influence this land transfer program using 

individual level data.  

Chapter 3 addresses the issues of climate variability, socio-demographic factors, and visits 

to national parks. We analyze the relationship between climate variables, socio–demographic 

factors, and length of stay to managed natural parks in Utah. We construct an extensive dataset 

using recreational reservation data from the recreation.gov website to evaluate these relationships. 

The results provide evidence that length of stay is sensitive to extreme weather conditions. For 

instance, higher humidity and extremely cold weather reduces the length of stay at a national park. 

We realize that the socio-demographic indicators greatly influence length of stay as increasing 

travel cost create a greater opportunity cost for out-of-state visitors. We perform a subsample 

analysis where we separate the observations into warm and cold seasons and test the robustness of 

our results with alternative specifications of the main model. Our analysis demonstrate 

considerable heterogeneity in climate and socio-demographic dynamics when the analysis is 

conducted based on seasons.    

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 
 

Acknowledgments 

 

I would like to thank and express my heartfelt gratitude to Dr. Denis Nadolnyak, the chair 

of my committee, and Dr. Valentina Hartarska, the co-chair for their continuous guidance, 

invaluable advice, endless support, and being my mentors throughout my doctoral journey. Their 

immense knowledge and experience encouraged me throughout this time. Having their continuous 

guidance during these periods have been a blessing that has shaped me grow into the person I am 

today. Without them, this would not have been possible.  

 

Also, I would like to thank my committee members for their time and support. In particular, 

I would like to express my sincere appreciation to Dr. Wenying Li and Dr. Wendiam Sawadgo for 

their kind support and guidance throughout my doctoral program. Again, I would like to thank Dr. 

Jitka Hilliard, my University Reader who accepted my request to serve on my committee for a 

short time to get me to the end of this journey.  

 

I would also like to thank my colleagues, friends and loved ones for their support and 

encouragement. Special appreciation goes to my Department Head, Dr. Joshua Duke, all the 

teaching faculty, and the administrative staff members who work in the Department of Agricultural 

Economics & Rural Sociology. Last but not least, I would like to thank my parents, my brother, 

and my sisters for their support and encouragement. 

 

 

 

 

 

 

 

 

 

 



 

v 
 

Table of Contents 

ABSTRACT ................................................................................................................................................. ii 

Acknowledgments ...................................................................................................................................... iv 

List of Tables .............................................................................................................................................. vii 

List of Figures ........................................................................................................................................... viii 

List of Abbreviations .................................................................................................................................. ix 

1. CHAPTER 1 .......................................................................................................................................... 10 

Nonlinear Effects of Conservation Reserve Program Rental Rates on Land Enrollment under 

Varying Crop Price Regimes ................................................................................................................ 10 

1. INTRODUCTION ............................................................................................................................. 10 

2. Empirical Approach .......................................................................................................................... 12 

2.1 Base Model and Endogeneity ..................................................................................................... 12 

2.2 Nonlinear Model Specification ................................................................................................... 15 

2.3 Linearity Test ............................................................................................................................... 17 

2.4 PSTR Model Estimation ............................................................................................................. 17 

2.5. No-remaining-nonlinearity test ................................................................................................. 18 

3. DATA .................................................................................................................................................. 19 

4. RESULTS AND DISCUSSION ........................................................................................................ 21 

5. ENVIRONMENTAL IMPACTS ...................................................................................................... 24 

6. CONCLUSION ................................................................................................................................. 25 

REFERENCES ...................................................................................................................................... 27 

2.  CHAPTER 2 ......................................................................................................................................... 45 

Evaluating the effect of Transition Incentive Program on Beginning Framers’ and Ranchers ..... 45 

1. Introduction ....................................................................................................................................... 45 

2. Background of the Transition Incentive Program ......................................................................... 47 

3. Empirical Approach .......................................................................................................................... 49 

3.1 Conceptual Framework .............................................................................................................. 49 

3.2 Econometric Specification .......................................................................................................... 50 

4. Data and Variables ............................................................................................................................ 52 

5. Results ................................................................................................................................................ 56 

5.1 Logit Results ................................................................................................................................ 56 

5.2 Matching and Balancing ............................................................................................................. 57 

5.3 Treatment Effect Results ............................................................................................................ 58 

5.4 Robustness checks ....................................................................................................................... 61 

6. Discussion and Policy Implications ................................................................................................. 64 



 

vi 
 

7. Conclusion ......................................................................................................................................... 66 

REFERENCES ...................................................................................................................................... 67 

APPENDIX ............................................................................................................................................ 74 

3. CHAPTER 3 .......................................................................................................................................... 77 

Climate Variability, Socio-Demographic, and Visitation to Natural Parks ..................................... 77 

1. Introduction ....................................................................................................................................... 77 

1.1 Related Literature ....................................................................................................................... 79 

2. Study Area ......................................................................................................................................... 80 

3. Theoretical Framework and Empirical Specification .................................................................... 81 

4. DATA .................................................................................................................................................. 84 

5.0 RESULTS AND DISCUSSION ...................................................................................................... 87 

5.1 Descriptive statistics .................................................................................................................... 87 

5.2 Empirical Specification Results ................................................................................................. 90 

5.3 Robustness Checks: Alternative specifications results ............................................................ 97 

6. Conclusion ......................................................................................................................................... 99 

REFERENCES .................................................................................................................................... 100 

APPENDIX .......................................................................................................................................... 106 

 

 

  



 

vii 
 

List of Tables 

 

Table 1.1: Summary Statistics ........................................................................................................... 32 

Table 1.2: Homogeneity tests............................................................................................................ 33 

Table 1.3: Sequence of homogeneity tests for selecting order m of transition function. ...................... 34 

Table 1.4: Misspecification tests for no autocorrelation and no remaining heterogeneity ................... 35 

Table 1.5. Parameter estimation of the PSTR model. ......................................................................... 36 

Table 1.6: Effect of a 1% increase in CRP rental rate on CRP acreage, the environmental benefit index, 

and ecosystem services under low vs. high crop prices, 2016-2017 annual average ............................ 37 

Table 2.1: Summary Statistics ........................................................................................................... 55 

Table 2.2: Logit Results for Higher-CRP Counties, coefficients, and marginal effect ............................. 57 

Table 2.3: Covariate Balance for propensity score matching (Regression Adjustment) ........................ 58 

Table 2.4: Average Treatment Effect on the Treated (𝑨𝑻𝑻) ................................................................ 59 

Table 2.5: Covariate Balance for inverse probability weighting (IPW) ................................................. 60 

Table 2.6: Average Treatment Effect on the Treated (𝑨𝑻𝑻) ................................................................ 61 

Table 2.7: Covariate Balance for Kernel Nearest Neighbor Propensity Score Matching ........................ 62 

Table 2.8: Average Treatment Effect on the Treated (𝑨𝑻𝑻) ................................................................ 62 

Table 2.9: Covariate Balance for Nearest Neighbor Propensity Score Matching ................................... 63 

Table 2.10: Average Treatment Effect on the Treated (𝑨𝑻𝑻) .............................................................. 63 

Table 2.11: Variables and definitions ................................................................................................. 75 

Table 3.1: Summary Statistics of the data .......................................................................................... 86 

Table 3.2: Average number of visitors to each national park .............................................................. 88 

Table 3.3: Average weather statistics ................................................................................................ 90 

Table 3.4: Quantile regression estimation model (Full Model) ............................................................ 92 

Table 3.5: OLS estimation model ....................................................................................................... 93 

Table 3.6: Quantile regression estimation model (Warm Season) ....................................................... 95 

Table 3.7: Quantile regression estimation model (Cold Season) ......................................................... 96 

Table 3.8: Poisson estimation model ................................................................................................. 98 

 

  



 

viii 
 

List of Figures 

 

Figure 1.1. Geographic coverage of the study area. ............................................................................... 38 

Figure 1.2a. Conservation Reserve Program (CRP) acreage over 1986–2019 ..................................... 39 

Figure 1.2b. CRP rental rate over 1986–2019 ......................................................................................... 40 

Figures 1.2c. Crop Price Index over 1986 – 2019 ................................................................................... 41 

Figure 1.3. CRP rental rate elasticities and standardized crop price index against Year ................... 42 

Figure 1.4a. CRP rental rate elasticity and the standardized crop price variable. ............................. 43 

Figure 1.4b. CRP elasticity of rental rate elasticity and the standardized crop price variable. ......... 44 

Figure 2.1: Map of study area .................................................................................................................. 53 

Figure 2: Covariate Balancing Test ......................................................................................................... 74 

Figure 3.1: Average daily visitation for the study parks (2007–2018). Source: Authors. ................... 89 

Figure 3.2: Monthly Precipitation for the National Parks .................................................................. 106 

Figure 3.3: Monthly Minimum Temperature for the National Parks ................................................ 106 

Figure 3.4: Monthly Maximum Temperature for the National Parks ................................................ 107 

Figure 3.5: Monthly Dew Point Temperature for the National Parks ................................................ 107 

Figure 3.6: Monthly Maximum Vapor Pressure Deficit for the National Parks ............................... 108 

 

  



 

ix 
 

List of Abbreviations 

 

 

BFR  Beginning farmers and Ranchers 

CRP  Conservation Reserve Program 

EBI  Environmental Benefits Index 

FSA  Farm Service Agency 

NASS  National Agricultural Statistics Service 

PSTR  Panel Smoothing Transition Regression 

TIP  Transition Incentive Program 

USDA  United States Department of Agriculture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

10 
 

1. CHAPTER 1 

 

Nonlinear Effects of Conservation Reserve Program Rental Rates on Land Enrollment under 

Varying Crop Price Regimes 

 

1. INTRODUCTION 

Extensive agricultural production on marginal lands threaten environmental benefits and societal 

welfare, generating the need for conservation programs. The United States Department of 

Agriculture (USDA) instituted the Conservation Reserve Program (CRP) to mitigate the 

undesirable effects of agriculture on marginal and sensitive croplands. The CRP is a voluntary land 

retirement program that was established in 1986 to remove highly erodible agricultural lands from 

production in exchange for monetary payments (USDA–ERS 2020). Under this program, the 

USDA spends over $2 billion annually to improve wildlife biodiversity, enhance soil and water 

quality, and reduce soil erosion (Hellerstein 2017). However, competition due to high crop prices 

– which increases the opportunity cost of farmers’ participation in the program – threatens the 

long-term ability of the program to achieve its environmental objectives. In this paper, we evaluate 

the effect of the CRP rental rate on CRP land enrollment under time-varying crop price regimes 

and quantify the environmental consequences.  

Prior work on the CRP covers a wide range of topics, such as identifying factors that affect 

land enrollment for conservation use (Plantinga et al. 2001; Isik & Yang 2004; Jang & Du 2018; 

Cornish et al. 2021), evaluating the impact of CRP participation on land values (Lin & Wu 2005; 

Lubowski et al. 2008; Berger et al. 2020), estimating effects of crop prices on CRP enrollment 

(Secchi & Babcock 2007; Hellerstein & Malcolm 2011), and measuring compliance in the 

conservation program (Secchi et al. 2008; Holland et al. 2020). Studies that evaluate the effect of 

the CRP rental rate on CRP enrollment have established a positive and significant relationship. For 

instance, Cornish et al. (2021) and Plantinga et al. (2001) show that the effect of CRP rental rate 

on CRP land enrollment is positive but differs in magnitude across the subregions. However, 

analyzing the CRP is complex due to different transition paths, regime shifts, and restriction 

behaviors that cause nonlinear effects. Existing studies that investigate the effect of the CRP rental 

rate on CRP acreage use linear models that may produce biased outcomes due to these nonlinear 

outcomes. In addition, it is challenging to find external instrumental variables (IVs) to resolve the 
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simultaneity between the CRP rental rate and CRP acreage. Thus, prior studies use lagged internal 

variables as IVs to mitigate the endogeneity issues. However, this strategy sometimes violates the 

exclusion restriction and the independence assumptions (Wang & Bellemare 2019). Moreover, the 

CRP literature often ignores the interaction between the CRP rental rates and crop prices, although 

research shows that farmers may farm highly erodible lands under high crop prices (Secchi et al. 

2008; Hellerstein & Malcolm 2011; Holland et al. 2020, affecting the environmental benefits 

generated by the program. 

We examine prospective land use switches that affect CRP acreage using county-level data 

to address the following two objectives. First, we verify the existence of nonlinear relationships 

between the CRP rental rates and CRP acreage at different crop price regimes using a time-varying 

estimation technique. We establish the causal relationship between the CRP rental rates and CRP 

acreage by using a control function approach to resolve simultaneity bias. Second, we simulate 

how changes in CRP acreage due to high crop prices affect environmental factors including water 

quality and carbon sequestration. This study is timely as crop prices have been volatile since the 

outbreak of COVID-19 and farm exports are at a record high, circumstances under which the 

USDA projects an additional 2.1 million acres of cultivation of major field crops (USDA 2020). 

As the CRP depends on the enrollment of sensitive croplands, shocks to the agricultural sector may 

increase land use on the extensive margin through cultivation on sensitive cropland.  

We make two contributions to the empirical literature on CRP acreage. First, our study 

differs from prior work as we use a flexible estimation technique that allows the incentives of CRP 

rental rates offered to landowners to vary as a function of crop prices and fluctuate asymmetrically, 

non-linearly, and over time across an unlimited number of regimes. Second, we construct a 

"Hausman-type instrumental variable" to mitigate the endogeneity between the CRP rental rates 

and CRP acreages (Hausman 1997). Lagged values of rental rates employed in past studies as IVs 

may not be exogenous because the variation in both the CRP acreage and CRP rental rates may be 

due to variations in both the land supply and cash rental rates. Thus, we adopt our constructed 

external instrument to address this issue. 

We reject linearity for the relationship between CRP enrollment and CRP rental rates. Our 

estimates suggest that the impact of CRP rental rates on CRP land enrollment varies nonlinearly 

and depends on the crop price level. We find that when crop prices are at historically low levels, a 

10% increase in CRP rental rates is associated with a 2.4% increase in CRP land enrollment. 



 

12 
 

However, the impact of CRP rental rates on the program acreage decreases when crop prices 

surpass 0.31 standard deviations above the historically low levels, at which point a 10% increase 

in CRP rental rates leads to a 1.6% increase in CRP land enrollment. The impact of the CRP rental 

rate on CRP enrollment remains stable regardless of how high the crop price rise above this 

threshold. This implies that high crop prices reduce the effectiveness of the conservation program. 

The environmental consequences of the lowered CRP acreage include 13 million tons of forgone 

carbon sequestration benefits under a high crop price regime that would have been sequestered 

under low crop prices. Our findings suggest that variations in crop prices have the ability to impede 

environmental services generated by the conservation program. 

 

2. Empirical Approach  

2.1 Base Model and Endogeneity 

We adopt land rent maximization as the theoretical framework for this paper. We follow the 

arguments of Just and Antle (1990) and Lichtenberg (1989) and assume that a landowner 

allocates a parcel of land to the use with the highest net returns. Based on our framework, we 

hypothesize that the CRP rental rates exhibit varying effects due to the competition from 

agricultural crop prices. We specify a reduced-form log-log land use framework equation that 

captures these land use decisions as: 

 (1)  𝑙𝑛𝐶𝑅𝑃𝑖,𝑡 = 𝜇𝑖 + 𝜆𝑡 + 𝛽1𝑙𝑛𝑅𝑖,𝑡 + 𝛽2(𝑙𝑛𝑅𝑖,𝑡 × 𝑙𝑛𝐶𝑃𝑖,𝑡) + 𝑿𝒊,𝒕𝜷𝒌 + 𝜀𝑖,𝑡       

where the outcome variable, 𝐶𝑅𝑃𝑖,𝑡 denotes the CRP acreage in county i at time t; 𝑅𝑖,𝑡 is the CRP 

rental rate in county i at time t; 𝐶𝑃𝑖,𝑡 denotes the Laspeyres crop price index for eight major crops 

in county i at time t; and 𝑿𝒊,𝒕 is a vector of the natural logarithm of control variables that affect the 

CRP acreage and includes:  

• 𝐶𝑅𝑃𝑖,𝑡−1: the lagged dependent variable of the CRP acreage in county i at time t 

• 𝑃𝐷𝑖,𝑡:  the population density in county i at time t 

• 𝐹𝐼𝑖,𝑡:  the real net farm income in county i at time t  

• 𝐻𝐼𝑖,𝑡:  the real median household income in county i at time t  

• 𝑇𝑒𝑚𝑝𝑖,𝑡:  the annual average temperature in county i at time t  

• 𝐸𝐶𝑖𝑡: a binary variable for whether county i is below the enrollment cap at time t 
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We include 𝐸𝐶𝑖,𝑡 to account for the CRP enrollment cap that limits CRP acreage to 25% of 

cropland in each county. We let 𝜇𝑖 and 𝜆𝑡 represent the county and time fixed effects to capture 

county-invariant and time-invariant factors that affect CRP acreage, and 𝜀𝑖,𝑡 denotes the error 

term. Based on this setup, the CRP rental rates have a linear heterogenous incentive effect on the 

program enrollment under different crop price regimes, where the incentive effect is represented 

as (𝛽1 + 𝛽2 × 𝑙𝑛𝐶𝑃𝑖,𝑡).  

Estimating equation (1) may generate biased estimates for 𝛽1 and 𝛽2 as the CRP rental rates 

(𝑅𝑖,𝑡) and crop prices (𝐶𝑃𝑖,𝑡) are endogenous, which means that they are conditionally dependent 

on the regression error term, 𝜀𝑖,𝑡. We use the control function technique, a two-stage residual 

inclusion (2SRI) strategy, to mitigate this endogeneity problem (Wooldridge, 2015). The control 

function estimator is chosen because it is a more efficient estimator for the nonlinear model than 

the commonly used two-stage least squares estimator (Guo & Small, 2016). An auxiliary 

regression is estimated in the first stage, and the results are used to generate residuals for the second 

stage regression. In the second stage, the residuals from the first stage are included as additional 

regressors together with the endogenous variable. In this instance, the residuals mitigate the 

endogeneity in the regression by serving as proxies for the factors in the error term in equation (1) 

that are correlated with the endogenous variables.  

One source of endogeneity in the CRP literature is because the CRP rental rates offered to 

farmers 𝑅𝑖,𝑡 and the enrolled CRP lands 𝐶𝑅𝑃𝑖,𝑡 suffer from simultaneity issues (Miao et al., 2016; 

Jang & Du, 2018). First, the CRP rental rates 𝑅𝑖,𝑡 is endogenous because both the payment bid 𝑅𝑖,𝑡 

and CRP acreage 𝐶𝑅𝑃𝑖,𝑡 are adjusted simultaneously and thus are correlated with unobserved 

productivity shocks. That is, more productive farmers may bid on higher CRP rental rates per acre 

to compensate for higher opportunity or the forgone profits from agriculture. Another issue is that 

CRP participation may not be random, as farms with lower productivity may self-select and be 

more likely to participate. Specifically, the CRP rental rate is computed as an average for each 

county in a given year. Thus, the CRP acreage enters both sides of the regression equation. If the 

rental rate is assumed to be exogenous, then the relationship between CRP rental rate and the 

program enrollment will be biased (possibly downward). To resolve this simultaneity problem, we 

apply the widely used Hausman-type instrumental variable (Hausman, 1997). We specify that the 

CRP rental rate as: 

(2)  𝑙𝑛𝑅𝑖𝑗𝑡 = 𝑓(𝑙𝑛𝑅−𝑗𝑡, 𝑣𝑖)      
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where 𝑅𝑖𝑗𝑡 is the CRP rental rate in county i in state j at time t; 𝑅−𝑗𝑡 denotes the CRP rental rate in 

all other counties in state 𝑗 at time 𝑡, excluding the county i. We exclude the rental rates in county 

i from the construction of instruments to reduce the simultaneity bias caused by common county-

specific enrollment shocks. We also control for county-specific effects with 𝑣𝑖. The main idea of 

the Hausman instrument is that rental rates in other counties can be employed as an instrument for 

rental rates in a particular county. Using neighbors' prices to instrument product prices has been 

widely adopted in the industrial organization literature (e.g., Hausman et al., 1997; Nevo, 2003). 

Identification of parameters are achieved when measurement errors in neighbors' prices and 

neighbors' idiosyncratic enrollment shocks are uncorrelated with those of the county instrumented. 

This instrument has proven to be useful when a large number of prices and short sample period 

make it impractical to obtain other price-related external data to serve as instruments. We adopt 

this strategy and specify the first stage CRP rental rate equation as 𝑅𝑖𝑗𝑡 = 𝜂0 + 𝜂1𝑅−𝑗𝑡 + 𝜗𝑖𝑡 to 

obtain the residuals ϑ̂𝑖𝑡. 

The second source of endogeneity is between the CRP acreage 𝐶𝑅𝑃𝑖,𝑡 and crop prices 𝐶𝑃𝑖,𝑡 

due to the slippage effect, as sensitive non-croplands may be enrolled into agricultural production 

due to crop price variations (Wu, 2005). We account for the endogeneity between the crop prices 

and the CRP acreage following Miao et al. (2016) and Bellemare (2015) by using temperature, 

month, and year dummies as potential instrumental variables. We include dummy variables to 

account for seasonal variations and to eliminate the predictability of natural disasters (Bellemare, 

2015). Thus, we specify the interaction term between the crop prices and CRP rental rates as: 

(3)  𝑙𝑛𝑅𝑖𝑗𝑡 × 𝑙𝑛𝐶𝑃𝑖,𝑡 = 𝑓(𝑙𝑛𝑅−𝑗𝑡, 𝑙𝑛𝑇𝑖𝑡, 𝑙𝑛𝑅−𝑗𝑡 × 𝑙𝑛𝑇𝑖𝑡, 𝜌𝑡 , 𝜎𝑡)                                         

where 𝐶𝑃𝑖𝑡 is the crop price in county i at time t, 𝑇𝑖𝑡 is the average annual temperature in county i 

at time t, 𝜌𝑡, and 𝜎𝑡 are the month and year dummies respectively at time t. We specify the first 

stage crop price equation as  𝑙𝑛𝑅𝑖,𝑡 × 𝑙𝑛𝐶𝑃𝑖,𝑡 = 𝜃0 + 𝜃1𝑙𝑛𝑅−𝑗𝑡 + 𝜃2𝑙𝑛𝑇𝑖𝑡 + 𝜃3𝑙𝑛𝑅−𝑗𝑡 ×  𝑙𝑛𝑇𝑖𝑡 +

 𝜌𝑡 + 𝜎𝑡 + 𝜖𝑖𝑡 to obtain the residuals 𝜖𝑖̂𝑡. 

