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Abstract 
 

 

The bacterium Xanthomonas perforans is a worldwide pathogen of tomato and pepper 

plants causing bacterial leaf spot (BLS) resulting in necrotic spotting with which advanced 

disease can lead to complete defoliation of plants and subsequent yield loss for farmers. BLS 

is a seedborne disease that is considered endemic to the Southeastern United States, and 

while management strategies focus on the creation and use of resistant (R) cultivars in 

pepper, no R tomato cultivars are available in tomato due to the range of genetic diversity and 

subsequent difficulty of breeding for single-gene resistance. To understand this pathosystem 

better with hopes of aiding in the development of better disease management practices, we 

firstly profiled X. perforans pathogen diversity and disease dynamics across the Southeastern 

United States. We found that the pathogen was intraspecifically heterogenous within fields 

and across space and time, that the pathogen population had an effect on disease outcomes, 

and that climatic parameters were associated with disease and pathogen dynamics. These 

findings were then narrowed down in a greenhouse experiment to study host:pathogen and 

pathogen:pathogen interactions where we found that pathogen population assemblage was 

determined irrespective of environment. Lastly, we conducted research in light of global 

changes occurring by studying X. perforans under an extreme environmental variable to 

understand more about pathogen evolution across a single growing season and found that 

when in a combination of stress with host resistance and an environmental extreme, pathogen 

and disease dynamics shifted and an adaptive response was observed at a genomic level. 

With a look into pathogen dynamics in the field and implications of how those dynamics 

might change with environmental extremes, this work advances plant pathological research of 

the diverse and adaptive Xanthomonas perforans.   
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1. CHAPTER ONE 

Introduction and Literature Review 

 

Introduction 

While the field of plant pathology often goes unnoticed by the general public, a large 

basis of plant pathological work focuses on one important fact: national food security essentially 

underpins all functions of the society, yet is threatened by a continuous and evolving 

pathological warfare against agricultural crops (A. Sharma, Gupta, and Devi 2023). The act of 

plant pathologists studying the dance between our crops and pathogens must start somewhere, 

and, with cases of disease outbreaks in the field, generally the first practical goal starts with the 

identification of the pathogen (Ploetz 2009). Indeed, many systems of study within plant 

pathology have been around for years, if not decades, by now and researchers, of course, have 

identified the causal pathogens and have often times delved so deep into study, that the question 

of identification becomes rhetorical. Yet, this study proposes a retraction of questioning to the 

very baseline of identification; would it be beneficial in terms of piecing a disease management 

puzzle together if a larger focus was put on determining not only which different bacterial, viral, 

fungal or other eukaryotic pathogens are present in the field but also deeper through to the 

diversity within each pathogenic entity, the interspecific (different species) or the intraspecific 

diversity (at subspecies level)? The reasoning behind going as deep as an intraspecific level is 

that, ecologically speaking, the bigger picture of a pathogen’s strategy environmentally and 

within its host may not be fully elucidated by just looking at a pathogen’s species presence alone. 

The important key here though is that diversification and arrangement of intraspecific variants 

within farm fields and across agricultural crops may actually play a larger ecological role in that 
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dance between plant pathogens and their hosts than previously assumed. This raises the question 

of our ability to achieve the end goal of facilitating better disease management across whichever 

pathosystem when not considering the comprehensive view of pathogen diversity. The overall 

goal of this project is to advance our understanding of X. perforans pathogen and disease 

dynamics by begging the examination of whether pathogen intraspecific diversity and its 

assemblage may play an important role in plant pathogenic interactions, thus greatly contributing 

not only to how we should develop strategies of managing diseases, but also in the strategic 

breeding of plants against these pathogens (Timilsina et al. 2020; Ploetz 2009).  

The importance of studying pathogen diversity 

In conclusion of what was just previously detailed, when dealing with pathogens in the 

field, one important thing to consider really could be the extent of pathogen diversity present. 

While possibly more uncommon in agricultural systems, this process reaches close to home with 

one familiar pathosystem: seasonal influenza (the flu) as an endemic pathogen affecting humans 

year after year. With seasonal influenza being a nationwide talking point annually, and with the 

time of year which it is prevalent even being termed the ‘flu season’, this disease’s management 

practice of choice that eases societal mind is the seasonal flu-vaccine. Importantly though, the flu 

vaccine is not simply one cure-all that is used over and over every season, but it is formulated 

compositionally year after year prior to the upcoming flu season (Bandi and Bertsimas 2019). 

The way researchers are able to do this is by making use of influenza sampling data and 

reviewing not only which strains are dominant at the given time but also by looking at any low-

frequency strains present within the population to predict whether the current presiding strain 

will remain dominant in circulation or whether other strains may rise in frequency by the 

following flu season. This review of the pathogenic diversity along with knowledge of those 
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strains allows them to formulate a vaccine for broad regions but more recently, even regionally 

specific to increase efficacy (Bandi and Bertsimas 2019; Sambuddha Chakraborty and Chauhan 

2023). Reflecting on the constant need to update the vaccine yearly, it is simply a result of the 

coevolution that is happening between the pathogenic flu and its host, humans. In agricultural 

systems, what that looks like between a plant and a pathogen is an arms race where the plant is 

constantly adapting to resist the pathogen and the pathogen is constantly adapting to maintain its 

presence within the host (not just through increased virulence but broadly through a range of 

adaptations specific to any given pathosystem). While vaccines for plants really are not the 

disease management method of choice for practicality reasons (and the fact that plants are not the 

same as humans), classical plant breeding approaches to find resistance (R) genes against 

pathogenic species have held up in the past but eventually suffer due to insufficient resistance 

against all strains of the pathogen and rapid pathogen evolution (Zewdu et al. 2022; Greenwood, 

Zhang, and Rathjen 2023). With definite room for improvement in the field of breeding for 

resistance, new approaches have started to make similar use of pathogen survey, much like in the 

pathosystem of influenza in humans, where genomic sequencing of a large diversity of strains 

causing disease in crops allows for more rapid identification of resistance genes and a variety of 

intraspecific pathogenicity factors to use as targets for specific plant genome editing efforts 

(Amas et al. 2023; Greenwood, Zhang, and Rathjen 2023; Zewdu et al. 2022). With pathogen 

diversity holding an important role in the coevolutionary arms race with the host, researchers are 

tasked to answer the major question of whether it is possible to stay ahead of pathogens within 

their coevolutionary arms races and to predict and negate pathogen success. 
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The pathosystem: Xanthomonas perforans causing bacterial leaf spot on tomato and 

pepper, an endemic pathogenic species of the Southeast United States 

While researchers all over the world dedicate their time to studying various 

pathosystems, the pathosystem that we work with is Xanthomonas perforans causing bacterial 

spot disease on tomato and pepper plants (Eric A. Newberry et al. 2023). This species was first 

isolated from Florida tomato fields in 1991 where it quickly prevailed over the previously 

predominant, closely related Xanthomonas species X. euvesicatoria before rising to now be 

considered a globally dominant species(A. P. Hert et al. 2009; E. A. Newberry et al. 2019; Potnis 

2021). Bacterial spot is a seedborne disease that causes necrotic lesions on the vegetative parts of 

the plant and on the fruits where severe infections can cause defoliation of the plant and 

subsequently yield loss, a major concern for farmers (Abrahamian, Klein-Gordon, et al. 2021). 

The disease is endemic to most of the tomato/pepper growing regions around the world. To 

negate these losses caused by this century old disease, selecting optimal plant cultivars is one 

way to manage the disease. With pepper farming, resistant cultivars are commercially available 

for use, yet no such resistance has been documented in tomatoes.  Although efforts have been 

made for breeding resistant tomato cultivars, not much success has been had due to a range of 

issues including the genetic diversity present and variability of effectors within the species which 

makes breeding for single-gene resistance difficult (Abrahamian, Klein-Gordon, et al. 2021). 

Considering the lack of a resistant cultivar, tomato farmers have been using chemical 

applications such as copper-based antibacterials, yet a rise in resistance against copper products 

urges farmers to use a range of cultural management practices such as the use of certified clean 

seeds and pathogen-free transplants or the employment of biocontrol strains against X. perforans 

(Abrahamian, Sharma, et al. 2021). Considering that one of the challenges faced in this 
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pathosystem (on tomato specifically) is that the pathogen's intraspecific diversity complicates 

classical plant breeding approaches, taking steps to really get an in depth understanding of 

pathogen population structure may help formulate better ways of managing this endemic disease 

by elucidating genetic markers as possible targets of modern plant breeding efforts.  

Present described intraspecific diversity within X. perforans 

Within the past 32 years following its first isolation in Alabama, descriptions of the 

diversity within the species have increased in number and have evolved. Coinciding with an 

exponential increase in published genomes on NCBI, is an increase in the described diversity of 

the species (Figure 1-1): starting in 2014 when the first genome was published, the species was 

described as having 3 ‘groups’, in 2019 the species was described as having 6 different 

‘sequence clusters’ using the 142 published isolates, and today with a total of 530 genomes 

available, 8 different ‘sequence clusters’ are present (Figure 1-2) (Bhandari et al. unpublished 

data; E. A. Newberry et al. 2019). With the current way of describing this intraspecific diversity 

being a ‘sequence cluster’ (SC), a sequence cluster simply contains strains that are more closely 

related to each other than to strains of other SCs. These sequence clusters are characterized using 

phylogeny based on core single-nucleotide polymorphisms (SNPs) across the published genomes 

on NCBI with RheirBAPS (Cheng et al. 2013; Tonkin-Hill et al. 2018), as previously described 

(Newberry et al. 2019). 
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Figure 1-1: Total number of X. perforans assemblies on NCBI coincides with species 

diversification. Following the first isolation of X. perforans in 1991, 32 years of research have 

resulted in a total of 530 assemblies of the species being published to NCBI. Over time, this 

increase in the amount of published assemblies coincided with an increase in described 

intraspecific diversity with the species previously being described as 3 ‘Groups’ in 2014, to 6 

‘Sequence Clusters’ in 2019, to a total of 8 ‘Sequence Clusters’ in 2023 (Bhandari et al. 

unpublished data). 
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Figure 1-2: Intraspecific diversity of X. perforans grouped into sequence clusters (SC). X. 

perforans groups into 8 different sequence clusters when the SNPs in the core genome alignment 

of 191 RefSeq NCBI X. perforans assemblies are compared to each other using RheirBAPS (L. 

Cheng et al. 2013; Tonkin-Hill et al. 2018). These ‘Sequence Cluster Levels’ are not indicative 

of actual sequence cluster names, just of the groups of sequence clusters of which six are named 

based on prior publication (E. A. Newberry et al. 2019). 
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Genetic Processes Underlying X. perforans Diversification 

 A precursor to the presence of intraspecific diversity of a species would inevitably be the 

process of genetic diversification of the lineage. Along with describing the first six SCs, 

Newberry et al. (2019) also set out to understand patterns of gene flow between X. perforans and 

closely related and what they found was that genome analyses of those 6 SCs did show that 

recombination events with closely related donors X. euvesicatoria strains, X. euvesicatoria 

related pathovars, and species outside of the X. euvesicatoria complex, resulted in proportions up 

to 8% of the core genomes of SCs (E. A. Newberry et al. 2019). Not only did they find that 

recombination was occurring, but that there were differential rates of recombination with respect 

to donor lineages across the different SCs where SCs 1-3 had major proportions of their core 

genome associated with X. euvesicatoria as the donor lineage and SCs 4-6 not only recombined 

with the donor lineage X. euvesicatoria, but also X. euvesicatoria related pathovars and SCs 5 

and 6 had relatively more recombination with donor lineages outside of the X. euvesicatoria 

complex. While this work has not been conducted on a larger set of available genomes since 

2019, it is hypothesized that not only has recombination with closely related species along with 

intraspecific horizontal gene transfer contributed to the diversification of X. perforans.  

Factors facilitating the genetic diversification of the pathogen  

Reflecting on the dance between the pathogen and its host mentioned earlier, studies have 

shown an intimate link, termed the coevolutionary arms race, between the evolution of a 

pathogen with its associated virulence factors and the pressures host defenses apply to the 

pathosystem (L.-S. Ma et al. 2014). This coevolutionary arms race provides a battleground 

within which natural selection of traits (which were lucky enough to succeed the opponent’s 

advances) drives each species to evolve. Imagining the pathogen-host battleground as a 
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hypothetical card game, one way each opponent in the arms race could increase their chances on 

winning is by simply increasing the number, and diversifying the cards they can play (L.-S. Ma 

et al. 2014; Zaman et al. 2014; Mauricio et al. 2003b). In phytopathosystems such as that of X. 

perforans on tomato and pepper, the selection from the host plant (i.e., resistance) is considered 

the primary driver evolving their pathogens and what the aforementioned card diversification 

often looks like for a phytopathogen is the generation of genetic diversity of fitness factors (i.e., 

virulence genes) (L.-S. Ma et al. 2014). While the host plant does play a major role, 

environmental and agricultural factors such as production or cultural practices hold intimate 

connections with pathogen evolution as well. – considering that there are no documented 

resistance genes in tomato, one goal of this study aims to reflect the contribution of these factors 

(as an aside note though, the role of the plant host in driving diversification of X. perforans 

cannot be completely ruled out because host susceptibility does vary across genotypes, thus, 

further study is necessary) (Potnis 2021).  

To dive into production practices as a possible driver of diversification, considering the 

nature of the pathosystem and the fact that X. perforans is a seed-borne disease, there are a 

couple of factors within the tomato production chain that could facilitate the gene flow that 

Newberry et al. elucidated in 2019 as a method of diversification (E. A. Newberry et al. 2019; 

Potnis 2021). The end goal of the sale of tomatoes is preceded firstly by the production of tomato 

seeds in areas anywhere from locally on the farm to intercontinentally – for the pathogen, these 

seed production areas not only usually have multiple host genotypes (which could harbor closely 

related species aiding in genetic exchange), but these areas are also environmentally diverse and 

are essentially one continuous source of pathogen genotypes being introduced into the field 

(Potnis 2021). Commercially, these seeds should pass through seed certification programs where 
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highly infected seeds will be removed from production, yet those with low titers of X. perforans 

pass through and are planted and grow in transplant houses before being moved to the field either 

as pathogen-free or asymptomatic plants. Again, in both the transplant houses and in fields, close 

contact of plants harboring X. perforans may be areas where genetic exchange is occurring for 

the pathogen; similar to the seed production areas, transplant houses often have multiple host 

genotypes, and once in the field, pathogenic variants are able to readily mix through 

dissemination from nearby fields during storms or from alternate host plants/crop debris (Potnis 

2021).  

Additionally, with consideration of field-level cultural practices as having an influence on 

pathogen diversity, high disease pressure in the field (exacerbating pathogen evolution through, 

again, increasing chances for genetic exchange) can easily be achieved through improper 

knowledge or a simple lack thereof of how to manage this disease when it is present. With 

previous rampant overuse of copper-based antibacterials already having aroused pathogenic 

resistance, farmers are encouraged to manage disease by not only using certified clean seeds and 

pathogen-free transplants, but optimally by reduction of chemical use paired with the selection of 

optimal tomato varieties and the employment of proper sanitation techniques of removing debris 

possibly harboring carryover inoculum (Abrahamian, Klein-Gordon, et al. 2021; Potnis et al. 

2015).  

With the very nature of a seed-borne disease paired with both production and field-level 

cultural practices possibly facilitating the genetic diversification observed in X. perforans, one 

parameter that always encompasses the pathogen along its journey is the environment. 

Environmental pressures such as temperature, humidity, and carbon dioxide (CO2) or ozone (O3) 

levels have been known to shape niche ecological niches of organisms, even microbes.  Current 
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global changes such as climate change are placing pressure on species in changing environments 

to either urgently adapt and evolve to the new parameters and or to constantly migrate and track 

their original niche (Santini and Ghelardini 2015; Sukumar Chakraborty 2013; Liu et al. 2019). 

Considering that farm land providing hosts for these phytopathogens is set and does not readily 

move to maintain a microbe’s optimal abiotic niche space, microbial evolution and 

diversification of environmental fitness factors may be the way to go for microbes such as our 

pathogenic X. perforans.  

A pilot study showed that described genetic diversity is present in Alabama farm fields 

 Regardless of the present genetic diversity or underpinnings of diversification, the 

question remained as to whether or not this diversity was actually being represented in farm 

fields. A major predecessor to this work began answering that question by finding that not only is 

X. perforans genetically diverse (E. A. Newberry et al. 2019), but that heterogeneity is also 

reflected in the field and is represented by the presence of cooccurring SCs within AL farms (E. 

Newberry et al. 2020). Across four different locations, Newberry et al. (2020) observed that five 

out of the six sequence clusters described at the time were found to cooccur in fields, proving a 

preliminary answer but subsequently bringing up a series of questions as to whether or not this 

heterogeneity was common and how many SCs were normally found cooccurring, whether or not 

there were seasonal or spatial shifts in these SCs and their abundances relative to each other in 

the field, and whether or not these pathogen dynamics could explain disease severity outcomes. 

This study aims to characterize and report the intraspecific diversity within X. perforans with 

hopes of moving this field of research one step closer to winning a seemingly losing battle, and 

these questions are among those I have tried to approach or advance with my work primarily in 

my ‘Chapter 2’ (Objective 1): I address how many sequence clusters are found to cooccur in 
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farm fields across the Southeast U.S. and whether or not that number can be attributed to disease 

severity, whether or not there are spatiotemporal shifts in the number of SCs present, and lastly, I 

study environmental parameters as possible factors facilitating heterogeneity of the pathogen 

population. For my ‘Chapter 3’ and ‘Chapter 4’ (Objective 2), considering that coinfection of 

pathogens in various systems has been known to increase disease severity of the host, we 

pondered whether this observation would also apply when coinfection was made up of two 

closely related strains of X. perforans, just in different SCs (Alosaimi et al. 2021; Bellah, Seiler, 

and Croll 2023a; Kim et al. 2022). To do this however, with the intricacy of studying pathogens 

so closely related, a protocol for achieving such high resolution into the pathogen population was 

created in ‘Chapter 3’. In ‘Chapter 4’, I asked the question as to whether disease severity would 

increase when comparing a monoinfection to an intraspecific coinfection coinfection was 

answered along with elucidating factors of strain:host and stain:strain interactions within those 

coinfection dynamics. Lastly, with my ‘Chapter 5’ (Objective 3), I uncover how coinfecting 

pathogen populations (two SCs) of X. perforans on susceptible and resistant pepper may respond 

to global changes in the field by using an extreme environmental variable, elevated O3. At a basal 

level I sought to understand the driving factors for disease and pathogen dynamics in X. 

perforans on tomato and pepper with these three objectives:  

Objective 1: Spatiotemoral Surveillance of the Pathogen Population Across the Southeastern 

U.S.,  

Objective 2: Experimentation with Coinfection and Disease Outcomes in the Greenhouse 

Objective 3: Assessment of Pathogen Response to Host Defense and an Extreme Environmental 

Variable.  
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2. CHAPTER TWO 

Spatiotemporal Surveillance of the Pathogen Population Across the Southeastern U.S. 

  

Abstract  

 With Xanthomonas perforans having been isolated from and heavily documented in 

Florida, this study marks a comprehensive sampling of tomato farm fields across four 

Southeastern U.S. states. We conducted spatial and temporal sampling across Alabama, Georgia, 

South Carolina, and North Carolina across the growing season and profiled the pathogen 

population using high resolution metagenome sequencing. We observed that co-existence of 

different lineages of X. perforans is common across the fields and that different lineages 

predominate in the neighboring states or even neighboring farms in the same state. 

Spatiotemporal shifts were observed in the pathogen population and trends in these shifts over 

the span of three years suggest carryover of pathogen populations from one year to the next, or 

introduction of a new pathogen population from various sources. Apart from profiling of the 

pathogen population, another objective of this study is to identify factors involved in driving 

disease dynamics in the fields. Association of climatic parameters with pathogen and disease 

data suggests that certain abiotic factors could be at play in driving presence and number of 

pathogen lineages along with aiding in increasing disease severity. Considering that management 

of bacterial leaf spot caused by X. perforans has not been successful thus far, this overview of 

the pathosystem within farm fields may be useful in the development of new management 

strategies.  
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Introduction 

Research in the field of plant pathology underpins one of the most important aspects of 

our society today: agricultural food security. With plant pathogens contributing to the loss of 20-

25% of harvested crops worldwide and with food prices on the rise, researchers are fighting with 

plants in an ongoing battle against quickly-evolving pathogens (Savary et al. 2012; P. S. Teng 

and MacKenzie 1984; Dixon 2012). In a plant pathosystem, this ongoing battle between a 

pathogen and its host, termed a ‘coevolutionary arms race’, often pushes the host plant to employ 

mechanisms of defense against pathogens who are alongside evolving to evade or overpower 

those defense mechanisms at the same time (Anderson et al. 2010; Kareiva 1999). With pathogen 

virulence genes and corresponding plant resistance genes being some of the most variable genes 

within these plant-pathogen pairs, studies have shown a gene-for-gene link between the two 

where selection imposed by the host plant can push a pathogenic population to diversify linked 

virulence genes and vice versa (Karasov, Horton, and Bergelson 2014; W. Ma et al. 2006). In the 

event that pathogen diversity is already high and can quickly overcome the plant defense 

response/evolutionary advances or when monocultures are routinely planted, decreasing the 

ability of the plant to evade the pathogen, long-term coevolution has been shown to break at the 

plant’s expense, often leading to major crop losses (Thompson and Burdon 1992; Fones et al. 

2020; Castledine et al. 2022). With this link between the plant and the pathogen being apparent, 

what would happen in a system where no host resistance genes have been described? Would 

there still be a push towards diversification within the pathogen?  

