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ABSTRACT

In recent years, there has been a significant surge in the adoption of conservation
practices in agriculture, driven by a collective understanding of the urgent need to minimize
risks, enhance profitability, and protect the environment. Practices such as cover crops, crop
rotation, reduced tillage, and precision agriculture mitigate the risks associated with
unpredictable weather patterns and climate change. By enhancing soil health and structure,
conservation techniques mitigate the impact of extreme weather events, such as droughts and
floods, making farms more resilient. Furthermore, these practices boost profitability by
optimizing the use of resources. Through efficient water management and reduced need for
chemical inputs, farmers can cut costs while maintaining or even increasing yields.
Additionally, conservation methods protect the environment by reducing soil erosion,

preserving biodiversity, and mitigating greenhouse gas emissions.

Due to unpredictable weather patterns, such as the increased frequency of flash
droughts and extreme weather events, climate-related crop production challenges faced by
Alabama necessitate a deep understanding of peanut growth and water requirements.
Evaluating irrigation management strategies is crucial to comprehend the impact of irrigation
on peanut yield and enhance irrigation water use efficiency. Simultaneously, sustainable
agriculture practices are essential for environmental preservation and food security. This
study merges these critical aspects, focusing on peanut crops and increasing adoption of

sustainable agriculture in Alabama, USA.

The first chapter focuses on irrigation scheduling in peanut cultivation. The study
aimed to evaluate the impact of various soil water deficit levels on peanut growth and yield
using seasonal analyses with 30 years of weather data. The peanut growth model CROPGRO-

peanut in the Decision Support System for Agrotechnology Transfer (DSSAT) software was



calibrated and validated to achieve this objective. The calibration used parameters such as
leaf area index, leaf and stem weight, total biomass, pod weight, pod number, and volumetric
water content. The study used 30 years of weather data and on-farm experimental data
collected in 2021 and 2022 from Lee County, AL. Model validation affirmed its reliability in
predicting crop output. Abundant and well-distributed rainfall parameters were employed to
categorize dry and wet years, and despite complexities, it simulated various variables,
demonstrating its capability. The study highlighted the relationship between weather
conditions and irrigation management. The results showed that yield losses increase as the

soil water deficit increases due to the lack of irrigation frequency.

In parallel, the second chapter explored the use of sustainability indicators inside the
Fieldprint Calculator developed by the Field to Market consortium to evaluate the impact of
various crop management strategies towards sustainability. The study's objectives involved
understanding the current applications and benefits of the indicators and identifying
opportunities and barriers to their adoption, thereby contributing valuable insights to
sustainable agriculture knowledge. The study engaged five Central Alabama farmers in
comparative analyses to assess the impact of crop management in diverse metrics such as soil
carbon, soil conservation, water quality, energy use, and greenhouse gas emissions. These
analyses revealed variations in water quality and energy consumption and underscored the
importance of adopting strategies to strengthen nutrient management and irrigation efficiency.
Conservation practices, reduced tillage, and cover cropping were crucial for soil carbon
preservation as indicated by the soil carbon indicator. These results, indicators outputs and
comparison of indicator values resulted from farmers management practices, were presented
at field days with farmers, consultants, industry personnel, and governmental agencies
employees. The challenges the team had engaging farmers with these topics, the questions

participants had regarding the indicators, the potential for using the indicators as conservation



practices benchmarking tools suggested the need for more of this type of educational
programs and active farmer participation. Overcoming resistance to change and addressing
social barriers were recognized as essential steps toward fostering a sustainable farming

culture.

This research underscored the importance of the right time of irrigation application
and the use of irrigation scheduling in peanut crops, emphasizing the need for tailored
strategies to balance water conservation and yield enhancement. Additionally, the study
highlights the challenges and opportunities in promoting sustainable agricultural practices,
such as integrating sustainability indicators into extension, and using tools like Fieldprint
Calculator to track and measure field performance against state and national benchmarks.
Collaboration, education, and community involvement emerged as pivotal components for

fostering a culture of sustainable farming, ensuring the long-term viability of agriculture in

Alabama.
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.  LITERATURE REVIEW

1. Peanut Crop Physiology and Irrigation Requirements

Peanut (Arachis hypogaea L.) is an annual and essential economic oilseed crop in the
tropics and subtropical regions. Peanuts carry around 43-55% edible oil, 25-28% protein, and
2.5% minerals (Abou Kheira, 2009). Peanut production in the United States has led to four
market classes, which generally align with specific subgroups and varieties: Runner, Virginia,
Spanish, and Valencia (Nthupisang, 2018). Runner varieties contributes to approximately
80% of the country's total peanut production and is predominantly cultivated in states like
Georgia, Alabama, Florida, and Mississippi. In 2021, Alabama peanut growers produced
622,2 million pounds of peanut, being the second-largest producer in the country, with
Georgia taking the first place (USDA-NASS, 2022). Generally, peanuts in the USA are grown
under rain-fed conditions, with only a tiny acreage being irrigated. Although the Southeastern
USA receives substantial annual rainfall, averaging between 1000 mm to 1270 mm, irregular
distribution and unpredictable patterns can negatively affect peanut yield. Studies have
reported that insufficient soil moisture can significantly decrease yield (Wright et al., 1991;
Abou Kheira, 2009) and the water use efficiency of peanut plants (Jyostna Devi et al., 2009).
To reach optimal growth, peanuts require approximately 559 millimeters of water from
planting to harvest (Garcia et al., 2007). Drought stress is a significant abiotic factor leading
to decreased agricultural productivity and food security on a global scale (Kambiranda et al.,
2011). The lack of water interferes with plant development, specifically photosynthesis,
nutrient uptake, and grain and yield (Tardieu and Tuberosa, 2010). Moreover, drought
conditions are recognized to make peanuts more susceptible to aflatoxin contamination, as
evidenced by studies conducted by Blankenship et al. (1989), making them unsuitable for
animal or human consumption. Therefore, irrigation strategies might be adopted to decrease
the impact of water stress on peanut crops.
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2. Peanut Crop Simulation Modeling and Deficit Irrigation Strategies

Understanding peanut physiology and irrigation requirements is crucial for successful
peanut farming. Computer simulation models, like the Decision Support System for
Agrotechnology Transfer (DSSAT) (Hoogenboom et al., 2019), are valuable tools for the
evaluation of crop yield response to irrigation scheduling and other crop management
strategies. These models combine information about the soil, plants, and the atmosphere to
simulate crop growth and development under various conditions. DSSAT is useful in
understanding the crop productivity impact of drought conditions (Tojo Soler et al., 2013), to
simulate the potential impacts of climate change (Mubeen et al., 2020), fertilizer management

(Jiang et al., 2019), pest and disease management, crop rotations and others.

In the DSSAT models, calculations of soil water balance are done adding up irrigation
and rainfall and subtracting surface runoff, drainage, plant transpiration, and soil evaporation.
The rainfall and irrigation are provided as inputs. For soil drainage, a method called the
tipping bucket approach (Ritchie, 1998) is used. This method imagines the soil's water
movement like a series of connected buckets, considering parameters such as the drained
upper limit, lower limit, and saturated water content for each soil horizon. This method
allows water to move downward in the soil layers. The amount of water moving down
depends on the soil's properties. The actual use of water by plants (called evapotranspiration)
depends on the demand for water (ETo) and the plant's ability to take it up. The DSSAT
models use different methods to calculate this, considering factors like weather conditions
and plant characteristics. If there is not enough water in the soil, plants cannot use it as much,
affecting their growth. This information helps scientists and farmers understand how much
water plants need and how different factors impact their growth. The CSM-CROPGRO-
Peanut model can simulate the growth and development of peanuts under various soil
moisture conditions (Singh et al., 1994). Dangthaisong et al. (2006) reported that the CSM-
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CROPGRO-Peanut model could determine appropriate management strategies for peanut

crops under drought stress, including irrigation requirements.

When rainfall is low and not well distributed, providing additional irrigation becomes
crucial for achieving optimal yields. In DSSAT, soil-water flow and root water uptake
simulation occur for each soil layer. The soil profile is treated as a series of horizontal layers,
where each layer may be different in terms of water-holding capacity, moisture content, and
root length density (Hoogenboom et al., 2019). According to the study by Tojo Soler et al.
(2013), who tested the impact of various irrigation deficit scenarios, the treatment with 90%
of the irrigation requirement (90% irrigation threshold - IT), which means that irrigation
trigged after 10% of soil water depleted, resulted in higher yields. In contrast, the 30% and
40% IT treatments led to yield reductions of 92% and 45%, respectively, compared to the
90% IT, frequent irrigation treatment. As drought stress represented by the various deficit
irrigation treatments intensified, there was a corresponding decrease in crop yield. The
incorporation of computer simulation models, like those provided by DSSAT, shows great
potential in evaluating irrigation scheduling decisions (Hoogenboom et al., 2019),
particularly during drought stress, consequently contributing to achieving optimal yields in
peanut crops. However, before employing the software to aid in making irrigation scheduling
decisions, it is essential to verify its ability to predict crop response to various levels of

drought stress accurately.

3. Irrigation and Methods of Irrigation

Improving irrigation management requires real time estimation of crop water use and
soil water status. Real time assessment of plant available water is useful to determine the
amount of irrigation required to reach economic yield potential. This parameter is calculated

by finding the difference between two fundamental points in the soil's moisture spectrum,:
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field capacity (FC) and permanent wilting point (PWP) (Souza et al., 2018). FC represents
the soil's ideal moisture level after irrigation or rainfall, where excess water has drained away,
and the soil is holding as much water as it can (Evett et al., 2019). FC can be determined by
measuring the water content of a soil core after a pressure of -33 kPa is applied after
saturating the soil. PWP is the minimum amount of moisture in the soil at which plants can
no longer extract water effectively. This parameter is often determined by measuring the
water content of a soil core under a pressure of -1.5 MPa after saturating the soil. Soils at this
point are extremely dry, and plants begin to wilt, adversely affecting their growth and health.
The plant-available water capacity (AWC) is the range between FC and PWP (de Jong van
Lier, 2017). This information and the daily crop water use helps determining irrigation

scheduling which ultimately maximizes plant growth and water usage efficiency.

