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ABSTRACT 

In recent years, there has been a significant surge in the adoption of conservation 

practices in agriculture, driven by a collective understanding of the urgent need to minimize 

risks, enhance profitability, and protect the environment. Practices such as cover crops, crop 

rotation, reduced tillage, and precision agriculture mitigate the risks associated with 

unpredictable weather patterns and climate change. By enhancing soil health and structure, 

conservation techniques mitigate the impact of extreme weather events, such as droughts and 

floods, making farms more resilient. Furthermore, these practices boost profitability by 

optimizing the use of resources. Through efficient water management and reduced need for 

chemical inputs, farmers can cut costs while maintaining or even increasing yields. 

Additionally, conservation methods protect the environment by reducing soil erosion, 

preserving biodiversity, and mitigating greenhouse gas emissions. 

Due to unpredictable weather patterns, such as the increased frequency of flash 

droughts and extreme weather events, climate-related crop production challenges faced by 

Alabama necessitate a deep understanding of peanut growth and water requirements. 

Evaluating irrigation management strategies is crucial to comprehend the impact of irrigation 

on peanut yield and enhance irrigation water use efficiency. Simultaneously, sustainable 

agriculture practices are essential for environmental preservation and food security. This 

study merges these critical aspects, focusing on peanut crops and increasing adoption of 

sustainable agriculture in Alabama, USA. 

The first chapter focuses on irrigation scheduling in peanut cultivation. The study 

aimed to evaluate the impact of various soil water deficit levels on peanut growth and yield 

using seasonal analyses with 30 years of weather data. The peanut growth model CROPGRO-

peanut in the Decision Support System for Agrotechnology Transfer (DSSAT) software was 
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calibrated and validated to achieve this objective. The calibration used parameters such as 

leaf area index, leaf and stem weight, total biomass, pod weight, pod number, and volumetric 

water content. The study used 30 years of weather data and on-farm experimental data 

collected in 2021 and 2022 from Lee County, AL. Model validation affirmed its reliability in 

predicting crop output. Abundant and well-distributed rainfall parameters were employed to 

categorize dry and wet years, and despite complexities, it simulated various variables, 

demonstrating its capability. The study highlighted the relationship between weather 

conditions and irrigation management. The results showed that yield losses increase as the 

soil water deficit increases due to the lack of irrigation frequency.  

In parallel, the second chapter explored the use of sustainability indicators inside the 

Fieldprint Calculator developed by the Field to Market consortium to evaluate the impact of 

various crop management strategies towards sustainability. The study's objectives involved 

understanding the current applications and benefits of the indicators and identifying 

opportunities and barriers to their adoption, thereby contributing valuable insights to 

sustainable agriculture knowledge. The study engaged five Central Alabama farmers in 

comparative analyses to assess the impact of crop management in diverse metrics such as soil 

carbon, soil conservation, water quality, energy use, and greenhouse gas emissions. These 

analyses revealed variations in water quality and energy consumption and underscored the 

importance of adopting strategies to strengthen nutrient management and irrigation efficiency. 

Conservation practices, reduced tillage, and cover cropping were crucial for soil carbon 

preservation as indicated by the soil carbon indicator. These results, indicators outputs and 

comparison of indicator values resulted from farmers management practices, were presented 

at field days with farmers, consultants, industry personnel, and governmental agencies 

employees. The challenges the team had engaging farmers with these topics, the questions 

participants had regarding the indicators, the potential for using the indicators as conservation 
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practices benchmarking tools suggested the need for more of this type of  educational 

programs and active farmer participation. Overcoming resistance to change and addressing 

social barriers were recognized as essential steps toward fostering a sustainable farming 

culture. 

This research underscored the importance of the right time of irrigation application 

and the use of irrigation scheduling in peanut crops, emphasizing the need for tailored 

strategies to balance water conservation and yield enhancement. Additionally, the study 

highlights the challenges and opportunities in promoting sustainable agricultural practices, 

such as integrating sustainability indicators into extension, and using tools like Fieldprint 

Calculator to track and measure field performance against state and national benchmarks. 

Collaboration, education, and community involvement emerged as pivotal components for 

fostering a culture of sustainable farming, ensuring the long-term viability of agriculture in 

Alabama. 
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I. LITERATURE REVIEW 

1. Peanut Crop Physiology and Irrigation Requirements 

Peanut (Arachis hypogaea L.) is an annual and essential economic oilseed crop in the 

tropics and subtropical regions. Peanuts carry around 43-55% edible oil, 25-28% protein, and 

2.5% minerals (Abou Kheira, 2009). Peanut production in the United States has led to four 

market classes, which generally align with specific subgroups and varieties: Runner, Virginia, 

Spanish, and Valencia (Nthupisang, 2018). Runner varieties contributes to approximately 

80% of the country's total peanut production and is predominantly cultivated in states like 

Georgia, Alabama, Florida, and Mississippi. In 2021, Alabama peanut growers produced 

622,2 million pounds of peanut, being the second-largest producer in the country, with 

Georgia taking the first place (USDA-NASS, 2022). Generally, peanuts in the USA are grown 

under rain-fed conditions, with only a tiny acreage being irrigated. Although the Southeastern 

USA receives substantial annual rainfall, averaging between 1000 mm to 1270 mm, irregular 

distribution and unpredictable patterns can negatively affect peanut yield. Studies have 

reported that insufficient soil moisture can significantly decrease yield (Wright et al., 1991; 

Abou Kheira, 2009) and the water use efficiency of peanut plants (Jyostna Devi et al., 2009). 

To reach optimal growth, peanuts require approximately 559 millimeters of water from 

planting to harvest (Garcia et al., 2007). Drought stress is a significant abiotic factor leading 

to decreased agricultural productivity and food security on a global scale (Kambiranda et al., 

2011). The lack of water interferes with plant development, specifically photosynthesis, 

nutrient uptake, and grain and yield (Tardieu and Tuberosa, 2010). Moreover, drought 

conditions are recognized to make peanuts more susceptible to aflatoxin contamination, as 

evidenced by studies conducted by Blankenship et al. (1989), making them unsuitable for 

animal or human consumption. Therefore, irrigation strategies might be adopted to decrease 

the impact of water stress on peanut crops. 



14 

 

2. Peanut Crop Simulation Modeling and Deficit Irrigation Strategies 

Understanding peanut physiology and irrigation requirements is crucial for successful 

peanut farming. Computer simulation models, like the Decision Support System for 

Agrotechnology Transfer (DSSAT) (Hoogenboom et al., 2019), are valuable tools for the 

evaluation of crop yield response to irrigation scheduling and other  crop management 

strategies. These models combine information about the soil, plants, and the atmosphere to 

simulate crop growth and development under various conditions. DSSAT is useful in 

understanding the crop productivity impact of drought conditions (Tojo Soler et al., 2013), to 

simulate the potential impacts of climate change (Mubeen et al., 2020), fertilizer management 

(Jiang et al., 2019), pest and disease management, crop rotations and others. 

In the DSSAT models, calculations of soil water balance are done adding up irrigation 

and rainfall and subtracting surface runoff, drainage, plant transpiration, and soil evaporation. 