The estimated residuals ϑ̂𝑖𝑡 and 𝜖𝑖̂𝑡 from the first stage are plugged into the CRP acreage 

model as auxiliary variables to mitigate the endogeneity issues. The inclusion of the residuals 

serves as a flexible approach that is ideal to estimate a nonlinear model (Wooldridge, 2015). 

Therefore, after correcting the endogeneity issue, the reduced-form log-log land use framework 

equation (1) becomes:  
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(4)  𝑙𝑛𝐶𝑅𝑃𝑖,𝑡 = 𝜇𝑖 + 𝜆𝑡 + 𝛽1𝑙𝑛𝑅𝑖,𝑡 + 𝛽2(𝑙𝑛𝑅𝑖,𝑡 × 𝑙𝑛𝐶𝑃𝑖,𝑡) + 𝑿𝒊,𝒕𝜷𝒌 + 𝜋1ϑ̂𝑖𝑡 + 𝜋2𝜖𝑖̂𝑡 + 𝜀𝑖,𝑡       

 

2.2 Nonlinear Model Specification 

To add a nonlinear structure to the CRP acreage equation to account for behavioral switches under 

different crop price situations, we follow Gonzalez et al. (2018) and incorporate time-varying 

regimes into the log-log land use framework by employing a PSTR model. The PSTR model is an 

extension of the Panel Threshold Regression (PTR) model developed by Hansen in 1999. At first, 

the PSTR model was utilized to determine the effect of capital market imperfections on investment 

(González et al., 2018). Researchers have since adopted the model for various studies (cf., Hurn et 

al., 2016; Delatte et al., 2017; Li et al., 2020; Li & Wei., 2021; Zhang et al., 2021; Wang et al., 

2022). In contrast to linear models, which suffer from functional form restrictions, the PSTR model 

is a flexible estimation procedure that provides a nonlinear, nonmonotonic structure to the CRP 

acreage model that incorporates a time-varying logistic smooth transition function. We specify the 

model with the nonlinear structure as follows:   

(5)  𝑙𝑛𝐶𝑅𝑃𝑖,𝑡 = 𝜇𝑖 + 𝜆𝑡 + 𝛽1𝑙𝑛𝑅𝑖,𝑡 + 𝛽2𝑙𝑛𝑅𝑖,𝑡 × 𝑙𝑛𝐶𝑃𝑖,𝑡𝑔(𝑙𝑛𝐶𝑃𝑖𝑡
∗ ; 𝛾, 𝑐) + 𝑿𝒊,𝒕𝜷𝒌 + 𝑽̂𝒊,𝒕𝝅 + 𝜀𝑖,𝑡    

where 𝑔(𝑙𝑛𝐶𝑃𝑖𝑡
∗ ; 𝛾, 𝑐) = (1 + 𝑒𝑥𝑝 [−𝛾 ∏ (𝑙𝑛𝐶𝑃𝑖𝑡

∗ − 𝐶)]𝑚
1 )−1, 𝛾 > 0 

The difference between equation (4) and equation (5) comes from the term on the right-

hand side of the equation, 𝑙𝑛𝑅𝑖,𝑡𝑔(𝑙𝑛𝐶𝑃𝑖𝑡
∗ ; 𝛾, 𝑐), which relaxes the linear restriction on the 

heterogenous rental rate effect. The functional form, 𝑔(𝑙𝑛𝐶𝑃𝑖𝑡
∗ ; 𝛾, 𝑐), is a smooth, nonlinear, 

logistic continuum of observations between two the extreme regimes and is bounded between 0 

and 1; and 𝑙𝑛𝐶𝑃𝑖𝑡
∗  is the crop price transition variable. Following Li et al. (2020), the transition 

variable is standardized and transformed as 𝑙𝑛𝐶𝑃𝑖𝑡
∗ = (𝑙𝑛𝐶𝑃𝑖,𝑡 − 𝑀𝑖) 𝜎𝑖⁄ , where 𝑀𝑖 and 𝜎𝑖 are the 

minimum values and standard deviations of 𝑙𝑛𝐶𝑃𝑖,𝑡 for each county 𝑖 over time. We rescale the 

crop price to have mean 0 and variance 1 to bring the crop price features to a common scale without 

distorting the differences in the range of the crop price values; 𝛾 is the speed-of-adjustment that 

determines how quickly the model regimes shift; 𝑐 is the threshold parameter that defines the point 

at which farmers are likely to restrict land for conservation use and abandon conservation practices; 

and 𝑽̂𝒊,𝒕 is the vector that includes the two residual values from the first stage regressions.  

In equation (5), the model encompasses both linear and nonlinear relationships between 

the CRP rental rates and the CRP acreage, which are expressed as a function of the transition 



 

16 
 

variable 𝑙𝑛𝐶𝑃𝑖𝑡
∗ . When 𝛾 approaches infinity, the transition between the extreme regimes is sharp, 

and the PSTR model attains a panel threshold model (Hansen 1999). On the contrary, if 𝛾 

approaches zero, the transition function 𝑔(𝑙𝑛𝐶𝑃𝑖𝑡
∗ ; 𝛾, 𝑐), is constant, and the model assumes a 

standard linear specification with a two-way fixed effect. Since the value of transition function is 

bounded between 0 and 1, parameters 𝛽1 and (𝛽1 + 𝛽2) are the CRP rental rate effects in two 

extreme regimes, with 𝛽1 representing the effect in regime one and (𝛽1 + 𝛽2) representing the 

effect in regime two. Regime one denotes periods with the lowest crop prices, whereas regime two 

is the period with the highest crop prices. Farmers and landowners make enrollment decisions with 

some state in between the two extremes with an infinite number of such regimes lying on that 

continuum and their location on the continuum expressed by the value of 𝑔.  

We derive the regime-switching intervals by computing the CRP rental rate elasticity as:  

(6)  𝐶𝑅𝑃 𝑟𝑒𝑛𝑡𝑎𝑙 𝑟𝑎𝑡𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =
𝜕𝐶𝑅𝑃𝑖,𝑡

𝐶𝑅𝑃𝑖,𝑡

𝜕𝑅𝑖,𝑡

𝑅𝑖,𝑡
⁄ =

𝜕ln (𝐶𝑅𝑃𝑖,𝑡)

𝜕ln (𝑅𝑖,𝑡)
= 𝛽1 + 𝛽2(𝑙𝑛𝐶𝑃𝑖𝑡

∗ ; 𝛾, 𝑐)  

If the switch phenomenon exists and CRP land enrollment decisions are influenced by variation in 

crop prices, then we expect the CRP rental rate elasticities to change over time as the crop prices 

index embodied in the transition variable 𝑙𝑛𝐶𝑃𝑖𝑡
∗  change. By doing this, we evaluate the time–

varying CRP rental rate on CRP acreage under different crop price situations in equation (6). In 

addition, we determine the threshold point at which these land use regime–switches occur by 

computing the elasticity of CRP rental rate elasticity (ERRE) change with respect to the transition 

variable based on the transition function as:  

 (7)  𝐸𝑅𝑅𝐸 =
𝜕(𝛽1̂+𝛽2̂𝑔(𝑙𝑛𝐶𝑃𝑖𝑡

∗ ;𝛾,𝑐))

𝛽1̂+𝛽2̂(𝑙𝑛𝐶𝑃𝑖𝑡
∗ ;𝛾,̂𝑐̂)

/
𝜕𝑙𝑛𝐶𝑃𝑖𝑡

∗

𝑙𝑛𝐶𝑃𝑖𝑡
∗  =

𝛽2̂∗𝛾̂∗𝑒−𝛾̂(𝑙𝑛𝐶𝑃𝑖𝑡
∗ −𝑐̂)

(𝑒−𝛾(̂𝑙𝑛𝐶𝑃𝑖𝑡
∗ −𝑐̂)+1)2

∗
𝑙𝑛𝐶𝑃𝑖𝑡

∗

(𝛽1̂+𝛽2̂(𝑙𝑛𝐶𝑃𝑖𝑡
∗ ;𝛾,̂𝑐̂)

   

The ERRE determines the threshold or the turning point that the transition and switching 

mechanism occurs.  

A three-step strategy is used to estimate and validate the PSTR model: (1) a linearity test 

to determine the appropriate order of the transition function; (2) an estimation process consisting 

of a two-step procedure, first eliminating fixed effects, and then applying a nonlinear least square 

(NLS) to estimate the PSTR mode; and (3) a misspecification test to establish there is no remaining 

nonlinearity. 
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2.3 Linearity Test 

The first stage requires testing the homogeneity against the PSTR alternative. This stage is 

important for two reasons. First, the model is not econometrically identified if the data generating 

process is not homogenous. Second, we conducted this test to verify the existence of the regime-

switch hypothesis. Homogeneity is attained by imposing either 𝐻0: 𝛾 = 0 or 𝐻0
′ : 𝛿1 = 0. 

However, this procedure has unidentified nuisance parameters that render the process nonstandard 

under the null hypothesis. To solve this problem, we follow Gonzalez et al. (2018) and replace the 

transition function 𝑔(𝑙𝑛𝐶𝑃𝑖𝑡
∗ ; 𝛾, 𝑐) by its first-order Taylor series approximation around 𝛾 = 0, 

which implies the following auxiliary regression: 

 (8)  𝐶𝑅𝑃𝑖,𝑡 = 𝜇𝑖 + 𝜆𝑡 + 𝛿0
∗𝑙𝑛𝑅𝑖,𝑡 + 𝛿1

∗𝑙𝑛𝑅𝑖,𝑡𝑙𝑛𝐶𝑃𝑖𝑡
∗ +. . . +𝛿𝑚

∗ 𝑙𝑛𝑅𝑖,𝑡𝑙𝑛𝐶𝑃∗
𝑖𝑡
𝑚  + 𝑿𝒊,𝒕𝜷𝒌 + 𝑽̂𝒊,𝒕𝝅 + 𝜇𝑖,𝑡

∗  

where the parameter vectors 𝛿0
∗, … … , 𝛿𝑚

∗  are multiples of 𝛾, and 𝜇𝑖,𝑡
∗ = 𝜇𝑖,𝑡 + 𝑇𝑚𝛿1𝑅𝑖,𝑡, where 𝑇𝑚 

is the reminder of the of the Taylor series expansion. Equation (8) is estimated, and the hypothesis 

is tested using a standard Lagrange multiplier test (𝐿𝑀𝑋2): 

(9)  𝐿𝑀𝜒2 = 𝑇 ∗ 𝑁
(𝑆𝐶𝑅0−𝑆𝐶𝑅1)

𝑆𝐶𝑅0
      

where 𝑆𝐶𝑅0 is the sum of the squared residuals of a linear model with county and time fixed effects 

and 𝑆𝐶𝑅1 is the sum of squared residuals under the auxiliary regression (8). The 𝐿𝑀 statistic 

follows an asymptotic 𝜒2 distribution with (𝑚 ∗ 𝑘) degrees of freedom, where 𝑘 is the number of 

explanatory variables. Apart from the two important aspects of the linearity tests discussed above, 

the linearity test is also important in selecting the appropriate order, 𝑚, of the logistic transition 

variable. According to Granger and Teräsvirta (1993) and Gonzalez et al. (2018), the appropriate 

order of 𝑚 of the logistic transition variable is performed by using the auxiliary regression (8) with 

𝑚 = 3 to test the null hypothesis 𝐻0
∗ = 𝛿1

∗ = 𝛿2
∗ = 𝛿3

∗ = 0. If the null hypothesis is rejected, we 

test 𝐻03
∗ : 𝛿3

∗ = 0, 𝐻02
∗ : 𝛿2

∗ = 0|𝛿3
∗ = 0 and H01: 𝛿1

∗ = 0|𝛿3
∗ = 𝛿2

∗ = 0. We select 𝑚 = 2 if the 

rejection of 𝐻02
∗  is the strongest; otherwise, we select 𝑚 = 1 for the test.   

 

2.4 PSTR Model Estimation 

We estimate the PSTR model by using a two-step method. First, we demean the variables by 

subtracting the mean of each county over time and the mean for each period for all variables. 

Afterwards, we center the demeaned values to estimate the model by using a nonlinear least square 

(NLS) method. The variables are demeaned as follows: 
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 (10)  𝑙𝑛𝐶𝑅𝑃𝑖𝑡
𝑐 = 𝑙𝑛𝐶𝑅𝑃𝑖𝑡 − 𝑙𝑛𝐶𝑅𝑃𝑖 − 𝑙𝑛𝐶𝑅𝑃𝑡    

(11)   𝑙𝑛𝑅𝑖𝑡
𝑐 = 𝑙𝑛𝑅𝑖𝑡 − 𝑙𝑛𝑅𝑖 − 𝑙𝑛𝑅𝑡     

(12)   𝑿𝒊𝒕
𝒄 = 𝑿𝒊𝒕 − 𝑿𝒊 − 𝑿𝒕      

(13)   𝑽̂𝒊𝒕
𝒄

= 𝑽̂𝒊,𝒕 − 𝑽̂𝒊 − 𝑽̂𝒕   

(14)   𝜀𝑖𝑡
𝑐 = 𝜀𝑖𝑡 − 𝜀𝑖 − 𝜀𝑡    

where 𝑙𝑛𝐶𝑅𝑃𝑖 =
1

𝑇𝑖
∑ 𝑙𝑛𝐶𝑅𝑃𝑖𝑡

𝑇𝑖
𝑡=1 , 𝑙𝑛𝐶𝑅𝑃𝑡 =

1

𝑁𝑡
∑ 𝑙𝑛𝐶𝑅𝑃𝑖𝑡

𝑁𝑡
𝑖=1 , 𝑙𝑛𝑅𝑖 =  

1

𝑇𝑖
∑ 𝑙𝑛𝑅𝑖𝑡

𝑇𝑖
𝑡=1 , 𝑙𝑛𝑅𝑡 =

 
1

𝑁𝑡
∑ 𝑙𝑛𝑅𝑖𝑡

𝑁𝑡
𝑖=1 , 𝑋𝑖 =  

1

𝑇𝑖
∑ 𝑋𝑖𝑡

𝑇𝑖
𝑡=1 , 𝑋𝑡 =  

1

𝑁𝑡
∑ 𝑋𝑖𝑡

𝑁𝑡
𝑖=1 , 𝑽̂𝑖 =  

1

𝑇𝑖
∑ 𝑽̂𝑖𝑡

𝑇𝑖
𝑡=1 , 𝑽̂𝑡 =  

1

𝑁𝑡
∑ 𝑽̂𝑖𝑡

𝑁𝑡
𝑖=1 , 𝜀𝑖 =

1

𝑇𝑖
∑ 𝜀𝑖𝑡

𝑇𝑖
𝑡=1 , 𝜀𝑡 =

1

𝑁𝑡
∑ 𝜀𝑖𝑡

𝑁𝑡
𝑖=1 , where 𝑡 is the time-period that county in which 𝑖 was observed and 𝑁𝑡 

is the total number of counties observed at time 𝑡. The explanatory variables in the second regime 

𝑙𝑛𝑅𝑖,𝑡𝑔(𝑙𝑛𝐶𝑃𝑖𝑡
∗ ; 𝛾, 𝑐) is transformed such that  

(15)   𝐵𝑖𝑡
𝑐 (𝑙𝑛𝐶𝑃𝑖𝑡

∗ ;  𝛾, 𝑐) = 𝑙𝑛𝑅𝑖𝑡𝑔(𝑙𝑛𝐶𝑃𝑖𝑡
∗ ; 𝛾, 𝑐) − 𝐵𝑖 − 𝐵𝑡   

where 𝐵𝑖 =  
1

𝑇𝑖
∑ 𝑙𝑛𝑅𝑖𝑡𝑔(𝑙𝑛𝐶𝑃𝑖𝑡

∗ ; 𝛾, 𝑐)𝑇𝑖
𝑡=1  and 𝐵𝑡 =

1

𝑁𝑡
∑ 𝑙𝑛𝑅𝑖𝑡𝑔(𝑙𝑛𝐶𝑃𝑖𝑡

∗ ; 𝛾, 𝑐)𝑁𝑡
𝑖=1 . After demeaning 

the second regime equation, each row of the new centered design matrix is transformed to become 

𝐷𝑖𝑡
𝑐 (𝑙𝑛𝐶𝑃𝑖𝑡

∗ ; 𝛾, 𝑐) = [𝑙𝑛𝑅𝑖𝑡
𝑐 ′

;  𝐵𝑖𝑡
𝑐 (𝑙𝑛𝐶𝑃𝑖𝑡

∗ ;  𝛾, 𝑐)′; 𝑿𝒊𝒕
𝒄 ′

;  𝑽̂𝒊𝒕
𝒄 ′

]′. The nonlinear least square (NLS) 

method is then applied to estimate the coefficients that minimize the concentrated sum of square 

errors: 

(16)  𝑆𝑆𝐸𝑐(𝛾) = ∑ ∑ [𝑙𝑛𝐶𝑅𝑃𝑖𝑡
𝑐 − 𝛿𝑇

𝑡=1
𝑁
𝑖=1 (𝛾)′𝐷𝑖𝑡

𝑐 (𝑙𝑛𝐶𝑃𝑖𝑡
∗ ; 𝛾, 𝑐)]2   

We obtain the coefficient estimators 𝛿(𝛾) of the second regime by using ordinary least squares 

(OLS) at each iteration in the nonlinear optimization. The values of 𝛾 and 𝑐 in the transition 

function are obtained using a grid-search method in the transition function 𝑔(𝑙𝑛𝐶𝑃𝑖𝑡
∗ ; 𝛾, 𝑐). We 

employ a hyperparameter optimization strategy to choose the appropriate threshold and slope 

parameters to calibrate the transition function for our analysis. We use this method to identify the 

appropriate parameters that provide reliable estimates for our analysis.  

 

2.5. No-remaining-nonlinearity test 

After estimating the PSTR model, we conduct the test of no-remaining-nonlinearity to ascertain 

that the model specification that are chosen accounts for all the nonlinearity issues. Here, we test 

the assumption that there is no remaining heterogeneity and autocorrelation in the data, and that 
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the regression estimates are consistent and unbiased. To perform this test, an additive PSTR model 

is considered as an alternative. We specify the test results as: 

(17) 𝑙𝑛𝐶𝑅𝑃𝑖,𝑡 = 𝜇
𝑖

+ 𝜆𝑡 + 𝛿0𝑙𝑛𝑅𝑖,𝑡 + 𝛿1𝑙𝑛𝑅𝑖,𝑡𝑔1(𝑙𝑛𝐶𝑃𝑖𝑡
∗ , 𝛾1, 𝑐1) + 𝛿2𝑙𝑛𝑅𝑖,𝑡𝑔2(𝑙𝑛𝐶𝑃𝑖𝑡

∗ , 𝛾2, 𝑐2) 

 +𝑿𝒊,𝒕𝜷𝒌 + 𝑽̂𝒊,𝒕𝝅 + 𝜇𝑖,𝑡 

The null hypothesis of no remaining heterogeneity is formulated as 𝐻0: 𝛾2 = 0 in equation (17). A 

similar null hypothesis and identification problem is solved using the abovementioned linearity 

test process by replacing 𝑔2(𝑙𝑛𝐶𝑃𝑖𝑡
∗ , 𝛾2, 𝑐2) with a Taylor series expansion around 𝛾2 = 0 as: 

(18) 𝑙𝑛𝐶𝑅𝑃𝑖,𝑡 = 𝜇𝑖 + 𝜆𝑡 + 𝛿0𝑙𝑛𝑅𝑖,𝑡 + 𝛿1𝑙𝑛𝑅𝑖,𝑡𝑔1(𝑙𝑛𝐶𝑃𝑖𝑡
∗ , 𝛾1̂, 𝑐1̂) +

𝛿21
∗ 𝑙𝑛𝑅𝑖,𝑡𝑙𝑛𝐶𝑃𝑖𝑡

∗ +. . . +𝛿2𝑚
∗ 𝑙𝑛𝑅𝑖,𝑡𝑙𝑛𝐶𝑃∗

𝑖𝑡
𝑚 + 𝑿𝒊,𝒕𝜷

𝒌
+ 𝑽̂𝒊,𝒕𝝅 + 𝜇𝑖,𝑡

∗   

where  𝛾1̂ and 𝑐1̂ are estimators of 𝛾1 and 𝑐1 under 𝐻0. The coefficients 𝛿2𝑗
∗  for 𝑗 = 1, … . , 𝑚 are 

multiples of 𝛾2. The resulting test collapses into the homogeneity test discussed in the linearity test 

above. 

 

3. DATA 

The model estimates are based on county-level data from 877 counties in the Lake, Corn-belt, 

Delta, Southern, and Plains states from 1986 to 2019.1 Figure 1.1 shows the graphical 

representation of the study area. We obtained data on the CRP acreages and the CRP rental rates 

from the USDA–Farm Service Agency (FSA). The CRP acreage 𝐶𝑅𝑃𝑖,𝑡 denotes the total acres of 

land that are enrolled in the conservation program in county 𝑖 at time 𝑡. The CRP rental rate 𝑅𝑖,𝑡 is 

the per-acre payment offered to a farmer or landowner for enrolling land into the conservation 

program in county 𝑖 at time 𝑡. We deflate the CRP rental rates using the consumer price index to 

account for inflation.  