Regarding irrigation systems, three common types are center pivots, drip irrigation,
and surface irrigation. Each system provides benefits and is employed based on specific
agricultural requirements and available resources. Proper irrigation is crucial in mitigating the
risk of yield losses caused by water stress. However, it is essential to avoid over- and under-
irrigation, as these could adversely affect crops and the environment. Various management
practices can be implemented to enhance water use efficiency, such as incorporating cover
crops and conservation tillage, as Hatfield et al. (2001) suggested, along with adopting

improved irrigation management practices.

3.1 Irrigation scheduling

A practical approach for enhancing irrigation practices is irrigation scheduling, which
involves determining the optimal timing and rate of irrigation (Liang et al., 2016). This
method offers numerous benefits, including reducing crop water stress, energy expenses, and

labor inputs. Furthermore, it aids in the mitigation of fertilizer expenses and the
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environmental consequences arising from leaching and runoff (Evans and Sadler, 2008).
Various irrigation scheduling methods are available, each utilizing distinct criteria to

determine the appropriate irrigation strategy to trigger irrigation.

3.1.1 Evapotranspiration

The major component of water balance is evapotranspiration (ET), and the ET
irrigation scheduling approach has proven to be highly effective in optimizing crop growth.
ET is the sum of water evaporated from the soil surface and water lost through plant
transpiration (Allen et al., 1998). This method estimates soil water levels by carefully
tracking irrigation, precipitation, crop evapotranspiration, runoff, and deep percolation water
in the root zone. Due to its demand for various type of data, many farmers tend to avoid using
this method. The estimation of crop evapotranspiration (ETo) is commonly done using the
Penman-Monteith equation. This equation considers the solar radiation, air temperature,
humidity, and wind speed factors. These parameters are then multiplied by a crop coefficient
(Kc), which represent the water requirements of a crop (the ratio of actual crop
evapotranspiration to reference evapotranspiration). Allen et al. (1998) provided insights into
peanut Kc based on climate, cropping season, and crop height. However, they did not
consider cultivar specifications. Nonetheless, Bandyopadhyay et al. (2005) discovered that
the highest average peanut Kc recorded in a humid tropical region was 1.19. This peak value
was observed approximately nine weeks after planting, compared to the reference grass
evapotranspiration (ETo). The effective utilization of evapotranspiration for irrigation
scheduling depends on several factors. Among these, weather conditions play a crucial role,
requiring the installation of weather stations as close to the field as possible. Furthermore, the
crop coefficient varies across diverse regions and crop varieties. These disparities have the

potential to influence the recommended irrigation recommendation significantly.
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3.1.2 Soil sensor-based irrigation

Soil sensors represent an additional technological tool with the potential to enhance
irrigation choices. These sensors offer the unique benefit of promptly measuring soil moisture
information and providing real-time readings. Furthermore, some sensor companies enable
remote access to the collected data. Soil moisture sensors can be divided into direct and
indirect monitoring (Yoder et al., 1998). Direct methods involve collection of soil samples to
measure gravimetric water content and therefore are very time-consuming. In contrast,
indirect methods measure soil water content using sensors that most times use a principle
based on soil physics. The most common sensors are tensiometers, which measure the soil
matric potential (soil water tension), and the time domain reflectometry (TDR) soil moisture
sensors, such as the Acclima sensor (ww.acclima.com). Sensors, like TDR, send an
electromagnetic wave through the soil using three rods from a transmission line. The
increased frequency results in a reaction that relies less on soil characteristics such as texture,

salinity, or temperature when compared to alternative methods (Evett and Heng, 2008).

3.1.3 Checkbook

The irrigation checkbook method, called water balance accounting, operates by
computing the soil water balance deficit. This process involves tracking the water entering
the soil through rainfall and irrigation and exiting the soil through evapotranspiration and
percolation (Lundstrom and Stegman, 1988). To implement this method effectively, it is
crucial to evaluate the current weather conditions, soil type, and crop status. Essentially, the
net irrigation requirement indicates the quantity of water necessary to restore the soil water
content in the root zone to its field capacity. This value, representing the difference between
the current soil water level and the field capacity, indicates the extent of the soil water deficit.

However, the checkbook method's primary drawback is its inadequate performance when
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confronted with substantial within-field variability, leading to over-irrigation (Vellidis et al.,
2016). Nonetheless, checkbook methods provide irrigators with an economical approach to
meeting crop water requirements, thus averting detrimental impacts on crop growth and yield.
This is accomplished without requiring expensive or specialized machinery (Shortridge et al.,

2018).

3.1.4 Deficit Irrigation Strategy

Deficit irrigation (DI) is a water-saving irrigation strategy used in many parts of the
world (Fernandez et al., 2013) in which irrigation water is applied at lower amounts than the
full crop water requirement (i.e., ET), thereby increasing water use efficiency (WUE). Deficit
irrigation has been extensively examined in various arid and semi-arid regions to enhance and
maximize yield (English, 1990; Xiying et al., 1999). The suggested irrigation level for DI
ranges from 60% to 100% of ET (Sidhu et al., 2021). This method enhances water
productivity (WP) by increasing crop ET proportionally with small irrigation amounts until
maximum Yyield is achieved. During non-critical growth stages, irrigation is minimized or left
out, relying on rainfall to meet the minimum water requirements. For instance, in the case of
peanuts, the critical growth phases are flowering and pod-filling. Therefore, implementing
this technique requires understanding how different crop stages respond to water deficits. In
regions with limited water availability, achieving higher water efficiency can be more
economically profitable for the farmer than maximizing yield (Mitchell-McCallister et al.,

2021).

Essentially, deficit irrigation aims to stabilize crop yield and achieve optimal water
efficiency (Zhang and Oweis, 1999). DI can also reduce water by irrigating only the plant
root zone and increasing the time between irrigations. Some experiments conducted in India

revealed that providing two supplemental irrigations led to WP values of 0.55, 0.22, 0.23,
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0.41, and 2.27 kg m > for corn, peanut, sunflower, wheat, and potato, respectively. Increasing
the irrigation frequency to three times enhanced WP by 40%, 14%, 22%, 38%, and 7% for
these crops, respectively (Kar et al., 2004). This technique is widely used in various crops,
such as wheat (Ali et al., 2007; Ahmadian et al., 2021), corn (Igbadun et al., 2008; Zou et al.,
2021), cotton (Cheng et al., 2021), and peanut (Rathore et al., 2021; Zhang et al., 2021)

aiming to strike a balance between water conservation and satisfactory yields.
4. Sustainability in Agriculture

Sustainable agriculture refers to a comprehensive approach involving specific
practices. Its long-term goals include meeting human food and fiber needs, improving
environmental conditions, using non-renewable and on-farm resources efficiently,
incorporating natural biological cycles, maintaining economic viability for farms, and
enhancing the overall well-being of farmers and society (Congress, 1990). Some of the
practices that encompasses sustainable agriculture are crop rotation, use of cover crops,
integrated pest management, conservation tillage and efficient irrigation. Crop rotation, where
farmers rotate different crops in the same field over several seasons can prevent soil erosion,
maintains soil fertility, and reduces the risk of pests and diseases, reducing the need for
chemical inputs. Cover crops grown during off-seasons prevent soil erosion, improve soil
quality, and improve nutrient cycling. Integrated pest management involves combining
biological, cultural, mechanical, and chemical control methods to manage pests effectively
while minimizing environmental impact. Conservation tillage involves minimal disturbance
of the soil, preserving soil structure and reducing erosion. Efficient irrigation methods reduce

water wastage, conserves groundwater resources, and prevent soil salinity.

Sustainability in agriculture has gained importance as it holds the potential to address

both food security and climate change concerns effectively. To promote sustainable
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agricultural practices, farmers need approaches that are not only economically viable but also
environmentally and socially responsible (Robertson, 2015). However, a significant barrier
for farmers in adopting sustainable practices revolves around reducing inputs without
compromising agricultural production and economic profitability (Foley et al., 2011). The
yield and profitability of an agriculture operation are influenced by multiple factors,
including crop type, climate, soil conditions, management practices, and more, which affect
the yield and profitability of an agricultural operation. Pursuing sustainable agriculture is
pivotal for addressing pressing global issues. However, its successful implementation hinges
on balancing economic viability, environmental responsibility, and social sustainability in

diverse agricultural conditions.

5. Increasing Farmer's Awareness of the Importance of Sustainable Agriculture

Using Indicators

For numerous years and across various global regions, research has investigated the
circumstances in which farmers choose to implement sustainable farming practices. Usually,
farmers’ decision-making processes linked to agriculture practices are primarily profitability
driven. Therefore, these decisions differ from their everyday choices and are generally driven
by economic factors (Rodriguez et al., 2008). Sustainable farming practices have long-lasting
effects and can involve substantial investments. Boosting earnings, securing higher price
premiums, and reducing expenses are frequently cited motivations, as acquiring licenses or
gaining advantages in marketing and branding are common objectives (Trujillo-Barrera et al.,
2016). Characteristics of the farm itself also influence the adoption of sustainable practices in
farming. Farms with more significant income and acreage, indicating larger size, may have an
advantage in adopting sustainable practices because they possess more operating capital and

have improved access to credit (Shiferaw et al., 2009; Kemp et al., 2014). Besides
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demographic influence in adopting conservation practices, age, education, experience,

gender, and household income influence adoption (Hoek et al., 2021).

Farmers may perceive the adoption of new practices as risky. Consequently, the
dissemination of information plays a crucial role in boosting adoption rates and reducing
associated risks. Additional research has indicated that knowledge sharing, mainly involving
collaborative efforts with research and outreach specialists, enhances participation and
improves the effectiveness of implemented measures (Fujisaka, 1994; Gielen et al., 2003;
Kemp et al., 2014). Observability and trialability are crucial factors that decrease the
perceived risk of adopting new agricultural practices. When the benefits are easily
observable, and farmers can experiment with new practices on a small scale, they are more
likely to adopt them, as it becomes a less daunting and lower-risk proposition (Serebrennikov

et al., 2020).