 The pathosystem of Xanthomonas perforans causing bacterial leaf spot (BLS) on tomato 

and pepper is an example of a pathosystem where no such host resistance has been described in 

tomato. However, over the past 32 years following its isolation in Florida, not only has the 
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species displaced the previously dominant Xanthomonas euvesicatoria, but studies have also 

shown a rapid change in pathogen genotype and phenotype where sequencing of the species 

within farm fields routinely discovers more diversity (Klein-Gordon et al. 2021; E. A. Newberry 

et al. 2019; Bhandari et al. unpublished data). Description of this diversity has been changing 

since 2014 where the intraspecific diversity was first described as 3 ‘groups’ before being 

adapted to 6 different ‘sequence clusters’ (synonymous to pathogen lineages) in this lab in 2016, 

and further 8 different ‘sequence clusters’ presently (E. Newberry et al. 2020; Bhandari et al. 

unpublished data). Describing the intraspecific diversity with this term sequence cluster (SC) is a 

way of grouping strains within the species into clusters within which the strains are more closely 

related to each other than to strains of other SCs using core single nucleotide polymorphisms 

(SNP) across genomes published on NCBI followed by Baysian heirarchial clustering into 

different lineages using RheirBAPS (L. Cheng et al. 2013; Tonkin-Hill et al. 2018; E. Newberry 

et al. 2020; Bhandari et al. unpublished data). While the description has been changing to keep 

up with newfound diversity, with a lack of obvious resistance within tomato to drive this 

diversification, many questions have been raised surrounding the driving factor aside from the 

host plant in this diversification (Newberry et al. 2019, Potnis et al. 2021).  

Within plant pathosystems, while the host plant has been shown to be a major driving 

force in the evolution of pathogens, a range of other biotic and abiotic factors all play a part in 

shaping pathogen and disease dynamics as well. Along with the host either being susceptible or 

resistant, environmental factors such as temperature and humidity, agricultural practices such as 

the application of biologicals or chemicals, and inter- and intraspecific interactions with other 

members of the microbiome or within the same species can drive pathogen diversification and 

disease dynamics (Figure 2-1) (Potnis 2021). Unfortunately combining all of these factors which 
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can affect pathogen and disease dynamics in the tomato production chain which conveniently 

combines seed-production areas, transplant houses, and farm fields, all with variability between 

environment, agricultural practices, host plants, and other microbes (Potnis 2021; Klein-Gordon 

et al. 2022). Production complexity with each of these steps aids in not only increasing chances 

for introduction of inoculum but also increasing opportunities for genetic exchange and 

diversification, thus, study into the tomato production system has, in part, credited its very 

structure to the shaping of genetic variation existing within X. perforans (Klein-Gordon et al. 

2022; Potnis 2021). 

 

 

Figure 2-1. Model of biotic and abiotic factors affecting pathogen and disease dynamics 

within a plant pathosystem. 
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 Issues with the complexity of the tomato production chain are not alone though, current 

farm management practices have not been shown to successfully reduce the incidence of 

outbreaks and have even exacerbated the issue in instances where the repeated application of 

copper-based compounds to control the disease has actually led increased success of the 

pathogen with the spread of copper resistance (Subedi et al. 2023; E. A. Newberry et al. 2019; 

Potnis 2021; Bibi et al. 2023). Additionally, ongoing climate change is speculated to change 

current disease and pathogen dynamics which may disrupt the coevolutionary relationships 

between hosts and their pathogens leading to pathogen evolution being a more rapid process 

(Santini and Ghelardini 2015; Sukumar Chakraborty 2013; Liu et al. 2019). A combination of 

these issues leaves the future for BLS open-ended until further research is done to not only 

understand underlying factors in diversification of the species, aiding in its success, but also find 

ways of altering disease management practices that best hinder the success of the pathogen.  

With the fact that a baseline understanding of pathogen variation and diversity is essential to 

understanding factors of disease and potential for adaptation, a recent study sampled tomato 

fields across Alabama and found, with minimal sampling effort, not only a diverse landscape of 

X. perforans by presence of cooccurring sequence clusters (SCs), but also presence of two novel 

lineages were isolated that had not been previously identified in other Southeastern states (E. A. 

Newberry et al. 2019). The study by Newberry et al. (2019) first described six of the ‘sequence 

clusters’ that are used in this study, and their observations suggested that there may be an 

abundance of present diversity essentially just waiting to be sampled. Not only was it important 

to study this possible undescribed diversity for advancement of basic understanding, but 

considering that pathogen variation and diversity have been liked to increased virulence and can 

influence disease outcomes, it may be in growers’ best interest that continued efforts are made 
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towards a better understanding of this pathosystem (Kinnula, Mappes, and Sundberg 2017). To 

further investigate the extent of pathogen diversity, a pilot study to this project (E. Newberry et 

al. 2020) developed a strategy of assessing X. perforans diversity, including the intraspecific 

diversity present within the SCs, through a metagenomic approach. This study was conducted to 

not only understand which lineages were dominant within farm fields across AL, but also to 

assess whether coinfection by multiple SCs would be observed and found that SCs 3, 4 and 5 

were dominant and that cooccurrence of SCs was common among fields (E. Newberry et al. 

2020). While questions of SC dominance and cooccurrence were answered, results of this pilot 

study along with previous research to more questions surrounding pathosystem dynamics in 

farms outside of the more documented Florida area. (1) Whether this heterogeneity was 

common, (2) how many SCs were normally found cooccurring, and (3) are there persistent 

lineages that tend to exist in the fields despite other variable factors of climate or cultural 

practices? We also wanted to see whether or not spatiotemporal shifts exist in these SCs and their 

relative abundances in the field, and whether or not pathogen dynamics could be linked to 

disease severity outcomes. Given the idea that risk factors, particularly climate in this chapter, 

can influence disease and pathogen dynamics, this chapter aims to characterize and report the 

intraspecific diversity within X. perforans where I address how many sequence clusters are found 

to co-occur in farm fields across the Southeastern U.S., whether or not that number can be 

attributed to disease severity, if there are spatiotemporal shifts in the number of SCs present, and 

lastly, if environmental parameters as possible factors facilitating disease or pathogen dynamics 

within X. perforans. 
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Methods 

Collection and disease severity rating of tomato phyllosphere farm samples with associated 

metadata 

A total of 23 farms across four different states (AL, GA, SC, and NC) of the Southeastern U.S. 

were represented in this study.  Tomato phyllosphere samples were taken during the mid- and 

end-season and a few during the winter season (GA farms only) across three consecutive years 

(2020, 2021, and 2022). These samples were collected either by lab members or by extension 

agents, and along with sampling plant tissue, farm metadata including (but not limited to) 

parameters such as location of the farm, farm scale (commercial/small), tomato plant cultivar 

used, and application of chemicals was collected. Upon sample arrival to the lab, disease severity 

based on typical symptoms of BLS such as the presence of necrotic spots or shot holes was 

assessed using the Horsfall-Barratt scale (Horsfall 1945). Following disease severity rating, 

metagenomic DNA from each sample was extracted and sequenced using Illumina (Bhandari et 

al. unpublished data).  

Metagenomic analysis of X. perforans SC relative abundance using StrainEst 

Relative abundance of SCs 1-8 within each farm sample was determined using a program called 

StrainEst which mapped single-nucleotide variants (SNV) within a sample’s mixed metagenomic 

reads to a custom reference SNV profile containing a representative of each sequence cluster 

mapped to a sequence representative (Albanese and Donati 2017; Bhandari et al. unpublished 

data). Shannon diversity, an estimation of diversity that considers both species richness and 

evenness, was then calculated for each sample based on the relative abundance of SCs present 

(Bhandari et al. unpublished data; DeJong 1975). This work was made possible in part by high 
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performance computing resources and technical support from the Alabama Supercomputer 

Authority.  

Extraction of NASA POWER data for each farm 

NASA POWER data for each farm was obtained from the NASA Langley Research Center 

POWER Project funded through the NASA Earth Science Directorate Applied Science Program 

using the “nasapower” package in RStudio (A. Sparks 2018; A. H. Sparks et al. 2023; Posit team 

2023). Daily values of parameters including Temperature at 2 Meters (C) (T2M), Dew/Frost 

Point at 2 Meters (T2MDEW), Wet Bulb Temperature at 2 Meters (T2MWET), Earth Skin 

Temperature (C) (TS), Temperature at 2 Meters Range (C) (T2M_RANGE), Specific Humidity 

at 2 Meters (QV2M), Relative Humidity at 2 Meters (%) (RH2M), Precipitation Corrected 

(mm/day) (PRECTOTCORR), Clear Sky Surface PAR Total (CLRSKY_SFC_PAR_TOT), All 

Sky Surface PAR Total (ALLSKY_SFC_PAR_TOT), Surface Pressure (kPa) (PS), Wind Speed 

at 10 Meters (WS10M), Wind Direction at 10 Meters (WD10M), and All Sky Surface Longwave 

Downward Irradiance (ALLSKY_SCF_LW_DWN) were extracted for the entire season from 

each farm and further broken down into the average, standard deviation, skewness, and kurtosis 

for each mid and end season. Descriptions of all these climatic parameters can be found in Table 

2-1 of this chapter.  
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Table 2-1: Climatic parameters extracted to study in association with the pathosystem of X. 

perforans 

Parameter Name Description 

T2M Temperature at 2 

Meters (C) 

The average air (dry bulb) temperature at 

2 meters above the surface of the earth. 

T2MDEW Dew/Frost Point at 2 

Meters 

The dew/frost point temperature at 2 

meters above the surface of the earth. 

T2MWET Wet Bulb 

Temperature at 2 

Meters 

The adiabatic saturation temperature 

which can be measured by a thermometer 

covered in a water-soaked cloth over 

which air is passed at 2 meters above the 

surface of the earth. 

TS Earth Skin 

Temperature (C) 

The average temperature at the earth's 

surface. 

T2M_RANGE Temperature at 2 

Meters Range (C)  

The minimum and maximum hourly air 

(dry bulb) temperature range at 2 meters 

above the surface of the earth in the 

period of interest. 

QV2M Specific Humidity 

at 2 Meters 

The ratio of the mass of water vapor to 

the total mass of air at 2 meters (kg 

water/kg total air). 
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RH2M Relative Humidity 

at 2 Meters (%)  

The ratio of actual partial pressure of 

water vapor to the partial pressure at 

saturation, expressed in percent. 

PRECTOTCORR Precipitation 

Corrected (mm/day)  

The bias corrected average of total 

precipitation at the surface of the earth in 

water mass (includes water content in 

snow). 

CLRSKY_SFC_PAR_TOT Clear Sky Surface 

PAR Total 

The total Photosynthetically Active 

Radiation (PAR) incident on a horizontal 

plane at the surface of the earth under 

clear sky conditions. 

ALLSKY_SFC_PAR_TOT All Sky Surface 

PAR Total 

The total Photosynthetically Active 

Radiation (PAR) incident on a horizontal 

plane at the surface of the earth under all 

sky conditions. 

PS Surface Pressure The average of surface pressure at the 

surface of the earth. 

WS10M Wind Speed at 10 

Meters 

The average of wind speed at 10 meters 

above the surface of the earth. 

WD10M Wind Direction at 

10 Meters 

The average of the wind direction at 2 

meters above the surface of the earth. 
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ALLSKY_SCF_LW_DWN All Sky Surface 

Longwave 

Downward 

Irradiance 

The downward thermal infrared 

irradiance under all sky conditions 

reaching a horizontal plane the surface of 

the earth. Also known as Horizontal 

Infrared Radiation Intensity from Sky. 

 

Data Analysis 

The question of whether Shannon diversity, number of sequence clusters present, or the 

dominant sequence cluster present affects disease severity was addressed using a linear model in 

RStudio. To answer whether climatic factors could be considered predictors of presence/absence 

of SCs, a regular linear lasso approach was used to select climatic variables as important 

variables/predictors of each response variable before a binomial generalized linear model was 

run on those selected to find any significance (Norris et al. 2006). For generalized linear model 

studies, predictors with a Pr(>|z|) less than 0.05 (p<0.05) were considered to be significant and 

their impact, either positive or negative, was considered based off of the sign of the estimate 

(Murtaugh 2014). This regular linear lasso approach was also used to select climatic variables as 

important predictors of disease severity, number of SCs present, and Shannon diversity before 

those important predictors were assessed as significant predictors of the response variable using 

an ordinal logistic regression (Norris et al. 2006). Coefficients were considered as significant if 

their t value was larger than 2, and their impact was interpreted based on the sign of the 

coefficient with a positive sign regarding a positive correlation and negative sign thus a negative 

correlation (Cameron et al. 2014).  
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Results 

Number of SCs co-occurring and dominant SC found in fields were variable across states, 

and number of SCs was positively associated with disease severity 

A total of 23 farms across four states of the Southeastern U.S. were sampled across the years 

2020, 2021, and 2022 for metagenomic DNA before high-resolution sequence analysis was 

conducted to monitor Xanthomonas perforans population dynamics. Additionally, disease 

severity was recorded alongside for each sample. Across all farm samples, there were on average 

2.29 SCs present within each sample, with North Carolina farms reaching a maximum of 3 SCs, 

states Alabama and Georgia reaching a maximum of 4 SCs, and South Carolina reaching the 

highest number of SCs within a sample: 5 SCs (Figure 2-2.A). Commercial and small scale farm 

types differed in average number of SCs present with small scale farms having less SCs present 

on average with 1.67 per farm sampled as opposed to 2.52 per commercial farm sampled in this 

study (Figure 2-2.A). Regarding dominant SCs present (SC with the highest abundance relative 

to other SCs in the sample) within each state and farm type, out of a total of 65 farm samples, 

only 5 had no SCs present based off of analysis with StrainEst (Figure 2-2.B.). Alabama 

represented farms with dominance of 4 different SCs (SC3, SC4, SC5, and SC6) whereas states 

South Carolina, Georgia, and North Carolina only represented farm samples with 3, 2, and 1 

different SCs being found as dominant, respectively (Figure 2-2.B). With SC3 being dominant 

across 31 farm samples in total (31/44 =  70.45% of the time it was present), this sequence 

cluster was sampled as dominant the most in Georgia and South Carolina farm samples, but in 

Alabama, while SC3 was dominant in some samples, SCs 4 and 6 were primarily the dominant 

sequence clusters found within farm samples. In North Carolina, SC4 was the only dominant SC 

found. SCs 4 and 6 were dominant in fields 50% of the time they were present, and SC5 was 
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dominant in 20% of the fields which it was present. Disease severity was found to be positively 

correlated with number of SCs present (p=0.005, Kruskal-Wallis) (Figure 2-2.C). 

 

 

Figure 2-2. An overview of X. perforans presence and disease severity in farm fields across 

the Southeastern U.S. A total of 23 farms across four states of the Southeastern U.S. were 

sampled across the years 2020, 2021, and 2022 for metagenomic DNA and disease severity to 

study the pathogen dynamics of X. perforans. (A.) Number of SCs per farm within each state 

separated by farm type in terms of being either commercial or small scale. (B.) Dominant SC 

present (SC with the highest abundance relative to other SCs in the sample) within each state and 
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by farm type. ‘N.D.” denotes that presence of X. perforans SCs was not detected, this was 

observed in 5 farm samples. (C.) Disease severity of farm samples (with SCs present) by number 

of SCs present separated by state and farm type with a linear model line showing correlation 

between the two by farm type. 

 

Number of SCs cooccurring and dominant SC found in fields were not only variable across 

states, but also over time 

Stacked area plots for each farm show intraspecific diversity of X. perforans by relative 

abundance of SCs over time and space within the 13 out of 23 farms that had more than one 

sample (Figure 2-2). Out of the 61 farm samples from those 13 farms, 38 of those samples had 

multiple SCs cooccurring among plant tissue (62% of samples). While the dominance of 

particular SCs, namely SCs 3, 4, 5, and 6 are apparent with the stacked area plot, SCs 1, 2, 7, and 

8 are represented in farm samples as well, meaning that all eight SCs described have been 

represented in this sampling. Presence and dominance of SCs was observed changing over time 

in some farms, yet in others, pathogen dynamics seemed to remain relatively consistent based on 

relative abundance over time. To characterize temporal pathogen dynamics in those farms 

sampled more than once starting with Alabama, while two farms (Farm 2 and Farm 4) show 

some semblance of consistency across SC relative abundance over time, heterogeneity within 

those farms decreases by the last sample in each. In general with these Alabama farms, a lot of 

variability is seen amongst the SCs present and their relative abundances, for example: in Farm 1 

(a small scale farm), the dominant SC completely changes from one year to the next, and not 

only do Farms 2 and 4 decrease in their heterogeneity over time, Farm 3 started out with almost 

equal populations of SC3 and SC4 before flipping between the two over time. In Georgia farms, 
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SC 3 was primarily dominant and SC4 often present alongside it at lower abundances. Pathogen 

dynamics within these farms do not appear very variable across space or time with both small 

scale and commercial farms being represented. With SC3 dominating across most of the farms, 

not much intraspecific heterogeneity was observed in terms of equal relative abundances. In 

South Carolina farms sampled more than once, SC 4 and SC3 were primarily dominant with 

rapid changes being observed in two of the farms (Farms 8 and 10), all three were commercial, 

where SC4 relative abundance seemed to change readily. In the remaining Farm 9, pathogen 

dynamics were consistent with SC3 being dominant and there being less heterogeneity. Lastly, in 

the one North Carolina farm sampled more than once, SC4 was dominant, yet this farm also had 

a respectable relative abundance of SC2 which, in contrast, held very low relative abundances 

across other fields. Temporally from mid to end season for this farm in 2020, not much change 

occurred. 
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Figure 2-3. The extent of farm sampling across 13 farms that had >1 sample, with 6-7 

different sampling times over three years profiling X. perforans relative abundance of SCs 

1-8. Stacked area plot showing relative abundance of SCs 1-8 across 13 farms (which must have 

had more than one sampling time to create a plot) within samples taken across three years and 6-

7 different sampling times. Sampling times 1-6 denote mid-season then end-season sampling for 

2020, then 2021, and 2022 respectively except in farms 17, 18, 21, and 22, where sampling time 
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1 and 2 are similar to the other farms, yet 3 is an addition of sampling from the winter season of 

2020, and then 4-7 represent mid-season and end-season for 2021 and 2022 consecutively. Farm 

states Alabama, Georgia, South Carolina, and North Carolina are represented and marked above 

farm name, and for reference, Farms 1, 7, 17, and 18 were small scale farms and the rest were 

commercial farms.  

 

Disease and pathogen dynamics are associated with metrics of four different climatic 

parameters used in this study 

Using a regular linear lasso approach to select climatic parameters as important predictors of 

presence/absence of SCs, number of SCs present, Shannon diversity, or disease severity of farm 

samples before either a generalized linear or an ordinal logistic regression was run to determine 

significance, metrics (average, standard deviation, kurtosis, skewness) of four different climatic 

parameters were selected as significant (p<0.05 or |t value|>2): all sky surface photosynthetically 

active radiation (PAR) total, wind direction at 10 meters, average precipitation corrected 

(mm/day), and temperature at 2 meters range (Tables 2-2 and 2-3).  

Considering climatic factors as predictors of presence/absence of SCs, statistics could not be run 

for SC7 considering there was only one observation, and no climatic parameters were selected as 

important predictors for SC2. For SCs 1, 5, 6, and 8, climatic parameters were selected as 

important predictors, yet none were significant. For SCs 3 and 4, however, regarding 

presence/absence of SC3 and its association with climatic parameters, climatic parameters were 

selected as important predictors with standard deviation of both all sky surface PAR total and 

wind direction at 10 meters being considered two statistically significant important predictors 

(p=0.016 and p=0.026, respectively) with standard deviation of all sky surface PAR total 
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negatively effecting presence of SC3 and standard deviation of wind direction at 10 meters 

positively affecting SC3 presence (Table 2-2). For SC4 presence/absence, the climatic parameter 

average precipitation corrected (mm/day) was selected as the only important predictor and was 

considered to be statistically significant (p=0.017) and negatively effecting SC4 presence (Table 

2-2). 

 

Table 2-2: Climatic variables as predictors of SC relative abundance (significant values 

only) 

Model Response Predictor Estimate Std. 

Error 

z value Pr(>|z|) 

Generalized 

Linear, 

Binomial 

SC3 

Presence/Absence 

Standard Deviation of 

All Sky Surface 

Photosynthetically 

Active Radiation (PAR) 

Total 

-0.28093 0.11673 -2.407 0.0161 

Generalized 

Linear, 

Binomial 

SC3 

Presence/Absence 

Standard Deviation of 

Wind Direction at 10 

Meters 

0.13556 0.06102 2.222 0.0263 

Generalized 

Linear, 

Binomial 

SC4 

Presence/Absence 

Average Precipitation 

Corrected (mm/day) 

-0.5895 0.2465 -2.392 0.01676 
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Considering climatic factors as important predictors of disease severity, number of SCs present, 

and Shannon diversity, no climatic parameters were selected as important predictors for Shannon 

diversity, yet parameters were selected and considered significant for number of SCs present and 

disease severity. For number of SCs present, standard deviation of both temperature at 2 meters 

range and wind direction at 10 meters along with kurtosis of all sky surface PAR total were 

selected as important parameters and were considered to also be significant (t value = -3.4, t 

value = 3.9, and t value = -2.2, respectively) with standard deviation of temperature at 2 meters 

range and kurtosis of all sky surface PAR total both negatively effecting the number of SCs and 

standard deviation of wind direction at 10 meters positively effecting the number of SCs (Table 

2-3). Disease severity was found to be significantly positively associated with standard deviation 

of wind direction at 10 meters (t value = 2.4), and changes in disease severity from mid-season to 

end-season were significantly positively associated with changes in skewness of wind direction 

at 10 meters (t value = 2.64) from mid-season to end-season (Table 2-3).  