The rainfall and irrigation are provided as inputs. For soil drainage, a method called the 

tipping bucket approach (Ritchie, 1998) is used. This method imagines the soil's water 

movement like a series of connected buckets, considering parameters such as the drained 

upper limit, lower limit, and saturated water content for each soil horizon. This method 

allows water to move downward in the soil layers. The amount of water moving down 

depends on the soil's properties. The actual use of water by plants (called evapotranspiration) 

depends on the demand for water (ETo) and the plant's ability to take it up. The DSSAT 

models use different methods to calculate this, considering factors like weather conditions 

and plant characteristics. If there is not enough water in the soil, plants cannot use it as much, 

affecting their growth. This information helps scientists and farmers understand how much 

water plants need and how different factors impact their growth. The CSM-CROPGRO-

Peanut model can simulate the growth and development of peanuts under various soil 

moisture conditions (Singh et al., 1994). Dangthaisong et al. (2006) reported that the CSM-
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CROPGRO-Peanut model could determine appropriate management strategies for peanut 

crops under drought stress, including irrigation requirements.  

When rainfall is low and not well distributed, providing additional irrigation becomes 

crucial for achieving optimal yields. In DSSAT, soil-water flow and root water uptake 

simulation occur for each soil layer. The soil profile is treated as a series of horizontal layers, 

where each layer may be different in terms of water-holding capacity, moisture content, and 

root length density (Hoogenboom et al., 2019). According to the study by Tojo Soler et al. 

(2013), who tested the impact of various irrigation deficit scenarios, the treatment with 90% 

of the irrigation requirement (90% irrigation threshold - IT), which means that irrigation 

trigged after 10% of soil water depleted, resulted in higher yields. In contrast, the 30% and 

40% IT treatments led to yield reductions of 92% and 45%, respectively, compared to the 

90% IT, frequent irrigation treatment. As drought stress represented by the various deficit 

irrigation treatments intensified, there was a corresponding decrease in crop yield. The 

incorporation of computer simulation models, like those provided by DSSAT, shows great 

potential in evaluating irrigation scheduling decisions (Hoogenboom et al., 2019), 

particularly during drought stress, consequently contributing to achieving optimal yields in 

peanut crops. However, before employing the software to aid in making irrigation scheduling 

decisions, it is essential to verify its ability to predict crop response to various levels of 

drought stress accurately.  

3. Irrigation and Methods of Irrigation 

Improving irrigation management requires real time estimation of crop water use and 

soil water status. Real time assessment of plant available water is useful to determine the 

amount of irrigation required to reach economic yield potential. This parameter is calculated 

by finding the difference between two fundamental points in the soil's moisture spectrum,: 
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field capacity (FC) and permanent wilting point (PWP) (Souza et al., 2018). FC represents 

the soil's ideal moisture level after irrigation or rainfall, where excess water has drained away, 

and the soil is holding as much water as it can (Evett et al., 2019). FC can be determined by 

measuring the water content of a soil core after a pressure of -33 kPa is applied after 

saturating the soil. PWP is the minimum amount of moisture in the soil at which plants can 

no longer extract water effectively. This parameter is often determined by measuring the 

water content of a soil core under a pressure of -1.5 MPa after saturating the soil. Soils at this 

point are extremely dry, and plants begin to wilt, adversely affecting their growth and health. 

The plant-available water capacity (AWC) is the range between FC and PWP (de Jong van 

Lier, 2017). This information and the daily crop water use helps determining irrigation 

scheduling which ultimately maximizes plant growth and water usage efficiency. 

Regarding irrigation systems, three common types are center pivots, drip irrigation, 

and surface irrigation. Each system provides benefits and is employed based on specific 

agricultural requirements and available resources. Proper irrigation is crucial in mitigating the 

risk of yield losses caused by water stress. However, it is essential to avoid over- and under-

irrigation, as these could adversely affect crops and the environment. Various management 

practices can be implemented to enhance water use efficiency, such as incorporating cover 

crops and conservation tillage, as Hatfield et al. (2001) suggested, along with adopting 

improved irrigation management practices. 

3.1 Irrigation scheduling 

A practical approach for enhancing irrigation practices is irrigation scheduling, which 

involves determining the optimal timing and rate of irrigation (Liang et al., 2016). This 

method offers numerous benefits, including reducing crop water stress, energy expenses, and 

labor inputs. Furthermore, it aids in the mitigation of fertilizer expenses and the 
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environmental consequences arising from leaching and runoff (Evans and Sadler, 2008). 

Various irrigation scheduling methods are available, each utilizing distinct criteria to 

determine the appropriate irrigation strategy to trigger irrigation. 

3.1.1 Evapotranspiration 

The major component of water balance is evapotranspiration (ET), and the ET 

irrigation scheduling approach has proven to be highly effective in optimizing crop growth. 

ET is the sum of water evaporated from the soil surface and water lost through plant 

transpiration (Allen et al., 1998). This method estimates soil water levels by carefully 

tracking irrigation, precipitation, crop evapotranspiration, runoff, and deep percolation water 

in the root zone. Due to its demand for various type of data, many farmers tend to avoid using 

this method. The estimation of crop evapotranspiration (ETo) is commonly done using the 

Penman-Monteith equation. This equation considers the solar radiation, air temperature, 

humidity, and wind speed factors. These parameters are then multiplied by a crop coefficient 

(Kc), which represent the water requirements of a crop (the ratio of actual crop 

evapotranspiration to reference evapotranspiration). Allen et al. (1998) provided insights into 

peanut Kc based on climate, cropping season, and crop height. However, they did not 

consider cultivar specifications. Nonetheless, Bandyopadhyay et al. (2005) discovered that 

the highest average peanut Kc recorded in a humid tropical region was 1.19. This peak value 

was observed approximately nine weeks after planting, compared to the reference grass 

evapotranspiration (ETo). The effective utilization of evapotranspiration for irrigation 

scheduling depends on several factors. Among these, weather conditions play a crucial role, 

requiring the installation of weather stations as close to the field as possible. Furthermore, the 

crop coefficient varies across diverse regions and crop varieties. These disparities have the 

potential to influence the recommended irrigation recommendation significantly.  
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3.1.2 Soil sensor-based irrigation 

Soil sensors represent an additional technological tool with the potential to enhance 

irrigation choices. These sensors offer the unique benefit of promptly measuring soil moisture 

information and providing real-time readings. Furthermore, some sensor companies enable 

remote access to the collected data. Soil moisture sensors can be divided into direct and 

indirect monitoring (Yoder et al., 1998). Direct methods involve collection of soil samples to 

measure gravimetric water content and therefore are very time-consuming. In contrast, 

indirect methods measure soil water content using sensors that most times use a principle 

based on soil physics. The most common sensors are tensiometers, which measure the soil 

matric potential (soil water tension), and the time domain reflectometry (TDR) soil moisture 

sensors, such as the Acclima sensor (ww.acclima.com). Sensors, like TDR, send an 

electromagnetic wave through the soil using three rods from a transmission line. The 

increased frequency results in a reaction that relies less on soil characteristics such as texture, 

salinity, or temperature when compared to alternative methods (Evett and Heng, 2008). 

