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Abstract 

 

Contemporary agriculture faces multiple pressing challenges, particularly feeding a growing 

world population and mitigating climate change. During the past several decades, climate change 

has significantly impacted crop growth and production, undermining the resilience of food 

systems. Concurrently, management activities such as nitrogen fertilization and intensive tillage 

have in turn contributed to climate change through increased greenhouse gas (GHG) emissions. 

To address these challenges and promote sustainable agriculture, it is imperative to understand 

how historical climate change and human management activities have influenced crop production 

and agricultural GHG emissions, and the extent to which climate-smart agriculture (CSA) practices 

can help reduce net soil GHG emissions without compromising crop production. This dissertation 

delves into these aspects, employing a data-driven systems approach to quantify the impacts of 

multiple environmental forcings (e.g., climate change, atmospheric CO2 concentration, and 

nitrogen deposition) and agricultural management practices (e.g., nitrogen fertilization, tillage, 

rotation, and cover cropping) on the magnitude and spatiotemporal variations of crop production, 

net GHG balance, and net GHG emissions intensity (GHGI, defined as net soil GHGs emissions 

per unit of crop production) in U.S. croplands under both historical and future climate scenarios. 

We first developed a new agricultural module within the framework of the Dynamic Land 

Ecosystem Model (DLEM) v4.0 by better representing dynamic crop growth processes (e.g., crop-

specific phenological development, carbon allocation, yield formation, and biological nitrogen 

fixation) and agricultural management practices (e.g., nitrogen fertilization, irrigation, tillage, 

rotation, manure application, and cover cropping). Evaluations against site- and regional-scale 

observations demonstrate that the newly developed agricultural model effectively simulates the 
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magnitude and spatial and temporal variations in both crop production and net GHG emissions. 

Combining this new agricultural model and multi-source datasets, we used a data-driven 

systems approach to quantify U.S. crop yield losses caused by compound droughts and heatwaves. 

We also analyzed the temporal variations in the sensitivity of U.S. corn-soybean systems to these 

extreme climate events over the past decades. Results indicate that U.S. corn and soybean yields 

exhibited heightened sensitivity to short-term droughts (spanning 1-3 months) and heatwaves 

during their critical reproductive stages. The simultaneous occurrence of droughts and heatwaves 

exacerbates yield loss substantially, resulting in yield losses of 29.6% for corn and 25.4% for 

soybean, surpassing the effects of individual extreme events. U.S. corn-soybean systems also 

showed a decreased sensitivity to concurrent droughts and heatwaves over the past six decades. 

We further quantified the impacts of natural and anthropogenic factors on the magnitude and 

spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960-2018. Results 

show that U.S. agricultural soils sequestered 13.2 ± 1.16 Tg CO2-C yr-1 in SOC (at a depth of 

3.5 m) during 1960-2018 and emitted 0.39 ± 0.02 Tg N2O-N yr-1 and 0.21 ± 0.01 Tg CH4-C 

yr-1, respectively. Based on the GWP100 metric (global warming potential on a 100-year time 

horizon), the estimated national net GHG emission rate from agricultural soils was 121.9 ± 11.46 

Tg CO2-eq yr-1, thus contributing to climate warming. The sequestered SOC offset ~28% of the 

climate-warming effects resulting from non-CO2 GHG emissions, and this offsetting effect 

increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the 

increase in net GHG emissions during 1960-2018, explaining ~47% of total changes. In contrast, 

the adoption of agricultural conservation practices (e.g., reduced tillage) and rising atmospheric 

CO2 attenuated net GHG emissions from U.S. croplands. 

By integrating climate forcings from the CMIP6 climate model, we also predicted future crop 
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production, net GHG balance, and GHGI in U.S. croplands under three climate scenarios, 

including SSP126, SSP245, and SSP585. Results show a significant increase in the national net 

GHG balance for the SSP245 and SSP585 scenarios, with the most pronounced increase occurring 

under the high-emission trajectory SSP585, averaging 236 Tg CO2-eq year−1 during 2020-2100. 

In contrast, the net GHG balance under the 126 scenario remains relatively stable throughout the 

study period. Crop production shows significant interannual variations but does not exhibit 

significant trends across all three climate scenarios. This imbalance, where the net GHG balance 

increases disproportionately compared to crop production, results in an elevated GHGI. For the 

SSP126, SSP245, and SSP585 scenarios, the GHGI is estimated to be 0.26 CO2-eq Tg−1, 0.34 CO2-

eq Tg−1, and 0.42 CO2-eq Tg−1, respectively. The significant increase in both net GHG balance and 

GHGI is mainly attributed to increased temperatures and atmospheric CO2 concentrations. 

Additionally, we further predicted the long-term impacts of four CSA practices—no tillage, 

crop rotation, cover cropping, and N fertilizer reduction—on crop production and net GHG balance 

in U.S. croplands across various future climate scenarios. Our results suggest that these CSA 

practices significantly reduced the net GHG balance in U.S. croplands, with average reductions of 

18.9% for no tillage, 10.3% for N fertilizer reduction, 28.6% for cover cropping, and 17.8% for 

crop rotation across the three climate scenarios. Furthermore, while no tillage and N fertilizer 

reduction only marginally impacted crop production, cover cropping and crop rotation decreased 

crop production by approximately 14.7% and 18.5%, respectively. Consequently, our findings 

underscore the imperative for comprehensive, scenario-specific CSA strategies to meet the dual 

goals of climate change mitigation and food security. 

This dissertation filled the knowledge gap by comprehensively assessing and predicting the 

impacts of multiple environmental forcings and human management practices on crop production 
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and net GHG balance in U.S. croplands under both historical and future climate scenarios. The 

derived results offer important implications for effectively implementing CSA practices to address 

both climate change and food security issues, which also aligns with carbon neutrality goals and 

supports the achievement of climate-resilient and sustainable agricultural systems. 
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Chapter 1. Introduction 

1.1 Background 

Contemporary agriculture is facing multiple challenges such as feeding a growing world 

population and mitigating climate change (Chen et al. 2014; Foley et al. 2011; Pittelkow et al. 

2015a). During the past several decades, climate change and concomitant environmental stressors 

(e.g., water scarcity, pest prevalence, and soil degradation) have significantly impacted crop 

growth and production and are likely to reduce the resilience of global food systems (Bezner Kerr 

et al. 2022; Lesk et al. 2016; Wheeler and von Braun 2013b). Agricultural activities (e.g., 

fertilization, irrigation, and cropland expansion) have, in turn, exacerbated climatic and 

environmental changes through pathways such as greenhouse gas (GHG) emissions, groundwater 

extraction, and nutrient pollution (Giordano and Villholth 2007; Tian et al. 2016; Tian et al. 

2020a). In view of the increasing uncertainty in the agriculture-climate-environment system 

caused by complex cross-sector interactions, effective climate change mitigation and adaptation 

strategies in the agricultural sector are needed to limit further changes in the climate system and 

reduce the negative impacts of climate change on food production (Howden et al. 2007; Vermeulen 

et al. 2012). This could further contribute to achieving sustainable agriculture and the Sustainable 

Development Goals, including “Climate Action” and “Zero Hunger”. 

As a leading global producer of staple crops such as corn, soybean, and wheat, the United 

States (U.S.) plays a crucial role in global food systems (Dohlman et al. 2020). Nonetheless, 

climate change has significantly impacted its agricultural system (Lobell et al. 2014; Ortiz-Bobea 

et al. 2019; Schlenker and Roberts 2009b). Estimates indicate that rising temperatures decrease 

corn, soybean, and wheat productions in the U.S. by 10.3%, 6.8%, and 5.5% per degree Celsius, 

respectively (Zhao et al. 2017). Moreover, the frequency and intensity of extreme climate events 
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like droughts and heatwaves are projected to rise due to climate change (Janssen et al. 2014; 

Mazdiyasni and AghaKouchak 2015), adversely affecting crop production (Lobell et al. 2013; 

Lobell et al. 2014; Troy et al. 2015; Zipper et al. 2016). In light of the increasing climate-related 

risks in the future coupled with the U.S.’s pivotal role in global food supply, a comprehensive 

analysis of how historical and future climate change, as well as extreme climate events, have 

affected the magnitude and spatiotemporal variations in U.S. crop yields becomes indispensable 

for informing policy-making ranging from localized farm management strategies to international 

trade accords. 

Under conventional intensive farming (e.g., excessive nitrogen (N) fertilizer use and intensive 

tillage), agricultural activities have led to tremendous environmental impacts such as accelerated 

soil organic carbon (SOC) decomposition and increased GHG emissions (Davidson 2009; Zhang 

et al. 2020a). To date, agriculture has been a major force in anthropogenic global warming, 

contributing about 25%-30% and 35%-50% of global land biogenic emissions of nitrous oxide 

(N2O) and methane (CH4), respectively (Tian et al. 2016), and these emissions are projected to 

continue to rise as global fertilizer use increases (Cavigelli et al. 2012; Thompson et al. 2019). 

This constitutes a great challenge to achieve the Paris climate goal of limiting global warming to 

well below 2°C by the end of this century (Tian et al. 2020a). In the U.S., agriculture emitted ~10% 

of the national total GHG emissions in 2019 and was the largest source of N2O emissions (~75%) 

(EPA 2021). Therefore, reducing GHG emissions from agriculture is an imminent need for climate 

change mitigation. On the other hand, under conservative agriculture practices (e.g., reduced 

tillage and cover cropping), croplands can significantly mitigate climate change by enhancing SOC 

sequestration (Bai et al. 2019; Hutchinson et al. 2007; Sun et al. 2020). Global croplands account 

for about 10% of the terrestrial soil organic carbon (SOC) stock (IPCC 2019; Watson et al. 2000) 
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and could potentially sequester 0.90~1.85 Pg C/yr in the top 0.3 m of soils, which is equivalent to 

26-53% of the soil carbon sequestration target of 3.5 Pg C/yr established by the 4p1000 Initiative 

for climate mitigation (Zomer et al. 2017). In the U.S., agricultural soils could potentially sequester 

45 to 98 Tg C/yr with the adoption of conservation management practices (Chambers et al. 2016; 

Kimble et al. 1998). Increasing SOC stock is considered to be the most important countermeasure 

for GHG mitigation in agriculture (Mosier et al. 2006; Smith et al. 2010). Besides sequestering 

atmospheric CO2, enhancing SOC stocks can also provide multiple co-benefits, such as reducing 

soil erosion, strengthening climate resilience, and improving soil fertility and health (Lal 2018; 

Sohi 2012). Thus, advancing our understanding of the magnitude and spatiotemporal variations of 

the net GHG balance (i.e., sum of SOC sequestration of CO2 and emissions of N2O and CH4) in 

U.S. croplands under both historical and future climate scenarios, as well as understanding the 

drivers behind these changes, are critical, which is essential for developing robust, data-driven 

policy interventions aimed at mitigating climate change while maintaining food security. 

Climate-smart agriculture (CSA) management practices, such as reduced tillage, optimized N 

fertilizer use, and cover cropping, have been advocated to mitigate GHG emissions without 

compromising crop yield (FAO 2013; Miralles-Wilhelm 2021). Various field investigations and 

meta-analyses have explored the effects and efficacy of these practices on various agricultural 

components (i.e., SOC, N2O, CH4, and yield) (Bai et al. 2019; Gerber et al. 2016; Shang et al. 

2021; Sun et al. 2020). However, most existing work has primarily focused on single management 

practices, examining one or two agricultural components (e.g., yield, CO2, or N2O) at a time 

(Huang et al. 2022; Lu et al. 2022; Yu et al. 2020). Relatively few studies have simultaneously 

quantified the integrated effects of multiple management practices on all agricultural components 

(including yield, SOC sequestration and non-CO2 GHG emissions), especially at broader spatial 
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scales like national and continental scales. Given that some CSA management practices may have 

antagonistic effects on yields, SOC sequestration, and non-CO2 GHG emissions (Guenet et al. 

2021), and the resulting effects of different practices typically have large variations and may be 

non-additive (Yue et al. 2019), studies that fail to combine these components (as well as multiple 

practices together) may lead to inconsistencies when making comparisons that would not provide 

effective assessments (Shang et al. 2021).  

Greenhouse gas emission intensity (GHGI), a CO2 equivalents-based metric defined as net 

soil GHG emissions per unit of crop production (Grassini and Cassman 2012; Mosier et al. 2006), 

can be used to measure the balance between net soil GHG emissions and crop yields. However, 

there is still a lack of long-term and spatially explicit assessments examining the effects of multiple 

CSA practices (e.g., no tillage, cover cropping, and N fertilizer reduction) on GHGI at the regional 

scale—information that is critical for developing effective mitigation strategies. Therefore, 

identifying appropriate CSA practices that can reduce net soil GHG emissions while sustaining or 

boosting food production, ultimately reducing GHGI, is imperative, which could contribute to a 

win-win outcome between stabilizing the global climate system and safeguarding food security. 

Global environmental changes such as climate change, rising atmospheric CO2 concentration, 

and N deposition have also substantially affected agricultural GHG emissions (Ren et al. 2020; 

Ren et al. 2011). These factors vary over space and time in a highly heterogeneous geographical 

environment (e.g., diverse soil types and cropping systems) that can affect the effectiveness of 

CSA practices (Abdalla et al. 2013; Sun et al. 2020). This implies that a mitigation practice 

effective in one location or under certain conditions may not be effective elsewhere or under other 

conditions (Shang et al. 2021). In an example illustrating the importance of considering 

interactions between environmental factors and agricultural management practices, Huang et al. 
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(2018) found that conversion from conventional tillage to no-tillage reduced GHG emissions in 

dry but not in humid climates. However, relatively few studies have quantitatively attributed 

changes in the crop yield, net soil GHG balance, and GHGI of U.S. croplands to different drivers 

(including both management practices and environmental factors) over long-term periods (Moore 

et al., 2022). As the climate continues to change, it is therefore imperative to comprehend and 

predict the impacts of CSA practices on food production and GHG emissions (i.e., changes in 

GHGI) under future environmental changes scenarios (including variations in climate conditions, 

CO2 concertation, and N deposition). This prediction could provide farmers and policymakers with 

valuable insights to mitigate the negative effects of climate change on food security and to ensure 

environmental sustainability (IPCC 2019; Rosenzweig et al. 2014; Wheeler and von Braun 2013a). 

Field experiments provide feasible and reliable means of elucidating complex relationships of 

agricultural management practices and crop yield, net GHG balance, and GHGI under multiple 

environmental changes (Plaza-Bonilla et al. 2018). However, directly extrapolating site-specific 

findings to large spatial areas is difficult due to unique environmental and management conditions 

of each site (Huang et al. 2022). Meanwhile, effective mitigation and adaptation actions usually 

occur on multiple scales and are intertwined in intricate ways (Beveridge et al. 2018; Klein et al. 

2007; Tol 2005). Specifically, stakeholders’ adaptation decisions to sustain food production are 

usually carried out on a small scale (e.g., field-farm-landscape scales) and benefit local 

communities, as the influences of climate change on crop growth and production are largely 

mediated by local environments and local-specific adaptation strategies would be more effective 

(Hammer et al. 2014; Ofgeha and Abshare 2021). In contrast, agricultural mitigation measures 

(e.g., SOC sequestration and GHG mitigation) and their potential feedbacks to the environment 

and climate are often implemented and assessed on a broader scale (e.g., regional-national-global 
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scales), because effective mitigation requires the participation of major GHG emitters globally and 

is primarily driven by international agreements and ensuing national public policies (Hansen and 

Jones 2000; Klein et al. 2007; Locatelli 2011). Therefore, a unified tool that is capable of 

addressing cross-scale agricultural application demands is needed (Beveridge et al. 2018; Peng et 

al. 2020). Such a tool would enable a more consistent and robust prediction and assessment of crop 

production and the concomitant environmental and climatic tradeoffs. 

Process-based terrestrial biosphere models (TBMs) with detailed hydrological, biophysical, 

and biogeochemical processes unlock an opportunity for agricultural climate change mitigation 

and adaptation (Bondeau et al. 2007; Lombardozzi et al. 2020; McDermid et al. 2017). When 

integrated with general circulation models, they can simulate regional crop production under 

historical and future climate scenarios, assess the mitigation potential of agricultural management 

options, and quantify the exchange of carbon, water, nutrient and energy fluxes within the 

agriculture-climate-environment system. However, the representation of agriculture in most TBMs 

is relatively simple (e.g., lacking or simplifying dynamic crop growth processes and management 

practices), with some TBMs even treating crops as natural grasses though using different eco-

physiological parameters as a distinction (Betts 2005; McDermid et al. 2017). Since crops have 

rather different phenological development processes compared with natural vegetation and often 

involve implementation of management practices (e.g., irrigation and fertilization), such simplified 

schemes are unlikely to be able to closely replicate observed yields under varying climatic and 

environmental conditions across different spatiotemporal scales, which limit their use for 

agricultural adaptation and mitigation assessments. Therefore, it is highly desirable to incorporate 

mechanistic representations of dynamic crop growth processes and critical agricultural 

management practices (e.g., N fertilization, tillage, irrigation, and rotation) into TBMs to quantify 



7 
 

and predict the effects of different CSA practices (e.g., reduced tillage, N fertilizer reduction, cover 

cropping, and crop rotation) in crop yield, net GHG balance, and GHGI under both historical and 

future climate scenarios. 

In summary, there are several major gaps in current studies addressing climate impacts, 

adaptation, and mitigation within the agricultural sector. First, there is still a lack of effective tools 

capable of addressing the cross-scale agricultural application demands, such as predicting regional 

crop production, assessing the mitigation potential of CSA practices, and evaluating the 

environmental impacts of agricultural management activities. Second, whether the sensitivity of 

U.S. agricultural systems to compound climate extremes has evolved during the past decades 

remains unclear. Third, large uncertainties persist regarding the magnitude, spatial, and temporal 

variations in crop yields, net GHG balance, and GHGI in U.S. croplands under both historical and 

future climate scenarios. Lastly, the long-term impacts of CSA practices on crop yields, net GHG 

balance, and GHGI in U.S. croplands under future climate scenarios remain uncertain. Bridging 

these gaps is critical for providing accurate, comprehensive, and actionable insights that can 

effectively inform agricultural policies, management strategies, and mitigation measures. 

1.2 Objectives 

The overarching goal of this study is to comprehensively quantify the impacts of multiple 

environmental forcings and CSA practices on the magnitude and spatiotemporal variations of crop 

production, net GHG balance, and GHGI in U.S. croplands, thereby promoting sustainable 

agriculture. The specific objectives are to: 

(1) develop a data-driven systems approach by integrating a process-based agricultural model 

with multi-source datasets to fulfill cross-scale agricultural application needs (e.g., 

management guidance, adaptation, and mitigation); 
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(2) estimate crop yield losses caused by compound climate extremes and analyze whether the 

sensitivity of U.S. agricultural systems to compound extremes has changed over the past 

decades; 

(3) quantify the combined impacts of multiple agricultural management practices and 

environmental changes on the magnitude and spatiotemporal variations of net soil GHG 

balance in U.S. croplands; 

(4) predict future crop production, net GHG balance, and GHGI in U.S. croplands under 

various future climate scenarios, including SSP126, SSP245, and SSP585; 

(5) evaluate the impacts of four CSA practices—namely, no tillage, crop rotation, cover 

cropping, and reduced N fertilization—on crop production, net GHG balance, and GHGI 

in U.S. croplands across various future climate scenarios. 

1.3 Dissertation structure 

This dissertation is organized according to the structure showing below (Figure 1-1): 
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Figure 1-1. The structure of this dissertation. 

Chapter 1 presents a brief introduction to the background, significance, current research gaps, 

and the objectives of this study. 

Chapter 2 describes the data-driven systems approach (i.e., integrating a process-based 

agricultural model with multi-source data) used in this study. The processes incorporated into the 

new agricultural module of Dynamic Land Ecosystem Model v4.0 (DLEM v4.0) include but are 

not limited to dynamic crop growth processes such as crop-specific phenological development, 

carbon allocation, yield formation, and biological N fixation, and agricultural management 

practices such as tillage, cover cropping, N fertilization, irrigation, and crop genetic improvements, 
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as well as vertical discretization of soil profile and soil biogeochemical processes. Additionally, 

long-term model forcing datasets used to drive DLEM v4.0 are presented. 

Chapter 3 describes the parameterization, evaluation and application details of the data-driven 

systems approach for simulating leaf area index, aboveground biomass, and crop yield from site 

to regional scales. 

Chapter 4 estimates crop yield losses due to concurrent drought and heatwave events and 

evaluates whether the sensitivity of crop yields to extreme climate events has changed over the 

past decades. 

Chapter 5 quantifies the combined effects of multiple agricultural management practices and 

environmental changes on the magnitude and spatiotemporal variations of the net soil GHG 

balance in U.S. croplands. It also examines the relative contributions of SOC sequestration of CO2 

and non-CO2 GHG emissions to the net soil GHG balance.  

Chapter 6 predicts crop production, net GHG balance, and GHGI in U.S. croplands under 

various future climate scenarios, including SSP126, SSP245, and SSP585. It also quantifies the 

factorial contributions of different climate drivers (i.e., climate change, atmospheric CO2, and N 

deposition) to the spatial and temporal variations in future net GHG balance and crop production. 

Chapter 7 assesses the long-term impacts of four CSA practices—namely, no tillage, crop 

rotation with legume crops, cover cropping, and reduced N fertilization—on crop production, net 

GHG balance, and GHGI in U.S. croplands across various future climate scenarios. 

Chapter 8 summarizes the major findings of this study and discusses potential future works. 
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Chapter 2. Integrating a new agricultural module into DLEM v4.0: Toward a data-driven 

systems approach 

 

2.1 The Dynamic Land Ecosystem Model (DLEM) v4.0 

Dynamic Land Ecosystem Model (DLEM) v4.0 is a highly integrated terrestrial biosphere 

model (TBM) that is capable of quantifying daily, spatially explicit carbon, water, and nutrient 

stocks and fluxes in terrestrial ecosystems and inland water systems across site, regional, and 

global scales (Pan et al. 2021; Tian et al. 2010a; Tian et al. 2020b; Yao et al. 2020). Five core 

components are included in DLEM v4.0 to simulate the biogeochemical and biogeophysical 

processes within terrestrial ecosystems: biophysics, plant physiology, dynamic vegetation, soil 

biogeochemistry, and natural and anthropogenic disturbances (Figure 2-1). Through coupling 

major biogeochemical-hydrological processes, DLEM is able to simultaneously depict the 

biosphere-atmosphere exchanges of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) 

as driven by multiple environmental forcings (e.g., climate, atmospheric CO2 concentration, 

nitrogen (N) deposition, tropospheric ozone pollution, and land use and land cover change). This 

capability provides a powerful tool for supporting the development of effective greenhouse gas 

(GHG) mitigation options. DLEM has been widely evaluated and applied to estimate CO2, CH4 

and N2O fluxes at multiple sites and regions like China (Ren et al. 2011; Tian et al. 2011), the 

United States (Tian et al. 2012a; Zhang et al. 2012), North America (Tian et al. 2015b; Xu et al. 

2012; Xu et al. 2010), and across the globe (Friedlingstein et al. 2020a; Saunois et al. 2020b; Tian 

et al. 2020a). In addition, a land-aquatic interface has also been coupled to DLEM (Pan et al. 2021; 

Yao et al. 2020), which enhances its ability to simulate nutrient loading from agroecosystems and 

investigate potential mitigation strategies. 
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Figure 2-1. Framework of the Dynamic Land Ecosystem Model (Tian et al. 2010b). 

2.2 Development of the agricultural module of DLEM v4.0 

The new agricultural module is developed based on previous agricultural versions of DLEM 

(DLEM-Ag and DLEM-Ag2), which included simplified crop growth processes and basic 

management practices (e.g., N fertilization, irrigation, and rotation) (Ren et al. 2012; Tian et al. 

2012c; Zhang et al. 2018). While DLEM-Ag and DLEM-Ag2 can achieve a good performance at 

specific sites, their performance in regional-scale simulations has been relatively poor (especially 

when simulating long-term series of regional crop production) (Zhang et al. 2018). Moreover, their 

ability to quantify impacts of agricultural activities on biosphere-atmosphere feedback is also 

limited. 

To overcome the above shortcomings, the new agricultural module in DLEM v4.0 has major 

improvements in five aspects: crop phenological development, carbon allocation, yield formation, 
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biological N fixation, and management practices (Table 2-1). First, we included crop-specific 

phenological development schemes, with phenology-stage-dependent environmental stresses 

explicitly considered. Second, a new dynamic carbon allocation scheme was implemented, where 

the allocation fraction of net assimilates to different vegetation pools is determined by a prescribed 

growth-stage dependent carbon allocation curve and modified by water, light, and N stresses. 

Third, the yield formation process was improved by calculating crop yield as the balance between 

available carbon supply to the reproduction pool and the actual carbon demand for grain filling. 

The actual carbon demand for grain filling of different crops was calculated using crop-specific 

methods derived from relevant studies (Gaspar et al. 2017; Gregory and Atwell 1991; Gregory et 

al. 1995; Lei et al. 2010; Lokupitiya et al. 2009; Peart and Shoup 2018; Ritchie 1991; Srivastava 

et al. 2006; Taylor et al. 1982; Wilhelm 1998; Yamagata et al. 1987). Meanwhile, the translocation 

of dry matter between the stem tissue and the reproduction pool to supplement grain filling was 

also considered. Fourth, a new biological N fixation scheme was included, where the N fixation 

rate is dependent on soil temperature, soil moisture, N availability, substrate concentration, and 

crop phenological stage. Finally, we incorporated several important management practices (i.e., 

tillage, cover cropping, and crop genetic improvements) in the new model and implemented a 

dynamic crop rotation scheme through introducing time-varying crop rotation maps to better 

reflect the interannual changes in distributions of different crop types. 

In addition, we have also improved the soil module in the DLEM by better representing soil 

organic carbon (SOC) distribution along the soil column down to a depth of 3.5m, partitioned into 

10 layers following a biome-specific exponential vertical discretization scheme. Subsequently, the 

relevant soil biogeochemical processes were individually calculated within each soil layer and then 

integrated together to improve the simulation of soil dynamics processes.
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Table 2-1. Comparisons between the new agricultural module in the Dynamic Land Ecosystem Model v4.0 and previous versions. 

 Process DLEM-Ag DLEM-Ag2 Agricultural module in DLEM v4.0 

Crop growth 
processes 

Phenological 
development 

(1) Use prescribed static leaf area index 
curve derived from satellite images to 
determine phenology (growing or 
senescence); 
(2) Sowing date is prescribed and 
remains unchanged. 

(1) Divide the life cycle of all crops into the 
same eight phenological stages; 
(2) Does not consider the impacts of 
environmental stresses on phenological 
development; 
(3) Sowing date is prescribed and remains 
unchanged. 

(1) Include more detailed phenological stages, and explicitly consider 
the phenological differences of various crop types and use the 
Biological Days-based phenological development scheme to 
determine the initiation and duration of different phenological stages; 
(2) Include the effects of phenology-stage-dependent environmental 
stresses on crop phenological development; 
(3) Sowing date is automatically simulated and changes with climatic 
conditions. 

Carbon 
allocation 

(1) Crop phenological stage has no 
effect on carbon allocation; 
(2) Does not consider the impacts of 
environmental stresses when allocating 
net carbon assimilates to the leaf, stem, 
and reproduction pools 

(1) Allocation fraction varied with 
phenological stages; 
(2) Does not consider the impacts of 
environmental stresses when allocating net 
carbon assimilates to the leaf, stem, and 
reproduction pools. 

(1) Include a new dynamic carbon allocation scheme, where the 
allocation fraction of net assimilates to different vegetation pools is 
varied across phenological stages and is simultaneously adjusted by 
multiple environmental stresses; 
(2) Include a new enzyme-driven C4 photosynthesis routine to 
improve the representation of C4 plant responses to environmental 
factors. 

Yield formation (1) Yield is estimated as the product of 
total aboveground biomass and a 
constant harvest index; 
(2) Does not consider dry matter 
translocation process. 

(1) Yield is determined by the actual carbon 
demand for grain filling, where a single 
empirical equation related to stem dry weight 
is used to calculate the actual carbon demand 
of all crops, even though the grain filling 
characteristics differ by crop 
(2) Does not consider dry matter translocation 
process 

(1) Yield is estimated as the balance between available carbon and 
grain demand, in which the actual grain demand for different crop 
types is calculated using crop-specific methods; 
(2) Consider the translocation process of dry matter from non-
structural tissues to reproduction pool to supplement grain filling. 

Biological N 
fixation 

Biological N fixation is determined by 
the annual N fixation amount and CO2 
concentration, which does not consider 
the impacts of environmental stresses 
and phenological stages. 

Same as DLEM-Ag Biological N fixation is jointly controlled by soil temperature, soil 
moisture, soil mineral N concentration, substrate carbon 
concentration, and crop phenological stage. 

Management 
practices 

Tillage Included Not included Included 

Cover cropping Included Not included Included 

Rotation Static prescribed rotation map Same as DLEM-Ag Incorporate a new dynamic rotation scheme through introducing 
time-varying rotation maps. 

Genetic 
improvements Not included Not included Included 
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2.2.1 Dynamic crop growth processes 

2.2.1.1 Crop phenological development  

The life cycle of a crop can be divided into several phenological stages that influence the 

development of crop canopy structure (e.g., leaf area index (LAI) and canopy height), the 

allocation of carbon and nutrients among crop tissues, and the biological N fixation process. Some 

of these phenological stages are general to all crops, such as sowing, germination, emergence, 

physiological maturity, and harvest; while other stages are crop-specific such as the tassel initiation 

and silking stages of corn. DLEM-Ag uses prescribed static LAI curves derived from satellite 

images to determine phenology (Ren et al. 2012). DLEM-Ag2 divides the life cycle of all crops 

into the same eight stages and does not consider environmental stresses on phenological 

development (Zhang et al. 2018), which have been shown to be critical for determining 

phenological stages (Gungula et al. 2003; Uhart and Andrade 1995; Wilhelm et al. 1993). Our new 

model explicitly considers the phenological differences among crops as well as phenology-stage-

dependent environmental stresses. It also adopts two separate schemes to determine phenological 

stages of various crop types: a general crop scheme (GCS) for some crops (currently including 

rice, peanuts, cotton, sorghum, barley, rye, cassava, potato, rapeseed, sugarbeet and sugarcane, but 

can be flexibly expanded if needed) and a specific crop scheme (SCS) for other crops (currently 

including corn, soybean, and wheat). For the GCS, we used a unified phenological development 

cycle similar to that in DLEM-Ag2 but included more detailed phenological stages and the 

environmental stresses (e.g., water and N) on phenological development. Crop life cycle in the 

GCS is divided into ten stages: sowing, germination, emergence, end of juvenile, floral initiation, 

flowering, beginning of grain filling, end of grain filling, maturity, and harvest (Figure 2-2). Each 

crop type using the GCS is specifically parameterized. The SCS has the same basic characteristics 
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as the GCS, but it additionally includes crop-specific phenological stages (Table 2-2), such as the 

tassel initiation and silking stages for corn, beginning of pod growth and end of pod growth stages 

for soybean, and terminal spikelet and end of ear growth stages for winter wheat, and the main 

growth tissues also differ across the crops’ various phenological stages. Moreover, the SCS also 

includes crop-specific physiological characteristics, such as photoperiodism and biological N 

fixation for soybean, and vernalization for winter wheat. 

 

Figure 2-2. Crop life cycle in the general crop scheme of the Dynamic Land Ecosystem Model 

v4.0. fCBD_emer, fCBD_juve, fCBD_fini, fCBD_flow, fCBD_bfill, fCBD_efill, and fCBD_matu 

denote the target fraction of Cumulative Biological Days required to reach the phenological stages 

of emergence, end of juvenile, floral initiation, flowering, beginning of grain filling, end of grain 

filling, and maturity, respectively. 
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Table 2-2. Phenological stages in the specific crop scheme of the Dynamic Land Ecosystem 

Model and the main growing tissues during these stages. 

Phase Duration Crop Main growth tissues 

1 Sowing to germination All None 

2 Germination to emergence All Root, leaf 

3 

Emergence to end of juvenile 

Emergence to flowering (R1) 

Emergence to terminal spikelet 

Corn 

Soybean 

Winter wheat 

Root, leaf 

Root, leaf, stem 

Root, leaf 

4 

End of juvenile to tassel initiation 

Flowering (R1) to beginning of pod growth (R3) 

Terminal spikelet to end of leaf growth 

Corn 

Soybean 

Winter wheat 

Root, leaf, stem 

Root, leaf, stem 

Root, leaf, stem 

5 

Tassel initiation to silking 

Beginning of pod growth (R3) to beginning of grain filling 

(R5) 

End of leaf growth to end of ear growth 

Corn 

Soybean 

Winter wheat 

Root, leaf, stem 

Root, leaf, stem 

Root, stem 

6 

Silking to beginning of grain filling 

Beginning of grain filling (R5) to end of pod growth 

End of ear growth to beginning of grain filling 

Corn 

Soybean 

Winter wheat 

Root, stem 

Root, stem, grain 

Root, stem 

7 
Beginning of grain filling to end of grain filling 

End of pod growth to end of grain filling 

Corn, winter wheat 

Soybean 

Stem, grain 

Stem, grain 

8 End of grain filling to physiological maturity All None 

9 Physiological maturity to harvest All None 

 
The crop life cycle begins with seed sowing or planting. In DLEM-Ag and DLEM-Ag2, crop 

sowing dates have been prescribed and remain unchanged, which may lead to large errors in the 

simulated yields considering that crop planting dates vary annually due to changing weather 

conditions (Kucharik 2006; Laux et al. 2010; Yang et al. 2020). In contrast, sowing dates in the 

new model are dynamically simulated rather than prescribed. To determine crop sowing dates, 
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sowing trigger criteria modified from CLM4.5 were used (Levis et al. 2012). The original sowing 

trigger criteria in CLM4.5 include: (1) a 10-day running average of mean air temperature that 

exceeds a threshold; (2) a 10-day running average of minimum air temperature that exceeds a 

threshold; and (3) a 20-year running average of 8℃-based growing degree-days (GDD) from April 

to September that exceeds a threshold. However, these criteria have been found to lead to earlier 

sowing dates than the actual, because the GDD criterion is easily met and thus the sowing date is 

in fact determined by the first two criteria (Chen et al. 2015; Chen et al. 2018). To this end, we 

have modified the GDD criterion to be the cumulative thermal time from the earliest sowing date 

(defined by input data) that is greater than the crop-specific threshold (Peng et al. 2018). 

Summarizing, the revised sowing trigger criteria used in DLEM v4.0 are as follows: 

⎩
⎪
⎨

⎪
⎧𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎10𝑑𝑑

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝 < 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚10𝑑𝑑

𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 < 𝐴𝐴𝐴𝐴𝐴𝐴

 (1) 

where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  denote the crop-specific prescribed earliest and latest 

sowing dates, respectively, which are obtained from input data; 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 denotes the simulated 

sowing date; 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝  and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚

𝑝𝑝  denote the crop-specific thresholds of the 10-day running average 

and minimum temperatures for sowing; 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎10𝑑𝑑 and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚10𝑑𝑑 denote the actual 10-day running average 

and minimum air temperatures, respectively; 𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚  denotes the crop-specific threshold of 

minimum thermal time for sowing; 𝐴𝐴𝐴𝐴𝐴𝐴 denotes the accumulated thermal time from the earliest 

sowing date to the current day, which is calculated using Equations (2) and (3). If the above criteria 

are not met, crops will be sown at the prescribed latest sowing date. 

𝐴𝐴𝐴𝐴𝐴𝐴 = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑
 (2) 
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𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =

⎩
⎪
⎨

⎪
⎧

                                     0,                              𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
                          𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚,                             𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1
                      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚,                       𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜2
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) × �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚�

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑡𝑡2
, 𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜2 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚

 (3) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is the daily thermal time; 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎  is the average air temperature; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 , 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜2, and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 are the crop-specific minimum, lower optimal, upper optimal, 

and maximum air temperatures required for photosynthesis, respectively. 

Seed germination is triggered if the number of days after the simulated sowing date is larger 

than the crop-specific threshold. The initiation and duration of the subsequent phenological stages 

(i.e., from emergence to maturity) are determined according to the Biological Days (BD)-based 

phenological development scheme (Soltani and Sinclair 2012). Specifically, we first calculate the 

daily BD (i.e., an indicator of daily development rate) using a 3-segment temperature response 

function, with the vernalization and photoperiod effects as well as environmental stresses 

considered (Equation (4)); then the fraction of Cumulative Biological Days (fCBD), an indicator 

of cumulative crop development rate updated at a daily time-step, is calculated as the actual 

accumulated BD from germination to the current day divided by the total BD required for maturity 

(Equation (5)). A phenological stage is predicted to occur when the calculated fCBD reaches the 

target fCBD of that stage. 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (4) 

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

 (5) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 denotes daily crop development rate; 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, and 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

denote the inhibition of the potential crop development rate by temperature, photoperiod, 
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vernalization, and environmental stresses, respectively, and are calculated using Equations (6)-

(11); 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 denotes the fraction of accumulated 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (i.e., from germination to the current 

day) to total BD required for maturity, in which 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is equal to 0 at the germination stage and 

equal to 1 at the maturity stage. The crop is harvested immediately after maturity or when the 

growing season length of crops exceeds the crop-specific longest growing days. 

 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
 (6) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

⎩
⎨

⎧�
1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × (𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑃𝑃𝑃𝑃), 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃 < 𝐶𝐶𝐶𝐶𝐶𝐶
                       1,                        𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃 ≥ 𝐶𝐶𝐶𝐶𝐶𝐶          (𝑓𝑓𝑓𝑓𝑓𝑓 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

�
                       1,                        𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃 < 𝐶𝐶𝐶𝐶𝐶𝐶
 1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × (𝑃𝑃𝑃𝑃 − 𝐶𝐶𝐶𝐶𝐶𝐶), 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃 ≥ 𝐶𝐶𝐶𝐶𝐶𝐶        (𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

 (7) 

 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �1 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × (𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖),   𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 < 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
                              1,                                    𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 ≥ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (8) 

 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

= �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 0.5 × (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 30),   𝑖𝑖𝑖𝑖 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 < 10 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 > 30
            𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖−1 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉,                      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

(9) 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =

⎩
⎪⎪
⎨

⎪⎪
⎧

              0,                  𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜1 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
,                𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜1

               1,                                𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜1 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 < 𝑉𝑉𝑉𝑉𝑉𝑉
𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜2
,                𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜2 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 < 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚

 (10) 

 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �
      𝑚𝑚𝑚𝑚𝑚𝑚�𝑓𝑓𝑊𝑊, 𝑓𝑓𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚�,                𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚 �𝑓𝑓𝑊𝑊,𝑚𝑚𝑚𝑚𝑚𝑚�𝑓𝑓𝑁𝑁 ,𝑓𝑓𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚�� , 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
1,                            𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠             

 (11) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 denotes the daily thermal time, which is calculated using Equation (3); 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 

and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1  denote the minimum and lower optimal air temperatures required for 
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photosynthesis, respectively; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is a cultivar-specific photoperiod sensitivity coefficient; 𝑃𝑃𝑃𝑃 

is daylength; 𝐶𝐶𝐶𝐶𝐶𝐶  is a cultivar-specific critical daylength parameter at which the rate of 

phenological development began to be restricted by daylength; 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  is a cultivar-specific 

vernalization sensitivity coefficient; 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  is the number of vernalization days needed to 

saturate the vernalization response; 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 denotes cumulative vernalization days; 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 

denotes vernalization day, representing the contribution of each day to vernalization; 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 denotes the maximum air temperature; 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜1 , 𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜2 , and 𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  are the 

minimum, lower optimal, upper optimal, and maximum air temperatures required for vernalization, 

respectively; 𝑓𝑓𝑊𝑊 and 𝑓𝑓𝑁𝑁 denote drought and N stresses, respectively, which are calculated using 

Equation (15); and 𝑓𝑓𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑓𝑓𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 denote the minimum drought and N stresses, respectively 

(here set to be 0.5 (Peng et al. 2018)). In addition, the devernalization process is also considered 

in DLEM v4.0 when winter crops are exposed to high temperature, namely, if 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is less 

than 10 days and the maximum air temperature is higher than 30 ℃, then 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is decreased 

by 0.5 days per degree above 30 ℃; however, if 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  is larger than 10 days, no 

devernalization will occur. 

Along with the development of phenology, crop LAI is updated at a daily time step and ceases 

increase at the beginning of the reproductive phase. The daily LAI is calculated as a function of 

leaf carbon content and specific leaf area (SLA; the ratio of leaf area to leaf dry mass) (Equation 

(12)). Meanwhile, following CLM 4.5 (Levis et al. 2012), crop canopy height (𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) also varied 

with phenological stages and is obtained by scaling the maximum canopy height (𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚) by 

the daily LAI (Equation (13)). 