 

[Figure 1.1] 

 

We account for the county-level CRP enrollment cap which can limit acreage enrolled in 

some counties. We follow Hendricks and Er (2018) and construct a county-level total cropland 

 
1The paper focused on the Southern and Midwestern regions as they have the largest concentration of CRP land acres 

(Cornish et al. 2021). Counties in the Atlantic and Western regions were dropped because of computational 

complexities arising from missing observations and zero enrollment for certain counties during the analysis. Moreover, 

the paper finds it worthwhile to drop those regions as a recent study by Cornish et al. (2021) indicates an insignificant 

relationship between CRP rental payment and CRP land acreage for the Atlantic and Western part of the United States.   
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variable, 𝐶𝑟𝑜𝑝𝑙𝑎𝑛𝑑𝑖𝑡, as the sum of all planted acreage of field crops (barley, beans, canola, corn, 

cotton, flax seed, lentils, millet, mustard, oats, peanuts, rape seed, rice, rye, safflower, sorghum, 

soybeans, sugar beets, sunflower, peas, spring wheat, and winter wheat) plus harvested acreage of 

hay. The county-level CRP enrollment cap is computed such that counties that are at the CRP-

enrollment cap of 0.25 are denoted as 0 whereas counties below the cap are denoted as 1. Around 

11% of counties were at the cap over the 34-year period. 

Economic and demographic factors are critical determinants of land use patterns, so we 

control for population density and median household income per capita. Population density is 

expressed as 𝑃𝐷𝑖𝑡 = (𝑃𝑜𝑝𝑖𝑡 𝐿𝐴𝑖)⁄ ; where 𝑃𝐷𝑖𝑡 is the population density in county 𝑖 at time 𝑡, 𝑃𝑜𝑝𝑖𝑡 

is the number of people in county 𝑖 at time 𝑡, and 𝐿𝐴𝑖  is the total land area in county 𝑖. We obtained 

data on population and land area from the Bureau of Economic Analysis (BEA) and the USDA 

respectively. The median household income per capita 𝐻𝐼𝑖,𝑡 consider how household income affect 

the conservation program. We obtained the median household income per capita 𝐻𝐼𝑖,𝑡 from the 

BEA. Subsequently, we account for farm profits, as net farm income has been shown to affect 

farmers' enrollment decisions (Chang et al. 2008). The net farm income 𝑁𝐹𝐼𝑖,𝑡 data comprise the 

farm income and costs arising from the current production of either from livestock or crops in a 

county 𝑖 at time 𝑡. The median household income per capita and net farm income variables are 

deflated to account for inflation.  

We use county-level crop production and deflated state-level prices to construct a 

Laspeyres crop price index 𝐶𝑃𝑖,𝑡 for eight major agricultural commodities using 1986 as the base 

year (Li et al. 2019). In the year 𝑡 ∈ {1986, … . ,2019}, the Laspeyres crop price index is defined 

as 𝑃𝑖,𝑡
𝑎 = (∑ 𝑃𝑙𝑖𝑡𝑄𝑙𝑖1986

8
𝑙=1 )/(∑ 𝑃𝑙𝑖1986𝑄𝑙𝑖1986

8
𝑙=1 ), where 𝑃𝑙𝑖𝑡 is the received price of crop 𝑙 in 

state 𝑖 at time 𝑡; and 𝑄𝑙𝑖1986 is the production of crop 𝑙 in state 𝑖 at the base year, 1986. We obtained 

the crop production and price data from National Agricultural Statistics Service (NASS).  

We use temperature, 𝑇𝑒𝑚𝑝𝑖,𝑡, as a key weather variable to capture the landowner's 

expectation of climate conditions. Data on the average temperature were obtained from the 

Parameter–Elevation Relationships on Independent Slopes Model (PRISM). Table 1.1 lists the 

variables employed and their respective summary statistics. Figures 1.2a, 1.2b, and 1.2c are the 

pictorial view and spatial distribution of the CRP acreage, CRP rental rate, and crop price index 

variables employed in our study. 
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[Table 1.1] 

 

[Figure 1.2a, 1.2b, 1.2c] 

 
 

4. RESULTS AND DISCUSSION 

We report the homogeneity and sequence of homogeneity test results in Tables 1.2 and 1.3. Table 

1.2 contains the Heteroskedasticity-and autocorrelation-consistent (HAC) test and standard 𝜒2- 

homogeneity test with associated p-values for the test statistics when 𝑚 = 1,2,3, where 𝑚 is the 

order of the auxiliary regression. From the test results, we reject linearity at order levels and 

conclude that a regime-switch effect exists.  

 

[Table 1.2] 

 

Furthermore, we identify the appropriate order of m for the transition variable. This process 

is important because it affects the transition pattern between the extreme regimes. A first (𝑚 =  1) 

or a second (𝑚 =  2) order of the transition function is sufficient to ensure the necessary variations 

of slope coefficients suitable for estimating the model (Gonzalez, et al. 2018). Table 1.3 presents 

the results of the sequence of homogeneity tests for selecting order m. We conclude from Table 1.3 

that order 𝑚 =  1 is enough to construct the PSTR model.  

 

[Table 1.3] 

 

We examine the adequacy of the two-regime PSTR model by applying the misspecification 

tests of parameter constancy and of no remaining non-linearity (heterogeneity) discussed in section 

2.5. Results from the wild cluster bootstrap (WCB) tests that take both heteroskedasticity and 

within-cluster dependence into account suggest that the p-value of the test is 0.75 (Table 1.4). This 

suggests that the estimated model with one transition is adequate and has no issue of remaining 

heterogeneity. We test the assumption of no remaining heterogeneity and autocorrelation after the 

estimation process to demonstrate that our results are consistent and unbiased (Table 1.4). 

 

      [Table 1.4]  

 



 

22 
 

We present the measures of the model estimates, test statistics, and transitional function 

parameters in Table 1.5. The estimate of the speed of adjustment parameter (36.95) shows that the 

transition function estimate is nonlinear and demonstrates a continuum of observations between 

the two regimes. The results suggest that, on average, the effect of the CRP rental rate on the CRP 

enrollment is statistically significant and positive in nature. However, when we account for the 

nonlinear crop price effect, the magnitude of the estimate varies significantly. Based on our 

estimates of 𝛽1 and 𝛽1 + 𝛽2, we realize that a 1% increase in the CRP rental rate increases CRP 

acreage by about 0.27% and 0.19% when crop prices are at historically low-and-high levels, 

respectively. The difference in the CRP rental rate estimates confirm that farmers and landowners 

are sensitive to changes in crop prices and that these changes exhibit threshold effects that have 

diverse effects on the conservation program. In other words, to keep CRP acreage at the same level 

under high crop prices as it would be under low crop prices, the CRP rental rate would need to 

increase by a factor of 1.42. 

 

[Table 1.5] 

 

From Table 1.5, we show that population density, median household income, and crop price 

index have negative and significant effects on CRP acreage. Our results are expected and align 

with the findings from past studies. For instance, the population density relationship aligns with 

the alternative land use hypothesis that increasing population tends to increase the demand and 

conversion of land from agriculture to urban use (Lubowski et al. 2008). The crop price 

relationship illustrates that increasing crop prices reduce land enrollment for conservation use. 

This relationship is intuitive and conforms to intensive and extensive margin use of agriculture 

(Hendricks et al., 2014; Barrows et al. 2014). Furthermore, we show that farm earnings, a measure 

of agricultural income, affect the CRP acreage positively. This finding is tenable as empirical 

evidence suggest that the absence of a negative relationship between the farm earning and the CRP 

acreage indicates that farmers sometimes depend on government support programs to augment 

their farm revenue (Lambert et al., 2007). Moreover, the relationship aligns with the conservation 

program’s mandate to improve upon the welfare of farmers (USDA–FSA, 2018). 

The positive effect of the CRP rental rate on the CRP acreage is consistent with empirical 

studies as the CRP rental rates offered to farmers for conservation encourage land enrollment 
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(Cornish et al. 2021; Li et al. 2019). That is, higher CRP rental rates encourage land enrollment 

into the land retirement program. Our results support Holland et al. (2020), as higher crop prices 

encourage land use on extensive margins by converting conservation lands into croplands. 

Although our findings align with the abovementioned studies, we quantified the effect of CRP 

rental rate under both low-and-high crop price regimes on CRP lands which augments the CRP 

literature.  

We illustrate the regime-switching impact under different crop price regimes in Figure 3 

and show that it is time-variant and exhibits heterogeneity. From Figure 1.3, we notice that the 

effect of the CRP rental rate on CRP acreage increased from 0.19 to 0.235 when the standardized 

crop price index decreased from 2.68 in 1995 to 0.13 in 2002. However, the elasticity of the CRP 

rental rate peaked at 0.271 when the standardized crop price index reached an all-time low in 2005. 

But after standardized crop prices rose again after 2005, the elasticity of the CRP rental rate 

decreased to 0.19.  

 

[Figure 1.3] 

 

The heterogeneity in the CRP rental rate elasticity estimates indicates that CRP enrollment 

decisions differ by agricultural economic conditions. Secchi et al. (2009) and Morefield et al. 

(2016) support our findings, as periods of high crop prices correspond with farmers reducing land 

enrollment for CRP as the opportunity cost of participation increases with higher crop prices. The 

low-and-high crop price dynamics also affect other conservation programs (McCann & Nuñez, 

2005; Claassen et al., 2008).  

To explore how the CRP rental rate elasticity changes with the crop prices, we compute the 

elasticity of the rental rate elasticity (ERRE) to changes in the transition variable. We illustrate the 

results in Figure 4. We notice that the relationship between the ERRE and the standardized crop 

price index is nonlinear: more succinctly, L-shaped. Subsequently, we find that the sensitivity of 

the CRP rental rate elasticities occurs in the lower range of the standardized crop price index when 

crop prices are low. Figures 4a and 4b show that 0.31 standard deviations above the minimum crop 

price are the threshold value that switching is likely to occur. When crop prices fall below this 

threshold, the sensitivity of the rental rate elasticity emerges. However, when crop prices rise above 

this threshold, the sensitivity of the rental rate elasticity approaches zero. 
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[Figure 1.4a, 1.4b] 

 

5. ENVIRONMENTAL IMPACTS 

Lastly, we provide insight into how crop prices impact environmental outcomes. First, we use 

county-level data for the environmental benefit index (EBI) of enrolled CRP land through the 

general signups from 1997 to 2012. The EBI is the USDA-FSA’s estimate of environmental 

benefits that would be generated from enrolling a parcel of land into the CRP and is comprised of 

five environmental factors: wildlife benefits, water quality benefits, erosion reduction benefits, 

enduring practices benefits, and air quality benefits. Second, we use USDA-FSA report estimates 

of environmental benefits generated by the CRP to evaluate how changes in the CRP rental rate 

would affect carbon sequestration, sedimentation, and nutrient run-off under low and high crop 

prices. 

We simulate the impact of a 1% increase in CRP rental rates under the two crop price 

regimes by multiplying the 1% rental rate change times CRP acreage times our CRP rental rate 

elasticity coefficient to estimate the additional CRP acres that would be generated under each crop-

price regime. We use CRP benefit data to estimate how this increase in CRP acreage would affect 

aggregate annual environmental benefits by multiplying the estimated additional acreage due to a 

1% increase in CRP rental rate by the per-acre CRP environmental benefits.  

We simulate the impact of a 1% increase in CRP rental rates under the two crop price 

regimes by multiplying the 1% rental rate change times CRP acreage times our CRP rental rate 

elasticity coefficient to estimate the additional CRP acreage that would be enrolled under each 

crop-price regime. A 1% increase in CRP rental rate would increase CRP land by 8.1 million acres 

under low crop prices, but only by 5.7 million acres under high crop prices – a difference of 3.4 

million acres (Table 1.6a). 

To simulate the impact of the 1% increase in CRP rental rate on EBI factors, we calculate 

the weighted average points for the overall EBI and the other five factors for each county, using 

the total acreage of new enrollment in each year as a weight. The weighted average EBI points are 

calculated using ∑ (𝑎𝑡𝐸𝐵𝐼𝑡𝑡 )/ ∑ 𝑎𝑡𝑡 ), where 𝑎𝑡 and 𝐸𝐵𝐼𝑡 reported by FSA, are the CRP acreage 

and the average EBI points in the county in year 𝑡, respectively.  
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We use the product of the CRP acreage change and the average EBI points to measure the 

environmental impact of the 1% reduction in CRP rental rate under the low and high crop price 

regimes. Finally, we compute the environmental impact benefits by calculating the difference 

environmental impact values across low and high crop price regimes. We aggregate the calculated 

results for each county to determine changes in environmental benefits at the national level. 

Our calculations indicate that the average EBI changes by 3.07% due to a 1% change in 

the CRP rental rate when crop prices are low. However, we show that the average EBI will change 

by 2.16% due to a 1% change in the CRP rental rate when crop prices are high. Thus, under high 

crop price regimes, there is a potential loss of 0.9% in EBI points that could otherwise have been 

accomplished under low crop price regimes. We realize that the individual environmental benefit 

factors incur similar magnitude of changes (Table 1.6b). From our calculations, we noticed that 

the air quality benefits factor is the least affected whereas water quality and wildlife factors are the 

most affected among the five environmental factors. 

 

     [Table 1.6] 

 

We use CRP ecosystem service data (USDA-FSA, 2010-2017) to estimate how the increase in 

CRP acreage would affect aggregate annual ecosystem services by multiplying the estimated 

additional acreage due to a 1% increase in CRP rental rate by the per-acre CRP ecosystem service 

values. The increase in CRP acreage associated with a 1% increase in CRP rental rates would lead 

to an estimated decrease of 11.4 million metric tons of carbon sequestered under low crop prices, 

annually. However, this value decreases to 8.1 million metric tons under high crop prices, a 3.4 

million metric ton difference (Table 1.6c). Water quality would also be affected. Our estimates 

suggest a 9.5 million lb increase in Phosphorus runoff, a 47.8 million lb increase in nitrogen runoff, 

and a 17.4-million-ton increase in sediment loss due to high crop prices.  

     

6. CONCLUSION 

We adopt a land use framework integrated with a PSTR regime-switching model to investigate 

how the CRP rental rates affect CRP acreages under varying crop price regimes. We find that a 

10% increase in the CRP rental rates is associated with a 2.7% increase in CRP land enrollment. 

However, the impact of CRP rental rates on the program enrollment decreases nonlinearly as crop 
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prices rise until crop prices reach 0.31 standard deviations above the minimum crop price, at which 

point a 10% increase in CRP rental rates is associated with a 1.9% increase in CRP land enrollment. 

We show that after this threshold, the effect of the CRP rental rate on the CRP enrollment remains 

stable regardless of how high the crop prices rise. These outcomes are necessary to improve and 

develop flexible policies in the conservation program’s cost and payment structure to account for 

variations in the agricultural economy. 

We translate our findings into ecological outcomes by determining the effect of a 1% 

change in the CRP rental rates due to crop price variations on various environmental benefits. We 

employ data from the USDA–FSA and show that a 1% increase in CRP rental rate corresponds to 

2.4 million acres fewer enrolled under high crop prices relative to low crop prices. This acreage 

decline corresponds to 3.4 million fewer tons of carbon sequestered, 9.5 million lb of additional 

phosphorus runoff, 47.8 million lb of additional nitrogen runoff, and 17.4 million tons of additional 

sediment loss on average annually.   
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6. Tables and Figures 

 

Table 1.1: Summary Statistics 

Variable Mean St. Dev Min Max 

Dependent Variable     

CRP Acreage 12,294.45 21,319.68 0.1 218,483    

Independent Variable     

CRP Rental Rate ($ per acre) 35.91 18.65 0.26    127.95 

Population Density (population per acre) 102.06 239.39 0.43 3,234.14 

Median Household Income ($ per capita) 14,365.62 3,647.81 3,839.23 54,992   

Net Farm Income 

Temperature 

CRP enrollment cap 

14,727.82 

12.39 

0.89 

14,692.49 

4.38 

0.31 

5.77976 

1.06 

0 

205,826 

25.2 

1 

Transition Variable     

Crop Price Index 109.12 27.57 28.51 235.85 
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Table 1.2: Homogeneity tests 

 𝐿𝑀𝑥 𝐿𝑀𝐹 𝐻𝐴𝐶𝑥 𝑊𝐶𝐵 

𝑚 Test statistics p-value Test statistics p-value Test statistics p-value p-value 

1 82.55  0.00 80.02 0.00 23.05 1.584e-06 0 

2 114.3   0.00 55.41   0.00 12.71 3.027e-06 0 

3 504.2 0.00 162.9 0.00 76.81 0.000e+00 0 

Note: The table presents the standard L.M.–type and robust (HAC) homogeneity tests with their corresponding p-

values in the panel regression of the natural log of CRP acreage and natural log of rental payments per acres (with 

crop price index as the transition variable) for a balanced panel for the period 1986–2019.  
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Table 1.3: Sequence of homogeneity tests for selecting order m of transition function. 

 𝐿𝑀𝑥 𝐿𝑀𝐹 𝐻𝐴𝐶𝑥 𝑊𝐶𝐵 

𝑚 Test statistics p-value Test statistics p-value Test statistics p-value p-value 

H01 82.55 0.00e+00 80.02 0.00e+00 21.78 1.078e-06   0 

H02 31.88 1.64e-08   30.9 2.74e-08   14.65 1.294e-04   0 

H03 391.4 0.00e+00 379.4 0.00e+00 205.9 0.00e+00 0 

Note: The table presents the sequence of homogeneity tests for selecting order m of transition function their 

corresponding p-values in the panel regression of the natural log of CRP acreage and natural log of rental payments 

per acres (with crop price index as the transition variable) for a balanced panel for the period 1986–2019. The listed 

null hypothesis have the implications H01: 𝛿1
∗ = 0| 𝛿2

∗ = 𝛿3
∗ = 0, 𝐻02: 𝛿2

∗ = 0|𝛿3
∗ = 0, and 𝐻03: 𝛿3

∗ = 0, respectively, 

in the auxiliary regression (6) with 𝑚 = 3.  
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Table 1.4: Misspecification tests for no autocorrelation and no remaining heterogeneity 
 

𝑚 

𝐿𝑀𝑥 𝐿𝑀𝐹 𝐻𝐴𝐶𝑋 𝑊𝐶𝐵 

Test 

Statistics  

p–value  Test 

Statistics  

p–value  Test 

Statistics  

p–value  p–value  

No autocorrelation 

𝑚 = 1 375.4 0 33.07 0 123.0 0 0.75 

No remaining non-linearity (heterogeneity) 

𝑚 = 1 4353 0 383.4 0 342.3 0 0.25 

Note: The table presents the misspecification tests in a PSTR model for the natural log of CRP acreage and natural log 

of rental payments per acres (with crop price index as the transition variable) for a balanced panel for the period 1986–

2019.  

  



 

36 
 

Table 1.5. Parameter estimation of the PSTR model2. 

Parameters Regime–Switching Variables  Coefficient estimates 

𝛽1 CRP rental rate elasticity under the low 

crop prices  

0.2716*** 

(0.0709)        

𝛽2 CRP rental rate elasticity difference 

between low and high prices 

-0.08*** 

(0.0105) 

𝛽1 + 𝛽2 CRP rental rate elasticity under high crop 

prices 

0.1916*** 

(0.0668) 

 Control Variables  

𝛽3 Crop price elasticity -1.402*** 

(0.4778)   

𝛽4 Farm earnings elasticity 0.0337*** 

(0.0062) 

𝛽5 Median household income elasticity  -0.5883*** 

(0.0502) 

𝛽6 Population density elasticity  -0.5046*** 

(0.0833) 

𝛽7 Lagged–CRP acreage elasticity 0.5542*** 

(0.0105) 

𝛽8 Temperature elasticity 0.0621*** 

(0.0836) 

𝛽9 CRP enrollment cap elasticity -0.1779*** 

(0.0199) 

 Model specifications  

𝑐 Transition function threshold parameter 0.1399 

(0.0091) 

𝛾 Speed of adjustment of transition function 

(Slope parameter) 

36.95 

(10.76) 

Observations  29,818 

Note: The standard errors in the parenthesis are cluster-robust and heteroskedastic-consistent covariance estimators in 

nature and allow for error dependence within counties. ∗ 𝑝 < 0.1; ∗∗ 𝑝 < 0.05: ∗∗∗ 𝑝 < 0.01 

 

 

 
𝛽1 denotes the payment effect when the observations are within the linear regime (when the transition function equals 

0) and depicts periods when the crop prices are below the historical average (low crop price regime). 𝛽1 + 𝛽2 denotes 

payment effect when observations are in the nonlinear regime (when the transition function is greater than 0 but does 

not exceed 1) and depicts periods when the crop prices are above the historical average (high crop price regime).  
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Table 1.6: Effect of a 1% increase in CRP rental rate on CRP acreage, the environmental 

benefit index, and ecosystem services under low vs. high crop prices, 2016-2017 annual 

average 

 Low Crop Prices High Crop Prices Difference 

(a) CRP Acreage 

Additional CRP Acres (million) 8.1 5.7 2.4 

(b) Environmental Benefits Index 

Environmental Benefits Index 3.07 2.16  0.9 

     Wildlife factor 0.83 0.59 0.24 

     Water quality benefit factor 0.75 0.53 0.22 

     Erosion factor 0.65 0.46 0.19 

     Enduring benefit factor 0.22 0.15 0.06 

     Air quality benefit factor 0.13 0.09 0.04 

(c) Ecosystem Services 

CO2 sequestration (million metric tons) 11.4 8.1 3.4 

Phosphorus (million lb) 32.3 22.8 9.5 

Nitrogen (million lb) 162.4 114.6 47.8 

Sediment (million tons) 59.0 41.6 17.4 

Note: This table presents the impact of the 1% increase in CRP rental rates under the low and high crop price regimes. 
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Figure 1.1. Geographic coverage of the study area. 
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Figure 1.2a. Conservation Reserve Program (CRP) acreage over 1986–2019 
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Figure 1.2b. CRP rental rate over 1986–2019 
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Figures 1.2c. Crop Price Index over 1986 – 2019 
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Figure 1.3. CRP rental rate elasticities and standardized crop price index against Year 
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Figure 1.4a. CRP rental rate elasticity and the standardized crop price variable. 
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Figure 1.4b. CRP elasticity of rental rate elasticity and the standardized crop price variable. 
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2.  CHAPTER 2 

 

Evaluating the effect of Transition Incentive Program on Beginning Framers’ and Ranchers 

 

1. Introduction 

Beginning farmers and ranchers (BFRs) face significant challenges when starting agricultural 

operations. One such challenge is land availability (Ahearn, 2011; C-FARE, 2017; Figueroa & 

Penniman, 2020). Land access is difficult for BFRs, whether they seek rental, crop-share, or 

purchase arrangement and whether they come from a multi-generational farm family or are first-

generation (Carolan, 2018). This situation occurs due to established farmers' competitive 

advantage over BFRs and other factors, such as farmland price hikes (Burns et al., 2018). For 

instance, the 2021 National Agricultural Statistical Survey (NASS) report suggests that farm real 

estate values averaged $3,380 per acre for 2021, a 7% increase from 2020. Subsequently, the value 

of croplands, rangelands, and pasturelands have increased by 8%, 6%, and 8%, respectively, 

compared to previous years. The tight supply is reflected in the projections showing that only 4% 

of the 897 million acres of farmland is available to sell to non-relatives and other farmers (Bigelow, 

2016; USDA, 2015). The Transition Incentive Program (TIP) was introduced to address the 

shortage of farmland for BFRs, and we offer evidence about its effect on the population of BFR. 