3.1.3 Checkbook 

The irrigation checkbook method, called water balance accounting, operates by 

computing the soil water balance deficit. This process involves tracking the water entering 

the soil through rainfall and irrigation and exiting the soil through evapotranspiration and 

percolation (Lundstrom and Stegman, 1988). To implement this method effectively, it is 

crucial to evaluate the current weather conditions, soil type, and crop status. Essentially, the 

net irrigation requirement indicates the quantity of water necessary to restore the soil water 

content in the root zone to its field capacity. This value, representing the difference between 

the current soil water level and the field capacity, indicates the extent of the soil water deficit. 

However, the checkbook method's primary drawback is its inadequate performance when 
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confronted with substantial within-field variability, leading to over-irrigation (Vellidis et al., 

2016). Nonetheless, checkbook methods provide irrigators with an economical approach to 

meeting crop water requirements, thus averting detrimental impacts on crop growth and yield. 

This is accomplished without requiring expensive or specialized machinery (Shortridge et al., 

2018). 

3.1.4 Deficit Irrigation Strategy  

Deficit irrigation (DI) is a water-saving irrigation strategy used in many parts of the 

world (Fernández et al., 2013) in which irrigation water is applied at lower amounts than the 

full crop water requirement (i.e., ET), thereby increasing water use efficiency (WUE). Deficit 

irrigation has been extensively examined in various arid and semi-arid regions to enhance and 

maximize yield (English, 1990; Xiying et al., 1999). The suggested irrigation level for DI 

ranges from 60% to 100% of ET (Sidhu et al., 2021). This method enhances water 

productivity (WP) by increasing crop ET proportionally with small irrigation amounts until 

maximum yield is achieved. During non-critical growth stages, irrigation is minimized or left 

out, relying on rainfall to meet the minimum water requirements. For instance, in the case of 

peanuts, the critical growth phases are flowering and pod-filling. Therefore, implementing 

this technique requires understanding how different crop stages respond to water deficits. In 

regions with limited water availability, achieving higher water efficiency can be more 

economically profitable for the farmer than maximizing yield (Mitchell-McCallister et al., 

2021).  

Essentially, deficit irrigation aims to stabilize crop yield and achieve optimal water 

efficiency (Zhang and Oweis, 1999). DI can also reduce water by irrigating only the plant 

root zone and increasing the time between irrigations. Some experiments conducted in India 

revealed that providing two supplemental irrigations led to WP values of 0.55, 0.22, 0.23, 
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0.41, and 2.27 kg m−3 for corn, peanut, sunflower, wheat, and potato, respectively. Increasing 

the irrigation frequency to three times enhanced WP by 40%, 14%, 22%, 38%, and 7% for 

these crops, respectively (Kar et al., 2004). This technique is widely used in various crops, 

such as wheat (Ali et al., 2007; Ahmadian et al., 2021), corn (Igbadun et al., 2008; Zou et al., 

2021), cotton (Cheng et al., 2021), and peanut (Rathore et al., 2021; Zhang et al., 2021) 

aiming to strike a balance between water conservation and satisfactory yields. 

4. Sustainability in Agriculture 

Sustainable agriculture refers to a comprehensive approach involving specific 

practices. Its long-term goals include meeting human food and fiber needs, improving 

environmental conditions, using non-renewable and on-farm resources efficiently, 

incorporating natural biological cycles, maintaining economic viability for farms, and 

enhancing the overall well-being of farmers and society (Congress, 1990). Some of the 

practices that encompasses sustainable agriculture are crop rotation, use of cover crops, 

integrated pest management, conservation tillage and efficient irrigation. Crop rotation, where 

farmers rotate different crops in the same field over several seasons can prevent soil erosion, 

maintains soil fertility, and reduces the risk of pests and diseases, reducing the need for 

chemical inputs. Cover crops grown during off-seasons prevent soil erosion, improve soil 

quality, and improve nutrient cycling. Integrated pest management involves combining 

biological, cultural, mechanical, and chemical control methods to manage pests effectively 

while minimizing environmental impact. Conservation tillage involves minimal disturbance 

of the soil, preserving soil structure and reducing erosion. Efficient irrigation methods reduce 

water wastage, conserves groundwater resources, and prevent soil salinity. 

Sustainability in agriculture has gained importance as it holds the potential to address 

both food security and climate change concerns effectively. To promote sustainable 
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agricultural practices, farmers need approaches that are not only economically viable but also 

environmentally and socially responsible (Robertson, 2015). However, a significant barrier 

for farmers in adopting sustainable practices revolves around reducing inputs without 

compromising agricultural production and economic profitability (Foley et al., 2011). The 

yield and profitability of an agriculture operation are influenced by multiple factors, 

including crop type, climate, soil conditions, management practices, and more, which affect 

the yield and profitability of an agricultural operation. Pursuing sustainable agriculture is 

pivotal for addressing pressing global issues. However, its successful implementation hinges 

on balancing economic viability, environmental responsibility, and social sustainability in 

diverse agricultural conditions. 

5. Increasing Farmer's Awareness of the Importance of Sustainable Agriculture 

Using Indicators 

For numerous years and across various global regions, research has investigated the 

circumstances in which farmers choose to implement sustainable farming practices. Usually, 

farmers’ decision-making processes linked to agriculture practices are primarily profitability 

driven. Therefore, these decisions differ from their everyday choices and are generally driven 

by economic factors (Rodriguez et al., 2008). Sustainable farming practices have long-lasting 

effects and can involve substantial investments. Boosting earnings, securing higher price 

premiums, and reducing expenses are frequently  cited motivations, as acquiring licenses or 

gaining advantages in marketing and branding are common objectives (Trujillo-Barrera et al., 

2016). Characteristics of the farm itself also influence the adoption of sustainable practices in 

farming. Farms with more significant income and acreage, indicating larger size, may have an 

advantage in adopting sustainable practices because they possess more operating capital and 

have improved access to credit (Shiferaw et al., 2009; Kemp et al., 2014). Besides 
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demographic influence in adopting conservation practices, age, education, experience, 

gender, and household income influence adoption (Hoek et al., 2021). 

Farmers may perceive the adoption of new practices as risky. Consequently, the 

dissemination of information plays a crucial role in boosting adoption rates and reducing 

associated risks. Additional research has indicated that knowledge sharing, mainly involving 

collaborative efforts with research and outreach specialists, enhances participation and 

improves the effectiveness of implemented measures (Fujisaka, 1994; Gielen et al., 2003; 

Kemp et al., 2014). Observability and trialability are crucial factors that decrease the 

perceived risk of adopting new agricultural practices. When the benefits are easily 

observable, and farmers can experiment with new practices on a small scale, they are more 

likely to adopt them, as it becomes a less daunting and lower-risk proposition (Serebrennikov 

et al., 2020). 

In recent years, multi-stakeholder initiatives (MSIs) have gained prominence as a 

prominent method of private governance aimed at promoting sustainability within the food 

system. Traditionally, many MSIs have created specific standards against which farmers can 

achieve certification. However, some sustainability-focused MSIs have recently shifted their 

approach toward using metrics, as Freidberg (2017) and Hatanaka et al. (2022) highlighted. 

The critical distinction between metrics and standards lies in their function. Metrics do not 

prescribe specific requirements or benchmarks that farmers must meet. Instead, they serve as 

tools that farmers can use to measure and evaluate their performance. The data from these 

metrics enables farmers to assess their practices more effectively and make informed 

decisions to improve their sustainability efforts (de Olde et al., 2016). 