 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × 𝑆𝑆𝑆𝑆𝑆𝑆, 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚� (12) 
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𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑚𝑚𝑚𝑚𝑚𝑚 ��

𝐿𝐿𝐿𝐿𝐿𝐿
𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 − 1

� , 1�
2

 (13) 

where 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 denotes leaf carbon content; 𝑆𝑆𝑆𝑆𝑆𝑆 is a cultivar-specific parameter representing the 

ratio of leaf area to leaf dry mass; and 𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 denotes the maximum LAI. 

2.2.1.2 Carbon assimilation and allocation 

Photosynthesis processes in the agricultural module of DLEM v4.0 are inherited from a 

previous DLEM version (Tian et al. 2010a). However, to improve the representation of C4 plant 

(e.g., corn and sorghum) responses to environmental stresses (e.g., temperature, moisture, and 

radiation), we further incorporated an enzyme-driven C4 photosynthesis routine (Di Vittorio et al. 

2010), which uses an enzyme-driven bundle sheath CO2 concentration to substitute the diffusion-

driven internal CO2 concentration available to ribulose-1,5-bisphosphate carboxylase-oxygenase 

(Rubisco) for carbon assimilation. 

For daily carbon allocation, DLEM-Ag and DLEM-Ag2 do not consider environmental 

stresses when allocating net carbon assimilates to the leaf, stem, and reproduction pools. To 

overcome this limitation, we implemented a new dynamic carbon allocation scheme in the 

agricultural module of DLEM v4.0. The potential allocation ratios followed a crop-specific 

dynamic carbon allocation curve across phenological stages (Gaspar et al. 2017; Gregory and 

Atwell 1991; Gregory et al. 1995; Lei et al. 2010; Lokupitiya et al. 2009; Peart and Shoup 2018; 

Ritchie 1991; Srivastava et al. 2006; Taylor et al. 1982; Wilhelm 1998; Yamagata et al. 1987), 

which were further regulated by light, N, and water stresses (Song et al. 2013) to obtain the actual 

ratios: 



27 
 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =

𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝

1 + 𝜔𝜔 × (3 − 𝑓𝑓𝐿𝐿 − 𝑓𝑓𝑁𝑁 − 𝑓𝑓𝑊𝑊)

𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑝𝑝 + 𝜔𝜔 × (1 − 𝑓𝑓𝐿𝐿)

1 + 𝜔𝜔 × (3 − 𝑓𝑓𝐿𝐿 − 𝑓𝑓𝑁𝑁 − 𝑓𝑓𝑊𝑊)

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝 + 𝜔𝜔 × (2 − 𝑓𝑓𝑁𝑁 − 𝑓𝑓𝑊𝑊)
1 + 𝜔𝜔 × (3 − 𝑓𝑓𝐿𝐿 − 𝑓𝑓𝑁𝑁 − 𝑓𝑓𝑊𝑊)

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑚𝑚𝑚𝑚𝑚𝑚�𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝,𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × �1 + 𝜔𝜔 × (3 − 𝑓𝑓𝐿𝐿 − 𝑓𝑓𝑁𝑁 − 𝑓𝑓𝑊𝑊)�

 (14) 

where 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 denote the actual carbon allocation ratios for leaf, stem, 

root, and reproduction pools modified by environmental stresses, respectively; 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑝𝑝, 𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑝𝑝, 

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝 , and 𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑝𝑝  denote the potential carbon allocation ratios for leaf, stem, root, and 

reproduction pools, respectively, which are derived from the prescribed growth-stage dependent 

carbon allocation curve; 𝜔𝜔 is a scaling parameter representing the sensitivity of an allocation ratio 

to changes in light, N, and water stresses; 𝑓𝑓𝐿𝐿, 𝑓𝑓𝑁𝑁, and 𝑓𝑓𝑊𝑊 denote the light, N, and water stresses, 

respectively, which are calculated as follows: 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑓𝑓𝐿𝐿 = 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝐿𝐿𝐿𝐿𝐿𝐿�

𝑓𝑓𝑁𝑁 = min �
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

, 1�

𝑓𝑓𝑊𝑊 = �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 × 𝛽𝛽𝑖𝑖

10

𝑖𝑖=1

𝛽𝛽𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧    0,                    𝑖𝑖𝑖𝑖 𝜓𝜓𝑖𝑖 ≤ 𝜓𝜓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐       

 
𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜓𝜓𝑖𝑖

𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖
, 𝑖𝑖𝑖𝑖 𝜓𝜓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 𝜓𝜓𝑖𝑖 < 𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

1,                     𝑖𝑖𝑖𝑖 𝜓𝜓𝑖𝑖 ≥ 𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜    

 (15) 

where 𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 denotes the canopy light extinction coefficient; LAI denotes the leaf area index; 

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 denotes the actual N content in the vegetation pool; 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 denotes the maximum N content 

in the vegetation pool; 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 denotes the root fraction in the soil layer 𝑖𝑖; 𝛽𝛽𝑖𝑖 is a soil matric 

potential-related factor; 𝜓𝜓𝑚𝑚𝑚𝑚𝑚𝑚 denotes the maximum water potential, which represents the wilting 
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point potential of leaves (currently set to be −1.5 × 105); 𝜓𝜓𝑖𝑖 denotes the water potential of layer 

𝑖𝑖 (mm H2O); and 𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝜓𝜓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 denote the water potential under which the stomata fully 

opens and closes, respectively (mm H2O). 

In addition, 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is the net carbon assimilates available for allocation, and 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the 

actual carbon demand for fulfilling grain filling, which is calculated as: 

 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐴𝐴𝐴𝐴𝐴𝐴 × 𝐺𝐺𝐺𝐺 × 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (16) 

where 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  denotes planting density (i.e., number of plants per square meter), and 𝐴𝐴𝐴𝐴𝐴𝐴 

denotes the actual kernel weight at physiological maturity, which is determined as the product of 

daily BD and potential kernel growth rate (pKGR) and is subject to heat and N stresses: 

 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑓𝑓𝑁𝑁 × 𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑝𝑝𝑝𝑝𝑝𝑝

∑ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧     1,                                           𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚         

1 −
𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚
,    𝑖𝑖𝑖𝑖 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 < 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚

         0,                                          𝑖𝑖𝑖𝑖 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 > 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚              

 (17) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is calculated from Equation (4); 𝑓𝑓𝑁𝑁 and 𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒 denote the N and heat stresses, 

respectively; 𝑝𝑝𝑝𝑝𝑝𝑝 denotes the potential kernel weight, which is estimated as the ratio of potential 

kernel weight to the target BD during the grain filling period; 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 

denote the minimum and maximum cardinal temperatures at which heat stress occurs. 

In terms of grain number (𝐺𝐺𝐺𝐺), previous studies have demonstrated that 𝐺𝐺𝐺𝐺  is strongly 

associated with the physiological status of a crop (e.g., plant growth rate and tissue biomass) during 

a critical period for seed set, in which the critical period for corn and wheat are around the 

flowering stage (Aluko and Fischer 1988; Andrade et al. 1999; Bindraban et al. 1998; Early et al. 

1967; Fischer 1985; Zheng et al. 2014). For soybean, this period extends from the flowering stage 
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to the beginning or middle grain filling stage (Board and Tan 1995; Egli 1998; Jiang and Egli 

1995; Vega et al. 2001). In our model, 𝐺𝐺𝐺𝐺 of corn is calculated based on an exponential function 

related to plant growth rate from the end of juvenile stage to the silking stage, similar to the 

methods implemented in the APSIM model (Keating et al. 2003); 𝐺𝐺𝐺𝐺 of soybean is calculated 

based on an empirical linear model related to plant growth rate from the flowering stage to the start 

of grain filling stage (Vega et al. 2001); and 𝐺𝐺𝐺𝐺 of wheat and other crops are calculated from an 

empirical equation related to stem dry matter at anthesis (Fischer 1985; Zheng et al. 2014): 
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𝑃𝑃𝑃𝑃𝑃𝑃 =
𝐷𝐷𝐷𝐷𝑡𝑡1 − 𝐷𝐷𝐷𝐷𝑡𝑡0

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

 (18) 

where 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 is a cultivar-specific parameter representing the maximum grain number per plant; 

𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are genotype parameters related to the 𝐺𝐺𝐺𝐺 of corn, which are set to 0.83 and 

1.2, respectively (derived from the APSIM model); 𝑘𝑘1 and 𝑘𝑘2 denote the intercept and slope of 

the empirical linear model used to calculate the 𝐺𝐺𝐺𝐺 of soybean, which are set to 4.5 and 123.9, 

respectively (derived from Vega et al. (2001); 𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 denotes the stem dry weight at anthesis; 

𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 denotes the number of kernels per gram stem; 𝑃𝑃𝑃𝑃𝑃𝑃 denotes the plant growth rate during 

the critical period for seed set and is calculated by dividing the accumulated shoot dry matter 

during this critical period (𝐷𝐷𝐷𝐷𝑡𝑡1 − 𝐷𝐷𝐷𝐷𝑡𝑡0) by the number of days of this period (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁), in which 

𝐷𝐷𝐷𝐷𝑡𝑡1 and 𝐷𝐷𝐷𝐷𝑡𝑡0 denote the shoot dry matter at the end and beginning of this period, respectively. 

This dynamic carbon allocation scheme allows optimizing crop growth processes across its 

phenological stages. During the emergence stage, carbon stored in the seeds is allocated to the leaf 

pool and root pool at a fixed ratio of 0.6 and 0.4, respectively; during the vegetative phase, net 
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assimilates are preferentially allocated to leaf, root, and then stem to facilitate capture of solar 

radiation and uptake of nutrients and water; during the reproductive phase, the reproduction pool 

has the highest priority of carbon allocation to fulfill grain filling. 

2.2.1.3 Yield formation 

In DLEM v4.0, the estimation of crop yield adopts a different algorithm from DLEM-Ag and 

DLEM-Ag2. Specifically, in DLEM-Ag, crop yield is estimated as the product of total 

aboveground biomass and a constant harvest index, which may lead to deviation in the simulated 

yields considering that harvest index actually varies with climate conditions, farming practices, 

and environmental factors (Hay 1995; Porker et al. 2020; Sinclair 1998). In DLEM-Ag2, crop 

yield is determined by the actual carbon demand for grain filling, where a single empirical equation 

related to stem dry weight is used to calculate the actual carbon demand of all crops, even though 

the grain filling characteristics differ by crops. In DLEM v4.0, yield formation follows a supply-

demand relationship. That is, it is estimated as the balance between the available carbon assimilates 

supply to the reproduction pool and the actual carbon demand for crop to fulfill grain filling (Jones 

et al. 2003; Villalobos et al. 1996). Moreover, we use various methods derived from relevant 

studies, with crop-specific grain filling characteristics considered, to calculate the actual carbon 

demand of different crops (Equation (16)). The translocation of dry matter between the stem tissue 

and the reproduction pool is also considered in the new model, allowing up to 20% of carbon to 

be translocated from the stem pool to the reproduction pool to supplement grain filling if the 

available carbon assimilates cannot satisfy the actual carbon demand. If excess assimilates are 

available, the carbon that exceeds the actual carbon demand will be re-translocated from the 

reproduction pool to the stem pool to ensure mass balance. 
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2.2.1.4 Biological nitrogen fixation 

Crops like soybeans are able to fix N to meet nutrient requirements for growth. In DLEM-Ag 

and DLEM-Ag2, the biological N fixation is determined by the prescribed PFT-specific annual N 

fixation rate and CO2 concentration, which does not consider environmental stresses and the 

effects of crop growth stages. In DLEM v4.0, the biological N fixation process has been improved, 

which is calculated as a function of potential N fixation rate, soil temperature, soil moisture, soil 

mineral N concentration, substrate carbon concentration, and crop phenological stage (Liu et al. 

2011): 

 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓,𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑓𝑓𝑝𝑝ℎ𝑒𝑒𝑒𝑒 (19) 

where 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓 is the actual biological N fixation rate; 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓,𝑝𝑝𝑝𝑝𝑝𝑝 is the potential N fixation rate; 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

is a soil temperature factor; 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is a soil moisture factor; 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is a soil mineral N factor; 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

is a function of substrate carbon concentration; and 𝑓𝑓𝑝𝑝ℎ𝑒𝑒𝑒𝑒 is a factor of crop phenological stage 

(calculated using Equation (20)). 
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where 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  denotes the soil temperature; 𝜃𝜃  and 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠  denote the actual and saturated soil 

moisture contents, respectively; 𝑎𝑎𝑎𝑎𝑎𝑎 denotes the available soil N; 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠  denotes the substrate 

carbon; 𝑘𝑘𝑘𝑘 denotes the Michaelis–Menten constant for CO2; 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 denotes the cumulative crop 

development rate from germination to the current day; 𝑓𝑓𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 denotes the time before which 

no N fixation happens; 𝑓𝑓𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑓𝑓𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 denote the beginning and end time within 

which the N fixation rate is not limited by crop phenological stage; 𝑓𝑓𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 denotes the time 

after which the N fixation ceases. The values of 𝑓𝑓𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑓𝑓𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , 𝑓𝑓𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 , and 

𝑓𝑓𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 are set to 15%, 30%, 55%, and 75% of the crop life cycle (Cabelguenne et al. 1999). 

2.2.2 Agricultural management practices 

Previous DLEM versions have incorporated common management practices, including N 

fertilization, irrigation, and crop rotation. N fertilization practice is represented by adding N 

directly to the soil ammonium and nitrate pools to meet crop N demands through both industrial 

fertilizer and manure application. Irrigation practice is implemented by assuming that soil moisture 

would reach field capacity when irrigated, in which irrigation timing is determined as the point 

when soil moisture of the top layer dropped to 30% of maximum available water (i.e., field 

capacity minus wilting point) during the growing season (Ren et al. 2011). Crop rotation is 

implemented by allowing different crop types to exist on the same soil during different periods of 

growing/planting cycles (e.g., rotation of winter and summer crops). 

In the new model, besides including more management practices like tillage and cover 

cropping, we also incorporated genetic improvement options, as increased crop yields in the past 

decades can be largely attributed to improvements in both management practices and crop genetic 

breeding (Duvick 1984, 2005; Hammer et al. 2009; Pingali 2012). Four types of tillage practices 

(i.e., no-tillage, conservation tillage, reduced tillage, and conventional tillage) are considered in 
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our model, based on the differences in tillage depth, mixing efficiency, and the proportion of soil 

surface covered by residues after tillage (Table 2-3) (Porwollik et al. 2019). Three aspects of tillage 

impacts on the agroecosystem are represented: (1) changes in surface residue coverage and the 

subsequent redistribution of soil organic matter (SOM) and nutrients within the tilled soil layers 

due to tillage mixing (Section 2.2.2.1); (2) changes in litter interception, bulk density, soil moisture 

and other water-related effects on processes such as nitrification, denitrification, and leaching 

(Section 2.2.2.2); and (3) changes in the soil decomposition rate (Section 2.2.2.3). Cover cropping 

is represented in the new model through planting crops (e.g., winter rye and peas) during the 

normal fallow period and leaving crop biomass in the field at the beginning of the following main 

crop growing season (Huang et al. 2020). The impacts of crop genetic improvements on yields are 

represented through two mechanisms: (1) increasing the photosynthesis rate of crops (Long et al. 

2015; Parry et al. 2011; Wu et al. 2019), and (2) enhancing crop N uptake ability (Lu et al. 2018). 

Besides these new considerations, we have also improved the representation of the existing 

rotation practice, where a dynamic rotation scheme is incorporated into the new model through 

introducing time-varying crop rotation maps, rather than the static rotation map in previous 

versions. 

Table 2-3. Four tillage systems implemented in the Dynamic Land Ecosystem Model. 

Tillage Type No-tillage Conservation 
tillage Reduced tillage Conventional 

tillage 

Depth (cm) 5 10 20 20 

Mixing efficiency (%) 5 50 90 90 

Soil layer inversion No Yes Yes Yes 

Soil surface covered by 
residues after planting (%) > 30 15 ~ 30 15 ~ 30 < 15 
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2.2.2.1 Effects of tillage implement on soil organic matter and nutrients contents 

The effects of tillage practice on litter pools include the incorporation of surface residues into 

the soil and the redistribution of SOM and nutrients in the tilled soil layers. In DLEM v4.0, litter 

pool can be classified into two categories: aboveground litter pool (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎) and belowground 

litter pool (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏). Both of the dead shoot biomass of crops due to turnover and the crop residues 

not removed from the field are directly added to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎, and the dead root biomass as well as 

the root residue are added to the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏 . Besides, part of 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎  will be transferred to 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏 through bioturbation and tillage mixing practice, which is the same as that implemented 

in LPJmL5 (Lutz et al. 2019a). For the bioturbation pathway, we assumed that 0.1897% of the 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎 is transferred to 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏 per day to account for the vertical displacement of litter under 

no-tillage and natural vegetation conditions (Lutz et al. 2019a); and for the tillage pathway, the 

amount of transfer depends on tillage intensity:  

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏,𝑡𝑡+1 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏,𝑡𝑡 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎,𝑡𝑡 × 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 (21) 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎,𝑡𝑡+1 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎,𝑡𝑡 × (1 − 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚) (22) 

where 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏,𝑡𝑡+1 and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎,𝑡𝑡+1 denote the belowground and aboveground litter pools in the 

(𝑡𝑡 + 1)th day, respectively; 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝑏𝑏,𝑡𝑡 and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎,𝑡𝑡 denote the belowground and aboveground 

litter pools in the 𝑡𝑡th day, respectively; and 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 denotes the mixing efficiency, with a value 

between 0 and 1. 

The redistribution of SOM and nutrients among the tilled soil layers is calculated based on the 

methods adopted in the Agricultural Policy Environmental EXtender (APEX) model (Williams et 

al. 2008): 
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 𝑋𝑋𝑙𝑙 = 𝑋𝑋𝑜𝑜𝑜𝑜 × (1 − 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚) +
𝑍𝑍𝑙𝑙 − 𝑍𝑍𝑙𝑙−1

𝐷𝐷𝑡𝑡
× 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 × �𝑋𝑋𝑜𝑜𝑜𝑜

𝑀𝑀

𝑘𝑘=1

 (23) 

where 𝑋𝑋𝑙𝑙 is the amount of SOM/nutrients in layer 𝑙𝑙 after mixing; 𝑋𝑋𝑜𝑜𝑜𝑜 is the original amount of 

SOM/nutrients in layer 𝑙𝑙 before mixing; 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 denotes the mixing efficiency; 𝑍𝑍 is the depth to 

the bottom of the tilled layer; 𝐷𝐷𝑡𝑡 is the tillage depth; 𝑀𝑀 is the total number of soil layers affected 

by tillage operation; and 𝑋𝑋𝑜𝑜𝑜𝑜 is the original amount of SOM/nutrients in layer 𝑘𝑘 before mixing. 

2.2.2.2 Effects of tillage implement on soil water processes 

The impacts of tillage operation on soil water processes in DLEM are mainly reflected in two 

aspects: (1) changes in litter interception due to reduced surface residue coverage and the 

accompanying changes in litter evaporation, soil evaporation and infiltration, as well as soil 

moisture content; (2) changes in soil bulk density due to tillage mixing and the accompanying 

changes in soil moisture content at saturation and field capacity. 

In DLEM, precipitation and irrigation water are either intercepted by crop canopy and surface 

litter or falls to the ground as throughfall, and will be lost through evapotranspiration, soil 

infiltration and surface runoff. Crop canopy interception is calculated as the same process as in the 

natural vegetation module of DLEM, which is estimated as the minimum of input water content 

and canopy water holding capacity (Tian et al. 2010a). Litter interception is determined as the 

balance of available input water content after canopy interception and actual water holding 

capacity of surface litter (𝑤𝑤ℎ𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎), in which 𝑤𝑤ℎ𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎 is calculated as: 

 𝑤𝑤ℎ𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑤𝑤ℎ𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 (24) 

where 𝑤𝑤ℎ𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚  denotes the maximum water holding capacity of surface litter, which is 

obtained by multiplying 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎 with a conversion factor of 2 × 10−3𝑚𝑚𝑚𝑚𝑘𝑘𝑘𝑘−1, following Lutz 
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et al. (2019a) and Enrique et al. (1999); and 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 denotes the fraction of soil surface covered by 

litter, which is calculated through adapting the equation from Gregory (1982): 

 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 = 1 − 𝑒𝑒−𝐴𝐴𝑚𝑚×𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑎𝑎𝑎𝑎  (25) 

where 𝐴𝐴𝑚𝑚 denotes the area covered per dry matter of surface litter and is set to 0.004 in DLEM 

(Dadoun 1993). 

The calculation of litter evaporation (𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙) is similar to the calculation of soil evaporation 

(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ) in DLEM, which is obtained by multiplying the potential evaporation (𝑃𝑃𝑃𝑃𝑃𝑃) 

estimated from the Penman–Monteith equation with a LAI-adjusted item (Pan et al. 2020; Pan et 

al. 2015). Here, 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙  is also included in the calculation process of 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙  and 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  to 

account for the impacts of changes in surface litter coverage on evaporation: 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙 × 𝑒𝑒−0.6×𝐿𝐿𝐿𝐿𝐿𝐿 × 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙 (26) 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑒𝑒−0.6×𝐿𝐿𝐿𝐿𝐿𝐿 × (1 − 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙) (27) 

Tillage practice generally leads to a reduction in bulk density through incorporating surface 

residues into the soil and promoting soil fragmentation (Guérif et al. 2001; Maharjan et al. 2018), 

which further results in the changes in soil moisture content at saturation and field capacity. Here, 

the impacts of tillage implement on bulk density and the subsequent soil moisture effects are 

calculated as (Lutz et al. 2019a):  

 

 
𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝 − �𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝 − 0.667� × 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 (28) 

 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎 = 1 − �1 − 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝� × 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎 (29) 

 𝜃𝜃𝑓𝑓𝑓𝑓,𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜃𝜃𝑓𝑓𝑓𝑓,𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝 − 0.2 × �𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎� (30) 
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where 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎  denotes the fraction of bulk density change after tillage in layer 𝑙𝑙 ; and 

𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  denotes the density effect before tillage in layer 𝑙𝑙 ; 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎  and 𝜃𝜃𝑓𝑓𝑓𝑓,𝑙𝑙,𝑎𝑎𝑎𝑎𝑎𝑎  are the 

modified soil moisture content at saturation and field capacity after tillage in layer 𝑙𝑙; 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠,𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝 and 

𝜃𝜃𝑓𝑓𝑓𝑓,𝑙𝑙,𝑝𝑝𝑝𝑝𝑝𝑝 are the original soil moisture content at saturation and field capacity before tillage in layer 

𝑙𝑙. In DLEM v4.0, the vertical soil profile is described by a ten-layer discretization of a 3.5 m soil 

profile, and the layer thickness increases geometrically from top to bottom with values of 0.05 m, 

0.05 m, 0.1 m, 0.2 m, 0.2 m, 0.3 m, 0.3 m, 0.5 m, 0.8 m, and 1 m, respectively. Soil water flow 

between different soil layers is calculated using the Darcy’s law, in which the water flow rate 𝑞𝑞 

(mm/s) in layer 𝑙𝑙 can be approximated as: 

 𝑞𝑞𝑙𝑙 = −𝑘𝑘�𝑧𝑧ℎ,𝑙𝑙� �
(𝛹𝛹𝑙𝑙−𝛹𝛹𝑙𝑙+1) + (𝑧𝑧𝑙𝑙+1−𝑧𝑧𝑙𝑙)

(𝑧𝑧𝑙𝑙+1−𝑧𝑧𝑙𝑙)
� (31) 

where 𝑘𝑘�𝑧𝑧ℎ,𝑙𝑙� is the hydraulic conductivity at the depth of the interface of two adjacent layers 

(𝑧𝑧ℎ,𝑙𝑙), 𝑧𝑧𝑙𝑙 is the depth of soil layer 𝑙𝑙,  and 𝛹𝛹𝑙𝑙 is the soil matric potential (mm). 

2.2.2.3 Effects of tillage implement on decomposition 

In DLEM, the direct effect of tillage implement on the decomposition rate of litter pools is 

represented by a tillage scalar (𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), which has a value greater than 1, indicating the promoting 

effect of tillage on decomposition (Huang et al. 2020). In addition, the indirect effect of tillage 

implement on decomposition is also included, which is mainly reflected in its impacts on the 

amount of SOM, nutrient availability, actual soil moisture content, and soil moisture content at 

saturation and field capacity. The actual decomposition rate of each litter pool (𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) within the 

tilled soil layers is calculated as: 
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 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑓𝑓(𝑇𝑇) × 𝑓𝑓(𝑊𝑊) × 𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) × 𝑓𝑓(𝑁𝑁) × 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (32) 

 𝑓𝑓(𝑇𝑇) = 4.89 × 𝑒𝑒−3.432+0.1×𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠×(1−0.5×𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠/36.9) (33) 

 𝑓𝑓(𝑊𝑊) =

⎩
⎪
⎨

⎪
⎧                 

1 − 𝑒𝑒−𝜃𝜃/𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠

1 − 𝑒𝑒−𝜃𝜃𝑓𝑓𝑓𝑓/𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠
,              𝑖𝑖𝑖𝑖 𝜃𝜃 ≤ 𝜃𝜃𝑓𝑓𝑓𝑓

1.0044 −
0.0044

𝑒𝑒
−5×�

𝜃𝜃/𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠−𝜃𝜃𝑓𝑓𝑓𝑓/𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠
1−𝜃𝜃𝑓𝑓𝑓𝑓/𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠

�
, 𝑖𝑖𝑖𝑖 𝜃𝜃 > 𝜃𝜃𝑓𝑓𝑓𝑓

 (34) 

 𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 1 − 0.75 × 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/100 (35) 

 𝑓𝑓(𝑁𝑁) = � 𝑓𝑓
(𝑁𝑁𝑚𝑚𝑚𝑚), 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑓𝑓(𝑁𝑁𝑖𝑖𝑖𝑖),          𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (36) 

 𝑓𝑓(𝑁𝑁𝑚𝑚𝑚𝑚) =

⎩
⎪
⎨

⎪
⎧1 −

𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜
𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜

,                     𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 > 𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜

1,                             𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜/2 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜

1 +
0.5𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜
, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜/2

 (37) 

 𝑓𝑓(𝑁𝑁𝑖𝑖𝑖𝑖) = 𝑎𝑎𝑎𝑎𝑎𝑎/𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 (38) 

 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 = 1 + 𝑓𝑓𝑐𝑐𝑐𝑐,𝑖𝑖 (39) 

 𝑓𝑓𝑐𝑐𝑐𝑐,𝑖𝑖 =

⎩
⎨

⎧�3 + 5 × 𝑒𝑒−5.5×𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� ×
𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑒𝑒1−2×𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚
, 𝑖𝑖 = 1

                𝑓𝑓𝑐𝑐𝑐𝑐,𝑖𝑖−1 × �1 − 0.02 ×
𝜃𝜃
𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠

� ,                      𝑖𝑖 > 1
 (40) 

where 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 denotes the potential decomposition rate of each pool; 𝑓𝑓(𝑇𝑇), 𝑓𝑓(𝑊𝑊), 𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), 

and 𝑓𝑓(𝑁𝑁)  denote the limitation of soil temperature, soil moisture, soil texture, and N on 

decomposition; 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is a tillage scalar; 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is soil temperature; 𝜃𝜃 , 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠  and 𝜃𝜃𝑓𝑓𝑓𝑓  denote the 

actual soil moisture content, soil moisture content at saturation, and soil moisture content at field 
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capacity, respectively; 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 denotes the percentage of clay content; 𝑓𝑓(𝑁𝑁𝑚𝑚𝑚𝑚) and 𝑓𝑓(𝑁𝑁𝑖𝑖𝑖𝑖) denote 

the limitation of N availability when mineralization and immobilization occur, respectively; 𝑎𝑎𝑎𝑎𝑎𝑎 

and 𝑎𝑎𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑜𝑜  denote the actual and optimum available soil N, respectively; 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖  denotes the 

potential N immobilization estimated by the tentative decomposition procedure; 𝑓𝑓𝑐𝑐𝑐𝑐,𝑖𝑖 denotes the 

cumulative effect of tillage at day 𝑖𝑖; 𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 denotes the mixing efficiency; 𝜃𝜃 and 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 denote the 

actual and saturated soil moisture contents of a given soil layer at day 𝑖𝑖. The decomposition rate 

is calculated separately in each soil layer, and 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is only considered in those soil layers affected 

by tillage practice. 

2.2.3 Vertical discretization of soil profile and soil biogeochemical processes 

Soil carbon represents the largest terrestrial carbon pool, and understanding its dynamics is 

critical for both predicting future climate change and assessing climate change impacts (Jobbágy 

and Jackson 2000; Todd-Brown et al. 2014). Deep soil carbon, which constitutes more than half 

of the global SOC stocks, has been stabilized for long periods (Jobbágy and Jackson 2000; 

Koarashi et al. 2012). However, recent studies suggest that various environmental changes could 

potentially destabilize deep soil carbon (Fontaine et al. 2007; Harrison et al. 2011; Henneron et al. 

2022; Mathieu et al. 2015). For example, accelerated decomposition of deep SOC may occur when 

readily decomposable organic matter is supplied to microbial communities (Fontaine et al. 2007), 

rendering the deep soil carbon particularly susceptible to alterations in root profiles caused by land 

use and land cover changes as well as soil management practices. Despite the critical role of deep 

soil carbon, only a limited number of TBMs (e.g., CLM and ORCHIDEE-SOM) have integrated 

the vertical discretization of SOC distribution and calculated related soil biogeochemical processes 

at different soil depths (Camino-Serrano et al. 2018; Koven et al. 2013). This oversight could 

potentially compromise accurate predictions of soil feedbacks in response to global warming, 
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considering that most existing TBMs operate under the assumption that deep SOC remains inactive 

in the terrestrial carbon cycle. Thus, improving model representations of vertical SOC distribution, 

as well as the corresponding soil biogeochemical processes throughout the soil profile, is essential 

for more accurate simulations and projections of soil carbon dynamics. 

2.2.3.1 Vertical discretization scheme 

In the improved soil module, the vertical soil profile is described by a ten-layer discretization 

of a 3.5 m soil profile, and the layer thickness increases geometrically from top to bottom with 

values of 0.05 m, 0.05 m, 0.1 m, 0.2 m, 0.2 m, 0.3 m, 0.3 m, 0.5 m, 0.8 m, and 1 m, respectively. 

The SOC is distributed belowground following an exponential function characterizing the specific 

root density profile for each plant functional type (PFT) (Camino-Serrano et al. 2018; Jobbágy and 

Jackson 2000): 

 𝑐𝑐𝑐𝑐 = 𝑣𝑣𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝1 ∗ exp�𝑣𝑣𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝2 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ� + 𝑣𝑣𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝3 (41) 

where 𝑐𝑐𝑐𝑐 represents the cumulative percentage of SOC along the soil profile, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ represents 

soil depth (in meters), and 𝑣𝑣𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝1, 𝑣𝑣𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝2, and 𝑣𝑣𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝3 are the PFT-specific parameters used 

for characterizing specific vertical root density profiles. These PFT-specific parameters are 

parameterized according to Jobbágy and Jackson (2000). 

After discretizing SOC along the vertical soil profile, we first calculated the relevant soil 

biogeochemical processes for each soil layer subject to layer-specific environmental controls (e.g., 

soil moisture and soil temperature), and we then integrated these layer-specific results to produce 

a comprehensive estimate for the entire soil profile. 
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2.2.3.2 Simulation of soil decomposition processes 

To simulate the soil decomposition process, DLEM set various pools, including one Dissolved 

Organic Matter (𝐷𝐷𝐷𝐷𝐷𝐷) pool, two woody debris pools—Aboveground Woody Debris (𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎) 

pool and Belowground Woody Debris (𝐶𝐶𝐶𝐶𝐶𝐶𝑏𝑏𝑏𝑏) pool, and four litter pools, namely Aboveground 

Added Organic Matter 1 (𝐴𝐴𝐴𝐴𝐴𝐴1𝑎𝑎𝑎𝑎) pool, Belowground Added Organic Matter 1 (𝐴𝐴𝐴𝐴𝐴𝐴1𝑏𝑏𝑏𝑏) pool, 

Aboveground Added Organic Matter 2 (𝐴𝐴𝐴𝐴𝐴𝐴2𝑎𝑎𝑎𝑎) pool, and Belowground Added Organic Matter 

2 (𝐴𝐴𝐴𝐴𝐴𝐴2𝑏𝑏𝑏𝑏) pool. Additionally, the DLEM incorporates three microbial pools: Soil Microbial 1 

(𝑆𝑆𝑆𝑆𝑆𝑆1) pool, Soil Microbial 2 (𝑆𝑆𝑆𝑆𝑆𝑆2) pool, and Soil Microbial Residues (𝑆𝑆𝑆𝑆𝑆𝑆) pool, as well as 

two slow soil organic matter pools, specifically Native Organic Matter (𝑁𝑁𝑁𝑁𝑁𝑁) pool and Passive 

Soil Organic Matter (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) pool. Among these pools, 𝐴𝐴𝐴𝐴𝐴𝐴1 represents the litter pool resistant 

to decomposition and is characterized by a longer turnover period, whereas 𝐴𝐴𝐴𝐴𝐴𝐴2  is more 

readily decomposable. In terms of microbial pools, 𝑆𝑆𝑆𝑆𝑆𝑆1 consists of autochthonous microbes, 

while 𝑆𝑆𝑆𝑆𝑆𝑆2 contains zymogenous microbes. 

The sizes of soil carbon pools and the carbon fluxes that transfer between these pools dictate 

both the sources and losses of soil organic and inorganic carbon. All forms of organic carbon 

input—whether derived from tissue turnover, manure, or crop residue—are allocated to specific 

litter pools based on their carbon/N ratios. Subsequently, carbon fluxes are transferred between 

these pools through various mechanisms, including biological decomposition, physical adsorption, 

desorption, surface runoff, and leaching. The decomposition rate of each pool is calculated using 

a first-order decay algorithm (Liu et al. 2005; Parton et al. 1993; Petersen et al. 2005) that is 

influenced by soil temperature, soil water content, nutrient availability, soil texture, and 

management practices, as outlined in Equations (32)-(40). Further details regarding these 

processes can be found in previous studies (Banger et al. 2015; Ren et al. 2020; Tian et al. 2015c). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/soil-water-content
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/soil-texture
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2.2.3.3 Simulation of N2O dynamics 

In DLEM, major N cycling processes include atmospheric N input via N deposition and 

biological N fixation, N fertilizer application (i.e., synthetic N fertilizer and manure), N 

immobilization/mineralization, plant N uptake, nitrification/denitrification, adsorption/desorption, 

N leaching, and unspecified N losses due to fire or other disturbances. Notably, N2O emissions are 

primarily from soil N transformation processes (i.e., nitrification and denitrification). Further 

details of the N2O module in DLEM can refer to Lu et al. (2021); Tian et al. (2010b); Xu et al. 

(2012). 

(1) Nitrification 

Nitrification—a biochemical process that transforms ammonium into nitrate—is simulated as 

a function of soil temperature, soil moisture, soil pH, and ammonium content: 

 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑓𝑓(𝑤𝑤)𝑓𝑓(𝑝𝑝𝑝𝑝)𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁4 (42) 

where 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛  represents the nitrification rate (g N/m2/d), 𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛  represents the daily maximum 

fraction of ammonia converted into nitrate and N gases, and it varies with different PFTs with a 

range of 0.04 to 0.15 d-1; 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁4 represents the soil NH4
+ content. 

The impact of soil temperature on nitrification, 𝑓𝑓(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), is calculated as: 

 𝑓𝑓(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 7.24 × 𝑒𝑒−3.432+0.168×𝑇𝑇×(1−0.5×𝑇𝑇/36.9) (43) 

Likewise, the impact of soil moisture on nitrification, 𝑓𝑓(𝑤𝑤), is calculated as:  

 𝑓𝑓(𝑤𝑤) = −12.904 × 𝑤𝑤𝑤𝑤𝑤𝑤4 + 17.651 × 𝑤𝑤𝑤𝑤𝑤𝑤3 + 5.5368 × 𝑤𝑤𝑤𝑤𝑤𝑤2 + 0.9975 × 𝑤𝑤𝑤𝑤𝑤𝑤 − 0.0243 (44) 

where 𝑤𝑤𝑤𝑤𝑤𝑤 represents the percentage of soil porosity filled with water and is defined as: 

 𝑤𝑤𝑤𝑤𝑤𝑤 =
𝜃𝜃
𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠

 (45) 

where θ and 𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 represent the actual and saturated soil moisture contents, respectively. 
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The impact of soil pH on nitrification, 𝑓𝑓(𝑝𝑝𝑝𝑝), is calculated as: 

 𝑓𝑓(𝑝𝑝𝑝𝑝) = −0.0604 × 𝑝𝑝𝑝𝑝 × 𝑝𝑝𝑝𝑝 + 0.7347 ∗ 𝑝𝑝𝑝𝑝 − 1.2314 (46) 

(2) Denitrification 

Denitrification is a biochemical process that transforms nitrate (𝑁𝑁𝑁𝑁3−) into three types of N 

gases: nitric oxide (𝑁𝑁𝑁𝑁), nitrous oxide (𝑁𝑁2𝑂𝑂), and dinitrogen (𝑁𝑁2). The rate of denitrification, 

𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, is calculated as: 

 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑓𝑓(𝑤𝑤)𝑓𝑓(𝑐𝑐𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁3) (47) 

In this equation, 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 represents the potential denitrification rate and is calculated as: 

 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (0.151 + 0.015 × 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) × 𝑅𝑅ℎ × 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (48) 

where 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 represents the percentage of clay content in the soil, 𝑅𝑅ℎ is the soil respiration rate, 

and 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 is a parameter that varies by PFTs to fine-tune the potential denitrification rate. 

𝑓𝑓(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) represents the influence of soil temperature on denitrification, and is the same as 

that used in the nitrification process. 𝑓𝑓(𝑤𝑤)  represents the impact of soil moisture on 

denitrification and is defined as: 

 𝑓𝑓(𝑤𝑤) = 0.0116 + 1.36/(1 + 𝑒𝑒−
𝑤𝑤𝑤𝑤𝑤𝑤−0.815
0.0896 ) (49) 

In addition, 𝑓𝑓(𝑐𝑐𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁3) represents the effect of nitrate concentration on denitrification and is 

computed as: 

 𝑓𝑓 �𝑐𝑐𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁3� = 1.17 𝑐𝑐𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁3/(32.7𝑐𝑐𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁3) (50) 

 𝑐𝑐𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁3 = 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁3/𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (51) 

 where 𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁3 represents the soil 𝑁𝑁𝑁𝑁3− content and 𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 represents the soil bulk density. 

(3) N2O emissions 
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In DLEM, soil N2O emission is generated through nitrification and denitrification processes: 

 𝑁𝑁2𝑂𝑂 = (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)𝑓𝑓(𝑇𝑇)(1 − 𝑓𝑓(𝑤𝑤))𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (52) 

For the nitrification process, the emission of nitrogenous gases, denoted by 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 , is 

calculated as: 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑘𝑘𝑛𝑛𝑛𝑛𝑓𝑓(𝑇𝑇_𝑛𝑛)𝑤𝑤𝑤𝑤𝑤𝑤 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 (53) 

where 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛 is the nitrification rate as determined by Equation (42), 𝑤𝑤𝑤𝑤𝑤𝑤 is the percentage of soil 

porosity filled with water as calculated by Equation (45), 𝑘𝑘𝑛𝑛𝑛𝑛 is the proportion of N intermediates 

that contribute to N2O emissions, and 𝑓𝑓(𝑇𝑇_𝑛𝑛) is the effect of temperature on 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛: 

 𝑓𝑓(𝑇𝑇) = 𝑒𝑒−0.5((𝑇𝑇−34.2)/17.1)2 (54) 

For the denitrification process, the quantity of gas emission, denoted by 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, is equal 

to the denitrification rate 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 itself: 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (55) 

𝑓𝑓(𝑇𝑇) in Equation (52) represents the temperature effect: 

 𝑓𝑓(𝑇𝑇) =
1

1 + 𝑒𝑒−0.64+0.08𝑇𝑇 (56) 

𝑓𝑓(𝑤𝑤) in Equation (52) represents the soil water effect: 

 𝑓𝑓(𝑤𝑤) = 0.0116 + 1.36/(1 + 𝑒𝑒−
𝑤𝑤𝑤𝑤𝑤𝑤−0.815
0.0896 ) (57) 

𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) in Equation (52) represents the soil texture effect: 

 𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 1.26𝑒𝑒−0.0116𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 0.249 (58) 

2.2.3.4 Simulation of CH4 dynamics 

The CH4 flux module within the DLEM has been comprehensively described in our 

previous studies (Tian et al. 2010b; Tian et al. 2011). Specifically, DLEM simulates the production, 

consumption, and transport of CH4. Given the negligible contribution of other substrates to CH₄ 
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production (Le Mer and Roger 2001), DLEM only considers CH4 production from dissolved 

organic carbon (DOC), which is indirectly controlled by environmental factors such as soil pH, 

soil temperature, and soil moisture content. The DOC is produced through three main pathways: 

gross primary production allocation, and decomposition byproducts from soil organic matter and 

litterfall. CH4 oxidation processes, including the oxidation during CH4 transport to the atmosphere, 

CH4 oxidation in the soil/water, and atmospheric CH4 oxidation on the soil surface, are determined 

by CH4 concentrations in the air or soil/water, as well as by soil moisture, soil pH, and soil 

temperature conditions. Most CH4-related biogeochemical reactions in DLEM are modeled using 

the Michaelis-Menten equation, characterized by two coefficients: the maximum reaction rate and 

the half-saturated coefficient. The model considers three pathways for the transport of CH4 from 

the soil to the atmosphere: ebullition, diffusion, and plant-mediated transport. The net CH4 flux 

between the atmosphere and the soil is determined by the following equation: 

 𝐹𝐹𝐶𝐶𝐶𝐶4 = 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐷𝐷 + 𝐹𝐹𝐸𝐸 − 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (59) 

where 𝐹𝐹𝐶𝐶𝐶𝐶4 is the net flux of CH4 between the soil and the atmosphere (g C/m2/d); 𝐹𝐹𝑃𝑃 is plant-

mediated transport from the soil pore water to the atmosphere (g C/m2/d); 𝐹𝐹𝐷𝐷 is the diffusive flux 

of CH4 from the water surface to the atmosphere (g C/m2/d); 𝐹𝐹𝐸𝐸 is the ebullitive CH4 emission to 

the atmosphere; 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the rate of atmospheric CH4 oxidation (g C/m2/d); and 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is 

the oxidized CH4 during plant-mediated transport (g C/m2/d). 