We investigate to what extent TIP helps by evaluating its impact on the increase in BFRs 

in the Midwestern agricultural region by focusing on the following states: Illinois, Indiana, Iowa, 

Kansas, Kentucky, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, Oklahoma, 

South Dakota, Tennessee, and Wisconsin. This study is important as little attention is paid to the 

federal program that seeks to transfer lands to BFRs. Valliant et al. (2021) is the only study that 

evaluates the effect of the Land Access Policy Incentive (LAPI) on BFRs and shows that about 

75% of farmers in the Midwest and Plain regions are willing to transfer farmlands to BFRs. We 

contribute to the literature by providing interpretable and direct estimates on how the introduction 

of TIP has influenced entry dynamics and growth in the size of BFRs. We achieve this objective 

by developing an instrument that captures the dynamics of acres enrolled in the Conservation 

Reserve Program (CRP) over the total cropland acres, as the TIP primarily depends on the 

availability of conservation lands. Subsequently, we focus our analysis on the Midwest and Plain 



 

46 
 

regions due to their large share of CRP lands and intensive agricultural activities (Cornish et al., 

2021).  

Prior studies have evaluated different factors that affect BFRs under various scenarios. For 

instance, government policies that seek to solve BFR financial issues have been studied (Kropp & 

Katchova, 2011; Kaufmann, 2013; Katchova & Dinterman, 2018; Griffin et al., 2020; Hartarska 

& Nadolynak, 2021). Past studies have also explored how socioeconomic factors and climate 

variability contribute to BFRs' productivity (Nadolynak et al., 2019; Katchova & Dinterman, 

2017). The entry and exit dynamics of BFRs have also been investigated (Hoppe & Korb, 2006; 

Mishra et al., 2010; Kuehne, 2012; Ahearn, 2013; Katchova & Ahearn, 2017; Griffin et al., 2019). 

Researchers have also evaluated how some government support programs influence BFRs (Weiss, 

1999; Goetz & David, 2001; Key & Roberts, 2006; Kropp & Katchova, 2011). Interestingly, none 

of these studies addresses the federal land program that seeks to make more farmland available to 

BFRs, even if it was introduced in 2008. Given the importance of land in agriculture and the need 

to facilitate its acquisition for farming activities, we investigate the impact of TIP on different 

categories of BFRs. Understanding the impact of the federal transition program will enable 

policymakers to develop appropriate strategies to alleviate BFR land acquisition problems. 

We contribute to the literature in the following ways. First, we adopt a matched-pair control 

group approach as our empirical strategy with county-level data from 2002–2017 at 5-year 

intervals. Second, we construct an instrument representing the TIP-based share of acres enrolled 

in CRP over the total cropland acres. We create treatment groups (high-CRP counties) and control 

groups (low-CRP counties). We employ matching techniques to reduce selection biases as CRP 

enrollments are not randomly assigned, and landowners may enroll in lands with lower opportunity 

costs (Jisang et al., 2022; Wu, 2005).  

First, we use the regression – adjusted (RA) propensity score estimation method to 

determine the impact of TIP on BFRs and show that principal BFRs, BFRs with 5–9 years of 

farming experience, BFRs with <5yrs farming experience, and BFRs with <3yrs farming 

experience increased by 34, 23, 11, and 3 in high–CRP counties, respectively. We turn our attention 

to the inverse probability weighting (IPW) method and highlight that principal BFRs, BFRs with 

5–9 years of farming experience, BFRs with <5yrs farming experience, and BFRs with <3yrs 

farming experience increased by 39, 32, 11, and 4 for high–CRP counties, respectively. Thus, we 

show that (1) the number of BFRs increased in counties that are active participants in CRP, and (2) 



 

47 
 

the effect is more substantial for BFRs increase in experience. In summary, the federal land transfer 

program that seeks to mitigate the land acquisition challenges encountered by BFRs is effective as 

it encourages entry into the agricultural sector. We argue that the effects are possibly due to (i) the 

relative abundance of CRP lands in high – CRP counties that makes it easy to access land for 

farming purposes or (ii) high – CRP counties are predominantly agricultural hubs, thus providing 

enough farm support for BFRs to thrive. We conduct robustness tests using inverse Kernel nearest 

neighbor matching (KNN) and nearest neighbor matching (NNM) methods and obtain similar 

outcomes.  

The remainder of this study proceeds as follows. In the next section, we provide a brief 

background of the conservation reserve program, the transition incentive program, and the linkage 

between the two programs. We describe the empirical model in section three and the data 

construction in section four. We present the empirical results in section five. The final section 

provides concluding remarks. 

 

2. Background of the Transition Incentive Program 

The Transition Incentive Program is a federal program that seeks to transfer near-expiring 

Conservation Reserve Program (CRP) lands from an original landowner to a beginning, veteran, 

socially disadvantaged farmer or rancher who is not a family member (USDA–FSA, 2019a). The 

program was established to alleviate the land acquisition issues faced by BFRs under the 2008 

Farm Bill. Initially, the federal program provided $25 million over five years, and the mandatory 

funding level increased to $33 million over the next five years (National Sustainable Agriculture 

Coalition., 2014). Subsequently, the 2018 Farm Bill further increased funding to $50 million 

through 2023 (USDA–FSA, 2019a). Although the program fund keeps increasing under various 

Farm Bills, it has experienced some changes. For instance, the 2014 Farm Bill modified the 

program eligibility to include veterans and socially disadvantaged farmers, while the 2018 Farm 

Bill has expanded the eligibility of the program to all CRP contract holders and allowed farmers 

to count the last two years of their expiring CRP contract towards the three years required for 

organic certification (Calo & Peterson-Rockney, 2018).  

The CRP is the most extensive private land retirement program in the United States. Under 

this program, landowners are offered 10–15-year contracts and are paid an annual rental payment 

in exchange for enrolling their sensitive cropland for conservation use to improve environmental 
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health (USDA, 2018). Objectives of the CRP are to reduce soil erosion, enhance biodiversity, 

improve air and water quality, decrease surplus production of agricultural commodities, and 

provide income support for landowners enrolled in the program (Ribaudo et al., 2001). Initially, 

the CRP started with about 8 million acres in 1986 but has increased to about 23.4 million acres in 

2020 with a per acre rental payment ranging from $60 – $150 (USDA, 2020). The CRP uses a cap 

and environmental benefits index system to control the acreages and type of croplands enlisted 

into the program. This strategy controls the program's land supply and ensures that highly 

productive agricultural lands are not enrolled for conservation purposes. Initially, each county 

could enroll up to 25% of the total croplands into the program (U.S. Congress, 1990). The 25% 

allotted land policy had to be cropped for 2–5 years preceding enrollment and had to be 

environmentally sensitive. However, the cropping criteria of 2–5 years was modified to 4–6 years 

under the Farm Security and Rural Investment Act of 2002 (USDA, 2020).  

According to the 2023 Farm Service Agency report, TIP creates an opportunity to return 

conservation lands for agricultural use while preserving established conservation practices. 

Subsequently, the program allows underserved farmers to expand their farming activities while 

ensuring sustainable agricultural practices. TIP requires that landowners sell, enter into a long-

term lease (at least five years), or a lease with an option to purchase some or all of the land covered 

by CRP to a BFR or socially disadvantaged farmer who is not a family member. As part of the 

agreement, the landowners gain additional benefits and rental payments from CRP enrollment 

(USDA–FSA, 2023). Conversely, the program mandates that the BFR, socially disadvantaged 

farmers, or veterans implement conservation plans on the land. This agreement allows the recipient 

to own lands for sustainable agricultural use. While TIP participation fluctuates with the number 

of acres expiring from CRP in any given year, the program has proven useful across regions with 

high CRP enrollments. Since the program was first created, over 3,200 producers have used TIP 

to transfer more than 500,000 acres of land to underserved farmers (Valliant & Freedgood, 2020). 

Access to farmland remains one of the challenges new farmers face when entering into 

agriculture. However, the federal land transfer program, which encourages landowners to sell or 

lease long-term to new and underserved farmers, is poorly patronized and unpopular in certain 

parts of the country (USDA-FSA, 2019a). For instance, states like Georgia, Alabama, Mississippi, 

and Louisiana have not utilized TIP funds. However, it is popular in the Midwest and Plain 

agricultural regions. For instance, Minnesota has demonstrated high demand and efficient usage 
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of the program and managed to obligate $2.2 million to farmers who transferred CRP lands to 

BFRs. This land transfer translates into about 19,528 acres of Minnesota farmland for the next 

generation of farmers (Valliant & Freedgood, 2020). The TIP has also proven popular in states 

such as North Dakota and Nebraska, as evidence shows the use of TIP funds (Valliant & 

Freedgood, 2020). 

 

3. Empirical Approach 

3.1 Conceptual Framework 

Ideally, we would like to have data on the actual TIP usage to determine if it is associated with an 

increase in the BFR numbers, but unfortunately such data are not available. As the use of TIP 

should be closely linked to the available CRP acreage, we create two groups of counties: high–

CRP and low(no)–CRP, following the concept used in Brown et al. (2019).3 We identify these 

groups based on the share of acres enrolled in CRP over the total cropland acres. The underlying 

assumption is that there is no opportunity for BFRs to participate in TIP if there are no or very few 

acres enrolled in CRP. We classify such counties as a “control” group. The “treated” counties are 

those that have more than 25% of their total cropland acres enrolled in CRP because TIP 

participation is likely in high CRP participation.4 Matching the control and treatment counties 

based on their characteristics described below allows isolating the impact of the TIP on the BFR 

numbers.  

There are specific identification issues that need to be addressed. First, CRP acreages are 

not random, as landowners self–select into the program (Jang & Du, 2018). Second, government 

agencies that regulate the CRP attempt to restore the ecological value of highly erodible 

agricultural lands by considering several factors, including enrollment caps, selection procedures, 

and the overall suitability of the land to qualify for the CRP (USDA, 2021). Thus, we expect 

 
3 Brown et al. (2019) apply the same approach to determine the effect of the conservation reserve program on rural 

economies: deriving a statistical verdict from a null finding. They assume that counties with low–CRP lands serve as 

control and counties with high–CRP lands serve as the treatment. 
4 While the CRP mandates a cap of 25% of total cropland, the majority of counties with non-negligible shares of CRP 

acres exceed it. The distribution of CRP enrollment on county level is highly bi-modal. We consider this 25% 

enrollment cap in our analysis because some counties reach and exceed this cap because of the opportunity to enroll 

in continuous sign-up after the general sign-up (Hellerstein, 2017). Moreover, the 25% cap requirement at the county–

level is not strictly enforced in that “the Secretary [of Agriculture] determines that such action would not adversely 

affect the local economy of such counties” (Food Security Act of 1985, P.L. 99–198, p. 1509). 
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landowners to enroll lands with lower opportunity cost.5 These issues are primarily resolved by 

using matching techniques to eliminate the non-randomness by comparing high-CRP counties to 

as similar as possible low–CRP counties using observable confounders that are correlated with 

CRP enrollment. This strategy controls for various factors that affect BFRs and also attenuates the 

selection biases and endogeneity. Another concern is the suitability of the CRP lands to support 

BFR farm activities. Since the CRP contracts last for about 10–15 years, we assume that the acres 

enrolled in the CRP might have improved sufficiently in quality, as evidence shows that CRP tends 

to improve soil health and water quality as well as reduce erosion (Allen & Mark, 2012). 

 

3.2 Econometric Specification  

3.2.1 Propensity Score Matching  

Propensity score matching (PSM) helps overcome the endogenous treatment selection biases 

inherent in observational studies. To estimate the effect of the TIP on the number of BFRs we first 

follow Rubin (1974), defining the average treatment effect on the treated (𝐴𝑇𝑇): 

𝐴𝑇𝑇 = 𝐸[𝑌1 − 𝑌0|𝑍, 𝐷 = 1] = 𝐸[𝑌1|𝑍, 𝐷 = 1] − 𝐸[𝑌0|𝑍, 𝐷 = 1]     (1)  

where 𝑌1 and 𝑌0 are the (potential) outcomes with the treatment and control, and 𝐷 indicates 

whether the county is treated (1) or not treated (0). In this context of this study, high – CRP counties 

and low – CRP counties denote the treatment and control groups respectively. Vector 𝑍 is a set of 

covariates that affect both high-CRP counties and low-CRP counties.  

 The 𝐴𝑇𝑇 is estimated using a matching algorithm that utilizes propensity score estimates 

that characterize a unit’s attributes in Z. Since an observation can only be classified as treated or 

control, a matching by propensity score procedure provides a counterfactual estimate of the 

potential outcome of an untreated unit if it were treated conditional on Z 𝐸[𝑌0|𝑍, 𝐷 = 1]. The 

propensity score is the probability treatment (selection into a treatment group) conditional on the 

covariates in 𝑍: 

𝑃(𝑍) = Pr (𝐷 = 1|𝑍)       (2)  

We estimate the propensity score using a logit model where the variable of interest, TIP, is zero if 

the share of acres enrolled in CRP over the total cropland acres is zero or negligible and one if the 

 
5 There may be exceptions to this case as landowner enrollment decisions may depend on the state of the agricultural 

economy and other macroeconomic factors (Henricks and Er, 2018).  
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share of acres enrolled in CRP over the total cropland acres is greater or equal to 0.25. Combining 

the expression for the 𝐴𝑇𝑇 with the propensity score, we express 𝐴𝑇𝑇 as: 

𝐴𝑇𝑇 = 𝐸[𝑌1 − 𝑌0|𝑃(𝑍), 𝑇 = 1] = 𝐸[𝑌1|𝑃(𝑍), 𝑇 = 1] − 𝐸[𝑌0|𝑃(𝑍), 𝑇 = 1]     (3) 

The 𝐴𝑇𝑇 obtained using propensity scores may be interpreted as causal if the outcome satisfies 

the exchangeability assumption (Rubin, 1974). Exchangeability implies that if the two groups 

exhibit similar characteristics and potential outcomes, there are no measurement errors that may 

likely imbalance the groups. As this assumption is unrealistic in observational research, we control 

for counties’ known characteristics, which allows us to achieve conditional exchangeability (Cole 

and Hern𝑎́n, 2008). When there is a disbalance, propensity score matching is useful to eliminate 

the selection bias by balancing covariates between the treatment and control groups to provide 

causal inference (Imbens and Wooldridge 2009; Ferraro and Miranda 2017).  

The propensity score matching algorithm (kernel, nearest neighbor or alternative) matches 

units from treatment and control groups by their propensity (balancing) scores as they summarize 

the set of covariates used in the scores’ estimation. Treatment and control counties that have 

(almost) the same propensity scores exhibit similar characteristics (Rosenbaum and Rubin, 1983). 

The covariates used for matching are based on previous literature and include population density, 

average farm size, per capita median household income, crop price index, phosphorus and nitrogen 

on-farm fertilizer application, temperature (GDD 10 – 290C), precipitation, total agricultural sales, 

government support payments, farmland prices, net farm income, operators age between 35–64, 

and operators age above 64 years. 

The reduced–form regression features a full set of location and time effects after matching 

treated and untreated counties is: 

𝐵𝐹𝑅𝑖𝑡 = 𝛽0 + 𝛽1𝑇𝐼𝑃𝑖𝑡 + 𝑿𝒊𝒕
′ 𝛽𝑛 + 𝜂𝑖 + 𝜆𝑡 + 𝜀𝑖𝑡   (4) 

where 𝑩𝑭𝑹𝒊𝒕 is the number of BFRs in county i at time t; 𝑻𝑰𝑷𝒊𝒕 is the policy variable, which is 

the interactive dummy that equals one if the year is 2012 or 2017 (after TIP) and the county is 

high-CRP (treated) and zero otherwise; 𝑿𝒊𝒕
′  is a vector of county attributes; 𝜷𝒋, 𝑗𝜖{1, … , 𝑛}, are 

coefficients to be estimated6. We control for time-constant land attributes such as soil quality, 

 
6 𝑇𝐼𝑃𝑖𝑡  is the interaction between two variables. First, we generate a time dummy variable to denote the pre-and-post 

transition policy implementation. We denote pre policy implementation periods as 0 and post policy implementation 

period as 1. Second, we construct a dummy variable to denote the treatment and control counties as already discussed 

where treatment counties are 1while control counties are 0. We interact the two variables to obtain our policy 

instrument so that our analysis captures the effect of post–TIP establishment. 
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climate, etc., through the fixed effects 𝜼𝒊. The effects of common macroeconomic shocks, such as 

changes in commodity prices and region-specific unobservable are absorbed through the time 

effects 𝝀𝒕; 𝜺𝒊𝒕 is the idiosyncratic error term. Estimation of this linear model requires two important 

assumptions that ensure no significant bias in models with fixed effects: that counties respond 

homogeneously to economy-wide or regional shocks and that the treatment effect is additive 

homogenous so that it does not depend on counties’ characteristics. We report the estimated 𝜷̂ via 

the fixed effects estimation and compare with the estimated 𝐴𝑇𝑇𝑠.  

 

4. Data and Variables 

To determine the impact of the TIP on BFRs, we use county-level data from 2002 through 2017 

with 5-year intervals from multiple sources. CRP practices differ by location and environmental 

objectives. For instance, landowners in the southeast U.S. adopt tree-planting measures (Assogba 

and Zhang, 2022) while landowners in the Midwest and the Plains adopt various tillage practices, 

which makes accessing CRP land much less expensive (Holland et al., 2020; Zuber et al., 2017; 

Behnke et al., 2018).7 We focus our analysis on 15 states – Illinois, Indiana, Iowa, Kansas, 

Kentucky, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, Oklahoma, South 

Dakota, Tennessee, and Wisconsin – which together account for a vast majority of CRP acreage 

and are active participants in the TIP program (Dickinson et al., 2020; Sustainable Agriculture 

Coalition, 2015). Figure 1.1 shows the map of the study area.  

For the dependent variables, we use four subgroups of BFRs by their farming experience: 

BFRs with <3yrs, <5yrs, and 5–9 years of farming experience, as well as BFRs principal operators. 

Most of the data come from the Census of Agriculture and National Agricultural Statistics Service 

(USDA–NASS) website.8 The binary treatment variable is the share of acres enrolled in CRP over 

the total cropland acres. Counties with shares of cropland in CRP greater or equal to 0.25 are 

considered “treated groups”, while counties with zero or infinitesimal values are considered 

“control groups”9. The CRP acreage data (total acres of land enrolled for conservation purposes) 

 
7 Holland et al. (2020) find evidence of switching conservation lands for continuous cropping in the wake of high crop 

prices. 
8 Data source, detailed explanation, and related definitions are attached the appendix section of this paper. 
9 We focused our analysis on these two groups and omit counties in between from the study. This decision is motivated 

by past studies and reports (Sullivan et al., 2004; Brown et al., 2019) that utilize low–CRP counties and high–CRP in 

their analysis.  
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comes from the USDA-FSA (FSA, 2019). The cropland data represents the total amount of 

cropland in each county and is obtained from the USDA (USDA – NASS, 2019).10  

 

Figure 2.1: Map of study area 

 

A number of control variables are used in the propensity score and fixed effects estimations. 