The study by Hoffelmeyer et al. (2022) investigates farmers' motivations, perceived 

benefits, and power dynamics within Field to Market's metrics program using a combination 
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of surveys and interviews. The study's findings indicate that the influence of sustainability 

metrics on farmers' practices and profitability exhibits significant variation. While 

sustainability metrics programs provide valuable learning opportunities and benchmarks for 

farmers, it becomes evident that more than economic benefits are needed to serve as a 

compelling factor to sustain their participation. Consequently, future program design and 

implementation must consider farmers' nuanced motivations and concerns to ensure their 

success and the equitable distribution of benefits. 

According to (Strube et al., 2021) farmers care about conserving the land and passing 

on to future generations. However, he indicated in his study that companies and sustainability 

groups are asking farmers for detailed reports, making farming more complicated. Despite 

this, some suppliers are proactively adopting sustainability metrics, even before being asked. 

They are doing this to stay ahead, expecting future demand for this data. Suppliers are also 

trying to find effective ways to tell others, like consumers, about their sustainability efforts. 

However, farmers feel that their sustainability efforts are often misunderstood by people not 

involved in farming. 

Therefore, the need for improved communication of sustainability information to 

consumers has emerged as a critical concern (Robertson, 2015). However, a significant 

barrier for farmers in adopting sustainable practices revolves around reducing inputs without 

compromising agricultural production and economic profitability (Foley et al., 2011). The 

outcome of this attempt varies substantially, as multiple factors, including crop type, climate, 

soil conditions, management practices, and more, influence the yield and profitability of an 

agricultural operation. Consequently, when comparing sustainable practices with 

conventional techniques, one can observe wide variations in yield outcomes (Marcillo and 

Miguez, 2017; Laborde et al., 2020; Allam et al., 2021). In essence, pursuing sustainable 

agriculture is pivotal for addressing pressing global issues. Still, its successful 
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implementation hinges on balancing economic viability, environmental responsibility, and 

social sustainability in diverse agricultural conditions. 

Although government programs and policies play a crucial role in enhancing the 

sustainability of the agriculture sector, a significant portion of the initiatives to increase 

agriculture sustainability are happening independently of governmental involvement (Ponte, 

2014). Consequently, diverse private and multi-stakeholder initiatives have emerged, 

covering every aspect of agriculture globally. These initiatives can serve either as assessment 

tools or as standards. Assessment initiatives involve the creation of empowering farmers to 

measure and evaluate their performance in terms of sustainability (Marchand et al., 2014). 

Standards initiatives also establish specific requirements that farmers must meet, often 

involving third-party certification processes (Hatanaka et al., 2005). Both approaches use 

indicators, which measure variables to evaluate the sustainability performance (FAO, 2012). 

6. Use of Sustainability Indicators and Tools 

6.1 Fieldprint Calculator 

Measuring sustainability in agriculture employs various methods, including utilizing 

sustainability indicators, models, and input requirements (Denef et al., 2012). Each approach 

uses distinct tools, such as calculators, to evaluate sustainability. For instance, consider the 

Field to Market group, which focuses on commodity crop agriculture within the United States 

- established in 2006 through the collaboration of various stakeholders in the agriculture and 

environmental sectors. Today, this consortium includes prominent names such as ADM, 

Bayer, Cargill, Coca-Cola, Corteva, John Deere, universities, extension services, and others. 

The primary mission of Field to Market revolves around creating and implementing a 

standardized framework for quantifying sustainability in agriculture. This framework is 

intended for farmers and supply chain use to enhance comprehension of sustainable practices 
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and enable continuous improvement assessments. The core idea behind this is that measuring 

and evaluating sustainability encourages farmers to continually improve their sustainable 

practices by identifying areas that require improvement.  

One of Field to Market's notable contributions is the development of the Fieldprint 

Calculator, which was utilized in the study. This tool is designed to measure and benchmark 

the sustainability performance of commodity crops based on eight key indicators. These 

indicators include biodiversity, energy use, greenhouse gas emissions (GHG), irrigated water 

use, land use, soil carbon, soil conservation, and water quality (Field to Market, 2023).  

For instance, biodiversity plays a role in supporting species and ecosystem diversity 

through habitat conservation and enhancement. Energy use and greenhouse gases are 

evaluated both directly (i.e.,based on fuel usage for irrigation and tillage) and indirectly (i.e., 

based on energy consumed in crop production, manufacturing, transportation, and emission 

reductions). Water use efficiency and conservation are based on irrigation water use, while 

land use efficiency and soil conservation aim to increase land productivity by examining soil 

carbon sequestration and reduced soil erosion. Additionally, water quality improvements 

target the reduction of sediment, nutrient, and pesticide loss. 

The Fieldprint Calculator is a free online resource that enables growers to document 

their management systems and understand their impact on local, state, and national 

sustainability benchmarks based on indicator metrics. The calculator automatically prompts 

users to input field coordinates to link soil and topography data to their location. Furthermore, 

it requires data related to crop rotation, tillage systems, irrigation methods, chemical inputs, 

product transportation, harvest practices, and conservation efforts. 

6.2 Cool Farm Tool 
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Similarly, Cool Farm Tool (CFT) is a suite of online tools developed by the Cool 

Farm Alliance. It allows farmers to measure and reduce their agricultural practices' carbon 

footprint and environmental impact. Created in the United Kingdom, initially by Hillier et al. 

(2011) and updated in 2016, the CFT has gained significant recognition and adoption within 

the agricultural community. 

The CFT utilizes a tiered approach to estimate greenhouse gas emissions in 

agriculture. The CFT offers a user-friendly interface that allows farmers and supply chain 

actors to input relevant data quickly. This data may include climate, soil parameters, pH, 

applications of inputs, fuel type, yield, and drainage (Haverkort and Hillier, 2011). Using the 

CFT, users can assess the environmental sustainability of their farming practices. It provides 

insights into how different decisions, such as crop rotation or fertilizer use changes, can 

impact greenhouse gas emissions (Cool Farm Alliance, 2021). 

In summary, the Cool Farm Tool (CFT) is a valuable resource for farmers and supply 

chain actors to estimate and assess greenhouse gas emissions associated with agricultural 

activities. It offers a tiered approach, making it adaptable to different data availability and 

complexity levels. Through the CFT, users can gain valuable insights into the sustainability of 

their farming practices and make informed decisions to reduce their environmental impact. 

6.3 Indigo Ag. 

Indigo Ag is a company that created an integrated business platform that allows 

farmers and others in the agricultural industry to embrace and benefit from sustainable 

opportunities. The company actively contributes to sustainability efforts through its 

innovative sustainability calculator, which applies scientific models and data analysis to 

assess the environmental impact of farming practices (Indigo Ag., 2022). This calculator 

employs data science, agronomy expertise, and life cycle assessment techniques to evaluate 
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how agricultural practices influence critical sustainability metrics such as carbon footprint, 

water use efficiency, and soil health (Indigo Ag., 2022). 

Some agrifood companies, like Indigo, have introduced microbial seed treatments 

designed to function as plant growth promoters. These treatments claim to reduce the need 

for chemical products in agriculture, potentially leading to decreased greenhouse gas (GHG) 

emissions, particularly in producing carbon dioxide and nitrous oxide associated with 

fertilizer manufacturing. Moreover, these companies actively advocate specific sustainable 

farming practices to their clientele, including cover crops and no-till farming, potentially 

enhancing soil carbon sequestration. 