 

Table 2-3: Climatic variables as predictors of pathogen heterogeneity and disease severity 

(significant values only) 

Model Response Predictor Value Std. Error t value 

Ordinal 

Regression 

Number of 

Sequence 

Clusters 

Standard Deviation of 

Temperature at 2 Meters 

Range 

-2.3265 0.68388 -3.402 
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Ordinal 

Regression 

Number of 

Sequence 

Clusters 

Standard Deviation of 

Wind Direction at 10 

Meters 

0.1846 0.04742 3.8937 

Ordinal 

Regression 

Number of 

Sequence 

Clusters 

Kurtosis of All Sky 

Surface 

Photosynthetically 

Active Radiation (PAR) 

Total 

-0.625 0.28044 -2.2286 

Ordinal 

Regression 

Disease 

Severity 

Standard Deviation of 

Wind Direction at 10 

Meters 

0.07836 0.03244 2.416 

Ordinal 

Regression 

Change in 

Disease 

Severity 

from Mid-

season to 

End-season 

Change in Skewness of 

Wind Direction at 10 

Meters from Mid-season 

to End-season 

3.606 1.366 2.64 

 

Discussion 

To gain a better understanding of risk factors affecting disease and pathogen dynamics, 

this study sampled a total of 23 farms across the Southeastern U.S. by assessing disease severity 

and sequencing metagenomic DNA from tomato leaf material sampled during the mid and end of 
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growing seasons (a couple of samples were also taken during the winter season). This data 

allowed us to address intraspecific diversity of X. perforans on tomato by profiling which SCs 

were present in fields, existing either alone or cooccurring with other SCs, and whether their 

relative abundance was spatiotemporally variable. Additionally, we found if disease severity of 

these samples could be attributed to the number of SCs cooccurring within samples, and whether 

or not possible climatic variables were factors facilitating these disease and pathogen dynamics.  

Firstly, we found that the number of SCs cooccurring and dominant SC within farm 

samples was variable across the four states sampled, and that the number of SCs present in a 

farm sample was positively associated with disease severity. There were on average 2.29 SCs 

present in farm field samples with this study observing a maximum of 5 cooccurring SCs in 

South Carolina (Figure 2-2.A). Also, we observed that, on average, our small scale farms had 

less pathogen heterogeneity in terms of number of SCs cooccurring than commercial farms. 

Although it could be possible that the slight difference in the number of small scale versus 

commercial farms sampled could have led to this discrepancy, another hypothesis as to why we 

are seeing a slight increase in the number of SCs cooccurring in commercial farms is that, in the 

case that the commercial farms have planted large monocultures of tomatoes, the homogeneity 

within the host population may be aiding in the heterogeneity of the pathogen population. It has 

been proposed that monoculture crops could in some way promote pathogen heterogeneity by 

reducing obstacles of transmission both spatially within the field and genetically due to the lack 

of host diversity; not only could this exacerbate disease severity but it could also lead to the 

evolution of pathogens into more virulent strains (Wuest, Peter, and Niklaus 2021; Brown 2015; 

Cheatham et al. 2009). If small scale farmers generally grow varieties of crops at the same time, 

including host and non-host genotypes of X. perforans, the host heterogeneity could aid in the 
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reduction of the number of SCs present, and the non-host genotypes could additionally act as 

physical barriers to the spread of the pathogen (Wuest, Peter, and Niklaus 2021). In fact, 

regarding disease severity sampled within this study, the number of SCs present was positively 

correlated to disease severity (Figure 2-2.C). If a maintenance of heterogeneity within these field 

samples is linked to monocultures of crops, this finding could support the push of farm 

management practices away from monoculture crops if the host genotypes and other crops 

planted had been transparent between growers and us as researchers. Regardless, this finding is 

similar to that of many other studies which have found that coinfection can lead to higher disease 

severity (Abdullah et al. 2017; Susi et al. 2015; Sadhukhan, Jacques, and Potnis 2023). Focusing 

now on the SCs found to be dominant in farm samples, out of the four different SCs which were 

found to have been dominant in at least one sample across the entire study (SCs 3, 4, 5, and 6), 

one interesting thing to note is that Alabama represented all four of them while South Carolina, 

Georgia, and North Carolina represented only 3, 2, and 1 different SCs being found dominant. 

Aside from the fact that Alabama is actually one of the most biologically diverse states (4th 

highest in terms of species diversity) due to its climatic and geological diversity combined with a 

‘rich evolutionary past’ (Duncan and Wilson 2013), it is possible that Alabama’s proximity to 

the origin of X. perforans, Florida, could have something to do with this finding (Figure 2-2.B). 

A study by Timilsina et al. (2019) indicated that rapid genomic evolution was happening within 

the X. perforans population in Florida with recombination with X. euvesicatoria, previously the 

only Xanthomonas species known to Florida, aiding in this diversification (Timilsina et al. 2019). 

Another study conducted by Newberry et al. (2019) found that proportions up to almost 10% of 

the core genomes of X. perforans sequence clusters in Alabama farm fields were also from 
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recombination with closely related X. euvesicatoria, making it possible that Florida and Alabama 

are hotspots for X. perforans which could explain our observation (E. A. Newberry et al. 2019).  

In visualizing the diversity of the X. perforans within the farm samples through SC 

relative abundance over time, it is apparent that cooccurrence is common (62% of the time) and 

that not only are there spatial shifts in the number of SCs and dominant SC present, but there are 

also changes in the pathogen population over time (Figure 2-3). Within some of the farms, 

obvious trends are seen over time with SC relative abundances remaining the same, or some 

increasing or decreasing at the detriment of other SCs. The pathogen population within these 

farms could be linked from year to year through carryover of inoculum on seeds, overwintering 

of inoculum on debris or weeds, or even a maintenance of inoculum at the seed or transplant 

source for these farms (Abrahamian, Klein-Gordon, et al. 2021). On the other hand, however, 

more drastically than subtle shifts in SC relative abundances, presence of SCs changes 

completely in some farms from year to year suggesting that farms could be instead accessing 

different pools of X. perforans diversity through various sources on seed or transplants that they 

could be introducing to their farms over time (Abrahamian, Klein-Gordon, et al. 2021). Aside 

from source of inoculum, there could still be selection of SCs environmentally and across the 

season by environmental factors and various agricultural practices following introduction into 

farm fields.  

Focusing on climatic variables (Table 1) as drivers of not only pathogen dynamics but 

disease dynamics as well, this study found that disease severity, presence/absence of SCs 3 and 

4, and number of SCs were associated with metrics of climatic parameters with a total of four 

being significant drivers: precipitation corrected (mm/day), temperature at 2 meters range, all sky 

surface photosynthetically active radiation (PAR) total, and wind direction at 10 meters (Tables 
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2-2 and 2-3). To go by each climatic parameter starting with precipitation corrected (mm/day) of 

which a higher average precipitation was negatively associated with SC4 presence, X. perforans 

is considered to disseminate within fields mainly through wind-driven rain and studies 

associating precipitation with phytopathogen presence and abundance have shown precipitation 

to increase the abundance of fungal plant pathogens (Q.-L. Chen et al. 2021; Bhattarai et al. 

2017; Abrahamian, Klein-Gordon, et al. 2021). It is not directly clear why increased precipitation 

may lead to decreased presence of SC4, however if the pathogen load on the plant is increased 

due to higher precipitation levels, the decrease in the presence of SC4 may be due to increased 

competition with other phyllosphere members. For temperature at 2 meters range of which a 

higher standard deviation decreased the number of SCs present, with general environmental 

optima existing not only for plant to function but also for pathogen virulence, one possible 

reason for this association could be that that variation in the temperature is selecting for specific 

SCs which are more tolerant to temperature fluctuation (Velásquez, Castroverde, and He 2018a). 

A study conducted in Brazil on four different pathogenic species of Xanthomonas found that 

temperature had in important role in determining which species are present, and if global 

changes are causing an increased standard deviation in temperature with extremes being 

introduced, this could be leading to a reduction in the number of SCs present where only those fit 

persist (Araújo et al. 2011). The standard deviation of all sky surface photosynthetically active 

radiation (PAR = light of wavelengths 400-700 nm which is portion of the light spectrum 

photosynthesized by plants) total was found to be negatively associated with SC3 presence, and a 

higher kurtosis of this climatic parameter was negatively associated with number of SCs present 

(Carruthers et al. 2001). Studies in peas have shown that levels of PAR were linked to stomatal 

apertures through a concentration of zeaxanthin in guard cells, so it is possible that higher 
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variation in stomatal aperture is associated with a higher number of SCs yet a lower presence of 

SC3, possibly because of the presence of more SCs yet more study would need to be done to 

really understand this relationship (Srivastava and Zeiger 1995). For the climatic parameter wind 

direction at 10 meters, standard deviation was positively associated with SC3 abundance, disease 

severity of farm samples, and number of SCs present. To understand more about this climatic 

parameter, wind direction describes the direction specifically from which the wind originates and 

is measured by degrees on a scale of 0-360 with wind coming from the north lying at 0 or 360 

degrees. On average, the farms sampled had wind directions of  ~150-200° with winds ranging 

from the southeast through the southwest and blowing northwest and northeast respectively, 

meaning that a higher standard deviation would generally consist of winds varying in direction 

but generally pushing from south to north. We also found that positive changes in skewness of 

wind direction at 10 meters from mid- to end-season was positively associated with changes in 

disease severity from mid- to end-season. A positive change in skewness over the season in wind 

direction with skewness values beginning as negative would push the majority of wind direction 

values more towards the average and towards a direction south to north direction. With this 

south-north facing wind direction in mind, many studies have been published on the 

dissemination of plant pathogens along a south-north disease path (especially rust fungi) (Keane 

and Brown 1997; Singh, Karisto, and Croll 2021; Böer et al. 2013). In X. perforans, though, 

considering that the southmost state below all of our Southeastern U.S. states sampled is Florida, 

the origin of the species’ first account and one of the major sites of recombination with X. 

euvesicatoria (the species which SC3 had almost 8% of its core genome linked to recombination 

with) it is possible that wind direction is a major driver in the dissemination of X. perforans up 

from Florida both increasing abundance of SCs such as SC3 and the number of SCs present in 
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our farm fields, subsequently facilitating disease and increasing severity (E. A. Newberry et al. 

2019). 

Overall, this study set out to provide an assessment of general pathogen and disease 

dynamics across the Southeastern U.S. and to address the idea that risk factors, particularly 

climate in this chapter, are possible influencers of those dynamics. This project achieved those 

goals and was able to answer questions probed by the pilot study of Newberry et al. (2020) with 

hopes of providing a broader understanding of X. perforans diversity to aid in the development 

of better management practices. 
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3. CHAPTER THREE 

Note: this chapter is a manuscript in progress that we plan to submit before the end of this year. 

My contributions are that I wrote this bioprotocol and set up the experiments, yet I was provided 

comments for writing by Drs. Gillespie, Watanabe, and Potnis, and I was assisted by Amanpreet 

Kaur in experiments. Considering that this will be submitted before graduation, I am formatting 

the following chapter in the way of submission to the journal. 

 

The Use of Flow Cytometry for High Resolution Bacterial Studies in planta 
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Abstract 

Quantifying bacterial populations in planta is often an important part of research 

implemented by scientists studying anything from phytopathogens to the plant growth promoting 

(PGP) microbiota. With current techniques generally including isolating bacteria from plant tissue 

and plating onto selective media, moving steps away from culture-based methods could eliminate 

possible bacterial selection biases on the plate allowing for high-resolution studies into the 

pathogen population. This is specifically true for the studies involving tracking of multiple 

pathogens or microbes simultaneously, given that direct interactions among these co-occurring 

taxa may influence the outcome in culture-dependent methods. Granted the integral nuance and 

difficulty experienced aiming for such high-resolution, we developed a culture-independent 
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approach using flow cytometry to allow enumeration of two closely related, co-occurring 

pathogens in planta. Following fluorescent tagging of pathogens as necessary for use with flow 

cytometry, the streamlined process uses a sonicator to dislodge microbes from phyllosphere tissue 

which are then processed for input into the flow cytometer machine effectively acquiring absolute 

bacterial abundance without the limitations of culture-based methods while saving both time and 

resources.    

 

Key features 

• Analysis of closely related bacterial strains from an in planta study using flow cytometry, such 

as coinfection dynamics studies 

• Efficacy of using Flow Cytometry for in planta studies and comparison to a culture-based 

approach 

• Optimized for the study of phyllosphere microbiota 

 

Keywords: Flow Cytometry, Coinfection, High-resolution Population Analysis, Xanthomonas 

perforans, Culture-independent Phyllosphere Isolation, Sonication 
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Graphical overview 

 

Figure 3-1: Infecting Plants With Fluorescently Tagged Bacteria by Dip Inoculation 

 

 

Figure 3-2: Cell Collection from Plant Tissue and Use of Flow Cytometry 
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Background 

This study utilizes coinfection of two closely related strains of the phytopathogen 

Xanthomonas perforans on tomato where, considering the similarity of the strains and the 

difficulty in distinguishing them physically without distinct markers, high-resolution studies are 

necessary to understand the population dynamics of each strain simultaneously. When working 

with multiple bacterial strains tagged with antibiotic markers, use of culture-based methods  can 

introduce biases in the event that antagonistic strain:strain interactions such as the production of 

bacteriocins against co-plated strains or nutrient limitations towards one strain or another exist 

(Davis 2014; J. Li et al. 2017; Z. Li, Li, and Bian 2016; Quambusch et al. 2014). Upon question 

of integrity, such rigorous study would need to be done to justify the absence of such biases that it 

may be beneficial to shy away from these methods depending on the circumstance (also, see 

“General Notes: 2”).  

Although the resolution issue could be solved by simply studying mono-infections of 

pathogens, previous research has shown that pathogen coinfection is common in natural and 

agricultural settings with not only different species of pathogens, but also even different strains of 

the same species (Abdullah et al. 2017; E. Newberry et al. 2020; Sadhukhan, Jacques, and Potnis 

2023; Susi et al. 2015). When assessing intraspecific (within species) diversity of X. perforans in 

farm fields, recent studies have found certain strains of the species to be dominant (with dominance 

of strains being spatiotemporally different), and that heterogeneity is maintained within the farm 

samples at intraspecific level (Bhandari et al. unpublished data; E. Newberry et al. 2020). 

Reflecting on this observation with an ecological understanding highlights the fact that 

maintaining genetic heterogeneity can benefit a pathogen population in the event that shifts in 

fitness factors beg for change; considering this, assessing intraspecific diversity may give insight 
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into the way pathogens respond to changes (Arnoldini et al. 2014; Stewart and Cookson 2012; 

Weigel and Dersch 2018). To gain deeper understanding the intricacies of these ecological 

dynamics and its feedback into pathogen evolution during within-host colonization, coinfection 

studies involving population dynamics of individual pathogen lineages and their influence on 

overall disease outcome are necessary.  

Currently, the dominant culture-independent method of sequencing provides a great option 

to researchers familiar with post-sequencing processing and when monetarily an option, another 

option is the use of flow cytometry which not only provides an option to study live cells (that must 

be fluorescently tagged), which sequencing cannot, but along with numerating those live cells, 

enables researchers to collect data on cell morphology in size and shape as well (Adan et al. 2017; 

Collier 2000). In this study, we developed a model system to coinfect plants with two strains of X. 

perforans which had different strain relative abundances in the field: one strain was often found at 

low relative abundance whereas the other strain was often found at high relative abundance 

(Bhandari et al. unpublished data). The goal here was to use, develop, and optimize a rapid protocol 

to understand how the population structure of each strain would change when coinfected with 

another closely related strain at different ratios in planta. This protocol presents an overview for 

the use of flow cytometry to gain high-resolution population dynamics in an in planta system of 

two closely related fluorescently tagged bacteria (Schlechter et al. 2018); while successful in 

studying a phyllosphere pathogen on tomato, the methodology used in this experiment could be 

broadly applied to a range of other in planta microbial studies. 
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Materials and reagents 

 

Biological materials 

1. Xanthomonas perforans strain: Xp 5-6 

2. Xanthomonas perforans strain: AL65 

3. Hybrid Tomato Florida 47 R (Bayer Seminis) 

 

Solutions 

1. 0.01 M Magnesium Sulfate (MgSO4) Buffer (see Recipes) 

 

Recipes 

1. Magnesium Sulfate (MgSO4) Buffer (0.01 M, 1000 mL) 

Reagent Final concentration Quantity or Volume 

Magnesium sulfate 

heptahydrate 

n/a 2.4648 g 

Deionized (DI) H2O n/a 1000 mL 

Total 0.01 moles/L 1000 mL 

 

Laboratory supplies 

1. 1.7 ml microcentrifuge tubes (VWR, catalog number: 87003-294) 

2. 100 – 1250 μl universal pipette tips (VWR, catalog number: 76323-456) 

3. 150 ml 0.22 μm complete filtration unit vacuum filtration system (VWR, catalog number: 

76010-374) 
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4. 15 ml ultra high performance centrifuge tubes (VWR, catalog number: 21008-216) 

5. 25 ml disposable serological pipettes (VWR, catalog number: 75816-090) 

6. Sandwich bags (Ziploc) 

7. 70 μm cell strainers (Millipore Sigma, catalog number: BAH136800070) 

8. DifcoTM nutrient agar (VWR, catalog number: 90000-744) 

9. Disposable petri dishes (VWR, catalog number: 25384-302) 

10. 70 μm Flowmi® cell strainers for 1000 μl pipette tips (Millipore Sigma, catalog number: 

BAH136800070) 

11. Magnesium sulfate heptahydrate ACS MgSO4.7H2O (VWR, catalog number: 0662-500G) 

12. Silwet® L-77 (PhytoTech Labs, Product ID: S7777) 

 

Equipment 

1. Centrifuge 5810R (Eppendorf) 

2. CytoFLEX LX N3-V5-B3-Y5-R3-I2 Flow Cytometer (21 Detectors, 6 Lasers) (Beckman 

Coulter, product number: C40312) 

3. Ultrasonic cleaner machine 60A AC100-120V50Hz 

4. Forced Air Microbiological Incubator (VWR) 

 

Software and datasets 

1. CytExpert Software 2.1 
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Procedure 

A. Pre-Experiment Optimization of Fluorescence and Flow Cytometry Gating 

1. For optimal use of this protocol, transform non-fluorescent bacterial strains of interest with 

fluorescent markers distinguishable from each other when analyzed by flow cytometry. 

Optimally, transform bacteria with fluorescent markers that are chromosomally integrated 

to ensure that they will not be lost from the cells during experimentation. 

Note: Two different fluorophores were used in this experiment: mScarlet-I and sGFP2 

encoding for red and green fluorescent proteins, respectively. Our bacterial isolates were 

transformed by electroporation using Tn7 transposon delivery plasmids to express these 

fluorophores; post-transformation they were selected based on resistance to the antibiotic 

associated with the fluorophore (Schlechter et al. 2018). In this experiment, the flow 

cytometer (CytoFLEX LX) was configured so that mScarlet-I was detected on the 

fluorescent channel 585/42 BP named “PE” and sGFP2 was detected on the fluorescent 

channel 525/40 BP named “FITC”. Both fluorescent probes were excited by the 488-nm 

laser. 

2. To optimize a gating strategy to distinguish fluorescent proteins expressed by each of the 

transformed bacteria based on fluorescent intensity, run pure cultures of each fluorescent 

bacteria through the flow cytometer and create gates based on fluorescent intensity of each 

bacterial population that needs to be identified during the experiment. Again, these 

fluorescent proteins should be distinguishable from each other and appropriately 

compensated for spill-over of fluorescence signal into other channels. 

3. For optimizing forward (FSC) and side scatter (SSC) of bacterial populations, which 

represent the size and complexity/granularity of the cell respectively, run pure cultures of 
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both non-fluorescent and fluorescent bacteria through the flow cytometer and create a gate 

based on the physical characteristics of the bacterial cells. For in planta studies prior to 

experimentation, it is beneficial to use this step to see where inoculated bacterial 

populations are observed in relation to phyllosphere microbes present and to note whether 

or not the size of the inoculated bacteria are similar to that of pure cultures, if not, a new 

FSC/SSC gate should be created based on the physical properties of the bacterial strains in 

planta. Additionally, if distinguishable, gate the resident phyllosphere microbes as separate 

from the inoculated bacteria.  

4. Following gating, thresholds can also be set to select for only necessary signal data. If 

desired, set fluorescent intensity for each fluorescent channel used to only show flow 

cytometry events that meet or exceed that threshold.  

Note: To increase the sensitivity of the cytometer to detect the fluorescently labeled 

bacterial cells, default thresholds were adjusted to trigger on fluorescent events with an 

intensity of 1000 units on either the PE or FITC channels. Triggering on these events 

significantly decreases the number of background events analyzed by the cytometer.  

 

B. Infecting Plants by Dip Inoculation 

1. For general use of this protocol to study bacterial population growth within a pathosystem 

of interest, streak fluorescently tagged bacterial isolates onto respective nutrient rich agar 

plates and incubate at proper culture temperature and for a sufficient amount of time to 

prepare a starting inoculum. For this experiment, two strains of fluorescently labeled 

Xanthomonas perforans (as described in the note below) were streaked from glycerol 

stocks onto nutrient agar plates (NA) supplemented with respective antibiotics and 
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incubated at 28 °C for two days. 

Note: Two strains of Xanthomonas perforans, AL65 and Xp 5-6, were used in this 

experiment: strain AL65 was transformed using pMRE-Tn7-152 to confer bacterial cells 

with a constitutively expressed fluorescent protein gene, sGFP2, and resistance to 

kanamycin; likewise, strain Xp 5-6 was transformed using pMRE-Tn7-145 to express m-

Scarlet-I and gentamycin resistance (Schlechter et al. 2018).  

See “General Notes: 1” for more information regarding fluorescently tagging bacteria to 

be used for Flow Cytometry. 