County-level crop production and deflated state-level prices are used to construct a Laspeyres’ 

crop price index for nine agricultural commodities (Li et al., 2019).11 The index is computed as 

(∑ 𝑃𝑙𝑖𝑡𝑄𝑙𝑖2002
9
𝑙=1 )/(∑ 𝑃𝑙𝑖2002𝑄𝑙𝑖2002

9
𝑙=1 ), where 𝑃𝑙𝑖𝑡 is the received price of crop 𝑙 in state 𝑖 at 

time 𝑡 and 𝑄𝑙𝑖2002 is the production of crop 𝑙 in state 𝑖 at the base year, 2002. Farmland price 

controls for agricultural land value. County-level average farm size is computed as the total 

cropland area operated divided by the number of farm operations (Hartarska et al., 2022). On-farm 

nitrogen and phosphorus fertilizer application data come from Brakebill and Gronberg (2017).  We 

include the monetary value of the total agricultural sales in each county in the analysis. This 

variable measures the total value of production that comprise of both crop sales and livestock sales. 

Thus, we are able to capture the cropland and pastureland production value. We follow Schlenker 

and Roberts (2009) and include climatic variables such as growing degree days (GDD) as a 

 
10 The total cropland acres include idle cropland, which include CRP acreages.  
11 The nine crops are barley, corn, oats, peanuts, rice, rye, sorghum, soybeans, and wheat. 
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measure of temperature and precipitation in our study. Growing degree days are defined as the 

accumulated degrees that fall into the range that is favorable for crop production. We adopt the 

range of between 10 and 32 degrees Celsius. Similarly, we include precipitation in our analysis. 

The climate data are obtained from Schlenker and Robert (2009) where they build the dataset based 

on the Parameter-elevation Regressions on Independent Slopes Model (PRISM) weather dataset. 

Additional control variables include population density, average net farm income, median 

household income per capita, government payments received, and operator’s age (Hartarska et al., 

2022, Stevens et al., 2022). Population density is defined as 𝑃𝐷 = (𝑃𝑜𝑝 𝐿𝐴)⁄  where 𝑃𝑜𝑝 is 

county’s population and 𝐿𝐴 is the total land area in count.  Data on population density, median 

household income, farm earnings, and government support payments are obtained from the Bureau 

of Economic Analysis (BEA). To control for operators’ characteristics, we include the number of 

farm operators aged 35 to 64 and above 64 years old from USDA–NASS to capture both active 

and retiring farmer participation. All income and prices are in 2017-dollar value computed using 

the consumer and producer price indices. Table 1 displays the summary statistics for the full 

sample, and for the treatment and control groups. The full sample consists of 1144 county-by-year 

combinations while the treatment and control groups before matching have 334 and 810 

observations respectively. On average, there are more BFRs in the control counties. Population 

density is much smaller while average farm size and farm income are much larger in the treatment 

group. Curiously, the treatment counties seem to have more fertilizer applications and government 

payments, although the standard deviations indicate large outliers. The treatment group has a 

majority of farm operators aged between 35–64 years whereas the control has a majority of farm 

operators above 64 years. There is not much of a difference between the treatment and control 

group with respect to the crop price index.  
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Table 2.1: Summary Statistics 
A. All groups     

Variables Mean Std. dev. Min Max 

Dependent variables      

BFRs experience <3yrs 31.86 31.63 1 251 

BFRs experience <5yrs 80.67 72.8 2 588 

BFRs experience 5 – 9yrs 111.5 86.13 1 539 

BFRs experience <10yrs 192.82 153.13 8 1015 

Independent variables      

Population density  155.09 430.83 0.34 3259.41 

Median household income 14642.02 3560.58 7972.57 37395.2 

Crop price index 142.36 33.07 39.21 250.82 

Farm earnings 3878.82 9309.86 -7299.46 161876 

Farmland price 3066.38 1465.35 599.51 8000 

Average farm size 382.52 625.26 7.45 7735.87 

Nitrogen application 2054709 2847882 0 22000000 

Phosphorus application 315775.5 433251.6 0 3400000 

Operators age between 35 – 64 years 455.75 319.66 8 2256 

Operators age > 64 years 234.14 171.92 3 1321 

Precipitation 79.96 22.68 19.71 146.92 

Temperature (GDD 10–290C) 1899.21 338.27 1059.47 2560.29 

Total agricultural sales 60700000 99400000 33000 1140000000 

Government payment 2520.33   3525.53 0 23077 

Observations 1144 

B. Type of group Treatment group Unmatched Control group 

Variables Mean Std. dev Mean Std. dev 

Dependent Variable     

BFRs experience <3yrs 25.26 16.73 34.59 35.67 

BFRs experience <5yrs 65.55 38.81 86.91 82.06 

BFRs experience 5 – 9yrs 103.19 57.71 114.93 95.24 

BFRs experience <10yrs 168.74 92.94 202.74 170.98 

Independent Variable     

Population density  17.87 20.42 211.67 501.1 

Median household income 15121.68 3361.79 14444.24 3622.94 

Crop price index 144.75 28.2 141.38 34.85 

Farm earnings 7908.06 12142.49 2217.38 7231.98 

Farmland price 2754.65 1932.32 3194.92 1200.07 

Average farm size 720.74 639.32 243.05 563.39 

Nitrogen application 4,486,480 3,135,087 1,051,978 1,991,235 

Phosphorus application 670,870 478,830 169,354 311,935 

Operators age between 35 – 64 years 436.23 224.67 231.52 192.79 

Operators age > 64 years 240.51 105.37 463.79 351.24 

Precipitation 62.88 24.33 87 17.69 

Temperature (GDD 10–290C) 1809.32 329.98 1936.26 334.87 

Total agricultural sales 113000000 134000000 39300000 70600000 

Government payment 6467.15 3390.71 892.87 1935.3 

Observations 334 810 
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5. Results 

5.1 Logit Results 

Table 2.2 contains the results for a logit model where the dependent variable is whether a county 

is in the treatment (high CRP share can utilize the TIP) or in the control group. The model estimates 

propensity scores used in the PSM algorithm. The results show a good model (Pseudo R2 about 

75%) fits with intuitive interpretations.  

Population density is negative (0.09), consistent with the land use literature indicating that 

increasing population puts pressure to convert alternative land use types for development purposes 

(Adjei et al., 2023; Lubowski et al., 2008). We realize that household income and net farm income 

have no significant association with counties with high CRP lands. We find that CRP enrollment 

decrease average farm size and increase farmland prices in counties with high CRP land. This is 

an expected outcome and consistent with the farmland demand-supply theory (Konyar & Osborn, 

1990). Government payments increase the probability of being a high-CRP county, likely because 

they support farm production activities and in line with the findings of Key et al. (2005) that 

government payments positively correlate with the decision to participate in conservation 

programs.  

We control for the potential BFRs by including the number of operators aged 35 to 64 years 

and find a negative effect but a positive effect for operators older than 64 years, which is intuitive 

as retirement age farm operators are more likely to engage in conservation programs compared to 

younger farm operators (Lambert et al. 2007).  We find that total agricultural lands is positively 

associated with high-CRP counties. This is an expected result as the majority of enrolled CRP 

lands are located in areas with large acres of agricultural lands (Cornish et al., 2021). Turning to 

the climate variables, we find significant outcomes associated with high–CRP lands. This is an 

expected association as climate variables affect farmland decision making.  
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Table 2.2: Logit Results for Higher-CRP Counties, coefficients, and marginal effect  

Variable Coefficient Marginal effects 

Population density  -0.0222*** 

(0.0059) 

-0.0009***    

(0.0002) 

Median household income -0.0001 

(0.0001) 

-0.0004  

(0.0003) 

Crop price index 0.0086*    

(0.0047) 

0.0004*     

(0.0002)    

Farm earnings -0.0001    

(0.00004) 

-0.0002    

(0.0002) 

Farmland price 0.0007***    

(0.0001) 

0.00003***   

(5.86e-06) 

Average farm size -0.0021***    

(0.0004) 

-0.0001***    

(0.00002) 

Nitrogen application -0.0006***   

(0.0002) 

-0.0003***  

(0.0001) 

Phosphorus application -0.0004**   

(0.0002) 

-0.0002**    

(0.0001) 

Operators age between 35–64 years -0.0062***    

(0.0013) 

-0.0003***    

(0.0001)   

Operators age > 65 years 0.0086***    

(0.0022) 

0.0004***    

(0.0001) 

Government payment 0.0007***    

(0.0001) 

0.00003***   

(4.46e-06) 

Temperature (GDD 10–290C) 0.001*** 

(0.0003) 

0.00004***    

(0.00001) 

Precipitation -0.1667***    

(0.0519) 

-0.007***     

(0.0022) 

Total agricultural sales -0.0001***    

(0.00003) 

-0.00004***    

(0.00001) 

Total agricultural land 0.0001***    

(6.87e-05) 

2.52e-04***    

(2.51e-05) 

Observations 1,144 1,144 

Log likelihood -170.605  

Pseudo R2 0.7531  
Notes: Asterisks ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. Standard 

errors are in parentheses. The coefficient standard errors are robust in nature.  The marginal effect errors are obtained 

using the Delta method. 

 

5.2 Matching and Balancing 

We use the nearest neighbor propensity-score matching estimator to match the “treatment” (high 

CRP enrolment) to the “control” counties based on the estimated propensity score values to 

estimate the 𝐴𝑇𝑇 for the regression adjusted model. The algorithm matched 283 treatment and 660 

control observations out of 1144, with the average standardized mean difference of approximately 
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5.5 indicating a satisfactory balance as desired in the quasi-experimental framework. Table 2.3 

reports the covariate balancing results. 

 

Table 2.3: Covariate Balance for propensity score matching (Regression Adjustment) 

 

Variable 

High-CRP 

counties 

Low-CRP 

counties 

| Standardized 

Difference | 

p>|t| 

Population density  15.16    15.081 0.00 0.954 

Median household income 0.004 0.05  5.7 0.484 

Crop price index 145.19    147.07      5.8 0.5 

Farm earnings 0.031       0.004   3.2 0.702 

Farmland price 0.004    0.002 0.2 0.98 

Average farm size 0.063 0.003    7.1 0.389 

Nitrogen application 0.074 0.003   9.3 0.264 

Phosphorus application 0.091 0.004    11.3 0.19 

Operators age between 35 – 64 years 0.0228 0.001    2.6 0.761 

Operators age > 64 years 0.015 0.002 2.1 0.795 

Government payment 0.003    0.165 19.4 0.081 

Temperature 0.663    0.626 5.7 0.488 

Precipitation 0.004    0.052 6.8 0.398 

Total agricultural sales 0.003   0.013 2.0 0.812 

Total agricultural land 0.003   0.015 1.4 0.87 

Observations (counties)    286 636   

Note: We transformed and normalized our covariates to bring the features to a common scale without distorting the 

differences in the range of the values. The standard difference is calculated as 100 ∗ (𝑋𝑇 − 𝑋𝑀)/√(𝑆𝑇
2 + 𝑆𝑅

2/2) where 

𝑋𝑇 and 𝑋𝑀 are the means across matched with high-CRP counties and low-CRP counties respectively. 𝑆𝑇 and 𝑆𝑅 

denote the standard deviations in the matched with high-CRP counties and low-CRP counties respectively. Rosenbaum 

and Rubin (1985) suggest that the bias is problematic when a standardized difference exceeds 20. 

 

 

5.3 Treatment Effect Results 

We estimate the effect of TIP on four types of BFRs. We first determine the 𝐴𝑇𝑇 by comparing 

high–CRP counties and low–CRP counties in the matched and balanced samples. The main result 

comes from estimating the 𝐴𝑇𝑇 by a regression adjustment (RA) model. The regression adjusted 

model offers the opportunity to control for additional covariates to improve the estimated average 

treatment effect 𝐴𝑇𝐸 (Lin, 2013; Negia & Wooldridge, 2021). The estimated 𝐴𝑇𝑇 coefficients 
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from all the estimation strategies present the averages of the individual treatment effect for BFRs 

in the treated group.12 

 

Table 2.4: Average Treatment Effect on the Treated (𝑨𝑻𝑻) 

 Regression Adjusted (RA) 

 BFRs <10yrs BFRs  5 – 9yrs BFRs <5yrs BFRs <3yrs 

ATT 34.1863*** 

(9.3032)   

23.6498*** 

(6.0721) 

11.1609*** 

(4.0984)   

3.7213*** 

(1.7941) 

95% confidence interval (15.9282, 52.4444) (11.7329, 35.5667) (3.1176, 19.2043) (0.2002, 7.2425) 

Notes: Asterisks ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. Standard 

errors in parentheses are bootstrapped based on 200 bootstrap draws. The 95% confidence intervals (bias–corrected) 

for the propensity score model is based on 200 bootstrap draws. All results are based on 2 nearest neighbors matched. 

All covariates (including county dummies) are included in the regression adjusted model. The bootstrapped standard 

errors and 95% confidence interval (normal-based) for the regression adjusted models are based on 200 bootstrap 

draws. 

 

We estimate, as presented in Table 2.4 that the increase in the number of in principal BFRs 

in high-CRP counties is at an average of around 34. Additionally, we report that BFRs with 5-9 

years of farming practice experience an increase of around 23 in high-CRP counties. Lastly, we 

find that the average number of BFRs with <5yrs- and 3-yrs farming experience in high–CRP 

counties is approximately 11and 3 respectively. Our findings show that the increase in BFRs with 

<3yrs of agricultural experience increases with each next group as expected.  

Similarly, we perform an inverse probability weighting (IPW) mechanism to estimate the 

effect of TIP on the four types of BFRs. The 𝐼𝑃𝑊 is a beneficial method as it doubly robust in 

nature. That is, if either the propensity score model or the outcome model is correctly specified, 

the estimated effect of interest will be unbiased (Stevens & Teal, 2023; Funk et al., 2011). The 

IPW uses a quasi–maximum likelihood method to estimate the parameters of the conditional 

probability model (Melstrom, 2020). Since we are interested in the 𝐴𝑇𝑇, we follow Wigger et al. 

(2019) and adopt the normalized treatment-adjusted inverse-probability weights method. Again, 

we follow Imai and Ratkovic (2014) and conduct a test to check whether the propensity score is 

correctly specified and balanced for the IPW model. From the test, we reject the null hypothesis 

 
12 From this study, our 𝐴𝑇𝑇 simply denotes the absolute difference between BFRs in high–CRP counties and low–

CRP counties through the propensity scores. We say that, conditional on the propensity scores, the outcome and 

treatment are independent. This is equivalent to saying that high–CRP counties and low–CRP counties with the same 

propensity scores differ in treatment only for random reasons when they share the same covariates.  
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𝒄𝒉𝒊𝟐(𝟏𝟔) =  𝟐𝟎. 𝟒𝟓𝟐𝟗;  𝑷𝒓𝒐𝒃 >  𝒄𝒉𝒊𝟐 = 𝟎. 𝟐𝟎𝟎𝟓 and conclude that the covariates are 

balanced. Table 2.5 reports the covariate balancing results for IPW.  

 

Table 2.5: Covariate Balance for inverse probability weighting (IPW) 

Variable Raw Weighted 

Population density  -0.5621 -0.0725 

Median household income 0.6224    -0.0478 

Crop price index 0.1011 -0.0456 

Farm earnings -0.0694    0.0081 

Farmland price 0.0691    -0.0373 

Average farm size 0.6738     0.0255 

Nitrogen application 0.5799  0.0341 

Phosphorus application 0.5809     0.0548 

Operators age between 35 – 64 years -0.0231      0.0019 

Operators age > 65 years 0.0494    -0.0344 

Government payment 0.0585    -0.0067 

Temperature -0.7072    -0.0137 

Precipitation -0.1007     0.0391 

Total agricultural sales 0.6195    -0.0266 

Total agricultural land -0.5391     0.0448 

Observations 922 922 

Treatment counties 286 474 

Control counties 636 447 

Note: This table presents the covariate balance for the 𝐼𝑃𝑊.  

 

After ascertaining the certainty of our covariate balance, we estimate the 𝐴𝑇𝑇 for the 𝐼𝑃𝑊 

model and present the results in Table 2.6. We find that TIP has a positive association with the 

different types of BFRs. In particular, we observe an increase in the number of in principal BFRs 

in high-CRP counties at an average of around 39. Moreover, we report that BFRs with 5-9 years 

of farming practice experience an increase of around 32 in high-CRP counties. Lastly, we find that 

the average number of BFRs with <5yrs- and 3-yrs farming experience in high–CRP counties is 

approximately 11and 4 respectively. Our findings show that the increase in BFRs with <3yrs of 

agricultural experience increases with each next group as expected and consistent with the 𝑅𝐴 

estimates.   
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Table 2.6: Average Treatment Effect on the Treated (𝑨𝑻𝑻) 
 Inverse Probability Weighting 

 BFRs <10yrs BFRs  5–9yrs BFRs <5yrs BFRs <3yrs 

ATT 

 

95% C. I. 

39.6355*** 

(8.7996) 

(22.3885 56.8825) 

32.1762*** 

(5.4059) 

(21.5807 42.7717) 

11.6858*** 

(3.7878) 

(4.2618 19.1098) 

4.0705*** 

(1.6265)   

(0.8825 7.2585) 

Notes: Asterisks ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.  

 

5.4 Robustness checks 

We conduct a series of robustness checks to probe the sensitivity of our results to the characteristics 

of the research design. We adopt two matching methods to test the robustness of our results. First, 

we adopt the kernel Nearest Neighbor (𝐾𝑁𝑁) matching method to determine the effect of TIP on 

BFRs. Following Rosenbaum and Rubin (1985), we apply two approaches to assessing matching 

quality: (1) the Standardized Percentage Bias method, which calculates the percentage bias 

reduction after matching; (2) the Two-sample t-test method to test whether there is still a significant 

difference in covariates between high–CRP counties and low CRP–counties.  

The matching quality test for 𝐾𝑁𝑁 is (𝑛 = 2) as we select matches that minimize the 

"Mahalanobis distances" between the two groups. The Mahalanobis distance measures the 

similarity between observations based on a set of key characteristics-the smaller the distance, the 

more similar the matching, based on the characteristics being examined. From Table 2.7, the two-

sample t-test results show that all variables are statistically insignificant between the high–CRP 

counties and low CRP–counties group after 𝐾𝑁𝑁 matching. The results from the 𝐾𝑁𝑁 indicate an 

increase in the number of in principal BFRs in high-CRP counties at an average of around 49. 

Moreover, we report that BFRs with 5-9 years of farming practice experience an increase of around 

38 in high-CRP counties. Lastly, we find that the average number of BFRs with <5yrs- and 3-yrs 

farming experience in high–CRP counties is approximately 14 and 5 respectively. The results are 

presented in Table 2.8. 
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Table 2.7: Covariate Balance for Kernel Nearest Neighbor Propensity Score Matching 

 

Variable 

High-CRP 

counties 

Low-CRP 

counties 

| Standardized 

Difference | 

p>|t| 

Population density  15.396 22.226 1.8     0.310 

Median household income 0.007 0.043 4.3     0.609 

Crop price index 144.85 146.88 6.3     0.456 

Farm earnings 0.002 0.016 2.2     0.798 

Farmland price 0.008 0.035 3.2     0.698 

Average farm size 0.011 0.012 2.8     0.739 

Nitrogen application 0.001 0.011 1.2     0.886 

Phosphorus application 0.001 0.037 4.3     0.619 

Operators age between 35 – 64 years 0.008 0.002 1.2     0.892 

Operators age > 65 years 0.003 0.027 2.9     0.730 

Government payment 0.004 0.008 0.6     0.945 

Temperature 0.003 0.006 1.2     0.885 

Precipitation 0.670 0.641 4.3     0.604 

Total agricultural sales 0.006 0.047 5.0     0.557 

Total agricultural land 0.002 0.023 2.5     0.771 

Observations 286 636   

 

Table 2.8: Average Treatment Effect on the Treated (𝑨𝑻𝑻)  

 Kernel Nearest Neighbor Matching (KNN) 

ATT 

 

49.0229*** 

(14.1691) 

38.7325*** 

(6.7654) 

15.6485*** 

(5.1431) 

6.0625*** 

(2.6371) 

95% C. I. (21.252, 76.7937) (25.4724, 51.992) (5.5681, 25.729) (0.8938 11.231) 

Notes: Asterisks ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. Standard 

errors in parentheses are bootstrapped based on 200 bootstrap draws. The 95% confidence intervals (bias–corrected) 

for the propensity score model is based on 200 bootstrap draws. All results based on 2 nearest neighbors matched 

sample. 

 

We employ the nearest neighbor matching 𝑁𝑁𝑀 approach as an alternative sensitivity test 

method. We present the covariate balancing results for NNM methods in Table 2.9 and the 

estimated 𝐴𝑇𝑇 in Table 2.10. We find a similar satisfactory covariate balance test. Again, we notice 

that TIP has a significant effect on increasing the number of BFRs in high–CRP counties. For 

instance, principal BFRs numbers increase by 55 in high – CRP counties. Also, BFRs with 5-9 



 

63 
 

years of farming practice experience had an increase of around 38 in high-CRP counties. Lastly, 

we find that the average number of BFRs with <5yrs- and 3-yrs farming experience in high–CRP 

counties is approximately 18 and 6 respectively.  

Table 2.9: Covariate Balance for Nearest Neighbor Propensity Score Matching 

 

Variable 

High-CRP 

counties 

Low-CRP 

counties 

| Standardized 

Difference | 

p>|t| 

Population density  15.39    15.31 0.00 0.954 

Median household income 0.007 0.055  5.7 0.49 

Crop price index 144.85    146.31      4.5 0.604 

Farm earnings 0.0022    0.038 4.4 0.606 

Farmland price 0.008    0.003   1.3 0.875 

Average farm size 0.0114    0.069 7.0 0.405 

Nitrogen application 0.001   0.068 8.2 0.335 

Phosphorus application 0.002   0.074 8.7 0.313 

Operators age between 35 – 64 years 0.008   0.012 0.6 0.948 

Operators age > 65 years 0.003 0.009 1.5 0.857 

Government payment 0.004    0.156 18.2 0.082 

Temperature 0.669    0.637 4.9 0.55 

Precipitation 0.003    0.054 6.0 0.461 

Total agricultural sales 0.005   0.014 2.4 0.782 

Total agricultural land 0.002    0.01 1.5 0.858 

Observations (counties)    281 636   

Note: The Mahalanobis distance metric takes the form 𝑑2(𝑋𝑇 , 𝑋𝐶) = (𝑋𝑇 − 𝑋𝑐)′Σ−1(𝑋𝑇 − 𝑋𝐶), where X is the vector 

of selection variables, 𝑇 is the treatment (i.e. high-CRP) county, 𝐶 is a control county, d is the Mahalanobis distance 

between the two vectors, and Σ is the variance-covariance matrix of possible control counties. Rosenbaum and Rubin 

(1985) suggest that the bias is problematic when a standardized difference exceeds 20. 