To further promote microbial products and sustainable agricultural techniques, Indigo 

has initiated mitigation programs that aim to amplify GHG reduction efforts with active 

farmer involvement (Indigo Ag., 2022). These programs offer farmers interested in 

suppressing GHG emissions an opportunity to participate. However, in exchange for their 

involvement, participating farmers must commit to adhering to specific crop management 

practices, using designated products, and providing comprehensive data regarding their 

agricultural activities, inputs, and land use history. As an incentive, Indigo Ag promises to 

share 75% of the profits resulting from GHG reduction efforts with participating farmers 

(Indigo Ag., 2022). 

Notably, these corporate mitigation programs aim to promote GHG emission 

reductions in agriculture and create new revenue streams tied to the sale of carbon credits and 

low-carbon products. Mitigation programs follow established carbon accounting standards to 

ensure their GHG reduction achievements can be certified. For instance, Indigo's 'Carbon' 

program assists farmers in certifying their GHG emission reductions through the VERRA 
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VM00042 methodology, effectively transforming these reductions into tradable carbon 

credits (Indigo Ag., 2022). 

It is worth noting that compliance with carbon accounting standards involves 

technical complexity and incurs substantial certification costs. Consequently, it can be 

challenging for small-scale and less financially equipped farmers to independently measure, 

certify, and monetize their GHG reduction accomplishments. 

7. Benchmark as an engagement tool 

Benchmarking is a widely adopted strategy employed by various industries, including 

agriculture, to drive performance improvements by identifying superior practices. This 

practice has gained significant momentum in agriculture since the late 20th century, aiming to 

enhance productivity and sustainability. The Fieldprint Calculator, a pivotal tool in this 

endeavor, has been instrumental in benchmarking sustainability performance in agriculture, 

enabling agribusinesses and marketing firms to validate claims and make necessary 

improvements (Field to Market, 2023). Despite its widespread acceptance, concerns have 

been raised regarding the practical interpretation of benchmarking reports, data accuracy, and 

the program's overall benefits (Hoffelmeyer et al., 2022). 

Parrish's (2016) study focused on establishing benchmarks for the environmental 

impact of cotton production, demonstrating that, on average, Georgia cotton producers 

exhibit higher sustainability than the national Fieldprint Calculator average. While the study 

identified minor obstacles, such as workload and data entry challenges, it underscored the 

critical need for improved communication of sustainability information to consumers. 

The practice of benchmarking in agriculture has gained significant traction, mainly 

through organizations like the Food and Agriculture Organization of the United Nations 

(FAO, 2022). The FAO has actively published reports and guidelines on sustainable 
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agriculture practices and performance measurement, often utilizing benchmarking 

approaches. In a study by Hoffelmeyer et al. (2022), participants acknowledged the value of 

the benchmarking feature offered by the Fieldprint Calculator. However, concerns persisted 

among participants regarding the accuracy of the generated data and their ability to 

effectively interpret benchmarking reports. 

In summary, benchmarking is a basis in agriculture, fostering sustainable practices 

and performance improvements. The Fieldprint Calculator and organizations like the FAO 

have significantly contributed to advancing benchmarking methodologies. Addressing data 

accuracy and interpretation concerns while improving communication strategies will further 

strengthen the impact of benchmarking efforts in promoting sustainability within the 

agricultural sector. 
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II. PEANUT CROP SIMULATION MODELLING TO IDENTIFY DEFICIT 

IRRIGATION STRATEGIES USING SEASONAL ANALYSIS 
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ABSTRACT 

Alabama, a prominent peanut producer in the United States, faces production 

challenges due to unpredictable weather patterns and increased frequency of flash droughts. 

Given the importance of peanut crops and the risk of yield losses associated with drought 

stress, evaluating irrigation management strategies is crucial in increasing profitability and 

irrigation water use efficiency. This study aims to assess the impact of soil water deficit levels 

on peanut yield using seasonal analyses with 30 years of weather data. To achieve this, the 

Peanut growth model in the Decision Support System for Agrotechnology Transfer (DSSAT) 

platform was calibrated and validated On-farm experimental data was collected in 2021 and 

2022 from fields in Lee County, AL. Data used for model calibration were leaf area index, 

leaf and stem biomass, peanut yield, and volumetric water content measured at 20, 40, and 60 

centimeters soil depths. The irrigation treatments involved three soil water deficit levels—

30%, 50%, and 70% water depletion from plant available water over the top 30 cm of soil 

depth, a zone with the highest peanut root density. Dry and wet years were categorized based 

on an abundant and well-distributed rainfall index. The calibration involved modifying 

cultivar coefficients (EM-FL, FL-SH FL-SD, SD-PM, LFMAX, SLAVR, SIZLF, XFRT, 

WTPSD, SFDUR, SDPDV, PODUR, and THRSH), soil water content, leaf area index (LAI), 

and above-ground biomass. The model demonstrated capability in simulating pod weight, 

although discrepancies were present due to intricate interactions between genetics and 

environmental conditions. The model validation showed a good agreement between 

simulated and observed values of pod weight. At location 20 of the 2021 field ,the pod weight 

Root Mean Square Error (RMSE) was equal to 471 kg ha-1, and the d-stat reached 0.951, 

while at location 49, the RMSE was 555 kg ha-1, and the d-stat stood at 0.943. The main 

findings of the study reveal that the application of three distinct irrigation deficit treatments 

significantly influenced peanut crops' performance over 30 years of weather data in Society 
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Hill, AL. The analysis focused on key factors such as leaf area index (LAI), yield, frequency 

of irrigation, and volume of irrigation water. In particular, the study categorized years into dry 

and wet based on the Available Water Depletion Rate (AWDR), providing insights into the 

impact of water availability on crucial growth processes. The results indicate that, during dry 

years characterized by low AWDR, rainfall alone did not meet the water requirements of 

peanuts. Lower water depletion achieved through more frequent irrigation positively 

correlated with increased yields, emphasizing the critical role of irrigation in mitigating water 

stress. The study suggests that using a 50% soil water depletion over 30 cm soil depth as 

irrigation triggering threshold  offers an optimal balance between water conservation and 

ensuring an adequate water supply for plant growth, resulting in high yields. The analysis 

further delved into the influence of irrigation on the maximum leaf area index (LAI), 

highlighting the responsiveness of LAI to variations in plant-available water. This 

responsiveness, particularly pronounced during water-scarce periods, underscores the 

significance of effective irrigation management for optimal crop productivity and water 

resource conservation. The findings also revealed trends in irrigation water productivity 

(IWP), with higher depletion levels corresponding to a consistent decline in IWP. In both dry 

and wet years, the study emphasizes the adverse impact of reduced plant-available water on 

irrigation water productivity and, consequently, on crop growth and yield. In conclusion, 

these findings emphasize the critical importance of tailored irrigation practices, considering 

specific weather conditions, to optimize peanut yield while conserving water resources for 

sustainable and resilient agricultural practices in Alabama. 
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INTRODUCTION 

Peanut (Arachis hypogaea L.) is a crop of high economic importance in Alabama 

agriculture, contributing significantly to the state's economy. In 2021, Alabama peanut 

growers produced 281,827,697 kilograms of peanuts, securing the state’s position as the 

nation’s second peanut producer (USDA-NASS, 2022). However, the region’s variable 

climate increases the risks for yield losses and ultimately profitability. Despite the 

southeastern USA receiving an average annual rainfall ranging from 1000 mm to 1270 mm, 

the variable rainfall patterns can significantly impact peanut yields. Several studies have 

highlighted the adverse effects of soil water deficiency on yield reduction (Wright et al., 

1991; Abou Kheira, 2009) and peanut water use efficiency (Jyostna Devi et al., 2009). 