2. Concisely, for dip inoculating plants at a level of 106 cfu/ml, prepare a solution of 108 

cfu/ml of bacteria in 0.01 M MgSO4 before diluting 100x into a solution of 0.01 M MgSO4 

supplemented with 0.0025% Silwet L-77 (v/v) at a volume suitable to immerse the entire 

phyllosphere portion of the plant. To prepare inoculum of a monostrain treatment such as 

this experiment’s treatment ‘AL65’, for example, 8 ml of 108 cfu/ml AL65 diluted in 0.01 

M MgSO4 was supplemented with 792 ml 0.01 M MgSO4 and 20 μl of Silwet L-77 to 

obtain a final inoculum of 106 cfu/ml (Table 1). For multistrain treatments, which may have 

similar or different ratios of the bacteria depending on what is necessary for the study, such 

as this experiment’s treatment ‘1:1 AL65 + Xp 5-6’, which inoculates strains AL65 and Xp 

5-6 at a 1:1 ratio, the 8 ml of 108 cfu/ml of bacteria would be comprised of 4 ml of 108 

cfu/ml AL65 and 4 ml of 108 cfu/ml Xp 5-6 and diluted in the same manner as described 

above; likewise, to inoculate strains AL65 and Xp 5-6 at a 3:1 ratio, the 8 ml of 108 cfu/ml 

of bacteria would be comprised of 6 ml of 108 cfu/ml AL65 and 2 ml of 108 cfu/ml Xp 5-6 

(Table 1). To negate any possible interbacterial interactions prior to dip inoculation, the 108 

cfu/ml of bacterial suspensions were kept separate in conical tubes and only introduced to 
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the dilutant/Silwet L-77 solutions, which were contained within 1000 ml graduated media 

bottles for easy mixture in the greenhouse by vigorous shaking, at the time of inoculation.  

 

Table 3-1. Preparation of Inoculum. For preparing an inoculum (800 ml) of 106 cfu/ml of 

bacteria in 0.01 M MgSO4 buffer with 0.0025% Silwet L-77 (v/v) containing one strain 

(monostrain treatment), 8 ml of 108 cfu/ml bacteria (Pathogen 1 OR Pathogen 2, Pathogen 1 is 

seen here) suspended in 0.01 M MgSO4 can be mixed into 792 ml of sterile 0.01 M MgSO4 

supplemented with 20 μl Silwet L-77 (0.00025%; v/v). Likewise, for multistrain treatments, 

prepare inoculum the same way, but substitute the 8 ml of 108 cfu/ml bacteria with a ratio of two 

bacteria each at 108 cfu/ml: for a 1:1 ratio of Pathogen 1:Pathogen 2, the 8 ml of bacteria will be 

made up of 4 ml of 108 cfu/ml Pathogen 1 and 4 ml of 108 cfu/ml bacteria Pathogen 2, and for a 

3:1 ratio, the 8 ml of bacteria will be made up of 6 ml of 108 cfu/ml Pathogen 1 and 2 ml of 108 

cfu/ml bacteria Pathogen 2. 

Treatment Monostrain Multistrain Multistrain 

Ratio of Pathogen 1: Pathogen 2 1 1:1 3:1 

Pathogen 1 (108 cfu/ml in 0.01 M MgSO4 buffer) 8 ml 4 ml 6 ml 

Pathogen 2 (108 cfu/ml in 0.01 M MgSO4 buffer) n/a 4ml 2 ml 

0.01 M MgSO4 792 ml 792 ml 792 ml 

Silwet L-77 (0.0025%; v/v) 20 μl 20 μl 20 μl 

Total Inoculum (106 cfu/ml) 800 ml 800 ml 800 ml 

 

3. Following preparation of a treatment’s inoculum in the greenhouse, pour the inoculum into 

a 1000 ml beaker before proceeding to individually dip the phyllosphere portion of each 
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plant within the treatment by inverting the plant into the inoculum for 30 seconds. After 

treating, remove the plant from the treatment inoculum and allow the excess to drop above 

the inoculum beaker before setting aside to dry (Figure 3-3). Repeat for each treatment and 

a control treatment (using 800 ml 0.01 M MgSO4 amended with 20 μl of Silwet L-77) 

ensuring no cross-contamination occurs between treatments. 

Note: Plants used in this experiment were 4-5 week old Florida 47 R tomato plants at the 

time of inoculation. 

 

 

Figure 3-3. Infecting Plants by Dip Inoculation  Inoculation of a 4-week old tomato plant by 

dipping into a solution of 106 cfu/ml bacteria for 30 seconds 

 

4. Continue to ‘Microbe Collection from Plant Tissue’ on 1, 4, 8, and 12 days post inoculation 

(DPI).  
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C. Microbe Collection from Plant Tissue 

1. For each treatment, retrieve 9-12 leaflets and place inside of a sandwich bag. Tare the 

weight of an empty sandwich bag and record the final weight of the leaf tissue sampled. 

Depending on the amount of leaf tissue, add 15-20 ml of 0.01 M MgSO4 buffer using a 

sterile pipette while ensuring even liquid coverage over the leaves. Remove all the air from 

the sandwich bag before sealing tightly (Figure 3-4.A). 

Note: One best practice to ensure even coverage of liquid among the leaves and uniform 

sonication would be to organize the leaf tissue towards bottom of the sandwich bag. 

2. Following the addition of water to the sonicator bath, place the bottom of the sandwich bag 

with the leaf tissue and buffer into the water without submerging the zipper portion of the 

bag, this can be done by either hanging the top portion over the sonicator basket/wall or by 

suspending the bags into the water (Figure 3-4.B). 

Note: The pathogen used to develop this protocol is a foliar pathogen which maintains 

colonization on the epiphytic surface of leaves before entering the plant through stomata 

to colonize the apoplast – to recover bacteria from leaves infected by this pathogen, 

sonication is used to dislodge those bacteria from both the apoplast and epiphytic surface. 

In the event that sonication is unfit for a particular experiment, other methods can be 

implemented for microbial collection. 
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Figure 3-4. Microbe Collection from Plant Tissue: Addition of Buffer to Plant Tissue and 

Placement of Samples in Sonicator. A. Plant tissue sample amended with 0.01 M MgSO4 

Buffer that is evenly distributed among the sample. B. Placement of multiple buffer-amended 

samples within the sonicator bath. 

 

3. Once the bagged samples are placed in the sonicator bath, weigh the bottom of the bags 

down with a lightweight object to ensure the sample is immersed in the water throughout 

sonication. Turn the sonicator on and run for 15 minutes while maintaining a bath 

temperature < 25°C by placing ice in the water before starting and/or over time (Figure 3-

5).  
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Caution: If the bottom of the bags are sitting in the sonicator bath in such a way that they 

appear to have an unequal amount of buffer dispersed among the leaves, it may be 

beneficial to reorient the bags by flipping them over halfway through sonication before 

continuing.  

 

 

Figure 3-5. Microbe Collection from Plant Tissue: Addition of Ice into the Sonicator and 

Addition of Lightweight Objects to Ensure Submergence of Samples Addition of ice into the 

sonicator to help reduce degradation of leaf tissue following inevitable temperature increase 

during sonication. Lightweight objects are placed on top of the samples helping to submerge 

them within the sonicator bath water and to ensure proper sonication of samples. 

 

4. Removing the bagged samples from the sonicator bath and using a sterile serological 

pipette, transfer the buffer from each bag into a labelled conical tube while squeezing the 
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leaves to recover as much buffer as possible (Figure 3-6). Balance the liquid level across 

all conical tubes before centrifuging at 785g for 30 minutes.  

Note: Depending on the amount of leaf material, the inability to recover ~5 ml of buffer 

from the sonicated leaves is normal.  

See “Troubleshooting: Problem 1, Solution 1” 

 

 

Figure 3-6. Microbe Collection from Plant Tissue: Removal of Sonicated Buffer from Plant 

Tissue Sample Prior to Centrifugation. Sonicated buffer being transferred using a serological 

pipette from the sonicated plant tissue to a conical tube prior to centrifugation of the sample to 

separate the microbial pellet from the buffer. 

 

5. Following centrifugation, discard the supernatant and resuspend the pellet in 500-1,000 μl 

of filter-sterilized buffer depending on the estimated bacterial load; tare the weight of an 

empty conical tube and record the weight of the suspension. Vortex the suspension and use 
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a 70 μm cell strainer to strain the suspension into a sterile, labelled microcentrifuge tube. 

In the case of not having cell strainers, allow large debris to settle for 1 minute before 

removing just enough gravity-separated supernatant to not disturb the debris. 

See “Troubleshooting: Problem 1, Solution 2” 

6. Place all the samples on ice to prepare for input into the flow cytometer.  

 

D. Flow Cytometry and Enumeration of Bacteria 

1. Run each sample through a flow cytometer (CytoFLEX LX from Beckman Coulter was 

used within this experiment) at a slow, medium, or fast speed depending on the density of 

microbes within the sample to ensure the abort rate stays low, preferably below ~10-15%. 

Run each sample until at least 15,000 events have been recorded within a gate including 

all bacteria of interest (such as size in this case). When switching samples, allow for the 

machine to process liquid for 30 seconds before beginning to record the sample to reduce 

cross-contamination of sample data collected.  

See “Troubleshooting: Problem 2” 

Note: In the event that the microbe density was extremely low within a particular sample 

to where recording 15,000 events would take a very long time, the sample was processed 

by the flow cytometer for a total of 5 minutes. 

2. Calculate population of bacteria (bacteria/g of leaf tissue) using the weight of the leaf 

tissue prior to addition of buffer or sonication (g), the weight of the suspension of the pellet 

in filter-sterilized buffer following centrifugation and removal of the supernatant (g 

directly proportional to ml), the amount of liquid processed by the flow cytometer (ml), 

and the number of events counted by the flow cytometer within the gates set up prior to 
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the experiment. 

See “Data Analysis: Equation 3-1”. 

 

Data analysis 

With analysis of flow cytometry data collected from monostrain treatments being more 

straightforward and essentially within the analysis of multistrain treatments (which are the main 

focus of the development of this protocol), an overview of those treatments coinoculated with 

different ratios of two strains is presented below.  

 

To begin analyzing the flow cytometry data, we created gates based on the size (forward scatter 

area - FSC-A), granularity (side scatter area - SSC-A), and fluorescence intensity (FITC-A or PE-

A) of fluorescently labelled bacterial strains. Using those gates, firstly, the bacteria used in this 

experiment can be separated from the majority of resident phyllosphere microbiota by a FSC-

A/SSC-A dot plot in which a ‘Xanthomonas perforans’ gate was created based on bacterial size 

and granularity of pure cultures (Figure 3-7). Those events within ‘Xanthomonas perforans’, are 

then separated based on their placement within a quadrant of FITC-A/PE-A (fluorescent channel 

area where sGFP2 was detected on fluorescent channel FITC and mScarlet-I was detected on 

fluorescent channel PE) where events within the upper left quadrant represent those positive for 

only mScarlet-I, the lower right quadrant only sGFP2, the upper right quadrant both mScarlet-I 

and sGFP2, and the lower left quadrant neither fluorescent protein (Figure 3-8). Counts of bacteria 

within the lower right quadrant positive for only sGFP2 were used in calculation of the amount of 

AL65/g of leaf tissue, and counts of bacteria within the upper left quadrant positive for only 

mScarlet-I were used in calculation of the amount of Xp 5-6/g of leaf tissue.  
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Equation 3-1. 

!"#$%	"'	()!%*+,)
-,.#,/	0+"!*11*/	%2+"#32
'-"4	!5%"6*%*+	(6-)

	∗	#$%&$'	(&))#*+*,-*'	-.	)*##*-	(+#)

#*12	-$((&*	(3)
 = bacteria/gram of leaf tissue 

 

After proper gating of the bacteria and subsequent retrieval of the number of cells, calculating 

populations of bacteria (bacteria/g of leaf tissue) using flow cytometry was achieved in this 

experiment by first calculating the amount of cells/ml of liquid processed by the flow cytometer, 

multiplied by the amount of liquid supplemented to the pellet following sonication (ml) to get the 

total amount of cells that existed within the sonicated buffer, then lastly dividing the total amount 

of cells by the grams of leaf tissue sonicated (Equation 3-1). 
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Figure 3-7. First Gate for Bacteria Processed by Flow Cytometry. X. perforans are first gated 

based on size (FSC-A) and granularity (SSC-A) where a small range of bacteria fit to that of pure 

cultures is designated as the ‘Xanthomonas peforans’ inoculated. A ‘Resident Microbiota’ gate 

was also created, but was not used in the analysis. 
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Figure 3-8. Second for Bacteria Processed by Flow Cytometry. After gating by FSC-A/SSC-

A, cells are then gated based on intensity and presence or absence in both, neither, or only one 

fluorescent channel. Events within the upper left quadrant represent those positive for only 

mScarlet-I, the lower right quadrant only sGFP2, the upper right quadrant both mScarlet-I and 

sGFP2, and the lower left quadrant neither fluorescent protein. These upper left and lower right 

gates were used directly to get counts for the two X. perforans strains used in this experiment. 
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General notes and troubleshooting 

 

General notes 

1. To distinguish co-inoculated bacteria with flow cytometry, a few criteria must be met: firstly, 

the bacteria must not have a high autofluorescence already at the channel of the fluorescent 

markers; secondly, the fluorescent markers must be distinguishable from each other when ran 

through the flow cytometer together; and thirdly, the fluorescent markers should not be able to be 

readily lost from the cell during the experiment such in the situation that they are plasmid-bound, 

it is best that they are chromosomally integrated. 

2. Not only is there possible bias the plate when using culture-based methods with multiple 

microbes, one other reason to use culture-independent methods is the fact that culture-dependent 

methods can take a lot of time to conduct and can require a lot of resources. Depending on the size 

of the experiment the correct amount of plates must be poured and amended with different 

antibiotics if that is the distinguishing marker between the bacteria; then following acquisition of 

the bacteria from the plants using any preferred method, the proper dilution must be prepared 

(which, mind you, if the dilution is uncertain the proper dilution may not be plated, unless multiple 

plates are used to plate multiple dilutions (costing more money), and thus, an entire data point may 

be missed) and then days must be set aside for growth of the bacteria before counting each plate. 

With culture-independent methods, if something like this protocol’s “Troubleshooting: Problem 

2” is encountered and the density of microbes is too high, the fix can be as simple as diluting the 

sample with more buffer – with other reasons tying into a lower cost and time-commitment, 

culture-independent methods can start to look more and more appealing if optimized for an 

experiment.  
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Troubleshooting 

Problem 1: Plant material is abundant within the buffer following sonication 

Possible cause: Various factors such as cleanliness of the plant sample or decreased physical 

integrity of the plant tissue could result in more debris being present in the buffer following 

sonication. 

Solution 1: Large debris can be separated from the suspension of sonicated bacteria within the 

buffer by allowing the debris to settle for a short period of time (30 seconds to 2 minutes depending 

on the size of the debris particles) before transferring the density-separated supernatant to a clean 

tube. 

Solution 2: Debris can also be filtered out using cell strainers post-centrifugation. 

 

Problem 2: The abort rate on the flow cytometer is consistently too high 

Possible cause: There may be debris within the sample (see “Troubleshooting: Problem 1” and 

subsequent solutions above) or the density of microbes within the sample could be too high, thus 

the microbes could be sticking together or could be passing by the flow cytometer’s laser in a large 

crowd conducive to a higher abort rate. 

Solution 1: See “Troubleshooting: Problem 1, Solutions 1 and 2”. 

Solution 2: The density of microbes can be diluted using filter-sterilized buffer to help decrease 

the abort rate. As the population of bacteria in planta increases, the amount of filter-sterilized 

buffer added to the pellet of microbes to be analyzed with flow cytometry will need to be 

optimized. Additionally, the flow rate for these high-density samples can be reduced to hopefully 

reduce the abort rate.  
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4. CHAPTER FOUR 

Coinfection of closely related strains from two intraspecific lineages of Xanthomonas 

perforans on tomato and its influence on disease dynamics 

 

Abstract  

 Coinfection of pathogens is common in agricultural settings, but effects of coinfection on 

pathogen and disease dynamics are not well documented especially in systems of intraspecies 

coinfection. In this study, we looked at the effects of coinfection of two closely related strains 

from different lineages of the same species: Xanthomonas perforans, on both the assembly and 

succession of those strains within the plant and on disease severity outcomes. We found that 

population dynamics of coinfecting strains differed over time from initial concentrations and that 

coinfection could lead to higher disease severity than monoinfection, depending on 

monoinfecting strain.  

 

Introduction 

The response of a host plant to pathogen infection is variable and largely relies on 

virulence factors employed by the pathogen that suppress basal host defense mechanisms and 

allow for colonization of the plant (Gürlebeck, Thieme, and Bonas 2006). With the virulence 

factors variable across not only species to species (interspecifically) but also strain to strain 

within the same species (intraspecifically), disease dynamics of a pathogen and its host can be 

unpredictable at times and can pose issues when studying and developing management 

strategies. To complicate things more, from the beginning, plant pathological studies have 

compounded on themselves and evolved into an array of complicated and specialized research 
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areas. With general studies historically focusing on systems of one host to one pathogen, recent 

research has uncovered that, rather than existing as simple interactions, disease often combines 

multiple pathogenic species on the same plant where these coinfections have the ability to alter 

disease dynamics, sometimes leading to higher disease severity (Abdullah et al. 2017; Susi et al. 

2015; Sadhukhan, Jacques, and Potnis 2023). As compared to infection with a single pathogen 

(monoinfection), coinfections can also alter pathogen dynamics within the host where not only 

does the host play a role in assemblage of the pathogen population (based on those virulence 

factors mentioned), but interactions of the coinfecting pathogens, either positive or negative, can 

play a large part as well (Abdullah et al. 2017; McLeish et al. 2019; Mehl and Cotty 2013). 

Studies have shown that assemblage of coinfecting pathogens is variable based on these 

pathogen-pathogen interactions but may also rely on priority effects where early-arrival of 

pathogens can alter host susceptibility to subsequent infection of additional strains (Jokinen et al. 

2023; Halliday et al. 2020; Sadhukhan, Jacques, and Potnis 2023; Kinnula, Mappes, and 

Sundberg 2017; Bellah, Seiler, and Croll 2023b). Studies have also shown that simultaneous 

infections can be significantly more damaging to hosts than sequential infections where priority 

effects were evident (Marchetto and Power 2018). Within a coinfection, depending on the 

pathosystem where host resistance and virulence and competitive interactions of coinfecting 

strains vary, disease and pathogen assemblage outcomes remain an understudied topic in many 

systems.  

 With respect to a pathogen with a great amount of intraspecific genetic diversity, in the 

pathosystem of Xanthomonas perforans causing bacterial leaf spot (BLS) on tomato (E. A. 

Newberry et al. 2019; Adhikari et al. 2019; Timilsina et al. 2020), there has been an ongoing 

issue with efforts for breeding for resistance because of the difficulty in finding a single-gene 
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target due to this diversity (Abrahamian, Klein-Gordon, et al. 2021). This species is a worldwide 

pathogen not only infecting tomatoes but peppers as well, and it is considered endemic to the 

Southeastern U.S. where this lack of a solid management strategy poses a major risk to farmers 

crop security. In 2019, the intraspecific diversity within X. perforans was profiled by describing 

six different ‘sequence clusters’. A sequence cluster (SC) is simply a metric of grouping strains 

within the species that are more closely related to each other than to strains of other SCs using 

core single nucleotide polymorphism (SNP) alignment of available genomes of strains belonging 

to this species followed by Baysian hierarchical clustering into different lineages (E. A. 

Newberry et al. 2019). As described in Chapter 2, we conducted a study employing high 

resolution metagenomic approach on tomato leaf samples collected from the fields in the 

southeastern US (from the states of Alabama, Georgia, North and South Carolina) over the 

course of growing seasons in 2020, 2021 and 2022, and obtained strain-resolved pathogen 

profiles. This study identified which lineages (referred to as sequence clusters, SCs) were present 

in the fields at a given time. Certain SCs maintained similar relative abundances even when 

spatiotemporally variable. Out of the eight sequence clusters (updated from the previous 6) 

described and profiled, three in particular held relatively high abundances (SCs 3, 4, and 6) while 

the remaining five SCs were often found at low relative abundance as auxiliary SCs to those 

dominant in the field (SCs 1, 2, 5, 7, and 8) (Bhandari et al. unpublished data). Following the 

observation of multiple sequence clusters of Xanthomonas perforans co-occurring in the same 

field but at different relative abundances both spatially and temporally, and the finding that some 

sequence clusters tend to maintain similar dominant or auxiliary relative abundances regardless 

of spatiotemporal variations, this study aims to elucidate the interactions between the host plant 
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and pathogenic SCs and possible strain:strain (SC:SC) interactions that could be present in 

planta. 

In this study we tried to address the question of how intraspecific diversity of X. 

perforans is assembled following simultaneous inoculation in planta to gain a deep look at 

coinfection of two closely related strains from different SCs: SC6 and SC2, of which one was 

often found at relatively high abundance (SC6) and the other was often found at a relatively low 

abundance in farm fields (Bhandari et al. unpublished data, Chapter 2). We hypothesize that the 

host plant and its interaction with virulence factors of particular SCs plays a role in how 

abundance is assembled, and that strain interactions between the SCs, positive or negative, may 

play a role as well. Additionally, with the conducted experiments, we addressed the question as 

to whether or not coinfection could influence disease severity and hypothesized that coinfection 

would increase disease severity as compared to a monoinfection. 