2.3 Model forcing data 

Four long-term datasets distributed over the U.S. at 5×5 arc-min spatial resolution were 

developed to provide forcing conditions for DLEM v4.0: 

(1) Agricultural management practices (N fertilizer use rate, crop rotation, tillage, irrigation, 

and manure application): The annual crop‐specific N fertilizer use rate dataset from 1910 
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to 2018 was reconstructed using the state-level N fertilizer use rates from USDA-NASS 

and the national-level commercial N fertilizer consumption data from (Mehring et al. 

1957) and (USDA-ERS 2019) following Cao et al. (2018). The annual crop rotation 

dataset from 1910 to 2018 was developed by combining the USDA Cropland Data Layer 

(CDL) product and National Agricultural Statistics Service (NASS) survey of county-level 

crop planting areas using the spatialization method of Yu et al. (2018). The annual tillage 

intensity map from 1960 to 2018 was reconstructed from the county-level tillage practices 

survey data obtained from the National Crop Residue Management Survey (CRM) of the 

Conservation Technology Information Center (https://www.ctic.org/CRM) following 

(You et al. 2022). Tillage maps for missing years were kept the same as the nearest years 

with available data. The original five tillage practices in the CRM dataset were reorganized 

into four types by combining ridge and mulch tillage types to conservation tillage. The 

county-level CRM dataset was combined with the CDL-derived crop rotation map and the 

USDA-NASS crop planting area to estimate historical spatial distributions of tillage 

practices. The annual crop-specific irrigation dataset from 1950 to 2018 was downscaled 

from the county-level irrigation reanalysis (McManamay et al. 2021) and NASS irrigated 

cropland area survey, using the MODIS Irrigated Agriculture Dataset (Brown and Pervez 

2014; Pervez and Brown 2010) as a base map. The annual manure N application dataset 

from 1860 to 2018 was acquired from Bian et al. (2021). The state-level earliest and latest 

crop planting dates were obtained from the NASS survey report (NASS 2010), which 

provides planting and harvesting windows in most historical years. 

(2) Land use and land cover change (LULC): We developed a spatially explicit annual LULC 

dataset at a spatial resolution of 1×1 km over the contiguous U.S. during 1630–2020 using 

https://www.ctic.org/CRM
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machine learning and geospatial modeling approaches (Li et al. 2023). Multi-source 

datasets such as satellite-derived land cover maps, national inventories, topographical 

data, and model-based land use change data were used for the reconstruction. 

(3) Natural environmental changes (climate conditions, atmospheric CO2, and N deposition): 

The historical daily climate dataset (including precipitation, solar radiation, maximum, 

minimum and mean temperatures) from 1860 to 2018 was reconstructed from the North 

American Land Data Assimilation System product (Mitchell et al. 2004; Xia et al. 2012), 

the Climate Research Unit‐National Centers for Environmental Prediction dataset 

(Mitchell and Jones 2005), and the IPSL Climate Model dataset (Boucher et al. 2020) 

using the delta downscaling method (Liu et al. 2013). Monthly atmospheric CO2 

concentration variations during 1860-2018 were from the NOAA GLOBALVIEW-CO2 

dataset derived from atmospheric and ice core measurements (www.esrl.noaa.gov). 

Monthly atmospheric N deposition variations during 1860-2018 were acquired from the 

International Global Atmospheric Chemistry (IGAC)/Stratospheric Processes and Their 

Role in Climate (SPARC) Chemistry–Climate Model Initiative (CCMI) (Eyring et al. 

2013). 

(4) Soil properties and other auxiliary information: Soil physical and chemical properties were 

obtained from the ISRIC‐WISE Harmonized Global Soil Profile dataset (Batjes 2008). 

Other auxiliary information such as topography and river network was obtained from our 

previous studies (Tian et al. 2010a; Tian et al. 2020b). 

2.4 Summary 

In this study, a new agricultural module was developed within the framework of DLEM v4.0 

to better simulate crop yield, SOC, and GHG emissions driven by multiple environmental changes 
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and agricultural management practices. Specifically, the new agricultural module has incorporated 

explicit and mechanistic representations of dynamic crop growth processes and agricultural 

management practices, including but not limited to crop-specific phenological development, 

carbon allocation, yield formation, and biological N fixation processes, as well as management 

practices such as N fertilization, irrigation, rotation, manure application, tillage, cover cropping, 

and crop genetic improvements. Moreover, the module has also improved the vertical 

discretization of the soil profile and calculated the relevant soil biogeochemical processes for each 

soil layer in accordance with its unique environmental conditions. These layer-specific 

calculations were then integrated to produce a comprehensive estimate for the entire soil profile. 

This unified agricultural module can be applied to evaluate the impacts of historical climate change 

and anthropogenic activities on crop yields and GHG emissions, predict future crop yields and 

GHG emissions, as well as assess the efficacy of potential agricultural climate change adaptation 

and mitigation strategies. 
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Chapter 3. Multi-scale crop yield simulation in the United States using a data-driven 

systems approach: Parameterization, evaluation, and application 

 

Abstract  

Agricultural decision-making by different interest groups (e.g., farmers, development agents 

and policy makers) usually takes place on different scales (e.g., plot, landscape and country). 

Currently, tools to assist decision-making are either dedicated to small-scale management 

guidance or large-scale assessment, which ignore the cross-scale linkages and interactions and thus 

may not provide robust and consistent guidance and assessment. Here, we developed an advanced 

agricultural modeling framework by integrating the strengths of conventional crop models in 

representing crop growth processes and management practices into a terrestrial biosphere model 

(TBM), the Dynamic Land Ecosystem Model (DLEM), to meet the cross-scale application needs 

(e.g., adaptation and mitigation). Specifically, dynamic crop growth processes, including crop-

specific phenological development, carbon allocation, yield formation, biological nitrogen fixation 

processes, and management practices such as tillage, cover cropping and genetic improvements, 

were explicitly represented in DLEM. The new model was evaluated against site-scale 

observations and the results showed that the model performed generally well, with an average 

normalized root mean square error of 19.91% for leaf area index and 17.46% for aboveground 

biomass at the seasonal scale and 14.42% for annual yield. Then the model was applied to simulate 

corn, soybean, and winter wheat productions in the conterminous United States from 1960 to 2018. 

The spatial patterns of simulated crop productions were consistent with ground survey data. Our 

model also captured both the long-term trends and interannual variations of the total national 

productions of the three crops. This study demonstrates the significance of fusing conventional 
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crop modeling techniques into TBMs to establish a unified modeling framework, which holds the 

potential to address climate impacts, adaptation and mitigation across varied spatiotemporal scales. 

3.1 Introduction 

Ensuring global food security while achieving sustainable agricultural development is a grand 

challenge for human society (Davis et al. 2016; Rosenzweig et al. 2014). During the past several 

decades, climate change and associated environmental stressors (e.g., water scarcity, pest 

prevalence, and soil degradation) have significantly impacted crop growth and production and are 

likely to reduce the resilience of global food systems (Bezner Kerr et al. 2022; Lesk et al. 2016; 

Wheeler and von Braun 2013b). Agricultural activities (e.g., fertilization, irrigation, and cropland 

expansion) have, in turn, exacerbated climatic and environmental changes through pathways such 

as greenhouse gas (GHG) emissions, groundwater extraction, and nutrient pollution (Giordano and 

Villholth 2007; Tian et al. 2016; Tian et al. 2020a). In view of the increasing uncertainty in the 

agriculture-climate-environment system caused by complex cross-sector interactions, effective 

climate change mitigation and adaptation strategies in the agricultural sector are needed to limit 

further changes in the climate system and reduce the negative impacts of climate change on food 

production (Howden et al. 2007; Vermeulen et al. 2012). Such mitigation and adaptation actions 

occur on multiple scales and are intertwined in intricate ways (Beveridge et al. 2018; Klein et al. 

2007; Tol 2005). Specifically, stakeholders’ adaptation decisions to sustain food production are 

usually carried out on a small scale (e.g., field-farm-landscape scales) and benefit local 

communities, as the influences of climate change on crop growth and production are largely 

mediated by local environments and local-specific adaptation strategies would be more effective 

(Hammer et al. 2014; Ofgeha and Abshare 2021). In contrast, agricultural mitigation measures 

(e.g., soil organic carbon sequestration and GHG mitigation) and their potential feedbacks to the 
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environment and climate are often implemented and assessed on a broader scale (e.g., regional-

national-global scales), because effective mitigation requires the participation of major GHG 

emitters globally and is primarily driven by international agreements and ensuing national public 

policies (Hansen and Jones 2000; Klein et al. 2007; Locatelli 2011). Therefore, a unified tool that 

is capable of addressing cross-scale agricultural application demands is needed (Beveridge et al. 

2018; Peng et al. 2020). Such a tool would enable a more consistent and robust prediction and 

assessment of crop production and the concomitant environmental and climatic tradeoffs. 

Process-based crop models are commonly used to inform small-scale farm adaptation 

decisions to sustain food production (Chenu et al. 2017; Jones et al. 2017). A number of crop 

models that simulate crop growth and yields as influenced by weather, soil, cultivar, and 

management strategies have been developed, such as DSSAT (Decision Support System for 

Agrotechnology Transfer) (Jones et al. 2003), APSIM (Agricultural Production Systems 

sIMulator) (Holzworth et al. 2014; Keating et al. 2003), EPIC (Erosion Productivity Impact 

Calculator) (Williams et al. 1989), and CROPSYST (Cropping Systems Simulation Model) 

(Stöckle et al. 2003; Stöckle et al. 2014). Physiological mechanisms of crop development, growth, 

and yield formation processes under biotic and abiotic stresses, and farming management practices 

such as tillage and irrigation, are well-represented in these models. However, since crop models 

are originally designed for farmer’s decision support, they generally focus on field-scale yield 

simulation over homogeneous plot conditions. Meanwhile, they typically have a reduced-form 

representation of hydrologic, energy and biogeochemical cycles. These properties limit their 

ability to simulate regional crop production, assess mitigation potential in the agriculture sector, 

and evaluate the environmental impacts of agricultural management activities. 
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Terrestrial biosphere models (TBMs) with agricultural components provide new insights for 

agricultural climate change mitigation and adaptation on a broader scale (Bondeau et al. 2007; 

Lombardozzi et al. 2020; McDermid et al. 2017). Most TBMs have included detailed hydrological, 

biophysical, and biogeochemical processes and can be further integrated with general circulation 

models for future climate change impact projections (Alo and Wang 2008; Fisher et al. 2014; 

Schaphoff et al. 2006). Therefore, they can potentially be used to simulate regional crop production 

under historical and future climate scenarios, assess the mitigation potential of agricultural 

management options, and quantify the exchange of carbon, water, nutrient and energy fluxes 

within the agriculture-climate-environment system. However, the representation of agriculture in 

most TBMs is relatively simple (e.g., lacking or simplifying dynamic crop growth processes and 

management practices), with some TBMs even treating crops as natural grasses though using 

different eco-physiological parameters as a distinction (Betts 2005; McDermid et al. 2017). Since 

crops have rather different phenological development processes compared with natural vegetation 

and often involve implementation of management practices (e.g., irrigation and fertilization), such 

simplified schemes are unlikely to be able to closely replicate observed yields under varying 

climatic and environmental conditions across different spatiotemporal scales, which limit their use 

for agricultural adaptation and mitigation assessments. 

In view of the strengths and weaknesses of process-based crop models and TBMs, it is highly 

desirable to integrate these two types of models into a unified framework to complement each 

other (Peng et al. 2020). Such a framework is capable of meeting cross-scale agricultural 

application needs and providing more robust and consistent predictions and assessments. Some 

recent developments of TBMs have attempted to move in this direction, such as the Joint UK Land 

Environment Simulator (JULES) (Van den Hoof et al. 2011), the Organizing Carbon and 
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Hydrology in Dynamic Ecosystems Model (ORCHIDEE) (Wu et al. 2016), the Lund Potsdam Jena 

managed Land model (LPJmL5) (Lutz et al. 2019a), and the Community Land Model (CLM) 

(Boas et al. 2021; Lombardozzi et al. 2020; Peng et al. 2018). These augmented models are not 

only conducive to yield simulation, but also improve the estimation of regional-scale carbon, water 

and energy exchanges within the agriculture-climate-environment system (Boas et al. 2021; 

Lokupitiya et al. 2009; Song et al. 2013). However, despite these recent progresses, most TBMs 

still lack a sound representation of crop-specific physiology and/or agricultural land-use changes 

and management practices (e.g., tillage, cover cropping, and genetic improvement). Moreover, 

some TBMs still fail to adequately represent the effects of multiple environmental changes (e.g., 

CO2 fertilization, nitrogen (N) deposition, and ozone pollution) on crop growth and development. 

Improvements in our knowledge of the environmental and management factors influencing crop 

growth and yield will further deepen our understanding of the food-energy-water nexus and lead 

toward sustainable agricultural systems. 

In this study, we implemented such a unified framework in the platform of the Dynamic Land 

Ecosystem Model v4.0 (hereinafter referred to as the agricultural module of DLEM v4.0), which 

is well-recognized for simulating coupled carbon-water-nutrient cycles (Pan et al. 2021; Tian et 

al. 2010a; Tian et al. 2020b; Yao et al. 2020). Specifically, leveraging the strengths of DLEM v4.0 

in representing hydrological, biophysical and biogeochemical processes under multiple 

environmental changes, we incorporated explicit and mechanistic representations of dynamic crop 

growth processes and agricultural management practices into it, including but not limited to crop-

specific phenological development, carbon allocation, yield formation, and biological N fixation 

processes, as well as management practices such as tillage, cover cropping, and crop genetic 

improvements. The performance of the new agricultural module in reproducing the seasonal 
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variations and magnitudes of leaf area index (LAI), aboveground biomass, and yield was evaluated 

against field observations. Using this model, we also simulated corn, soybean, and winter wheat 

production in the conterminous United States (U.S.) over 1960-2018 and examined how they 

varied spatially and temporally.  

3.2 Materials and methods 

3.2.1 Model descriptions 

DLEM v4.0 is a highly integrated TBM that is capable of quantifying daily, spatially explicit 

carbon, water, and nutrient stocks and fluxes in terrestrial ecosystems and inland water systems 

across site, regional, and global scales (Pan et al. 2021; Tian et al. 2010a; Tian et al. 2020b; Yao 

et al. 2020). It contains five key components, including biophysics, plant physiology, dynamic 

vegetation, soil biogeochemistry, and natural and anthropogenic disturbances. DLEM has been 

extensively used to investigate the responses of terrestrial carbon, nitrogen, and water cycles to 

multiple natural and anthropogenic forcings. The agricultural module in DLEM v4.0 is developed 

by incorporating explicit and mechanistic representations of dynamic crop growth processes and 

agricultural management practices, including but not limited to crop-specific phenological 

development, carbon allocation, yield formation, and biological N fixation processes, as well as 

management practices such as nitrogen fertilization, irrigation, rotation, manure application, tillage, 

cover cropping, and crop genetic improvements (You et al. 2022). By integrating detailed 

biogeochemical, biophysical, and hydrological processes, the agricultural module is capable of 

simulating and predicting the exchange of carbon (including crop yield), water, nutrient and energy 

fluxes within the agriculture-climate-environment system. The detailed processes and descriptions 

of the agricultural model in DLEM v4.0 have been presented in Chapter 2. 
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3.2.2 Input data 

To drive DLEM v4.0, long-term spatial datasets at a resolution of 5×5 arc-min were 

developed, including climate, atmospheric CO2 concentration, N deposition, soil properties, crop 

rotation, N fertilizer use rates, manure N application rates, irrigation, tillage intensity, and the 

earliest and latest crop planting dates (Table 3-1). More details about these datasets are presented 

in Section 2.3 in Chapter 2. In addition, to better represent crop growth characteristics across a 

wide range of temperature and precipitation regimes, we divided corn, soybean and winter wheat 

varieties in the U.S. into seven, seven, and three groups, respectively (Figure 3-1), based on the 

classification of relative maturity groups (Zhang et al. 2007; Zhang et al. 2020b). The spatial 

distribution of crop maturity groups remains relatively stable over time but differed in several 

genetic characteristics, including the total CBD required for maturity, the timing and duration of 

different phenological stages, and photoperiod-related parameters (Table 3-2). The spatial 

distribution of corn variety groups was adapted from the corn maturity zones provided by the Elk 

Mound Seed Company (https://www.elkmoundseed.com/seed-corn/seed-corn-resources/), and we 

merged the zone with maturity between 91 and 95 days and the zone with maturity between 95 

and 100 days into one. The distribution of soybean variety groups was derived from the revised 

optimum adaptation zones for soybean maturity groups (Zhang et al. 2007). The distribution of 

winter wheat variety groups was determined based on the wheat production map by the National 

Association of Wheat Growers (https://www.wheatworld.org/wheat-101/wheat-production-map/), 

and we divided the U.S. winter wheat varieties into three groups, i.e., soft white winter wheat, hard 

red winter wheat, and soft red winter wheat. 
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Table 3-1. Input datasets to drive DLEM v4.0. 

Dataset name Period  Spatial 
resolution  

Temporal 
resolution Methods and data sources 

Climate (precipitation, solar 
radiation, maximum, minimum  
and mean temperatures) 

1860-2018 5 arc-min Daily 

Reconstructed from the North American Land Data Assimilation System product (Mitchell et 
al., 2004; Xia et al., 2012), the Climate Research Unit-National Centers for Environmental 
Prediction dataset (Mitchell and Jones, 2005), and the IPSL Climate Model dataset (Boucher 
et al., 2020), using a revised delta downscaling method (Liu et al., 2013) 

CO2 concentration 1860-2018 5 arc-min Monthly Obtained from the NOAA GLOBALVIEW-CO2 data set (www.esrl.noaa.gov) 

Nitrogen deposition 1860-2018 5 arc-min Yearly 
Acquired from the International Global Atmospheric Chemistry (IGAC)/Stratospheric 
Processes and Their Role in Climate (SPARC) Chemistry–Climate Model Initiative (CCMI) 
(Eyring et al. 2013) 

Soil physical and chemical 
properties (e.g., texture and pH) One time 5 arc-min One time Obtained from the ISRIC‐WISE Harmonized Global Soil Profile dataset (Batjes 2008) 

Crop rotation maps 1910-2018 5 arc-min Yearly 

Developed by combining the United States Department of Agriculture (USDA) Cropland Data 
Layer (CDL) product, the USDA-National Agricultural Statistics Service (NASS) survey data 
of county-scale crop planting area, and the Google Earth Engine cloud computing platform, 
using the spatialization method implemented in Yu et al. (2018) 

Crop-specific nitrogen fertilizer 
use rate 1910-2018 State-level Yearly 

Reconstructed using the state-level N fertilizer use rates from USDA-NASS and the national-
level commercial N fertilizer consumption data from Mehring et al. (1957) and USDA-ERS 
(2019), following a method similar to that used in Cao et al. (2018b) 

Manure nitrogen application 1860-2018 5 arc-min Yearly Acquired from Bian et al. (2021b) 

Crop-specific irrigation map 1950-2018 5 arc-min Yearly 

Using the MODIS Irrigated Agriculture Dataset (MIrAD) (Brown and Pervez, 2014; Pervez 
and Brown, 2010) as a base map, and then combining the county-scale irrigation reanalysis 
dataset derived from the United States Geological Survey (USGS) (McManamay et al., 2021) 
and the USDA-NASS county-scale irrigated cropland area to extrapolate the spatially explicit 
irrigation map in historical years 

Tillage map 1960-2018 5 arc-min Yearly 

Reconstructed from the county-scale tillage practices survey data obtained from the National 
Crop Residue Management Survey (CRM) of the Conservation Technology Information 
Center (https://www.ctic.org/CRM), where tillage maps for missing years were kept consistent 
with the nearest years for which data were available 

The earliest and latest crop  
planting dates One time State-level One time Obtained from the USDA-NASS survey report (NASS, 2010) 

Auxiliary data (e.g., topography 
and river network) One time 5 arc-min One time Obtained from previous DLEM studies (Tian et al. 2010a; Tian et al. 2012c; Tian et al. 2020b; 

Xu et al. 2019) 
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Figure 3-1. Boundaries of crop variety groups in the conterminous United States and the spatial 

distribution of cumulative biological days required for maturity for corn (a), soybean (b), and 

winter wheat (c). The blue lines are the boundaries of crop variety groups, and the labels denote 

the crop variety groups presented in Table 3-2.
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Table 3-2. Major parameter values of the crop variety groups used in this study. 

 Corn  Soybean  Winter Wheat 

Variety Group G1 G2 G3 G4 G5 G6 G7  G1 G2 G3 G4 G5 G6 G7  Soft 
White 

Hard 
Red 

Soft 
Red 

Relative Maturity ≤85 86-90 91-100 101-105 106-110 111-115 >116  MG_0 MG_I MG_II MG_III MG_IV MG_V MG_VI  NA 

Average CBD 60 65 69 76 86 97 109  51 58 65 71 83 94 105  93 91 87 

𝐶𝐶𝐶𝐶𝐶𝐶 (h) NA  14.4 14.1 13.8 13.6 13.4 13.1 12.8  16 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 NA  0.148 0.171 0.203 0.249 0.285 0.294 0.303  0.11 0.10 0.09 

Vcmax (µmol CO2 m-2 s-1) 80 80 90 90 90 85 80  65 70 80 80 70 60 60  90 80 80 

f_s1 0.050 0.045 0.041 0.039 0.038 0.036 0.035  0.054 0.053 0.052 0.050 0.047 0.045 0.044  0.026 0.027 0.027 

f_s2 0.254 0.252 0.250 0.255 0.254 0.253 0.258  0.145 0.142 0.139 0.133 0.126 0.120 0.117  0.199 0.265 0.208 

f_s3 0.254 0.252 0.250 0.255 0.254 0.253 0.258  0.236 0.231 0.225 0.215 0.205 0.195 0.190  0.395 0.472 0.413 

f_s4 0.311 0.303 0.297 0.300 0.297 0.294 0.297  0.337 0.338 0.337 0.348 0.355 0.368 0.372  0.447 0.527 0.467 

f_s5 0.479 0.455 0.434 0.430 0.422 0.414 0.412  0.550 0.551 0.550 0.558 0.562 0.572 0.574  0.749 0.735 0.738 

f_s6 0.966 0.965 0.965 0.965 0.965 0.965 0.965  0.982 0.982 0.983 0.983 0.984 0.985 0.985  0.978 0.977 0.977 

f_s7 1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000 1.000 

Note: CBD denotes the cumulative biological days required for maturity; 𝐶𝐶𝐶𝐶𝐶𝐶 denotes the critical daylength at which the rate of phenological development began 

to be restricted by daylength; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the photoperiod sensitivity coefficient; f_s1, f_s2, f_s3, f_s4, f_s5, f_s6 and f_s7 for corn denote the fraction of accumulated 

biological days required to trigger the initiation of emergence, end juvenile, tassel initiation, silking, begin grain filling, end grain filling, and maturity, respectively; 

f_s1, f_s2, f_s3, f_s4, f_s5, f_s6 and f_s7 for soybean denote the fraction of accumulated biological days required to trigger the initiation of emergence, flowering 

(R1), begin pod growth (R3), begin grain filling (R5), end pod growth, end grain filling, and maturity, respectively; f_s1, f_s2, f_s3, f_s4, f_s5, f_s6 and f_s7 for 

winter wheat denote the fraction of accumulated biological days required to trigger the initiation of emergence, terminal spikelet, end leaf growth, end ear growth, 

begin grain filling, end grain filling, and maturity, respectively. 
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3.2.3 Model calibration and validation 

We calibrated and validated the new model using data collected from multiple sources, 

including the AmeriFlux Network, the Greenhouse Gas Reduction through Agricultural Carbon 

Enhancement Network, the Resilient Economic Agricultural Practices Project, the USDA-NASS, 

and relevant literature. The values of the crop variety group parameters (Table 3-2) and the general 

model parameters related to crop growth processes (Table 3-3) were determined through model 

calibration within a reasonable range of reported values in literature. Specifically, we first used the 

default parameters to run the model, and then we adjusted the parameters (within a ±20% range 

of default values) to obtain a close match between the observed and predicted values for LAI, 

aboveground biomass, and grain yield. The parameter set obtaining the minimal bias between the 

simulated and measured values across all sites was adopted. In addition, we calibrated parameters 

related to crop genetic improvements (Table 3-4), including N uptake capability (𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) and the 

maximum carboxylation rate (𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐). Specifically, we first calibrated the temporal changes of 

𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  using the time series of 𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  obtained from Lu et al. (2018), in which a logistic 

equation was used to model the impacts of crop genetic improvements in enhancing 𝑁𝑁𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 . 

Then, a linear regression model was used to estimate the temporal changes in increasing rate of 

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 to obtain the best match between the simulated time series of national crop yields and the 

USDA-NASS records. 
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Table 3-3. General model parameters related to crop growth, development, and yield formation processes in the Dynamic Land Ecosystem Model. 

Symbol Definition Corn Soybean Winter Wheat Source 

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝  Threshold of 10-day running average temperature for sowing (K) 283.15 286.15 294.15 Levis et al. (2012) 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝  Threshold of 10-day running minimum temperature for sowing (K) 279.15 279.15 283.15 Levis et al. (2012) 

𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 Threshold of minimum thermal time since the earliest day in planting window for sowing 200 50 200 This study 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 The minimum cardinal temperature required for photosynthesis (℃) 8 8 0 Soltani and Sinclair (2012) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1 The lower optimal cardinal temperature required for photosynthesis (℃) 30 30 24 Soltani and Sinclair (2012) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜2 The upper optimal cardinal temperature required for photosynthesis (℃) 37 35 28 Soltani and Sinclair (2012) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 The maximum cardinal temperature required for photosynthesis (℃) 45 40 37 Soltani and Sinclair (2012) 

𝐶𝐶𝐶𝐶𝐶𝐶 Critical photoperiod at which the rate of phenological development began to be restricted 
by daylength / Table 3-2 Table 3-2 Soltani and Sinclair (2012) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Photoperiod sensitivity coefficient / Table 3-2 Table 3-2 Soltani and Sinclair (2012) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 The number of vernalization days needed to saturate the vernalization response / / 50 Soltani and Sinclair (2012) 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 Vernalization sensitivity coefficient / / 0.033 Soltani and Sinclair (2012) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 The minimum temperature required for vernalization (℃) / / -1 Soltani and Sinclair (2012) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜1 The lower optimal temperature required for vernalization (℃) / / 0 Soltani and Sinclair (2012) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜2 The upper optimal temperature required for vernalization (℃) / / 8 Soltani and Sinclair (2012) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 The maximum temperature required for vernalization (℃) / / 12 Soltani and Sinclair (2012) 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Planting density (plant/m2) 6 30 150 Grichar (2007), Liu et al. 
(2017), and Cox (1996) 

𝑝𝑝𝑝𝑝𝑝𝑝 Potential kernel weight (g/grain) 0.3 0.3 0.06 Keating et al. (2003) and 
Borrás et al. (2004) 

𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 Maximum grain number per plant 800 500 110 Andrade et al. (1999) and 
Vega et al. (2001) 

𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Number of kernels per gram stem / / 25 Zheng et al. (2014) 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 Lower cardinal temperature for heat stress to reduce grain number (℃) 37 35 28 Soltani and Sinclair (2012) 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 Upper cardinal temperature for heat stress to reduce grain number (℃) 45 40 37 Soltani and Sinclair (2012) 

𝑆𝑆𝑆𝑆𝑆𝑆 Specific leaf area (m2/g) 0.03 0.025 0.022 This study 

𝐿𝐿𝐿𝐿𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 Maximum leaf area index 8 7 6 This study 

𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚 Maximum canopy height (m) 2.5 0.6 1.2 This study 

𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 Mixing efficiency Table 2-3 Table 2-3 Table 2-3 Porwollik et al. (2019) 
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Table 3-4. Temporal changes in photosynthesis rate and nitrogen uptake capability due to crop 

genetic improvement. 

Crop type Improvement in Vcmax Improvement in nitrogen uptake capability Source 

Corn 1.064 + 0.034 × (Year - 1960) 0.075 + 0.05/(1 + exp(−0.060 × (Year − 1970))) 

Lu et al. (2018) Soybean 0.899 + 0.019 × (Year - 1960) 0.040 + 0.03/(1 + exp(−0.140 × (Year − 1955))) 

Winter Wheat 0.929 + 0.014 × (Year - 1960) 0.035 + 0.015/(1 + exp(−0.07 × (Year − 1970))) 

 

After model calibration, field observed LAI, aboveground biomass, and yield data (excluding 

the data for model calibration), as well as the regional-scale crop production survey data were used 

to evaluate the new model performance. The distribution of these field sites are presented in Figure 

3-2. Further details of the descriptions of these sites can be found in You et al. (2022). Several 

metrics were used to quantitatively evaluate the model performance, including the coefficient of 

determination (R2), the root mean square error (RMSE), and the normalized root mean square error 

(NRMSE). 

 

Figure 3-2. Spatial distribution of field sites. The green, red and blue colors represent the sites of 

corn, soybean and winter wheat, respectively, and the size of symbols indicates the number of sites. 
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3.2.4 Model implementation 

The implementation of the agricultural module of DLEM v4.0 includes three major steps: an 

equilibrium run, a spin-up run, and a transient run. The equilibrium run was driven by the average 

climate data during the 1860s and other environmental factors in 1860. The equilibrium state was 

assumed to be reached when the changes in carbon, N, and water pools between two consecutive 

20 years period were less than 0.5 g C m−2 year−1, 0.5 g N m−2 year−1, and 0.5 mm year−1, 

respectively. The spin-up run was driven by the detrended climate data during the 1860s to 

eliminate model fluctuations due to the mode transition from equilibrium run to transient run. 

Finally, the transient run was driven by the historical data from 1860 to 2018. 

3.2.5 Parameter sensitivity analysis 

The Sobol’s method, a variance-based global sensitivity analysis method, was used to measure 

the sensitivity of simulated crop yield to key model parameters. The Sobol’ method decomposes 

model output variance into the contribution of each input parameter and their interactions to 

calculate sensitivity index (Sobol 1993a):  

 𝑉𝑉𝑌𝑌 = �𝑉𝑉𝑖𝑖
𝑖𝑖

+ ��𝑉𝑉𝑖𝑖𝑖𝑖
𝑗𝑗>𝑖𝑖

+ ���𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 + ⋯+ 𝑉𝑉1,2,…,𝑛𝑛
𝑘𝑘>𝑗𝑗𝑗𝑗>𝑖𝑖𝑖𝑖𝑖𝑖

 (1) 

where 𝑉𝑉𝑌𝑌 represents the total variance of model output, 𝑉𝑉𝑖𝑖 represents the variance explained by 

the 𝑖𝑖th input parameter, 𝑉𝑉𝑖𝑖𝑖𝑖 represents the variance explained by the interactions between the 𝑖𝑖th 

and 𝑗𝑗 th input parameters, and 𝑛𝑛  represents the number of input parameters. The first-order 

sensitivity index is defined as 𝑆𝑆𝑖𝑖 = 𝑉𝑉𝑖𝑖 𝑉𝑉𝑌𝑌⁄ , the higher-order sensitivity indices are defined as 𝑆𝑆𝑖𝑖𝑖𝑖 =

𝑉𝑉𝑖𝑖𝑖𝑖 𝑉𝑉𝑌𝑌⁄ , 𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 𝑉𝑉𝑌𝑌⁄ ,…, 𝑆𝑆1,2,…,𝑖𝑖,…,𝑛𝑛 = 𝑉𝑉1,2,…,𝑖𝑖,…,𝑛𝑛 𝑉𝑉𝑌𝑌⁄ , respectively, and the total-order sensitivity 

index 𝑆𝑆𝑇𝑇𝑇𝑇 of the 𝑖𝑖th parameter is defined as the sum of its first-order sensitivity index and all the 
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higher-order sensitivity indices involving it. Among them, 𝑆𝑆𝑖𝑖 measures the direct impact of each 

input parameter on the output variance and 𝑆𝑆𝑇𝑇𝑇𝑇 measures the total impacts (i.e., the sum of direct 

and indirect impacts). A large difference between 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑇𝑇𝑇𝑇 indicates that the parameter mainly 

affects output through interactions. The Sobol’ method uses the Monte Carlo sampling scheme to 

generate random parameter samples. To calculate sensitivity indices, it requires a parameter set 

with a sample size of 𝑀𝑀 × (2𝑛𝑛 + 2), where 𝑀𝑀 represents the number of base samples and 𝑛𝑛 

represents the number of input parameters. Here, 𝑀𝑀 is set to 512 (You et al. 2019).  

3.3 Results 

3.3.1 Site-scale model performance 

3.3.1.1 Evaluation of the simulated leaf area index  

The performance of the LAI simulation was evaluated against 15 site-years of field 

observations for corn, 6 site-years for soybean, and 10 site-years for winter wheat. Generally, the 

simulated LAI was consistent with the observed LAI (Figure 3-3), with RMSE (NRMSE) values 

for corn, soybean, and winter wheat being 1.26 m2/m2 (20%), 0.87 m2/m2 (19%), and 0.66 m2/m2 

(21%), respectively, and R2 values being 0.68, 0.66, and 0.57, respectively. The model also 

captured the seasonal dynamics of LAI, for example, in the US-Ne3 corn-soybean rotation site, 

where the model reproduced well the timing of LAI increase and decrease as well as its amplitude 

(Figure 3-4). However, some discrepancies still existed between the simulated LAI and the 

observations. Specifically, the simulated LAI underestimated the observed LAI at its low end, 

suggesting that the simulated leaf onset slightly lags behind the actual leaf onset, which may be 

due to the simulated planting date being later than the actual planting date. For instance, our 

simulated planting date of corn in 2001 at the US-Ne3 site is May 22, while the actual planting 
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date was May 14. In addition, at the US-Ne3 site, the simulated LAI of corn was slightly 

overestimated during the late growing season compared with the observations, and the peak LAI 

of soybean was underestimated in the year 2002 and 2006 (Figure 3-4). 

 

Figure 3-3. Site-scale comparisons between the simulated leaf area index (LAI) and field 

observations for corn (a), soybean (b), and winter wheat (c). Different colors indicate different 

crop sites. 

 

Figure 3-4. The seasonal evolution of observed and simulated leaf area index (LAI) in a corn-

soybean rotation rainfed site, US-Ne3, where corn is planted in odd years (2001, 2003, 2005, and 

2007) and soybean is planted in even years (2002, 2004, 2006). 
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3.3.1.2 Evaluation of the simulated aboveground biomass 

Generally, the simulated aboveground biomass was in line with the observed data (Figure 3-

5), where the RMSE (NRMSE) values between them for corn, soybean, and winter wheat were 

2912 kg/ha (12%), 658 kg/ha (14%), and 278 kg/ha (27%), respectively, and the R2 between them 

were 0.82, 0.79, and 0.45, respectively. Meanwhile, similar to LAI, the modeled seasonal 

variations in aboveground biomass was well consistent with the observations (Figure 3-6). 

 

Figure 3-5. Site-scale comparisons between the simulated aboveground biomass and field 

observations for corn (a), soybean (b), and winter wheat (c). Different colors indicate different 

crop sites. 
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Figure 3-6. The seasonal evolution of observed and simulated aboveground biomass in a corn-

soybean rotation rainfed site, US-Ne3, where corn is planted in odd years (2001, 2003, 2005, and 

2007) and soybean is planted in even years (2002, 2004, 2006). 

3.3.1.3 Evaluation of the simulated crop yield 

The simulated yields agreed well with the observations of 94 site-years for corn, of 87 site-

years for soybean, and of 12 site-years for winter wheat (Figure 3-7), with the RMSE values for 

corn, soybean, and winter wheat ranging from 351 kg/ha to 1080 kg/ha, and the NRMSE values 

ranging from 11% to 20%. Meanwhile, the R2 values for all crops were greater than 0.4. Compared 

to corn and soybean, the simulation accuracy for winter wheat yield was lower, maybe partly due 

to the smaller number of observations in correlation analysis.  

 

Figure 3-7. Site-scale comparisons between the simulated yield and field observations for corn (a), 

soybean (b) and winter wheat (c). Different colors indicate different crop sites.  

3.3.2 Spatial patterns of simulated crop production 

We used the calibrated model to simulate the production of corn, soybean, and winter wheat 

in the conterminous U.S. from 1960 to 2018. The simulation results show that corn and soybean 

had relatively high production in the Midwest region but low production in the southern region, 

while winter wheat had relatively high production in the Southern Plains and northwestern regions 
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(Figure 3-8). Overall, the spatial pattern of simulated mean annual crop production during 1960-

2018 simulated by our model was consistent with the USDA-NASS survey data, which suggest 

that our model is capable of reproducing the spatial pattern of crop production across a wide range 

of temperature and precipitation regimes. At the grid level, the simulated crop production was 

mostly significantly correlated (P value <0.05) with the USDA-NASS survey data (Figure 3-9). 

The areas with R2 > 0.7 accounted for 88.91%, 97.51% and 64.62% of the total planting areas of 

corn, soybean and winter wheat, respectively. 

 
Figure 3-8. Comparisons between the spatial patterns of average annual crop production simulated 

by the Dynamic Land Ecosystem Model (DLEM) and derived from the United States Department 

of Agriculture-National Agricultural Statistics Service (USDA-NASS) during 1960-2018, as well 

as the differences between them. (a-c) Corn production obtained from the DLEM and the USDA-

NASS and their difference; (d-f) Soybean production obtained from the DLEM and the USDA-

NASS and their difference; (g-i) Winter wheat production obtained from the DLEM and the 

USDA-NASS and their difference. A negative value in the difference of production indicates an 

underestimation of production by the DLEM, and a positive value indicates an overestimation of 

production by the DLEM. 
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Figure 3-9. Correlation coefficient between the simulated and observed crop productions in each 

county during 1960-2018 for corn (a), soybean (b) and winter wheat (c). The inset shows the spatial 

distribution of the corresponding P value, in which green color denotes significant correlation (P 

value < 0.05), and gray color denotes non-significant correlation (P value > 0.05). 

In addition, we also used NRMSE and R2 to quantitatively evaluate the simulation accuracy 

of crop production at county scale (Figure 3-10). The NRMSE values between the DLEM-

simulated crop production and the USDA-NASS survey data for corn, soybean, and winter wheat 

were all smaller than 5%, and the corresponding R2 values were 0.93, 0.94, and 0.67, respectively. 

However, despite the overall good performance, it should be noted that there were still some 
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discrepancies between the simulated production of winter wheat and the survey data (e.g., the 

underestimated winter wheat production in the northwestern U.S.). 

 

Figure 3-10. Quantitative comparisons between the average annual crop production during 1960-

2018 simulated by the Dynamic Land Ecosystem Model (DLEM) and obtained from the United 

States Department of Agriculture-National Agricultural Statistics Service (USDA-NASS) survey 

data at county-scale for corn (a), soybean (b) and winter wheat (c), respectively. The number next 

to the color bar represents the normalized point density. 

3.3.3 Temporal variations of simulated crop production 

Temporal variations in simulated crop production at the national scale was also examined 

(Figure 3-11). From the 1960s to the 2010s, the national corn production almost tripled and the 

soybean production almost quadrupled. Winter wheat production showed large interannual 

variations, increasing at first and then decreasing. Generally, the temporal variations of national 

crop production simulated by DLEM agreed well with the USDA-NASS survey data. The NRMSE 

values between them for corn, soybean, and winter wheat ranged from 6.89% to 10.92%, and the 

R2 values between them are all greater than 0.7. Meanwhile, the results indicate that the new model 

was capable of capturing the reductions in crop production caused by extreme weather disasters. 