In recent years, multi-stakeholder initiatives (MSIs) have gained prominence as a
prominent method of private governance aimed at promoting sustainability within the food
system. Traditionally, many MSIs have created specific standards against which farmers can
achieve certification. However, some sustainability-focused MSIs have recently shifted their
approach toward using metrics, as Freidberg (2017) and Hatanaka et al. (2022) highlighted.
The critical distinction between metrics and standards lies in their function. Metrics do not
prescribe specific requirements or benchmarks that farmers must meet. Instead, they serve as
tools that farmers can use to measure and evaluate their performance. The data from these
metrics enables farmers to assess their practices more effectively and make informed

decisions to improve their sustainability efforts (de Olde et al., 2016).

The study by Hoffelmeyer et al. (2022) investigates farmers' motivations, perceived

benefits, and power dynamics within Field to Market's metrics program using a combination
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of surveys and interviews. The study's findings indicate that the influence of sustainability
metrics on farmers' practices and profitability exhibits significant variation. While
sustainability metrics programs provide valuable learning opportunities and benchmarks for
farmers, it becomes evident that more than economic benefits are needed to serve as a
compelling factor to sustain their participation. Consequently, future program design and
implementation must consider farmers' nuanced motivations and concerns to ensure their

success and the equitable distribution of benefits.

According to (Strube et al., 2021) farmers care about conserving the land and passing
on to future generations. However, he indicated in his study that companies and sustainability
groups are asking farmers for detailed reports, making farming more complicated. Despite
this, some suppliers are proactively adopting sustainability metrics, even before being asked.
They are doing this to stay ahead, expecting future demand for this data. Suppliers are also
trying to find effective ways to tell others, like consumers, about their sustainability efforts.
However, farmers feel that their sustainability efforts are often misunderstood by people not

involved in farming.

Therefore, the need for improved communication of sustainability information to
consumers has emerged as a critical concern (Robertson, 2015). However, a significant
barrier for farmers in adopting sustainable practices revolves around reducing inputs without
compromising agricultural production and economic profitability (Foley et al., 2011). The
outcome of this attempt varies substantially, as multiple factors, including crop type, climate,
soil conditions, management practices, and more, influence the yield and profitability of an
agricultural operation. Consequently, when comparing sustainable practices with
conventional techniques, one can observe wide variations in yield outcomes (Marcillo and
Miguez, 2017; Laborde et al., 2020; Allam et al., 2021). In essence, pursuing sustainable
agriculture is pivotal for addressing pressing global issues. Still, its successful
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implementation hinges on balancing economic viability, environmental responsibility, and

social sustainability in diverse agricultural conditions.

Although government programs and policies play a crucial role in enhancing the
sustainability of the agriculture sector, a significant portion of the initiatives to increase
agriculture sustainability are happening independently of governmental involvement (Ponte,
2014). Consequently, diverse private and multi-stakeholder initiatives have emerged,
covering every aspect of agriculture globally. These initiatives can serve either as assessment
tools or as standards. Assessment initiatives involve the creation of empowering farmers to
measure and evaluate their performance in terms of sustainability (Marchand et al., 2014).
Standards initiatives also establish specific requirements that farmers must meet, often
involving third-party certification processes (Hatanaka et al., 2005). Both approaches use

indicators, which measure variables to evaluate the sustainability performance (FAO, 2012).

6. Use of Sustainability Indicators and Tools

6.1 Fieldprint Calculator

Measuring sustainability in agriculture employs various methods, including utilizing
sustainability indicators, models, and input requirements (Denef et al., 2012). Each approach
uses distinct tools, such as calculators, to evaluate sustainability. For instance, consider the
Field to Market group, which focuses on commodity crop agriculture within the United States
- established in 2006 through the collaboration of various stakeholders in the agriculture and
environmental sectors. Today, this consortium includes prominent names such as ADM,

Bayer, Cargill, Coca-Cola, Corteva, John Deere, universities, extension services, and others.

The primary mission of Field to Market revolves around creating and implementing a
standardized framework for quantifying sustainability in agriculture. This framework is

intended for farmers and supply chain use to enhance comprehension of sustainable practices
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and enable continuous improvement assessments. The core idea behind this is that measuring
and evaluating sustainability encourages farmers to continually improve their sustainable

practices by identifying areas that require improvement.

One of Field to Market's notable contributions is the development of the Fieldprint
Calculator, which was utilized in the study. This tool is designed to measure and benchmark
the sustainability performance of commodity crops based on eight key indicators. These
indicators include biodiversity, energy use, greenhouse gas emissions (GHG), irrigated water

use, land use, soil carbon, soil conservation, and water quality (Field to Market, 2023).

For instance, biodiversity plays a role in supporting species and ecosystem diversity
through habitat conservation and enhancement. Energy use and greenhouse gases are
evaluated both directly (i.e.,based on fuel usage for irrigation and tillage) and indirectly (i.e.,
based on energy consumed in crop production, manufacturing, transportation, and emission
reductions). Water use efficiency and conservation are based on irrigation water use, while
land use efficiency and soil conservation aim to increase land productivity by examining soil
carbon sequestration and reduced soil erosion. Additionally, water quality improvements

target the reduction of sediment, nutrient, and pesticide loss.

The Fieldprint Calculator is a free online resource that enables growers to document
their management systems and understand their impact on local, state, and national
sustainability benchmarks based on indicator metrics. The calculator automatically prompts
users to input field coordinates to link soil and topography data to their location. Furthermore,
it requires data related to crop rotation, tillage systems, irrigation methods, chemical inputs,

product transportation, harvest practices, and conservation efforts.

6.2 Cool Farm Tool
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Similarly, Cool Farm Tool (CFT) is a suite of online tools developed by the Cool
Farm Alliance. It allows farmers to measure and reduce their agricultural practices' carbon
footprint and environmental impact. Created in the United Kingdom, initially by Hillier et al.
(2011) and updated in 2016, the CFT has gained significant recognition and adoption within

the agricultural community.

The CFT utilizes a tiered approach to estimate greenhouse gas emissions in
agriculture. The CFT offers a user-friendly interface that allows farmers and supply chain
actors to input relevant data quickly. This data may include climate, soil parameters, pH,
applications of inputs, fuel type, yield, and drainage (Haverkort and Hillier, 2011). Using the
CFT, users can assess the environmental sustainability of their farming practices. It provides
insights into how different decisions, such as crop rotation or fertilizer use changes, can

impact greenhouse gas emissions (Cool Farm Alliance, 2021).

In summary, the Cool Farm Tool (CFT) is a valuable resource for farmers and supply
chain actors to estimate and assess greenhouse gas emissions associated with agricultural
activities. It offers a tiered approach, making it adaptable to different data availability and
complexity levels. Through the CFT, users can gain valuable insights into the sustainability of

their farming practices and make informed decisions to reduce their environmental impact.

6.3 Indigo Ag.

Indigo Ag is a company that created an integrated business platform that allows
farmers and others in the agricultural industry to embrace and benefit from sustainable
opportunities. The company actively contributes to sustainability efforts through its
innovative sustainability calculator, which applies scientific models and data analysis to
assess the environmental impact of farming practices (Indigo Ag., 2022). This calculator

employs data science, agronomy expertise, and life cycle assessment techniques to evaluate
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how agricultural practices influence critical sustainability metrics such as carbon footprint,

water use efficiency, and soil health (Indigo Ag., 2022).

Some agrifood companies, like Indigo, have introduced microbial seed treatments
designed to function as plant growth promoters. These treatments claim to reduce the need
for chemical products in agriculture, potentially leading to decreased greenhouse gas (GHG)
emissions, particularly in producing carbon dioxide and nitrous oxide associated with
fertilizer manufacturing. Moreover, these companies actively advocate specific sustainable
farming practices to their clientele, including cover crops and no-till farming, potentially

enhancing soil carbon sequestration.

To further promote microbial products and sustainable agricultural techniques, Indigo
has initiated mitigation programs that aim to amplify GHG reduction efforts with active
farmer involvement (Indigo Ag., 2022). These programs offer farmers interested in
suppressing GHG emissions an opportunity to participate. However, in exchange for their
involvement, participating farmers must commit to adhering to specific crop management
practices, using designated products, and providing comprehensive data regarding their
agricultural activities, inputs, and land use history. As an incentive, Indigo Ag promises to
share 75% of the profits resulting from GHG reduction efforts with participating farmers

(Indigo Ag., 2022).

Notably, these corporate mitigation programs aim to promote GHG emission
reductions in agriculture and create new revenue streams tied to the sale of carbon credits and
low-carbon products. Mitigation programs follow established carbon accounting standards to
ensure their GHG reduction achievements can be certified. For instance, Indigo's 'Carbon'’

program assists farmers in certifying their GHG emission reductions through the VERRA
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VMO00042 methodology, eftectively transforming these reductions into tradable carbon

credits (Indigo Ag., 2022).

It is worth noting that compliance with carbon accounting standards involves
technical complexity and incurs substantial certification costs. Consequently, it can be
challenging for small-scale and less financially equipped farmers to independently measure,

certify, and monetize their GHG reduction accomplishments.

7. Benchmark as an engagement tool

Benchmarking is a widely adopted strategy employed by various industries, including
agriculture, to drive performance improvements by identifying superior practices. This
practice has gained significant momentum in agriculture since the late 20th century, aiming to
enhance productivity and sustainability. The Fieldprint Calculator, a pivotal tool in this
endeavor, has been instrumental in benchmarking sustainability performance in agriculture,
enabling agribusinesses and marketing firms to validate claims and make necessary
improvements (Field to Market, 2023). Despite its widespread acceptance, concerns have
been raised regarding the practical interpretation of benchmarking reports, data accuracy, and

the program's overall benefits (Hoffelmeyer et al., 2022).