 

Materials and Methods 

Plant material and growth conditions for greenhouse in planta experiments 

For all in planta experiments in this study, hybrid FL47R tomato plants were used. Seeds were 

planted in the greenhouse and grown until the two-week-old seedlings were transplanted into 4” 

plastic pots with potting mix and Osmocote® fertilizer. The plants remained under greenhouse 

conditions at 28°-30°C throughout the experiment and were inoculated at 4-5 weeks old.  
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Transformation of bacterial strains with fluorescent labels and growth parameters  

Two bacterial strains were used in this experiment: AL65 and Xp 5-6 belonging to SC6 and SC2, 

respectively. These strains were transformed to express two different fluorescent proteins 

(mScarlet-I for SC2 [chloramphicol and gentamycin resistant] and sGFP2 for SC6 

[chloramphenicol and kanamycin resistant]) using Tn7 transposon delivery plasmids by 

electroporation of extracted plasmids into the SCs (Schlechter et al. 2018). Fluorescently labeled 

bacterial strains were streaked from glycerol stocks onto nutrient agar (NA, Difco; supplemented 

with 15 µg/ml gentamycin for growing SC6 and 50 µg/ml kanamycin for growing SC2) and 

incubated at 28°C for 24-48 hours.  

 

Dip inoculation of mono- and coinfection treatments in planta with fluorescently marked 

bacteria under greenhouse conditions 

Five treatments and a control treatment were used in this experiment: with the two mono-strain 

treatments containing just AL65::MRE-Tn7-152 (belonging to and herein referred to as SC6) or 

Xp 5-6::MRE-Tn7-145 (belonging and herein referred to as SC2) were ‘SC6’ and ‘SC2’ 

respectively, and three multi-strain treatments coinoculating SC6 and SC2 at ratios of 1:1, 3:1, 

and 1:3, were ‘1:1 SC6 + SC2’, ‘3:1 SC6 + SC2’, and ‘1:3 SC6 + SC2’, respectively. To begin 

preparing inoculum bacteria for each of these treatments, bacterial cultures of both Xanthomonas 

perforans SC6 and SC2 were grown overnight and each suspended in MgSO4 buffer at a 

concentration of 108 cfu/ml (OD600 = 0.3). To create inoculum for the monostrain treatments 

‘SC6’ and ‘SC2’, 8 ml of 108 cfu/ml of SC6 and SC2 respectively, were diluted 100x in 0.01 M 

MgSO4 buffer supplemented with 20 μl (0.0025% = vol/vol) Silwet L-77 to form 800 ml of a 

final inoculum of 106 cfu/ml. For the coinfection treatments, inoculum preparation was the same 



 
 

96 

but with the 8 ml of 108 cfu/ml bacteria to be diluted being comprised of both SC6 and SC2 at 

different ratios: ‘1:1 SC6 + SC2’ contained 4 ml of 108 cfu/ml SC6 and 4 ml of 108 cfu/ml SC2, 

‘3:1 SC6 + SC2’ contained 6 ml of 108 cfu/ml SC6 and 2 ml of 108 cfu/ml SC2, and ‘1:3 SC6 + 

SC2’ contained 2 ml of 108 cfu/ml SC6 and 6 ml of 108 cfu/ml SC2. Bacterial suspensions 

constituting the 8 ml of 108 cfu/ml bacteria for each treatment were contained in conical tubes 

and were not diluted to form the final inoculum until the exact time of inoculation (the MgSO4 

dilutant/Silwet L-77 solutions were contained within 1000 ml graduated media bottles for easy 

mixture by vigorous shaking once the 8 ml of 108 cfu/ml bacteria was added), and, importantly, 

for the coinfection treatments, the two strains were kept in separate conical tubes and only mixed 

at the time of dilution to negate any possible interstrain interactions. Plants from each treatment 

were dip inoculated by inverting the 4-5 week old plants for 30 seconds into a beaker containing 

the treatments respective final inoculum of 106 cfu/ml bacteria. Control plants were dip 

inoculated with 800 ml sterile MgSO4 amended with 20 μl (0.0025% = vol/vol) Silwet L-77. This 

experiment was repeated three times, and each time leaf samples were collected from each 

treatment on 1, 4, 8, and 12 days post inoculation (DPI) and disease severity of the entire 

phyllosphere portion inoculated was estimated by two individuals on 12 DPI using a scale of 0-

100% with 0% disease severity meaning no disease and 100% meaning complete death of the 

plant.  

 

Microbe collection from plant tissue and processing by a flow cytometer 

For each treatment, 9-12 leaflets were collected and placed inside of a sandwich bag. After taring 

the weight of an empty sandwich bag, the final weight of each treatment’s leaf tissue was recorded. 

Depending on the amount of leaf tissue collected, 15-20 ml of 0.01 M MgSO4 buffer (essentially 
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enough to cover the plant tissue) was added to the bagged leaf sample using a sterile serological 

pipette before the bag was void of all air and sealed tightly. Following addition of water to a 

sonicator, the bottoms of the bagged samples where the leaf tissue resided were placed into the 

sonicator water and the zipper portions of each bag were hung over the basket/sonicator wall so as 

to not make contact with the water. Once all of the bags were placed in the sonicator bath, they 

were slightly weighed down using a lightweight object to ensure immersion in the water 

throughout sonication before the sonicator was turned on and the samples were subjected to 

sonication for 15 minutes. Throughout sonication, the bath temperature was maintained to be 

below <25°C by placing ice in the water before starting and/or over time. Upon completion of 

sonication, the bagged plant samples were removed and the buffer from each bag was transferred 

into labelled conical tubes using sterile serological pipettes; these tubes containing the sonicated 

buffer were then centrifuged at 785g for 30 minutes. Following centrifugation, the supernatant was 

discarded, and each treatment’s pellet was resuspended in 500-1,000 μl of filter-sterilized 0.01 M 

MgSO4 buffer depending on the estimated bacterial load. This suspension was then weighed and 

strained into a labelled microcentrifuge tube using a 70 μm cell strainer; all strained samples were 

put on ice and processed by flow cytometry (Russell et al. unpublished data, Chapter 3). Following 

gating of SC6 and SC2 using their respective fluorescent labels and record of the number of events 

recorded for each strain, which is detailed in Russell et al. (unpublished data, Chapter 3), the 

populations SC6 and SC2 within each treatment (bacteria/g of leaf tissue) were calculated. 

 

Bacteriocin assay to assess antagonism between SC6 and SC2 

Following a similar approach as Hert (2007), a bacteriocin assay was performed to assess 

bacteriocin production by SC6 (antagonistic test strain) against SC2 (overlay strain) and by SC2 
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(antagonistic test strain) against SC6 (overlay strain) (Aaron Paul Hert 2007). Firstly, 10 μl of the 

antagonistic test strain was drop-spotted onto the middle of a nutrient agar glass plate and grown 

at 28°C overnight before the formed antagonistic test strain colony was killed by inverting the 

glass plates over 3 ml of chloroform until all of the chloroform had evaporated. Next, 3.5 ml of 

0.3% water agar (50°C) inoculated with 200 μl of 5x107 cfu/ml overlay strain was overlayed on 

top of the plate containing the killed antagonistic test strain and let grow at 28°C before being 

checked after 24 hours for a zone of inhibition.  

 

Data analysis 

A detailed protocol of the use of flow cytometry in this study to assess population of SC6 and SC2 

was published as a BioProtocol (Russell et al. unpublished data, Chapter 3). Analysis of disease 

development using disease severity percentage and pathogen dynamics using SC population and 

area under growth progress curve (AUGPC) were conducted and statistical tests of linear mixed 

effects model and post-hoc test Dunn tests were used. 

 

Results 

When coinfected on tomato plants under greenhouse conditions, SC6 predominates over 

SC2 regardless of initial concentration 

Across all four timepoints, the control treatment (MgSO4 buffer inoculated plants) maintained 1-

2 log populations of SC6 and SC2. SC6 and SC2 monoinfection treatments also showed presence 

of SC2 and SC6, respectively, based on analysis by flow cytometry. These levels of non-

inoculated bacteria within the monoinfection treatments were similar to that of control on 1 DPI, 
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yet increased by 12 DPI. Additionally, by 12 DPI, SC6 in the SC2 monoinfection treatment 

reached higher levels than the non-inoculated SC2 in the SC6 monoinfection treatment. 

Throughout the experiment, the populations of inoculated versus non-inoculated bacteria in the 

treatments remained significantly different. For all coinfection treatments, SC6 persisted at a 

significantly higher population (Log bacteria/g of leaf tissue) than SC2 with all three treatments 

regardless of ratio, yet populations within the treatment inoculated at a 1:3 ratio of SC6 to SC2 

were never found to be significantly different (Figure 4-1.A). On 1 DPI, no significant 

differences were found between the population of SC6 and SC2 regardless of ratio and 

population dynamics were similar to ratios inoculated, yet at a lower level. By 4 DPI, when 

inoculated at an unequal ratio of 3:1 a significant difference was seen between the two SCs 

where the population of SC6 was higher than that of SC2.These two populations remained 

significantly different throughout the experiment until 12 DPI. When inoculated at an equal 1:1 

ratio of SC6 to SC2, by 8 and 12 DPI, SC6 is significantly higher than SC2. Area under the 

growth progress curves (AUGPC) were compared between SCs, and in both monoinfection 

treatments that showed the other non-inoculated SC, AUGPC values were significantly different. 

Across the coinoculation treatments, those inoculated at ratios of 1:1 and 3:1 showed significant 

differences between the SCs, yet no significance was found at a ratio of 1:3 (Figure 4-1.B). 

Additionally, across those coinoculation treatments, AUGPC values for SC2 showed more 

variation than that of SC6. more variation in treatments with ratios inoculated of 1:1 and 1:3 as 

compared to 3:1 SC6 to SC2.  
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Figure 4-1. Populations of strains from different SCs (Log bacteria/g of leaf tissue) when 

dip inoculated in planta at different ratios over four sampling timepoints when grown 

under greenhouse conditions. Four to five week-old tomato plants (cv. FL47R) were inoculated 

with ~1x106 cfu/ml of either SC6 or SC2 or different ratios (1:1, 1:3, and 3:1 SC6:SC2) of SC6 

and SC2 under greenhouse conditions and their populations were sampled at 1, 4, 8, and 12 days 

post inoculation (DPI) using flow cytometry. The experiment was repeated three times and each 

experiment was considered a batch factor in linear mixed modeling (A.) Bacterial population 

across four timepoints over 12 days plotted for both SC6 and SC2 from three different 

experimental batches. Around 1-2 log bacteria were showing on average for the control treatment 

across all four timepoints, and within the SC6 and SC2 monoinfection treatments, SC2 and SC6 

were present, respectively, though the non-inoculated bacterial populations were significantly 

different from the inoculated ones throughout the experiment (p<0.05 for all, linear mixed 

model). On 4 DPI, SC6 was significantly higher than SC2 within the treatment of the two 

inoculated at a 3:1 ratio (p<0.0005). By 8 DPI, coinfection treatments with inoculum ratios of 

1:1 and 3:1 had significantly different populations of SC6 and SC2 (p=0.04 and p<0.0005, 

respectively). These populations were found to be significantly different on 12 DPI as well 

(p=0.006 and p<0.0005, respectively). (B.) Area under the growth progress curve (AUGPC) raw 

values from experimental batches plotted with grouping letters according to significant 

difference (p<0.05 in a linear mixed model). Populations showing as SC6 and SC2 were not 

significantly different within the control treatment. For monoinfection treatments SC6 and SC2 

which both showed presence of the opposite bacteria as well, AUGPC was significantly different 

for both (p<0.0005 for both). For treatments inoculated at a 1:1 and at a 3:1 ratio of SC6 to SC2, 
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AUGPC was significantly different when comparing that of SC6 to that of SC2 (p=0.04 and 

p=4.26e-6, respectively). 

 

Disease severity of mixed infection  

Disease severity of FL47R tomato plants on day 12 of the monoinfection treatment containing 

SC2 was significantly lower than that of two coinfection treatments containing SC6 and SC2 

inoculated at different ratios (Figure 4-2). While the monoinfection treatments and the 

coinfection treatments themselves were not significantly different from each other, the 

monoinfection treatment containing just SC2 was on average ~4% lower than that of the 

treatment containing just SC6, and disease severity values were significantly lower than those 

observed in coinfection treatments with ratios of SC6 and SC2 inoculated at a 3:1 and at a 1:3 

ratio (p.adj<0.005 for both, Dunn Test using Bonferroni method).  
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Figure 4-2. 12 DPI disease severity (on a scale of 0-100%) of FL47R tomato plants 

inoculated with different ratios of SCs. Four to five week-old tomato plants (cv. FL47R) were 

inoculated with ~1x106 cfu/ml of different ratios (1:1, 1:3, and 3:1 SC6:SC2) of SC6 and SC2 

under greenhouse conditions and their disease severity was sampled on 12 DPI using a scale of 

0-100% where 0% means no disease based on necrotic spot symptoms and 100% means 

complete death of the plant. Monoinfection treatments containing just SC6 or SC2 maintained 

average disease severity ratings of 14.89% for plants inoculated with SC6 and 10.59% for plants 

inoculated with SC2. Coinfection treatments with ratios of SC6 to SC2 of 1:1, 3:1, and 1:3 

maintained disease severity ratings at or above 10% on average with the treatment inoculated 

with a ratio of 1:1 maintaining an average of 10.33%, 3:1 an average of 17.04%, and 1:3 

maintaining the highest average disease severity ratings at 19.74%. Disease severity across 
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monoinfection nor across coinfection treatments was not significantly different, however, a 

significant difference between Day 12 disease severity of the monoinfection treatment with SC2 

and the coinfection treatments with ratios inoculated of 3:1 and 1:3 were significantly different 

(p.adj=0.0029 and p.adj=0.0025, respectively, Dunn Test using Bonferroni method).  

 

A bacteriocin assay to determine antagonism between SC6 and SC2 showed possible 

production of bacteriocins against SC2 by SC6 

Using an overlay concentration of 200 μl of 5x107 cfu/ml into 3.5 ml of 0.3% water agar, no 

clear zone of inhibition was observed surrounding either antagonistic test strain (Figure 4-3). 

Yet, a slight zone of inhibition may be seen around the SC6 colony overlayed with SC2 after 24 

hours of incubation.  
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Figure 4-3. Bacteriocin assay conducted between SC6 and SC2. Bacteriocin assay performed 

by overlaying SC2 over a chloroform-killed colony of SC6 (Left) and by overlaying SC6 over a 

chloroform-killed colony of SC2 (Right) with two replicates for each (A/B.1. and A/B.2.). No 

zone of inhibition is prevalent with either SC6 against SC2 (A.1. and A.2.) or SC2 against SC6 

(B.1. and B.2.), yet a small zone may be present with SC6 against SC2. 

 

  

SC6 against SC2 SC2 against SC6
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A.2.

B.1.
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Discussion 

 This study marked an attempt to profile pathogen and disease dynamics within X. 

perforans whereby two closely related strains from different SCs of the species were 

coinoculated on tomato. Three in planta greenhouse experiments were conducted to address 

pathogen population assembly of SCs following inoculation at equal or unequal ratios of both 

SCs, and to determine whether or not disease severity of the host plant could be exacerbated 

when coinfected with the two SCs as opposed to a monoinfection of only one. Based on analysis 

with flow cytometry, we did find presence of both SC6 and SC2 within the control treatment 

plants at low but similar levels relative to each other and within the monoinfection treatments of 

just SC6 and SC2, yet at significantly lower population levels that those SCs actually inoculated 

(Figure 4-1.A). Prior to conduction of the three experimental runs analyzed here, optimization 

experiments using the same two fluorescently labeled SCs were conducted. Although X. 

perforans is known for its rapid movement and ability to spread through tomato production 

transplant houses and fields through wind (in the greenhouse, wind from fans), water, aerosols 

(>1 meter dispersal), or cultural practices (such as watering with the same hose and nozzle or 

brushing against the plants during routine work), the presence of SC6 and SC2 through flow 

cytometry analysis was likely not due to actual bacterial contamination within the greenhouse 

but rather during post-sampling processing (Abrahamian, Sharma, et al. 2021). Considering that 

levels of SC6 and SC2 within the greenhouse remained consistent within the control treatment 

across all four time points and were never significantly different from each other, firstly, it is 

possible that there are basal levels of plant autofluorescence within the gates set for X. perforans 

analysis (Doležel, Greilhuber, and Suda 2007; Donaldson 2020). Additionally, studies have 

reported carryover between samples used in flow cytometry which could explain not only the 



 
 

107 

discrepancy between the lower amount of SC2 found in the monoinfection SC6 treatment and the 

higher amount of SC6 found in the monoinfection treatment of SC2 which was sampled after 

that of SC6, but also specifically why the amount of SC6 in the SC2 treatment increases by 12 

DPI (Van Nevel et al. 2013; Andersen et al. 2020). As to the slight increase over time in the SC2 

found in the SC6 monoinfection treatment that would not be explained by carryover from the 

control treatment, autofluorescence within plants has been shown to change during pathogen 

infection which could mean changes in auto fluorescent signatures of the infected plants over 

time could be reflecting higher contaminant levels of SC6 and SC2 (Harding and Teakle 1988; 

Bellow et al. 2013; Cuzick, Urban, and Hammond‐Kosack 2008; Bélanger et al. 2011). 

Additional studies could be done to address definite basal levels of fluorescent signatures and 

whether they are changing over time under infection using non-fluorescent X. perforans if this 

presence of SC6 and SC2 is due to autofluorescence, and an assessment of whether carryover is 

affecting samples could be conducted. Regardless of these issues, it is possible that samples have 

been contaminated by the buffer used to process the samples, and further testing could rule that 

out. While a repeat and adjustment of these experiments is necessary to reach solid conclusions 

regardless of whether or not the conclusion would change, this first full test run using flow 

cytometry to study X. perforans bacterial populations in planta under greenhouse conditions 

marks a valuable expansion of the way bacterial studies can be conducted. 

 Onto the results of the greenhouse experiments, we found that population values of SC6 

and SC2 existing in a coinfection inoculated at different ratios on tomato plants resulted in an 

arrangement where SC6 maintained higher log bacteria/g of leaf tissue when inoculated at an 

equal ratio of 1:1 SC6 to SC2 and at an unequal ratio of 3:1 but not at a ratio of 1:3 (Figure 4-

1.A). In addition to log population differences, AUGPC of SC6 was significantly higher than 
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SC2 when inoculated at ratios of 1:1 and 3:1, yet not significantly different when inoculated at 

1:3 (Figure 4-1.B). Studies within pathosystems supporting a high level of within-host diversity 

with multiple intraspecific variants existing throughout infection having observed dominance of 

particular strains or genotypes over others when coinfected together which is similar to what is 

observed here, yet the underlying reason for such assemblages is not clear (J. A. Smith et al. 

2010). A pathosystem is not only affected by interactions of two factors, the pathogen and the 

host, but also inter- and intraspecific pathogenic interactions and environmental parameters 

(Abrahamian, Klein-Gordon, et al. 2021; Potnis 2021). Considering that this general dynamic 

was observed in fields with SC2 persisting generally at a lower population than other SCs and 

SC6 generally at a higher population than others, this assemblage seems to be independent of 

environmental variation across the Southeast U.S. leaving possibly host x pathogen or pathogen 

x pathogen interactions to drive this assemblage (Bhandari et al. unpublished data). The 

dominance of SC6 over SC2 within these host x pathogen and pathogen x pathogen dynamics 

can have three plausible explanations in planta: (1) SC6 inhibits SC2 mediating competitive 

interactions; (2) SC6 has overall higher within-host multiplication capability than SC2; and (3) 

SC6 has higher transmissibility than SC2, thus allowing to maintain higher populations.  

With SC6 having a higher population than SC2 when inoculated at a ratio of 1:1, it is 

possible that there is some negative competitive interaction between the two with SC6 prevailing 

over SC2 (Abdullah et al. 2017). A bacteriocin assay was performed and it does seem as though 

there may be bacteriocin production by SC6 against SC2, but the experiment could be repeated 

again with a lower amount of bacteria in the overlay to definitely observe an effect of 

antagonism using bacteriocins (Figure 4-3). Otherwise, the host may be mediating assemblage of 

SC6 and SC2 if the host is more susceptible (there is no host resistance in tomato, yet 
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susceptibility is variable) to virulence factors carried by the possibly more complex SC6. For 

context, X. perforans was predated by the closely related species X. euvesicatoria, and SC6 has 

been shown to have recombined largely with X. euvesicatoria related pathovars, X. 

euvesicatoria, and species outside of the X. euvesicatoria complex rather than primarily (and 

making up a smaller proportion of the core genome) X. euvesicatoria as in SC2 based off of a 

recent analysis by Newberry et al. (2019). Further, the strain representing SC6, AL65, was found 

to carry a plasmid often found in X. cynarae pv. gardneri with the type 3 secreted effectors 

XopAO and the TALE AvrHah1 with AvrHah1 being associated with increased virulence on 

tomato and pepper (E. A. Newberry et al. 2019) while the strain representing SC2, Xp 5-6, has 

been shown to lack an important effector for virulence in pepper (AvrBsT), effectively reducing 

its host range on peppers with strain specific virulence not documented but possibly lacking on 

tomato as well (Schwartz et al. 2015). Given these differences between the strains with SC6 

possibly having an upper hand in terms of virulence factors than SC2, it is possible that it could 

have higher within-host multiplication capability than SC2 or it could have higher 

transmissibility, thus allowing it to maintain a higher population.  

Disease severity results from this experiment show a twofold observation in which (1) 

SC2 alone is slightly less virulent compared to SC6 when inoculated individually, although not 

statistically significant, and (2) mixed infection with SC6 enhances disease severity levels in the 

treatments with an unequal ratio of initial inoculum (Figure 4-2). Interestingly, the treatment 

with the highest average disease severity on Day 12, i.e. with an initial inoculum ratio of 1:3 

(SC6 to SC2), was the treatment without a significant difference in AUGPC of SC6 and SC2 

(Figure 4-1.B and Figure 4-2). Studies have shown that coinfection can increase virulence of 

infection and influence disease outcome based on characteristics of the coinoculated strains and 
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their interactions (Kinnula, Mappes, and Sundberg 2017; Abdullah et al. 2017; Susi et al. 2015; 

Sadhukhan, Jacques, and Potnis 2023). Assuming that the extent of competitive forces was lower 

with initial inoculum ratio of 1:3 (SC6 to SC2), the mixed infection at this initial inoculum ratio 

leads to co-existence of both strains, rather than dominance of one over the other. This 

maintenance of heterogeneity within the pathogen population was observed to leading to the 

highest disease severity levels.   