 

Table 2.10: Average Treatment Effect on the Treated (𝑨𝑻𝑻) 

 BFRs <10yrs BFRs  5–9yrs BFRs <5yrs BFRs <3yrs 

ATT 

 

95% C. I. 

55.2941*** 

(12.3877) 

(31.0146 79.5736) 

38.8541*** 

(7.2122) 

(24.7183 52.9898) 

18.5938*** 

(7.9964) 

(2.921 34.2665) 

6.938*** 

(2.6309)  

(1.7814 12.0946) 

Notes: Asterisks ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. Standard 

errors in parentheses are obtained using the Delta method.  
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6. Discussion and Policy Implications 

The objective of this research is to determine how the federal transition incentive program that 

seek to transfer CRP lands from an original landowners to a BFR has encouraged entry and also 

increased the number of BFRs into the agricultural sector. Given that the CRP acreage that supports 

the TIP is unevenly distributed across the country, could the program exhibit varying effect based 

on the availability of CRP lands in the counties? How might the distribution of these CRP acreages 

influence the growth rate of BFRs? To achieve our research objectives, we instrument the federal 

transition program by using the share of acres enrolled in CRP over the total cropland acres as a 

local measure to differentiate between high–CRP counties and low–CRP counties. Afterwards, we 

analyze the impact of the program on the number of BFRs using different estimation strategies.  

 Our first set of analysis adopts a logistic regression to determine how socio-economic 

factors, agricultural attributes, and commodity prices affect high–CRP counties relative to low–

CRP counties. Our findings demonstrate statistical significance with intuitive interpretations. For 

instance, we find that operators age above 64 years has positive and significant association with 

high–CRP counties. This is intuitive as retiring farmers prioritize exiting agriculture and enrolling 

their croplands in conservation programs in exchange for rental benefits. A study by Valliant et al. 

(2021) show that about 75% of retiring farmers in the Midwest and Plain regions showed interest 

in transferring their farmlands to fund their retirements. Demographic factors are often used to 

explain land use patterns, so we determine the effect of population density and find a negative 

effect on high – CRP counties. Our outcome aligns with previous studies on land use patterns as 

population density captures opposing effect on CRP enrollment (Plantinga et al., 2001). In 

addition, we realize that the climate variables showing opposite and significant effect as the 

accumulated temperature for growing degree days 10 – 290C is positive whereas precipitation is 

negative. We expect these significant outcomes as temperature and precipitation affect crop yield, 

thereby affecting returns from farming which invariably influence CRP enrollment decisions 

(Cornish et al., 2021). We realize that the government support payments have a positive association 

with CRP enrollment. This is because rental payments from CRP participation serve as additional 

income to offset farm labor cost to improve the overall economic well–being of households (Chang 

et al., 2008). Moreover, government payments have a positive effect on high–CRP counties as 

these regions are characterized as agricultural hubs. The government has a support program 
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through crop insurance and other programs that ensure that farmers have sufficient income to 

support their agricultural activities. 

 From our analysis, we find that the federal transition program has been effective by 

increasing the number of BFRs in high–CRP counties. The increase in BFR numbers is laudable 

as the prospect of the federal transition program has the potential to improve upon the number and 

drive entry of beginning farmers into agriculture. Apart from the higher rates of BFRs, the TIP 

ensures the adoption of sustainable agricultural practices as the program mandates BFRs to 

continue with the environmental practices already adopted on the land (USDA–FSA, 2019b). The 

positive outcome of the TIP in improving upon the number of BFRs could represent, to an extent, 

the support established farmers are willing to offer young farmers through land transfer. We 

compare our study with a similar policy, Land Access Policy Incentive (LAPI), that seeks to 

facilitate the transfer of farmlands to BFR. Original landowners who are engaged in the LAPI 

benefit by earning a refundable state tax credit equal in value to a portion of the income earned 

through the land access agreement. However, this policy differs from the TIP as landowners under 

the TIP earn two years of additional CRP payment. Valliant et al. (2022) indicated that landowners 

in the Midwest and the Plain regions are willing to transfer farmland to BFRs. Interestingly, their 

outcome suggest that about 97% of the respondents expressed interest in transferring farmlands to 

BFRs who are not relatives whereas 75% expect intra-familial succession under the LAPI. These 

findings align with our results as we observe a significant increase in BFRs under the TIP in the 

Midwest and Plain regions.  
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7. Conclusion 

We examined the impact of the federal transition incentive program on BFRs in the Midwest and 

Plain states with county-level data. We focus on these regions as these are areas of intensive 

agricultural production and are active participants in the federal transition program. The preferred 

model, which controls for a wide range of potential confounding factors by combining a matching 

design with additional covariates, indicates that the transition program has successfully increased 

the number of BFRs in counties with large amounts of CRP lands. In particular, the analysis 

suggests that the number of BFRs increased in counties with high-CRP acreage relative to counties 

with low CRP acreages.  

           These results have important policy implications. We encourage attempts to enhance the 

transition program in non-participating counties to improve BFR entry into the agricultural sector. 

Improving the number of BFRs can translate into agricultural productivity to bridge the gap 

between beginning and established farmers. We are aware that the county-level estimates may 

mask heterogeneity as some counties may be more directly affected by the CRP–TIP than others 

in the county, depending on the distribution of the CRP acreage. In any case, the evidence of this 

article indicates that BFRs located in counties with high-CRP lands improve in number compared 

to their counterparts in counties with low-CRP lands.   
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Figure 2: Covariate Balancing Test 
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Table 2.11: Variables and definitions 

Variables Definitions Source 

BFRs experience <10yrs This variable denote anyone who has operated a farm for less than ten 

years 

Census of Agriculture  

BFRs experience 5 – 9 years This variable denote anyone who has operated a farm for between 5 – 9 

years 

Census of Agriculture  

BFRs experience <5yrs This variable denote anyone who has operated a farm for less than five 

years 

Census of Agriculture  

BFRs experience <3yrs This variable denote anyone who has operated a farm for less than three 

years 

Census of Agriculture  

Crop price index This is a Laspeyres crop index constructed from county-level crop 

production and deflated state-level prices for 10 major agricultural 

commodities with 2002 as the base year.  

Authors’ computations from the 

USDA – NASS  

Farmland price This variable denotes the county – level average price of agricultural 

land.  

 USDA-NASS 

Operators age between 35 – 64 

years 

This variable represents the number of farm operator’s with ages between 

35 – 64 years 

Census of Agriculture  

Operators age > 64 years This variable represents the number of farm operator’s with ages above 

65 years 

Census of Agriculture  

Real farm earnings This variable comprise of the net income of sole proprietors, partners, 

and hired laborers arising directly from the current production of 

agricultural commodities, either livestock or crops. It includes net farm 

proprietors' income and the wages and salaries, pay-in-kind, and other 

labor income of hired farm laborers; but specifically excludes the income 

of farm corporations 

Bureau of Economic Analysis  

Average farm size The average farm size is defined as the cropland area operated divided by 

the number of farm operations. 

Census of Agriculture  

Population density The number of individuals who reside in a given area Bureau of Economic Analysis  

Real median household income The median household income of a given area divided by the resident 

population of the area 

Bureau of Economic Analysis  

Government payments Federal government payments to farm operators consist of deficiency 

payments under price support programs for specific commodities, 

Bureau of Economic Analysis 

(BEA) 
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disaster payments, conservation payments, and direct payments to 

farmers under federal appropriations legislation.  

On-farm nitrogen and 

phosphorus fertilizer 

application 

Nitrogen and phosphorus application is the on-farm fertilizer application 

data from the Association of American Plant Food Control Officials 

(AAPFCO) commercial fertilizer sales where state-level estimates are 

allocated to the county level using fertilizer expenditure from the Census 

of Agriculture (COA) as county weights for farm fertilizer. 

Brakebill and Gronberg (2017) 

Precipitation The precipitation variable is the accumulated rainfall or snow over the 

growing season for each year. 

Schlenker and Robert, (2006) 

[PRISM weather data] 

Temperature Growing degree days are defined as the accumulated degrees that fall 

into the range that is favorable for crop production. We adopt the range 

of between 10 and 32 degrees Celsius.  

Schlenker and Robert, (2006) 

[PRISM weather data] 

Total agricultural sales The sum of the animal and crop sales  Computed using NASS – USDA 

data 
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3. CHAPTER 3 

Climate Variability, Socio-Demographic, and Visitation to Natural Parks 

1. Introduction 

The National Park Service indicates that visits to managed national parks for recreational 

use generate over $28.6 billion to the nation’s economy and supports about 234,000 jobs (National 

Park Service, 2020). Furthermore, about 237 million visitors spend approximately $14.5 billion in 

communities that are within 60 miles of a national park. Of the 234,000 jobs, about 194,400 are in 

communities located within 60 miles of a park. Moreover, the hotels and restaurants generate about 

$5 billion and $3 billion in economic output nationally from the recreational use of national parks. 

Visitors' spending supports more than 43,100 jobs in lodging and 45,900 jobs in restaurants, 

indicating the significance of recreation on local economies (Rosenberger et al., 2017; White et 

al., 2016). However, visitation to managed natural areas is highly dependent upon climate and 

weather apart from travel cost and other socio-economic factors (Smith et al., 2018) as many 

tourists select their destinations based on expected climatic conditions (Hamilton & Lau, 2006) 

while many regional tourists and local visitors plan their trips to areas where the near-term weather 

forecasts project desirable conditions (Patrolia et al., 2017; Rutty & Andrey, 2014). Often, tourists 

adjust their trip timing and their length of stay or the outdoor recreation activities they participate 

in, based on the weather (Becken & Wilson, 2013). Thus, it is possible that weather changes may 

threaten economic benefits from outdoor recreation due to extreme variations in temperature and 

exacerbating precipitation patterns.   

Various factors such as financial constraints, availability of leisure time, and weather and 

climate are drivers of recreational demand (Gössling et al., 2012). Moreover, institutional 

schedules (e.g., national, religious, and school holidays) are influential; nevertheless, the overall 

demand patterns across managed national facilities consistently relate to regional climate patterns 

(Albano et al., 2013), and more specifically to direct and indirect effects of temperature (Rosselló-

Nadal, 2014). The relationship between climate and recreational demand has been analyzed at 

different spatial scales ranging from specific national parks (Richardson & Loomis, 2004; Scott et 

al., 2007), to regional tourism systems (Coombes et al., 2009; Smith et al., 2016), to national 

(Fisichelli et al., 2015; Liu, 2016) and international (Barrios & Ibanez, 2015) networks of tourism 
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destinations. These studies correlate past visitation rates with a select set of climate variables, 

among which temperature is mostly adopted (Gossling & Hall, 2006; Lise & Tol, 2002). However, 

these studies evaluate the climate–recreation relationship by focusing on average point estimates. 

Although understanding how climate variations affect recreation is important, it is no less critical 

to examine the impacts of climate and other determinants on the lower and upper tails of utility 

derived from recreation. Although variations in weather patterns have the potential to alter 

recreational utility, we expand on the existing literature by exploring how climate impacts on 

length of stay to federally managed natural parks in Utah via quantiles.  

In this paper, we examine the reduced-form relationship between weather variables, socio-

economic factors and length of stay to federally managed national parks in Utah by addressing the 

aforementioned research gaps. To determine how climate variables affect recreation, past studies 

often identify a single climate variable (e.g., mean temperature) that is significantly related to 

recreation. Often these studies lack destination-specific data that can be utilized to determine if a 

wider spectrum of climatic variables (e.g., humidity, vapor pressure, etc.) are also related to these 

demands. Exploring how a broad set of climate variables affect length of stay will improve our 

understanding of which climate variables are most predictive of duration of stay apart from the 

socio-economic factors. To ensure that the estimates are robust, we employ a quantile regression 

model that accounts for potential outliers in the utility measure.  

Quantile regression is gaining popularity in explaining economic phenomenon in the 

education, labor, and health fields (Koenker & Hallock, 2001). Although quantile regression is 

useful in explaining underlying distributional heterogeneity in comparison to the regular 

conditional-mean models, the method has not gained sufficient recognition in tourism studies. 

Quantile regression is relevant in assessing recreation as it will provide a description of the 

estimates at different distributions and also evaluate point estimates at different levels of 

recreational benefits. Since utility from recreation exhibits varying responses due to changing 

weather patterns and socio-demographic characteristics (Scott et al., 2007; Scott & Lemieux, 2010; 

Scott et al., 2008; Smith et al., 2019), this study creates an opportunity to explore the unexploited 

benefits of investigating the climate–recreation as well as the socio-demographic–recreation link 

via quantile analysis.  
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1.1 Related Literature 

A variation in climate has the potential to significantly alter recreational benefits, as 

outdoor recreationists are sensitive to unpredictable weather patterns. For instance, warming 

temperatures may decrease the length of skiing days (Dawson et al., 2013; Rutty et al., 2015; Scott 

et al., 2008) as research shows a direct relationship between weather conditions and the closure of 

ski areas (Beaudin & Huang, 2014). These findings illustrate how climate change can alter 

recreation. Although there is much research on the impacts of climate on winter outdoor recreation, 

changes in summer weather influence recreational demand (Denstadli et al., 2011; Falk, 2015). 

Studies have investigated the potential impact of climate change on future national park visits 

(Fisichelli et al., 2015; Liu, 2016; Scott et al., 2007). Scott et al. (2007) modeled future visitation 

to Waterton Lakes National Park by comparing past monthly visitation data to monthly 

temperature and precipitation. Similarly, Liu (2016) used temperature and precipitation to model 

visits to Taiwan’s national parks and found precipitation as a stronger predictor of visitation. Again, 

Richardson and Loomis (2004) modeled future visits to Rocky Mountain National Park (USA), 

using minimum and maximum temperature, precipitation, and snow depth. We recognize the 

importance of these past studies and expand on the literature by employing length of stay data to 

explore the heterogeneity weather patterns are influencing of stay at five national parks in Utah. 

Researchers usually adopt four central climate variables: temperature (minimum, 

maximum, and mean), precipitation, wind, and sunshine (Hewer et al., 2015; Steiger et al., 2016). 

Tourists’ perceptions of the importance of these variables depend on the destination’s location and 

the geophysical characteristics of its landscape (Rutty & Scott, 2010; Scott et al., 2008). Surveys 

of tourists suggest that beach tourists tend to rate sunshine and precipitation as the highest 

importance (Moreno & Amelung, 2009; Scott et al., 2008), while mountain tourists perceive 

precipitation to be most influential (Scott et al., 2008; Steiger et al., 2016), while urban tourists are 

most sensitive to temperature (Scott et al., 2008). Additionally, perceptions of acceptable 

conditions tend to vary by individual based on their home location, their expectations and 

experiences of the destination’s climate, and their planned recreational activities (Gossling et al., 

2016; Rutty & Scott, 2016; Scott et al., 2008). This has led researchers in dissimilar geographies 

to reach different conclusions about the impact of climate and weather on tourists. We expand on 

these studies and include other climatic variables (e.g., vapor pressure deficit, and dew point 

temperature) and account for other socio-economic factors. 
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While a variety of different climate and weather variables have been used in previous 

research, the effects of those variables have been inconsistent, appearing to be dependent on the 

geographic location, dominant activity type at the destination, and spatial scale of analysis. Studies 

at the national or international scale tend to only focus on the importance of temperature, while 

more site-specific variables are often disregarded (Berrittella et al., 2006; Serquet & Rebetez, 

2011). However, studies at smaller spatial scales often find other variables, besides temperature, 

to be meaningful predictors of visits (Førland et al., 2013; Koberl et al., 2016; Yu et al., 2009). 

Thus, we investigate the impact of numerous climate variables on length of stay and account for 

how these determinants affect the upper and lower tails of length of stay, considering demographic 

characteristics, visitor’s distance to park, nearest of the park to major cities, and holiday weeks.  

 

2. Study Area 

We focus our analysis on a regional network of national parks located in southern Utah. 

The parks (Arches National Park, Bryce Canyon National Park, Canyonlands National Park, 

Capitol Reef National Park, and Zion National Park) are under the management of the National 

Park Services. Arches, Canyonlands, and Capitol Reef national parks are located within the 

Colorado Plateau whereas Bryce Canyon and Zion national parks are located in the southern extent 

of the southern Wasatch mountains. The difference in ecoregions affect the types of recreational 

opportunities that are offered within each park. For instance, Bryce Canyon and Zion national 

parks offer more trails in canyons with some vegetative covers.  

Arches national park is the most eastern park in Utah and sits northeast of Moab. Being 

part of the Colorado Plateau, the climate is characterized as arid, with hot summers and cold 

winters, and large daily temperature fluctuations that often span a range of 200C. The park is 

described by protruding sandstone formations amongst a relatively flat desert floor covered by 

low-growing vegetation. The difference between elevations is about 516m. Bryce Canyon is 

located in southcentral Utah and has the highest elevation of amongst all of Utah’s managed 

national parks. It is characterized by lower temperatures, more vegetation, and more snow 

accumulation. Bryce Canyon is the only national park that offers snow-based recreational activities 

in Utah. Bryce Canyon usually receives over 45mm of precipitation monthly in the fall and 

averages 30mm of precipitation in the winter months, most of which falls as snow. Much of Bryce 
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Canyon’s upper elevations are covered by conifer forests, but as areas of the park descend into 

lower elevations the vegetation changes into ponderosa pine forest, and then further down it 

transitions into pinyon and juniper.  

Canyonlands national park is located west of Moab. The Canyonlands is in the heart of the 

Colorado Plateau, giving it many of the similar climatic and vegetative characteristics as Arches 

and Bryce Canyon national parks. Summer temperatures in the park often exceed 300C. The 

canyons were created by the Green and Colorado rivers, which enter the northern end of the park, 

converge in the middle, and flow out of the southern end. Many visitors are attracted to 

Canyonlands due to its kayaking and rafting opportunities. Subsequently, the Capitol Reef national 

park is located in south-central Utah and is characterized by brightly colored canyons, cliffs, 

monoliths, and buttes. Maximum daily temperatures often exceed 300C in the summer months. 

The park is centrally located in the Colorado Plateau and its landscape is high arid desert with 

several slot canyons cut in by the Fremont River. Lastly, Zion national park is the most 

southwestern park in Utah and is located at the junction of the Colorado Plateau, the Great Basin, 

and the Mojave Desert. The largest feature in the park is Zion Canyon, which is 15 miles long, and 

up to half a mile deep. The park’s canyons, along with dense vegetative cover in their bottoms, 

shade and cool many of the most heavily used trails within the park. Shade and cooler temperatures 

are often a relief, as daily maximum temperatures can often exceed 330C in the summer months. 

Zion offers the largest vertical relief, spanning 1550m. 

 

3. Theoretical Framework and Empirical Specification 

We follow past studies (Guimaraes et al.; Rosselló-Nadal, 2014) and consider a discrete 

choice modeling approach embedded within the framework of revealed preferences as the primary 

theoretical model. We aim to answer why an individual or a group chooses to visit a particular 

recreational destination relative to other recreational sites. Recreational choices are quantitative 

and qualitative consumption. However, we adopt a quantitative unit of tourism consumption which 

we denote as the length of stay per day at a park as the measure of utility. As different recreational 

destinations provide different units or bundles of characteristics in the form of utility, there is a 

possibility that visitors recreational preferences might differ across the destination sites. Thus, 

attractions are characteristics and is dependent on the destination’s climate, natural and historical 

attributes, and on other features such as the recreational facility distance from a major city center.  
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Taking the utility theory into account within the context of recreational decisions, we 

follow Morley (1992), and allow for the consideration of different perspectives of tourism 

decisions, together with a larger set of explanatory variables that influence recreational decision 

making. Analytically, we consider the utility 𝑈𝑖𝑗𝑡 that an individual 𝑖 derives from choosing to visit 

recreational facility 𝑗 at time 𝑡 to take the form: 

𝑼𝒊𝒋𝒕 = 𝑿𝒋𝒕
′ 𝜷 +  𝒁𝒊𝒋𝒕

′ 𝛾 + 𝜀𝑖𝑗𝑡    (1) 

where 𝑈𝑖𝑗𝑡 is the utility of visiting park 𝑗 at time 𝑡 to individual 𝑖;  𝑿𝒊𝒋𝒕
′  is a vector of various 

climatic factors that affect the utility; 𝒁𝒊𝒋𝒕
′  is a vector of socio-demographic factors that affect the 

recreational utility; 𝜺𝒊𝒋𝒕 is the error term. As individuals are assumed to visit the recreational facility 

that yields the greatest utility, the probability 𝜋𝑖𝑗𝑡 of a visitor opting for recreational facility 𝑖 is: 

𝜋𝑖𝑗𝑡 = Pr(𝑿𝒊𝒋𝒕
′ 𝜷 +  𝒁𝒊𝒋𝒕

′ 𝛾 + 𝜀𝑖𝑗𝑡 > 𝑿𝒊𝒌𝒕
′ 𝜷 +  𝒁𝒊𝒌𝒕

′ 𝛾 + 𝜀𝑖𝑘𝑡) ∀𝑗 ≠ 𝑘  (2) 

Thus, we assume that individuals with similar socioeconomic and demographic 

characteristics might choose very different destinations. However, the decision to visit a particular 

recreational facility is not an independent decision, but the final decision of a set of choices. Thus, 

once a decision has been made to visit a recreational facility based on certain socio-economic and 

climatic condition, individuals chose a recreational facility conditional on their preference and 

attribute characterizing the alternative in the choice set (Eugenio-Martín, 2003). Importantly, we 

extend this assumption and estimate the random utility model in the context of a quantile 

regression. This method is beneficial as it is flexible and accommodates the heterogeneity in the 

conditional distributions that characterizes utility from naturally managed national parks. We 

model the reduced-form random utility model between climate conditions, socioeconomic factors, 

visitor demographics factors, and length of stay at different quantiles conditional on the latter. We 

specify our quantile regression as follows: 

 𝐿𝑂𝑆𝑖𝑗𝑡 = 𝛽0 + 𝑿𝒋𝒕
′ 𝛽𝑞 + 𝝎𝒊𝒋𝒕

′ 𝜗𝑞 + 𝜀𝑖𝑗𝑡   (3)  

where 𝐿𝑂𝑆𝑖𝑗𝑡 is the length of stay of individual 𝑖 at park 𝑗 at time 𝑡; 𝑿𝒋𝒕
′  is a vector of weather 

conditions associated with park 𝑗 at time 𝑡; 𝝎𝒊𝒋𝒕
′  is a vector of socio-economic and other variables 

that influence the length of stay of individual 𝑖 at park 𝑗 at time 𝑡; the coefficients 𝛽0 is the intercept; 

𝛽𝑞 is the vector of unknown parameters associated with the 𝑞𝑡ℎ quantile. 𝝎𝒊
′ is a vector of socio-

economic and other variables that affect length of stay. 𝜗𝑞 is the vector of unknown parameters 
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associated with the 𝑞𝑡ℎ quantile that is associated with the socio-demographic. 𝜀𝑖𝑗𝑡 is the error 

term.13 

The quantile regression minimizes ∑ 𝑞|𝜀𝑖𝑗𝑖| + ∑ (1 − 𝑞)|𝜀𝑖𝑗𝑡|𝑖𝑗𝑡𝑖𝑗𝑡 , a sum that gives the 

asymmetric penalties 𝑞|𝜀𝑖𝑗𝑡| for underprediction and (1 − 𝑞)|𝜀𝑖𝑗𝑡| for overprediction. 