Parrish's (2016) study focused on establishing benchmarks for the environmental
impact of cotton production, demonstrating that, on average, Georgia cotton producers
exhibit higher sustainability than the national Fieldprint Calculator average. While the study
identified minor obstacles, such as workload and data entry challenges, it underscored the

critical need for improved communication of sustainability information to consumers.

The practice of benchmarking in agriculture has gained significant traction, mainly
through organizations like the Food and Agriculture Organization of the United Nations

(FAO, 2022). The FAO has actively published reports and guidelines on sustainable
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agriculture practices and performance measurement, often utilizing benchmarking
approaches. In a study by Hoffelmeyer et al. (2022), participants acknowledged the value of
the benchmarking feature offered by the Fieldprint Calculator. However, concerns persisted
among participants regarding the accuracy of the generated data and their ability to

effectively interpret benchmarking reports.

In summary, benchmarking is a basis in agriculture, fostering sustainable practices
and performance improvements. The Fieldprint Calculator and organizations like the FAO
have significantly contributed to advancing benchmarking methodologies. Addressing data
accuracy and interpretation concerns while improving communication strategies will further
strengthen the impact of benchmarking efforts in promoting sustainability within the

agricultural sector.
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Il.  PEANUT CROP SIMULATION MODELLING TO IDENTIFY DEFICIT

IRRIGATION STRATEGIES USING SEASONAL ANALYSIS
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ABSTRACT

Alabama, a prominent peanut producer in the United States, faces production
challenges due to unpredictable weather patterns and increased frequency of flash droughts.
Given the importance of peanut crops and the risk of yield losses associated with drought
stress, evaluating irrigation management strategies is crucial in increasing profitability and
irrigation water use efficiency. This study aims to assess the impact of soil water deficit levels
on peanut yield using seasonal analyses with 30 years of weather data. To achieve this, the
Peanut growth model in the Decision Support System for Agrotechnology Transfer (DSSAT)
platform was calibrated and validated On-farm experimental data was collected in 2021 and
2022 from fields in Lee County, AL. Data used for model calibration were leaf area index,
leaf and stem biomass, peanut yield, and volumetric water content measured at 20, 40, and 60
centimeters soil depths. The irrigation treatments involved three soil water deficit levels—
30%, 50%, and 70% water depletion from plant available water over the top 30 cm of soil
depth, a zone with the highest peanut root density. Dry and wet years were categorized based
on an abundant and well-distributed rainfall index. The calibration involved modifying
cultivar coefficients (EM-FL, FL-SH FL-SD, SD-PM, LFMAX, SLAVR, SIZLF, XFRT,
WTPSD, SFDUR, SDPDYV, PODUR, and THRSH), soil water content, leaf area index (LAI),
and above-ground biomass. The model demonstrated capability in simulating pod weight,
although discrepancies were present due to intricate interactions between genetics and
environmental conditions. The model validation showed a good agreement between
simulated and observed values of pod weight. At location 20 of the 2021 field ,the pod weight
Root Mean Square Error (RMSE) was equal to 471 kg ha™!, and the d-stat reached 0.951,
while at location 49, the RMSE was 555 kg ha™!, and the d-stat stood at 0.943. The main
findings of the study reveal that the application of three distinct irrigation deficit treatments

significantly influenced peanut crops' performance over 30 years of weather data in Society
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Hill, AL. The analysis focused on key factors such as leaf area index (LAI), yield, frequency
of irrigation, and volume of irrigation water. In particular, the study categorized years into dry
and wet based on the Available Water Depletion Rate (AWDR), providing insights into the
impact of water availability on crucial growth processes. The results indicate that, during dry
years characterized by low AWDR, rainfall alone did not meet the water requirements of
peanuts. Lower water depletion achieved through more frequent irrigation positively
correlated with increased yields, emphasizing the critical role of irrigation in mitigating water
stress. The study suggests that using a 50% soil water depletion over 30 cm soil depth as
irrigation triggering threshold offers an optimal balance between water conservation and
ensuring an adequate water supply for plant growth, resulting in high yields. The analysis
further delved into the influence of irrigation on the maximum leaf area index (LAI),
highlighting the responsiveness of LAI to variations in plant-available water. This
responsiveness, particularly pronounced during water-scarce periods, underscores the
significance of effective irrigation management for optimal crop productivity and water
resource conservation. The findings also revealed trends in irrigation water productivity
(IWP), with higher depletion levels corresponding to a consistent decline in IWP. In both dry
and wet years, the study emphasizes the adverse impact of reduced plant-available water on
irrigation water productivity and, consequently, on crop growth and yield. In conclusion,
these findings emphasize the critical importance of tailored irrigation practices, considering
specific weather conditions, to optimize peanut yield while conserving water resources for

sustainable and resilient agricultural practices in Alabama.
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INTRODUCTION

Peanut (Arachis hypogaea L.) is a crop of high economic importance in Alabama
agriculture, contributing significantly to the state's economy. In 2021, Alabama peanut
growers produced 281,827,697 kilograms of peanuts, securing the state’s position as the
nation’s second peanut producer (USDA-NASS, 2022). However, the region’s variable
climate increases the risks for yield losses and ultimately profitability. Despite the
southeastern USA receiving an average annual rainfall ranging from 1000 mm to 1270 mm,
the variable rainfall patterns can significantly impact peanut yields. Several studies have
highlighted the adverse effects of soil water deficiency on yield reduction (Wright et al.,
1991; Abou Kheira, 2009) and peanut water use efficiency (Jyostna Devi et al., 2009).
Moreover, drought conditions increase the susceptibility of peanuts to aflatoxin
contamination, rendering them unsuitable for human consumption (Blankenship et al., 1989).
However, in the region of the southeastern United States where peanuts are cultivated, the
scenario is further complicated by rapid urbanization and recurrent droughts that threaten

irrigation water availability.

Suitable weather and soil conditions, appropriate varieties, sufficient water supply
through rainfall or irrigation, and effective crop management practices are crucial to
achieving a profitable peanut crop. Water availability plays a pivotal role in maximizing plant
productivity. Peanut plants are susceptible to water stress during reproductive growth stages.
Early-season water stress, which is between mid-May to mid-July, has been observed to lead
to a 17 to 25% reduction in pod yield compared to well-irrigated conditions (Wright et al.,
1991). The developmental period between 50-80 days after planting (DAP) is critical for pod
formation, and a water shortage during this time can cause a significant reduction in

flowering, pod formation, and ultimately the overall yield of the crop compared to any other
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growth stage (Butts et al., 2020). However, excessive water can negatively impact peanut
yield and increase the incidence of fungal pathogens and limb and pod rot (Butts et al., 2020).
Balancing water supply is vital for both yield and quality. Irrigation has positively impacted
peanut quality factors such as edible seed yield, oil stock, and seed size (Lamb et al., 2010).
However, the challenges of diminishing water availability due to urbanization and
increasingly frequent droughts necessitate adopting more efficient irrigation practices to

ensure peanut productivity.

The adoption of irrigation practices has indeed increased in Alabama to counter the
effects of water stress and enhance yield potential. The period from 2012 to 2017 saw a rise
of 3.7% in irrigated harvest cropland in Alabama, USA (USDA-NASS, 2017). In 2017,
peanuts crop reported 2,787 acres of entire crop irrigated harvested, 31,126 acres of part of
crop irrigated harvested, and 144,778 acres of none irrigated peanuts harvested (USDA-
NASS, 2017). This trend underscores the importance of adopting appropriate irrigation
strategies to ensure water-efficient crop production. With the pressure for sustainable water
management, producers must balance maintaining yields and optimizing irrigation. Currently,
irrigation methods range from being based on subjective judgments. The last NASS report
(USDA-NASS, 2019) indicated that 1069 farms in Alabama, USA, use any irrigation method,
50.7% irrigate based on the feel of the soil, 9.3% based on day calendar-based scheduling,
according to previous season and crop water demand, 7.7% on soil moisture sensing, and 1%
start the irrigation when the neighbors irrigate. However, the varying levels of adoption
suggest the potential for enhancing water use efficiency and precision irrigation through

technical methods and improved management practices.

In this context, one option to identify the optimal irrigation rates and timing under
various growing conditions is to use crop growth simulation models. The CSM-CROPGRO-
Peanut, integrated within the Decision Support System for Agrotechnology Transfer
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(DSSAT), serves as a powerful tool for predicting crop growth, development, and yield across
diverse environmental conditions and management practices (Hoogenboom et al., 2019). The
DSSAT model is assisted by database management for weather, soil, and crop management
and measured data. Utilizing CSM-CROPGRO-Peanut justifies the application to choose the
most suitable scheduling irrigation. For instance, a study by Tojo Soler et al. (2013) found
that crop development was reduced for treating 30 and 40 % of thresholds, which reduced
yield compared to the 60 and 90 % of thresholds, which means that waiting too long for the
soil water to deplete may affect the yield. Another study by Garcia et al. (2007) in the
southeastern USA employed the CROPGRO-Peanut model to investigate peanut water
requirements across different maturity varieties, revealing the potential for irrigation
management. Garcia et al. (2007) found that peanuts need approximately 559 millimeters of
water from planting to harvest on fields located at the Sumter, Tift, and Burke Counties in
Georgia. Such models are pivotal in optimizing irrigation strategies, enabling producers to

navigate the complex terrain of water availability and demand to achieve sustainable yields.