Moreover, drought conditions increase the susceptibility of peanuts to aflatoxin 

contamination, rendering them unsuitable for human consumption (Blankenship et al., 1989). 

However, in the region of the southeastern United States where peanuts are cultivated, the 

scenario is further complicated by rapid urbanization and recurrent droughts that threaten 

irrigation water availability.  

Suitable weather and soil conditions, appropriate varieties, sufficient water supply 

through rainfall or irrigation, and effective crop management practices are crucial to 

achieving a profitable peanut crop. Water availability plays a pivotal role in maximizing plant 

productivity. Peanut plants are susceptible to water stress during reproductive growth stages. 

Early-season water stress, which is between mid-May to mid-July, has been observed to lead 

to a 17 to 25% reduction in pod yield compared to well-irrigated conditions (Wright et al., 

1991). The developmental period between 50-80 days after planting (DAP) is critical for pod 

formation, and a water shortage during this time can cause a significant reduction in 

flowering, pod formation, and ultimately the overall yield of the crop compared to any other 
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growth stage (Butts et al., 2020). However, excessive water can negatively impact peanut 

yield and increase the incidence of fungal pathogens and limb and pod rot (Butts et al., 2020). 

Balancing water supply is vital for both yield and quality. Irrigation has positively impacted 

peanut quality factors such as edible seed yield, oil stock, and seed size (Lamb et al., 2010). 

However, the challenges of diminishing water availability due to urbanization and 

increasingly frequent droughts necessitate adopting more efficient irrigation practices to 

ensure peanut productivity. 

The adoption of irrigation practices has indeed increased in Alabama to counter the 

effects of water stress and enhance yield potential. The period from 2012 to 2017 saw a rise 

of 3.7% in irrigated harvest cropland in Alabama, USA (USDA-NASS, 2017). In 2017, 

peanuts crop reported 2,787 acres of entire crop irrigated harvested, 31,126 acres of part of 

crop irrigated harvested, and 144,778 acres of none irrigated peanuts harvested (USDA-

NASS, 2017). This trend underscores the importance of adopting appropriate irrigation 

strategies to ensure water-efficient crop production. With the pressure for sustainable water 

management, producers must balance maintaining yields and optimizing irrigation. Currently, 

irrigation methods range from being based on subjective judgments. The last NASS report 

(USDA-NASS, 2019) indicated that 1069 farms in Alabama, USA, use any irrigation method, 

50.7% irrigate based on the feel of the soil, 9.3% based on day calendar-based scheduling, 

according to previous season and crop water demand, 7.7% on soil moisture sensing, and 1% 

start the irrigation when the neighbors irrigate. However, the varying levels of adoption 

suggest the potential for enhancing water use efficiency and precision irrigation through 

technical methods and improved management practices.  

In this context, one option to identify the optimal irrigation rates and timing under 

various growing conditions is to use crop growth simulation models. The CSM-CROPGRO-

Peanut, integrated within the Decision Support System for Agrotechnology Transfer 
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(DSSAT), serves as a powerful tool for predicting crop growth, development, and yield across 

diverse environmental conditions and management practices (Hoogenboom et al., 2019). The 

DSSAT model is assisted by database management for weather, soil, and crop management 

and measured data. Utilizing CSM-CROPGRO-Peanut justifies the application to choose the 

most suitable scheduling irrigation. For instance, a study by Tojo Soler et al. (2013) found 

that crop development was reduced for treating 30 and 40 % of thresholds, which reduced 

yield compared to the 60 and 90 % of thresholds, which means that waiting too long for the 

soil water to deplete may affect the yield. Another study by Garcia et al. (2007) in the 

southeastern USA employed the CROPGRO-Peanut model to investigate peanut water 

requirements across different maturity varieties, revealing the potential for irrigation 

management. Garcia et al. (2007) found that peanuts need approximately 559 millimeters of 

water from planting to harvest on fields located at the Sumter, Tift, and Burke Counties  in 

Georgia. Such models are pivotal in optimizing irrigation strategies, enabling producers to 

navigate the complex terrain of water availability and demand to achieve sustainable yields. 

Therefore, this study hypothesizes that increasing soil water depletion as a 

consequence of poor irrigation scheduling could negatively impact peanut yield. By using the 

CROPGRO-Peanut model within DSSAT, simulation of  peanut growth and development 

across three irrigation scenarios – specifically, at 30%, 50%, and 70% depletion of soil 

available water over 30 cm soil depth supports the identification of  irrigation rates and 

irrigation frequency minimize the risk of yield losses and increase water use efficiency. 

Through the calibration and evaluation of the CROPGRO-Peanut model and using seasonal 

analyses with 30 years of weather data, the study seeks to determine the impact of irrigation 

scheduling on the peanut variety ACI 3321 growing in Society Hill, Alabama. These findings 

will contribute to improving irrigation management practices, increase profitability of peanut 

producers and promote resource conservation. 
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MATERIAL AND METHODS 

1. Study Area 

Model calibration and validation was performed using crop and soil data collected 

from two peanut fields in Society Hill, Lee County, Alabama. The 2021 field had Malboro 

loamy sand soil, classified as fine, kaolinitic, thermic typic Paleudults. In 2022, the field had 

Marvyn sandy loam soil, classified as fine-loamy, kaolinitic, thermic typic kanhapludults. 

Before the current project, additional data on terrain elevation and soil electric conductivity 

(ECa) were collected in December 2020. This data was to understand the within-field 

variability, delineate potential management zones and within-field watersheds and identify 

locations for soil sampling and monitoring soil and nutrient changes during the 2021 growing 

season (Figure 1.1). Students and post-doctoral researchers collected Planet Satellite Images 

in 2019 and 2020 to assess crop growth and potential yield variability. Vegetation indices, 

including the Normalized Difference Vegetation Index (NDVI), Non-Linear Index (NLI), and 

Simple Ratio Index (SR), were calculated to study potential within-field crop biomass 

variability. The selection of soil sampling locations and installation of soil sensors was based 

on management zones determined using a combination of data layers of soil apparent 

electrical conductivity (soil ECa), terrain elevation (e.g., topographic positioning index and 

topographic wetness index), and vegetation indices estimated from satellite images.   