The 𝑞𝑡ℎ quantile regression estimator 𝛽𝑞̂ minimizes over 𝛽𝑞 the objective function: 𝑄(𝛽𝑞) =

∑ 𝑞|𝐿𝑂𝑆𝑖𝑗𝑡
𝑁
𝑖𝑗𝑡=𝐿𝑂𝑆𝑖𝑗𝑡≥𝝍𝒊𝒋𝒕

′ 𝜽 − 𝛽0 − 𝝍𝒊𝒋𝒕
′ 𝜽𝒒| + ∑ (1 − 𝑞)|𝐿𝑂𝑆𝑖𝑗𝑡

𝑁
𝑖𝑗𝑡=𝐿𝑂𝑆𝑖𝑗𝑡<𝝍𝒊𝒋𝒕

′ 𝜽 − 𝛽0 − 𝝍𝒊𝒋𝒕
′ 𝜽𝒒; 

where 0 < 𝑞 < 1. We estimate 𝛽𝑞 instead of 𝛽 to make clear that different choices of 𝑞 estimate 

for different values of 𝛽. We specify the standard conditional quantile regression as: 

𝑄𝑞(𝐿𝑂𝑆𝑖𝑗𝑡|𝝍𝒊𝒋𝒕
′ ) = 𝝍𝒊𝒋𝒕

′ 𝜽𝒒 for each of the covariates embedded in the vector 𝝍𝒊𝒋𝒕
′  regressors. We 

specify the marginal effect of the coefficient for the 𝑞𝑡ℎ quantile as: 𝜕𝑄𝑞(𝐿𝑂𝑆|𝝍)/𝜕𝜓𝑗 = 𝜃𝑞𝑗; 

where 𝜓𝑗 are the individual independent variables embedded in the vector 𝝍𝒊𝒋𝒕
′ . The estimate 𝜃𝑞𝑗 

estimates the change in a specified quantile 𝒒 of the length of stay 𝐿𝑂𝑆𝑖𝑗𝑡 produced by a one-unit 

change in the independent variables 𝝍𝒊𝒋𝒕. The marginal effects are for infinitesimal changes in the 

regressors, assuming that the independent variables remain in the same quantile.  

We also analyze recreational length of stay benefit via a generalized linear method 

approach. From past recreational literature, conditional logit or Poisson models are usually adopted 

as appropriate strategies to estimate random utility models (Guimaraes et al., 2003; Melstrom & 

Vasarhelyi, 2019). We follow the approach of Melstrom & Vasarhelyi (2019) and specify our 

Poisson utility model as:  

 𝑈𝑖𝑗𝑡 = 𝑒𝑥𝑝(𝛽0 + 𝑿𝒋𝒕
′ 𝜷 +  𝒁𝒊𝒋𝒕

′ 𝛾)𝜀𝑖𝑗𝑡    (4) 

where 𝑈𝑖𝑗𝑡 is the utility (length of stay) of visiting park 𝑗 at time 𝑡 to individual 𝑖;  𝑿𝒊𝒋𝒕
′  is a vector 

of various climatic factors that affect the utility; 𝒁𝒊𝒋𝒕
′  is a vector of socio-demographic factors that 

affect the recreational utility; 𝜺𝒊𝒋𝒕 is the error term. The equation (4) is transformed as 𝑙𝑜𝑔𝑈𝑖𝑗𝑡 =

𝛽0 + 𝑿𝒋𝒕
′ 𝜷 +  𝒁𝒊𝒋𝒕

′ 𝛾 + 𝑙𝑜𝑔𝜀𝑖𝑗𝑡. This model is synonymous with taking a logarithm of the utility 

measure (length of stay) and estimating with an OLS approach.  

 

 
13 For the sake of simplicity, we classify the vector of covariates 𝑋𝑗𝑡

′  , 𝜔𝑖𝑗𝑡
′  as 𝜓𝑖𝑗𝑡  for easy understanding. However, 

we are aware that the weather conditions affect each individual 𝑖 equally so note that the 𝑋𝑗𝑡
′  implicitly holds in 𝜓𝑖𝑗𝑡 .  
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4. DATA 

 We estimate the recreational utility response changes by constructing a dataset of more 

than 310,000 visitors between January 2007 to December 2018 from the Recreation.gov website 

(Rec.gov, 2021). A recreation visit is a unique entrance into a park to participate in outdoor 

recreation. We adopt length of stay as our utility measure as it is a good indicator for determining 

utility from tourism consumption and is positively related to the aggregate earnings obtained from 

tourist activities (Alegre et al., 2011; Barros et al., 2010). To determine how weather and other 

socio-demographic factors affect length of stay, we obtain the visitor’s arrival and departure date 

to compute the length of stay at the recreational facility.  

Besides the weather factors usually employed (Fisichelli et al., 2015; Parthum & 

Christensen, 2022), we account for other weather variables to mitigate potential omitted variable 

bias in the study. We include dew point temperature and maximum vapor pressure defict as these 

variables are usually omitted in most tourism studies. Again, we employ both the minimum and 

maximum temperatures instead of the popular mean temperature in the analysis. Thus, our climate 

indicators comprise five weather variables: maximum temperature, minimum temperature, 

precipitation, dew point temperature, and maximum vapor pressure deficit. We obtain the weather 

data from the Parameter-Elevation Regressions on Independent Slopes Model (PRISM). The 

PRISM climate data comprises single-event gridded data from 15-25 nearby weather station 

locations surrounding that grid cell. PRISM bases the influence of each weather station on its 

distance from the grid cell, its physiographic and climatic similarity to the grid cell, and, where 

applicable, how similar its radar-derived precipitation value is to that of the grid cell (Daly et al., 

1994; 2002; 2008).  

We employ temperature as studies show that it influences recreational decision-making 

(Smith et al., 2017). We define temperature as the daily minimum and maximum temperature 

observed at a park. Again, we follow the tourism literature and include the precipitation, which is 

the measure of the total amount of rain and melted snow, as precipitation impacts recreation 

(Steiger et al., 2016; Yu et al., 2009). To account for the effect of humidity, we include the 

maximum vapor pressure deficit and the mean dew point temperature. Vapor pressure deficit is the 

difference between the amount of air moisture and how much moisture the air can hold when 

saturated. The dew point is the temperature the air needs to cool to achieve relative humidity 

(NOAA, 2023). Maximum vapor pressure deficit and the mean dew point temperature are 



 

85 
 

important weather indicators as they directly affect how “comfortable” it feels outside. As most 

recreational activities occur in the open, including such variables are essential. 

We employ data from different sources to determine how socio-demographic determinants 

impact length of stay. First, we determine how the park fees influence length of stay. The 'park 

fee,' comprises of the facility use fee, discounts, and transaction fee. This variable captures the 

monetary value the visitor pays to access the recreational facility. We obtain the total amount of 

money paid from the recreation.gov website. This variable is essential as it measures the 

association between length of stay and park revenue. Subsequently, we include daily gasoline 

prices in our analysis to account for transportation costs. Past studies (Boyer et al., 2017; Melstrom 

et al., 2015) recognize the importance of gasoline prices in random utility estimation. The gasoline 

data is the daily US national gasoline price obtained from the Energy Information Administration 

(EIA) website. Again, we determine the effect of travel costs in this study. We calculate the variable 

travel cost using information on the travel distance, travel time, facility use fee, and the value for 

travel time. We use the centroid of the visitor's home zip code to estimate the travel distance and 

travel time based on the visitor's georeferenced coordinates recorded at the national park. We 

follow Melstrom et al. (2015) to derive the driving cost, which constitutes the average national 

fuel price plus the marginal depreciation and cost maintenance. To compute the travel time, we 

adopt one-third of the wage rate commonly utilized in recreation demand studies (Vesterinen et 

al., 2010). We calculate the wage rate as the visitor's zip code median household income divided 

by 2000, which is assumed to be the total amount of working hours in a year to proxy the 

opportunity cost of travel time (Parsons, 2017). Finally, we derive the travel cost as round-trip 

distance in miles times per mile fuel, maintenance, depreciation costs plus the opportunity cost of 

travel plus the total amount of money paid.  

We control for other factors that can influence length of stay by using covariates such as 

the visitor's zip code median household income, the visitor's distance to the national park, and the 

distance of a national park to the closest city. We expect the median household income variable to 

positively affect length of stay as increasing household income makes recreation affordable. We 

obtained the income data from the Internal Revenue Service (IRS). We matched the visitor's home 

zip code reported during visit to the park to the IRS-reported zip code level household income to 

obtain the median income data. In addition, we include the visitor's distance to the national park 

as a proxy for the substitution effect. We derive the visitor's distance to a park from the visitor’s 
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home zip code to the visitor's camping site coordinate at the park.14 Equally, we account for the 

distance of the closest city to the park in our analysis.15   

We introduce dummy variables to eliminate endogeneity through omitted variable bias to 

prevent biased outcomes in our analysis.16 For instance, the variable visitor’s state is a dummy 

variable that determines whether the visitor is from in-state or out-of-state. The dummy variable 

visitor’s state equals one if the visitor is from Utah and 0 if the visitor is not from Utah. 

Subsequently, we control for overnight stays at the park. Again, we use a dummy variable to 

capture holiday effects. The dummy variable holiday week equals one if the day of the visit to the 

park is a holiday and 0 otherwise. The analysis accounts for seasonality, time, and park effects 

through dummies. We present the summary statistics in Table 3.1. 

 

Table 3.1: Summary Statistics of the data 
Variables  Mean  St. dev Min Max 

DEPENDENT VARIABLES     

Length of stay (days) 1.72 1.59 0 27 

INDEPENDENT VARIABLES     

Total price ($) 32.86 33.96 0 1400 

Travel cost 66.25 37.64 8.21 2274 

Precipitation (mm) 0.92 3.31 0 50.31 

Minimum temperature (0C) 10.45 6.25 -13.8 27.1 

Maximum temperature (0C) 25.96 7.49 -4.1 42.1 

Dew point temperature (0C) -0.52 6.61 -21.1 17.1 

Maximum vapor pressure deficit (PHa) 30.66 14.63 0.02 77.48 

Price of gasoline ($) 2.94 0.61 1.64 4.05 

Visitor’s distance to park (miles) 642.01 570.01 1.5 2881.5 

Distance of closest cities to park (miles)  3.73 4.37 1.45 27.8 

Median HH income ($1000) 47.11 22.3 0.41 3428.1 

Holiday week (dummy variable)  0.95 0.21 0 1 

Visitor’s state (dummy variable) 0.19 0.39 0 1 

Season (dummy variable) 2.23 0.81 1 4 

Observations 310,507    

 

 

 
14 Since most national parks have different campsite, various recreational facilities, and offer different activities, 

visitors are likely to opt for different locations based on their preferred activities and choice. In the dataset, we observe 

that visitors in a national park have different georeferenced coordinate systems (longitude and latitude) that are linked 

to various campsites, facilities in the national park, and recreational activities. We use these coordinates together with 

the visitor’s home zip code to estimate the distance from visitor from this home to the national park.  
15 Likewise, we calculate the distance of the park to the closest city by using the visitor’s georeferenced coordinates 

and the centroid of the closest city coordinates.  
16 Due to incidental parameter problem, we do not include the dummy variables in the main quantile regression. 

However, we account for them in the OLS regression and the Poisson regression. 
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5.0 RESULTS AND DISCUSSION 

5.1 Descriptive statistics 

Table 3.1 presents the descriptive statistics. Table 3.1 shows that the average length of stay 

is about a day and some hours. According to the National Park Service (NPS) annual reports from 

2018 to 2021, the average number of hours a visitor spends at a National Park is approximately 

7.4 hours. Furthermore, we show that a recreational facility fee is about $32, with minimum and 

maximum fees of $0 and $1440, respectively. From Table 3.1, the average travel cost is $66 and 

ranges from $8 to $2274. The average visitor’s distance to the recreational facility is 642 miles, 

with the minimum value at 1.5 miles and the maximum at 2882 miles. We calculate the proportion 

of visitors from outside Utah and notice that they constitute about 80% of the total observations, 

whereas in-state visitors are about 20%. Subsequently, we notice that about 19% of the visitors 

stay overnight, whereas 81% vacate the recreational facility effectses after their visit. As expected, 

we realize that about 88% of out–of–state visitors do not stay overnight in camps or other housing 

facilities in the recreational areas as they prefer to spend the night elsewhere. 17 We also observe 

that the closest city to a national park is about 4 miles, with a minimum distance of 1.5 and a 

maximum distance of almost 28 miles. Regarding the weather variables, the average precipitation, 

minimum temperature, maximum temperature, dew point temperature, and vapor pressure deficit 

are 0.92mm, 10.450C, 25.960C, -0.520C, and 30.66Pha.  

Again, we expand on visits to the national parks in Figure 1. From the figure, we realize 

that Zion National Park is the most visited National Park in Utah, receiving an average of nearly 

57000 visits based on reservation bookings from the recreation.gov website (rec.gov, 2022).18 Our 

description is consistent with Smith et al. (2017) which indicate that the Zion National Park (NP) 

is the most visited recreational site in Utah. The second most visited park is the Arches NP. 

However, the park with the least number of visits is the Capitol Reef NP with an average of 

approximately 870 reservation. We present the average number of visitors to each park in Table 

3.2. 

 

 

 

 
17 Overnight stay refers to visitors that usually camp or set up tents at the National Parks to spend the night.  
18 Our estimates are based on the ticket reservation that are purchased and recorded. It is possible that the total number 

can be larger as visitors walk-in into the various parks without reserving tickets.   
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Table 3.2: Average number of visitors to each national park 

National Park Average number of visitors 

Arches NP 13,289 

Bryce Canyon NP 5,284 

Canyonland NP 904 

Capitol Reef NP 870 

Zion NP 57,017 

 

To illustrate how seasonality affects the visitors, we graphically present how visitations to 

the various national parks differ monthly. We show that visits to the parks peak during the summer 

months (April–September) and decline during the winter months (November–February). As part 

of the study, we determined how climate conditions differ at the various parks and present the 

results in the appendix. We notice heterogeneity among the different weather variables for all the 

five parks. This indicates that the various parks exhibit differences in weather conditions which is 

likely to influence visitors recreational decisions.  
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Figure 3.1: Average daily visitation for the study parks (2007–2018). Source: Authors. 

 

Turning to the weather variables, we realize that the average precipitation ranges from 

0.68mm (Canyonland NP) to 1.32mm (Capitol Reef NP), indicating more precipitation in the 

Capitol Reef NP relative to the other parks. Subsequently, we compute the minimum temperatures 

among the parks and notice that it ranges from 0.830C (Bryce Canyonland NP) to 7.130C (Zion 

NP). Small temperature values are observed in the Bryce Canyon NP as it is the only park that 

offer snow–related recreational activities (Smith et al., 2018). However, the temperature values do 

not differ much across the other parks. We observe that dew point temperature, a measure of the 

air needed to cool to achieve relative humidity, is lowest in the Bryce Canyon with an average 

value of -6.130C whereas it is largest in the Canyonland NP with an average value of -2.40C. Lastly, 

we observe a lower maximum vapor pressure deficit value (1.5PHa) in the Bryce Canyons NP 

relative to Zion NP (5.3PHa). The other national parks (Arches NP, Canyonland NP, and Capitol 

Reef NP) have an average vapor pressure deficit of 4.5PHa. We present the weather statistics in 

Table 3.3.  
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Table 3.3: Average weather statistics 
National Park Precipitation Minimum 

temperature 

Maximum 

temperature 

Dew point 

temperature  

Vapor pressure  

deficit 

Arches NP 0.88 6.02 20.26 -2.76 4.95 

Bryce canyon NP 1.29 0.83 15.31 -6.13 1.57 

Canyonlands NP  0.68 5.85 21.98 -2.48 4.21 

Capitol Reef NP 1.31 7.07 18.83 -2.91 4.5 

Zion NP 0.89 7.13 21.08 -3.28 5.39 

  

5.2 Empirical Specification Results 

 Table 3.4 presents the quantile regression estimates for the length of stay recreational 

demand model. As part of the regression, we present the OLS results in Table 3.5. We observe that 

the model has the expected signs and aligns with a prior expectation of past studies (Smith et al., 

2018; Smith et al., 2019). First, we examine the association between park fees and the length of 

stay and notice a positive and significant association. This is an expected results and consistent 

with the tourism literature as length of stay has positive implication on park revenue (Alegre & 

Pou, 2007). Extended stays at a park translates into additional park fees that increase the revenue 

for park management. The decision to extend the length of stay may be due to the aesthetic value 

of the park, as most tourists value on the park’s amenities, services, and natural attractions and are 

willing to pay. 

We demonstrate that increasing travel costs tend to decrease the length of stay. Possibly, 

the opportunity cost of an extended stay is greater than the utility from the park. Moreover, we find 

similar results for the quantile regression, but the magnitude of the coefficients differs across each 

quantile. This highlights that travel costs can prevent potential visitors from assessing parks 

amenities as they perceive the trip to be unaffordable. We examine the effect of precipitation on 

the length of stay and reveal that the relationship is not different from zero as we realize 

precipitation is a poor predictor of length of stay via quantiles. This outcome is consistent with the 

findings of Smith et al. (2018), which reveal that precipitation does not influence recreation in 

Utah. However, precipitation–length of stay relationship is nonlinear as low precipitation positive 

affect length of stay but contribute adversely when the precipitation rises as observe in the OLS 

estimates. We examine the effect of minimum temperature on length of stay and the relationship 

is negative with varying significant levels at the quantiles. The geographical location of Utah can 

explain this outcome, as it is an arid state with a lot of sunshine. Thus, most visitors are likely to 

patronize recreational services during the sunny seasons. We focus on the maximum temperature 
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and find an alternate response as, on average, the maximum temperature tends to impact length of 

stay positively. We observe a negative relationship between dew point temperature and length of 

stay. We analyze the association between length of stay and maximum vapor pressure deficit and 

notice a nonlinear relationship. The effect of vapor pressure deficit on length of stay is negative at 

its maximum. However, when the maximum vapor pressure deficit declines, it encourages length 

of stay. This highlights that dry and arid weather conditions discourage outdoor recreation, but 

cool atmospheric conditions creates a conducive opportunity for outdoor recreational activities.  