Therefore, this study hypothesizes that increasing soil water depletion as a
consequence of poor irrigation scheduling could negatively impact peanut yield. By using the
CROPGRO-Peanut model within DSSAT, simulation of peanut growth and development
across three irrigation scenarios — specifically, at 30%, 50%, and 70% depletion of soil
available water over 30 cm soil depth supports the identification of irrigation rates and
irrigation frequency minimize the risk of yield losses and increase water use efficiency.
Through the calibration and evaluation of the CROPGRO-Peanut model and using seasonal
analyses with 30 years of weather data, the study seeks to determine the impact of irrigation
scheduling on the peanut variety ACI 3321 growing in Society Hill, Alabama. These findings
will contribute to improving irrigation management practices, increase profitability of peanut

producers and promote resource conservation.
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MATERIAL AND METHODS

1. Study Area

Model calibration and validation was performed using crop and soil data collected
from two peanut fields in Society Hill, Lee County, Alabama. The 2021 field had Malboro
loamy sand soil, classified as fine, kaolinitic, thermic typic Paleudults. In 2022, the field had
Marvyn sandy loam soil, classified as fine-loamy, kaolinitic, thermic typic kanhapludults.
Before the current project, additional data on terrain elevation and soil electric conductivity
(ECa) were collected in December 2020. This data was to understand the within-field
variability, delineate potential management zones and within-field watersheds and identify
locations for soil sampling and monitoring soil and nutrient changes during the 2021 growing
season (Figure 1.1). Students and post-doctoral researchers collected Planet Satellite Images
in 2019 and 2020 to assess crop growth and potential yield variability. Vegetation indices,
including the Normalized Difference Vegetation Index (NDVI), Non-Linear Index (NLI), and
Simple Ratio Index (SR), were calculated to study potential within-field crop biomass
variability. The selection of soil sampling locations and installation of soil sensors was based
on management zones determined using a combination of data layers of soil apparent
electrical conductivity (soil EC,), terrain elevation (e.g., topographic positioning index and

topographic wetness index), and vegetation indices estimated from satellite images.

The data for the calibration of CROPGRO-Peanut model was collected during 2021
(Figure 1.2) and 2022 (Figure 1.3) crop-growing seasons (Table 1.1). The field used for
calibration in 2021 (Figure 1.2a) was 25 hectares (ha) in size with 18 ha irrigated, and in
2022, this field was 26 ha in size (Figure 1.2b). Data for model validation was collected from
various locations within two peanut fields, one of 8.5 ha (Figure 1.3a) and 26 ha in size

(Figure 1.3b). The peanut cultivar ACI 3321, a high-yielding and high oleic runner-type
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variety developed in Georgia, USA, was planted on May 21-22, 2021 (Field 1.2a), May 26,
2021 (Field 1.3a) and May 19-20, 2022 (Fields 1.2b and 1.3b). The seeding rate was 168.13
kg hal in 2021 and 145.71 kg ha! in 2022, with a row spacing of 0.91 meters. The study area
is classified as subtropical humid (Cfa) climate (Koppen Climate Classification, 2023) with
an average annual accumulated rainfall of 1380 mm for Northwest Alabama and 1360 mm for

Southeast Alabama (Mishra and Srivastava, 2015).
2. Plant Measurements

During the 2021 peanut growing season at the field 1.2a, several locations for peanut
biomass harvest were selected to account for various growing conditions (e.g., potential high
and low peanut yielding areas). The first collection of peanut samples was done in June 17"
with e total biomass collected at locations 1, 3, 4, 5,6, 7, 8,9, 14, 15, and 16. The day after
this collection, plant partitioning (steam, leaves, pods, seeds) of locations 1, 5, 8, 9, and 15
was done. The second and third sampling occurred on July 21% and August 24" at locations 3,
4,5,6,7,8,9, and 15 for total biomass and peanut biomass partitioning of steam, leaves, and
pods biomass was done at locations 3 and 9. During harvest, October 11" 202, peanut
samples were collected at all 11 locations, total biomass was estimated from all of them, and
biomass partitioning was done at locations 3 and 9. However, since the model needs ideal
conditions for calibration, data from three high-yielding peanut sampling locations within
field 1.2a (locations 3, 6, and 7) were to input into the software. Because peanut yield was
affected by frequent rain in 2021, additional data for model calibration was collected from
one location (location 1.1) within field 1.2b in 2022. Peanut biomass was collected four times
during the growing season at each location from an area comprised of four rows of 1-meter
length. The collection dates were on June 17" (V5-V6), July 21° (R4), August 24™ (R6), and
October 11" (harvest) in 2021. In 2022, flowering occurred on June 1%. In 2021, Leaf Area
Index (LAI) was measured five times for each sampling location using an LAI-2200C plant
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canopy analyzer (Li-Cor Biosciences, Lincoln, NE, 2023) and the sampling dates were in
June 17" (V5-,V6) July 16" (R3), July 21% (R4), August 11" (R6), and September 24", Plant
biomass was oven-dried at 70 °C to constant weight (dry matter). The dry weight values of
leaves, steam, pods, and total above biomass were used to estimate biomass components per
area basis with the values converted from g m™ to kg m™. The dry weight was divided by the
area harvested, either four or six rows, each one of one-meter length, and multiplying by the
row spacing of 0.91 m. During the final harvest, six rows of one-meter length were collected,
and pods and seeds were counted to estimate the pod and seed weight per unit area (kg ha™)

and the number of pods per unit area (m?).
3. Weather and Soil Data

The CROPGRO-Peanut model requires daily weather data, such as maximum and
minimum temperature (°C), solar radiation (MJ m™ day!), and rainfall (mm) over the entire
crop growing season. For this study, the data was collected by a Davis Vantage Pro 2 weather
station (Davis® Instruments, Hayward, CA, 2023) installed next to the peanut fields. The
predominant soil at Field 1.2a was Malboro loamy sand, and at Field 1.2b was Marvyn sandy
loam, both soils well drained (SSURGO, 2023). After delineating crop management zones,
locations with contrasting field growing conditions were selected. At fields 1.2a, locations 3,
4,5,6,7,8,9,13, 14, and 15 were chosen to assess the soil’s physical and hydraulic
properties, such as gravimetric water content, bulk density, water pH, NO3, NHy, total
nitrogen, total carbon, and organic matter (Tables 1.4 and 1.5). At each location, two soil
cores, each with a depth of 122 cm were collected and divided into the following soil depths:
0-5, 5-15, 15-23, 23-30, 30-46, 46-61, 61-76, 76-91, 91-106, and 106-122 cm. Soil physical
and chemical properties were determined from each soil sampling depth. In 2021, irrigation
was applied by the farmer on July 30" (11.43 mm), July 31° (11.43 mm), August 14™ (19.05
mm), and September 08" (12.7mm) totalizing 54.61 mm.
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4. Soil Water Balance

Soil water content (SWC) data at each sampling location was collected using Acclima
soil sensors (Figure 1.4). These sensors use the Time Domain Reflectometry principle to
measure changes in soil moisture (Acclima, 2023). The sensors were installed at 20, 40, and
60 cm of soil depth. The SWC data input into DSSAT corresponded to daily measurements
collected by the sensors at 3 p.m. when plants have reached the peak of crop water use. The
soil layers in DSSAT are divided into 15 cm depth, and then the layers considered for the soil

water content observations were the 15 - 30 cm, 30 - 45 cm, 45 - 60 cm depth.

The total available water is the amount of water that exists between the permanent
wilting point (PWP), referred as the lower limit (LL) in DSSAT, and the field capacity (FC),
known as the drained upper limit (DUL) (Tables 1.10 and 1.11). The determination of PWP
and FC at some locations within the field 1.2a | involved estimation of soil water retention
curves (SWRC) using the Hyprop-2 (Meter Group, Pullman, 2023) and the WP4C (Meter
Group, Pullman, 2023) sensors for the estimation of the FC and PWP, respectively.. This
process included collection of undisturbed soil cores at depths of 20 cm, 40 cm, and 60 cm to
generate the wet and dry ranges of the soil water retention curve. At each sampling locations,

there was an SWRC that represented each one of those three soil depths.

Saturated water content (SAT, cm® cm™), bulk density (g cm™), and root growth factor
were first generated by the SBuild Program of DSSAT Version 4.8 (Hoogenboom et al.,
2019). The FC is the moisture content in the soil after complete saturation and drainage for
about 24 hours, as explained by (Evett et al., 2019), or it can be determined by measuring the
water content of a soil core under a pressure of -33 kPa after saturating the soil. In the same

way, the PWP is often determined by measuring the water content of a soil core under a
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pressure of -1.5 MPa after saturating the soil, which refers to the soil moisture content in

which plants cannot extract enough water from the soil.

5. Model calibration and evaluation

5.1 Calibration

Since the peanut variety ACI 3321 used in this study was unavailable in the
CROPGRO-Peanut cultivar database, cultivar coefficients for this variety were generated
using biomass and growth data collected in the 2021 and 2022 growing seasons. As a first
step in the cultivar coefficient determination, the peanut variety Georgia Green cultivar
coefficients were used as the basis for the generation of the ACI 3321 new cultivar
coefficients. The estimation process involved using The Generalized Likelihood Uncertainty
Estimation (GLUE) tool. Data related to biomass, crop growth, and phenology from four
locations within Fields 1.2a and b were used to create the files X (experimental practices), T
(observations data), and A (season average performance). This dataset was then selected
using the GLUE tool. Through a total of 50,000 iterations, the tool generated new cultivar
coefficients for phenology and growth parameters. After using the GLUE Tool, the sensitivity
analysis was used to optimize the coefficient values and to minimize errors between
simulated and measured values of phenology dates, biomass, crop yield, and yield
components based on statistical analyses. The sensitivity analysis tool was used again to
identify soil parameters to adjust the soil water balance. Model simulations of volumetric
water content for the depths of 20, 40, and 60 cm were improved by adjusting the values of

DUL and LL to match simulated and observed data.

5.2 Statistical Analysis

Using Eq. 1, the Root Mean Square Error (RMSE) was determined based on predicted

values (P1) and observed values (O1) of various variables such as days from planting to
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anthesis, days from planting to physiological maturity, maximum LAI, biomass, yield, and
yield components. These statistics were used to evaluate how well the model simulated the
observed values model calibration could be improved.

n
N (P - 0)?
i=1

0.5

RMSE =

(1)

The index of agreement (d-stats) uses a predicted observation (Pi), a measured
observation (O1), and the mean of the observed variable (M). Where P’i=Pi- M, and O’i =
O’I - M. The index ranges from zero to one, and the closer to one, the better the agreement
between the two variables being compared. In other words, if the d-value is close to one, then

the predicted and measured observations are in good agreement.