This work provides a baseline understanding of not only a new approach to conducting 

population studies in planta using flow cytometry, but also of high-resolution coinfection 

dynamics of two SCs within Xanthomonas perforans. Although more complex, the importance 

of studying coinfection dynamics at such a high resolution within pathosystems lies in the fact 

that disease dynamics may be altered following the introduction of more strains. With interesting 

results regarding how SC6 and SC2 assemble in planta and how their coinfection increases 

disease severity in some cases, this experiment opens the room to studies of other SC 

coinfections to hopefully create a better understanding of pathogen dynamics in farm fields.  
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5. CHAPTER FIVE 

Note: this chapter is a manuscript in progress that we plan to submit before the end of this year. 

My contributions are that helped to conduct the experiment, I did all of the analysis for and 

created Figure 5-1, I ran the relative abundance analysis using StrainEst, found the SNV sites in 

which minor alleles which were increasing in frequency from < 0.2 to > 0.8 from mid- to end-

season and I also profiled which strain the alleles at the site matched to. Considering that this 

will be submitted before graduation, I am formatting the following chapter in the way of 

submission to the journal. 
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Abstract 

Climatic fluctuations pose a growing threat of altered plant disease dynamics, with 

expanded host or geographical ranges. Disease resistance is the most effective and environmentally 

sound approach to manage diseases. However, we lack understanding of how climatic fluctuations 

may alter plant-pathogen interactions and what efficient ways would be to manage the disease. In 

this study, we assessed the efficacy of disease resistance in pepper against a leaf spot pathogen, 
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Xanthomonas perforans, under elevated ozone in open-top chamber field conditions. The study 

design also involved use of two pathogen genotypes, mimicking co-occurrence of different 

pathogen genotypes in pepper fields. We observed a higher disease severity on the resistant cultivar 

under elevated ozone. Such compromised disease resistance may be due to alteration of host 

defense, pathogen fitness, associated microbiome, or their combined effect. Here, we focused on 

pathogen response given the observation of high variability in pathogen population on resistant 

cultivar under elevated ozone compared to the ambient conditions. While susceptible cultivar 

showed dominance of a single pathogen genotype regardless of the environment, resistant cultivar 

supported co-occurrence of both pathogen genotypes under ambient environment, indicative of 

maintenance of heterogeneity as a strategy for adaptation. However, such heterogeneity was only 

evident during end season under elevated ozone. In addition to the altered strain dynamics, higher 

mutation rate, and presence of de novo parallel mutations in the pathogen population under 

elevated ozone during single season are suggestive of a plastic eco-evo response of pathogen 

population to adapt to the resistant cultivar under altered climate. 

 

Introduction 

Climate change accompanied by changes associated with modern agricultural practices 

have presented a threat of emerging novel pathogen lineages capable of compromising host 

resistance or expanding their host range. Resistance breakdown or erosion is a major concern in 

agricultural crops (Ka et al., 2006; Leach et al., 2001; Papaïx et al., 2018) and understanding the 

management of durability under future climatic conditions is a priority. Pathogen selection 

pressure triggers the dynamics of recognition avoidance and balancing fitness penalties, and in 

many cases, facilitating long-term maintenance of polymorphism (Bakker et al., 2006; Karasov et 
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al., 2014; Mauricio et al., 2003) in avirulence and qualitative resistance genes (Leach et al., 2001; 

Leonard & Czochor, 1980; Van der Plank, 1968; Vera Cruz et al., 2000). Quantitative resistance 

(polygenic), on the other hand, that manifests as a more continuous distribution of resistance 

phenotypes within a population (St Clair, 2010), is thought to evolve differently resulting in a 

continuous distribution of pathogen adaptation (Caffier et al., 2016; Corwin & Kliebenstein, 2017; 

St Clair, 2010). In comparison to qualitative resistance, quantitative resistance is thought to be 

durable. Climate-sensitivity has been noted in basal resistance (Cheng et al., 2013; Janda et al., 

2019), qualitative resistance and quantitative resistance, with the exception of a few to be climate-

resilient (Cohen et al., 2017). Climate sensitivity of pathogens during their interaction with the 

plants is unclear (Huot et al., 2017; Onaga et al., 2017; Velásquez et al., 2018) and unlike animal 

pathogens (Shapiro & Cowen, 2012), little is known about modulation of virulence in plant 

pathogens under abiotic stress. Both climatic shifts and biotic stress may have played an important 

role in complex evolutionary adaptations in plants and in shaping plant physiological and 

morphological traits (Bouda et al. 2022; Mitchell and Whitney 2018; Rauschkolb et al. 2022). 

While resurrection experiments may illuminate on these adaptations, increasing magnitude of 

extreme climate events still leave us with the unpredictability as to how plants will adapt to 

simultaneous stressors. This is especially true for agricultural systems where climate change, 

global trade and modernization have predisposed the systems to increased threat of pests (Ka et al. 

2006; Godefroid et al. 2022; Burbank et al. 2022), leading to different selection pressures 

compared to those in the recent past (Meline et al. n.d.).  

Resistance breakdown or erosion is a major concern in agricultural crops (Ka et al. 2006; 

Papaïx et al. 2018; Leach et al. 2001) and understanding the management of durability under future 

climatic conditions is a priority. Pathogen selection pressure triggers the dynamics of recognition 
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avoidance and balancing fitness penalties, and in many cases, facilitating  long-term maintenance 

of polymorphism (Bakker et al. 2006; Karasov et al. 2014; Mauricio et al. 2003a) in avirulence 

and qualitative resistance genes(Van der Plank 1968; Leonard and Czochor 1980; Vera Cruz et al. 

2000; Leach et al. 2001). Quantitative resistance (polygenic), on the other hand, that manifests as 

a more continuous distribution of resistance phenotypes within a population(St Clair 2010), is 

thought to evolve differently resulting in a continuous distribution of pathogen adaptation(St Clair 

2010; Caffier et al. 2016; Corwin and Kliebenstein 2017). In comparison to qualitative resistance, 

quantitative resistance is thought to be durable. Climate-sensitivity has been noted in basal 

resistance(Janda et al. 2019; C. Cheng et al. 2013), qualitative resistance and quantitative 

resistance20,46,56, with the exception of a few to be climate-resilient(Cohen et al. 2017). Climate 

sensitivity of pathogens during their interaction with the plants is unclear (Velásquez, Castroverde, 

and He 2018b; Huot et al. 2017; Onaga et al. 2017) and unlike animal pathogens(Shapiro and 

Cowen 2012), little is known about modulation of virulence in plant pathogens under abiotic stress. 

Genetic variation in plant pathogens has been studied extensively to characterize diversity 

between related species or among individuals of the same species (Moller and Stukenbrock, 2017; 

Wang et al. 2017). Rapid adaptation or host specialization in fungal plant pathogens resulting in 

highly dynamic genome architectures have been noted (Rouxel et al. 2011; van Dam 2016), also 

effectors as rapidly evolving genes. Many of these validated virulence factors. Examples of high 

intraspecific diversity at the population level in plant pathogens have been studied (Moller and 

Stuckenbrock, 2017). Rapidly evolving genomic regions enriched in transposable elements (TE), 

carrying clusters of virulence determinants, have been associated with pathogen’s ability to adapt 

to host resistance or environmental fluctuations (Whisson et al. 2012, FRantzeskakis et al. 2019, 

Croll). Distinct genomic compartments were found to have different rates and modes of evolution 
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(Raffaele et al. 2010; Moller and Stuckenbrock 2017). Here we conducted in-depth sampling of 

nucleotide diversity from different genomic compartments with high resolution at the population 

genomic level. We applied population genetic analysis in the framework of metagenomic survey 

of plant pathogenic bacteria subjected to biotic and abiotic stress and identified genetic targets of 

selection. Previously, such studies have been conducted on isolate genomes (Grunwald et al. 2016; 

Badouin et al. 2017; Hartmann et al, 2018; Thilliez et al. 2019). Distribution and frequency of 

SNPs across genome can allow identification of genomic regions that have been targets of recent 

directional selection (Stephen 2016), some associated with virulence, host specificity (Hall et al. 

2009, Poppe et al. 2015). Directional or positive selection will lead to the fixation of a single allele 

through a selective sweep of the allele conferring higher fitness. Under this scenario, 

polymorphism is transient, and one allele will dominate over the others eventually. On the other 

hand, some virulence factors show signs of balancing or diversifying selection in which alternative 

alleles are maintained within populations (as seen with some effectors, Brunner and McDonald 

2018). This type of selection leads to the retention of seq diversity within populations. Allele 

frequency can vary over time depending upon variation of resistance factors present in the host, or 

type of selection pressures. In addition to variation, gene gain or less facilitated by transposable 

elements have been known to be important for rapid adaptation of fungal or oomycete pathogens 

and introducing genetic novelty in the population (Yoshida et al. 2016, Hartmann and Croll 2017, 

Tsuhima et al. 2019). Grandaubert et al. (2019) used population genomic dataset combined with 

statistical genetics approach to quantify rates of adaptation across genome of Z. tritici. They found 

high rates of adaptive substitutions in effector-encoding genes but these high rates did not correlate 

with TE presence or abundance. Instead they found role of sexual recombination in allowing rapid 

fixation of beneficial mutations. Pathogen ecology, epidemiology and virulence evolution differ 
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among quantitative and qualitative resistance (Fabre et al. 2012, Baucom and de Rode, 2011). 

Quantitative resistance is recommended as a solution to prevent yield losses and halts the 

accelerated clonal cycles responsible for the epidemics. Being a polygenic resistance, pathogen 

cannot overcome quantitative resistance as rapidly as R genes. Due to weaker selection pressure 

for overcoming quantitative resistance compared to R-gene mediated resistance, quantitative 

resistance is traditionally assumed to be more durable (McDonald and Linde 2002, Poland et al. 

2009, St Clair 2010, Brown and Rant 2013).  But empirical data on its efficiency and stability in 

the light of climatic fluctuations is lacking.  

Under harsh conditions within a host or in the presence of antibiotics, it is suggested that 

genetic changes follow the repair of DNA double-strand breaks (DSBs) – these genetic changes 

constitute the beneficial or disadvantageous genetic diversity underlying an organisms ability to 

rapidly adapt to those conditions (Gusa and Jinks-Robertson 2019). Much like the durability of 

quantitative resistance within the host, the process of pathogen adaptation under selection by host 

pressure has been shown to transpire following the mutation of multiple loci, often not associated 

with host plant interactions (Mohd-Assaad, McDonald, and Croll 2018; Mohd‐Assaad, McDonald, 

and Croll 2016). The pressure for pathogen adaptation has been shown to be variable however, as 

in certain conditions there seems to be an increased drive for or presence of genomic variation. In 

a diploid pathogen, large-scale genomic changes such as aneuploidy and loss of heterozygosity 

(LOH) were recorded following exposure to host environments with those mutations associated 

with infection in immunocompromised hosts being fewer in number and occurring less frequently 

than in immunocompetent hosts – additionally, following sequential passaging in 

immunocompetent hosts, time to 50% mortality of hosts was significantly lower, suggesting that 

host immunity-induced genomic changes increased virulence and facilitated a response to host 
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selection pressures (A. C. Smith, Morran, and Hickman 2022). Researchers Smith et al., 2022 

suggested that the increased production of reactive oxygen species (ROS) and antimicrobial 

peptides (AMPs) in immunocompetent hosts induces genotypic plasticity and facilitates rapid 

evolution (A. C. Smith, Morran, and Hickman 2022). Not only can hosts produce ROS to combat 

pathogenic infection, but environmental ROS may also play a role in pressuring pathogens to 

adapt.  

The strain-resolved metagenomics approach allowed us to track genetic dynamics along 

with ecological fluctuations within dominant pathogen, Xanthomonas. Such approach allows us to 

investigate intra-host dynamics of pathogen population with high resolution into genetic processes 

shaping its evolution during a single growing season. We are looking at gene-to-population level 

changes occurring in the pathogen in response to host defense and altered ozone levels. Elevated 

ozone did not influence disease severity levels on susceptible cultivar as previously noted 

(Bhandari et al. 2023). However, under elevated ozone levels, the resistant cultivar showed 

significantly higher disease severity scores compared to ambient environment. This increase was 

accompanied by high variation, ranging from 2-38% during mid-season, to 0-8% during end-

season. Elevated ozone caused average increase in disease severity of 12% during mid-season and 

2% during end-season on resistant cultivar compared to ambient environment (Figure 5-1.C) 

(Bhandari et al. 2023). The high variation in disease severity levels could be the result of variation 

in host plasticity, direct or indirect (mediated through host plasticity) effects of climate on 

pathogen infectivity or altered ecological interactions among pathogen genotypes. In this study, 

we focused on investigating the influence of altered ozone levels on pathogen population from 

gene to population level and whether ecological fluctuations and/ evolutionary modifications in 

pathogen population could explain the increase in disease severity observed on the resistant 
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cultivar under elevated ozone conditions. As coexistence of multiple genotypes (based on trade-

offs or cross-feeding) is proposed as one of the mechanisms for adaptation of bacteria to 

environmental stressor, we hypothesized that adaptation to host defense on resistant cultivar will 

involve population heterogeneity. In order to test this hypothesis, we chose coinfection by two 

closely related lineages of emerging pepper pathogenic species, X. perforans, isolated during the 

recent field sampling (Newberry et al. 2019, 2023), namely, SC6 (strain AL65, isolated from 

susceptible pepper cultivar) and SC2 (strain AL22, isolated from the resistant pepper cultivar). 

Such co-inoculation approach allowed us to study the strain turnover as it happens over the course 

of the growing season, under the influence of host resistance and altered ozone environment. The 

population genetic methods applied to the high-resolution shotgun metagenome data allowed us 

to capture the population dynamics at the intra-subspecific level of phylogenetic resolution. 

Overall, our data provide understanding of how population dynamics both shape and are shaped 

by evolutionary processes. 

 

Results 

Pathogen population dynamics was host-genotype-dependent and elevated ozone further 

altered strain dynamics on the resistant cultivar.  

To obtain understanding of pathogen population response during adaptation to the resistant host 

and under altered ozone levels, we used strain-resolved metagenomics approach to temporally 

trace the frequencies of the co-inoculated pathogen lineages across the treatments. Although there 

was incidence of natural infection by another X. perforans lineage (SC4), this lineage did not 

increase in frequency during the growing season. The presence of host resistance had a significant 

effect on the relative and absolute abundance of AL65 (P=0.00395, Kruskal-Wallis) and AL22 
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(P=0.00395, Kruskal-Wallis) (Figure 5-1.D, E). Strain AL65 outperformed strain AL22 on the 

susceptible cultivar throughout the growing season, regardless of ozone levels. On the other hand, 

strain-level heterogeneity was observed on the resistant cultivar, although the host x environment 

interaction likely influenced the strain dynamics. Strain AL22 (originally isolated from resistant 

cultivar and thus can be assumed to be resistant cultivar adapted) was found to maintain higher 

population on the resistant cultivar under ambient environment during mid-season. Despite low 

absolute abundance of Xanthomonas during mid-season on the resistant cultivar, it is worth noting 

to observe the two strains with distinct niche preference, with AL65 being dominant under elevated 

ozone and AL22 under ambient conditions. By the end season, both strains co-existed on the 

resistant cultivar regardless of the environmental conditions (Figure 5-1.D, E). 
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Figure 5-1. A general overview of this experiment.(A) We set up an experiment in which we 

inoculated two strains of Xanthomonas perforans at a 1:1 ratio onto either susceptible or resistant 

plants and exposed them to either ambient or elevated levels of ozone within open-top chambers. 

Out of 12 open-top chambers, 6 were non-inoculated acting as controls and 6 were inoculated; 

additionally, 6 were exposed to elevated ozone while the remaining 6 were not exposed. Each 

chamber contained 12 plants making up two treatments, half of which were a susceptible cultivar 

and half of which were resistant with each set being a treatment, respectively. At both a mid- and 

end-season timepoint, within each chamber, from the 6 plants within each treatment, 6 leaves 

were removed and their metagenomic DNA was extracted and sequenced. Genotypes AL22 and 

AL65 were sampled, as expected, however, evidence of natural infection by a representative of 

sequence cluster 4 (SC4) was found among the samples as well. Ozone levels throughout the 

season within the open-top chambers were on average 29.33 ppm for Ambient chambers and 

87.65 ppm for Elevated Ozone chambers. Ozone levels above 40 ppm are considered to be 

highly phytotoxic; (B) Absolute abundance of X. perforans genotypes as compared to disease 

severity during the mid- and end-season sampling timepoints for the resistant cultivar under 

ambient versus elevated O3 levels. The mid- and end-season disease severity averages vary from 

ambient to elevated O3; (C) Relative abundance of  X. perforans genotypes as averages in the 

leftmost circular chord diagram and as raw values in the rightmost barplot; (D) Absolute 

abundance of  X. perforans genotypes as averages in the leftmost circular chord diagram and as 

raw values in the rightmost barplot. 
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Higher genetic differentiation in the pathogen population is observed on the resistant 

cultivar under elevated ozone.  

Next, we asked whether genetic differentiation in the pathogen population may account for higher 

disease severity values seen under elevated ozone on the resistant cultivar since absolute 

abundance of Xanthomonas could not explain the observation (Figure 5-1). It is unclear how 

pathogen population adapts on the resistant cultivar carrying quantitative resistance genes, let 

alone under altered climatic conditions. Here, we hypothesized that adaptation to the stressors is 

reflected in higher genetic differentiation in the pathogen population. The stressors here are host 

defense (i.e. adaptation to resistant cultivar compared to the susceptible cultivar), or elevated ozone 

in either host background. 

To evaluate pairwise genetic differentiation among populations recovered from different host 

genotypes and from ambient and elevated ozone environment, fixation index (FST) was calculated 

for each slide window (1 kbp) by Popoolation2. Average pairwise FST between pathogen 

populations recovered from susceptible cultivar under ambient and elevated ozone environments 

was the lowest of all pairwise comparisons. Comparing pathogen populations recovered from 

resistant cultivar under ambient and elevated ozone environment (FST(mid): mean= 0.09922863; 

median=0.0801964) showed higher genetic divergence compared to that from susceptible cultivar 

under two environments (FST(mid): mean=0.01708811; median=0). There was also influence of time 

of sampling on the level of genetic differentiation, with mid-season populations with higher 

pairwise FST compared to that of end-of season (Resistant FST(end): mean= 0.11442667, 

median=0.07407407). However, adaptation to the resistant host under elevated ozone resulted in 

greater population divergence at the end of season.  Next, we calculated within-host nucleotide 

diversity (π) and mean population mutation rate per site (θ) for each sample. Observations made 
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above for genetic differentiation were confirmed further by within-host nucleotide diversity 

values. We observed higher but variable within-host nucleotide diversity values and mean 

population mutation rate per site in the pathogen population recovered from resistant cultivar 

compared to susceptible cultivar irrespective of environmental conditions (p-valueπ = 0.000382, 

p-valueθ = ns). End-season pathogen population recovered from resistant cultivar under elevated 

ozone conditions had greater within-host nucleotide diversity values and mutation rate than mid-

season populations (p-valueπ < 0.0001). Interestingly, nucleotide diversity for pathogen population 

recovered from resistant cultivar at the mid of season was significantly higher under ambient ozone 

conditions compared to the elevated environment (p-valueπ < 0.0001, p-valueθ = ns), but there was 

no significant difference in the within-host nucleotide diversity values by the end-season (Figure 

2B, 2D).  This observation is in concordance with the finding of higher genetic differentiation on 

resistant cultivar when comparing across ambient and elevated ozone environments (Figure 5-

2.A).  

The mutation rate observed on the susceptible cultivar was average of ~ 8 x 10-05 and was 

unaffected by ozone levels. On the other hand, higher mutation rate was observed on resistant 

cultivar throughout the growing season, with ~ 7.17x 10-4 per site during mid-season decreasing 

to 1.98 x 10-4 per site by the end of season. Elevated ozone led to a slightly lower mean mutation 

rate 6.12 x 10-4 per site during mid-season but maintaining overall higher levels of mutation rate 

of 4.22 x 10-4 per site by end season on the resistant cultivar, compared to that observed under 

ambient conditions (Figure 5-2.E). 

 Next, we measured the extent of within-host polymorphism in the pathogen population by 

identifying alleles displaying intermediate minor allele frequency (0.2-0.8) and classified the types 

of mutation as synonymous or nonsynonymous mutations (Figure 5-2.F). We compared 
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normalized SNV counts (relative to absolute abundance of Xp population) across treatments. 

Overall, higher number of SNVs were observed on the resistant cultivar compared to the 

susceptible cultivar under both environments (p-value(ambient): mid< 0.0001 (****), end < 0.001 

(**); p-value(elevated O3):mid=0.04(*), end<0.0001 (****)). Further, the influence of elevated ozone 

was observed when comparing the pathogen population on resistant cultivar with the population 

on susceptible cultivars under ambient conditions (p-value: mid=0.001 (**); end<0.0001(****).  