We evaluate how gasoline prices affect length of stay and reveal a positive and significant 

outcome. However, our estimates are inconsistent with past studies that indicate that increasing 

gasoline prices cause a decline in recreational demand (Boyer et al., 2017). As expected, we show 

that visitors’ home distance negatively and significantly affects length of stay. We expect this 

outcome as longer travel time may increase recreational and opportunity cost. We turn our attention 

to evaluating how holidays affect length of stay. The outcome is negative and significant on 

average but with some heterogeneity at the seasonal level. We realize that holidays are drivers of 

winter recreation. Furthermore, our results indicate that in-state visitors are more likely to visit 

recreational facilities within their states than out-of-state visitors. 
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Table 3.4: Quantile regression estimation model (Full Model) 
Variables Quantile 

regression at 

0.25th quantile 

Quantile 

regression at 

0.5th quantile 

Quantile 

regression at 

0.75th quantile 

Quantile 

regression at 0.9th 

quantile 

Park fees ($) 0.02482*** 

(0.001) 

0.0535*** 

(0.0008) 

0.0923*** 

(0.0025) 

0.1282*** 

(0.0044) 

Travel cost -0.0014*** 

(0.001) 

-.01245*** 

(0.0008) 

-0.0524*** 

(0.0025) 

-0.0924*** 

(0.0045) 

Precipitation (mm) 0.0003 

(0.0011) 

-0.0003 

(0.0009) 

0.0028 

(0.0027) 

0.0097** 

(0.0048) 

Precipitation squared (mm) -0.00002 

(0.00004) 

0.00001 

(0.0000) 

-0.0000 

(0.0001) 

-0.0001 

(0.0002) 

Min. temp. (0C) -0.0036*** 

(0.0012) 

-0.0024** 

(0.001) 

-0.0051 

(0.0031) 

0.0115** 

(0.0055) 

Min. temp squared (0C) -0.0001 

(0.0001) 

-0.0005*** 

(0.0001) 

-0.0006*** 

(0.0001) 

-0.0005** 

(0.0002) 

Max. temp. (0C) 0.0014 

(0.0024) 

0.0005*** 

(0.0021) 

0.0194*** 

(0.0062) 

0.0306* 

(0.011) 

Max. temp squared (0C) 0.0002*** 

(0.0001) 

0.0008*** 

(0.0001) 

0.0005** 

(0.0002) 

-0.0014*** 

(0.0004) 

Dew point temp. (0C) -0.0013 

(0.0009) 

-0.0055*** 

(0.0008) 

-0.0064*** 

(0.0023) 

-0.0044 

(0.0042) 

Dew point temp. squared (0C) -0.0001** 

(0.0000) 

-0.0002*** 

(0.0000) 

-0.0007*** 

(0.0001) 

-0.0008*** 

(0.0001) 

Max. vapor pressure deficit (PHa) -0.0063*** 

(0.0024) 

-0.0221*** 

(0.002) 

-0.0288*** 

(0.0061) 

0.0066 

(0.0108) 

Max. vapor pressure deficit 

squared (PHa) 

0.0000 

(0.0000) 

0.0000*** 

(0.0000) 

0.0001*** 

(0.0000) 

-0.0014*** 

(0.0004) 

Gasoline price ($) 0.0361*** 

(0.0027) 

0.1321*** 

(0.0022) 

0.1875*** 

(0.0067) 

0.1512*** 

(0.0119) 

Visitor’s distance to park (miles) -0.0000*** 

(2.72e-06) 

-0.0001*** 

(2.28e-06) 

-0.0002*** 

(6.77e-06) 

-0.0004*** 

(0.0000) 

Closest city to park (miles)  -0.0035*** 

(0.0003) 

-0.0089*** 

(0.0003) 

-0.0089*** 

(0.0008) 

-0.0131*** 

(0.0014) 

Median HH income ($1,000) 0.0007 

(0.0006) 

0.0075*** 

(0.0005) 

0.0333*** 

(0.0016) 

0.0596*** 

(0.0029) 

Constant 0.5522*** 

(0.0243) 

0.4083*** 

(0.0204) 

0.9642*** 

(0.0606) 

2.4153*** 

(0.1081) 

R–squared  0.1084 0.2703 0.2463 0.1919 

Observations 251,197 251,197 251,197 251,197 
Notes: ***, ** and * indicate significance levels 1%, 5% and 10% respectively. Standard errors for coefficients in parentheses 
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Table 3.5: OLS estimation model 
Variables Full Sample Warm Season Cold Season 

Park fees ($) 0.0516*** (0.0017) 0.06*** (0.0019) 0.0342***(0.0032) 

Travel cost -0.0308*** (0.0018) -0.0395*** (0.0021) -0.0124***(0.0035) 

Precipitation (mm) 0.0063*** (0.0018) 0.0059*** (0.0022) 0.0039***(0.0056) 

Precipitation squared (mm) -0.0002*** (0.0001) -0.0002*** (0.0001) 0.0002 (0.0004) 

Min. temp. (0C) -0.0043* (0.0023) -0.005 (0.0032) -0.0048 (0.0038)   

Min. temp squared (0C) -0.0003*** (0.0001) -0.0002*** (0.0001) 0.0000 (0.0002) 

Max. temp. (0C) 0.0104*** (0.0047) 0.0244*** (0.0066) -0.0053 (0.011) 

Max. temp squared (0C) -0.0001 (0.0002) -0.0005*** (0.0002) 0.0007* (0.0004) 

Dew point temp. (0C) -0.0029* (0.0016) -0.0011 (0.0017) -0.0115***(0.0048) 

Dew point temp. squared (0C) -0.0003*** (0.0001) -0.0004*** (0.0001) -0.0006***(0.0002) 

Max. vapor pressure deficit (PHa) -0.0054***(0.0041)   -0.0041 (0.0046) -0.0134 (0.012) 

Max. vapor pressure deficit 

squared (PHa) 

0.00004* (0.00002) 0.0001*** (0.0000) -0.0001 (0.0001) 

Gasoline price ($) 0.0621*** (0.016) 0.1011*** (0.0201) -0.0894**(0.0413) 

Visitor’s distance to park (miles) -0.0001***(4.55e-06) -0.00013*** (5.16e-06) -0.0002***(9.40e-06) 

Closest city to park (miles)  -0.6022*** (0.0675) -0.5626*** (0.0652) -0.7571*** (0.2506) 

Median HH income ($1,000) 0.0197*** (0.0012) 0.0256*** (0.0013) 0.0074*** (0.0023) 

Holiday week (Yes) 0.0067 (0.0122) -0.0236*** (0.0137) 0.0948***(0.0255) 

Visitor’s state (Yes) -0.0121 (0.0087) -0.0108 (0.0111) -0.0177 (0.0142) 

Bryce Canyon NP -6.5681*** (0.7299) -6.1263*** (0.7053) -8.2773*** (2.7089) 

Canyonlands NP 7.833*** (0.9351) 7.3724*** (0.9051) 9.8534*** (3.4656) 

Capitol Reef NP -5.3332*** (0.3653) -5.1028*** (0.3822) -6.1225*** (1.2016) 

Zion NP -7.3926*** (0.843) -6.8824*** (0.8145) -5.1542*** (1.7095) 

Winter -0.2098*** (0.0772)   

Spring -0.0815*** (0.0083)   

Summer -0.1572*** (0.0086)   

Constant 9.9741*** (0.9448) 9.1987*** (0.9145) 12.5519*** (3.5041)   

Day dummies  Yes Yes Yes 

Year dummies Yes Yes Yes 

R–squared  0.2525 0.2554 0.2525 

Observations 169,594 169,594 169,594 
Notes: ***, ** and * indicate significance levels 1%, 5% and 10% respectively. Standard errors for coefficients in parentheses 
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5.2.1 Seasonal Analysis 

 We conduct a seasonal analysis to determine how the climate and other variables influence 

the length of stay. We separate the data into cold and warm observations, where the warm seasons 

consist of summer and autumn months while the cold seasons consist of winter and spring months. 

Tables 3.6 and 3.7 present the results and test statistics. Our results indicate good model fitness 

and are significant with intuitive interpretations.  

From the seasonal analysis, we observe considerable differences among the models 

regarding the climate variables. For instance, we notice that the climate variables are not good 

predictors of length of stay to recreational facilities when the length of stay is short. The climate 

variables influencing the stay duration in warm seasons are highly related to air moisture and 

relative humidity, not the regular temperature variables, as observed in Table 6. Regarding the 

demographic characteristics, we observe no differences in the estimated models. For instance, we 

notice that the visitor’s distance to the recreational facility is inversely related to the length of stay. 

However, for the OLS estimates (Table 3.5), gasoline prices show an inverse association with stay 

duration during the cold seasons. The median household income effect is positive across both 

seasons.  

We observe heterogeneity in the climate effect for the seasonal analysis as climatic factors 

tends to influence stay durations at national parks differently depending on the season. For 

instance, the main climatic driver of length of stay in the warm season are higher levels of the 

vapor pressure deficit. This is an indication that cooling temperatures at arid recreational facility 

improve visitor’s recreational experience. Generally, we realize that the weather patterns during 

the cold season are not good predictors of determining recreational demand except the socio-

demographic factors. 
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Table 3.6: Quantile regression estimation model (Warm Season) 
Variables Quantile 

regression at 

0.25th quantile 

Quantile 

regression at 

0.5th quantile 

Quantile 

regression at 

0.75th quantile 

Quantile 

regression at 0.9th 

quantile 

Park fees ($) 0.022*** 

(0.0029) 

0.0597*** 

(0.001) 

0.101*** 

(0.0028) 

0.1488*** 

(0.0056) 

Travel cost -0.0016 

(0.003) 

-0.0191*** 

(0.0011) 

-0.0609*** 

(0.0028) 

-0.113*** 

(0.0056) 

Precipitation (mm) 0.0006 

(0.0032) 

0.0014 

(0.0011) 

0.0028*** 

(0.0031) 

0.0102* 

(0.006) 

Precipitation squared (mm) -0.00002 

(0.0001) 

-0.00004 

(0.00003) 

-0.00001 

(0.0001) 

-0.0002 

(0.0001) 

Min. temp. (0C) -0.0049 

(0.0044) 

-0.0081*** 

(0.0015) 

-0.0147*** 

(0.0042) 

0.0054 

(0.0082) 

Min. temp squared (0C) -0.00001 

(0.0001) 

-0.0003*** 

(0.0001) 

-0.0003* 

(0.0001) 

-0.0003 

(0.0003) 

Max. temp. (0C) 0.0028 

(0.0087) 

0.0014 

(0.0031) 

0.02508*** 

(0.0083) 

0.0472*** 

(0.0164) 

Max. temp squared (0C) 0.0001 

(0.0003) 

0.0005*** 

(0.0001) 

-0.0001 

(0.0002) 

-0.0023*** 

(0.0005) 

Dew point temp. (0C) -0.0005 

(0.0026) 

-0.0021** 

(0.0009) 

-0.0011 

(0.0025) 

0.0027 

(0.0049) 

Dew point temp. squared (0C) -0.0001 

(0.0001) 

-0.0004*** 

(0.0000) 

-0.0008*** 

(0.0001) 

-0.001*** 

(0.0002) 

Max. vapor pressure deficit (PHa) -0.0047 

(0.0068) 

-0.0161*** 

(0.0024) 

-0.0197*** 

(0.0065) 

0.0165 

(0.0129) 

Max. vapor pressure deficit 

squared (PHa) 

0.0000 

(0.0000) 

0.00004*** 

(0.00001) 

0.0001*** 

(0.00003) 

0.0001 

(0.0001) 

Gasoline price ($) 0.0297*** 

(0.0082) 

0.1366*** 

(0.0029) 

0.185*** 

(0.0079) 

0.1715*** 

(0.0155) 

Visitor’s distance to park (miles) -8.92e-06 

(7.77e-06) 

-0.0001*** 

(2.78e-06) 

-0.0001*** 

(7.42e-06) 

-0.0003*** 

(0.0000) 

Closest city to park (miles)  -0.0036 

(0.0009) 

-0.0078*** 

(0.0003) 

-0.0091*** 

(0.0009) 

-0.0137*** 

(0.0018) 

Median HH income ($1,000) 0.0009 

(0.0019) 

0.012*** 

(0.0007) 

0.0389*** 

(0.0018) 

0.0732*** 

(0.0037) 

Constant 0.6214*** 

(0.0874) 

0.4699*** 

(0.0313) 

1.0497*** 

(0.0835) 

2.3385*** 

(0.1646) 

Pseudo R–squared  0.0931 0.2703 0.2549 0.1997 

Observations 169,594 169,594 169,594 169,594 
Notes: ***, ** and * indicate significance levels 1%, 5% and 10% respectively. Standard errors for coefficients in parentheses 
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Table 3.7: Quantile regression estimation model (Cold Season) 
Variables Quantile 

regression at 

0.25th quantile 

Quantile 

regression at 

0.5th quantile 

Quantile 

regression at 

0.75th quantile 

Quantile 

regression at 0.9th 

quantile 

Park fees ($) 0.0269*** 

(0.0027) 

0.0461*** 

(0.0014) 

0.065*** 

(0.0047) 

0.0642*** 

(0.0079) 

Travel cost 0.0002 

(0.0027) 

-0.0035*** 

(0.0014) 

-0.0245*** 

(0.0048) 

-0.0289*** 

(0.008) 

Precipitation (mm) 0.0035 

(0.0044) 

0.0056** 

(0.0022) 

0.0043 

(0.0078) 

0.0121 

(0.0131) 

Precipitation squared (mm) -0.0001 

(0.0002) 

-0.0002 

(0.0001) 

0.0003 

(0.0004) 

-0.00004 

(0.0008) 

Min. temp. (0C) -0.0052* 

(0.0029) 

-0.0043*** 

(0.0014) 

-0.0046 

(0.0051) 

0.0079 

(0.0086) 

Min. temp squared (0C) 0.0004* 

(0.0002) 

0.0003*** 

(0.0001) 

-0.0003 

(0.0004) 

-0.0004 

(0.0006) 

Max. temp. (0C) 0.002 

(0.0088) 

0.0122*** 

(0.0044) 

0.0097 

(0.0155) 

-0.029 

(0.0259) 

Max. temp squared (0C) 0.0002 

(0.0004) 

0.0001 

(0.0001) 

0.0006 

(0.0006) 

0.0004 

(0.001) 

Dew point temp. (0C) -0.0034 

(0.0039) 

-0.0045** 

(0.0019) 

-0.0042 

(0.0068) 

-0.0013 

(0.0115) 

Dew point temp. squared (0C) -0.0001 

(0.0001) 

-0.00001 

(0.0001) 

0.0001 

(0.0001)    

-0.0002 

(0.0004) 

Max. vapor pressure deficit (PHa) -0.0046 

(0.0101) 

-0.0141*** 

(0.0051) 

-0.0272 

(0.0175) 

-0.029 

(0.0259) 

Max. vapor pressure deficit 

squared (PHa) 

-0.00001 

(0.0001) 

0.0001** 

(0.0000) 

0.0001 

(0.0001) 

-0.0004* 

(0.0002) 

Gasoline price ($) 0.0558*** 

(0.0068) 

0.1435*** 

(0.0034) 

0.1912*** 

(0.0119) 

0.0781*** 

(0.0199) 

Visitor’s distance to park (miles) -0.00002*** 

(7.85e-06) 

-0.0001*** 

(3.97e-06) 

-0.0002*** 

(0.00001) 

-0.0005*** 

(0.0000) 

Closest city to park (miles)  -0.0014** 

(0.0007) 

-0.01*** 

(0.0004) 

-0.0076*** 

(0.0014) 

-0.0085*** 

(0.0023) 

Median HH income ($1,000) -0.0004 

(0.0018) 

0.0017** 

(0.0009) 

0.0151*** 

(0.0031) 

0.0177*** 

(0.0053) 

Constant 0.3891*** 

(0.0619) 

0.1379*** 

(0.0313) 

0.8461*** 

(0.1084) 

2.7672*** 

(0.1814) 

Pseudo R–squared  0.1399 0.2735 0.2549 0.1997 

Observations 169,594 169,594 169,594 169,594 
Notes: ***, ** and * indicate significance levels 1%, 5% and 10% respectively. Standard errors for coefficients in parentheses 
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5.3 Robustness Checks: Alternative specifications results 

 We present the results of the robustness checks using the alternative empirical 

specifications in Table 3.8. We realize that the Poisson model show low explanator power as the 

R-squared values are relatively small compared to the main models (Tables 3.4–3.7). However, the 

results are all generally consistent with those from our main model specifications in Tables 3.4 and 

3.5 except for some deviations. The impact of park fees on length of stay is still positive (and 

primarily statistically significant). Similarly, we notice that the effect of travel cost is consistent 

with the results from the primary model, as increasing travel cost decreases the length of stay at a 

national park in Utah. We notice that the climate variables are consistent for all the model 

specifications except the dew point temperature and vapor pressure deficit, which exhibit 

conflicting effects for the estimated models (Tables 3.7 and 3.8). We indicate that humidity and air 

moisture level are essential weather indicators for recreational activities in Utah. The dry nature 

of Utah’s weather explains the sensitivity of these two climate variables. Surprisingly, precipitation 

tends to have a positive and significant effect on length of stay.  
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Table 3.8: Poisson estimation model 
Variables Full Sample Warm Season Cold Season 

Park fees ($) 0.0355*** (0.0016) 0.0384*** (0.0014) 0.02845*** (0.0028) 

Travel cost -0.03123*** (0.0018) -0.0338*** (0.0015) -0.02445*** (0.0032) 

Precipitation (mm) 0.0037*** (0.0009) 0.0034*** (0.0011) 0.0035 (0.0026) 

Precipitation squared (mm) -0.00011*** (0.0000) -0.0001*** (0.0000) -0.00003 (0.0001) 

Min. temp. (0C) -0.0022* (0.0012)  -0.0008 (0.0018) -0.0035** (0.0018) 

Min. temp squared (0C) -0.0001** (0.0005) -0.0002*** (0.0001) 0.0001 (0.0001) 

Max. temp. (0C) 0.0051** (0.0023) 0.0099*** (0.0034) 0.0053 (0.0059) 

Max. temp squared (0C) -0.0001 (0.0001) -0.0002** (0.0001) 0.00001 (0.0003) 

Dew point temp. (0C) -0.0018** (0.0009) -0.0009 (0.001) -0.0061** (0.0024) 

Dew point temp. squared (0C) -0.0001** (0.0000) -0.0002* (0.0001) -0.0003*** (0.0001) 

Max. vapor pressure deficit (PHa) -0.0022 (0.0023) -0.0018 (0.0026) -0.0069 (0.0061) 

Max. vapor pressure deficit 

squared (PHa) 

0.0000 (0.0000) 0.00002* (0.0000) 0.00004 (0.0001) 

Gasoline price ($) 0.0358*** (0.0085) 0.0631*** (0.0111) -0.0702*** (0.0205) 

Visitor’s distance to park (miles) -0.0001*** (2.97e-06)   -0.0001*** (3.72e-06) -0.00001*** (5.42e-06) 

Closest city to park (miles)  -0.5614*** (0.0433) -0.5262*** (0.0485)    -0.8454*** (0.0922) 

Median HH income ($1,000) 0.0202*** (0.0011) 0.022*** (0.001) 0.0156*** (0.0021) 

Holiday week (Yes) -0.0003 (0.0075) -0.0169 (0.0105) 0.0458*** (0.012) 

Visitor’s state (Yes) -0.0032 (0.0043) -0.0032 (0.0058) -0.0071 (0.0066) 

Bryce Canyon NP -6.131*** (0.4686) -5.735*** (0.5248) -9.2398*** (0.997) 

Canyonlands NP 7.5368*** (0.597) 7.0269*** (0.6741) 11.477*** (1.2731) 

Capitol Reef NP -3.2629*** (0.2181) -3.1348*** (0.2465) -4.5744*** (0.4424) 

Zion NP -6.9462*** (0.5416) -6.4975*** (0.6063) -10.5064*** (1.1516) 

Winter -0.0835*** (0.0371)   

Spring -0.0385*** (0.0043)   

Summer -0.0791*** (0.0047)   

Constant 8.5379*** (0.6039) 7.9021*** (0.6782) 12.8002*** (1.2887) 

Day dummies  Yes Yes Yes 

Year dummies Yes Yes Yes 

Pseudo R–squared  0.0473 0.0507 0.089 

Observations 251,197 251,197 251,197 
Notes: ***, ** and * indicate significance levels 1%, 5% and 10% respectively. Standard errors for coefficients in parentheses 
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6. Conclusion 

 We analyze the impact of weather and socio-demographic characteristics on length of stay 

for Utah's national parks. We achieve our research objective using reservation data from five 

National Parks in Utah. We adopt quantile and ordinary least square estimation strategies for our 

analysis. As part of the study, we conduct a of robustness checks to ascertain the validity of our 

results with a Poisson model. Before conducting the regression, we performed some descriptive 

statistics and presented our results using figures and tables. From our figures, we realize that 

summer is the optimal time for most recreationists patronizing Utah's naturally managed national 

parks. However, the winter season is the least favorable time to visit Utah. Regarding climate 

statistics, we realize that the various national parks have varying climate conditions but with some 

similarities, except for the Bryce Canyon NP.  

Overall, our findings demonstrate the importance of accounting for visitors' demographic 

characteristics as they contribute to recreational decision–making as we realize that variables such 

as the median household income, the visitor's distance from home, and travel costs are good 

predictors of visiting a national park for recreational use. For instance, the relationship between 

travel cost and recreational demand outcomes can be attributed to opportunity cost, as long-

distance trips can affect productive working hours. We observe a similar explanation for the 

relationship between visitors' home distance and recreational demand.   

We find that varying weather and climate variables affect recreational demand as our 

analysis suggests precipitation does not affect recreation as Utah is arid and "desert-like" with low 

rainfall and snowfall However, we observed considerable heterogeneity in temperature as the 

maximum temperature is a key driver of recreational demand in Utah. However, we experience 

the opposite relationship for minimum temperature. Again, we notice that visitors exhibit negative 

reaction towards lower humidity and extremely dry weather pattern. By exploring the 

consequences of climate variability on recreational demand, we demonstrate that different climates 

affect visitation to managed natural areas differently. The climate-recreation nexus emanates from 

the geophysical characteristics and recreational opportunities available at specific destinations. As 

the quantile estimates demonstrate, the climate variables are related to recreational demand 

patterns. However, how and why it relates to recreational demand patterns is a product of many 

factors.  
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APPENDIX 

 
Figure 3.2: Monthly Precipitation for the National Parks 

 

 

 
Figure 3.3: Monthly Minimum Temperature for the National Parks 
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Figure 3.4: Monthly Maximum Temperature for the National Parks 

 

 
Figure 3.5: Monthly Dew Point Temperature for the National Parks 
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Figure 3.6: Monthly Maximum Vapor Pressure Deficit for the National Parks 

 

 

 

 

 

 