Z?=1(Pi—oi)2

2 =1
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5.3 Validation

For model validation of the CSM-CROPGRO-Peanut model, simulated and observed
values of the first flower (R1), harvest maturity, and final pod weight were evaluated using
statistical parameters. Data from fields 1.2a and 1.2b (location 1.1) was used for model

calibration. The validation was conducted using data collected from several locations within

fields 1.3c (locations 20, 49, 71) in 2021 and 1.3b (locations 1, 2, 4, 7, 19) in 2022.

6. Seasonal analysis to evaluate the impact of irrigation scheduling strategies

The seasonal analysis tool in DSSAT allows crop yield simulations under the same

crop management strategy and over multiple years of weather data (Hoogenboom et al.,
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2019). Because this project aims to evaluate different irrigation scheduling treatments and
crop water use and irrigation is affected by daily weather, a season analysis was selected to
assess three irrigation scheduling strategies under 30 years of weather data (1990 to 2020) in
the study region. The weather data was collected online at NASA’s Prediction of Worldwide
Energy Resources (https://power.larc.nasa.gov/) for this analysis. The soil was Marvyn sandy
loam characterized by a sandy clay soil texture throughout most of the soil profile. The
seasonal analysis simulation was conducted under the same management strategy used in
2022 data (crop management practices, row spacing, and plant population), and the irrigation

efficiency of the center pivot for calibration and seasonal analysis was considered 95%.

This analysis evaluates potential interactions between irrigation and weather
conditions on crop growth and yield. Therefore, the objective is to assess the impact of water
deficit during various growth stages. For example, for peanuts planted in the Southeast USA,
August corresponds to the peak of water use for peanuts as it corresponds to reproductive
growth stages. This means supplying the crop with the right amount of water at the right time
is essential, so the final yield is not compromised. Figure 1.6 displays the cumulative
precipitation of August for the years 1990 to 2020. With a high precipitation variation
between years, adjusting the irrigation rate and schedule is vital to avoid the reduction of
peanut yields. Comparing years with lower rainfall, such as 1990, to years with more
considerable rainfall, such as 2008, reveals that sufficient irrigation rates can change
significantly between years; therefore, using seasonal analyses to determine the optimal
irrigation rates from year to year might be helpful to understand water demand better and

guide irrigation decisions.

7. Evaluation of the Impact of Irrigation Scheduling Strategies
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The seasonal analysis tool in DSSAT was employed to evaluate three different
scenarios of soil water depletion over the top 30 cm of soil depth. These scenarios included:
1) a 70% depletion, 2) a 50% depletion, and 3) a 30% depletion. The determination of soil
water content is based on the concept of soil water depletion. This approach involves setting a
maximum acceptable level of soil water depletion, ensuring the prevention of crop water
stress and the potential reduction in crop yield (Allen et al., 1998). The simulated soil water
content within the effective root zone guides the irrigation decisions. In the automatic
irrigation mode, irrigation is initiated within the crop growth model when this simulated soil
water content drops below a specific threshold determined by the available water capacity
(AWC). In this context, the model defines the AWC as the difference between FC and wilting

point WP.

Another point to help evaluating the impact of irrigation scheduling is the irrigation
water productivity (IWP), especially in regions with scarce groundwater. Irrigation Water
Productivity (IWP) is a measure used in agriculture to assess the efficiency of irrigation
practices. It represents the amount of crop yield achieved per unit of water applied during
irrigation. IWP is calculated by comparing the increase in yields attributed to irrigation (Y1)
with yields in non-irrigated, dryland conditions (Yo.0). This ratio is then divided by the total
of irrigation water applied (TIRR) (P Bordovsky et al., 2015). The formula for IWP is often

expressed as:

Vi =Yoo _ AV

WP == = TIRR

8. Abundant and Well-distributed Rainfall

Abundant and well-distributed rainfall (AWDR), a parameter proposed by Tremblay
et al. (2012) to study the corn response to nitrogen as influenced by soil texture and weather.

This parameter refers to the amount and distribution of rain within a specific area over time,
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which is crucial for sustainable agriculture. A high AWDR value indicates that an area
receives frequent and abundant rainfall, while a low AWDR value would suggest that a
location or area gets sparse and low rain (Tremblay et al., 2012). The specific values for what
would be considered high or low AWDR can vary depending on the location and the period

of data being analyzed.

This parameter was essential for this study to identify and categorize years where
adequate irrigation for peanut crops would be necessary to ensure optimal growth through
proper water distribution and quantity. The calculations were based on Tremblay et al. (2012)
methodology using equation 3. This involved the multiplication of the rainfall amount in mm
(PPT) by the frequency (SDI) for a specified period (n). Here, SDI represents the Shannon
Diversity Index (Equation 4), with pi denoting PPT and n indicating the number of days

within the designated timeframe (Bronikowski and Webb, 1996).

AWDR = PPT x SDI
3)
SDI = [— z pi ln(pi)] + In(n)

(4)

The AWDR was estimated for 32 years of peanut reproductive period, which is Mid-
July to beginning of September, which is more critical for peanut yield (Attia et al., 2021).
(Table 1.6). To differentiate between years with abundant and well-distributed rainfall (wet)
and those with sparse and low rainfall (dry) we employed a statistical approach. First the
mean was determined and then the standard deviation (STD) of annual rainfall averages of
these values. Dry years were identified as those with AWDR values below the mean minus

one STD, representing limited rainfall and distribution. Contrarily, wet years were identified
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as those with AWDR values exceeding the mean plus one STD, indicating high amount of

rainfall and better distribution.

RESULTS AND DISCUSSION

1. Weather conditions

During the crop growing season 2021 in Society Hill (AL), the monthly total
precipitation values exceeded the 30-year historical average in June, July, August, and
October. This contrasted with May and September, which experienced below-average
precipitation (Figure 1.2). The maximum and minimum temperatures during the peanut
growing period varied between the two years of study in this project. Specifically, in 2021,
the average minimum temperature was 18.9°C, and the maximum temperature was 30.2°C.
On the other hand, in 2022, the temperatures were slightly higher, with averages of 19.6°C

and 31.6°C for the minimum and maximum temperatures, respectively.

To further assess the impact of precipitation, a selection was made, comprising six dry
years (2010, 2007, 1999, 1998, 1997, 1990) and seven wet years (2022, 2017, 2008, 2005,
2004, 1996, 1992) based on the AWDR values below 76 (representing the driest years) and
exceeding 170 (describing the wettest years) (Table 1.6). Limited water supply and infrequent
rainfall in dry years hinder crucial growth processes, including leaf expansion, the production
of photosynthetic pigments, and pod yield (Tojo Soler et al., 2013). Particularly in dry years,
inadequate water during critical growth stages slows nutrient uptake and affects overall plant

health, ultimately impacting yield potential.

The exceptionally high precipitation during 2021, especially in June, July, and August
(Figure 1.5), led to elevated precipitation levels during the peanut reproductive growth stage.
While adequate moisture is favorable for plant growth, excessive rainfall can lead to

waterlogging and increased humidity, creating a conducive environment for fungal diseases.
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These conditions align with the observation of Ahmed et al. (2019), who noted a negative
correlation between heavy rainfall and peanut yield due to disease risk. On the positive side,
optimal water availability can promote leaf expansion, enhance photosynthetic pigment

levels, and support pod development, contributing to improved yield potential.

2. Model Calibration

2.1 Cultivar Coefficients

The 18 peanut cultivar coefficients on the CSM-CROPGRO-Peanut model were
modified to represent the phenology, growth, and yield of the ACI 3321 peanut variety
utilized in this study (Table 1.7). The cultivar coefficients were estimated based on measured
data of phenology, crop growth, above-ground biomass, yield components, and yield. The
differences between the initial cultivar coefficient values (Georgia Green peanut variety) and
the final values (ACI3321 variety used for this study) could be explained by the differences
in the growing cycle and their own genetic characteristics. Using the coefficients of the
Georgia Green, a variety planted in the Southeast USA in past years, as initial values to start
calibrating and generating the new cultivar coefficients improved the process and decreased
the time to do manual calibrations using the sensitivity analyses. The outcomes of the model
simulations, incorporating the newly generated cultivar coefficients for the ACI 3321 variety,
revealed that in 2021 (Table 1.8), the simulated day of anthesis (41 DAP) occurred two days
after the observed day (39 DAP). Similarly, in 2022, the simulated anthesis day (40 DAP)

was three days ahead of the measured value (43 DAP), as indicated in Table 1.9.

While the observed day of physiological maturity matched the simulated value in
2022, there was a difference in 2021. In 2021, the observed day of physiological maturity was
delayed by ten days compared to the simulated day. This variation underscores the dynamic

nature of the growth and maturation processes, which weather conditions and genetic
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responses can influence. These discrepancies reflect the complexity of plant growth dynamics

and the interaction between genetics and environmental conditions.
2.2 Soil Water Content

The DUL and LL and the daily dynamics of the simulated soil water content at the 15-
30 cm, 30-45 cm, and 45-60 cm soil depth were adjusted based on the DUL and LL values
estimated for each layer under laboratory conditions. In 2021, at location 3 within Field 1.2a,
the LL values for the 15-30 cm, 30-45 cm, and 45-60 cm ranged from 0.113 cm? cm™ to
0.195 cm® cm™ before the calibration process (Table 1.10). After calibration, these values
shifted to 0.088 cm® cm™ to 0.192cm? cm™. Similarly, the pre-calibration DUL values
fluctuated between 0.207 cm® cm™ to® 0.28 cm® cm™ before calibration and 0.176 cm® cm™ to
0.284 cm® cm™ after the calibration. The calibration results showed a good agreement
between the observed and simulated values with a d-Stat value of 0.725 and RMSE of 0.04

cm3 cm-3 for layers 15-30 cm (Figure 1.7).