For example, the extreme drought event that occurred in 2012 swept most of the contiguous U.S. 

(Mallya et al. 2013), leading to a significant reduction in crop production, and our simulated results 
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also showed a large reduction. However, it should be noted that the simulated production 

responded more severely to extreme weather events than the observations. For instance, the corn 

production loss in 2012 estimated by DLEM was about twice the actual loss relative to the average 

corn production in 2011 and 2013. 

 

Figure 3-11. Historical trends of national crop production simulated by the Dynamic Land 

Ecosystem Model (DLEM) and obtained from the United States Department of Agriculture-

National Agricultural Statistics Service (USDA-NASS) for corn (a), soybean (b) and winter wheat 

(c), respectively. 

3.4 Discussion 

3.4.1 General performance of the agricultural module of DLEM 

The site-scale validation results indicate that the DLEM-simulated LAI, aboveground biomass, 

and yield were generally consistent with the observations, although part of the modeled LAI during 

the late growing season was still overestimated and the peak LAI in some years was 

underestimated. The deviations in the simulated LAI may be partly due to the constant SLA used 

in our model. Specifically, daily LAI in DLEM is calculated based on the leaf carbon and the 

constant SLA, while SLA actually varies with the crop growth stage and is simultaneously 

regulated by environmental conditions (Danalatos et al. 1994; Tardieu et al. 1999). However, the 

mechanism of how SLA responds to changes in climate and environmental factors throughout the 

growing season is still unclear (Drewniak et al. 2013), making it difficult to include dynamic SLA 
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in the model at this time. Another possible explanation for the deviations in the simulated LAI 

might be bias in the modeled planting date and growing season length. Specifically, our model 

tended to estimate later planting dates and longer growing seasons than observations (Figure 3-4), 

which cause the simulated LAI to maintain a high value for a longer period than the actual duration 

and in turn overestimates LAI during the late growing season. The accurate simulation of plant 

phenology (e.g., planting date and growing season length) has been shown to be critical for 

modeling productivity (Anapalli et al. 2005; Wallach et al. 2021; You et al. 2020). In our model, 

to reduce model complexity and its associated uncertainty, only temperature-derived metrics are 

used to determine planting date (Levis et al. 2012). Given that planting date depends not only on 

temperature but on other factors as well, for example, soil moisture, terrain condition and factors 

that may affect farmers’ decisions such as labor and equipment availability (Kucharik 2006; Sacks 

et al. 2010), it is not surprising that there are some discrepancies in the modeled phenology. 

Consideration of these additional factors on planting date may help to improve the simulation of 

crop phenology in the future. 

The spatial pattern of crop production simulated by our model was also comparable to survey 

data (Figure 3-8), although some discrepancies still exist. The underestimated winter wheat 

production in the northwestern U.S. may be partly due to the deficiency of our model in simulating 

available soil water. A similar problem has also been reported in the spatial pattern of winter wheat 

yield simulated by CLM 4.5 (Lu et al. 2017b). In DLEM, we use a water regulation factor, β, to 

represent the limitation of soil water on photosynthesis and other water-related processes (Pan et 

al. 2015; Tian et al. 2010a). A β value of 0 denotes complete water restriction, whereas a β value 

of 1 denotes no water stress. The spatial pattern of DLEM-modeled β during the growing season 

of winter wheat indicates that the modeled β in the northwestern U.S. is very low (Figure 3-12), 
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with an average value less than 0.5, suggesting that soil water availability severely limits 

photosynthesis in this region and thus leads to the underestimated production. If we applied full 

irrigation over this region, the simulated pattern of winter wheat production better captures the 

USDA’s spatial pattern (Figure 3-13). This result suggests that there is less water stress on winter 

wheat growth in the region than indicated by the model. Crop water supply may be enhanced by 

an abundant groundwater resource and snowmelt water in this region. However, these hydrological 

processes are under-represented in our model. In addition to water stress issues, the discrepancy 

in crop production patterns may also stem from the deficiencies of our model in representing the 

growth characteristics of winter wheat (e.g., frost tolerance and damage) and relevant farming 

practices (e.g., irrigation and fertilization). 

 

Figure 3-12. The spatial distribution of the simulated average annual β (i.e., soil water availability) 

during the growing season of winter wheat from 1960 to 2018. 
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Figure 3-13. Comparisons between the winter wheat production simulated by the Dynamic Land 

Ecosystem Model (DLEM) under real irrigation (a) and full irrigation (b), and obtained from the 

United States Department of Agriculture-National Agricultural Statistics Service (USDA-NASS) 

(c). 

With respect to the simulation accuracy of different crops, we found that the accuracy of 

winter wheat production is lower than that of corn and soybean (Figures 3-8 and 3-10). Winter 

wheat has a unique growth cycle (i.e., planted in fall and harvested in summer) compared with 

summer crops. Therefore, it may also have different response mechanisms to environmental 

stresses due to its frequent exposure to frost damage (Lu et al. 2017b; Vico et al. 2014). Frost 

damage and its related processes are not considered in our model. Another possible reason for the 

lower accuracy of winter wheat production may be that we limited winter wheat to only three 

varieties. The varieties of winter wheat span a large range of latitudes, so there exists large spatial 

heterogeneity in the temperature and precipitation regimes in which they grow that we have not 
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fully captured (Zhang et al. 2020b). The consideration of frost damage effects and a further 

subdivision of varieties may improve the estimation of winter wheat production in the future. 

The advances in crop genetic and breeding technologies, agricultural expansion and intensive 

management practices have led to a one to four-fold increase in crop production in the U.S. during 

the past several decades (USDA 2018). Our model captured this trend (Figure 3-11). Nevertheless, 

despite the overall good performance, the model probably has not captured some effects of 

improvements in genetic and breeding technologies on crop resistance to pests and diseases as well 

as adaptation to environmental stress (Bailey-Serres et al. 2019; Hammer et al. 2002). This 

deficiency may partly explain the high sensitivity of our model to extreme weather disasters. In 

addition, the high sensitivity may be attributed to human adaptive behaviors such as farmers’ 

preparedness and response strategies to extreme weather (Annan and Schlenker 2015), which are 

not considered in the model.  

In addition, we also compared the performance of the new model in simulating national crop 

production with a previous DLEM version, namely the DLEM-Ag2 (Figure 3-14). Generally, our 

new model achieved higher simulation accuracy than the DLEM-Ag2, in which the NRMSE 

values reduced by 6.24%, 1.21%, and 2.18% for corn, soybean and winter wheat, respectively, and 

the R2 values increased by 0.13, 0.04, and 0.11, respectively. Meanwhile, the new model better 

captured the interannual variations and trends of national crop production as compared with the 

DLEM-Ag2. For example, the DLEM-Ag2 overestimated national corn production in the 1960s 

and 1970s and substantially underestimated corn production after the 2000s, however, the new 

model simulated the production changes well over the entire period. The improved performance 

of the new model also demonstrated the effectiveness of the newly incorporated crop growth 

processes and agricultural management practices. 
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Figure 3-14. Comparisons between the historical trends of national crop production simulated by 

the Dynamic Land Ecosystem Model v4.0 (DLEM v4.0) and DLEM-Ag2, as well as obtained from 

the United States Department of Agriculture-National Agricultural Statistics Service (USDA-

NASS) for corn (a), soybean (b) and winter wheat (c), respectively. 

3.4.2 Parameter sensitivity analysis 

Since the new model involves a lot of parameters (Tables 3-2 and 3-3), we conducted global 

sensitivity analysis to quantify the relative importance of each model parameter to crop yield 

simulation using the Sobol’ method. The Sobol’ sensitivity analysis was implemented by 

evaluating the changes in simulated yield in response to variations in parameter values over a large 

amount of random parameter samples, which were generated using the Monte Carlo sampling 

scheme by assuming a uniform distribution for each parameter and randomly varying its value 

within 20% of the calibrated value (Tian et al. 2011). The number of parameters included in the 

analysis was 17, 19, and 26 for corn, soybean, and winter wheat, respectively, and after sampling, 

a total of 18432, 20480, and 27648 parameter samples were generated, respectively. In addition, 

we performed a resampling analysis over the generated parameter sample space to estimate the 

variability of the derived first-order (𝑆𝑆𝑖𝑖) and total-order (𝑆𝑆𝑇𝑇𝑇𝑇) sensitivity indices, and the resulting 

standard deviations of these indices are displayed as error bars in Figures 3-15, 3-16, and 3-17. 
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Figure 3-15. The first-order and total-order sensitivity indices of corn-related parameters 

calculated by the Sobol’ global sensitivity analysis method, in which the error bars indicate the 

corresponding standard deviations derived from the resampling analysis. 

We used 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑇𝑇𝑇𝑇 to measure the relative contribution of each parameter to the variance 

of simulated yield. For corn, the top three most influential parameters revealed by both 𝑆𝑆𝑖𝑖 and 

𝑆𝑆𝑇𝑇𝑇𝑇 are the lower optimal cardinal temperature required for photosynthesis (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1), maximum 

stomatal conductance (𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚), and maximum grain number per plant (𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚) (Figure 3-15). For 

soybean, there are slight differences in the ranking of influential parameters revealed by 𝑆𝑆𝑖𝑖 and 

𝑆𝑆𝑇𝑇𝑇𝑇 (Figure 3-16), but in general, the lower and upper optimal cardinal temperatures required for 

photosynthesis (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1 and 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜2) still play a dominant role, and 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 as well as the 

threshold of 10-day running average temperature for sowing (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝 ) also have a significant impact. 

For winter wheat, the lower cardinal temperature for heat stress to reduce grain number 

(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚) and 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝  are identified as influential parameters by both 𝑆𝑆𝑖𝑖 and 𝑆𝑆𝑇𝑇𝑇𝑇, whereas 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1  is identified as a dominant parameter by 𝑆𝑆𝑇𝑇𝑇𝑇  but not by 𝑆𝑆𝑖𝑖 , suggesting that this 

parameter mainly affects output through interactions with other parameters. Overall, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1 

was identified as the most influential parameter affecting yield simulation for all the three crops, 

as this parameter determines the critical point of temperature at which photosynthesis rate reaches 

the optimum. 

 

Figure 3-16. The first-order and total-order sensitivity indices of soybean-related parameters 

calculated by the Sobol’ global sensitivity analysis method, in which the error bars indicate the 

corresponding standard deviations derived from the resampling analysis.  



84 
 

 

Figure 3-17. The first-order and total-order sensitivity indices of winter wheat-related parameters 

calculated by the Sobol’ global sensitivity analysis method, in which the error bars indicate the 

corresponding standard deviations derived from the resampling analysis.  

3.4.3 Uncertainties 

Despite the overall sound performance of our model, some limitations remain in this study. 

First, the representation of groundwater and irrigation practice (i.e., without considering the 

irrigation amount and frequency) in our model is relatively simple, which biased the simulated soil 

moisture and then crop production. Considering that some satellite-derived soil moisture products 

are available (e.g., SMAP and ESA-CCI datasets) (Dorigo et al. 2017; Entekhabi et al. 2010), we 

may solve this problem by assimilating soil moisture products into our model. Second, input data 
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used to drive DLEM may introduce bias. For example, the crop-specific N fertilizer use rate was 

obtained from the state-level surveys, which cannot reflect the actual variations of fertilizer use in 

both magnitude and timing. Previous studies have developed some optimized fertilization schemes 

to better represent fertilization practice in the model (Fu et al. 2020; Leng et al. 2016), which could 

be incorporated into our model in the future. Third, cover cropping practices were not included in 

our regional-scale simulation due to the lack of an available spatialized dataset, which may also 

introduce biases in our results. Finally, as discussed in Section 4.2, crop yield simulations are 

sensitive to some parameters (e.g., 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜1 and 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚) so uncertainty in model parameters also 

constitutes a possible source of deviation in our results. In the long term, our goal is to develop a 

crop module applicable to all crop growing regions worldwide. Here, the parameterization and 

calibration schemes mainly focused on the three major crops grown in the U.S. Extending this 

parameterization effort to additional crops and varieties from other regions will likely be needed 

to make the model more broadly applicable. Addressing these limitations is critical to further 

improve the simulation performance of the new model at regional and global scales. 

3.4.4 Future research opportunities 

This study focused on how a better mechanistic representation of the effects of environmental 

factors and management practices on crop growth processes improved model estimates of crop 

production and yield at both the site and regional scales. Applying this knowledge to future climate 

scenarios should improve our understanding of how climate change may impact crop production 

at the site scale and food security at the regional scale in the future. In addition, the model 

improvements described in this study provide new ways to evaluate the effectiveness of potential 

climate mitigation and adaptation policies to sustain crop production and help protect food 

security. For example, climate-smart practices such as no-tillage and using cover crops have been 
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widely advocated to promote soil carbon sequestration and GHG mitigation while sustaining or 

boosting crop production (FAO 2010). The incorporation of different tillage and cover cropping 

effects on soil characteristics and crop growth into DLEM 4.0 allows the model to quantify the 

potential benefits of such climate-smart practices on GHG mitigation and crop production under 

future climate scenarios. Diversified crop rotations have also been advocated to reduce adverse 

environmental and climatic effects on crop production (Bowles et al. 2020), and when rotated with 

legumes, they can also contribute to climate change mitigation by reducing N fertilizer use (Ma et 

al. 2018). The inclusion of the dynamic crop rotation scheme in the new model allows us to explore 

the benefits of diversified crop rotations on crop production and climate. Besides quantifying the 

benefits of climate mitigation and adaptation policies, the new model can help identify unintended 

consequences of other management policies, such as changes in nutrient loading from 

agroecosystems to river networks (Pan et al. 2021; Yao et al. 2020). 

3.5 Conclusion 

To meet the multiscale agricultural application demands (e.g., farm-scale decision support and 

regional-scale climate change mitigation), we developed an advanced agricultural modeling 

framework on the platform of DLEM v4.0 through incorporating a more detailed representation of 

crop growth processes and management practices, including but not limited to crop-specific 

phenological development, dynamic carbon allocation, yield formation, biological N fixation, and 

the implementation of tillage, cover cropping, and crop genetic improvement practices. 

Comprehensive evaluations against site-scale observations generally show good performance of 

the new agricultural module in simulating the seasonal variations and magnitudes of LAI and 

aboveground biomass and annual yield. Regarding the regional-scale performance, the simulated 

spatial pattern of crop production is also consistent with ground survey data. Meanwhile, the 
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national average crop production estimated by our model has increased by 1–4 times from the 

1960s to the 2010s, which is consistent with the observed trend. Our new agricultural module holds 

the potential to better predict future crop production to deploy early-warning measures, and to 

assess the efficacy of potential agricultural climate change adaptation and mitigation strategies. 
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Chapter 4. Decreased sensitivity of corn and soybean yields to the concurrent droughts and 

heatwaves in the United States 

 

Abstract  

Due to the increased frequency and severity of extreme weather events accompanying climate 

change, enhancing the resilience of agricultural systems to minimize disaster risks and sustain food 

security has become essential. A pivotal indicator for assessing resilience is whether agricultural 

systems have become less sensitive to climate change over time. While detailed accounts of the 

impacts of single climate extremes on crop yields exist, crop vulnerabilities to compound climate 

events (e.g., concurrent droughts and heatwaves) remain largely explored. Here, we evaluated 

yield losses for U.S. corn and soybean resulting from compound extreme drought and heatwave 

events, and we also examined time trends in yield sensitivity to these compound extreme events, 

using both ground survey data and simulations derived from a process-based terrestrial biosphere 

model, Dynamic Land Ecosystem Model (DLEM) v4.0. Our results show that corn and soybean 

yields are most vulnerable to heatwaves and short-term (1-2 months) droughts occurring during 

critical reproductive stages from July to September. Yield losses caused by concurrent droughts 

and heatwaves are more severe than those caused by individual events, resulting in yield losses of 

29.6% for corn and 25.4% for soybean. Additionally, our study indicates a decreased sensitivity 

in corn and soybean yields to concurrent droughts and heatwaves from 1964 to 2018. Our study 

underscores the significance of accounting for compound extreme climate events when assessing 

the resilience of agricultural systems and advocates for the implementation of adaptive strategies 

to mitigate such devastating impacts.



93 
 

4.1 Introduction 

Ensuring global food security in the context of climate change and rapid population growth is 

a huge challenge facing human society (Drewniak et al. 2013; Rosenzweig et al. 2014). The United 

States (U.S.) stands as a pivotal player in the world's agricultural system, contributing about 41% 

and 38% of the global trade in corn and soybean, respectively (USDA 2015). Considering that 

corn and soybean are among the four largest sources of caloric energy globally, U.S. production 

of these crops is thus critical for sustaining the world’s food supply (Schlenker and Roberts 2009a). 

Notably, however, approximately 90% of U.S. corn and soybean productions are rainfed (NASS 

2013), rendering them particularly vulnerable to extreme climate events such as droughts and 

heatwaves (Jin et al. 2017). Over recent decades, the frequency and intensity of these adverse 

weather conditions have increased in the U.S. (Janssen et al. 2014; Mazdiyasni and AghaKouchak 

2015), resulting in considerable damage to the agricultural system (Lobell et al. 2013; Lobell et al. 

2014; Troy et al. 2015; Zipper et al. 2016). In light of the increasing climate-related risks and the 

U.S.’s pivotal role in the global supply of corn and soybean, a comprehensive analysis of how 

extreme climate events (e.g., drought and heatwave) have affected these critical crops in the U.S. 

becomes indispensable for safeguarding global food security. 

Extreme drought and heatwave disasters pose huge threats to food security (IPCC 2014b; Lesk 

et al. 2016; Lobell et al. 2013), compromising crop yields through a variety of mechanisms, 

including but not limited to declines in net photosynthesis rates (Eyshi Rezaei et al. 2015), 

heightened sensitivity of the anthesis-silking period to high temperatures (Bolaños and Edmeades 

1996), accelerated leaf senescence (Parent and Tardieu 2012), and inadequate water availability 

for optimal crop growth (Prasad et al. 2008; Schlenker and Roberts 2009a). As these extreme 

climate disasters are anticipated to become more frequent in the future (Allen et al. 2012; Battisti 
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and Naylor 2009; Meehl and Tebaldi 2004), there is a pressing need for actionable, science-based 

information that can inform disaster risk management and adaptation strategies for farmers, 

stakeholders, and policymakers (Anderson et al. 2020; Howden et al. 2007). Central to these 

discussions is an overarching question regarding the resilience and adaptability of agricultural 

systems: Have these systems evolved to become less sensitive to extreme climatic events? 

Effective adaptation strategies should aim not only to mitigate the immediate impacts of climate 

change but also to reduce the agricultural system's inherent sensitivity to increasing climate risks 

(Lobell 2014; Lobell et al. 2020). However, despite the importance of this question, relatively few 

studies have analyzed whether the sensitivity of agricultural systems to climate change has evolved 

during past decades (Lobell et al. 2020). 

Further complicating this issue is the emerging threat of compound extreme climate events 

(e.g., simultaneous occurrences of droughts and heatwaves) (Ridder et al. 2022), which could 

potentially produce synergistic impacts on crop yields, exacerbating losses beyond what might be 

expected from any single event (Cohen et al. 2021; Haqiqi et al. 2021; Lesk et al. 2022). Existing 

studies analyzing the sensitivity of crop yields to extreme climate disasters usually focus on single 

events, such as drought (Lobell et al. 2020); relatively few studies have focused compound extreme 

climate events (e.g., concurrent droughts and heatwaves), even though the concurrence of droughts 

and heatwaves has shown a significant increase in the U.S. during the past decades (Mazdiyasni 

and AghaKouchak 2015). Given this context, there remains an urgent need to understand changes 

in the sensitivity of U.S. corn and soybean yields to these concurrent events, which is critical for 

the development of adaptive strategies and policies that are commensurate with the evolving 

threats to global food security and agricultural sustainability. 
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Process-based crop models that incorporate detailed crop physiological, development, growth, 

and yield processes provide useful tools for assessing the impacts of climate change on crop yields 

and investigating the complex interactions between yields and various environmental stressors 

(e.g., heat and drought) (Bassu et al. 2014; Rosenzweig et al. 2013; You et al. 2022). By 

assimilating high-resolution, real-time weather, management, and environmental data, these 

models can increasingly assist stakeholders in predicting crop production and making informed 

decisions (Peng et al. 2020). However, the majority of existing terrestrial biosphere models 

(TBMs) with specific crop modules have been primarily developed to simulate average conditions 

based on long-term climatology (Reichstein et al. 2013). The algorithms within them, designed to 

simulate specific processes constrained by multiple stresses, are often inadequately parameterized, 

possibly due to the lack of data on how crops respond to extreme climate conditions like high 

temperatures and severe droughts with which to constrain model simulations (Bassu et al. 2014). 

Given these limitations, there exists a need to evaluate the models' effectiveness in capturing the 

impacts of extreme climate events on crop yields, as well as their sensitivity to these events. Such 

a comprehensive assessment could significantly improve the operational utility of existing TBMs 

for agricultural applications, while providing insights into their capabilities and uncertainties. 

In this study, we analyzed the impact of extreme drought and heatwave events, as well as their 

combinations, on U.S. corn and soybean yields, using yield data from model simulations and from 

United States Department of Agriculture (USDA) surveys. We also investigated changes in their 

sensitivity to concurrent droughts and heatwaves. Our work was conducted around four key 

objectives: (1) to analyze the sensitivity of U.S. corn and soybean yields to the timing and duration 

of droughts and heatwaves; (2) to estimate crop yield loss caused by extreme drought and heatwave 

disasters and their concurrent events; (3) to evaluate whether the sensitivity of U.S. corn and 
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soybean yields to extreme drought, heatwave, and their combinations has changed over the past 

six decades (i.e., from 1964 to 2018); and (4) to assess the performance of a TBM, Dynamic Land 

Ecosystem Model (DLEM) v4.0, in reproducing the observed yield loss caused by extreme drought 

and heatwave disasters, as well as its ability in reproducing the time trend of the sensitivity of crop 

yields to extreme climate events. By systematically addressing these objectives, our research aims 

to provide an improved understanding of the synergistic effects of compound climate events on 

crop yields, thereby facilitating the development of a more resilient agricultural system capable of 

withstanding the challenges posed by a rapidly changing climate. 

4.2 Materials and methods 

4.2.1 Model descriptions 

DLEM v4.0 is a highly integrated TBM that is capable of quantifying daily, spatially explicit 

carbon, water, and nutrient stocks and fluxes in terrestrial ecosystems and inland water systems 

across site, regional, and global scales (Pan et al. 2021; Tian et al. 2010a; Tian et al. 2020b; Yao 

et al. 2020). It includes five core components: biophysics, plant physiology, dynamic vegetation, 

soil biogeochemistry, and natural and anthropogenic disturbances. To meet cross-scale agricultural 

application needs (e.g., management guidance, agricultural climate change mitigation and 

adaptation), DLEM v4.0 has incorporated explicit and mechanistic representations of dynamic 

crop growth processes and multiple agricultural management practices. These include but are not 

limited to crop-specific phenological development, carbon allocation, yield formation, and 

biological N fixation processes, as well as management practices such as N fertilization, irrigation, 

rotation, manure application, tillage, cover cropping, and crop genetic improvements (You et al. 

2022). By fully coupling these agricultural processes with biogeochemical, biophysical, and 

hydrological processes, DLEM v4.0 is capable of simulating and predicting the exchange of carbon 
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(including crop yield), water, nutrient and energy fluxes within the agriculture-climate-

environment system. A thorough description of the processes incorporated into the agricultural 

module of DLEM v4.0 is presented in Chapter 2. 

In this study, we used the DLEM v4.0 to simulate U.S. corn and soybean yields during the 

1964-2018 period. We further examined the effectiveness of DLEM v4.0 in capturing the impacts 

of extreme climate events on crop yields, as well as changes in their sensitivity to these events. 

4.2.2 Model forcing data and yield survey data 

4.2.2.1 Model forcing data 

To drive DLEM v4.0, four types of long-term datasets at 5×5 arc-min spatial resolution were 

developed. These datasets include agricultural management practices (e.g., N fertilizer use rate, 

crop rotation, tillage, irrigation, and manure application), land use and land cover change (LULC), 

natural environmental changes (e.g., climate conditions, atmospheric CO2 concentration, and N 

deposition), and other auxiliary data (e.g., soil properties and topography). More details about 

these forcing datasets are presented in Section 2.3 in Chapter 2. 

4.2.2.2 Yield survey data 

We obtained corn and soybean yield survey datasets from the USDA-National Agriculture 

Statistics Service during 1964-2018, retrieving from https://quickstats.nass.usda.gov/#AF9A0104-

19EF-3BFE-90D2-C67700892F3E. This website provides crop yield statistics at the county level. 

4.2.3 Calculation of yield anomaly, SPEI, and HWMId 

4.2.3.1 Yield anomaly calculation 

https://quickstats.nass.usda.gov/#AF9A0104-19EF-3BFE-90D2-C67700892F3E
https://quickstats.nass.usda.gov/#AF9A0104-19EF-3BFE-90D2-C67700892F3E
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Crop yields are influenced by a variety of factors, such as management practices (e.g., 

nitrogen fertilization and irrigation), genetic improvement, and climate conditions (Egli 2008). 

Typically, long-term increasing trends in crop yield are predominantly attributed to improvements 

in management practices and genetic technologies, while high-frequency fluctuations are largely 

driven by climatic conditions (Lu et al. 2017a). To more accurately delineate the relationship 

between climate variation and crop yields, it is essential to detrend the annual crop yield series to 

mitigate the long-term influences, focusing on yield anomalies for analysis. In addition, given the 

inherently nonlinear and non-stationary nature of long-term crop yield data, traditional detrending 

approaches like linear regression models are not suitable. To this end, this study used a locally 

weighted regression model in conjunction with a multiplicative decomposition model for 

detrending and calculating crop yield anomalies. This methodology has been demonstrated to be 

the most suitable method for detrending crop yield series (Lu et al. 2017a). 

4.2.3.2 Standardized Precipitation-Evapotranspiration Index (SPEI) calculation 

The Standardized Precipitation-Evapotranspiration Index (SPEI) is a widely used drought 

index (Vicente-Serrano et al. 2010), defined as the difference between precipitation and potential 

evapotranspiration. Compared with other drought indices that rely solely on precipitation, the SPEI 

allows for better identification of the impact of extreme warm air temperatures and heatwaves on 

drought severity (Beguería et al. 2014). Using the daily precipitation and maximum and minimum 

air temperature series corresponding to each county from Section 4.2.2.1, we calculated the daily 

SPEI and subsequently aggregated it into monthly values for analysis. The Penman–Monteith 

equation was used to calculate potential evapotranspiration in SPEI. Additionally, to investigate 

the sensitivity of crop yields to the timing and duration of drought events, we calculate SPEI at 1-

12, 18, and 24 month timescales for the 1964-2018 period. 
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4.2.3.3 Heatwave Magnitude Index daily (HWMId) calculation 

Heatwave Magnitude Index daily (HWMId) is heatwave index defined as the maximum 

magnitude of a heatwave within a given year, where a heatwave is defined as a period with 

maximum air temperature (Tmax) above a daily threshold for three or more consecutive days 

(Russo et al. 2014; Russo et al. 2015). In this study, we have revised the HWMId to diagnose heat 

stress and temperature anomalies for each month during the crop growing season, which allows us 

to investigate the impact of the timing of heatwaves on crop yields. Specifically, a heatwave in the 

revised HWMId is defined as a period of three or more consecutive days where Tmax is above the 

daily threshold for the reference period. The threshold is set at the 90th percentile of daily maxima 

temperature, centered on a 31-day window. The HWMId is further calculated as the sum of the 

magnitudes of the consecutive days composing a heatwave, where the daily magnitude is defined 

as: 

 𝑀𝑀𝑑𝑑(𝑇𝑇𝑑𝑑) = �
𝑇𝑇𝑑𝑑 − 𝑇𝑇30𝑦𝑦25𝑝𝑝

𝑇𝑇30𝑦𝑦75𝑝𝑝 − 𝑇𝑇30𝑦𝑦25𝑝𝑝
           𝑖𝑖𝑖𝑖 𝑇𝑇𝑑𝑑 > 𝑇𝑇30𝑦𝑦25𝑝𝑝

0                                            𝑖𝑖𝑖𝑖 𝑇𝑇𝑑𝑑 ≤ 𝑇𝑇30𝑦𝑦25𝑝𝑝
 (1) 

Here, 𝑇𝑇𝑑𝑑  denotes the maximum daily temperature on day d of the heatwave, 𝑇𝑇30𝑦𝑦25𝑝𝑝  and 

𝑇𝑇30𝑦𝑦75𝑝𝑝 are the 25th and 75th percentile values, respectively, of the time series composed of 55-

year annual Tmax values within the reference period 1964-2018. 

4.2.4 Impact of timing of drought and heatwave on crop yields 

A factorial approach was used to analyze the sensitivity of corn and soybean yields to the 

timing and duration of drought events (Zipper et al. 2016). Specifically, for each county and each 

crop, we fitted 168 separate linear relationships between crop yield anomalies and the SPEI, based 

on 12 different months (from January to December) and 14 different timescales (i.e., 1-12, 18, and 
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24 months). For each relationship, we extracted the R2 value and the P-value of the relationship 

based on the two-tailed t-test. The best relationship in each county was identified as the timing and 

timescale combination with the highest R2. We considered this timing and timescale (i.e., duration) 

as the stage at which crop yield anomalies are most sensitive to drought events. 

Similarly, for heatwaves, we also used a factorial approach to analyze the sensitivity of crop 

yields to the timing of such events. Specifically, for each county and each crop, we fitted 6 separate 

linear relationships between crop yield anomalies and the HWMId, based on 6 different months 

(from April to September) covering the main growing seasons of corn and soybean. For each 

relationship, we extracted the R2 and P-value based on the two-tailed t-test. The best relationship 

in each county was defined as the timing with the highest R2, and we regarded this timing as the 

stage at which crop yield anomalies are most sensitive to heatwave events. 

4.2.5 Quantifying crop yield loss caused by extreme drought and heatwave events 

4.2.5.1 Identifying the occurrence of extreme drought and heatwave events  

According to Shi et al. (2021), an extreme drought disaster is defined as an event where the 

ratio of the covered area is greater than 25% and the ratio of the affected area is greater than 12.5%. 

In this study, we defined an extreme drought disaster as occurring when the SPEI for more than 

20% of the crop planting area in a county is less than -1.5 (corresponding to the ‘extreme drought’ 

category in Table 4-1). Similarly, we define an extreme heatwave event as occurring when the 

HWMId for more than 20% of the crop planting area in a county is larger than 4 (corresponding 

to the ‘extreme heatwave’ category in Table 4-2). 

Table 4-1. Classification of droughts following the U.S. Drought Monitor 

(http://droughtmonitor.unl.edu/). 

http://droughtmonitor.unl.edu/
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Category Range of SPEI 

Moderate drought -1.2 ≤ SPEI < -0.8 

Severe drought -1.5 ≤ SPEI < -1.2 

Extreme drought -2.0 ≤ SPEI < -1.5 

Exceptional drought SPEI < -2.0 
 

Table 4-2. Classification of heatwaves adapted from Ceccherini et al. (2017). 

Category Range of HWMId 

Normal 1 ≤ HWMId < 2 

Moderate 2 ≤ HWMId < 3 

Severe 3 ≤ HWMId < 4 

Extreme 4 ≤ HWMId < 8 

Very extreme 8 ≤ HWMId < 16 

Super extreme 16 ≤ HWMId < 32 

Ultra extreme 32 ≤ HWMId  
 

4.2.5.2 Composite analysis  

We used composite analysis to quantify crop yield losses attributable to drought and heatwave 

events, following the method described in previous studies (Jägermeyr and Frieler 2018; Lesk et 

al. 2016). This method was conducted by extracting a 7-year time window from historical annual 

yield time series, with the extreme event year situated at the center. For multiyear extreme events, 

we averaged consecutive extreme years to represent them as a single disaster event, ensuring that 

the time window consistently contained seven entries. We then normalized the extracted 7-year 

time series by dividing it by the average yield of the three years preceding and three years 

following the extreme event. 
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4.2.6 Time trends in yield sensitivity to droughts and heatwaves and their combinations 

We used a panel model with year interaction terms to evaluate changes in the sensitivity of 

crop yields to concurrent droughts and heatwaves, following the methodology of Lobell et al. 

(2020). To capture time-invariant unobserved heterogeneity, we introduced fixed effects into the 

model. As an additional control to obtain unbiased estimates, we also included state-by-year terms 

in the model to remove any signal related to linear time trends. The final panel model can be 

represented as: 

 𝑌𝑌𝑖𝑖,𝑡𝑡 = �𝛽𝛽𝑘𝑘𝑋𝑋𝑖𝑖,𝑡𝑡,𝑘𝑘

𝑑𝑑

𝑘𝑘=1

+ 𝑐𝑐𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑥𝑥𝑥𝑥 + 𝜀𝜀𝑖𝑖,𝑡𝑡 (2) 

where 𝑌𝑌𝑖𝑖,𝑡𝑡 represents yield anomalies at location 𝑖𝑖 and time 𝑡𝑡; 𝑋𝑋 includes variables of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, and their combinations (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻),  as well as linear interactions between them 

and the year (i.e., 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 ,   𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 × 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 , and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  × 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌 ) to test 

whether the sensitivity of crop yields to droughts, heatwaves and their combinations is changing 

over time; 𝑐𝑐𝑖𝑖 represents fixed effects at location 𝑖𝑖; 𝑠𝑠𝑖𝑖 represents the state for county 𝑖𝑖; and 𝜀𝜀𝑖𝑖,𝑡𝑡 

is the error term. 

We applied the above panel model to county-level yield data for the 1964-2018 period, and 

coefficient uncertainties were quantified by performing 200 block-bootstrap estimates of the model, 

with blocking done at the year level to account for spatial correlation in model residuals. 

4.3 Results 

4.3.1 Impact of timing and duration of droughts and heatwaves on crop yields 

The correlations between corn and soybean yield anomalies and the SPEI revealed that both 

crops are highly susceptible to short-term droughts lasting 1-3 months, occurring during the critical 



103 
 

reproductive stages of crop development that typically span from July to September (Figure 4-1). 

Overall, we found that 84% of counties (1396 counties) exhibit the strongest yield correlations 

with droughts spanning 1-3 months for corn, and 78% (945 counties) for soybeans. Specifically, 

corn is most sensitive to 1-month droughts occurring in July, a period that coincides with its silking 

and reproductive stages. In contrast, soybean, usually sown later than corn, is most sensitive to 2-

month droughts occurring in August. Therefore, to more accurately reveal the relationship between 

yield anomalies and droughts, we have selected the 1-month SPEI during July-August for corn 

analysis and the 2-month SPEI during August-September for soybean analysis. 
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Figure 4-1. Histograms showing the timing (a) and duration (timescale) (b) of droughts with the 

strongest correlation for the relationship between crop yield anomalies and the Standardized 

Precipitation-Evapotranspiration Index (SPEI) across U.S. counties. 

Similar to drought analysis, we found that both corn and soybean are highly susceptible to 

heatwaves occurring during July-August (Figure 4-2). Overall, 67% of counties exhibit the most 

significant yield relationships with heatwaves during this period for corn, and 59% do so for 

soybean. Consequently, to further explore the impact of heatwaves on crop yields, we have 

selected the HWMId during July-August for subsequent analysis. 

 

Figure 4-2. Histogram showing the timing of heatwaves with the strongest correlation for the 

relationship between crop yield anomalies and the Heatwave Magnitude Index daily (HWMId)  

across U.S. counties. 

4.3.2 Influence of extreme droughts and heatwaves on crop yield losses 

We analyzed the proportion of counties that experienced concurrent droughts and heatwaves 

in U.S. corn and soybean planting regions from 1964 to 2018 (Figure 4-3). Result generally shows 

an increasing trend, suggesting that the likelihood of facing concurrent droughts and heatwaves in 

U.S. corn and soybean growing regions has significantly increased over recent decades. This 
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heightened risk underscores the imperative to quantify its impact on crop yields and to formulate 

climate change adaptation strategies accordingly. 

 

Figure 4-3. The percentage of counties experiencing concurrent droughts and heatwaves in corn 

and soybean planting regions during 1964-2018. 

Based on the constructed SPEI and HWMId datasets during the sensitive stages of crop 

growth (Sections 4.3.1 and 4.3.2), we used the composite analysis method to quantify crop yield 

losses attributable to extreme drought and heatwave disasters (Figure 4-4). Our analysis revealed 

that both types of extreme climate events have significantly impacted corn and soybean yields. 

Specifically, between 1964 and 2018, extreme drought events resulted in an average yield 

reduction of 17.4% for corn and 17.0% for soybean, relative to the mean yield in the three years 

before and after non-event years. During the same period, extreme heatwave events led to average 

yield declines of 9.0% for corn and 6.3% for soybean. Notably, we found no lagged yield-level 

responses in the years following either type of extreme climate event. Crop yield losses from 

extreme drought events were generally more severe than those from extreme heatwaves. 

Furthermore, the simultaneous occurrence of droughts and heatwaves exacerbated yield losses 
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more than those caused by isolated events, leading to additional yield reductions of 12.2% and 

20.6% for corn, and 8.4% and 19.1% for soybean, during droughts and heatwaves, respectively. 

Overall, corn yields are more susceptible to extreme climate disasters compared to soybean yields. 

Additionally, our results suggest that the DLEM is generally capable of reproducing observed yield 

responses to extreme drought and heatwave events. 

 

Figure 4-4. Influence of extreme droughts, heatwaves, and their co-occurrence on observed (i.e., 

USDA) and simulated (i.e., DLEM) crop yields. Composites are based on 7-year time windows of 

county-level yields centered on the respective event. 

We also analyzed the influence of extreme weather disasters on crop yields across different 

USDA climate hubs. Our results revealed significant regional differences in the impact of extreme 

weather disasters on crop yields. Specifically, the Midwest and Southeast hubs are most vulnerable 

to corn yield losses due to extreme droughts and heatwaves (Figure 4-5), while the South Plains 

and Southeast hubs exhibit the most substantial yield reductions for soybean resulting from 

extreme droughts and heatwaves (Figure 4-6). These regional differences may be attributed to 

differences in local crop management practices as well as variations in local climate and soil 

moisture conditions. 
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Figure 4-5. Influence of extreme droughts, heatwaves, and their co-occurrence on observed (i.e., 

USDA) and simulated (i.e., DLEM) corn yields over different climate hubs. 
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Figure 4-6. Influence of extreme droughts, heatwaves, and their co-occurrence on observed (i.e., 

USDA) and simulated (i.e., DLEM) soybean yields across different climate hubs. 

4.3.3 Sensitivity of corn and soybean yields to concurrent drought and heatwave events 

Before analyzing sensitivity changes, we examined potential nonlinearities and asymmetries 

in the response of crop yields to droughts and heatwaves using the multivariate adaptive regression 
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splines (MARS) method (Lobell et al. 2014). Our results indicate that the impact of droughts on 

crop yields is nonlinear: both extremely low and high SPEI values adversely affect the yields of 

corn and soybean (Figure 4-7). Regarding heatwaves, our findings show a direct negative impact 

on the yields of both crops. Moreover, the severity of yield loss is proportional to the intensity of 

the heatwaves, indicating a dose-response relationship. 

 

Figure 4-7. Nonlinear responses of crop yields to droughts and heatwaves from multivariate 

adaptive regression splines analysis for corn and soybean, where shaded areas show 10–90% 

confidence interval. 

We further evaluated whether the sensitivity of the corn and soybean yields to extreme 

drought, heatwave, and their concurrent occurrences has changed during the past six decades 

(Figure 4-8). According to our analysis using USDA yield datasets, we found that median 

estimates of sensitivity have significantly decreased for heatwaves and their combinations (i.e., 

concurrent droughts and heatwaves). These estimates were generally consistent across different 

bootstrap samples of the data, that is, both the ranges of bootstrap estimates for heatwaves and the 



110 
 

combinations are negative, suggesting decreased sensitivity. Conversely, for drought sensitivity, 

we found a wide range of bootstrap estimates for both corn and soybean yields. These estimates 

ranged from significant increases to significant decreases in sensitivity, suggesting that the panel 

model was unable to precisely estimate changes in drought sensitivity over time. One potential 

reason for this could be attributed to the fact that the SPEI includes both positive (extremely wet) 

and negative (extremely dry) values, reflecting both drought and wet conditions and therefore 

leading to biased estimations. In addition, according to the analysis derived from DLEM-simulated 

yield datasets, we found that median estimates of sensitivity have also significantly decreased for 

heatwaves and their combinations. However, these estimates were not consistent across different 

bootstrap samples of the data. A similar inconsistency was also reflected in the drought sensitivity 

results, suggesting that the DLEM may not accurately reproduce the time trends of corn and 

soybean yield sensitivities to extreme climate disasters. 