 

 

Figure 5-2. Genetic differentiation in the pathogen population.  Pathogen population adapted 

to resistant cultivar under elevated O3 with higher genetic differentiation: (A) Boxplots showing 

Pairwise Host comparisons with Fst (Fixation Index) values (calculated using Poopulation2) for 

1kbp window. The red color dashed line indicates (values greater than 0.2) threshold value 
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considered for differentiation; (B) Boxplots showing within-host nucleotide diversity of 

Xanthomonas perforans (Xp) population (p) together for different treatments; (C) line plot is 

showing average nucleotide diversity of Xp population (p) for each chamber; (D) boxplots with 

Mean mutation rates per site (q) in Xp population; (E) line plot showing Mean mutation rates per 

site (q) in Xp population for each chamber; (F) Barplots showing counts of different SNV (Single 

nucleotide variants) sites for each chamber with different types of mutations having minor allele 

frequency between 0.2 and 0.8. In figure, 1D, 2D, 3D and 4D are different types of mutations, 

where a site with 1D is one in which an amino acid change caused by nucleotide difference (non-

synonymous), while a site with a 4D cannot be caused by any nucleotide difference 

(synonymous), and 2D & 3D indicates the either two or three possible changes, respectively can 

be tolerated, before an amino acid is altered (D. W. Chen and Garud 2022; Nayfach [2015] 

2022). 
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Figure 5-3. (A) The point graph shows the different selection types: negative selection or strong 

purifying selection (pN/pS = 0), positive selection (pN/pS >1 ) and purifying selection (pN/pS 

between 0 to 1); (B) Point graph presenting the Tajima’s D values per gene across different 

treatments. 

 

Pathogen population exhibited strong purifying selection in response to altered 

environment.  

While the increased genetic differentiation observed within the Xp population may suggest the 

presence of a range of evolutionary processes, we delved deeper into our investigation to elucidate 

the precise mechanisms at work. Our hypothesis centered on the possibility of concurrent positive 

selection occurring within the pathogen population, in response to host defense on the resistant 

cultivar and under altered ozone conditions across different replicates. As a result, we scanned the 

data for the signatures of positive selection. To achieve this, we undertook an analysis of selective 

pressures within the genomic landscape, considering metrics such as Tajima’s D and pNpS (Non-

synonymous to Synonymous) values, aiming to uncover their contributions to the observed genetic 

differentiation. We detected significant differences in pN/pS ratios based on cultivar (p-

values=1.35e-06, ****), season (p-value =1.578e-06, ****) and environment conditions (p-value 

=5.47e-09, ****). We observed that pN/pS ratios in populations from resistant cultivars exposed 

to elevated ozone conditions differed significantly from those in resistant cultivars under ambient 

conditions (p-value = 3.38E-05, ****) and susceptible cultivars under elevated ozone conditions 

(p-value = 2.31E-03, **) (Figure 5-3.A). Then, we categorized the genes according to their 

selection pressures, distinguishing between those under positive (pN/pS >1), negative (pN/pS = 

0), and purifying selection (pN/pS > 1) based on the pNpS values. On an average, 81 percent of 
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the pangenome showed finite and defined pN/pS ratio values across all the samples. We observed 

97% (mean= 4467, median=4495) and 66 % (mean = 3045, median = 4249.5) genes of pangenome 

exhibited purifying or stabilizing selection (pN/pS < 1) in population on resistant and susceptible 

cultivars respectively. Further, the proportion of genome under positive selection (pN/pS >1) was 

relatively small with an average of 0.2% (altered ozone) and 0.12 % (ambient) of the genes 

showing finite pN/pS values. Indicate how many of these under positive selection were parallel on 

susceptible cultivar. On the other side, ozone levels influenced the proportion of genome under 

purifying selection with 97% under ambient environment and 76% under altered ozone conditions 

(Figure 5-3.A). The proportion of genome under positive selection remained relatively small, with 

only 19 genes from one replicate under ambient conditions and 7 genes (1 in one replicate and 6 

in second replicate) under elevated ozone under positive selection. Surprisingly, none of these 

genes were identified as common across replicates, indicating lack of parallelism (Table 5-1). 

Interestingly, we observed around ~ 98% of genes that were under purifying selection were under 

strong negative selective pressure (pN/pS = 0) in the pathogen population irrespective of 

conditions and host. It indicates the pathogen population maintained strong evolutionary 

conservation by maintaining their gene functions and natural selection was actively filtering out 

mutations which were deleterious or harmful for the pathogen population. 

Next, we looked at significant differences in Tajima's D values. For instance, Tajima's D values 

were significantly different in the resistant host under elevated ozone conditions compared to the 

resistant cultivar under ambient conditions (p-value = 1.88E-02, *), as well as the susceptible 

cultivar under both ambient (p-value= 1.88E-02, *) and elevated ozone conditions (p-value = 

1.03E-16, ****). The extremely negative values of Tajima's D in resistant cultivars by the end of 
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the season, regardless of conditions (falling below -2), indicate the presence of a selective sweep 

or rare alleles in the population (Figure 5-3.B).  

 

Table 5-1. Genes parallel across chambers under positive selection (pN/pS >1 & Tajima'sD 

< 0). 

contig_gene COG 
category 

Description Chamber Parallel Treatment 

SUPERPANG_100_length=177249_25 S conserved protein (some 
members contain a von 
Willebrand factor type A 
(vWA) domain) 

 3 Susceptible Ambient Mid 

SUPERPANG_47_length=204717_92 P SulP family inorganic anion 
transporter 

3 Susceptible Ambient Mid 

SUPERPANG_59_length=357528_92 S Acid phosphatase 3 Susceptible Ambient Mid 

SUPERPANG_68_length=77131_43 K Transcriptional regulator 3 Susceptible Ambient Mid 

SUPERPANG_100_length=177249_90 KU Transcriptional regulatory 
protein, C terminal 

2 Susceptible Ambient Mid 

SUPERPANG_47_length=204717_85 S Protein of unknown function 
(DUF1684) 

2 Susceptible Ambient Mid 

SUPERPANG_47_length=204717_86 P Sulfurtransferase 2 Susceptible Ambient Mid 

SUPERPANG_54_length=138570_25 S protein conserved in bacteria 2 Susceptible Ambient Mid 

SUPERPANG_59_length=357528_229 S transporter 2 Susceptible Ambient Mid 

SUPERPANG_59_length=357528_95 K Belongs to the sigma-70 
factor family. ECF subfamily 

2 Susceptible Ambient Mid 

SUPERPANG_68_length=77131_30 E aminopeptidase 2 Susceptible Ambient Mid 

SUPERPANG_59_length=357528_92 S Acid phosphatase 2 Susceptible Ambient End 

SUPERPANG_68_length=77131_43 K Transcriptional regulator 2 Susceptible Ambient End 

SUPERPANG_47_length=204717_92 P SulP family inorganic anion 
transporter 

3 Susceptible Elevated Mid 

SUPERPANG_100_length=177249_25 S conserved protein (some 
members contain a von 
Willebrand factor type A 
(vWA) domain) 

2 Susceptible Elevated Mid 

SUPERPANG_100_length=177249_90 KU Transcriptional regulatory 
protein, C terminal 

2 Susceptible Elevated Mid 

SUPERPANG_47_length=204717_85 S Protein of unknown function 
(DUF1684) 

2 Susceptible Elevated Mid 
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SUPERPANG_54_length=138570_25 S protein conserved in bacteria 2 Susceptible Elevated Mid 

SUPERPANG_59_length=357528_229 S transporter 2 Susceptible Elevated Mid 

SUPERPANG_59_length=357528_92 S Acid phosphatase 2 Susceptible Elevated Mid 

SUPERPANG_59_length=357528_95 K Belongs to the sigma-70 
factor family. ECF subfamily 

2 Susceptible Elevated Mid 

SUPERPANG_68_length=77131_27 J Belongs to the class IV-like 
SAM-binding 
methyltransferase 
superfamily. RNA 
methyltransferase TrmH 
family 

2 Susceptible Elevated Mid 

SUPERPANG_68_length=77131_30 E aminopeptidase 2 Susceptible Elevated Mid 

SUPERPANG_68_length=77131_43 K Transcriptional regulator 2 Susceptible Elevated Mid 

SUPERPANG_100_length=177249_19 G Catalyzes the transfer of a 
two-carbon ketol group from 
a ketose donor to an aldose 
acceptor, via a covalent 
intermediate with the 
cofactor thiamine 
pyrophosphate 

3 Susceptible Elevated End 

SUPERPANG_100_length=177249_90 KU Transcriptional regulatory 
protein, C terminal 

3 Susceptible Elevated End 

SUPERPANG_47_length=204717_85 S Protein of unknown function 
(DUF1684) 

3 Susceptible Elevated End 

SUPERPANG_47_length=204717_92 P SulP family inorganic anion 
transporter 

3 Susceptible Elevated End 

SUPERPANG_54_length=138570_25 S protein conserved in bacteria 3 Susceptible Elevated End 

SUPERPANG_59_length=357528_92 S Acid phosphatase 3 Susceptible Elevated End 

SUPERPANG_59_length=357528_95 K Belongs to the sigma-70 
factor family. ECF subfamily 

3 Susceptible Elevated End 

SUPERPANG_68_length=77131_27 J Belongs to the class IV-like 
SAM-binding 
methyltransferase 
superfamily. RNA 
methyltransferase TrmH 
family 

3 Susceptible Elevated End 

SUPERPANG_68_length=77131_43 K Transcriptional regulator 3 Susceptible Elevated End 

SUPERPANG_100_length=177249_25 S conserved protein (some 
members contain a von 
Willebrand factor type A 
(vWA) domain) 

2 Susceptible Elevated End 

SUPERPANG_47_length=204717_86 P Sulfurtransferase 2 Susceptible Elevated End 

SUPERPANG_59_length=357528_229 S transporter 2 Susceptible Elevated End 

SUPERPANG_68_length=77131_30 E aminopeptidase 2 Susceptible Elevated End 
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Signatures of parallel evolution in the pathogen population when subjected to different 

host genotypes and in presence of altered environment 

Above observations of higher genetic differentiation and higher within-host nucleotide diversity 

values in the pathogen population recovered from resistant cultivar compared to susceptible 

cultivar led us to further examine SNPs differentiating across host genotypes and across ozone 

levels and evaluates the signatures of parallel evolution i.e. SNPs observed independently across 

three replicates. A Cochran-Mantel-Haenszel (CMH) test to assess the parallelism was conducted. 

Results from Manhattan plot shows that there are many significant SNPs when we compare the 

population from the Resistant vs Susceptible cultivar under both ambient and elevated ozone 

environment conditions with a Bonferroni-corrected threshold. However, there are only few 

significant SNPs comparing populations from resistant cultivars under ambient and elevated ozone 

conditions (Figure 5-4.A). In the mid-season, we identified 171 significant SNPs (spanning 69 

genes) that were distinctly observed when comparing pathogen populations from resistant and 

susceptible cultivars under ambient conditions and 109 SNPs (spanning 59 genes) differentiating 

resistant and susceptible cultivars under elevated ozone conditions. By the end of the season, these 

numbers dropped to just 29 (spanning 19 genes) and 22 (spanning 15 genes), respectively (Figure 

5-4.B). Further, there were only three SNPs (spanning 2 genes) identified as significantly different 

across elevated and ambient ozone conditions in pathogen population recovered from resistant 

cultivar. Next, we examined which of these above identified differentiating SNPs and associated 

SNP spanning genes were consistent across seasons i.e. differentiating SNPs identified in 

comparisons that were retained over the season. We found only six SNPs (spanning 6 genes) 

retained by the end season comparing resistant and susceptible cultivars under ambient conditions, 

while majority (165 SNPs) were not retained by the end season i.e. reverted back to the original 
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allele. Under elevated ozone conditions, we discovered two SNPs (spanning 2 genes) common 

across the pathogen population on resistant and susceptible cultivar (Figure 5-3.C). Surprisingly, 

we did not find any common SNPs or genes that were retained across seasons when comparing 

different environmental conditions. Genes in response to host defense under ambient conditions 

were annotated as ribosomal protein S6--L-glutamate ligase, molybdenum transport system 

permease protein, transketolase 1, a putative membrane protein, ribonuclease T, and Molybdenum 

cofactor guanylyltransferase. The genes annotated as Molybdenum cofactor guanylyltransferase 

and intergenic region were found significantly associated with host adaptation under elevated 

ozone conditions (Figure 5-3.D). Multiple SNPs were found in these two genes under both ambient 

and elevated ozone conditions across the season, suggesting their importance for host adaptation. 

Besides, a SNP in intergenic region was found only under elevated ozone.  
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Figure 5-4. (A) Manhattan plot estimated for single SNP GWAS (Genome-Wide Association 

Study) results for different comparisons of population structure.  The grey color dashed line is 

the default GWAS threshold of 5 x 10-8. The coloured lines present the Bonferroni-corrected 

threshold, which is 0.05 divided by the number of SNPs in the summary statistics. (B) Barplot 

indicates the total number of SNPs and their associated genes were parallel across different 

comparisons. (C) Barplot showing the total number of SNPs and their associated gene counts 

persisted by the end season or counts which revert back to orginal state or lost from pathogen 

population by end season; (D) Table presenting all the SNPs associated genes with annotations 

and locations in genome which were persistent across season. 
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Genetic differentiation observed across cultivars and ozone conditions is due to standing 

genetic variation as well as de novo mutations.  

The greater genetic divergence observed on the resistant cultivar may be attributable to the co-

existence of both pathogen lineages i.e. standing genetic variation and/ de novo mutations. Indeed, 

results on strain dynamics indicated presence of both pathogen lineages during both mid and end 

season samples recovered from resistant cultivar under ambient conditions. In this case of oligo-

colonization of the host by known lineages as well as in case of pathogen population undergoing 

fluctuation in lineage frequencies under elevated ozone on resistant cultivar, the contribution of 

evolutionary modifications cannot be ruled out. Single nucleotide variants (SNVs) and differences 

in gene content that we identified in above analyses can arise as a result of shift in lineage 

frequency as well as evolutionary changes occurring in response to stressors. Here we attempted 

to distinguish these two scenarios by tracking SNVs in the shotgun metagenome data. Our 

experimental design involving co-inoculation of two closely related lineages of pathogen (1582 

SNV apart) allowed us to assign the alleles to the parent genomes and tease apart those arising 

during the course of growing season. Apart from strainEST method used above that relies on 

reference strain mapping approach, we analyzed the shotgun metagenome data for confirming 

oligo-colonization of resistant cultivar by analyzing minor allele frequency distribution patterns. 

The distribution of minor allele frequency (MAF) can be used to identify “strains” i.e. presence of 

distinct sub-populations within a larger population (ref). If the MAF < 0.1, indicated the presence 

of one dominant strain/pathogen lineage. The distribution suggests that two predominant strains 

exist, when MAF > = 0.5. If the MAF falls within the range of 0.1 to 0.5, it suggests the possible 

presence of more than two strains. The MAF < 0.1 for pathogen population recovered from 

susceptible cultivar under both environments in majority of the replicates confirmed the 
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dominance of one strain in population. However, in one of the replicates, we observed MAF close 

to 0.2, indicating existence of 2 or more strains. The low abundance of Xanthomonas in mid-season 

on resistant cultivar led to undetectable patterns in two replicates for ambient conditions. MAF 

values of ~0.3-0.4 in populations from resistant cultivar under ambient conditions during end 

season may indicate presence of two or more strains (Figure 5-5).  Resistant cultivar under elevated 

ozone supported one strain (MAF<0.1) during mid-season, which shifted to MAF =0.5 by the end 

season, indicative of existence of two strains (Figure 5-6.A). Overall, these results confirm the 

observation of shift in strain dynamics on resistant cultivar when subjected to different ozone 

conditions (Figure 5-1.D).  

Next, to assess for the presence of de novo mutations arising in the pathogen populations over the 

course of a single growing season during adaptation onto the resistant cultivar and the altered 

environmental conditions, we examined for the selective sweep. Alleles sweeping in the 

population were identified by looking for those minor alleles with MAF < 0.2 (less than in 20% of 

population) i.e. rare alleles observed during mid-season but those that shifted to MAF > 0.8, 

becoming major allele by end season. These rare sweeping alleles could be potentially adaptive.  

Interestingly, we did not find any such alleles in the susceptible cultivar irrespective of 

environmental conditions. In addition, we observed only 5 allelic sites (in only one replicate) in 

pathogen in response host defense (on resistant cultivar) under ambient conditions. However, in 

response to resistant cultivar and altered ozone conditions, pathogen population had a total of 397 

sweeping alleles. Intriguingly, we observed 47 of these sweeping alleles across two replicates and 

only 4 observed as parallel sweeping alleles across all three replicates. All these four sweeping 

alleles spanned a single gene, coding for acid phosphatase and were mapped to AL65, indicating 

that these sweeping alleles were observed due to a strain turnover i.e. increased abundance of 
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AL65. Sweeping alleles observed in parallel across two or three chambers were in the genes 

encoding chemotaxis proteins, acetyltransferases, type II secretion systems, TonB-dependent 

receptors (as listed in the annotated sites table, Figure 5-6.C).  These sweeping alleles were 

matched to AL65 and AL22 to identify novel SNVs that were observed to be arising in the 

population. We identified 14 novel single nucleotide variants (SNVs) that did not match any of 

our inoculated or naturally occurring contaminant strains. Out of 14 alleles, 4 were present in two 

replicates. These sites were further associated with one unknown gene, spanning three intergenic 

regions. These findings suggest that many of the genomic changes observed as differentiating 

across hosts or ozone conditions were due shift in the abundance of lineages (strain turnover) but 

there was a minor contribution of de novo mutations occurring in these populations during 

adaptation onto resistant cultivar and when subjected to elevated ozone.  

 

Figure 5-5. Heatmap presenting the counts of different minor alleles with frequency from 0 to 

0.50 in the pathogen population among different treatments. 
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Figure 5-6. Evolutionary modifications with strain replacement exhibited in pathogen population 

in resistant host under elevated ozone. (A) Density plots showing the distribution of minor alleles 

in Xp population across different chambers distribution of SNV counts with minor allele 

frequency; (B) Figure presenting the number of alleles which increased in frequency from < 0.2 

to > 0.8 (from minor to major allele) for Xp population in resistant cultivar under elevated O3; 

(C) Table presenting different allelic sites parallel across two and three replicates in the treatment 

of resistant cultivar under elevated O3 with associated gene annotations, genome and mutation 

types. Here 1D, 2D, 3D and 4D are different types of mutations, where a site with 1D is one in 

which an amino acid change caused by nucleotide difference (non-synonymous), while a site 

with a 4D cannot be caused by any nucleotide difference (synonymous), and 2D & 3D indicates 
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the either two or three possible changes, respectively can be tolerated, before an amino acid is 

altered (D. W. Chen and Garud 2022; Nayfach [2015] 2022).  

 

Higher rate of gene flux events was observed in the pathogen population during adaptation 

to resistant cultivar. 

Another mechanism to adapt to different niches, pathogens can undergo gene gain or loss. To 

illustrate this aspect of evolutionary change, we quantified alterations in the gene pool that 

reflect fluctuations in pangenome size. We hypothesized that selection pressure will drive 

changes in pathogen gene pool by promoting the mechanisms of gene acquisition or loss to 

enhance pathogen fitness, and thus, we will observe more gene gain/loss events in pathogen 

populations subjected to combined stress i.e. adaptation to resistant cultivar under elevated 

ozone. In this context, we defined “core genes” as those shared among two of the inoculated 

strains, AL65 and AL22, while “accessory genes” are unique to each strain. Here, we defined 

"gene gain" as the situation where a gene was missing in the mid-season in population but 

reappeared at the end, and "gene loss" as the situation where a gene was present in the mid-

season but was lost at the end-season. We observed a higher rate of gene flux in the pathogen 

population within resistant cultivar particularly under elevated ozone conditions, however, there 

were no differences in pathogen population from susceptible cultivars irrespective of 

environmental conditions (Figure 6A). We identified a total of 90 gene gain and 81 gene loss 

events in resistant cultivar under elevated ozone, out of which primarily gene gain events 

occurred in Xp AL22 and losses were in the Xp AL65 genome (Fig 5-7.B). In contrast, the 

population in the susceptible cultivar was found to be losing the core genome components under 

both conditions (Figure 5-7.C).  
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To further understand functional significance of these gain/loss events across the parallel genes 

among 2 and 3 chambers among different treatments, we used the Cluster of Orthologous Groups 

(COG)-based functional profiling. The pathogen population recovered from the susceptible 

cultivar under ambient conditions had lost genes of COGs [C] (Energy production and conversion), 

[MU] (Cell wall/ membrane/ Envelope biogenesis; Intracellular Trafficking, secretion and 

vesicular transport), [P] (Inorganic ion transport and metabolism). But population under elevated 

ozone conditions was observed to gain COGs [K] (Transcription), [L] (Replication, recombination 

and repair), [M] (Cell wall/ membrane/ Envelope biogenesis), and loss of [O] (Post-translational 

modification, protein turnover, chaperones (Figure 5-7.C).  