For 2022, Field 1.2b — location 1.1, the initial values for LL ranged from 0.095 cm?
cm™ to 0.186 cm® cm™ before the calibration. After the calibration the LL value in the 45 cm
layer was adjusted from 0.183 cm® cm™ to 0.13 cm® cm™. For DUL, initial values ranged
from 0.183 cm?® cm™ to 0.267 cm? cm™ before the calibration, with the 45 cm and 68 cm
layers having values of 0.268 cm® cm™ and 0.267 cm® cm™, respectively. After calibration,
these values were adjusted to 0.19 cm?® cm™ and 0.21 cm? cm™ for the 45 cm and 68 cm
layers, respectively (Table 1.11). The calibration of the soil water characteristics at Field 1.2b
resulted in a good agreement between simulated and observed SWC values at the 15-30 cm
soil depth with a d-Stat of 0.73 and RMSE of 0.034. At the depths of 30-45 cm and 45-60 cm,
the RMSE decreased but the d-Stat increased (Figure 1.8). The model is a simplified

representation of the soil-water dynamic, which involves complex interactions, such as soil
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characteristics, climate and weather patterns, crop requirement and root depth, hydraulic

conductivity and porosity, and model precision and validation.
2.3 Leaf Area Index and Above-Ground Biomass

The Leaf Area Index (LAI) consistently increased during the vegetative phase. This
phenomenon aligns with the observed data (Figure 1.9), where LAI values for the ACI 3321
variety showed a consistent increasing trend over time. After the model calibration, there was
a good agreement between observed and simulated LAI values. LAI increased until it reached
saturation towards the end of the vegetative period. The LAI was calculated from the average
five subsamples and input into the model. The maximum LAI value for the simulated was
5.82 m? m, while the observed value was 5.87 m?> m™ (Table 1.8). For the 2022 season, the
simulated LAI was 6.12 m*> m™, and the observed LAI was 6.31 m?> m (Table 1.8). Figure
1.9b shows that the d-stat between the observed and simulated value for LAI during 2022
season was 0.942, higher than 0.792. The high d-stat values for both years reflect the
consistency between the simulated and observed LAI values. The variation in d-stat values
between the two years (2021 and 2022) can be attributed to the impact of weather conditions.
In a study conducted in Argentina, Haro et al. (2008) found that the maximum LAI for
peanuts cultivated under water stress conditions was 3.93, while fully irrigated plots exhibited
an LAI of 6.2. The relationship between LAI and biomass is intrinsic; a higher LAI usually
corresponds to more significant biomass accumulation due to increased photosynthetic

activity.

The leaf weight during the 2021 season (Figure 1.11a) does not show good
agreement, as seems with a d-Stats of 0.609. However, the first and second collected point
shows a good agreement between simulated and observed value, suggesting that that the

lower d-stat might be the result of the low biomass value which could be due to a human
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error. In 2022 season (Figure 1.11b), the calibration had better results with a d-Stat of 0.816,
indicative of the model's capability for simulating leaf weight. For steam weight (Figure
1.12), 2021 had a d-Stat of 0.914, indicating a good agreement between simulated and
observed, and in 2022, the d-Stat was 0.809, which means the model can simulate this

variable well.

The simulated above-ground biomass values at maturity, determined by adding the
above ground biomass and the biomass of the pods, were higher than the observed values
(Table 1.8). In 2021, the data input into the model was an average of four meters in specific
locations. However, in 2022, the model incorporated individual values (each row) from each
subsample collected at each respective location. In 2021, the final observed value was 7459
kg ha'!, and the simulated was 11333 kg ha!, 34.2% lower than the observed value. An
RMSE value of 1937 kg ha! and a high d-Stat value of 0.938 were found, indicating an
agreement between the simulated and observed values for above-ground biomass (Figure
1.10a). Contrarily, for the 2022 season, the situation was reversed; the simulated value was
lower than the observed value, measuring 11467 kg ha' and 15488 kg ha™!, respectively. The

RMSE and d-stat were 2588 kg ha'! and 0.930.
2.4 Yield and Yield Components

After calibrating the cultivar coefficients and soil water balance, the final simulated
yield for the 2021 season was 6014 kg ha™!, higher than the observed average value of 4200
kg ha'! (Table 1.8). In the 2022 season, the simulated was 5773 kg ha™!, and the observed
value was 6658 kg ha™! (Table 1.9). The 2021 wet season might explain the main yield
differences between the observed and simulated values. DSSAT requires ideal conditions for
calibration; the study was conducted on-farm, and conditions could not be fully controlled.

During 2022 in contrast, less rainfall and well-drained soil contributed to better peanut
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growth and yield. The model simulated the 2022 peanut crop well, Figure 1.3b, resulted in a
d-Stat of 0.974, compared to 0.813 in 2021. These results align with the findings of Tojo
Soler et al., (2013) who demonstrated the CMS-CROPGRO-Peanut model's accuracy in

simulating yield reductions attributable to drought in Geogia.

3. Model Validation

Data from Field 1.3c in 2021 and Field 1.3b in 2022 were collected for model
validation. In the 2021 growing season, pod weight was collected several times during the
growing season. In the 2022 growing season, pod weight was collected at harvest (Figure
1.14). Pod weight in 2021 was well predicted, showing a good agreement between simulated
and observed pod weights for locations 20 and 49, with d-Stats of 0.951 and 0.943,

respectively (Figurel.15).

4. Seasonal Analysis — Evaluation of the impact of deficit irrigation on peanut

growth and yield

Following the model calibration and evaluation, the application of the seasonal
analysis tool aimed to evaluate three irrigation deficit treatments by examining their impact
on leaf area index, yield, the frequency of irrigation during the growth season, and the
volume of irrigation water (mm). Past studies have used seasonal analysis tools from DSSAT
to explore different management scenarios over multiple years (Sarkar and Kar, 2006; Arshad
Awan et al., 2021; Tekle, 2021; Singh et al., 2023), yet this tool has not been widely used to
analyze irrigation strategies on peanut crops. However, there are similar uses of the tool, for

example, in maize studies to predict irrigation and nitrogen application (Tekle, 2021).

Analyzing the peanut yield response to three distinct irrigation strategies over 30
years of weather data, growing on a light soil texture, shows significant variability (Figure

1.16). The impact of irrigation during dry years, categorized by low AWDR during the
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reproductive peanut growth period, indicates that rainfall alone did not meet the peanut's
water requirements. Results show that lower water depletion, achieved through more frequent
irrigation, leads to increased yield. For example, in 2019, the yield disparity between the
rainfed scenario (374 kg ha!) and depletion levels of 70%, 50%, and 30% were 2,704 kg ha™!,
3,808 kg ha!, and 4,691kg ha'!, respectively (Fig. 1.16). The lowest yield observed in the
70% depletion strategy can be attributed to less frequent irrigation, resulting in prolonged
periods of crop water stress. In contrast, the higher yield observed in the 30% depletion
strategy can be attributed to timely and more frequent irrigation. In this approach, the crop
received irrigation at regular intervals, ensuring that it did not experience prolonged periods

of water stress.

To better analyze the impact of irrigation on peanut yield, differences among
irrigation treatments during two distinct groups of peanut reproductive period years were
considered: dry years with AWDR values below 89 (one standard deviation from the historic
AWDR mean) and wet years with AWDR values exceeding 173 (Figure 1.6). Peanut yield
differences among the irrigation treatments under the dry and wet years was analyzed using
the Tukey-Kramer least square mean different test (Table 1.12). A broader comparison
between wet and dry years reveals a substantial impact on yield, with a significant P-value of
0.0005. During wet years, the Tukey test indicated that treatments with 30% and 50%
depletion did not result in significant yield differences, suggesting that a moderate reduction
in plant-available water does not significantly affected peanut crop yield. However, treatment
with 70% soil water depletion in wet years exhibited significantly lower yield compared to
other treatments, suggesting that excessive water depletion negatively affects crop yield.
Contrasting with wet years, significant yield differences among the three deficit irrigation
treatments were observed in dry years. Higher and significantly different peanut yield was

observed with 30% depletion than the other two depletion treatments. Peanut yield
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significantly decreased as the depletion level increased (Table 1.12). . The results demonstrate
a yield loss trend as soil water depletion increases (Figure 1.17). Wet years consistently show
higher yields across all soil water depletion levels compared to dry years. Within each AWDR
year category, there is a decline in yield as the level of soil water depletion increases,
emphasizing that a decrease in available soil water negatively impacts peanut yield.
Maximum productivity is achieved under the 30% soil water depletion due to reduced water
stress in this treatment, aligning with the findings of Rao et al. (1985) and highlighting the
critical role of irrigation in mitigating water stress and optimizing peanut yield under varying

weather conditions.

The number of irrigation events and irrigation amounts follow the same trend as yield
(Figures 1.18 and 1.19). The 70% depletion treatment has fewer irrigation events and lower
water application compared to other treatments, as expected. On the contrary, the 30%
depletion treatment has the most significant amount of water applied and the highest number
of irrigation events, aligning with the soil's behavior and the plant's water uptake dynamics.
The seasonal analysis emphasizes the influence of weather conditions on irrigation
application strategies for each specific year. It is noteworthy that in the 30% depletion
treatment, there were years with up to 27 irrigation events, which may not be practical.
Maintaining a soil water depletion rate of 50% provides an optimal balance between water
conservation and ensuring an adequate water supply for plant growth. This threshold
achieved high yields while limiting the maximum reported number of irrigation events to 17

in some years (Figure 1.18).

In wet years, the maximum leaf area index (LAI) (Table 1.13) exhibits no significant
difference between the 30% and 50% depletion treatments (group A). However, in dry years,
the 50% depletion treatment forms a distinct group (B), indicating a noticeable impact on
maximum LAI compared to the 30% depletion. Regardless of rainfall conditions, the 70%
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depletion consistently forms a separate group (C) with significantly lower maximum LAI,
emphasizing a pronounced reduction in leaf area with more substantial water depletion. This
difference is particularly pronounced in the driest years, underscoring maximum LAI's
sensitivity to severe water limitations. Overall, the results underscore maximum LAI's
responsiveness to variations in plant-available water, with depletion extent playing a crucial
role, especially during water-scarce periods. Throughout the study, it has been emphasized
that LAI is significantly influenced by water stress, impacting crop yield. Figure 1.20
illustrates the response of maximum LAI to three irrigation treatments, demonstrating how
this response varies in years with insufficient rainfall distribution compared to those with
abundant rainfall. In years with poor rainfall distribution (Figure 1.20a), maximum LAI
shows higher variability, with the 50% depletion treatment exhibiting less variability.
Conversely, during wet years (Figure 1.20b), the 50% depletion treatment displays less
variation than other treatments. As expected, the 30% depletion treatment exhibits the highest
LAI Haro et al. (2008) noted that soil water stress influences peanut LAI, linking water
availability to leaf growth. Effective irrigation management is highlighted as crucial for

optimal crop productivity and water resource conservation.