 

Figure 4-8. Time trends in yield sensitivity to heatwaves, droughts, and their combinations (i.e., 

concurrent droughts and heatwaves). The panel model estimates the time trend in sensitivity to 

SPEI (Standardized Precipitation Evapotranspiration Index) and HWMId (Heat Wave Magnitude 

Index daily), using county-level data during 1964-2018 in the conterminous US. Trends are 

expressed as a percentage of the value at the start of the time period. Vertical lines show the median 

estimate, boxes represent the 25th–75th percentiles, and whiskers show the range of bootstrap 

estimates, with block bootstrapping conducted by year. 
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We also evaluated the time trends in the sensitivity of corn and soybean yields to extreme 

droughts, heatwaves, and their combinations across various USDA climate hubs (Figure 4-9). We 

found that in major planting areas such as the Midwest hub, our conclusions remain consistent: 

both corn and soybean yields have exhibited decreased sensitivity to extreme heatwaves as well as 

to concurrent droughts and heatwaves. However, our results over other regions suggest that 

alternative methods might be necessary for examining changes in crop yield sensitivity to extreme 

climate disasters. Additionally, there are significant differences between the results derived from 

the DLEM-simulated yield dataset and those from the USDA. This suggests that further 

improvements to the DLEM model may be required for more accurate simulation of the impacts 

of extreme climate events on crop yields. Such improvements are also crucial for accurately 

projecting crop yields under future climate change scenarios. 

 

Figure 4-9. Time trends in yield sensitivity to heatwaves, droughts, and their combinations (i.e., 

concurrent droughts and heatwaves) across different climate hubs. 

4.4 Discussion 

Ensuring global food security in the context of exacerbated climate change requires the 

development of effective adaptation strategies within agricultural systems (IPCC 2014b). 

Achieving this goal necessitates an in-depth understanding of the impact of climate change—
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particularly the simultaneous occurrence of extreme climate events such as droughts and 

heatwaves—on crop productivity (Rosenzweig and Tubiello 2007; Zipper et al. 2016). To this end, 

this study quantified the impact of concurrent droughts and heatwaves on U.S. corn and soybean 

yields, and it further assessed the temporal trends in the sensitivity of crop yields to these 

concurrent events. 

4.4.1 Timescale and timing of drought and heatwave impacts 

Our results reveal that both corn and soybean yields exhibit significant vulnerability to short-

term droughts (i.e., lasting from 1 to 3 months), occurring during the pivotal reproductive phases 

of crop development (Figure 4-1). These critical phenological phases typically span from July to 

August for corn (corresponding to tasseling and silking phases) and from August to September for 

soybean (corresponding to pod setting and filling phases). Our identified critical timing for corn 

in July and for soybean in August aligns well with existing studies, which suggest that the period 

around pollination is of paramount importance for crop yield (Çakir 2004; Campos et al. 2004; 

Otegui et al. 1995; Zipper et al. 2016). This finding highlights the need for the implementation of 

precision agricultural techniques to accurately, and in a timely manner, monitor soil moisture 

conditions during these critical developmental phases (Zipper et al. 2016). Meanwhile, our results 

demonstrate that short-term droughts have a greater impact on the yields of annual crops than long-

term droughts, which may be because crop growth and development are more sensitive to rapid 

and substantial alterations in soil moisture induced by short-term weather events (Illston and 

Basara 2003; Wu and Wilhite 2004). Notably, our findings diverge from previous research 

highlighting the importance of long-term droughts on perennial plants such as trees and shrubs 

(Anderegg et al. 2013; Anderegg et al. 2020; Barbeta et al. 2015). This distinction underscores the 

imperative of strategically managing short-term droughts in agricultural systems. 
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Regarding the impact of the timing of heatwaves on crop yields, our results indicate that both 

corn and soybean yields are highly susceptible to heatwaves occurring during July and August 

(Figure 4-2). The reproductive phase of corn, particularly the pollination, often falls within July 

and early August. Pollination is a crucial stage for the fertilization of ovules that will develop into 

kernels. Heatwave during this phase can compromise pollen viability, which would adversely 

affect the number of kernels per ear and, in turn, the yield (John et al. 1987; Liu et al. 2020b). 

Meanwhile, heatwave can also cause silk desiccation, thereby hindering successful pollination 

(Herrero and Johnson 1980). For soybean, the July-August period coincides with the flowering 

and pod-setting stages. Heatwave occurred during these stages could result in flower abortion and 

fewer pods, thereby leading to reduced yield (Heatherly and Elmore 2004; Specht et al. 1999). 

Moreover, heatwave can also lead to increased rates of plant respiration, affecting the allocation 

of assimilated carbon, which would otherwise contribute to grain filling in both corn and soybeans 

(Crafts-Brandner and Salvucci 2002). 

4.4.2 Crop yield responses to droughts and heatwaves 

The adverse impacts of extreme climate events, including droughts and heatwaves, on crop 

yields are well-documented in the literature (Haqiqi et al. 2021; Lesk et al. 2022; Lesk et al. 2016; 

Lobell et al. 2011; Schlenker and Roberts 2009a; Troy et al. 2015). Consistent with previous 

research, our findings demonstrate that extreme climate events have significantly reduced crop 

yields. Specifically, our analysis show that extreme drought events have led to an average yield 

reduction of 17.4% in corn and 17.0% in soybean, and extreme heatwaves have resulted in yield 

reductions of 9.0% and 6.3% for corn and soybean, respectively. Extreme droughts have a more 

adverse impact on crop yields than extreme heatwaves, possibly due to the extended duration of 

droughts that usually span substantial portions of the growing season. Such extended exposure 
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could have more devastating consequences than the relatively short-lived heatwaves (Lesk et al. 

2016). Furthermore, our results indicate that the synergistic effect of simultaneous droughts and 

heatwaves exacerbates yield losses compared with a single event, consistent with previous studies 

(Cohen et al. 2020; Glotter and Elliott 2016; Jin et al. 2017; Lesk et al. 2016). The concurrent 

droughts and heatwaves synergistically impact the crop life cycle, for example, by reducing the 

time to anthesis and hastening the overall maturation process (Awasthi et al. 2014; Qaseem et al. 

2019). The simultaneous occurrence of these events can create a feedback loop whereby each 

exacerbates the impact of the other on relevant processes such as photosynthesis and nutrient 

uptake, resulting in compounded yield losses (Lesk et al. 2022; Zampieri et al. 2017). Additionally, 

the absence of lagged yield-level responses in our study corroborates with findings from Lesk et 

al. (2016), which reported immediate rather than delayed impacts of weather extremes on crop 

productivity. 

Our findings also elucidate the heterogeneity in the vulnerability of crop yields to extreme 

climate across different USDA climate hubs, corroborating existing research that points to regional 

susceptibility of crops to climate change (Hatfield et al. 2011; Lobell et al. 2011; Wheeler and von 

Braun 2013a). The regional differences in the impacts of extreme climate events may be due to a 

variety of factors, including varying local agricultural management practices and varying local 

climate and soil conditions (Challinor et al. 2014). For instance, Tack et al. (2015) indicated that 

agricultural management practices such as irrigation, choice of crop varieties, and planting density 

can either mitigate or exacerbate the impacts of extreme climate events on crop yields. Furthermore, 

soil characteristics, such as water-holding capacity and texture, play a pivotal role in determining 

the resilience of crops to droughts (Saxton and Rawls 2006). Additionally, the local climate plays 

an integral role when assessing vulnerability to extreme climate. Different climate zones exhibit 
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unique weather patterns that influence the manifestation of extreme events such as heatwaves and 

droughts (IPCC 2014b). Hence, understanding these microclimates and ambient environments is 

essential for predicting regional differences in crop yield responses to extreme climate events. 

4.4.3 Sensitivity of crop yields to droughts and heatwaves 

Our results indicate that the impact of short-term drought on crop yields is nonlinear, where 

both extremely negative and positive SPEI values have adverse effects on corn and soybean yields 

(Figure 4-7). This finding is consistent with previous studies (Li et al. 2019; Lobell et al. 2014; 

Zampieri et al. 2017; Zipper et al. 2015), which have demonstrated that crop yields decline not 

only under extreme dry conditions (represented by highly negative SPEI values) but also under 

extreme wet conditions (represented by highly positive SPEI values). Specifically, extremely 

negative SPEI values indicate severe drought conditions, leading to a series of physiological 

changes in crops, including stomatal closure, reduced photosynthesis, and lower nutrient uptake, 

which collectively lead to reduced yield (Farooq et al. 2009). Conversely, extremely high SPEI 

values denote excessive moisture conditions, which often result in waterlogging, nutrient leaching, 

and increased disease pressure (Booth et al. 2016; Nosetto et al. 2009; Zipper et al. 2015). Overall, 

potential nonlinear effects of drought underscore the necessity for more nuanced risk management 

strategies to maintain optimal soil moisture conditions. For heatwaves, our findings indicate a 

direct negative impact on crop yields, and this impact is exacerbated with increased heatwave 

intensity (Figure 4-7). Heatwaves can impair critical physiological processes such as 

photosynthesis, water uptake, and nutrient assimilation, which invariably leads to reduced yields 

(Lobell and Field 2007). Our findings are in line with previous research (Cohen et al. 2021; Lesk 

et al. 2022; Zhao et al. 2017). Notably, the severity of yield loss generally follows a dose-response 

relationship with the intensity of the heatwaves, suggesting the adverse impact of heatwaves is 
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magnified as their intensity increases. Consequently, our findings advocate for the refinement of 

agricultural management practices, such as the deployment of heat-tolerant crop varieties (Tadesse 

et al. 2019) and the implementation of targeted irrigation techniques that account for higher 

evapotranspiration rates during heatwaves (Fereres and Soriano 2007), to reduce adverse heatwave 

impacts. 

Additionally, we found that both corn and soybean yields have exhibited decreased sensitivity 

to extreme heatwaves as well as to concurrent droughts and heatwaves. One possible explanation 

for this decreased sensitivity is the significant technological advancement in crop breeding and 

genetics (Gaffney et al. 2015; Lobell et al. 2011). For example, drought-resistant and heat-tolerant 

cultivars are increasingly being adopted by farmers (McFadden et al. 2018), enabling crops to 

survive and even thrive in harsh climatic conditions. Another possible explanation is adaptive 

farming practices, such as optimized irrigation, conservation tillage, and appropriate timing of 

planting, that help to retain soil moisture (Howell 2001; Ortiz et al. 2008; Smith and Olesen 2010). 

These practices can mitigate the impact of heatwaves and droughts on crop yields. Moreover, some 

research has suggested that crops can undergo a form of acclimation, adjusting their physiological 

processes to better cope with elevated temperatures and reduced water availability (Dan et al. 2008; 

Hussain et al. 2013; Leakey et al. 2009). However, it should be noted that some limitations exist 

in our study, as our current results were unable to draw conclusive findings regarding changes in 

drought sensitivity over time. The bootstrap estimates of drought sensitivity showed a wide range 

of values, from significant increases to significant decreases (Figure 4-8). This suggests that either 

the panel model used or the SPEI and HWMId metrics was unable to precisely quantify changes 

in drought sensitivity over time. Notably, Lobell et al. (2020) used a different metric—the plant-

available water storage—to investigate temporal changes in drought sensitivity for U.S. corn, and 
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their findings indicated an increased sensitivity to drought conditions. In summary, our results 

underscore the increasing resilience of corn and soybean yields to concurrent droughts and 

heatwaves, possibly due to both genetic improvements and adaptive farming practices. However, 

more effective methodologies and metrics are still needed to accurately evaluate changes in 

drought sensitivity over time. 

4.4.4 Model uncertainties 

The inconsistency in sensitivity estimates between the USDA and the DLEM may be 

attributed to a variety of factors, including model forcing datasets, structures, and parameters. 

Firstly, the input data used to drive the DLEM may introduce uncertainty to both simulated crop 

yields and losses due to extreme climate events. For example, the crop-specific irrigation dataset 

was downscaled from the county-level irrigation reanalysis dataset, which lacked detailed spatial 

information and would inevitably influence the accuracy of yield simulations. Secondly, the 

simplifications or omissions of real-world biophysical, biogeochemical, and hydrological 

processes in the DLEM may also cause simulation biases in crop yields. For example, the current 

DLEM’s representation of groundwater and irrigation practice is relatively simple (e.g., without 

considering irrigation amount and frequency), which could lead to biased simulated soil moisture 

that, in turn, could affect crop yield simulation, particularly under extreme climate conditions. 

Moreover, the DLEM currently does not account for improvements in crop genetic and breeding 

technologies that enhance crop resistance to extreme climates (Bailey-Serres et al. 2019; Hammer 

et al. 2002), nor does it consider human adaptive behaviors such as farmers’ preparedness and 

response strategies related to extreme weather events (Annan and Schlenker 2015). The exclusion 

of these adaptive processes within the model may further contribute to uncertainties in sensitivity 

estimates. Finally, uncertainties in model parameterization could also introduce additional bias in 
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crop yield simulations (You et al. 2022), further affecting yield responses to extreme climate 

events. Addressing these limitations is critical for enhancing the DLEM's ability to accurately 

reproduce time trends of crop yield sensitivities to extreme climate disasters. 

4.5 Conclusion 

In this study, we analyzed U.S. corn and soybean yield vulnerabilities to compound climate 

events, namely, concurrent droughts and heatwaves. Our findings indicate that both crops are most 

sensitive to short-term droughts (spanning 1-3 months) and heatwaves during their critical 

reproductive stages, typically occurring from July to September for droughts and July to August 

for heatwaves. Among these extreme disasters, droughts tend to have a more detrimental impact 

on yields compared to heatwaves. Moreover, the concurrence of both disasters exacerbates yield 

loss substantially, surpassing the effects of single extreme events. Additionally, our study indicates 

a declining trend in crop sensitivity to both heatwaves and concurrent drought-heatwave events, 

possibly due to the adoption of drought-resistant and heat-tolerant cultivars, and the 

implementation of adaptive farming practices such as optimized irrigation and conservation tillage. 

While the DLEM is capable of reproducing the observed yield loss caused by extreme events, it 

cannot accurately reproduce the time trends of yield sensitivity to these extreme climate disasters. 

This highlights the imperative need to refine the DLEM to improve its simulation capabilities. 

Overall, our research serves as an instrumental foundation for understanding crop yield 

vulnerabilities to concurrent extreme climate events, while also identifying critical limitations in 

DLEM that need to be addressed for more accurate and reliable future projections. 
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Chapter 5. Net greenhouse gas balance in U.S. croplands: How can soils be a part of the 

climate solution? 

 

Abstract 

Agricultural soils play a dual role in regulating the Earth’s climate by releasing or 

sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non-CO2 greenhouse 

gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural 

soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG 

balance (i.e., sum of SOC-sequestered CO2 and non-CO2 GHG emissions) and the underlying 

controls. Herein, we used a model-data integration approach to understand and quantify how 

natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of 

the net soil GHG balance in U.S. croplands during 1960-2018. Specifically, we used the Dynamic 

Land Ecosystem Model (DLEM) for regional simulations and used field observations of SOC 

sequestration rates and N2O and CH4 emissions to calibrate, validate, and corroborate model 

simulations. Results show that U.S. agricultural soils sequestered 13.2 ± 1.16 Tg CO2-C yr-1 in 

SOC (at a depth of 3.5 m) during 1960-2018 and emitted 0.39 ± 0.02 Tg N2O-N yr-1 and 0.21 ±

0.01 Tg CH4-C yr-1, respectively. Based on the GWP100 metric (global warming potential on a 

100-year time horizon), the estimated national net GHG emission rate from agricultural soils was 

121.9 ± 11.46 Tg CO2-eq yr-1, thus contributing to climate warming. The sequestered SOC offset 

~28% of the climate-warming effects resulting from non-CO2 GHG emissions, and this offsetting 

effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing 

to the increase in net GHG emissions during 1960-2018, explaining ~47% of total changes. In 

contrast, the adoption of agricultural conservation practices (e.g., reduced tillage) and rising 
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atmospheric CO2 attenuated net GHG emissions from U.S. croplands. Our study highlights the 

importance of concurrently quantifying SOC-sequestered CO2 and non-CO2 GHG emissions for 

developing effective agricultural climate change mitigation measures. 

5.1 Introduction 

Contemporary agriculture is facing multiple challenges such as feeding a growing world 

population and mitigating climate change (Chen et al. 2014; Foley et al. 2011; Pittelkow et al. 

2015a). By 2050, global food production may need to increase by 25%-70% (Hunter et al. 2017), 

or even double the current production levels (Tilman et al. 2011), to meet projected food demands, 

which would inevitably lead to substantial increases in greenhouse gas (GHG) emissions due to 

nitrogen (N) fertilizer use and cropland expansion (Cavigelli et al. 2012; Molotoks et al. 2018; 

Thompson et al. 2019; Zabel et al. 2019). To date, agriculture has been a major force in 

anthropogenic global warming, contributing about 25%-30% and 35%-50% of global land 

biogenic emissions of nitrous oxide (N2O) and methane (CH4), respectively (Tian et al. 2016). This 

constitutes a great challenge to achieve the Paris climate goal of limiting global warming to well 

below 2°C by the end of this century (Tian et al. 2020a). Therefore, reducing GHG emissions from 

the agricultural sector is an imminent need for mitigating climate change. Global croplands 

account for about 10% of the terrestrial soil organic carbon (SOC) stock (IPCC 2019; Watson et 

al. 2000) and could potentially sequester 0.90~1.85 Pg C/yr in the top 0.3m of soils, which is 

equivalent to 26-53% of the soil carbon sequestration target of 3.5 Pg C/yr established by the 

4p1000 Initiative for climate mitigation (Zomer et al. 2017). Increasing SOC stock is considered 

to be the most important countermeasure for GHG mitigation in agriculture (Mosier et al. 2006; 

Smith et al. 2010). Besides sequestering atmospheric CO2, enhancing SOC stocks can also provide 

multiple co-benefits, such as reducing soil erosion, strengthening climate resilience, and improving 
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soil fertility and health (Lal 2018; Sohi 2012). Thus, advancing our understanding of the magnitude 

and spatiotemporal variations of net GHG balance (i.e., sum of SOC sequestration of CO2 and 

emissions of N2O and CH4) in agricultural soils, as well as drivers of their change, is critical for 

measuring the cumulative radiative forcing of non-CO2 GHG emissions and CO2 uptake 

(Robertson and Grace 2004) and developing effective agricultural climate change mitigation 

strategies. Meanwhile, improved understanding could contribute to the achievement of Sustainable 

Development Goals including “Climate Action” and “Zero Hunger”. 

As one of the most important agricultural producers in the world, U.S. agriculture contributed 

a significant portion of global agricultural GHG emissions. Numerous studies have measured and 

quantified N2O and CH4 emissions and SOC sequestration in U.S. croplands (Del Grosso et al. 

2010; EPA 2021; Linquist et al. 2018; Lokupitiya et al. 2012; Lu et al. 2021; Ogle et al. 2010; 

Penman et al. 2000; Yu et al. 2018). For example, it is reported that agriculture emitted ~10% of 

the national total GHG emissions in 2019 in the U.S. and was the largest source of N2O emissions 

(~75%) (EPA 2021). Nonetheless, these estimates are highly uncertain and wide-ranging, largely 

due to differences in quantification methods and data sources (Ogle et al. 2010; Tian et al. 2018; 

Tian et al. 2019; Xu et al. 2012). Specifically, uncertainty in SOC stock changes in U.S. croplands 

could range from −4.6 Tg C yr-1 to +4.9 Tg C yr-1 (Ogle et al. 2010; Ogle et al. 2006), and 

uncertainty in U.S. agricultural soil N2O emissions range from −0.07 Tg N yr-1 to +0.1 Tg N yr-

1 (Cavigelli et al. 2012; Del Grosso et al. 2010). In addition, most of these studies have focused on 

estimating either individual GHG fluxes or SOC sequestration rate, while much less work has been 

done in quantifying magnitude and spatiotemporal variations in net soil GHG balance in U.S. 

croplands (EPA 2021). Due to possible trade-offs between SOC sequestration and GHG emissions 

under different agricultural management practices (Guenet et al. 2021; Tian et al. 2015a; Tian et 
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al. 2011), simultaneous quantification of SOC-sequestered CO2 and non-CO2 GHG emissions is 

crucial to accurately assess the overall climate abatement potential of mitigation measures. 

Furthermore, whether SOC sequestration of CO2 in U.S. croplands can offset non-CO2 GHG 

emissions and how far we are from achieving carbon-neutral agriculture remains unclear. 

Climate-smart agriculture (CSA) management practices (e.g., reduced tillage, optimized N 

fertilizer use, and alternate wetting and drying irrigation) have been advocated to reduce GHG 

emissions without compromising crop yield (FAO 2013; Miralles-Wilhelm 2021). Various field 

investigations and meta-analyses have explored the effects and efficacy of these practices (Bai et 

al. 2019; Gerber et al. 2016; Shang et al. 2021; Sun et al. 2020). However, most existing work 

assessing the impact of CSA measures on GHG emissions has focused on a single management 

practice and one or two GHG fluxes (e.g., CO2 or N2O) at a time (Huang et al. 2022; Lu et al. 

2022; Yu et al. 2020). Relatively few studies  have simultaneously quantified the integrated 

effects of multiple management practices on net soil GHG balance, especially at large spatial scales 

(e.g., national and continental scales). Notably, EPA (2013) comprehensively quantified all three 

major GHG emissions and the abatement potential of non-CO2 GHGs on both national and global 

scales. Considering that some CSA management practices may have antagonistic effects on SOC 

sequestration and non-CO2 GHG emissions (Guenet et al. 2021), and the resulting effects of 

different practices typically have large variations and may be non-additive (Yue et al. 2019), 

studies that fail to combine SOC sequestration and non-CO2 GHG emissions (as well as multiple 

practices together) may lead to inconsistencies when making comparisons that would not provide 

effective assessments (Shang et al. 2021). 

Global environmental changes such as climate change, elevated atmospheric CO2 

concentration, and N deposition have also substantially affected agricultural GHG emissions (Ren 
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et al. 2020; Ren et al. 2011). These factors vary over space and time in a highly heterogeneous 

geographical environment (e.g., diverse soil types and cropping systems) that can affect the 

effectiveness of CSA practices (Abdalla et al. 2013; Sun et al. 2020). This means a mitigation 

practice that is effective in one location or under certain conditions may not be effective elsewhere 

or under other conditions (Shang et al. 2021). In an example illustrating the importance of 

considering interactions between environmental factors and agricultural management practices, 

Huang et al. (2018) found that conversion from conventional tillage to no-tillage reduced GHG 

emissions in dry but not in humid climates. However, relatively few studies have quantitatively 

attributed changes in the net soil GHG balance of U.S. croplands to different drivers (including 

multiple management practices and environmental factors) over long-term periods (Moore et al., 

2022), although such factorial contribution analyses are essential for accurately assessing impacts 

of these CSA practices and developing effective climate mitigation measures. 

Field experiments provide feasible and reliable means of elucidating complex relationships of 

agricultural management practices and net soil GHG balance under multiple environmental 

changes (Plaza-Bonilla et al. 2018). However, directly extrapolating site-specific findings to large 

spatial areas is difficult due to unique environmental and management conditions of each site 

(Huang et al. 2022). Process-based terrestrial biosphere models (TBMs), with well-represented 

crop growth processes and agricultural management practices (e.g., N fertilization, tillage, 

irrigation, and rotation), as well as detailed hydrological, biophysical, and biogeochemical 

processes, can account for effects of spatial and temporal variations in environmental and 

management conditions on net soil GHG balance at large scales (Bondeau et al. 2007; McDermid 

et al. 2017; You et al. 2022). However, the simulation performance of TBMs is largely limited by 

the availability of high-quality model forcing datasets (i.e., introducing uncertainties in input data), 
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the lack of sufficient data for model calibration and validation (i.e., introducing uncertainties in 

model parameters), and the inadequate representation of relevant processes in the model (i.e., 

introducing uncertainties in model structures) (Fisher et al. 2014; Gurung et al. 2020; Ogle et al. 

2010). In view of respective strengths and weaknesses of field observations and TBMs simulations, 

the integration of modeling and data would provide promising means to overcome these 

bottlenecks (Fer et al. 2021; Peng et al. 2011).  

In this study, we quantified the combined effects of multiple management practices and 

environmental changes on the magnitude and spatiotemporal variations of net soil GHG balance 

in U.S. croplands using a model-data integration approach. The model used here is the Dynamic 

Land Ecosystem Model v4.0 (DLEM v4.0), which is a highly integrated process-based TBM. 

DLEM v4.0 is capable of simultaneously depicting biosphere-atmosphere exchanges of CO2, N2O, 

and CH4, driven by multiple environmental forcings and management factors across site, regional, 

and global scales (Pan et al. 2021; Tian et al. 2010a; Tian et al. 2020b; Yao et al. 2020; You et al. 

2022). High-resolution model forcing datasets were developed to drive the DLEM. Field 

observations of SOC sequestration rates and non-CO2 GHG emissions under various management 

practices and environmental conditions on U.S. croplands were compiled to calibrate, validate, 

and corroborate model simulations. The objectives of this work were (1) to estimate the net soil 

GHG balance of U.S. croplands as driven by changes in multiple management practices (e.g., N 

fertilization, tillage, and irrigation), climate conditions, historical land use, atmospheric CO2 

concentration, and N deposition spanning from 1960 to 2018, (2) to examine the relative 

contributions of SOC sequestration of CO2 and non-CO2 GHG emissions to the net soil GHG 

balance of U.S. croplands, and (3) to quantify factorial contributions of different drivers to the 

spatial and temporal variations in net soil GHG balance across the country. 
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5.2 Materials and methods 

5.2.1 Meta-data collection 

A comprehensive literature search was conducted to identify peer-reviewed publications 

reporting in-situ soil GHG emissions from U.S. croplands using several databases including 

Google Scholar, Web of Science, and Scopus. Search keywords included “cropland or crop or corn 

or maize or soybean or wheat or rice”, “the United States or America or U.S. or USA”, “soil 

organic carbon or SOC”, “nitrous oxide or N2O”, “methane or CH4”, and/or “greenhouse gases or 

GHG”. To ensure the quality of compiled datasets, papers identified were further refined by the 

following criteria: (1) measurements were made in the field rather than in the laboratory; (2) 

ancillary information such as cropping systems, experimental year and duration, and applied 

management practices (e.g., N fertilizer use rate, tillage type, and irrigation) were provided; and 

(3) replicated field experiments were performed. 

This search identified a total of 576 site-years of data representing 79 locations from 91 peer-

reviewed publications (Figure 5-1), including 296 observations of N2O emissions, 198 

observations of CH4 emissions, 19 observations of SOC sequestration rate, and 63 observations of 

SOC stock. Multiple management practices were involved in these observations, such as tillage, 

N fertilizer use, irrigation, manure application, and cover cropping. In addition, GetData Graph 

Digitizer software was used to extract exact values when data was presented in graphical form. 

Further details of the data compiled by meta-data collection can be found in You et al. (2023). 



131 
 

 

Figure 5-1. Spatial distribution of field sites included in this study. Different colors represent 

different crop types, in which “others” represent crop types not listed in the legend (e.g., barley, 

cotton, and sorghum). Point size represents the number of replications/observations at each site. 

5.2.2 Model and forcing datasets 

DLEM v4.0 is a highly integrated TBM that couples major biophysical, biogeochemical, and 

hydrological processes to quantify daily, spatially explicit carbon, water, and nutrient stocks and 

fluxes in terrestrial ecosystems and inland water systems at site, regional, and global scales (Pan 

et al. 2021; Tian et al. 2010a; Tian et al. 2020b; You et al. 2022). The simulation of terrestrial 

carbon, water, and nutrient dynamics is driven by multiple environmental forcings (e.g., climate 

change, atmospheric CO2 concentration and N deposition) and various management factors (e.g., 

N fertilizer use rate, irrigation, and manure application). To meet cross-scale agricultural 

application needs (e.g., management guidance, climate change mitigation and adaptation), DLEM 
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v4.0 also includes mechanistic representations of dynamic crop growth and development 

processes, such as crop-specific phenological development, carbon allocation, yield formation, and 

biological N fixation (You et al. 2022). Additionally, agricultural management practices such as 

N fertilizer use, irrigation, tillage, manure application, dynamic crop rotation, cover cropping, and 

genetic improvements are also included. The well-represented crop growth processes and 

management practices enable DLEM v4.0 to simulate crop state variables (e.g., leaf area index 

and tissue biomass) across growth stages and biogeochemical fluxes and pools of carbon, N, and 

water related to agroecosystems (e.g., crop yield, GHG emissions, SOC, and nutrient leaching) 

across various spatial and temporal scales. More details about the representation of crop growth 

processes and different agricultural management practices in DLEM v4.0 are provided in You et 

al. (2022). 

To drive DLEM v4.0, four types of long-term datasets at 5×5 arc-min spatial resolution were 

developed. These datasets include agricultural management practices (e.g., N fertilizer use rate, 

crop rotation, tillage, irrigation, and manure application), land use and land cover change (LULC), 

natural environmental changes (e.g., climate conditions, atmospheric CO2 concentration, and N 

deposition), and other auxiliary data (e.g., soil properties and topography). More details about 

these datasets are presented in Section 2.3 in Chapter 2. 

5.2.3 Model calibration, validation, and uncertainty analysis 

DLEM has been widely validated and applied to estimate N2O and CH4 emissions and SOC 

stocks at multiple sites and large-scale regions including the U.S. (Huang et al. 2020; Lu et al. 

2021; Tian et al. 2012a; Yu et al. 2018), North America (Tian et al. 2010b; Xu 2010; Xu et al. 

2012), China (Ren et al. 2011; Zhang et al. 2020a), and across the globe (Friedlingstein et al. 

2020b; Ren et al. 2020; Saunois et al. 2020a; Tian et al. 2020a). In this study, we rigorously 
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calibrated and validated DLEM, as driven by the forcing datasets developed in section 2.3, to better 

simulate SOC stock, and N2O and CH4 emissions in U.S. croplands using field observations 

compiled by the meta-data collection described in section 2.1. We calculated SOC sequestration 

rates as the differences in SOC stocks between two adjacent years. The potential loss or 

accumulation of SOC resulting from changes in soil properties due to conversions between 

different biome types (e.g., from forest to cropland) was not considered in our analysis. That 

means, the changes in SOC sequestration rate calculated in this study are entirely attributable to 

natural environmental factors and agricultural management activities. Several metrics were used 

to quantify model performance, including coefficient of determination (R2), root mean square error 

(RMSE), and normalized root mean square error (NRMSE). 

In total, 576 site-year measurements representing 79 U.S. cropland sites covering major 

cropping systems were used to calibrate, validate, and corroborate model simulations (Figure 5-

1). The values of major parameters related to N2O, CH4, and SOC processes were determined 

through model calibration within a reasonable range of reported values in literature. Specifically, 

we first used default parameter values to run the model, and then we manually tuned the parameters 

within the reported ranges to obtain a close match between observed and simulated values for N2O, 

CH4, and SOC. We adopted the parameter set that obtained the minimal bias between the simulated 

and measured values across all calibration sites as the optimal parameters and used it for the 

regional simulation. Additionally, apart from calibrating parameters related to N2O, CH4, and SOC 

processes, we also calibrated the model with a focus on crop yields using data collected from the 

AmeriFlux Network, the Resilient Economic Agricultural Practices Project, and the United States 

Department of Agriculture-National Agricultural Statistics Service (further details can be found in 

You et al. (2022)). After model calibration, field observed N2O, CH4, and SOC data (excluding 
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the data used for model calibration) were utilized to evaluate the model performance. Generally, 

DLEM can well-simulate emissions of N2O and CH4, SOC sequestration rates, and SOC stocks 

compared with field observations from the meta-data collection, in which RMSE (NRMSE) values 

were 0.16 g N/m2 (9.6%), 1.5 g C/m2 (4.4%), 156.9 g C/m2 (19.3%), and 1929.1 g C/m2 (17.6%), 

respectively, and the R2 values were 0.6, 0.91, 0.46, and 0.64, respectively (Figure 5-2). 

 

Figure 5-2. Site-scale comparisons of model estimates and field observations of N2O (a), CH4 (b), 

SOC sequestration rate (c), and SOC stocks (d) across different crop types. Dashed line is the 

regression of observed data and modeled results, and the solid line is the 1:1 line. Note that the 

SOC sequestration rates and SOC stocks here were reported by studies at various soil depths (e.g., 

0~20 cm or 0~30 cm), thus we outputted simulation results at corresponding soil depths for 
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validation. “Others” represent all crop types not listed in the legend (e.g., barley, cotton, and 

sorghum). Additionally, due to the small amount of N2O and CH4 emissions (close to 0) at many 

sites, these datapoints are stacked near the origin, resulting in the number of datapoints on the 

graph appearing to be fewer than the actual number of datapoints involved in the statistical analysis. 

We also quantified uncertainties in simulated regional SOC sequestration rate and N2O and 

CH4 fluxes in U.S. croplands due to uncertainties in model parameters (Tian et al. 2011; Xu 2010). 

Specifically, we first conducted a variance-based global sensitivity analysis for each major crop 

type to quantify the relative importance of model parameters in simulating SOC sequestration rate 

and N2O and CH4 emissions using the Sobol’ method (Sobol 1993b). We then identified 

parameters having a significant impact on simulated SOC sequestration rate and N2O and CH4 

fluxes. Next, we used the Monte Carlo sampling scheme to generate an ensemble of 100 sets of 

these sensitive parameters by randomly varying their values within a 20% range of their calibrated 

values based on their respective probability distribution functions (Tian et al. 2011; You et al. 

2022). Finally, we used the generated parameter sets as inputs for DLEM to simulate regional SOC 

sequestration rate and N2O and CH4 emissions from U.S. croplands. Uncertainties in simulated 

SOC sequestration rate and N2O and CH4 fluxes resulting from model parameters were represented 

by ±1 standard deviations derived from these simulations. 

5.2.4 Model implementation and experimental design 

Implementation of DLEM v4.0 included three major steps: an equilibrium run, a spin-up run, 

and a transient run. The equilibrium run was driven by average annual climate data during the 

1860s and other environmental factors in 1860. The equilibrium state was assumed to be reached 

when changes in carbon, N, and water pools between two consecutive 20-year periods were less 

than 0.5 g C m−2 year−1, 0.5 g N m−2 year−1, and 0.5 mm year−1, respectively. The spin-up run was 
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driven by detrended climate data during the 1860s to eliminate fluctuations due to the transition 

from equilibrium run to transient run. Finally, the transient run was driven by historical data from 

1860 to 2018. In this study, simulation results from 1960 to 2018 will be analyzed, so the model 

run during 1860-1959 is considered as a spin up for the slow soil biogeochemical cycles. 

We designed 11 simulation experiments to distinguish factorial contributions of different 

drivers to spatial and temporal variations in the net soil GHG balance of U.S. croplands (Table 5-

1). Attribution factors included N fertilization, tillage, irrigation, manure application, climate 

change, atmospheric CO2 concentration and N deposition, and LULC. A reference run (S0) was 

performed by keeping all factors at the 1860 level to examine model fluctuations resulting from 

internal system dynamics. This run yielded background emissions with little human perturbation. 

An all-combined run (S1) was implemented by driving the model using all historically varying 

input forcings during 1860-2018 to represent the “best estimates” of SOC sequestration rate and 

N2O and CH4 emissions from U.S. croplands. Net changes in SOC sequestration rate and N2O and 

CH4 emissions driven by all factors were calculated as the difference between S1 and S0 

simulations. Meanwhile, we performed 7 additional simulations (S2-S8) to investigate individual 

contributions of changes in each factor to annual variations in SOC sequestration rate and N2O and 

CH4 fluxes. Specifically, in each simulation one particular factor was kept constant at the 1860 

level, while all other factors were set to vary over time, and the factorial contribution of this fixed 

factor was obtained by subtracting the simulation from the “all-combined” simulation (S1). Since 

LULC is usually accompanied by changes in the total input of management practices (e.g., manure 

and mineral fertilizer application), we calculated the factorial contribution of LULC by keeping 

all management factors constant at the 1860 level while varying other environmental factors with 

LULC turned on and off (Lu et al. 2021). Thus, the factorial contribution of LULC was calculated 
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as the difference between S9 and S10 (Table 5-1). In addition, because our analysis focused on the 

period 1960-2018, we calculated the factorial contribution of each factor relative to the average 

state in the 1950s. That means, the factorial contribution of each factor from 1960 to 2018 was 

calculated by subtracting the average state of the 1950s from its original factorial contribution. 

Table 5-1. Factorial experiments to quantify the relative contributions of different drivers to 

changes in carbon dioxide, nitrous oxide, and methane emissions from U.S. croplands. 

No. Scenario Nfera Tillageb Irrigationc  Manure Climated CO2 Ndep LULC 
S0 Reference 1860 1860 1860 1860 1860 1860 1860 1860 
S1 All Combined 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 
S2 Without N fertilization (Nfer) 1860 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 
S3 Without Tillage  1860-2018 1860 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 
S4 Without Irrigation  1860-2018 1860-2018 1860 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 
S5 Without Manure 1860-2018 1860-2018 1860-2018 1860 1860-2018 1860-2018 1860-2018 1860-2018 
S6 Without Climate 1860-2018 1860-2018 1860-2018 1860-2018 1860 1860-2018 1860-2018 1860-2018 
S7 Without CO2 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 1860 1860-2018 1860-2018 
S8 Without N deposition (Ndep) 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 1860-2018 1860 1860-2018 
S9 Climate+CO2+Ndep 1860 1860 1860 1860 1860-2018 1860-2018 1860-2018 1860 
S10 Climate+CO2+Ndep+LULC 1860 1860 1860 1860 1860-2018 1860-2018 1860-2018 1860-2018 
aWe assumed N fertilization rate before 1910 was kept constant at the 1910 level. 
bWe assumed tillage data before 1960 was kept constant at the 1960 level. 
cWe assumed irrigation data before 1950 was kept constant at the 1950 level. 
dClimate data in 1860 was the average climate condition during the 1860s. 

5.2.5 Global warming potential calculation 

The global warming potential (GWP) is an index to measure the integrated radiative forcing 

from the emission of 1 kg of a trace gas relative to that of CO2 (Myhre et al. 2013). In GWP 

conversions, CO2 is typically considered the reference gas with a GWP constant of 1. CH4 and 

N2O emissions can be converted to ‘CO2-equivalents’ based on their respective GWP constants 

over a specified time horizon. To obtain a comprehensive assessment of the climatic impact of net 

soil GHG balance, we adopted the following equation to calculate the combined GWPs for SOC 

sequestration of CO2 and N2O and CH4 emissions: 
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𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐶𝐶𝐶𝐶2−𝐶𝐶 ×
44
12

× 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶2 + 𝐹𝐹𝑁𝑁2𝑂𝑂−𝑁𝑁 ×
44
28

× 𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁2𝑂𝑂 + 𝐹𝐹𝐶𝐶𝐶𝐶4−𝐶𝐶 ×
16
12

× 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4 (1) 

𝐹𝐹𝐶𝐶𝐶𝐶2−𝐶𝐶 = −𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (2) 

where 𝐹𝐹𝐶𝐶𝐶𝐶2−𝐶𝐶 , 𝐹𝐹𝑁𝑁2𝑂𝑂−𝑁𝑁 , and 𝐹𝐹𝐶𝐶𝐶𝐶4−𝐶𝐶  were annual fluxes of CO2, N2O, and CH4, respectively; 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 was SOC sequestration rate; molecular weight conversion fractions 44/12, 44/28, and 

16/12 were used to convert the mass of CO2-C, N2O-N, and CH4-C into CO2, N2O, and CH4, 

respectively; 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶2, 𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁2𝑂𝑂 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4 were GWP constants indicating radiative forcing 

of CO2, N2O, and CH4 in terms of their CO2 equivalents, and this study used the GWP values 

integrated over a time horizon of 100 years for CO2, N2O, and CH4, which were 1, 265, and 28, 

respectively (Myhre et al. 2013). 