The data for the calibration of CROPGRO-Peanut model was collected during 2021 

(Figure 1.2) and 2022 (Figure 1.3) crop-growing seasons (Table 1.1). The field used for 

calibration in 2021 (Figure 1.2a) was 25 hectares (ha) in size with 18 ha irrigated, and in 

2022, this field was 26 ha in size (Figure 1.2b). Data for model validation was collected from 

various locations within two peanut fields, one of 8.5 ha (Figure 1.3a) and 26 ha in size 

(Figure 1.3b). The peanut cultivar ACI 3321, a high-yielding and high oleic runner-type 
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variety developed in Georgia, USA, was planted on May 21-22, 2021 (Field 1.2a), May 26, 

2021 (Field 1.3a) and May 19-20, 2022 (Fields 1.2b and 1.3b). The seeding rate was 168.13 

kg ha-1 in 2021 and 145.71 kg ha-1 in 2022, with a row spacing of 0.91 meters. The study area 

is classified as subtropical humid (Cfa) climate (Koppen Climate Classification, 2023) with 

an average annual accumulated rainfall of 1380 mm for Northwest Alabama and 1360 mm for 

Southeast Alabama (Mishra and Srivastava, 2015). 

2. Plant Measurements 

During the 2021 peanut growing season at the field 1.2a, several locations for peanut 

biomass harvest were selected to account for various growing conditions (e.g., potential high 

and low peanut yielding areas). The first collection of peanut samples was done in June 17th 

with e total biomass collected at locations 1, 3, 4, 5, 6, 7, 8, 9, 14, 15, and 16. The day after 

this collection, plant partitioning (steam, leaves, pods, seeds) of locations 1, 5, 8, 9, and 15 

was done. The second and third sampling occurred on July 21st and August 24th at locations 3, 

4, 5, 6, 7, 8, 9, and 15 for total biomass and peanut biomass partitioning of steam, leaves, and 

pods biomass was done at locations 3 and 9. During harvest, October 11th 202,  peanut 

samples were collected at all 11 locations, total biomass was estimated from all of them, and 

biomass partitioning was done at locations 3 and 9. However, since the model needs ideal 

conditions for calibration, data from three high-yielding peanut sampling locations within 

field 1.2a (locations 3, 6, and 7) were to input into the software. Because peanut yield was 

affected by frequent rain in 2021, additional data for model calibration was collected from 

one location (location 1.1) within field 1.2b in 2022. Peanut biomass was collected four times 

during the growing season at each location from an area comprised of four rows of 1-meter 

length. The collection dates were on June 17th (V5-V6), July 21st (R4), August 24th (R6), and 

October 11th (harvest) in 2021. In 2022, flowering occurred on June 1st. In 2021, Leaf Area 

Index (LAI) was measured five times for each sampling location using an LAI-2200C plant 
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canopy analyzer (Li-Cor Biosciences, Lincoln, NE, 2023) and the sampling dates were in 

June 17th (V5-,V6) July 16th (R3), July 21st (R4), August 11th (R6), and September 24th. Plant 

biomass was oven-dried at 70 ºC to constant weight (dry matter). The dry weight values of 

leaves, steam, pods, and total above biomass were used to estimate biomass components per 

area basis with the values converted from g m-2 to kg m-2. The dry weight was divided by the 

area harvested, either four or six rows, each one of one-meter length, and multiplying by the 

row spacing of 0.91 m. During the final harvest, six rows of one-meter length were collected, 

and pods and seeds were counted to estimate the pod and seed weight per unit area (kg ha-1) 

and the number of pods per unit area (m2).  

3. Weather and Soil Data 

The CROPGRO-Peanut model requires daily weather data, such as maximum and 

minimum temperature (ºC), solar radiation (MJ m-2 day-1), and rainfall (mm) over the entire 

crop growing season. For this study, the data was collected by a Davis Vantage Pro 2 weather 

station (Davis® Instruments, Hayward, CA, 2023) installed next to the peanut fields. The 

predominant soil at Field 1.2a was Malboro loamy sand, and at Field 1.2b was Marvyn sandy 

loam, both soils well drained (SSURGO, 2023). After delineating crop management zones, 

locations with contrasting field growing conditions were selected. At fields 1.2a, locations 3, 

4, 5, 6, 7, 8, 9, 13, 14, and 15 were chosen to assess the soil’s physical and hydraulic 

properties, such as gravimetric water content, bulk density, water pH, NO3, NH4, total 

nitrogen, total carbon, and organic matter (Tables 1.4 and 1.5). At each location, two soil 

cores, each with a depth of 122 cm were collected and divided into the following soil depths: 

0-5, 5-15, 15-23, 23-30, 30-46, 46-61, 61-76, 76-91, 91-106, and 106-122 cm. Soil physical 

and chemical properties were determined from each soil sampling depth. In 2021, irrigation 

was applied by the farmer on July 30th (11.43 mm), July 31st (11.43 mm), August 14th (19.05 

mm), and September 08th (12.7mm) totalizing 54.61 mm.  
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4. Soil Water Balance 

Soil water content (SWC) data at each sampling location was collected using Acclima 

soil sensors (Figure 1.4). These sensors use the Time Domain Reflectometry principle to 

measure changes in soil moisture (Acclima, 2023). The sensors were installed at 20, 40, and 

60 cm of soil depth. The SWC data input into DSSAT corresponded to daily measurements 

collected by the sensors at 3 p.m. when plants have reached the peak of crop water use. The 

soil layers in DSSAT are divided into 15 cm depth, and then the layers considered for the soil 

water content observations were the 15 - 30 cm, 30 - 45 cm, 45 - 60 cm depth. 

The total available water is the amount of water that exists between the permanent 

wilting point (PWP), referred as the lower limit (LL) in DSSAT, and the field capacity (FC), 

known as the drained upper limit (DUL) (Tables 1.10 and 1.11). The determination of PWP 

and FC at some locations within the field 1.2a l involved estimation of soil water retention 

curves (SWRC) using the  Hyprop-2 (Meter Group, Pullman, 2023) and the WP4C (Meter 

Group, Pullman, 2023) sensors for the estimation of the FC and PWP, respectively.. This 

process included collection of undisturbed soil cores at depths of 20 cm, 40 cm, and 60 cm to 

generate the wet and dry ranges of the soil water retention curve. At each sampling locations, 

there was an SWRC that represented each one of those three soil depths.  

Saturated water content (SAT, cm3 cm-3), bulk density (g cm-3), and root growth factor 

were first generated by the SBuild Program of DSSAT Version 4.8 (Hoogenboom et al., 

2019). The FC is the moisture content in the soil after complete saturation and drainage for 

about 24 hours, as explained by (Evett et al., 2019), or it can be determined by measuring the 

water content of a soil core under a pressure of -33 kPa after saturating the soil. In the same 

way, the PWP is often determined by measuring the water content of a soil core under a 
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pressure of -1.5 MPa after saturating the soil, which refers to the soil moisture content in 

which plants cannot extract enough water from the soil.  

5. Model calibration and evaluation 

5.1 Calibration 

Since the peanut variety ACI 3321 used in this study was unavailable in the 

CROPGRO-Peanut cultivar database, cultivar coefficients for this variety were generated 

using biomass and growth data collected in the 2021 and 2022 growing seasons. As a first 

step in the cultivar coefficient determination, the peanut variety Georgia Green cultivar 

coefficients were used as the basis for the generation of the ACI 3321 new cultivar 

coefficients. The estimation process involved using The Generalized Likelihood Uncertainty 

Estimation (GLUE) tool. Data related to biomass, crop growth, and phenology from four 

locations within Fields 1.2a and b were used to create the files X (experimental practices), T 

(observations data), and A (season average performance). This dataset was then selected 

using the GLUE tool. Through a total of 50,000 iterations, the tool generated new cultivar 

coefficients for phenology and growth parameters. After using the GLUE Tool, the sensitivity 

analysis was used to optimize the coefficient values and to minimize errors between 

simulated and measured values of phenology dates, biomass, crop yield, and yield 

components based on statistical analyses. The sensitivity analysis tool was used again to 

identify soil parameters to adjust the soil water balance. Model simulations of volumetric 

water content for the depths of 20, 40, and 60 cm were improved by adjusting the values of 

DUL and LL to match simulated and observed data.  