The results for irrigation water productivity (IWP), as shown in Table 1.14, indicate
that in dry years, IWP was highest at 30% depletion (22.3333, group A). However, as the
depletion increased to 50%, the IWP decreased to 13.6667 (group B) and further to 8.3333 at
70% depletion (group C). In wet years, a similar trend is observed, with the highest IWP at
30% depletion (14.6667, group B), followed by 50% depletion (7.8333, group C), and the
lowest IWP at 70% depletion (4.0000, group C). The box plots (Figure 1.21) further illustrate
the trend, indicating that as the depletion of plant-available water increases, there is a
consistent decline in IWP. This decline is likely due to reduced water availability for crops,

affecting their growth and productivity. In dry years, the impact of higher depletion levels is
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evident, with lower IWP values. In wet years, while the impact is less pronounced, the trend
still aligns with the general understanding that as plant-available water decreases, irrigation
water productivity is adversely affected. Figure 1.21 illustrates the irrigated water
productivity (IWP) differences among the soil water depletion treatments evaluated and how

the response changes over the years. In the AWDR dry years, when the depletion level

SUMMARY AND CONCLUSIONS

In conclusion, the analysis of weather conditions, model calibration, and the impact of
deficit irrigation on peanut growth and yield provides valuable insights about peanut crops in
Society Hill, AL. The weather conditions during the study periods varied, with 2021
experiencing exceptional precipitation levels during certain months, creating challenges such
as waterlogging and disease risk. The selection of dry and wet years based on the Available
Water Depletion Rate (AWDR) offered a nuanced understanding of the impact of water

availability on crucial growth processes.

The calibration of the CSM-CROPGRO-Peanut model involved modifying cultivar
coefficients, soil water content, LAI, and above-ground biomass. The model demonstrated its
capability to simulate variables, although discrepancies between simulated and observed

values were present, attributed to the complexity of genetics and environmental factors.

The seasonal analysis, evaluating three irrigation deficit treatments over 30 years,
revealed significant variability in peanut yield, emphasizing the critical role of irrigation in
mitigating water stress. The impact of irrigation strategies on yield was particularly
pronounced during dry years, where lower water depletion, achieved through more frequent
irrigation, led to increased yields. The analysis of peanut yield response to irrigation during

wet and dry years highlighted the importance of adapting irrigation strategies based on
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weather conditions. The influence of weather and irrigation management strategies on peanut
yield evaluated for the conditions of peanut fields planted in Society Hill Alabama was
evident, with a 50% soil water depletion rate identified as optimal strategy during wet years
and 30% depletion in dry years. The identification of those strategies is important for

balancing water conservation and ensuring an adequate water supply for plant growth.

In summary, this research contributes valuable insights into the intricate relationship
between weather conditions, model dynamics, and irrigation strategies in peanut crops. The
findings underscore the importance of considering both genetic and environmental factors
when calibrating models and designing irrigation strategies for optimal crop productivity.
This holistic approach is crucial for addressing the challenges posed by variable weather

conditions and achieving sustainable peanut crops practices.
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Table 0.1 Location and crop management practices of peanut fields included in this study.

Location

Field sampling
locations per year

Planting date

Seeding rate, kg ha’!

Row width, m

Area planted, ha

Irrigation amount,
mm

Irrigation events

Harvest

Field 2(a) Field 2(b) Field 3(c) Field 3(b)
Calibration Calibration Validation Validation
2021 2022 2021 2022
32°25°18” N 32°25°08” N 32°29°59” N 32°25°08” N
85°24°56” W 85°26°10” W 85°26°24” W 85°26°10” W
4 1 3 5
May 21st May 19th May 19th
and 22nd and 20th May 26th and 20th
168.13 145.71 168.13 145.71
0.91 0.91 0.91 0.91
25 26 8.5 26
54.61 none 15.24 none

4 none 1 none

October 13th

October 1st

October 10th

October 1st
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Fig\ure 01 Sampling locations ;1urir/1g the 2021 growing season showing the different
management zones.
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Figure 0.2 Fields and locations where peanut biomass and yield were collected for model
calibration locations during the (a) 2021 growing season and (b) 2022 growing season.
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Figure 0.3 Sampling locations within two peanut fields used for model validation during the
2021 (b) and (c) 2022 growing seasons.
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Table 0.2 Monthly average weather conditions during the study period (2021-2022).

2021

May

June

July
August
September
October

2022

May

June

July
August
September
October

Minimum Maximum Solar Radiation ~ Accumulative
Temperature Temperature (MJm?2day?)  Rainfall (mm day™)
(C) (C)

7 34 21 80

16 34 17 138

18 35 17 154

19 35 17 165

9 32 15 62

5 30 12 188
Minimum Maximum Solar Accumulative
Temperature Temperature Radiation Rainfall

10 33 20 110

18 39 20 41

20 36 19 151

20 35 17 139

9 36 17 99

-1 30 15 57
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Table 0.3 Simulated and observed pod weight and statistics of all locations collected throughout

the 2021 and 2022 growing seasons.

Field/Year
Calibration

1.2a- 2021

1.2b - 2022
Evaluation
1.3c-2021

1.3b - 2022

Location Simula?ed Observ_ed .
Number Pod Weight  Pod Weight d-stat? RMSE
(kg ha't) (kg hal)
3 6022 4200 0.813 1620
6 4092 3635 0.923 1046
7 4072 3846 0.936 951
1.1 5256 6658 0.947 1005
20 6306 5645 0.951 471
49 5601 6022 0.943 555
71 5443 4391 0.717 1081
1 5187 5048 - 140
2 5969 6395 - 430
4 5031 4578 - 454
7 5019 5678 - 698
19 5575 5479 - 96
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Table 0.4 Soil texture characteristics of the locations within Field 2(a) used for crop simulation
modeling analyses.

Location 3 Location 6 Location 7
Depth - - -

em cly st O oy s SO gy s SOl
(%) (%) Texture %) (%) Texture %) (%) Texture
Class Class Class
Loamy Loamy Loamy
5 62 122 San] 42 142 o 62 14 o
15 103 122  Sandy 62 162 S0aMy g, 1gg  Sandy
Loam Sand Loam
23 122 102 Sy o5 qgp  Sady 45 4 Sandy
Loam Loam Loam
30 183 102  Sady 505 qgp  Sandy a5 o Sandy
Loam Clay Loam Loam

46 323 101 oSadyClay g4, g6, Sandy ., 44 SandyClay
Loam Clay Loam Loam

61 343 g1 oandyClay g0, 46, Sandy  ,p4 154 SandyClay
Loam Clay Loam Loam

76 3428 gog SadClay o590 14, SNy )59 154 SandyClay
Loam Clay Loam Loam

91 363 81 SandyClay 382 122 S 55 43 SandyClay
Clay Loam

107 363 8 SandyClay 402 142 S8y 555 45, SandyClay
Clay Loam

122 423 61 SandyClay 442 143  Clay 303 12.3 Sarl‘_dg’arf]'ay
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Table 0.5 Soil texture characteristics from Field 2(b) locations used for model validation.

Location 2022 Field 2b

Depth (cm)
Clay (%) Silt (%) Soil Texture Class
23 10.12 16.6 Sandy Loam
30 30.12 14.46 Sandy Clay Loam
68 31.08 13.38 Sandy Clay Loam
91 35.08 14.34 Sandy Clay Loam
122 37.08 13.24 Sandy Clay
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Figure 0.4 Acclima TDR-315H sensor used for collection of real-time soil moisture data.
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Table 0.6 Abundant and Well-Distributed Rainfall (AWDR) index values for 32 years of rainfall
data (Society Hill, Alabama).

AWDR Index value
Year . . . .
Vegetative Period Reproductive Period
2022 99 197
2021 66 110
2020 174 118
2019 118 137
2018 385 128
2017 250 202
2016 68 169
2015 197 118
2014 78 146
2013 327 138
2012 124 86
2011 70 80
2010 84 56
2009 143 95
2008 62 181
2007 103 49
2006 25 129
2005 182 194
2004 110 180
2003 275 137
2002 225 115
2001 188 117
2000 61 137
1999 247 50
1998 110 65
1997 220 76
1996 101 192
1995 78 96
1994 344 107
1993 53 152
1992 116 182
1991 217 86
1990 68 33

Vegetative period: Mid-May to mid-July.
Reproductive period: Mid-July to beginning of September.
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Figure 0.5 Monthly precipitation differences in 2021 and 2022 crop growing seasons concerning the historical monthly average (1990-2020).
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Figure 0.6 Historical August precipitation at Lazenby 1.2a field (Society Hill, Alabama).
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Table 0.7 Cultivar coefficients of the peanut variety ACI 3321 in the CROPGRO-Peanut model — DSSAT-CSM v4.8.

Cultivar coefficients Coefficient label Unit Initial Values Final Values
Critical Short-Day Length (for short-day plants) CSDL hour 11.84 11.84
Slop.e.response of development to photoperiod with time PPSEN Uhour 0 0
(positive for short-day plants)
(T};T)e between plant emergence and flower appearance EM.FL photothermal days 212 5.8
Time between first flower and first pod (R3) FL-SH photothermal days 9.2 7.2
Time between first flower and first seed (RS) FL-SD photothermal days 18.8 20.5
;F}il%e between first seed (R5) and physiological maturity SD-PM photothermal days 773 7359
Time between first flower (R1) and end of leaf expansion FL-LF photothermal days 85 85
Maximum leaf photos