5.3 Results 

5.3.1 National budget and dynamics of net GHG balance in U.S. croplands 

Our simulations showed that U.S. croplands acted as a net carbon sink during 1960-2018 with 

an average SOC sequestration rate of 13.2 ± 1.16 Tg C year−1 (at a depth of 3.5m), and acted as 

a net source of N2O and CH4 with average emission rates of 0.39 ± 0.02 Tg N year−1 and 0.21 ±

0.01 Tg C year−1, respectively (Figure 5-3). Both SOC sequestration and N2O and CH4 fluxes in 

U.S. croplands exhibited large interannual variations during 1960-2018, but showed overall 

significant increasing trends (with respective rates of 0.429 Tg C year−2, 0.003 Tg N year−2, and 

0.001 Tg C year−2). 
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Figure 5-3. Temporal variations in national SOC sequestration rate (a) and fluxes of N2O (b) and 

CH4 (c) in U.S. agricultural soils from 1960 to 2018. Shaded area denotes the uncertainty ranges 

of SOC sequestration rate and N2O and CH4 fluxes (represented by ±1 standard deviation).  
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Using the GWP100 metric (global warming potential on a 100-year time horizon), sequestered 

SOC in U.S. agricultural soils reduced national net GHG balance at an average rate of 48.4 ±

4.25 Tg CO2-eq year−1 during 1960-2018, whereas N2O and CH4 emissions contributed to net 

GHG balance at average rates of 162.41 ± 8.33 Tg CO2-eq year−1 and 7.84 ± 0.37 Tg CO2-eq 

year−1, respectively (Figure 5-4). Thus, non-CO2 GHG emissions (i.e., sum of N2O and CH4 

emissions) from U.S. croplands surpassed SOC sequestered, indicating that U.S. croplands acted 

as a net source of GHGs. Statistically, sequestered SOC offset ~28% of climate-warming effects 

resulting from non-CO2 GHG emissions during 1960-2018, and the proportion of the offset 

increased over time. When considering both SOC sequestration and non-CO2 GHG emissions, the 

average net GHG balance during 1960-2018 was estimated to be a GHG source of 121.9 ± 11.46 

Tg CO2-eq year−1 and exhibited a substantial decadal variability, increasing from 98.32 ± 7.13 

Tg CO2-eq year−1 in the 1960s to 156.01 ± 11.48 Tg CO2-eq year−1 in the 1980s and gradually 

decreasing to 115.87 ± 16.18 Tg CO2-eq year−1 in the 2010s. 

 

Figure 5-4. Temporal variations in national net greenhouse gas balance of U.S. croplands from the 

1960s to the 2010s. Note that error bars represent ±1 standard deviation of net greenhouse gas 

balance in each decade. 
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5.3.2 Spatial patterns of net GHG balance in U.S. croplands 

With an average SOC sequestration rate of ~12.5 g C m−2 year−1, simulation results over the 

study period indicated that most U.S. croplands acted as carbon sinks, with the Midwest, Southeast, 

and Northwest regions having relatively high SOC sequestration rates (Figure 5-5). The spatial 

pattern of N2O emissions varied substantially across the country, with hotpots in the Midwest 

region having peak N2O emission rates as high as 0.8 g N m−2 year−1. In contrast, the distribution 

of CH4 flux was polarized, with a high CH4 emission rate of ~13 g C m−2 year−1 in the Mississippi 

Delta and the Sacramento Valley regions due to rice cultivation and rates approaching zero in other 

areas. 
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Figure 5-5. Spatial patterns of average annual SOC sequestration rate (a) and fluxes of N2O (b) 

and CH4 (c) in U.S. agricultural soils from 1960 to 2018. Note that negative values in soil fluxes 

represent uptake and positive values represent release. Therefore, negative soil CO2 flux indicates 

SOC sequestration. 

When simultaneously taking SOC sequestration and non-CO2 GHG emissions into account, 

we found that the distribution of net soil GHG balance showed large spatial heterogeneity, with 

hotspots in the Midwest and Mississippi Delta regions where peak net soil GHG emissions were 

estimated to be higher than 2.5 Mg CO2-eq ha-1 year−1 (Figure 5-6). In contrast, some U.S. 
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croplands (primarily located in Northwest regions) acted as a net sink of GHGs during the study 

period (representing ~38% of national cropland area), suggesting that sequestered SOC in these 

regions completely offset non-CO2 GHG emissions. The net GHG balance of croplands varied 

substantially across different regional hubs of distinct climate characteristics. The Midwest hub 

was the largest contributor, accounting for ~47% of the national total net GHG balance during 

1960-2018. The Northern Plains hub had the second largest share (~21%), followed by the 

Southern Plains and Southeast climate hubs (~14% each), while the Northwest, Southwest, and 

Northeast hubs accounted for less than 5%. The net GHG balance of the Midwest hub averaged 

66.61 Tg CO2-eq year−1 over the study period, and its contribution to the national total net GHG 

balance exhibited large decadal variations, first increasing and then decreasing. In addition, 

simulation results showed that N2O emissions greatly enhanced net GHG balance in all hubs, while 

CH4 emissions only promoted net GHG balance in the Southeast and Southwest hubs. 
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Figure 5-6. Spatial pattern of average annual net greenhouse gas balance of U.S. croplands from 

the 1960s to the 2010s. Note that error bars in insets represent ±1 standard deviation of the net 

greenhouse gas balance in each decade. NW, NP, MW, NE, SW, SP, and SE represent the Northwest, 

Northern Plains, Midwest, Northeast, Southwest, Southern Plains, and Southeast climate hubs, 

respectively. 
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5.3.3 Relative contributions of SOC sequestration and N2O and CH4 emissions to net GHG 

balance 

Given that non-CO2 GHG emissions have surpassed the amount of SOC sequestered in U.S. 

croplands (Figure 5-4), we conducted a more comprehensive analysis of the spatial distribution of 

the relative contribution of SOC sequestration and N2O and CH4 emissions to the net GHG balance 

of U.S. croplands (Figure 5-7). Over the study period, soil N2O emissions played a dominant role 

in controlling the net GHG balance of most croplands (e.g., the Midwest, Northern and Southern 

Plains hubs), followed by SOC sequestration, while CH4 emissions only controlled the net GHG 

balance in the Mississippi Delta and Sacramento Valley regions, which are major rice growing 

areas. Meanwhile, the proportion of areas in the U.S. dominated by SOC sequestration increased 

over time, indicating an increasing role of SOC sequestration in controlling the net GHG balance 

across the country. For example, most Midwest croplands were dominated by N2O emissions (red 

color) in the 1960s, but was controlled jointly by N2O emission and SOC sequestration (yellow 

and green colors) in the 2010s. 
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Figure 5-7. Spatial distributions of the relative contribution of SOC sequestration and emissions 

of N2O and CH4 to the net greenhouse gas balance of U.S. croplands from the 1960s to the 2010s. 

5.3.4 Factorial contributions of multi-driver changes to net GHG balance in U.S. croplands 

We further quantified the factorial contributions of key drivers, including multiple agricultural 

management practices and environmental forcings, to changes in the net soil GHG balance of U.S. 

croplands from 1960 to 2018 by setting up a series of simulation experiments (Table 5-1). Our 

results revealed that increased use of N fertilizer was the dominant factor driving changes in the 

net GHG balance of U.S. croplands in comparison to the average state in the 1950s. This increase 
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contributed to a net GHG balance increase of 79.9 Tg CO2-eq year−1 and roughly explained 47% 

of the total changes (Figure 5-8). Increased atmospheric N deposition and manure application also 

contributed to the increase in net GHG balance, with average rates of 8.3 Tg CO2-eq year−1 and 

2.7 Tg CO2-eq year−1, respectively. Conversely, LULC resulted in a substantial reduction in the 

net GHG balance in U.S. croplands, with an average mitigation rate of 42.2 Tg CO2-eq year−1, 

which explained ~23% of the total changes. Rising atmospheric CO2 concentration was the second-

largest mitigator, reducing the net GHG balance at an average rate of 20.1 Tg CO2-eq year−1 and 

accounting for ~9% of the total changes. Reduced tillage and increased irrigated area were also 

effective in mitigating the net GHG balance in U.S. croplands, with average mitigation rates of 3.1 

Tg CO2-eq year−1 and 1.9 Tg CO2-eq year−1, respectively. Additionally, compared to the 1950s, 

climate change initially reduced net GHG balance in U.S. croplands by an average rate of 12.5 Tg 

CO2-eq year−1 from the 1960s to the 1990s, but later increased net GHG balance at an average rate 

of 36.5 Tg CO2-eq year−1. 

 

Figure 5-8. Factorial contributions of multiple agricultural management practices and 

environmental forcings to changes in the net greenhouse gas balance of U.S. croplands from the 

1960s to the 2010s, in comparison to the average state in the 1950s. Nfer represents nitrogen 
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fertilizer use; Ndep represents atmospheric nitrogen deposition; LULC represents land use and 

land cover change (reflecting both cropland abandonment and expansion, as well as interannual 

crop rotation changes); and CO2 represents atmospheric carbon dioxide concentration. Note that 

the sum of factorial contributions of individual drivers (i.e., stacked bars) does not equal net 

changes in the net greenhouse gas balance (i.e., black line) due to interaction effects. 

5.4 Discussion 

5.4.1 Comparison with previous studies 

We compared our estimates of SOC sequestration rate and N2O and CH4 emissions in U.S. 

croplands with other regional estimates published (Table 5-2). Over the past six decades, our 

estimated SOC sequestration rate in U.S. croplands ranged from 4.9 ± 0.66 Tg C yr-1 in the 1960s 

to 22.2 ± 1.91 Tg C yr-1 in the 2010s and fell within the rate change reported by others (Ogle et al. 

2010; Ogle et al. 2006; Pacala et al. 2001; Sleeter et al. 2018; West et al. 2008; Zhang et al. 2015a). 

For instance, Pacala et al. (2001) estimated the range of SOC sequestration rate in U.S. croplands 

to be 0~40 Tg C yr-1, Ogle et al. (2010) estimated a net increase in SOC of 17.5 ± 2.9 Tg C yr-1 

during 1995-2000, and Sleeter et al. (2018) estimated a net accumulation of SOC in U.S. croplands 

of 32 Tg C yr-1 during 1973-2010. Our estimated SOC sequestration rate was generally consistent 

with these studies. In addition, our estimated SOC sequestration rate showed an increasing trend 

during 1960-2018, partly due to the increasing atmospheric CO2 concentration (Walker et al. 2021), 

improved crop management practices (e.g., N fertilizer use and irrigation) (Christopher and Lal 

2007), and advancements in crop technologies (e.g., genetics and breeding). These factors have 

resulted in significant increases in biomass production and grain yield, leading to greater crop 

residue inputs into soils. For instance, productions of major crops such as corn and soybean have 

nearly tripled to quadrupled in the U.S. over the past several decades (USDA 2018). Despite the 

carbon allocation process in DLEM is driven by photosynthetic carbon supply and subject to 
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multiple environmental stresses (You et al. 2022), the simulated ratio of yield to whole plant 

biomass has remained relatively stable over time, suggesting that the simulated crop residues 

would have also significantly increased during the same period. Although the DLEM have 

accounted for the removal of a certain percentage of crop residues from the agroecosystem through 

tillage practices (50%, 25%, and 0% for conventional tillage, reduced tillage, and no tillage, 

respectively), we acknowledge that large uncertainties still exist concerning these residue removal 

percentages, potentially biasing the simulated residue inputs into soils and SOC sequestration rate. 

In terms of N2O emissions, our estimates ranged from 0.27 ± 0.02 Tg N yr-1 in the 1960s to 0.45 

± 0.03 Tg N yr-1 in the 2010s, which were also comparable to previous studies (Chen et al. 2016; 

Del Grosso et al. 2006; EPA 2018; Griffis et al. 2013; Lu et al. 2021; Mummey et al. 1998; Tian 

et al. 2019). For example, the direct N2O emissions from U.S. agricultural soils estimated by the 

Global N2O Model Inter-comparison Project (NMIP) ranged from 0.3 Tg N yr-1 to 0.62 Tg N yr-1 

during 2007-2016 (Tian et al. 2019; Xu et al. 2021), and our estimate of 0.44 Tg N yr-1 fell well 

within this range. Additionally, our estimated CH4 emissions (averaged to 0.23 Tg C yr-1 over the 

last two decades) was also close to previous estimates centered on an annual emission rate of ~0.25 

Tg C yr-1 (EPA 2015; Sass et al. 1999; Tian et al. 2015a). 

Overall, our individual estimates of SOC sequestration rate and N2O and CH4 emissions in 

U.S. croplands were in similar magnitudes and variation ranges as other regional estimates, but 

differences still exist, possibly due to uncertainties in forcing data and differences in estimation 

methods. However, unlike previous studies that focused solely on individual GHGs or SOC, our 

work quantified both SOC-sequestered CO2 and non-CO2 GHG emissions in U.S. croplands 

simultaneously. In this way, we could gain a more complete picture of the magnitude and 

spatiotemporal variations of the net soil GHG balance in U.S. croplands and uncover new insights. 
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For instance, by disentangling changes in the relative contribution of SOC sequestration and N2O 

and CH4 emissions in the net GHG balance of U.S. croplands over the past few decades, we found 

that N2O emission and SOC sequestration jointly controlled the net GHG balance over most 

croplands in recent decades (Figure 5-7), highlighting the importance of considering both non-CO2 

GHG emissions and SOC sequestration when developing climate mitigation strategies. 

Meanwhile, our results revealed that the proportion of regions dominated by SOC sequestration 

increased over time. Possible explanations for this trend may include a gradual flattening of soil 

N2O emissions due to stabilized N fertilization amounts, as well as increased crop biomass due to 

improved management practices and breeding and genetic technologies that in turn enhanced 

residue inputs into soils and promoted SOC sequestration. However, given that meeting growing 

food demand will inevitably lead to increased non-CO2 GHG emissions due to fertilization 

(Cavigelli et al. 2012; Molotoks et al. 2018), and significant increases in crop biomass may be 

limited by advances in crop breeding and genetic technologies, our findings therefore re-emphasize 

the necessity of concurrently reducing non-CO2 GHG emissions and enhancing SOC sequestration 

to achieve the goal of carbon-neutral agriculture, which is particularly important since non-CO2 

GHG emissions have already surpassed the amount of SOC-sequestered CO2 in U.S. croplands. 

Additionally, our results showed that the adoption of reduced tillage practices led to a decrease in 

net GHG balance, which underscores the potential of leveraging CSA management practices (e.g., 

no-tillage and cover cropping) to mitigate net GHG balance in U.S. croplands (Huggins and 

Reganold 2008; Prokopy et al. 2019). Considering that some CSA practices could have quite 

different impacts (or even antagonistic) on SOC sequestration and N2O and CH4 emissions (Guenet 

et al. 2021), our estimation of net GHG balance also allows for more comprehensive and effective 

mitigation efforts to combat climate change. 
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Table 5-2. Comparisons of SOC sequestration rate and fluxes of N2O and CH4 from other studies. 

Fluxes Reported value Reported region Time period Approaches References 
SOC sequestration  
rate (Tg C yr-1) 

0 ~ 40 Entire U.S. croplands 1980-1990 Model + extrapolation Pacala et al. (2001) 
13.5 ± 5.3 Entire U.S. croplands 1982-1997 Model Ogle et al. (2006) 
14.4  U.S. Midwest croplands 1991-2000 Statistical approach West et al. (2008) 
14.6 ± 3.2  Entire U.S. croplands 1990-1995 Process-based model Ogle et al. (2010) 
17.5 ± 2.9  Entire U.S. croplands 1995-2000 Process-based model Ogle et al. (2010) 
14  U.S. Midwest croplands 2000-2008 Process-based model Zhang et al. (2015a) 
32  Entire U.S. croplands 1973-2010 Integrated model Sleeter et al. (2018) 
7.2 ± 0.82  Entire U.S. croplands 1980s Process-based model This study 
16.6 ± 1.26  Entire U.S. croplands 1990s Process-based model This study 
23.3 ± 2.01 Entire U.S. croplands 2000s Process-based model This study 
22.2 ± 1.91 Entire U.S. croplands 2010s Process-based model This study 

N2O (Tg N yr-1) 0.448 ~ 0.478  Entire U.S. croplands 1990s Model + extrapolation Mummey et al. (1998) 
0.439 Entire U.S. croplands 1990-2003 Process-based model Del Grosso et al. (2006) 
0.42 ± 0.05  U.S. Corn Belt croplands 2010 Extrapolation  Griffis et al. (2013) 
0.23 ± 0.18  U.S. Corn Belt croplands 2010 IPCC-based emission factor Griffis et al. (2013) 
0.319 ± 0.184 U.S. Corn Belt croplands 2010 Atmospheric inversion Chen et al. (2016) 
0.471 ± 0.326  U.S. Corn Belt croplands 2011 Atmospheric inversion Chen et al. (2016) 
0.47 ~ 0.51  Entire U.S. croplands 1990-2016 IPCC Guidelines EPA (2018) 
0.3 ± 0.2 Entire U.S. croplands 2007-2016 Model ensemble (NMIP) Tian et al. (2019) 
0.51 ± 0.05  Entire U.S. croplands 2010s Process-based model Lu et al. (2021) 
0.43 ± 0.03  Entire U.S. croplands 2000s Process-based model This study 
0.45 ± 0.03 Entire U.S. croplands 2010s Process-based model This study 

CH4 (Tg C yr-1) 0.04 ~ 0.47  U.S. rice paddies  / IPCC Guidelines Sass et al. (1999) 
0.3  North America croplands 1979-2018 Process-based model Tian et al. (2015a) 
0.276 U.S. rice paddies 1990 IPCC Guidelines EPA (2015) 
0.267 U.S. rice paddies 2005 IPCC Guidelines EPA (2015) 
0.255  U.S. rice paddies 2011 IPCC Guidelines EPA (2015) 
0.279  U.S. rice paddies 2012 IPCC Guidelines EPA (2015) 
0.249  U.S. rice paddies 2013 IPCC Guidelines EPA (2015) 
0.22 ± 0.0026  Entire U.S. croplands 2000s Process-based model This study 
0.24 ± 0.0023  Entire U.S. croplands 2010s Process-based model This study 
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5.4.2 Impacts of agricultural management factors and environmental changes on net GHG 

balance 

Leveraging agricultural management practices to curb net GHG emissions from croplands has 

recently come under sharp focus due to their large mitigation potential, low cost and accompanying 

co-benefits such as improved soil and water quality and biodiversity maintenance (Fargione et al. 

2018). As seen in other studies (Christopher and Lal 2007; Gerber et al. 2016; Lu et al. 2021), our 

factorial analysis indicated that N fertilization (including both synthetic N fertilizer use and manure 

application) contributed significantly to net GHG emissions from U.S. croplands (Figure 5-8). For 

instance, Lu et al. (2021) reported that N fertilization was the dominant driver contributing to N2O 

emissions from U.S. agricultural soils, which increased N2O emissions by 0.33 Tg N year−1 since 

1900. Synthetic N fertilizer use in U.S. croplands increased substantially (Figure 5-10(a) and 

Figure 5-11(a)), from 2.48 Tg N year−1 in 1960 to 11.8 Tg N year−1 in 2015, which greatly 

promoted non-CO2 GHG emissions (especially N2O) and exacerbated global climate warming. 

Although N addition could simultaneously stimulate SOC accumulation in croplands, we found 

that SOC climate benefits were largely offset by non-CO2 GHG emissions (Figures 5-9(a) and (b)). 

Therefore, optimizing N fertilizer use rates is an imminent need for achieving overall maximum 

benefits among enhancing SOC sequestration, improving crop yields, and curbing non-CO2 GHG 

emissions (Gerber et al. 2016; Xia et al. 2017). According to CRM’s survey data, the proportion 

of U.S. croplands adopting no-tillage practices increased significantly over the past three decades 

(Figure 5-10(c) and Figure 5-11(c)). Our factorial analysis suggested that the tillage intensity 

reduction suppressed net GHG emissions, which was consistent with other U.S. studies (Huang et 

al. 2022; Lu et al. 2022; Yu et al. 2020). For instance, Yu et al. (2020) found that reduced tillage 

intensity in U.S. corn-soybean cropping systems contributed to a net SOC accumulation of 1.0 Tg 
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C year−1 during 1998-2008. Lu et al. (2022) reported a reduction rate of −5.5 Tg CO2-eq year−1 in 

GHG emissions from U.S. corn-soybean cropping systems during 1998-2008 as a result of tillage 

intensity reduction. Huang et al. (2022) suggested attenuated soil CO2 and N2O emissions from 

Kentucky croplands under no-tillage compared to conventional tillage. Reduced net GHG 

emissions were also associated with an increase in irrigated U.S. cropland acreage over 1960-2018 

(Figure 5-10(e) and Figure 5-11(e)). Irrigation possibly increased aboveground and belowground 

biomass and led to higher soil carbon inputs and SOC content (Bai et al. 2019; Blanco-Canqui et 

al. 2011). Additionally, we found that LULC reduced net GHG emissions from U.S. croplands 

(Figure 5-8) at an average mitigation rate of 42.2 Tg CO2-eq year−1, primarily due to the enhanced 

SOC sequestration amount in recent decades compared to the average state in the 1950s (Figure 

5-9). Specifically, when compared with the 1950s, there has been a decrease in cropland area 

during recent decades (Figure 5-11(b)), coinciding with a notable increase in the SOC 

sequestration rate. However, it is worth noting that the national total accumulated SOC amount is 

determined by the multiplication of cropland area and the average SOC sequestration rate. 

Consequently, the recent reduction in cropland area is counterbalanced by the concurrent increase 

in SOC sequestration rate, to the extent that the total amount of SOC sequestrated in U.S. croplands 

during recent decades still surpasses that of the 1950s. This dynamic interplay has ultimately led 

to a reduction in net GHG emissions due to LULC relative to the average state of the 1950s. 

Nevertheless, it should be noted that our current factorial analysis did not account for potential 

loss or accumulation of SOC resulting from changes in soil properties due to conversions between 

different biome types (e.g., from forest to cropland) and thus may lead to a biased contribution. 

Overall, our factorial analysis of multiple agricultural management practices indicated large 

potential for CSA practices (e.g., optimized N fertilizer use and reduced tillage) to mitigate non-
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CO2 GHG emissions and enhance SOC sequestration in agricultural soils, thereby leading to an 

overall reduction in net GHG emissions. 

Changes in environmental factors, including elevated atmospheric N deposition and climatic 

conditions over the past two decades, also contributed significantly to net GHG emissions in U.S. 

croplands, while rising atmospheric CO2 concentration served to mitigate GHG emissions (Figure 

5-8). Despite considerable interannual variability, the increase in average surface air temperature 

in U.S. croplands over the past two decades compared with the 1950s (Figure 5-10(h) and Figure 

5-11(h)) suggested a positive response of net GHG emissions to this climate warming. Similar 

positive responses were reported in other studies. For example, a meta-analysis by Liu et al. 

(2020a) found that an warming of ~1.5℃ in rice paddies accelerated SOC decomposition by 12.9% 

and stimulated N2O and CH4 emissions by 35.2% and 23.4%, respectively. Xu et al. (2020) found 

that climate warming resulted in a net N2O emission increase of 0.3 Tg N year−1 in global croplands 

during 2000-2014. Warming can accelerate SOC decomposition, which enriches soil carbon 

substrate and N availability to promote soil microbial CO2 production, methanogenesis, and 

denitrification processes (Carey et al. 2016; Pärn et al. 2018; Weier et al. 1993; Yvon-Durocher et 

al. 2014). Our factorial analysis of each individual gas also indicated a positive response of climate 

warming on SOC decomposition, and N2O and CH4 emissions (Figure 5-9). Additionally, the 

contrasting impacts of climate change on net GHG balance before and after the 1990s can be 

illustrated by the different response of N2O emissions to climate change (Figure 5-9(b)). Positive 

effects of increased N deposition on net GHG emissions were also reported in other studies (Xu et 

al. 2020; Yang et al. 2021), where increased N availability can promote nitrification and 

denitrification processes and thereby N2O emissions. Similar to findings of others (Ren et al. 2011; 

van Groenigen et al. 2011; Xu et al. 2020), our study showed a negative response to rising 
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atmospheric CO2 levels, which can be ascribed to increased soil carbon inputs from CO2 enhanced 

crop biomass production (van Groenigen et al. 2011). 

 

Figure 5-9. Factorial contributions of multiple agricultural management practices and 

environmental forcings to changes in CO2 emission, N2O emission, and CH4 emission in U.S. 

croplands from the 1960s to the 2010s, in comparison to the average state in the 1950s. Noted that 

the negative impact on CO2 emissions indicates a positive impact on soil organic carbon 

sequestration. Nfer represents nitrogen fertilizer use; Ndep represents atmospheric nitrogen 

deposition; LULC represents land use and land cover change (reflecting both cropland 

abandonment and expansion, as well as interannual crop rotation changes); and CO2 represents 

atmospheric carbon dioxide concentration. 
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Figure 5-10. Temporal changes in nitrogen fertilization amount (a), cropland area (b), tillage intensity (c), manure production (d), 

irrigated cropland acreage (e), atmospheric CO2 concentration (f), atmospheric nitrogen deposition (g), temperature (h), and precipitation 

(i) over the study period. 
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Figure 5-11. Decadal changes in various factors relative to the 1950s, including nitrogen fertilization amount (a), cropland area (b), 

tillage intensity (c), manure production (d), irrigated cropland acreage (e), atmospheric CO2 concentration (f), atmospheric nitrogen 

deposition (g), temperature (h), and precipitation (i). 
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5.4.3 Uncertainty and future work 

We have quantified uncertainty in the simulated net GHG balance associated with model 

parameters. However, other uncertainties persist (e.g., arising from input datasets and model 

structures), and further improvements are needed to enhance predictions. First, model forcing 

datasets could introduce some uncertainties. For example, the crop-specific N fertilization data 

was reconstructed based on state-level surveys, which could not reflect actual spatial variations of 

fertilizer use in both magnitude and timing. Tillage intensity data were only available at the county-

level for recent decades, which lacked detailed spatial information and would inevitably introduce 

extrapolation errors in earlier years. Additionally, the assumption of crop residue removal 

percentage associated with tillage practices could also result in large uncertainties in the amount 

of crop residue inputs into soils, as it may diverge substantially from actual patterns. Therefore, 

joint community efforts to further improve model forcing datasets are needed. Second, the 

simplifications or omissions of real-world biophysical, biogeochemical, and hydrological 

processes in the DLEM, along with the under-representation of individual gas responses to various 

environmental factors, may also cause simulation biases. For example, the current DLEM 

representation of groundwater and irrigation practice (i.e., without considering irrigation amount 

and frequency) is relatively simple, which could lead to biased simulated soil moisture that, in turn, 

could affect GHG emission predictions. Furthermore, several studies have shown that soil freezing 

and thawing events induced non-negligible amounts of N2O emissions (Del Grosso et al. 2022; 

Wagner-Riddle et al. 2017); nevertheless, the effects of soil freeze-thaw cycles on GHG emissions 

were not included in our current simulations and therefore constituted a possible source of 

deviation in our results. It is important to acknowledge that our model structures are inherently 

incomplete and uncertain, contributing significantly to the overall uncertainty in model simulations. 
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Accurately quantifying the uncertainty associated with model structures is a challenging task. 

Some studies have proposed using Bayesian methods to address this issue through conditioning 

model behavior on measurements (Engeland et al. 2005; Gurung et al. 2020). A notable example 

is the work of Gurung et al. (2020), who applied a Bayesian model analysis framework 

incorporating the sampling importance resampling scheme to assess uncertainties in both model 

parameters and structures. However, we concur with Marshall et al. (2007) that a robust estimation 

of model structural uncertainty requires the use of multiple models. Initiatives such as the Coupled 

Model Intercomparison Project (Eyring et al. 2016) and the Global N2O Model Intercomparison 

Project (Tian et al. 2018) provide valuable templates for this purpose. Therefore, we call for the 

initiation of multiple model inter-comparison projects, with a specific focus on net GHG balance, 

to comprehensively quantify uncertainty from model structures. Finally, the lack of available 

spatialized and temporal datasets on SOC sequestration rate to constrain our model simulations 

over space and time could also result in significant uncertainty in our results, as SOC sequestration 

rates are typically much smaller than the magnitude of SOC pools. We will address these 

limitations in future studies to improve future simulation estimates. 

5.5 Conclusion 

This study quantified the magnitude and spatiotemporal variations of the net soil GHG balance 

in U.S. croplands from 1960 to 2018 using a model-data integration approach. We found that U.S. 

croplands acted as a net carbon sink during 1960-2018 with an average SOC sequestration rate of 

13.2 ± 1.16 Tg C year−1 but a net source of N2O and CH4 with average emission rates of 0.39 ±

0.02 Tg N year−1 and 0.21 ± 0.01 Tg C year−1, respectively. When translated into the GWP100 

metric, the simulated national average net GHG emission rate of U.S. agricultural soils was 

121.9 ± 11.46 Tg CO2-eq yr-1. Thus, net effort of soil GHG emission during this study period 
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was a contributor of climate warming. Sequestered SOC offset ~28% of the climate-warming 

effects resulting from non-CO2 GHG emissions, and the proportion of this offset increased over 

time. The Midwest hub contributed ~47% of the national total net GHG balance, followed by the 

Northern Plains hub at ~21%. Our factorial analysis over 1960-2018 indicated that N fertilization 

use was the dominant factor promoting net GHG emissions from U.S. croplands and explained 

~47% of the total changes, while reduced tillage and rising atmospheric CO2 attenuated net GHG 

emissions from U.S. croplands. Our study emphasizes the need to consider both SOC sequestration 

and non-CO2 GHG emissions when examining the role of soils in addressing climate change. It 

also underscores the critical role of CSA management practices (e.g., reduced tillage and optimized 

N fertilization) in mitigating the net GHG balance of U.S. croplands. Given the pressing need to 

curb climate change, future work could focus on predicting the long-term impacts and mitigation 

potential of various CSA management practices on the net GHG balance and crop production 

under different climate scenarios, with the ultimate goal of achieving carbon neutrality and 

sustainable agriculture. 
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Chapter 6. Projected dynamics of crop production and greenhouse gas balance in U.S. 

croplands: The imperative of sustainable agriculture 

 

Abstract 

Contemporary agriculture faces a dual challenge under climate change: ensuring food security 

while reducing net greenhouse gas (GHG) emissions. While numerous studies have independently 

predicted food production and GHG emissions under future climate scenarios, few have examined 

their complex interrelationship. To bridge this gap, this study used the Dynamic Land Ecosystem 

Model (DLEM), driven by climate forcings from the CMIP6 climate model, to predict future crop 

production, net GHG balance, and net GHG emissions intensity (GHGI: net soil GHGs emissions 

per unit of crop production) in U.S. croplands under three climate scenarios (i.e., SSP126, SSP245, 

and SSP585) from 2020 to 2100. Our results show a significant increase in the national net GHG 

balance across the SSP245 and SSP585 scenarios, with the most pronounced increase occurring 

under the high-emission trajectory SSP585, averaging 236 Tg CO2-eq year−1. In contrast, the net 

GHG balance under the 126 scenario remains relatively stable throughout the study period. Crop 

production shows significant interannual variations but does not exhibit significant trends across 

all scenarios. This imbalance, where the net GHG balance increases disproportionately compared 

to crop production, leads to an increased GHGI, which is estimated to be 0.26 CO2-eq Tg−1, 0.34 

CO2-eq Tg−1, and 0.42 CO2-eq Tg−1 under the SSP126, SSP245, and SSP585 scenarios, 

respectively. Increased temperatures and atmospheric CO2 concentrations are the primary 

contributors to the significant increase in net GHG balance and GHGI. The predicted increase in 

GHGI underscores the urgent need for immediate intervention through climate-smart agricultural 

practices. Our study offers a comprehensive prediction of the intricate relationship between climate 
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change and agriculture, advocating for conservative agricultural practices to maintain food security 

while mitigating net GHG emissions. 

6.1 Introduction 

Climate change poses an increasing threat to the world's food supply. As global temperatures 

rise and the frequency of extreme weather events increases, agricultural systems around the world 

face a variety of risks, such as decreased crop yields, soil degradation, and increased susceptibility 

to pests and diseases (IPCC 2018). Additionally, agriculture has played a pivotal role in 

anthropogenic global warming, contributing about 25%-30% and 35%-50% of global land 

biogenic emissions of nitrous oxide (N2O) and methane (CH4), respectively (Tian et al. 2016). This 

constitutes a significant obstacle to achieving the Paris climate goal of limiting global warming to 

well below 2°C by the end of this century (Tian et al. 2020a). As a leading global producer of 

staple crops such as corn, soybean, and wheat, the United States (U.S.) plays a crucial role in both 

domestic and global food systems (Dohlman et al. 2020). However, its agricultural system has 

been significantly impacted by climate change (Lobell et al. 2014; Ortiz-Bobea et al. 2019; 

Schlenker and Roberts 2009b). According to EPA (2021), U.S. agriculture contributed ~10% of 

the national total greenhouse gas (GHG) emissions in 2019 and was the largest source of N2O 

emissions (~75%). Considering the increasing climate-related risks in the future coupled with the 

U.S.’s pivotal role in global food supply, it is imperative to quantify the effects of future climate 

change on U.S. agricultural systems (e.g., crop yields and net GHG emissions), thereby informing 

policy-making ranging from localized farm management strategies to international trade accords. 

The magnitude, rate, and pattern of future climate change on agricultural productivity have 

been extensively studied at both field and regional scales using models that range from highly 

process-based to relatively empirical in their formulation (Challinor et al. 2018; Fei et al. 2023; 
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Liu et al. 2021; Rosenzweig et al. 2014; Rosenzweig et al. 2013). Among them, process-based 

crop models have been widely recognized as effective tools for simulating crop yields and 

investigating the impacts of future climate change and agricultural management practices on the 

exchange of carbon, water, nitrogen (N) and energy fluxes between the agroecosystem and the 

atmosphere (Bondeau et al. 2007; Lutz et al. 2019a; McDermid et al. 2017; Rosenzweig et al. 

2014). Previously, many agronomic crop models (e.g., CERES, APSIM, EPIC, and DSSAT) have 

been developed to simulate crop yields and provide guidance for agricultural decision-making, 

with the aim of reducing potential risks and evaluating adaptation strategies (Holzworth et al. 2014; 

Jones et al. 2003; Keating et al. 2003; Ritchie et al. 1998; Williams et al. 1989). However, since 

crop models are originally designed for farmer's decision support, they generally focus on field-

scale yield simulation over homogeneous plot conditions. Meanwhile, they typically have a 

reduced-form representation of hydrologic, energy and biogeochemical cycles. These properties 

limit their ability to simulate regional crop production, assess mitigation potential in the agriculture 

sector, and evaluate the environmental impacts of agricultural management activities. In recent 

years, with the increasing attention to the impact of agricultural activities on the Earth’s climate, 

there is a growing trend for terrestrial biosphere models (TBMs) to include detailed crop growth 

processes and agricultural management practices (Drewniak et al. 2013; Peng et al. 2018; Van den 

Hoof et al. 2011; Wu et al. 2016; Zhang et al. 2018). The TBM with well-represented crop 

phenological development and growth processes, as well as agricultural management practices, 

not only benefits yield simulation, but also improves the estimation of regional-scale carbon, water 

and energy exchanges between the biosphere and the atmosphere (Boas et al. 2021; Lokupitiya et 

al. 2009; Lu et al. 2017b; McDermid et al. 2017; Osborne et al. 2015; Song et al. 2013). Notably, 

You et al. (2022) integrated the strengths of crop models and TBMs into a unified agricultural 
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modeling framework, which was achieved by incorporating detailed and mechanistic 

representations of dynamic crop growth processes and agricultural management practices into the 

Dynamic Land Ecosystem Model (DLEM). This unified modeling framework has led to improved 

simulation accuracy of various fluxes and stocks such as crop yield, biomass, leaf area index, soil 

organic carbon (SOC), and GHG emissions. 

GHG emission is another crucial factor closely related to agricultural productivity. By 2050, 

global food production may need to increase by 25%-70% (Hunter et al. 2017), or even double 

current production levels (Tilman et al. 2011), to meet projected food demands. This would 

inevitably lead to substantial increases in GHG emissions due to predicted increases in N fertilizer 

use and cropland expansion (Cavigelli et al. 2012; Molotoks et al. 2018; Thompson et al. 2019; 

Zabel et al. 2019). For example, Stocker et al. (2013) used the LPX-Bern 1.0 model to estimate 

global N2O and CH4 emissions under two contrasting scenarios: a climate mitigation scenario 

(RCP 2.6) and a high-emission scenario (RCP 8.5). Kanter et al. (2016) used the GFDL-LM3 N.1 

model to evaluate the impact of variations in climate scenarios, land use, and N fertilizer use rates 

on agricultural N2O emissions before 2050. However, it should be noted that agriculture also has 

the capability to sequester carbon in soils through practices such as no tillage and cover cropping 

(Bai et al. 2019; EPA 2021). In light of the dual role of agriculture—both impacted by and 

impacting climate change—it becomes imperative to study food production and GHG emissions 

simultaneously (Garnett et al. 2013; Parry 2019). GHG emissions intensity (GHGI), defined as the 

amount of GHG emitted per unit of food produced, can be used to assess the relationship between 

food production and GHG emissions (Carlson et al. 2017). As the climate continues to change, it 

is therefore imperative to comprehend and predict the future relationship between food production 

and GHG emissions (i.e., changes in GHGI) under future climate change scenarios. This prediction 
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could provide farmers and policymakers with valuable insights to mitigate the negative effects of 

climate change on food security and to ensure environmental sustainability (IPCC 2019; 

Rosenzweig et al. 2014; Wheeler and von Braun 2013a). 

While previous studies have mainly focused on either crop production or GHG emissions in 

isolation, there is limited work that integrates the two, namely GHGI (net soil GHGs emissions 

per unit of crop production), within the context of future climate change scenarios (Arora 2019; 

Laborde et al. 2021; Smith et al. 2014; Zhang et al. 2020a). These research gaps hinder the 

development of comprehensive mitigation and adaptation strategies for the agricultural sector 

(Carlson et al. 2017; Mrówczyńska-Kamińska et al. 2021; Schmidhuber and Tubiello 2007). 

Projections that integrate food production, GHG emissions, and GHGI could provide valuable 

insights into the resilience of the U.S. food production system under various climate change 

scenarios. Therefore, it is imperative to bridge this gap to develop robust, data-driven policy 

interventions that can mitigate the environmental impacts of agriculture while ensuring food 

security. 

This study aims to predict crop production, net GHG balance, and GHGI in U.S. croplands 

under various future climate scenarios, including SSP126, SSP245, and SSP585. To this end, we 

used climate forcings derived from a CMIP6 climate model IPSL-CM6A-LR to drive the unified 

agricultural modeling framework within the Dynamic Land Ecosystem Model (DLEM). The 

objectives of this work are twofold: (1) to estimate the net GHG balance, crop production, and 

GHGI in U.S. croplands under various climate change scenarios from 2020 to 2100, and (2) to 

quantify factorial contributions of different climate drivers (i.e., climate change, atmospheric CO2, 

and N deposition) to the spatial and temporal variations in net GHG balance and crop production 

across the country. 
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6.2 Materials and methods 

6.2.1 Model descriptions 

DLEM v4.0 is a highly integrated TBM that is capable of quantifying daily, spatially explicit 

carbon, water, and nutrient stocks and fluxes in terrestrial ecosystems and inland water systems 

across site, regional, and global scales (Pan et al. 2021; Tian et al. 2010a; Tian et al. 2020b; Yao 

et al. 2020). To meet cross-scale agricultural application needs (e.g., management guidance, 

climate change mitigation and adaptation), DLEM v4.0 has incorporated explicit and mechanistic 

representations of dynamic crop growth processes and multiple agricultural management practices. 

These include but are not limited to crop-specific phenological development, carbon allocation, 

yield formation, and biological nitrogen fixation processes, as well as management practices such 

as nitrogen fertilization, irrigation, rotation, manure application, tillage, cover cropping, and crop 

genetic improvements (You et al. 2022). By fully coupling these agricultural processes with 

biogeochemical, biophysical, and hydrological processes, DLEM v4.0 is capable of simulating and 

predicting the exchange of carbon (including crop yield), water, nutrient and energy fluxes within 

the agriculture-climate-environment system. A thorough description of the processes incorporated 

into the agricultural module of DLEM v4.0 is presented in Chapter 2. 

6.2.2 Future climate scenarios and other input data 

6.2.2.1 Future climate scenarios 

The Shared Socioeconomic Pathways (SSPs) consist of five narratives, namely SSP1, SSP2, 

SSP3, SSP4, and SSP5, that describe a variety of societal trajectories. Various societal factors, 

including but not limited to socio-economic conditions, demographic patterns, lifestyle choices, 

and policy influences, characterize these trajectories (Riahi et al. 2017). In conjunction with the 
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four Representative Concentration Pathways (RCPs), namely RCP2.6, RCP4.5, RCP6, and 

RCP8.5, which cover a range of radiative forcing scenarios and consequently GHG emissions 

trajectories (Moss et al. 2010), these combinations of SSP-RCP pathways serve as the fundamental 

basis for the climate projections used in the Intergovernmental Panel on Climate Change's (IPCC) 

Fifth Assessment Report (IPCC 2014a) and the recent IPCC Special Report on 1.5 degrees (IPCC 

2018). 