On the other hand, when comparing the two populations from resistant cultivars, we found under 

ambient conditions, functions associated with COG [K] (Transcription), [L] (Replication, 

recombination and repair), [M] (Cell wall/ membrane/ Envelope biogenesis), [U] (Intracellular 

trafficking, secretion and vesicular transport), [E] (Amino acid transport and metabolism) were 

lost, but these functions were gained under elevated ozone conditions. Additionally, COG [C] 

(Energy production and conversion), [F] (Nucleotide production and metabolism), [O] (Post-

translational modification, protein turnover, chaperones), [P] (Inorganic ion transport and 

metabolism), [Q] (Secondary metabolites biosynthesis, transport and catabolism), [MU] (Cell 

wall/ membrane/ Envelope biogenesis; Intracellular Trafficking, secretion and vesicular transport), 

and [PT] (Inorganic ion transport and metabolism; Signal Transduction mechanisms) were also 

gained under elevated ozone conditions in resistant cultivar. Moreover, functions associated with 

COG [NU] (Cell motility; Intracellular Trafficking, secretion and vesicular transport) and [T] 

(Signal Transduction mechanisms) were gained in the population under resistant cultivars under 

ambient conditions and were lost from elevated ozone conditions (Figure 5-7.C). 
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Remarkably, COG [V] was consistently lost from the population under all conditions, except when 

the pathogen was subjected to both host defense and environmental stress simultaneously. Overall, 

COG [K] (transcription) and [L] (function unknown) appear to be crucial for the population's 

adaptation to elevated ozone stress, as they were consistently gained by the population, regardless 

of the cultivar. In addition to this, pathogen population irrespective of cultivar and conditions, 

specifically, in resistant cultivar under elevated ozone conditions, we observed both gain and loss 

in the functions categorized as [S] (Function unknown) and NA (Hypothetical proteins and not 

found), which necessitate further investigation to understand functional significance (Figure 5-

7.C). 
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Figure 5-7. Gene flux in the pathogen population. (A) Boxplot showing the number of gene gain 

(absent during mid-season and present by end season in the pathogen population) and gene loss 

(present during mid-season and lost by end of season) across all the chambers. (B) Barplots 

presenting number of gene changes common among two and three chambers/replicates of 

different treatments. (C) Table showing the COG (Cluster of Orthologous Groups) based 

functional profiling of gene changes common in two and three chambers. The description of 

COG categories are: C = Energy production and conversion; F= Nucleotide metabolism and 

transport; G= Carbohydrate metabolism and transport;  GM = Carbohydrate metabolism and 

transport & Cell wall/membrane/envelop biogenesis; H= coenzyme metabolism; K = 

transcription; L= replication and repair; M = Cell wall/membrane/envelop biogenesis; NU= cell 
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motility and Intracellular trafficking and secretion; O = Post-translational modification, protein 

turnover, chaperone functions; S = Function Unknown; U = Intracellular and trafficking and 

secretion;  D = Cell cycle control and mitosis; E= Amino acid metabolism and transport; I=Lipid 

metabolism; IQ = Lipid metabolism & Secondary structure; IU = Lipid metabolism & 

Intracellular and trafficking and secretion; J = Translation; KT = transcription & Signal 

transduction; MU= Cell wall/membrane/envelop biogenesis & Intracellular and trafficking and 

secretion; P = Inorganic ion transport and metabolism; PT = Inorganic ion transport and 

metabolism; Q = Secondary Structure; T = Signal Structure; V = Defense mechanisms; NA= no 

hits found or Hypothetical protein with blast results. 

 

Methodology 

Relative Abundance 

To understand factors which can alter intraspecific strain dynamics over the course of the growing 

season in pepper plants coinfected with two closely related strains: Xanthomonas perforans (Xp) 

AL65 and AL22, StrainEst was used to map single nucleotide variants (SNVs) of the metagenomic 

2021 mid-season and end-season reads to a custom reference SNV profile mapped to the selected 

sequence representative Xp 91-118 (Albanese et al. 2017). Overall, the custom reference SNV 

profile contained strains representative of six sequence clusters (SC) within Xp: Xp AL65 (SC6), 

AL22 (SC2), AL33 (SC5), AL57 (SC3), GEV993 (SC1), and LH3 (SC4) (Newberry et al., 2019) 

- by opting to not only profile the coinfected strains, AL65 and AL22, in our StrainEst analysis, 

but also strains within the remaining four SCs, we could additionally evaluate any presence natural 

infection in our samples as well as our primary strains. In comparing the frequency of those SNVs 

present between the custom profile that was created and the metagenomic reads, StrainEst detected 
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the presence or absence of AL65, AL22, and any natural infection along with their relative 

abundances (RA) in the coinfected pepper plants.  

Note: While the presence of those strains which were not inoculated in the plants would represent 

presence of the entire SC, since the identities of the strains we inoculated are known, we are 

considering presence of those strains to be presence of the strain itself rather than the SC. 

Distinguishment between either strain and presence of another strain within the same SC was not 

considered.  

Note: Statistical significance was denoted by a p-value of <.05. 

 

Non-redundant pangenome of Xp inoculated strains 

Non-redundant pangenome of AL65 and AL22 was generated by the program SuperPang 

(v0.9.4beta1) (Puente-Sánchez et al. 2022), which was used as reference to map the metagenomic 

reads.  

 

Identification of Blacklisted genes 

Initially, we constructed a database using MIDAS, utilizing the non-redundant pangenome of Xp 

strains AL65 and AL22. This pangenome was generated by the SuperPang program, which 

provided us with the necessary files (.fna, .fasta, .ffn) for building the downstream analysis 

database. We created the “.genes” files using the conda-installed version of csvtk (version 

unspecified). Subsequently, we established the database using MIDAS (v1.3.2) (Nayfach [2015] 

2022), requiring the following tools: hmmer-3.3.2, vsearch/2.14.1, and anaconda/3-2020.11. 
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We executed the "run_midas.py species" command to identify the predominant species in the 

samples, utilizing the default MIDAS database. This database comprised 31,007 bacterial 

reference genomes organized into 5,952 species groups and relies on a 95% genome-wide 

average nucleotide identity (ANI). From the resulting output, we selected species with a mean 

prevalence exceeding 0 in all samples, excluding the Xanthomonas_perforans_55843, instead the 

pangenomes of  identified species id (mentioned according to MIDAS default database: 

(Pseudomonas_oleovorans_57108, Methylobacterium_sp_59341, Pseudomonas_fulva_57974, 

Brevundimonas_nasdae_60942, Methylobacterium_radiotolerans_54853, 

Alpha_proteobacterium_59626, Methylobacterium_sp_58573, Methylobacterium_populi_61518, 

Sphingomonas_phyllosphaerae_58541, Sphingomonas_sp_60678, Sphingomonas_taxi_60871, 

Sphingomonas_sp_61953, Pantoea_agglomerans_54643, Pantoea_vagans_57743, 

Methylobacterium_oryzae_55240, Pseudomonas_fulva_58092, 

Methylobacterium_mesophilicum_62490, Pantoea_sp_60701, 

Microbacterium_paraoxydans_56209, Pseudomonas_sp_59673, 

Xanthomonas_arboricola_57436, Sphingomonas_sp_58049, Xanthomonas_axonopodis_56719, 

Methylobacterium_extorquens_57587, Xanthomonas_axonopodis_61257, 

Aureimonas_ureilytica_58716, Xanthomonas_axonopodis_57683, 

Pseudomonas_rhizosphaerae_61010, Pantoea_agglomerans_56951, 

Pseudomonas_fluorescens_61150, Leclercia_adecarboxylata_62497, 

Enterobacter_cloacae_58148, Cronobacter_zurichensis_60329, 

Stenotrophomonas_maltophilia_62375, Streptomyces_sp_60263, Streptomyces_sp_58511, and 

Rhodanobacter_sp_59306) were concatenated and subjected to BLAST (blast+) against a 

customed MIDAS database of non-redundant Xp strains pangenome. Subsequently, we extracted 
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gene sequences with a similarity of >= 97% from the database and removed these genes from all 

the sample reads using bbduk (v37.36) (Bushnell 2014). The number of removed reads due to 

blacklisted genes is documented in the table (Supplementary Table). 

 

Estimation of gene changes and Minor allele frequency in pathogen population 

For estimating gene changes in the pathogen population, we employed MIDAS (version 1.3.2) 

(Nayfach, 2015/2022), processing paired-end reads in fastq format via "run_midas.py genes." 

We used a custom database with default settings, designating a copy number of 0.35 as the 

threshold for classifying a gene as absent in the sample. The above-mentioned identified 

blacklisted genes, exhibiting more than 97% identity, were discarded from the output files using 

RStudio. Gene annotations were performed using EGGNOG-MAPPER (Cantalapiedra et al., 

2021) and NCBI blast (https://blast.ncbi.nlm.nih.gov/Blast.cgi). To calculate the minor allele 

frequency, we ran "midas.py snps" and merged the resulting output files using the default 

settings for average read depth and reference coverage. Subsequently, we removed SNV sites 

associated with blacklisted genes in addition to those with less than 10 reads depth across all 

samples using RStudio. We removed the SNV sites belonging to the blacklisted genes in our 

output files. Mummer (v3.0) (Kurtz et al. 2004; “MUMmer” n.d.) was used to identify the 

genome of particular minor alleles in the population. 

 

Within-host nucleotide diversity, Mean Mutation rates per site, and selective pressures 

We employed the samples (without Blacklisted genes) in our subsequent analysis to assess 

diversity. To gauge within-host nucleotide diversity (π), Tajima's D, and the ratio of non-

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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synonymous to synonymous polymorphisms (pN/pS), we utilized MetaPop (Gregory et al., 2022). 

For these estimations, we employed MetaPop's local alignment algorithm, which normalizes 

diversity estimates by dividing them by the genome length to account for uneven coverage across 

all samples. Also, it excludes SNP positions not covered in the genome length and sets a PHRED 

score threshold of >= 20 for local SNP calls (Gregory et al., 2022). Our input files for MetaPop 

consisted of sorted BAM files, obtained by mapping the samples (without Blacklisted genes) to 

the non-redundant pangenome of Xp strains AL22 and AL65, serving as the reference genome. 

We performed this mapping using BWA-MEM v0.7.12) (H. Li & Durbin, 2009), followed by the 

removal of low-quality alignments and duplicate reads using samtools (v1.11) (Li et al., 2009) and 

picard (v1.79) (https://broadinstitute.github.io/picard/), respectively. To identify genes under 

positive selection, we refined the output by excluding genes with a pN/pS (non-synonmous to 

synonymous polymorphism) ratio of less than one and a Tajima's D value greater than zero. 

Additionally, we computed the population mutation rate per site, θ (based on Watterson's 

estimate), for each treatment using Rhometa (v1.0.2) (Krishnan et al., 2022). The program uses 

aligned BAM files (mentioned above) and the reference fasta file (the non-redundant pangenome 

of Xp strains AL22 and AL65) as input to run freebayes to identify variant sites. Rhometa uses 

dataset depth to calculate q estimate instead of number of genomes as typically implemented in 

LDhat since exact number of genomes is unknown in metagenome samples. For statistics,  Shapiro 

test was run at first to check the distribution of our dataset. Then, the Kruskal-wallis rank sum test 

and Dunn test were performed for overall and pairwise comparisons, respectively, for within-host 

nucleotide diversity, mean mutation rates per site, and selective pressure (tajima’sD and pN/pS 

ratios) and plotted using the ggplot2 library in R. 

 

https://broadinstitute.github.io/picard/
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Pairwise host comparisons and CMH test 

POPOOLATION2 software package was used to calculate the pairwise Fst using the parameters: 

--min-count 2 --min-coverage 4 --max-coverage 120. Cochran–Mantel–Haenszel test statistics 

(CMH test) implemented in the POPOOLATON2 software was used to identify the consistent 

SNPs among all biological replicates with the parameters settings: --min-count 2 --min-coverage 

4 --max-coverage 120. SNPs with p-values above the Bonferroni-corrected significance threshold 

was considered as outliers. Genome-wide SNPs were plotted in the Manhattan plot using ggplot2 

in R. Here, we have used the blk samples for estimates. 

 

Discussion 

Numerous research studies have explored microbial diversity, their interactions, and 

functional responses in various spatial and temporal contexts, such as those related to either the 

host or climate. However, there is a limited number of studies currently investigating how 

microbes and plant pathogens respond to both host interactions and climate change simultaneously, 

especially in real-time conditions. To investigate this, we employed open-top chambers to replicate 

natural environmental conditions and create elevated ozone levels. We conducted our experiments 

using both resistant and susceptible cultivars of pepper plants, which were exposed to elevated 

ozone conditions throughout a growing season. For our research, we utilized two closely related 

Xanthomonas perforans strains, AL22 and AL65, which cause Bacterial leaf spot disease in 

peppers and tomatoes. These strains were recovered from the resistant and susceptible pepper 

cultivars in Alabama, aiming to mimic the natural environment where pathogen populations 

consist of multiple strains. We adopted a metagenomics approach to gain insights into the 

evolutionary trajectories of these pathogen strains. 
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Our initial observation revealed a significant and fluctuating disease severity within the 

pathogen population. Notably, the disease severity in the resistant cultivar exposed to elevated 

ozone conditions suggested the potential erosion of quantitative resistance. Intriguingly, there was 

no significant difference in the pathogen population, but it displayed a high level of variability, 

which could be indicative of the pathogen’s plastic response to changing climatic conditions. The 

increased disease severity can be attributed to several factors. First, alterations in the host's defense 

mechanisms may play a role. Research has indicated that ozone exposure can harm plants by 

generating excessive reactive oxygen species, overwhelming the plant's inherent defense 

mechanisms. This oxidative stress occurs when O3 enters the plants through stomata and disrupts 

various physiological processes, including photosynthesis and resource allocation. Moreover, the 

changes induced by O3 exposure in gene expression and protein accumulation overlap with the 

responses observed in plants defending against pathogens (Grulke and Heath 2020; Y. K. Sharma 

and Davis 1997; Tiwari and Agrawal 2018). The third factor, as previously explored by Bhandari 

et al., 2022., relates to the response of microbial communities to modifications not only in their 

composition but also in the interactions among their members and the compromised functions of 

the community in the face of host defense and changing environmental conditions. In our study, 

our primary focus was to investigate alterations in pathogen efficiency, tracking the pathogen's 

evolution in real-time conditions. 

Our initial observation of a plastic response prompted us to investigate strain-strain 

interactions, and we noted a preference for the colonization success of AL65. This preference was 

linked to higher disease severity, as evidenced on both susceptible and resistant plants exposed to 

elevated ozone (see Figure 5-1). It is possible that AL65 is capitalizing on the suppression of host 

immunity by AL22 on the resistant cultivar, which may explain the coexistence of both strains on 



 
 

154 

the resistant plants. This strategy of maintaining a heterogeneous population could be a response 

to dealing with host resistance and abiotic stress. Our results indicate that it was not the 

environment alone that influenced the structure of the pathogen population. Instead, it was the 

interaction between the host genotype and the environment that led to increased susceptibility, thus 

altering the dynamics among the strains. The higher disease severity values observed under 

elevated ozone on resistant cultivars and the increased variability cannot be solely explained by 

the absolute abundance of Xanthomonas. However, we do observe an association with modified 

strain dynamics, which may suggest a changed ecological niche under elevated ozone conditions 

in the resistant cultivar. Our findings align with several studies demonstrating that microorganisms 

can enhance their chances of surviving challenging conditions by increasing diversity within their 

populations or genetic variations (Aertsen and Michiels 2005; Balaban et al. 2004; Hiramatsu et 

al. 2001; Lidstrom and Konopka 2010; Longo and Hasty 2006). 

The variations in nucleotide diversity on the resistant cultivar may signify the phenotypic 

plasticity of the pathogen population, a response to the selection pressures imposed by host 

defenses or altered ozone levels. Notably, nucleotide diversity values remained stable and unvaried 

on susceptible cultivars under elevated ozone conditions, indicating that elevated ozone alone was 

not the primary driver of genetic differentiation in the pathogen population. This pathogen’s 

adaptability and responsiveness to environmental fluctuations can lead to phenotypic diversity and 

genetic differentiation, as documented in various biological systems such as intestinal microbiota, 

coral reefs, marine life, wildlife populations, and microbiome interactions (Candela et al., 2012; 

Juan A. Bonachela et al., 2022; Leray et al., 2021; Reusch, 2014; Risely et al., 2023; Torda et al., 

2017). In addition, the examination of mutation rates in pathogens originating from susceptible 

cultivars revealed a consistent rate of approximately 8 x 10^-5 per site, regardless of the 
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environmental conditions. However, in response to host resistance and altered environmental 

conditions, the mutation rate increased to approximately 4.2 x 10^-4 per site. Spontaneous 

mutations generally occur at a frequency ranging from 1 in 10^5 to 10^8 and introduce random 

genetic variations within populations. Pathogen populations can quickly showcase significant 

phenotypic diversity through the introduction of point mutations (Drake 1991; Garibyan et al. 

2003; Lee et al. 2012).  

The co-evolved host-pathogen interaction indicates the selection pressure towards the 

pathogen population, which would reflect variants in the genetic architecture of the pathogen 

genome (Duxbury et al. 2019). Stress-induced mutagenesis theory states microbial populations 

have higher rates of genome-wide mutation/ variations including gene gain and loss events, 

recombination, insertion, and duplications, facilitating the evolution by increasing the plasticity 

pathogen evolution by increasing the plasticity (Albalat & Cañestro, 2016; Chu et al., 2021; Zhang 

et al., 2016). In this context, it becomes evident that the mere presence of strain heterogeneity does 

not adequately account for the increased levels of genetic differentiation observed across different 

environments, particularly in the case of resistant cultivars. Rather, it is likely that evolutionary 

adaptations have played a role in generating higher levels of nucleotide diversity within the host 

under elevated ozone conditions compared to ambient conditions (see Figure 5-2).  

The evolutionary modifications were quantified in which independent novel mutations 

sweep to high frequency from mid to end of season. It was seeded with a mixture of parallel in 

both de novo mutations (4 novel alleles) and rapid mutations among different replicates in response 

to environmental change and host resistance (Albalat and Cañestro 2016). The 4 novel parallel 

alleles: one belongs to an unknown gene and the other three alleles to intergenic regions (IGRs), 

one IGR allele are linked to genes related to flagellar type III secretion system proteins and the 
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other two IGRs are connected with genes of domain-containing protein and bifunctional biotin--

[acetyl-CoA-carboxylase] ligase/biotin operon repressor BirA. We observed the alleles swept to 

high frequency from lower by the end season might have allowed pathogen to adapt rapidly using 

those mutations in response to host resistance and elevated ozone conditions. Those alleles were 

related to Acid phosphatase genes, which could have provided the ability to the pathogen 

population to resist oxidative stress of reactive oxygen species produced by plants upon invasion 

or elevated ozone.  (Bhadouria and Giri 2022; Jungnitz et al. 1998). However, further studies are 

required to confirm the functional significance of these changes in the fitness and virulence of the 

pathogen population. 

We observed the strong purifying selection in the pathogen population irrespective of 

cultivar and conditions, which acts against newly emerged harmful mutations, preserves the 

genetic traits, and leaves imprints on genetic diversity by alteration in the distribution of genetic 

variants at specific sites (positive selection figure) (Cvijović, Good, and Desai 2018). The high 

and variable within-host polymorphism types (Figure 5-2.F) in the population from resistant 

cultivars under both conditions during mid-season and reduction during the end indicate filtering 

of harmful mutations in the population. Further, the accumulation of common significant SNPs in 

the pathogen populations emphasizes the independent evolution of crucial traits parallelly across 

pathogen populations from susceptible cultivars and resistant cultivars under both conditions. The 

common significnrt SNPs were common across pathogen population from resistant and susceptible 

cultivar in elevated ozone, were Intergenic region, putative protein and molybedunum cofactor 

guanylyltransferase (MobA). 
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The horizontal/lateral gene transfers and natural selection can drive the gene acquisition 

and loss process in the evolutionary process of microbial populations. Variations in the rate of 

gene gain and loss have impacts on the pathogen's fitness which contributes towards overall 

diversity of the pangenome (Brockhurst et al. 2019; Domingo-Sananes and McInerney 2021; 

Lefébure and Stanhope 2007; Moulana et al. 2020). The pathogen adapted with the strategy of 

“less is more” under the host defense and elevated ozone conditions that led to more gene loss 

events because of redundancy in functions can have fitness effects on overall populations (N. Li 

et al. 2017; Seidl and Thomma 2017; Simonsen 2022). Overall, the observed gene gain loss events 

from different strains are indicative of the dominance of respective strains under different 

conditions. However, COG categories [C] (energy production and conversion), [F] (nucleotide 

transport and metabolism), [P] (inorganic ion transport and metabolism), [L] (DNA replication, 

recombination, and repair), [E] (amino acid transport and metabolism) and [K] (transcription), 

would be important for elevated because of its gain in pathogen under concurrent stress and 

elevated ozone stress (Figure 6), which are consistent with upregulation of genes in prokaryotes 

under stress. Genes related to [K] and [L] are more conserved than nonessential genes in bacteria  

subject to strong selective pressure (Luo, Gao, and Lin 2015). When DNA damage occurs under 

stress, SOS response gets activated, which results in DNA repair or recombination. It can increase 

the genetic diversity and mutation rates in the populations (Foster 2005). Cells that lack or have 

modified the necessary proteins for repairing double-strand breaks (DSBs) in DNA exhibit distinct 

disruptions in genome replication and the overall viability of the cells (Sinha, Possoz, and Leach 

2020). The various alterations in the environment (high humidity, soil drought, and increasing 

ozone) have resulted in metabolic adjustments and shifts in the balance of carbon and nutrients, 

that can indirectly affect the osmotic or salinity property of plants (Oksanen 2021). That is why 
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we observed a high influx of genes related to COG [P]. However, the functional validation of these 

COG category genes was not studied for virulence, which is a limitation of this study.  

Our study has a few limitations, including a relatively small number of sampling points 

and a lack of long-term data due to not preserving samples from the population or conducting tests 

over multiple years. In future work, it is essential to investigate the functional significance of the 

observed mutations, explore unknown genes that might play a significant role, assess the fitness 

of the pathogen population under varying environmental conditions, and integrate our findings 

with data on other climatic factors for a more comprehensive understanding. Further research 

should also delve into the host's role and responses in these dynamics, among other relevant 

factors. Despite these limitations, the data we've gathered remains valuable and can be used for 

modeling approaches to predict pathogen evolution, contributing to our ability to anticipate and 

manage pathogen dynamics effectively. Overall, we observed the rapid evolution of the pathogen 

population on resistant cultivar during a single growing season to altered environment conditions. 

It is an alarming situation for the durability of resistant varieties under future climatic conditions, 

we need to focus on more breeding strategies against pathogen and altered environment at the same 

time. 
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