In this study, we used CMIP6 climate forcing output from the IPSL-CM6A-LR model under 

different combined SSP and RCP scenarios to estimate future variations in U.S. crop production 

and GHG emissions. These SSP-RCP combinations include SSP585, SSP245, and SSP126 

(Boucher et al. 2020; Lurton et al. 2020). The climate forcing data include precipitation, shortwave 

solar radiation, mean, maximum and minimum temperature. Among them, SSP585 represents a 

worst-case scenario with an additional radiative forcing of 8.5 W/m² by the year 2100 and is an 

extension of the CMIP5's RCP8.5 scenario. It depicts a picture of high GHG emissions that are 

exacerbated by a variety of socioeconomic factors. SSP245 represents a “middle-of-the-road” 

scenario, accounting for some climate protection measures, and projects an additional radiative 

forcing of 4.5 W/m² by 2100. This is an update of the RCP4.5 scenario. SSP126 represents the 

"best case" future from the sustainability perspective, with radiative forcing limited to 2.6 W/m² 

by the year 2100. This scenario is designed to be consistent with the goal of limiting global 

warming to 2°C and is a revised version of the RCP2.6 scenario. Each of these pathways not only 

captures the potential future states of the Earth's climate, but also reflects how climate science is 

intertwined with societal decisions and developmental trajectories (O'Neill et al. 2016). These 

future climate datasets were further bias-corrected at a daily time-step and a 5 arc-min spatial 

resolution, using the historical climate dataset reconstructed in Section 2.3 in Chapter 2. 
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Future atmospheric CO2 concentration data for the three scenarios were generated by the 

climate-carbon cycle model MAGICC7.0 (Meinshausen et al. 2020). Under the SSP126 scenario, 

the increase in atmospheric CO2 concentration slows to a peak of 474 ppm in 2063, then decreases 

to 446 ppm in 2100 as a result of significant emission mitigation and land-based carbon removal. 

Under the SSP245 scenario, the atmospheric CO2 concentration continues increasing, but the 

increase slows down after the 2060s. In 2100, the CO2 concentration will reach 603 ppm. Under 

the SSP585 scenario, the CO2 concentration in the atmosphere increases significantly, reaching 

1135 ppm in 2100. 

Future atmospheric N deposition data for the three scenarios were derived from the 

IMAGE3.0 model, which is a comprehensive integrated framework that incorporates interactions 

between human and natural systems and is characterized by biophysical processes such as water, 

carbon, and nutrient cycles and various environmental indicators (Stehfest et al. 2014). 

6.2.2.2 Other input data 

Details of other model forcing datasets, such as agricultural management practices (e.g., N 

fertilizer use rate, crop rotation, tillage, irrigation, and manure application), land use change, and 

soil properties, can be found in Section 2.3 in Chapter 2. 

6.2.3 Model implementation and experimental design 

Implementation of DLEM v4.0 consisted of three major steps: an equilibrium run, a spin-up 

run, and a transient run. The equilibrium run was driven by average annual climate data during the 

1860s and other environmental factors in 1860. The equilibrium state was assumed to be reached 

when changes in carbon, N, and water pools between two consecutive 20-year periods were less 

than 0.5 g C m−2 year−1, 0.5 g N m−2 year−1, and 0.5 mm year−1, respectively. The spin-up run was 
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driven by detrended climate data during the 1860s to eliminate fluctuations due to the transition 

from equilibrium run to transient run. Finally, the transient run was driven by historical and future 

data from 1860 to 2100 for the three SSP-RCP combinations (i.e., SSP585, SSP245, and SSP126). 

Note that land use change and agricultural management practices data were maintained at the 2020 

level when the model was run for the period 2020-2100. 

For each future climate scenario, we designed four simulation experiments to distinguish the 

factorial contributions of different drivers to the inter-annual variations of crop production and net 

soil GHG balance (Table 6-1), including climate change, atmospheric CO2 concentration, and N 

deposition. Specifically, S0 denotes the all-combined experiment, where the DLEM was driven by 

all historically and future-varying factors. S1 denotes the climate-controlled experiment, where the 

climate conditions after 2020 were kept the same as those in 2020, while other factors were time-

varying. The contribution of climate change can be calculated as the difference between S0 and 

S1. S2 and S3 denote the atmospheric CO2 concentration-controlled and N deposition-controlled 

experiments, respectively, in which the atmospheric CO2 concentration and N deposition after 

2020 were kept the same as in 2020, whereas other factors varied over time. The contribution of 

atmospheric CO2 concentration and N deposition are determined by the difference between S0 and 

S2 and S0 and S3, respectively. 

Table 6-1. Factorial experiments in this study. 

 Scenario Climate Atmospheric CO2 
Concentration 

Atmospheric N 
Deposition 

S0 All-Combined 1860-2100 1860-2100 1860-2100 

S1 Climate-Controlled 1860-2020* 1860-2100 1860-2100 

S2 Atmospheric CO2-Controlled 1860-2100 1860-2020* 1860-2100 

S3 Atmospheric N Deposition-Controlled 1860-2100 1860-2100 1860-2020* 

    *Data after 2020 was kept the same as 2020. 
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6.2.4 Global warming potential and GHGI calculation 

The global warming potential (GWP) is an index to measure the integrated radiative forcing 

from the emission of 1 kg of a trace gas relative to that of CO2 (Myhre et al. 2013). In GWP 

conversions, CO2 is typically considered the reference gas with a GWP constant of 1. CH4 and 

N2O emissions can be converted to ‘CO2-equivalents’ based on their respective GWP constants 

over a specified time horizon. To obtain a comprehensive assessment of the climatic impact of net 

soil GHG balance, we adopted the following equation to calculate the combined GWPs for SOC 

sequestration of CO2 and N2O and CH4 emissions: 

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐶𝐶𝐶𝐶2−𝐶𝐶 ×
44
12

× 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶2 + 𝐹𝐹𝑁𝑁2𝑂𝑂−𝑁𝑁 ×
44
28

× 𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁2𝑂𝑂 + 𝐹𝐹𝐶𝐶𝐶𝐶4−𝐶𝐶 ×
16
12

× 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4  (1) 

𝐹𝐹𝐶𝐶𝐶𝐶2−𝐶𝐶 = −𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (2) 

where 𝐹𝐹𝐶𝐶𝐶𝐶2−𝐶𝐶 , 𝐹𝐹𝑁𝑁2𝑂𝑂−𝑁𝑁 , and 𝐹𝐹𝐶𝐶𝐶𝐶4−𝐶𝐶  were annual fluxes of CO2, N2O, and CH4, respectively; 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 was SOC sequestration rate; molecular weight conversion fractions 44/12, 44/28, and 

16/12 were used to convert the mass of CO2-C, N2O-N, and CH4-C into CO2, N2O, and CH4, 

respectively; 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶2, 𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁2𝑂𝑂 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4 were GWP constants indicating radiative forcing 

of CO2, N2O, and CH4 in terms of their CO2 equivalents, and this study used the GWP values 

integrated over a time horizon of 100 years for CO2, N2O, and CH4, which were 1, 273, and 27, 

respectively (Myhre et al. 2013). 

GHGI, defined as the amount of net soil GHGs emitted per unit of food produced, can be used 

to assess  the efficiency of agricultural systems in emitting GHGs relative to their productivity: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺𝐺𝐺 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⁄  (3) 

where 𝐺𝐺𝐺𝐺𝐺𝐺 is the GWP value of net soil GHG balance, and crop production is the simulated crop 

yield. 
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6.3 Results 

6.3.1 National budget and spatiotemporal variations in net GHG balance 

Our simulations indicate that U.S. croplands exhibit divergent temporal variations in GHG 

fluxes under various future climate scenarios (Figure 6-1). In terms of SOC sequestration, U.S. 

croplands continuously serve as a net carbon sink between 2020 and 2100 under the SSP126 and 

SSP245 scenarios, with average SOC sequestration rates of 30.1 Tg C year−1 and 31.9 Tg C year−1, 

respectively. However, under the SSP585 scenario, U.S. croplands act as a net carbon sink from 

2020 to 2090, with an average SOC sequestration rate of 26.7 Tg C year−1, but transition to a net 

carbon source during the 2090s, with an average SOC decomposition rate of 1.8 Tg C year−1. 

Additionally, under the SSP126 and SSP245 scenarios, the SOC sequestration rate remains 

relatively stable from 2020 to 2100 without significant trends, while under the SSP585 scenario, 

it remains stable from 2020 to 2070 and then shows a declining trend. 

As for N2O, U.S. croplands consistently act as a net source during 2020-2100, with average 

emission rates of 0.58 Tg N year−1, 0.66 Tg N year−1, and 0.74 Tg N year−1 under the SSP126, 

SSP245, and SSP585 scenarios, respectively. Notably, N2O emissions under the SSP245 and 

SSP585 scenarios show a significant increasing trend, with increasing rates of 0.003 Tg N year−2 

and 0.005 Tg N year−2, respectively. In contrast, N2O emissions under the SSP126 scenario exhibit 

fluctuations but generally remain relatively stable during 2020-2100. 

For CH4, U.S. croplands consistently act as a net source during 2020-2100, with average 

emission rates of 0.28 Tg C year−1, 0.35 Tg C year−1, and 0.31 Tg C year−1 under SSP126, SSP245, 

and SSP585 scenarios, respectively. Although large interannual variations in CH4 emissions were 

observed for all scenarios, only the SSP585 scenario showed a statistically significant increasing 

trend, at a rate of 0.001 Tg C year−2. 
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Figure 6-1. Temporal variations in national SOC sequestration rate (a) and fluxes of N2O (b) and 

CH4 (c) in U.S. agricultural soils from 2020 to 2100. Note that negative values in SOC 

sequestration rate represent carbon release. 

Using the GWP100 (GWP over a 100-year time horizon) metric, sequestered SOC in U.S. 

agricultural soils reduces the national net GHG balance during 2020-2100 at average rates of 110 

Tg CO2-eq year−1, 117 Tg CO2-eq year−1, and 94 Tg CO2-eq year−1 for the SSP126, SSP245, and 

SSP585 scenarios, respectively. In contrast, non-CO2 GHG emissions (i.e., the sum of N2O and 
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CH4 emissions) contribute to the net GHG balance at average rates of 262 Tg CO2-eq year−1, 297 

Tg CO2-eq year−1, and 330 Tg CO2-eq year−1 for the SSP126, SSP245, and SSP585 scenarios, 

respectively. Consequently, non-CO2 GHG emissions from U.S. croplands consistently exceed 

SOC sequestered across all climate scenarios, indicating that U.S. croplands continue to act as a 

net source of GHGs during 2020-2100. Statistically, under the SSP126, SSP245, and SSP585 

scenarios, sequestered SOC offset approximately 42%, 39%, and 28% of climate-warming effects 

resulting from non-CO2 GHG emissions during 2020-2100, respectively. When integrating both 

SOC sequestration and non-CO2 GHG emissions, the average net GHG balance during 2020-2100 

is estimated to be a GHG source of 151 Tg CO2-eq year−1, 180 Tg CO2-eq year−1, and 236 Tg CO2-

eq year−1 under the SSP126, SSP245, and SSP585 scenarios, respectively. Moreover, it exhibits a 

significant increasing trend under the SSP245 and SSP585 scenarios but remains relatively stable 

under the SSP126 scenario (Figure 6-2). 

 
Figure 6-2. Temporal variations in national net greenhouse gas balance of U.S. croplands from the 

2020s to the 2090s. 

The spatial distribution of the net soil GHG balance showed large spatial variations under all 

scenarios. Notably, emission hotspots are concentrated in the Midwest and central U.S. regions, 

where peak net soil GHG emissions reach up to 4 Mg CO2-eq ha-1 year−1 (Figure 6-3). Generally, 
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the SSP585 scenario results in the highest net GHG emissions across the majority of U.S. 

croplands, and the SSP245 scenario leads to medium emissions, while the SSP126 scenario yields 

the lowest emissions. 

 

Figure 6-3. Spatial pattern of the average annual net greenhouse gas balance of U.S. croplands 

during 2020-2100 under the SSP126 (a), SSP245 (b), and SSP585 (c) scenarios. 

6.3.2 Spatial and temporal variations in crop production 

Our simulation results reveal that national crop production exhibits substantial interannual 

variations and shows no significant trends across all climate scenarios (Figure 6-4). Specifically, 
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the average national crop production during 2020-2100 is estimated to be 593 Tg year−1 under the 

SSP126 scenario, 531 Tg year−1 under the SSP245 scenario, and 568 Tg year−1 under the SSP585 

scenario. Notably, the SSP126 scenario leads to the highest national crop production, followed by 

the SSP585 and SSP245 scenarios, respectively. However, it is worth noting that crop production 

in the 2090s experiences a substantial decrease under the SSP585 scenario. 

 

Figure 6-4. Temporal variations in national crop production in U.S. croplands from 2020 to 2100 

under the SSP126, SSP245, and SSP585 scenarios. 

The spatial distribution of average annual crop production during 2020-2100 exhibits 

substantial variability across all scenarios (Figure 6-5). Notably, regions such as the Midwest, the 

central U.S., and the Mississippi Delta display high levels of production. Additionally, our 

simulation results suggest that the spatial patterns of crop production remain generally consistent 

across different climate scenarios. 
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Figure 6-5. Spatial pattern of the average annual crop production in U.S. croplands during 2020-

2100 under the SSP126 (a), SSP245 (b), and SSP585 (c) scenarios. 

6.3.3 Spatial and temporal variations in net GHG emissions intensity 

We analyzed the temporal variations in the GHGI of U.S. croplands (Figure 6-6). Under the 

SSP126, SSP245, and SSP585 scenarios, the average annual GHGI for the period 2020-2100 is 

estimated to be 0.26 CO2-eq Tg−1, 0.34 CO2-eq Tg−1, and 0.42 CO2-eq Tg−1, respectively. National 

GHGI shows an increasing trend in both the SSP245 and SSP585 scenarios. Specifically, for the 

SSP245 scenario, GHGI increases from an initial level of 0.31 Tg CO2-eq Tg−1 in the 2020s to 
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0.44 Tg CO2-eq Tg−1 in the 2090s. For the SSP585 scenario, it increases from 0.26 Tg CO2-eq 

Tg−1 in the 2020s to 0.81 Tg CO2-eq Tg−1 in the 2090s. Additionally, the SSP585 scenario exhibits 

the most substantial increase in GHGI between 2020 and 2100 (especially during the 2090s), 

whereas GHGI under the SSP126 scenario remains relatively stable over the study period. 

 

Figure 6-6. Temporal variations in greenhouse gas emissions intensity in U.S. croplands from the 

2020s to the 2090s under the SSP126, SSP245, and SSP585 scenarios. 

Similar to the net GHG balance and crop production, the spatial distribution of GHGI in U.S. 

croplands also exhibits substantial heterogeneity under all climate scenarios (Figure 6-7). For the 

SSP126 scenario, high GHGI is mainly located in the western and northwestern regions, as well 

as the Mississippi Delta, where GHGI can reach up to 0.8 Mg CO2-eq Mg−1. In contrast, low GHGI 

is primarily concentrated in the northeastern U.S. However, under the SSP245 and SSP585 

scenarios, regions with high GHGI not only include the western and northwestern regions as well 

as the Mississippi Delta, but also expand to the Midwest and southeastern regions. Notably, the 

proportion of croplands with high GHGI (e.g., > 0.8 Mg CO2-eq Mg−1) is significantly larger under 

the SSP245 and SSP585 scenarios than under the SSP126 scenario. 
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Figure 6-7. Spatial pattern of net greenhouse gas emissions intensity in U.S. croplands during 

2020-2100 under the SSP126 (a), SSP245 (b), and SSP585 (c) scenarios. 

6.3.4 Factorial contributions of multi-driver changes to net GHG balance and crop 

production 

By setting up a series of simulation experiments (Table 6-1), we further quantified the factorial 

contributions of key drivers—climate change, atmospheric CO2, and N deposition—to the changes 

in net soil GHG balance and crop production in U.S. croplands during the period 2020-2100. Our 

results indicate that climate change is the dominant driver of variations in net soil GHG emissions 

across all scenarios, with the SSP585 scenario exhibiting the greatest impact (Figure 6-8). During 
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2020-2100, climate change is projected to account for an increase in the net GHG balance of 69 

Tg CO2-eq year−1, 136 Tg CO2-eq year−1, and 229 Tg CO2-eq year−1, representing approximately 

81%, 87%, and 82% of the total changes under the SSP126, SSP245, and SSP585 scenarios, 

respectively. Notably, under the SSP585 scenario, the impact of climate change increases 

substantially over time, from 47 Tg CO2-eq year−1 in the 2020s to 524 Tg CO2-eq year−1 in the 

2090s. Under the SSP245 scenario, the contribution increases slightly over the study period, 

whereas under the SSP126 scenario, the contribution increases slightly from the 2020s to the 2040s 

and then decreases continuously thereafter. In all scenarios, increased atmospheric CO2 

concentration is the second most significant factor, with the SSP585 exhibiting the most significant 

impact. Nevertheless, it should be noted that rising atmospheric CO2 initially reduces the net GHG 

balance and then promotes it across all scenarios. In contrast, variations in N deposition have a 

negligible impact on the net GHG balance. In particular, while future N deposition slightly reduces 

the net GHG balance under the SSP126 scenario compared to the 2020 level, it slightly increases 

the net GHG balance under the SSP245 and SSP585 scenarios. 

 

Figure 6-8. Factorial contributions of climate change, atmospheric CO2, and N deposition to the 

changes in net soil GHG balance of U.S. croplands during 2020-2100 under the SSP126 (a), 

SSP245 (b), and SSP585 (c) scenarios. 

For crop production, our attribution analysis reveals that climate change remains the dominant 

factor driving its variations, followed by atmospheric CO2, while N deposition has a negligible 
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impact (Figure 6-9). Specifically, climate change is projected to reduce crop production by 125 Tg 

year−1, 186 Tg year−1, and 189 Tg year−1 during 2020-2100, accounting for approximately 73%, 

71%, and 56% of total changes under the SSP126, SSP245, and SSP585 scenarios, respectively. 

Furthermore, the negative impacts of climate change on crop production generally show an 

increasing trend under all scenarios. In contrast, increases in atmospheric CO2 concentration result 

in substantial increases in crop production, especially under the SSP245 and SSP585 scenarios. 

Specifically, atmospheric CO2 is projected to increase crop production by 45 Tg year−1, 85 Tg 

year−1, 160 Tg year−1, representing approximately 26%, 28%, and 42% of total changes under the 

SSP126, SSP245, and SSP585 scenarios, respectively. Additionally, under the SSP245 and 

SSP585 scenarios, the promoting impact of atmospheric CO2 on crop production increases 

significantly over time, whereas under the SSP126 scenario, this positive effect increases slightly 

from the 2020s to the 2070s and then decreases continuously thereafter. Future changes in N 

deposition are estimated to decrease crop production by 1 Tg year−1 under the SSP126 scenario, 

while marginally increasing crop production by 2 Tg year−1 and 3 Tg year−1 under the SSP245 and 

SSP585 scenarios, respectively. 

 

Figure 6-9. Factorial contributions of climate change, atmospheric CO2, and N deposition to the 

changes in crop production of U.S. croplands during 2020-2100 under the SSP126 (a), SSP245 (b), 

and SSP585 (c) scenarios. 



187 
 

6.4 Discussion 

6.4.1 Impacts of future climate change on net GHG balance, crop production, and GHGI 

This study predicted the future trajectory of net GHG balance, crop production, and GHGI in 

U.S. croplands from 2020 to 2100 under three different climate scenarios: SSP126, SSP245, and 

SSP585. Our predictions indicate that both the national net GHG balance and GHGI increase 

significantly under the SSP245 and SSP585 scenarios over the study period (Figure 6-2 and Figure 

6-6). The SSP585 scenario demonstrates the most significant increases in both net GHG balance 

and GHGI, consistent with its characterization as an extreme, high-emission trajectory. In contrast, 

the national net GHG balance and GHGI under the 126 scenario remains relatively stable over the 

study period. Additionally, national crop production exhibits substantial interannual variations and 

shows no significant trends across all climate scenarios (Figure 6-4). 

The major drivers of the increase in the net GHG balance include increased temperature and 

rising atmospheric CO2 concentration relative to current levels (Figure 6-8 and Figure 6-10). For 

example, under the SSP585 scenario, the average annual temperature is projected to increase from 

13.6 ℃ in 2020 to 20.5 ℃ in 2100, and the average CO2 concentration increases from 414.9 ppm 

to 1135.2 ppm. Increased temperature has a direct impact on microbial activity and root respiration, 

boosting their metabolic processes. This often results in accelerated SOC decomposition, which 

enriches soil carbon substrate and nutrient availability like N to promote soil microbial CO2 

production, methanogenesis, and denitrification processes (Carey et al. 2016; Pärn et al. 2018; 

Weier et al. 1993; Yvon-Durocher et al. 2014). Our factorial analysis of each individual gas also 

revealed a positive response of climate warming on SOC decomposition and N2O emissions 

(Figure 6-11 (a-f)), while a positive impact of warming on CH4 emissions was observed only under 

the SSP245 scenario. This may be due to the reduced precipitation levels associated with the 
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SSP126 and SSP585 scenarios, which are likely to inhibit methanogenesis processes, in contrast 

to conditions under the SSP245 scenario (Figure 6-11 (g-i)). Similar positive responses of rising 

temperature to GHG emissions are also observed in previous studies. For example, a meta-analysis 

by Liu et al. (2020a) found that a warming of ~1.5℃ in rice paddies accelerated SOC 

decomposition by 12.9% and stimulated N2O and CH4 emissions by 35.2% and 23.4%, 

respectively. Xu et al. (2020) found that climate warming resulted in a net N2O emission increase 

of 0.3 Tg N year−1 in global croplands during 2000-2014.  

 

Figure 6-10. Temporal changes in temperature (a), precipitation (b), atmospheric carbon dioxide 

concentration (c), and atmospheric nitrogen deposition (d) under the SSP126, SSP245, and SSP585 

scenarios during the 2020-2100 period. 

In contrast, increasing atmospheric CO2 concentration has complex and multi-faceted effects 

on the net GHG balance. On the one hand, elevated CO2 levels can promote crop growth and 
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photosynthesis, leading to greater root exudation and crop residue, thereby adding more carbon to 

the soil (Ren et al. 2011; van Groenigen et al. 2011; Xu et al. 2020). On the other hand, this added 

soil carbon may also stimulate N2O and CH4 emissions due to the increased availability of carbon 

substrates and nutrients for microbial activity (Kammann et al. 2008; van Groenigen et al. 2011). 

These findings are further corroborated by our factorial analysis of each individual gas (Figure 6-

11), which shows that rising CO2 concentration promotes SOC sequestration but also stimulates 

N2O and CH4 emissions. Therefore, the net impact of rising atmospheric CO2 concentration on the 

net GHG balance depends on the balance between SOC sequestration rates and non-CO2 GHG 

emissions, emphasizing the need to consider both carbon sequestration and GHG emissions when 

developing mitigation strategies. 
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Figure 6-11. Factorial contributions of climate change, atmospheric CO2, and N deposition to the 

changes in CO2 emission (a-c), N2O emission (d-f), and CH4 emission (g-i) from U.S. croplands 

during 2020-2100 under the SSP126, SSP245, and SSP585 scenarios. 

Interannual variations in crop productivity are primarily attributable to changes in climate and 

atmospheric CO2 concentration (Figure 6-4 and Figure 6-9). Consistent with previous studies 

(IPCC 2019; Jägermeyr et al. 2021; Liu et al. 2021), our attribution analysis reveals that future 

climate change will have a negative impact on crop production. This negative impact is mainly 

due to elevated temperatures associated with all climate scenarios (Figure 6-10). Specifically, 

higher temperatures can lead to increased evapotranspiration rates, which in turn reduces soil 
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moisture and causes water stress in crops (Battisti and Naylor 2009; Ottman et al. 2012). Extreme 

heat can also directly damage plant tissues, reduce pollen production and viability, and hasten crop 

maturity, all of which contribute to decreased crop yields (Barlow et al. 2015; Prasad et al. 2006; 

Ugarte et al. 2007). In contrast, our results indicate that rising atmospheric CO2 concentration has 

a positive impact on crop production. Higher CO2 levels can enhance photosynthesis, allowing 

crops to convert more CO2 into plant biomass (Jaggard et al. 2010; Kimball and Idso 1983; Long 

et al. 2006). Additionally, increased CO2 could enhance the water-use efficiency of crops, making 

them more resilient to drought (Allen et al. 2011; Conley et al. 2001). Interestingly, our results 

suggest that the beneficial effects of increased CO2 may partially offset the negative consequences 

of climate change. While this finding is promising, it is important to note that the CO2 fertilization 

effect has its limits and may not scale linearly with ever-increasing levels of atmospheric CO2 

(Leakey et al. 2009). Additionally, our results indicate that crop production under the SSP245 

scenario is the lowest compared to all other scenarios (Figure 6-4), which can be attributed to the 

balance between the negative impact of rising temperatures and the positive impact of elevated 

atmospheric CO2 concentration on crop production. While the SSP585 scenario exhibits a more 

substantial increase in temperature than the SSP245 scenario, it also exhibits a higher level of CO2 

concentration. Consequently, the negative impact of rising temperatures is largely offset by the 

positive impact of elevated atmospheric CO2 concentration under the SSP585 scenario, whereas 

the SSP245 scenario does not, leading to lower crop production compared to the SSP585 scenario. 

The interaction between elevated CO2 concentration and climate change on crop production is 

inherently complex. Future research should aim to identify thresholds beyond which these impacts 

might become irreversible and explore mitigation strategies to safeguard global crop production. 
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Combining net GHG balance and crop production, our results indicate that national GHGI 

increases under the SSP245 and SSP585 scenarios (Figure 6-6). The increasing trend is primarily 

attributed to a significant increase in the net GHG balance, while the corresponding crop 

production shows only small changes. This finding is of particular concern as it contradicts the 

sustainable agriculture goal of reducing GHG emissions while ensuring food security. Given that 

global food production may need to increase by 25%-70% (Hunter et al. 2017) or even double 

current production levels (Tilman et al. 2011) by 2050 to meet the demands of the growing global 

population, the increasing trend in national GHGI underscores the need for a concerted global 

effort to make agriculture more sustainable (Beltran-Peña et al. 2020; Rockström et al. 2017). 

Without mitigation measures, increasing GHGI will likely exacerbate climate change while failing 

to adequately address global food security. 

6.4.2 Uncertainty and future work 

Several types of uncertainties persist in this study, including model parameter uncertainty, 

model structure uncertainty, and model forcing data uncertainty. Firstly, the DLEM includes a 

large number of parameters, whereas the lack of sufficient data for model calibration and validation 

causes uncertainties, particularly regarding the responses of crop yield and GHG emissions to 

future climate change and elevated CO2 concentrations. Secondly, the lack or simplified 

representation of some key processes in the DLEM also introduces uncertainty to the simulation 

results. For example, the current DLEM representation of groundwater and irrigation practice (i.e., 

without considering irrigation amount and frequency) is relatively simple, which could lead to 

biased simulated soil moisture that, in turn, could affect crop yield and GHG emission predictions. 

Moreover, the DLEM currently does not account for improvements in crop genetic and breeding 

technologies that enhance crop resistance to extreme climates (Bailey-Serres et al. 2019; Hammer 
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et al. 2002), nor does it consider human adaptive behaviors such as farmers’ preparedness and 

response strategies related to extreme weather events (Annan and Schlenker 2015). The exclusion 

of these adaptive processes within the model may further contribute to uncertainties in future 

projections. Lastly, the input data driving the DLEM introduces uncertainty as well. For example, 

future climate scenarios (i.e., SSP126, SSP245, and SSP585) contain significant uncertainties due 

to their dependence on unpredictable variables such as human behavior, policy decisions, and 

technological advancements (O'Neill et al. 2016). These climate scenarios are also subject to the 

inherent limitations of current climate models, particularly in their handling of complex Earth 

system feedbacks like cloud formation and ocean circulation (Flato et al. 2014). We will address 

these limitations in future studies to further improve future simulation estimates. 

6.5 Conclusion 

This study provides a comprehensive projection of the effects of different climate change 

scenarios—SSP126, SSP245, and SSP585—on net GHG balance, crop production, and GHGI in 

U.S. croplands from 2020 to 2100. Our analysis reveals that the SSP245 and SSP585 scenarios 

result in a substantial increase in both net GHG balance and GHGI. In contrast, they remain 

relatively stable under the SSP126 scenario. Elevated temperatures and atmospheric CO2 

concentrations are the primary contributors to the significant increase in GHG and GHGI. Crop 

production, however, exhibits significant interannual variations but shows no significant trends 

across all scenarios. The heightened GHGI raises serious concerns about deviating from the 

sustainable agriculture goal of mitigating climate change and ensuring food security. Consequently, 

our findings emphasize the urgent need for the adoption of climate-smart agricultural management 

practices that simultaneously address the imperatives of reducing GHG emissions and sustaining 

food production. 
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Chapter 7. Impacts of climate-smart agricultural practices on crop production and 

greenhouse gas balance in U.S. croplands under future climate predictions 

 

Abstract  

Climate-smart agricultural (CSA) practices, such as no tillage and cover cropping, have 

recently gained widespread advocacy for their potential to curb GHG emissions and enhance soil 

organic carbon (SOC) sequestration. Nevertheless, the long-term impacts of CSA practices on the 

regional net GHG balance (i.e., sum of SOC sequestration and emissions of nitrous oxide (N2O) 

and methane (CH4)) and crop production under future climate scenarios are still uncertain, 

although such a comprehensive analysis could offer valuable insights towards achieving 

sustainable agriculture. In this study, we used the Dynamic Land Ecosystem Model (DLEM) to 

predict the long-term impacts of four CSA practices—no tillage, crop rotation, cover cropping, 

and N fertilizer reduction—on crop production and net GHG balance in U.S. croplands across 

various future climate scenarios, including SSP126, SSP245, and SSP585. Our results indicate that 

these CSA practices significantly reduced the net GHG balance in U.S. croplands, with average 

reductions of 18.9%, 10.3%, 28.6%, and 17.8% for no tillage, N fertilizer reduction, cover 

cropping, and crop rotation, respectively, across the three climate scenarios. Moreover, while no 

tillage and N fertilizer reduction only marginally impacted crop production, cover cropping and 

crop rotation diminished crop production by about 14.7% and 18.5%, respectively. Our results 

underscore the imperative for comprehensive, scenario-specific CSA strategies to meet the dual 

goals of climate change mitigation and food security. Our study holds important implications for 

effectively implementing CSA practices to address climate change issues in the agricultural sector, 



200 
 

which also aligns with carbon neutrality goals and supports the achievement of climate-resilient 

agricultural systems. 

7.1 Introduction 

Limiting global warming below the 2°C threshold established by the Paris Climate Agreement 

requires both efforts to reduce greenhouse gas (GHG) emissions and to remove carbon dioxide 

(CO2) from the atmosphere (Rogelj et al. 2016; United Nations 2015). Agriculture plays a crucial 

role in achieving this objective due to its dual role: it not only contributes significantly to climate 

change but also offers substantial potential for climate mitigation. Specifically, agriculture is a 

primary source of anthropogenic GHG emissions, contributing approximately 25%-30% and 35%-

50% of global land biogenic emissions of nitrous oxide (N2O) and methane (CH4), respectively, 

during the 2000s (Tian et al. 2016). Furthermore, it is anticipated that these emissions will continue 

to rise as global fertilizer use increases to meet the projected increase in food demand (Cavigelli 

et al. 2012; Thompson et al. 2019). On the other hand, agriculture also offers substantial potential 

for climate mitigation. Global croplands account for about 10% of terrestrial soil organic carbon 

(SOC) stock (IPCC 2019; Watson et al. 2000) and could potentially sequester 0.90~1.85 Pg C/yr 

in the top 0.3 m of soils, which is equivalent to 26-53% of the soil carbon sequestration target of 

3.5 Pg C/yr established by the 4p1000 Initiative for climate mitigation (Zomer et al. 2017). 

Notably, by implementing conservation agriculture practices (e.g., reduced tillage and optimized 

nitrogen (N) fertilization), croplands can mitigate climate change by reducing GHG emissions and 

enhancing SOC sequestration without compromising crop yield (Bai et al. 2019; Hutchinson et al. 

2007; Sun et al. 2020). Net soil GHG emissions, a metric defined as the balance of SOC 

sequestration, N2O and CH4 emissions, can be used to measure the overall climate effect resulting 

from the cumulative radiative forcing of all three major GHGs (i.e., CO2, N2O and CH4) 
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(Robertson and Grace 2004). Therefore, it is imperative to seek optimal agricultural management 

practices that can reduce net soil GHG emissions while sustaining or boosting crop production, 

which could result in a win-win situation for stabilizing the global climate system and safeguarding 

food security. 

Climate-smart agriculture (CSA) management practices, such as reduced tillage, straw return, 

cover cropping, and biochar application, have been widely advocated for their potential to enhance 

SOC sequestration (Bai et al. 2019; FAO 2013; Lipper et al. 2014). For example, reduced tillage 

and straw return generally minimize soil disturbance and promote soil aggregation, which can 

reduce SOC losses from soil erosion and protect SOC from microbial degradation, thereby 

decreasing SOC decomposition rate and increasing SOC stock (Abdalla et al. 2013; Montgomery 

2007; Salinas‐Garcia et al. 1997). Cover cropping provides additional biomass input to the soil, 

thereby increasing SOC and N contents (Lal 2004). Moreover, it can promote soil aggregation and 

structure (Sainju et al. 2003), thereby indirectly reducing SOC loss from erosion (De Baets et al. 

2011). However, despite the increase in SOC, these CSA practices have also raised concerns 

because they could potentially stimulate N2O and CH4 emissions, thereby offsetting their climate 

benefits (Shakoor et al. 2021; Shang et al. 2021; Tian et al. 2012b; Zhou et al. 2017). Specifically, 

CSA practices, such as reduced tillage and cover cropping, usually lead to improved soil water 

content (i.e., higher soil water-filled pore space) and increased crop residue coverage, which favor 

the formation of anaerobic soil conditions and increase substrate concentrations, thereby 

promoting microbial processes like denitrification and methanogenesis, ultimately facilitating N2O 

and CH4 production (Sheehy et al. 2013; Zhang et al. 2015b). Furthermore, these practices could 

also impact crop yields, but their effects remain highly debated and are largely dependent on 

background environmental conditions (Pittelkow et al. 2015a; Schneider et al. 2017). For example, 
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it has been reported that, under rainfed conditions in dry climates, reduced tillage tends to lead to 

higher crop yields compared to conventional tillage due to improved soil water conservation and 

retention (Farooq et al. 2011; Pittelkow et al. 2015b); however, under humid and poor-drained 

conditions, reduced tillage may negatively impact crop yield due to enhanced soil compaction that 

inhibits root growth and promotes soil waterlogging (Howeler et al. 1993a). Overall, effective 

mitigation practices should provide comprehensive benefits on both net GHG emissions and crop 

yields, not just focusing on one or two agricultural components (e.g., SOC or yield). 

In addition to the aforementioned CSA practices aimed at enhancing SOC sequestration, 

nutrient management and crop rotation have also gained wide attention for their potential in 

mitigating GHG emissions. Numerous studies have demonstrated that the indiscriminate use of N 

fertilizers can lead to extra GHG emissions, rather than further boosting crop yield (Cui et al. 2013; 

Liu and Greaver 2009; Xia et al. 2017; Zhang et al. 2020a). In terms of crop rotation involving 

legumes, it has great potential to improve water quality and achieve climate targets compared to 

monocultures. This is due to the legume crops’ ability to biologically fix N from the atmosphere, 

which can reduce both nutrient runoff and GHG emissions by decreasing the need for synthetic N 

fertilizers (Reckling et al. 2016a; Reckling et al. 2016b). 

Many studies have investigated the impacts of CSA practices (e.g., reduced tillage, straw 

return, cover cropping, N fertilization management, and crop rotation) on various agricultural 

components (i.e., SOC, N2O, CH4, and yield) (Bai et al. 2019; Beillouin et al. 2021; Huang et al. 

2020; Sun et al. 2020; Yu et al. 2020; Zhang et al. 2020a). However, most of these studies have 

focused on one or two agricultural components (e.g., SOC or yield) and are often limited to small 

spatial scales, such as site- and landscape-scales. Conversely, few studies have quantified the 

integrated effects of CSA practices on all these agricultural components simultaneously, especially 



203 
 

at large spatial scales (e.g., national- and continental- scales). Due to possible trade-offs between 

SOC sequestration and GHG emissions under various CSA practices (Guenet et al. 2021; Tian et 

al. 2015a; Tian et al. 2011), studies fail to simultaneously quantify SOC-sequestered CO2 and non-

CO2 GHG emissions, as well as crop yields may lead to inconsistency when making comparisons 

and may not provide effective mitigation assessments (Shang et al. 2021). Additionally, both 

natural and human-induced environmental changes such as climate change, atmospheric CO2 

fertilization, and N deposition have substantially influenced agricultural GHG emissions and crop 

yields in complex ways (Ren et al. 2012; Ren et al. 2011; Zhang et al. 2020a). These environmental 

factors often interact with the local geographical environment (e.g., diverse soil types and climatic 

conditions) to influence the efficacy of CSA practices. This implies that a CSA practice effective 

in one location under certain environmental conditions may not be effective elsewhere (Shang et 

al. 2021). Therefore, to accurately and comprehensively assess the mitigation potential of CSA 

practices, it is crucial to evaluate their impacts on both net GHG emissions and crop yields at large 

spatial scales, taking into account multiple environmental changes simultaneously (e.g., climate 

change and atmospheric CO2 fertilization). 

Greenhouse gas emission intensity (GHGI), a CO2 equivalents-based metric defined as net 

soil GHG emissions per unit of crop production (Grassini and Cassman 2012; Mosier et al. 2006), 

can be used to measure the balance between net soil GHG emissions and crop yields. CSA 

practices that can decrease GHGI are vital for resolving the conflict between climate change 

mitigation and food security. While field experiments offer a practical way to unravel the complex 

relationships between changes in GHGI and management practices under diverse environmental 

conditions (Plaza-Bonilla et al. 2018), extrapolating these site-specific findings to broader spatial 

scales using statistical methods is challenging due to the unique environmental and management 
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conditions at each experimental site. Furthermore, there is still a lack of long-term and spatially 

explicit assessments examining the effects of multiple CSA practices and environmental factors 

on GHGI at the regional scale—information that is critical for developing effective mitigation 

strategies. Process-based terrestrial biosphere models (TBMs) with well-represented biophysical, 

biogeochemical, hydrological, and crop growth processes, as well as key agricultural management 

practices, can address these limitations and provide a promising tool for climate change mitigation 

and adaptation in agriculture (Bondeau et al. 2007; McDermid et al. 2017; You et al. 2022). 

Therefore, employing TBMs to study the effects of different CSA practices on net GHG emissions, 

crop yields, and GHGI under various future climate scenarios is essential for accurately assessing 

the overall climate mitigation potential of these practices. 

As one of the world's leading agricultural producers, the U.S. contributes a significant portion 

of global agricultural GHG emissions and plays a pivotal role in the global agricultural system. 

Taking the U.S. as a representative area, this study aims to assess the impact of four CSA 

practices—namely, no tillage, crop rotation, cover cropping (planting peas in the fallow period), 

and N fertilizer reduction—on crop production, net GHG balance, and GHGI in U.S. croplands 

across various future climate scenarios, including SSP126, SSP245, and SSP585. To perform these 

simulations, we used climate forcings derived from a CMIP6 climate model, IPSL-CM6A-LR, to 

drive a highly integrated TBM, the Dynamic Land Ecosystem Model v4.0 (DLEM v4.0). Our work 

may provide valuable insights into the overall climate mitigation potential of these CSA practices 

under different future climate scenarios. 
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7.2 Materials and methods 

7.2.1 Model and forcing datasets 

DLEM v4.0 is a highly integrated TBM that is capable of quantifying daily, spatially explicit 

carbon, water, and nutrient stocks and fluxes in terrestrial ecosystems and inland water systems 

across site, regional, and global scales (Pan et al. 2021; Tian et al. 2010a; Tian et al. 2020b; Yao 

et al. 2020). To meet cross-scale agricultural application needs (e.g., management guidance, 

climate change mitigation and adaptation), DLEM v4.0 has incorporated explicit and mechanistic 

representations of dynamic crop growth processes and multiple agricultural management practices. 

These include but are not limited to crop-specific phenological development, carbon allocation, 

yield formation, and biological N fixation processes, as well as management practices such as N 

fertilization, irrigation, rotation, manure application, tillage, cover cropping, and crop genetic 

improvements (You et al. 2022). By fully coupling these agricultural processes with 

biogeochemical, biophysical, and hydrological processes, DLEM v4.0 is capable of simulating and 

predicting the exchange of carbon (including crop yield), water, nutrient and energy fluxes within 

the agriculture-climate-environment system. A thorough description of the processes incorporated 

into the agricultural module of DLEM v4.0 is presented in Chapter 2. 

To predict future variations in U.S. crop production and GHG emissions, we used climate 

forcings (e.g., climate conditions, atmospheric CO2 concentration, and N deposition) from CMIP6 

to drive DLEM. A detailed description of the three climate scenarios (i.e., SSP126, SSP245, and 

SSP585) is provided in Section 6.2.2.1 in Chapter 6. Details of other model forcing datasets such 

as land use change and soil properties can be found in Section 2.3 in Chapter 2. 
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7.2.2 CSA practices scenarios 

In this study, we evaluated the impacts of four CSA practices—namely, no tillage, reduced 

N fertilizer use, cover cropping, and crop rotation with legume crops—on crop production, GHG, 

and GHGI. To assess these impacts, we assumed that all croplands would adopt these CSA 

practices separately under various future climate scenarios. Specifically, for the no tillage practice, 

all croplands would implement no tillage during the future simulation period 2020-2100, and all 

crop residues would be left on the soil surface. For the reduction of N fertilizer use, all croplands 

would reduce the N fertilizer use rate to 75% of the fertilizer level in 2020 during the future 

simulation period. For the cover cropping practice, all croplands would plant peas (i.e., an annual, 

relatively drought tolerant legume crop used for cover crops) during the normal fallow period and 

leave all crop biomass in the field at the beginning of the following main crop growing season. For 

crop rotation with legume crops, all corn sites would follow a consistent corn-soybean rotation 

pattern, alternating between planting corn and soybean each year. In this sequence, if corn was 

planted in the first year, soybean would be planted in the following year, followed by another year 

of corn, and then soybean, and so on. Additionally, we conducted four comparative experiments, 

examining the following experimental pairs: “no tillage vs. conventional tillage”, “75% N fertilizer 

use vs. 100% N fertilizer use”, “with cover cropping vs. without cover cropping”, and “with crop 

rotation vs. without crop rotation”. 

7.2.3 Model implementation and experimental design 

Implementation of DLEM v4.0 consisted of three major steps: an equilibrium run, a spin-up 

run, and a transient run. The equilibrium run was driven by average annual climate data during the 

1860s and other environmental factors in 1860. The equilibrium state was assumed to be reached 

when changes in carbon, N, and water pools between two consecutive 20-year periods were less 
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than 0.5 g C m−2 year−1, 0.5 g N m−2 year−1, and 0.5 mm year−1, respectively. The spin-up run was 

driven by detrended climate data during the 1860s to eliminate fluctuations due to the transition 

from equilibrium run to transient run. Finally, the transient run was driven by historical and future 

data from 1860 to 2100 for the three SSP-RCP combinations (i.e., SSP585, SSP245, and SSP126). 

Note that, when the model was run for the period 2020-2100, management practices (excluding 

CSA practices) and land use change data were maintained at the 2020 level. 

We designed eight experiments to assess the impacts of CSA practices on crop production, 

GHG, and GHGI under different future climate scenarios (Table 7-1), namely SSP126, SSP245, 

and SSP585. These scenario pairs include “no tillage (S1) vs. conventional tillage (S2)”, “75% N 

fertilizer use (S3) vs. 100% N fertilizer use (S4)”, “with cover cropping (S5) vs. without cover 

cropping (S6)”, and “with crop rotation (S7) vs. without crop rotation (S8)”. Among these 

experiments, climate conditions, atmospheric CO2 concentration, and N deposition were derived 

from future climate scenarios and were time-varying. Conversely, the implementation of CSA 

practices was adjusted correspondingly for each experiment. For example, S1 represents the no 

tillage scenario, where no tillage practice was implemented in all croplands during 2020-2100, and 

all other management practices were maintained at the 2020 level. Similarly, S3 represents the N 

fertilizer reduction scenario, where 75% of the 2020 fertilizer level was applied in all croplands 

during 2020-2100, while all other management practices were maintained at the 2020 level. The 

mitigation potential of each CSA practice is determined by the difference between these paired 

experiments. 
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Table 7-1. Comparative experiments of climate-smart agriculture practices in this study. 

 Scenario 
Climate, CO2 
concentration, 
and N deposition 

Tillage N fertilizer use Cover cropping Rotation 

S1 No tillage 1860-2100∆ No tillage# 1860-2020* None None 

S2 Conventional tillage 1860-2100∆ Conventional tillage# 1860-2020* None None 

S3 75% N fertilizer use 1860-2100∆ 1860-2020* 75% of the 2020 
fertilizer level# None None 

S4 100% N fertilizer use 1860-2100∆ 1860-2020* 100% of the 2020 
fertilizer level# None None 

S5 With cover cropping 1860-2100∆ 1860-2020* 1860-2020* With cover 
cropping# None 

S6 Without cover cropping 1860-2100∆ 1860-2020* 1860-2020* Without cover 
cropping# None 

S7 With crop rotation 1860-2100∆ 1860-2020* 1860-2020* None With rotation# 

S8 Without crop rotation 1860-2100∆ 1860-2020* 1860-2020* None Without rotation# 
∆Climate conditions, atmospheric CO2 concentration, and N deposition after 2020 were derived from various future 
climate scenarios (i.e., SSP126, SSP245, and SSP585), and data before 2020 were derived from historically real-world 
datasets. 
#Simulations after 2020 were driven by the corresponding climate-smart practices, and simulations before 2020 were 
driven by historically varying practices datasets. 
*Data after 2020 was kept the same as 2020. 

7.2.4 Global warming potential and GHGI calculation 

The global warming potential (GWP) is an index to measure the integrated radiative forcing 

from the emission of 1 kg of a trace gas relative to that of CO2 (Myhre et al. 2013). In GWP 

conversions, CO2 is typically considered the reference gas with a GWP constant of 1. CH4 and 

N2O emissions can be converted to ‘CO2-equivalents’ based on their respective GWP constants 

over a specified time horizon. To obtain a comprehensive assessment of the climatic impact of net 

soil GHG balance, we adopted the following equation to calculate the combined GWPs for SOC 

sequestration of CO2 and N2O and CH4 emissions: 

𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐶𝐶𝐶𝐶2−𝐶𝐶 ×
44
12

× 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶2 + 𝐹𝐹𝑁𝑁2𝑂𝑂−𝑁𝑁 ×
44
28

× 𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁2𝑂𝑂 + 𝐹𝐹𝐶𝐶𝐶𝐶4−𝐶𝐶 ×
16
12

× 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4  (1) 
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𝐹𝐹𝐶𝐶𝐶𝐶2−𝐶𝐶 = −𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (2) 

where 𝐹𝐹𝐶𝐶𝐶𝐶2−𝐶𝐶 , 𝐹𝐹𝑁𝑁2𝑂𝑂−𝑁𝑁 , and 𝐹𝐹𝐶𝐶𝐶𝐶4−𝐶𝐶  were annual fluxes of CO2, N2O, and CH4, respectively; 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 was SOC sequestration rate; molecular weight conversion fractions 44/12, 44/28, and 

16/12 were used to convert the mass of CO2-C, N2O-N, and CH4-C into CO2, N2O, and CH4, 

respectively; 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶2, 𝐺𝐺𝐺𝐺𝐺𝐺𝑁𝑁2𝑂𝑂 and 𝐺𝐺𝐺𝐺𝐺𝐺𝐶𝐶𝐶𝐶4 were GWP constants indicating radiative forcing 

of CO2, N2O, and CH4 in terms of their CO2 equivalents, and this study used the GWP values 

integrated over a time horizon of 100 years for CO2, N2O, and CH4, which were 1, 273, and 27, 

respectively (Myhre et al. 2013). 

GHGI, defined as the amount of net soil GHGs emitted per unit of food produced, can be used 

to assess  the efficiency of agricultural systems in emitting GHGs relative to their productivity: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺𝐺𝐺 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃⁄  (3) 

where 𝐺𝐺𝐺𝐺𝐺𝐺 is the GWP value of net soil GHG balance, and crop production is the simulated crop 

yield. 

7.3 Results 

7.3.1 Impacts of no tillage on net GHG balance, crop production, and GHGI 

We analyzed the impacts of no tillage and conventional tillage practices on the future net GHG 

balance, crop production, and GHGI of U.S. croplands under various future climate scenarios 

(Figure 7-1). Under no tillage, the estimated national net GHG balance during 2020-2100 was 137 

Tg CO2-eq year−1, 168 Tg CO2-eq year−1, and 221 Tg CO2-eq year−1 under the SSP126, SSP245, 

and SSP585 scenarios, respectively. Conversely, under conventional tillage, the estimated national 

net GHG balance was 170 Tg CO2-eq year−1, 212 Tg CO2-eq year−1, and 263 Tg CO2-eq year−1 

under the respective scenarios. When compared to the estimated future net GHG balance under 



210 
 

natural environmental changes (i.e., no CSA practices were implemented), no tillage resulted in a 

reduction of 9.3%, 7.1%, and 7.2% in net GHG balance under the SSP126, SSP245, and SSP585 

scenarios, respectively. In contrast, conventional tillage increased net GHG balance by 12.7%, 

17.8%, and 10.6% under the respective scenarios. Generally, no tillage significantly reduced the 

net soil GHG balance of U.S. croplands by 19.5% under SSP126, 21.1% under SSP245, and 16% 

under SSP585 scenarios, compared to conventional tillage. Furthermore, our findings suggest no 

significant temporal variations in the mitigation potential of no tillage, with the largest mitigation 

potential exhibited under the SSP126 scenario. 

 

Figure 7-1. Temporal variations in national net greenhouse gas balance of U.S. croplands from the 

2020s to the 2090s under the implementation of no tillage and conventional tillage across various 

future scenarios (i.e., SSP126, SSP245, and SSP585). Note that NT and CT represent no tillage 

and conventional tillage, respectively. 

Under no tillage, national crop production during 2020-2100 was estimated to be 582 Tg 

year−1 under the SSP126 scenario, 535 Tg year−1 under the SSP245 scenario, and 558 Tg year−1 

under the SSP585 scenario. In comparison, under conventional tillage, the estimates were 601 Tg 

year−1, 556 Tg year−1, and 578 Tg year−1 under the SSP126, SSP245, and SSP585 scenarios, 

respectively. The implementation of no tillage resulted in a slight reduction in national crop 
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production by 3.2%, 3.6%, and 3.3% under the respective scenarios, respectively, compared to 

conventional tillage (Figure 7-2). Additionally, we observed no significant temporal variations in 

the impacts of no tillage and conventional tillage on national crop production.  

 

Figure 7-2. Temporal variations in national crop production of U.S. croplands from the 2020s to 

the 2090s under the implementation of no tillage and conventional tillage across various future 

scenarios (i.e., SSP126, SSP245, and SSP585). Note that NT and CT represent no tillage and 

conventional tillage, respectively. 

Combining crop production and net GHG balance, the national GHGI during 2020-2100 under 

no tillage was estimated to be 0.24 Tg CO2-eq Tg−1 under the SSP126 scenario, 0.31 Tg CO2-eq 

Tg−1 under the SSP245 scenario, and 0.4 Tg CO2-eq Tg−1 under the SSP585 scenario (Figure 7-3). 

Relative to the GHGI estimated under natural environmental changes, our results suggest that no 

tillage reduces national GHGI by 7.6%, 7.8%, and 5.7% for the SSP126, SSP245, and SSP585 

scenarios, respectively. When compared to conventional tillage, no tillage reduces national GHGI 

by 16.8%, 18.1%, and 13.3% under the respective scenarios. Additionally, we found no significant 

temporal variations in the mitigation potential of no tillage regarding GHGI, and no tillage 

exhibited the largest mitigation potential under the SSP126 and SSP245 scenarios. 
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Figure 7-3. Temporal variations in national greenhouse gas emissions intensity of U.S. croplands 

from the 2020s to the 2090s under the implementation of no tillage and conventional tillage across 

various future scenarios (i.e., SSP126, SSP245, and SSP585). Note that NT and CT represent no 

tillage and conventional tillage, respectively. 

7.3.2 Impacts of N fertilizer reduction on net GHG balance, crop production, and GHGI 

Our results indicate that reducing N fertilizer by 25% could lead to a lower net GHG balance 

compared to scenarios with no N fertilizer reduction (Figure 7-4). Specifically, the estimated 

national net GHG balance during 2020-2100 under a 75% N fertilization level was 128 Tg CO2-

eq year−1, 171 Tg CO2-eq year−1, and 215 Tg CO2-eq year−1 under the SSP126, SSP245, and 

SSP585 scenarios, respectively. This reduction in N fertilizer mitigates the net GHG balance by 

15.6%, 5.6%, and 9.8% under the respective scenarios compared to those with no N fertilizer 

reduction. Furthermore, our findings suggest that the mitigation potential of N fertilizer reduction 

does not exhibit significant temporal variations, with the largest mitigation potential observed 

under the SSP126 scenario. 
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Figure 7-4. Temporal variations in national net greenhouse gas balance of U.S. croplands from the 

2020s to the 2090s under a 25% reduction in nitrogen fertilizer (i.e., 75% Nfer) and no nitrogen 

fertilizer reduction (i.e., 100% Nfer) across various future scenarios (i.e., SSP126, SSP245, and 

SSP585). 

Under the scenario of N fertilizer reduction, national crop production during 2020-2100 was 

estimated to be 573 Tg year−1 under the SSP126 scenario, 528 Tg year−1 under the SSP245 

scenario, and 560 Tg year−1 under the SSP585 scenario. In comparison, under the scenario of no 

N fertilizer reduction, the estimates were 593 Tg year−1, 531 Tg year−1, and 568 Tg year−1 under 

the respective scenarios. A 25% reduction in N fertilizer resulted in a slight reduction in national 

crop production by 3.2%, 0.5%, and 1.4% under the SSP126, SSP245, and SSP585 scenarios, 

respectively (Figure 7-5). Additionally, our results showed no significant temporal variations in 

the impacts of N fertilizer reduction on national crop production.  
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Figure 7-5. Temporal variations in national crop production of U.S. croplands from the 2020s to 

the 2090s under a 25% reduction in nitrogen fertilizer (i.e., 75% Nfer) and no nitrogen fertilizer 

reduction (i.e., 100% Nfer) across various future scenarios (i.e., SSP126, SSP245, and SSP585). 

Combining crop production and net GHG balance, the national GHGI during 2020-2100, 

under the scenario of a 25% reduction in N fertilizer, was estimated to be 0.22 Tg CO2-eq Tg−1, 

0.32 Tg CO2-eq Tg−1, and 0.38 Tg CO2-eq Tg−1 for the SSP126, SSP245, and SSP585 scenarios, 

respectively (Figure 7-6). Relative to the GHGI estimated without N fertilizer reduction, our results 

suggest that a 25% reduction in N fertilizer mitigates national GHGI by 12.8%, 5.1%, and 8.5% 

for the SSP126, SSP245, and SSP585 scenarios, respectively. Additionally, we found no 

significant temporal variations in the mitigation potential of N fertilizer reduction regarding GHGI, 

with the largest mitigation potential observed under the SSP126 scenario. 
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Figure 7-6. Temporal variations in national greenhouse gas emissions intensity of U.S. croplands 

from the 2020s to the 2090s under a 25% reduction in nitrogen fertilizer (i.e., 75% Nfer) and no 

nitrogen fertilizer reduction (i.e., 100% Nfer) across various future scenarios (i.e., SSP126, 

SSP245, and SSP585). 

7.3.3 Impacts of cover cropping on net GHG balance, crop production, and GHGI 

With the implementation of cover cropping practice (i.e., planting peas in the fallow period), 

the estimated national net GHG balance during 2020-2100 was 128 Tg CO2-eq year−1, 89 Tg CO2-

eq year−1, and 192 Tg CO2-eq year−1 under the SSP126, SSP245, and SSP585 scenarios, 

respectively (Figure 7-7). In contrast, without cover cropping, the estimated national net GHG 

balance was 151 Tg CO2-eq year−1, 181 Tg CO2-eq year−1, and 238 Tg CO2-eq year−1 under the 

respective scenarios. Thus, cover cropping reduced the net GHG balance by 23 Tg CO2-eq year−1 

(16%), 92 Tg CO2-eq year−1 (51%), and 46 Tg CO2-eq year−1 (19%) under the SSP126, SSP245, 

and SSP585 scenarios, respectively. In addition, our findings suggest that the largest mitigation 

potential is exhibited under the SSP245 scenario. 
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Figure 7-7. Temporal variations in national net greenhouse gas balance of U.S. croplands from the 

2020s to the 2090s with cover cropping and without cover cropping practices across various future 

scenarios (i.e., SSP126, SSP245, and SSP585). Note that CC represents cover cropping. 

With the implementation of cover cropping practice, national crop production during 2020-

2100 was estimated to be 505 Tg year−1, 458 Tg year−1, and 478 Tg year−1 under the SSP126, 

SSP245, and SSP585 scenarios, respectively. In comparison, without cover cropping, the estimates 

were 593 Tg year−1, 531 Tg year−1, and 568 Tg year−1 under the respective scenarios. Cover 

cropping resulted in a reduction in national crop production by 14.8%, 13.7%, and 15.8% under 

the SSP126, SSP245, and SSP585 scenarios, respectively (Figure 7-8). Additionally, no significant 

temporal variations were observed in the impacts of cover cropping practice on national crop 

production. 
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Figure 7-8. Temporal variations in national crop production of U.S. croplands from the 2020s to 

the 2090s with cover cropping and without cover cropping practices across various future scenarios 

(i.e., SSP126, SSP245, and SSP585). Note that CC represents cover cropping. 

The national GHGI during 2020-2100 under the implementation of cover cropping practice 

was estimated to be 0.25 Tg CO2-eq Tg−1 for the SSP126 scenario, 0.19 Tg CO2-eq Tg−1 for the 

SSP245 scenario, and 0.4 Tg CO2-eq Tg−1 for the SSP585 scenario (Figure 7-9). Compared to the 

GHGI estimated without cover cropping, our results suggest that cover cropping reduced national 

GHGI by 0.002 Tg CO2-eq Tg−1, 0.146 Tg CO2-eq Tg−1, and 0.018 Tg CO2-eq Tg−1 for the SSP126, 

SSP245, and SSP585 scenarios, respectively. Additionally, we found that cover cropping exhibited 

the largest mitigation potential under the SSP245 scenario. 
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Figure 7-9. Temporal variations in national greenhouse gas emissions intensity of U.S. croplands 

from the 2020s to the 2090s with cover cropping and without cover cropping practices across 

various future scenarios (i.e., SSP126, SSP245, and SSP585). Note that CC represents cover 

cropping. 

7.3.4 Impacts of crop rotation on net GHG balance, crop production, and GHGI 

Our results demonstrate that implementing crop rotation could result in a lower net GHG 

balance compared to scenarios that do not employ this practice (Figure 7-10). Specifically, when 

employing corn-soybean rotation, the national net GHG balance during 2020-2100 was estimated 

to be 117 Tg CO2-eq year−1, 149 Tg CO2-eq year−1, and 207 Tg CO2-eq year−1 under the SSP126, 

SSP245, and SSP585 scenarios, respectively. Crop rotation resulted in reductions of 22.9%, 17.4%, 

and 13.1% in net GHG balance under the respective scenarios. Furthermore, our findings suggest 

no significant temporal variations in the mitigation potential of crop rotation, with the largest 

mitigation potential exhibited under the SSP126 scenario. 

 

Figure 7-10. Temporal variations in national net greenhouse gas balance of U.S. croplands from 

the 2020s to the 2090s with crop rotation (i.e., corn-soybean rotation) and without crop rotation 

(i.e., continuous corn) practices across various future scenarios (i.e., SSP126, SSP245, and 

SSP585). 
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Under crop rotation, national crop production during 2020-2100 was estimated to be 475 Tg 

year−1, 431 Tg year−1, and 472 Tg year−1 under the SSP126, SSP245, and SSP585 scenarios, 

respectively. Compared to the scenario without crop rotation, the implementation of crop rotation 

practice resulted in reductions in national crop production by 19.8%, 18.9%, and 16.9% under the 

respective scenarios (Figure 7-11). Additionally, we observed no significant temporal variations 

in the impacts of crop rotation on national crop production.  

 

Figure 7-11. Temporal variations in national crop production of U.S. croplands from the 2020s to 

the 2090s with crop rotation (i.e., corn-soybean) and without crop rotation (i.e., continuous corn) 

practices across various future scenarios (i.e., SSP126, SSP245, and SSP585). 

The national GHGI for the period 2020-2100, under the implementation of crop rotation, was 

estimated to be 0.25 Tg CO2-eq Tg−1, 0.35 Tg CO2-eq Tg−1, and 0.44 Tg CO2-eq Tg−1 for the 

SSP126, SSP245, and SSP585 scenarios, respectively (Figure 7-12). When compared to the GHGI 

estimated without crop rotation, our results suggest that crop rotation reduced national GHGI by 

3.9% under the SSP126 scenario, but increased it by 1.9% and 4.7% under the SSP245 and SSP585 

scenarios, respectively. Overall, our findings demonstrate that the largest mitigation potential of 

crop rotation is exhibited under the SSP126 scenario. 
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Figure 7-12. Temporal variations in national greenhouse gas emissions intensity of U.S. croplands 

from the 2020s to the 2090s with crop rotation (i.e., corn-soybean) and without crop rotation (i.e., 

continuous corn) practices across various future scenarios (i.e., SSP126, SSP245, and SSP585). 

7.4 Discussion 

7.4.1 Comparison with previous studies 

Our analysis of the impacts of CSA practices on net GHG balance, crop yield, and GHGI 

provides pivotal insights imperative for simultaneously addressing climate change issues and 

ensuring food security. In terms of no tillage, our findings indicate that implementing this practice 

could reduce the net GHG balance, while implementing conventional tillage would increase it. 

Specifically, compared to 2020, implementing no tillage during 2020-2100 resulted in a reduction 

of 9.3%, 7.1%, and 7.2% in net GHG balance under the SSP126, SSP245, and SSP585 scenarios, 

respectively, whereas conventional tillage increased net GHG balance by 12.7%, 17.8%, and 10.6% 

under the respective scenarios (Figure 7-1). Compared to conventional tillage, no tillage 

significantly reduced the net soil GHG balance of U.S. croplands by 19.5% under SSP126, 21.1% 

under SSP245, and 16% under SSP585 scenarios. Our findings are consistent with previous studies. 

For example, Del Grosso et al. (2005) reported a 33% reduction in GWP under no tillage compared 
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to tilled soil for major non-rice cropping systems in the U.S.; Mangalassery et al. (2014) found 

that tilled soil produced 20% greater net GWP than zero tilled soil. No tillage has large potential 

in increasing SOC storage and improving soil health and quality (Ogle et al. 2019; Powlson et al. 

2014; Sun et al. 2020). It typically minimizes soil disturbance and promotes soil aggregation, 

which can reduce SOC losses from soil erosion and protect SOC from microbial attack, thereby 

decreasing the SOC decomposition rate and increasing SOC stock (Abdalla et al. 2013; 

Montgomery 2007; Salinas‐Garcia et al. 1997). Nonetheless, no tillage may simultaneously 

influence N2O and CH4 emissions (Shakoor et al. 2021) by altering soil water content (i.e., higher 

soil water-filled pore space) and crop residue coverage. Our results revealed reduced N2O 

emissions under no tillage, consistent with some previous studies (Plaza-Bonilla et al. 2018; Yoo 

et al. 2016) but contradictory to others (Huang et al. 2018; Lutz et al. 2019b). The reduction in 

N2O emissions may be attributed to the well-aerated farmland soils (Rochette 2008), coupled with 

lower N mineralization rates due to the retention of crop residues on the soil surface under no 

tillage. Conversely, our results indicated increased CH4 emissions under no tillage, potentially due 

to increased substrate concentration promoting the methanogenesis process and thereby enhancing 

CH4 production (Sheehy et al. 2013; Zhang et al. 2015b). In addition, our results indicate that no 

tillage slightly reduced crop production (Figure 7-2), aligning with previous studies (Ogle et al. 

2012; Pittelkow et al. 2015b; Van Kessel et al. 2013). This reduction is possibly due to increased 

soil compaction that potentially inhibits root growth and promotes soil waterlogging (Alvarez and 

Steinbach 2009; Howeler et al. 1993b; Van den Putte et al. 2010). 

Our analyses also underscored the climate benefits of a 25% reduction in N fertilizer, which 

significantly mitigated the national net GHG balance by 15.6%, 5.6%, and 9.8% under the SSP126, 

SSP245, and SSP585 scenarios, respectively (Figure 7-4). Notably, this reduction in N fertilizer 
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led to only a slight decrease in crop production, with decreases ranging between 0.5% and 3.2% 

under the three scenarios (Figure 7-5). The slight decline in crop production, in contrast with the 

substantial decrease in net GHG balance, suggests that N fertilization in U.S. croplands could 

potentially be further optimized to mitigate climate change without causing substantial detriment 

to U.S. food security (Mueller et al. 2012; Roy et al. 2021). This is consistent with previous field-

based studies demonstrating that the excessive use of N fertilizer would increase N2O and CH4 

emissions without proportionately increasing crop yield (Liu and Greaver 2009; Luo et al. 2017; 

Zaehle et al. 2011; Zhang et al. 2020a). For example, Hu et al. (2023) found that a reduction of up 

to 10% in N fertilizer for wheat and up to 30% for corn and rice was neutral for crop yield but 

would reduce net GHG emissions by 14.5%-25%. Therefore, our results highlight the tangible 

benefits of N fertilizer optimization for sustainable agricultural development, as evidenced by a 

reduction of up to 12.8% in GHGI under the SSP126 scenario (Figure 7-6). 

The adoption of cover cropping practices, exemplified by planting peas in the fallow period, 

also contributed to climate change mitigation (Figure 7-7). Our results indicate that, on average, 

the adoption of cover cropping practices increased SOC sequestration rates by about 31 Tg C yr-1 

and N2O emissions by about 0.15 Tg N yr-1, respectively, across all future climate scenarios. Using 

peas as cover crops not only enriches soil N supply for subsequent crops through the process of 

biological N fixation but also increases carbon inputs into the soil. This, in turn, directly enhances 

both N2O emissions and the SOC sequestration rate (Poeplau and Don 2015; Wortman et al. 2012). 

Meanwhile, it indirectly stimulates N2O emissions by incorporating cover crop residues into the 

soil, thereby providing additional nutrients, or by increasing the carbon supply derived from 

photosynthesis in active growing root systems (Webb et al. 2000). Furthermore, our results suggest 

a reduction in CH4 emissions when cover cropping practices are implemented. This reduction may 
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be attributed to the depletion of soil water, promoting the formation of aerobic soil environments 

that inhibit methanogenesis processes and CH4 production. Notably, our results indicate that the 

largest mitigation potential for cover cropping is under the SSP245 scenario. This is mainly due to 

a substantially increased SOC sequestration rate, along with moderately increased N2O emissions 

compared to the SSP126 and SSP585 scenarios. Specifically, non-CO2 GHG emissions were 

estimated at 309 Tg CO2-eq year−1, 315 Tg CO2-eq year−1, and 445 Tg CO2-eq year−1 under the 

SSP126, SSP245, and SSP585 scenarios, respectively, and SOC-sequestrated CO2 under the three 

scenarios were estimated at 181 Tg CO2-eq year−1, 226 Tg CO2-eq year−1, and 253 Tg CO2-eq 

year−1, respectively. Consequently, the sequestrated SOC under the SSP245 scenario largely offset 

the non-CO2 GHG emissions when compared to the other two scenarios. Unraveling the effects of 

cover cropping on net GHG balance is complex because it influences both the SOC sequestration 

rate and non-CO2 GHG emissions (Abdalla et al. 2019). Additionally, our analysis reveals that 

cover cropping practices have, on average, led to a 14.8% decrease in crop production across all 

future climate scenarios (Figure 7-8), aligning with existing research (Alvarez et al. 2017; Garba 

et al. 2022; Malone et al. 2022; Nielsen et al. 2016). For example, a review by Tonitto et al. (2006) 

reported a 10% yield reduction in primary crops after the implementation of cover cropping. 

Similarly, Alvarez et al. (2017) found an 8% reduction in corn yields following cover cropping 

compared to a fallow control. The reduction in crop yield can primarily be attributed to soil water 

depletion by cover crops. This, in turn, reduces plant-available soil moisture for subsequent crops, 

particularly exacerbating crop yield losses when this practice is implemented prior to dry growing 

seasons (Deines et al. 2023). 

In terms of crop rotation practice, our results suggest that implementing this practice could 

also contribute to climate change mitigation; however, it concurrently reduced the overall crop 
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production (Figures 7-10 and 7-11). Specifically, implementing crop rotation (with legume crops) 

resulted in reductions of 22.9%, 17.4%, and 13.1% in net GHG balance under the SSP126, SSP245, 

and SSP585 scenarios, respectively, but it also reduced overall crop production by 19.8%, 18.9%, 

and 16.9% under these scenarios, respectively. The larger net GHG emissions from continuous 

corn are likely due to the increased N fertilizer amounts compared to corn-soybean rotations, as 

observed in other studies (Behnke et al. 2018; Halvorson et al. 2008; Hoben et al. 2011). 

Conversely, the reduced overall crop production is mainly due to the lower yield of soybean 

relative to corn. Our findings are consistent with previous studies (Behnke et al. 2018; Parkin and 

Kaspar 2006; Snyder et al. 2009). For example, Snyder et al. (2009) found that continuous corn 

resulted in two to three times higher N2O emissions but produced four to five times the food yield 

in caloric value compared to the corn-soybean-wheat rotation. Behnke et al. (2018) reported that 

corn-soybean rotation diminished N2O emissions by 2 kg ha−1 yr−1 compared to continuous corn. 

Consequently, our results suggest that the incorporation of crop rotation with legume crops could 

be a promising strategy for achieving sustainable agricultural intensification, potentially reducing 

both production risks and environmental impacts (Shah et al. 2021). 

7.4.2 Uncertainty and implications 

Several types of uncertainties persist in this study, including model parameter, structure, and 

forcing data uncertainties. Firstly, the DLEM includes a large number of parameters, whereas the 

lack of sufficient data for model calibration and validation causes uncertainties, particularly 

regarding the responses of crop yield and GHG emissions to various CSA practices (e.g., no tillage, 

crop rotation, and cover cropping). Secondly, the simplified representation of key processes in the 

DLEM also introduces uncertainty to the simulation results. For example, the current DLEM 

representation of groundwater and irrigation practice is relatively simple, which could lead to 
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biased simulated soil moisture that, in turn, could affect crop yield and GHG emission predictions 

under future climate scenarios. Moreover, the DLEM currently does not account for crop 

adaptation to climate change, as well as farmers’ preparedness and response strategies to climate 

extremes (Annan and Schlenker 2015). The exclusion of these adaptive processes within the model 

may further induce uncertainties in future projections. Lastly, the input data driving the DLEM 

introduces uncertainty as well. For example, the CSA scenarios we assumed might diverge from 

the real-world situation due to economic considerations, which may compromise the effectiveness 

of our derived conclusions. Furthermore, future climate scenarios contain significant uncertainties 

due to their dependence on unpredictable variables such as human behavior and policy decisions 

(O'Neill et al. 2016). These climate scenarios are also subject to the inherent limitations of current 

climate models, particularly in their handling of complex Earth system feedbacks like cloud 

formation and ocean circulation (Flato et al. 2014). Addressing these limitations could further 

improve future simulation estimates.  

Our analysis indicates that implementing CSA practices such as no tillage, N fertilizer 

reduction, cover cropping, and crop rotation practices significantly reduced the net GHG balance 

under future climate scenarios. These findings brings forth crucial implications, urging 

policymakers and agricultural practitioners to advocate for these practices for both environmental 

sustainability and climate change mitigation. While these CSA practices are promising in reducing 

net GHG emissions, some practices concurrently pose some challenges to food security due to 

associated reductions in crop yield. This necessitates the development of supportive strategies and 

innovative solutions to offset yield reduction and ensure sustainable food supplies. Additionally, 

given the diverse impacts under different climate scenarios, adaptive management strategies that 

consider the specific implications of each scenario are essential. The differences in outcomes under 
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these future climate scenarios underscore the importance of implementing context-specific 

strategies for climate mitigation within the agricultural sector. These implications collectively 

demonstrate that while the adoption of CSA practices is crucial for mitigating climate change and 

promoting sustainability, careful consideration and balance of associated challenges, particularly 

in food security, are essential. 

7.5 Conclusion 

This study assessed the long-term impacts of four CSA practices—no tillage, crop rotation, 

cover cropping, and N fertilizer reduction—on crop production, net GHG balance, and GHGI in 

U.S. croplands across various future climate scenarios, including SSP126, SSP245, and SSP585. 

Our results indicate that these CSA practices significantly reduced the net GHG balance in U.S. 

croplands, with average reductions of 18.9%, 10.3%, 28.6%, and 17.8% for no tillage, N fertilizer 

reduction, cover cropping, and crop rotation, respectively, across the three climate scenarios. 

Moreover, while no tillage and N fertilizer reduction only marginally impacted crop production, 

cover cropping and crop rotation resulted in substantial reductions, estimated at 14.7% and 18.5%, 

respectively. Consequently, our results underscore the need to consider the associated impacts on 

food security when implementing CSA practices. Additionally, the variations in mitigation 

potential under different climate scenarios emphasize the imperative for comprehensive, scenario-

specific CSA strategies for climate change mitigation and sustainable development within the 

agricultural sector. Overall, our study provides invaluable insights and nuanced understanding of 

the implications of distinct CSA practices under varied future climate scenarios. These insights are 

crucial for informing policy and decision-making processes in aligning CSA practices with long-

term sustainability and food security goals. 
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Chapter 8. Conclusions and future works 

 

This study focuses on quantifying the impacts of multiple environmental forcings and climate-

smart agricultural (CSA) practices on the magnitude and spatiotemporal variations of crop yield, 

net greenhouse gas (GHG) balance, and GHGI in U.S. croplands under both historical and future 

climate scenarios. To meet these objectives, we developed a unified agricultural model by 

integrating the strengths of conventional crop models in representing crop growth processes and 

agricultural management practices into a terrestrial biosphere model (TBM), the Dynamic Land 

Ecosystem Model (DLEM), to fulfill cross-scale agricultural application needs (e.g., adaptation 

and mitigation). Combining this new model and multi-source datasets, we used a data-driven 

systems approach to simulate the production of major crops in U.S., estimated yield losses caused 

by compound climate extremes, and analyzed the temporal variations in the sensitivity of U.S. 

agricultural systems to these extreme events over the past decades. Furthermore, we quantified the 

combined impacts of multiple management practices and environmental changes on the magnitude 

and spatiotemporal variations of net soil GHG balance in U.S. croplands. We also predicted future 

crop production, net GHG balance, and GHGI in U.S. croplands for the period 2020-2100 under 

various future climate scenarios, including SSP126, SSP245, and SSP585. Additionally, we 

evaluated the long-term impacts of four CSA practices—no tillage, crop rotation, cover cropping, 

and reduced N fertilization—on crop production, net GHG balance, and GHGI in U.S. croplands 

across these future climate scenarios. 

The major conclusions are as follows: 

(1) Site-scale evaluations demonstrate that the newly developed agricultural model effectively 

simulates the seasonal variations and magnitudes of leaf area index and aboveground biomass and 
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annual yield. Regarding the regional-scale performance, the simulated spatial pattern of crop 

production is also consistent with ground survey data. Meanwhile, the national average crop 

production estimated by the new agricultural model has increased by 1–4 times from the 1960s to 

the 2010s, which is consistent with the observed trend. 

(2) Both U.S. corn and soybean yields show heightened sensitivity to short-term droughts 

(spanning 1-3 months) and heatwaves during their critical reproductive stages, typically occurring 

from July to September for droughts and July to August for heatwaves. Among the extreme climate 

events, droughts tend to have a more detrimental impact on yields compared to heatwaves. The 

simultaneous occurrence of droughts and heatwaves exacerbates yield loss substantially, resulting 

in yield losses of 29.6% for corn and 25.4% for soybean, surpassing the effects of single extreme 

events. Our results also indicate a decreased sensitivity in corn and soybean yields to concurrent 

droughts and heatwaves from 1964 to 2018. 

(3) During 1960-2018, U.S. croplands acted as a net carbon sink with an average SOC 

sequestration rate of 13.2 ± 1.16 Tg C year−1 but a net source of N2O and CH4 with average 

emission rates of 0.39 ± 0.02 Tg N year−1 and 0.21 ± 0.01 Tg C year−1, respectively. When 

translated into the GWP100 metric, the simulated national average net GHG emission rate of U.S. 

agricultural soils was 121.9 ± 11.46  Tg CO2-eq yr-1. Thus, net effort of soil GHG emission 

during this study period was a contributor of climate warming. Sequestered SOC offset ~28% of 

the climate-warming effects resulting from non-CO2 GHG emissions, and the proportion of this 

offset increased over time. The Midwest hub contributed ~47% of the national total net GHG 

balance, followed by the Northern Plains hub at ~21%. Our factorial analysis over 1960-2018 

indicated that N fertilization use was the dominant factor promoting net GHG emissions from U.S. 

croplands and explained ~47% of the total changes, while reduced tillage and rising atmospheric 
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CO2 attenuated net GHG emissions from U.S. croplands. 

(4) The predicted national net GHG balance exhibited a significant increase under the SSP245 

and SSP585 scenarios, with the most pronounced increase occurring under the high-emission 

trajectory SSP585, averaging 236 Tg CO2-eq year−1. In contrast, the net GHG balance under the 

126 scenario remains relatively stable throughout the 2020-2100 period. Crop production shows 

significant interannual variations but does not exhibit significant trends across all climate scenarios. 

This imbalance, where the net GHG balance increases disproportionately compared to crop 

production, leads to an increased GHGI, which is estimated to be 0.26 CO2-eq Tg−1, 0.34 CO2-eq 

Tg−1, and 0.42 CO2-eq Tg−1 under the SSP126, SSP245, and SSP585 scenarios, respectively. 

Increased temperatures and atmospheric CO2 concentrations are the primary contributors to the 

significant increase in net GHG balance and GHGI. The heightened GHGI raises serious concerns 

about deviating from the sustainable agriculture goal of mitigating climate change and ensuring 

food security, and underscores the urgent need for immediate intervention through CSA practices. 

(5) Under future climate scenarios, the four CSA practices—no tillage, N fertilizer reduction, 

cover cropping (planting peas in the fallow period), and crop rotation—significantly reduced the 

net GHG balance in U.S. croplands, with average reductions of 18.9%, 10.3%, 28.6%, and 17.8%, 

respectively. Moreover, while no tillage and N fertilizer reduction only marginally impacted crop 

production, cover cropping and crop rotation resulted in substantial reductions, estimated at 14.7% 

and 18.5%, respectively, underscoring the need to consider the associated impacts on food security 

when implementing these CSA practices. Additionally, the variations in mitigation potential under 

different climate scenarios further emphasize the imperative for comprehensive, scenario-specific 

CSA strategies for climate change mitigation and sustainable development within the agricultural 

sector. 
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Several potential future works include: 

(1) Due to the large uncertainty in model simulations, further improving key model processes 

is necessary. For example, the current DLEM representation of groundwater and irrigation practice 

(i.e., without considering irrigation amount and frequency) is relatively simple, which could lead 

to biased simulated soil moisture that, in turn, might affect yield and GHG emission predictions. 

Therefore, I plan to further improve the DLEM, especially soil-related processes, to better simulate 

key variables. 

(2) Several other important CSA practices, such as biochar application and alternate wetting 

and drying irrigation practice, are not included in the DLEM. Therefore, I plan to incorporate the 

mechanistic representations of these CSA practices into the DLEM to analyze their impacts on 

crop production and the net GHG balance.  

(3) Our current analysis of the climate benefits of CSA practices still lacks robust verification, 

which may compromise the conclusions drawn. Therefore, I plan to collect more in-situ 

measurements on the impacts of different CSA practices on crop production and net GHG 

emissions and their dependences on background environments (e.g., crop types and climates) to 

more accurately calibrate, validate, and corroborate model simulations. 

(4) The future CSA scenarios designed in this study do not account for the complexities of 

real-world implementation. Hence, I plan to integrate related factors (e.g., economic factors and 

available agricultural resources) into the CSA scenario design and subsequent analysis to provide 

more practical suggestions and solutions. 

(5) Currently, our evaluations primarily focus on the impacts of agricultural management 

practices on crop production and net GHG balance, while neglecting other environmental impacts 

like nutrient loading, which may lead to biased evaluation. Therefore, I plan to comprehensively 
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evaluate the impacts of different CSA practices to obtain more accurate and unbiased assessments, 

thereby providing actionable, science-based recommendations. For example, I plan to explore the 

optimization of N fertilization practices to obtain an optimal balance among crop yield, net GHG 

emissions, nutrient loading, air pollution, and economic benefits. 

(6) I plan to broaden my research scope from the U.S. agricultural system to the global 

agricultural system. For example, I will evaluate the potential of different CSA practices and their 

combinations to address climate change mitigation and global food security, as well as provide 

science-based guidance for achieving these objectives. 
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