5.2 Statistical Analysis 

Using Eq. 1, the Root Mean Square Error (RMSE) was determined based on predicted 

values (Pi) and observed values (Oi) of various variables such as days from planting to 



41 

 

anthesis, days from planting to physiological maturity, maximum LAI, biomass, yield, and 

yield components. These statistics were used to evaluate how well the model simulated the 

observed values model calibration could be improved. 

𝑅𝑀𝑆𝐸 = [𝑁−1 ∑(𝑃𝑖 − 𝑂𝑖)
2

𝑛

𝑖=1

]

0.5

 

(1) 

The index of agreement (d-stats) uses a predicted observation (Pi), a measured 

observation (Oi), and the mean of the observed variable (M). Where P’i = Pi - M, and O’i = 

O’I - M. The index ranges from zero to one, and the closer to one, the better the agreement 

between the two variables being compared. In other words, if the d-value is close to one, then 

the predicted and measured observations are in good agreement.  

𝑑 − 𝑠𝑡𝑎𝑡 = [
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)
2𝑛
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′|)
2𝑛

𝑖=1

] , 0 ≤ 𝑑 ≤ 1  

(2) 

5.3 Validation 

For model validation of the CSM-CROPGRO-Peanut model, simulated and observed 

values of the first flower (R1), harvest maturity, and final pod weight were evaluated using 

statistical parameters. Data from fields 1.2a and 1.2b (location 1.1) was used for model 

calibration. The validation was conducted using data collected from several locations within 

fields 1.3c (locations 20, 49, 71) in 2021 and 1.3b (locations 1, 2, 4, 7, 19) in 2022. 

6. Seasonal analysis to evaluate the impact of irrigation scheduling strategies 

The seasonal analysis tool in DSSAT allows crop yield simulations under the same 

crop management strategy and over multiple years of weather data (Hoogenboom et al., 
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2019). Because this project aims to evaluate different irrigation scheduling treatments and 

crop water use and irrigation is affected by daily weather, a season analysis was selected to 

assess three irrigation scheduling strategies under 30 years of weather data (1990 to 2020) in 

the study region. The weather data was collected online at NASA’s Prediction of Worldwide 

Energy Resources (https://power.larc.nasa.gov/) for this analysis. The soil was Marvyn sandy 

loam characterized by a sandy clay soil texture throughout most of the soil profile. The 

seasonal analysis simulation was conducted under the same management strategy used in 

2022 data (crop management practices, row spacing, and plant population), and the irrigation 

efficiency of the center pivot for calibration and seasonal analysis was considered 95%. 

This analysis evaluates potential interactions between irrigation and weather 

conditions on crop growth and yield. Therefore, the objective is to assess the impact of water 

deficit during various growth stages. For example, for peanuts planted in the Southeast USA, 

August corresponds to the peak of water use for peanuts as it corresponds to reproductive 

growth stages. This means supplying the crop with the right amount of water at the right time 

is essential, so the final yield is not compromised. Figure 1.6 displays the cumulative 

precipitation of August for the years 1990 to 2020. With a high precipitation variation 

between years, adjusting the irrigation rate and schedule is vital to avoid the reduction of 

peanut yields. Comparing years with lower rainfall, such as 1990, to years with more 

considerable rainfall, such as 2008, reveals that sufficient irrigation rates can change 

significantly between years; therefore, using seasonal analyses to determine the optimal 

irrigation rates from year to year might be helpful to understand water demand better and 

guide irrigation decisions.  

7. Evaluation of the Impact of Irrigation Scheduling Strategies  
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The seasonal analysis tool in DSSAT was employed to evaluate three different 

scenarios of soil water depletion over the top 30 cm of soil depth. These scenarios included: 

1) a 70% depletion, 2) a 50% depletion, and 3) a 30% depletion. The determination of soil 

water content is based on the concept of soil water depletion. This approach involves setting a 

maximum acceptable level of soil water depletion, ensuring the prevention of crop water 

stress and the potential reduction in crop yield (Allen et al., 1998). The simulated soil water 

content within the effective root zone guides the irrigation decisions. In the automatic 

irrigation mode, irrigation is initiated within the crop growth model when this simulated soil 

water content drops below a specific threshold determined by the available water capacity 

(AWC).  In this context, the model defines the AWC as the difference between FC and wilting 

point WP.  

Another point to help evaluating the impact of irrigation scheduling is the irrigation 

water productivity (IWP), especially in regions with scarce groundwater. Irrigation Water 

Productivity (IWP) is a measure used in agriculture to assess the efficiency of irrigation 

practices. It represents the amount of crop yield achieved per unit of water applied during 

irrigation. IWP is calculated by comparing the increase in yields attributed to irrigation (YI) 

with yields in non-irrigated, dryland conditions (Y0.0). This ratio is then divided by the total 

of irrigation water applied (TIRR) (P Bordovsky et al., 2015). The formula for IWP is often 

expressed as: 

𝐼𝑊𝑃 =
𝑌𝐼 − 𝑌0.0

𝑇𝐼𝑅𝑅
=  

∆𝑌𝐼

𝑇𝐼𝑅𝑅
 

8. Abundant and Well-distributed Rainfall 

Abundant and well-distributed rainfall (AWDR), a parameter proposed by Tremblay 

et al. (2012) to study the corn response to nitrogen as influenced by soil texture and weather. 

This parameter refers to the amount and distribution of rain within a specific area over time, 
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which is crucial for sustainable agriculture. A high AWDR value indicates that an area 

receives frequent and abundant rainfall, while a low AWDR value would suggest that a 

location or area gets sparse and low rain (Tremblay et al., 2012). The specific values for what 

would be considered high or low AWDR can vary depending on the location and the period 

of data being analyzed.  

This parameter was essential for this study to identify and categorize years where 

adequate irrigation for peanut crops would be necessary to ensure optimal growth through 

proper water distribution and quantity. The calculations were based on Tremblay et al. (2012) 

methodology using equation 3. This involved the multiplication of the rainfall amount in mm 

(PPT) by the frequency (SDI) for a specified period (n). Here, SDI represents the Shannon 

Diversity Index (Equation 4), with pi denoting PPT and n indicating the number of days 

within the designated timeframe (Bronikowski and Webb, 1996). 

𝐴𝑊𝐷𝑅 = 𝑃𝑃𝑇 × 𝑆𝐷𝐼 

(3) 

𝑆𝐷𝐼 =  [− ∑ 𝑝𝑖 ln(𝑝𝑖)] ÷ ln(𝑛) 

(4) 

The AWDR was estimated for 32 years of peanut reproductive period, which is Mid-

July to beginning of September, which is more critical for peanut yield (Attia et al., 2021).   

(Table 1.6). To differentiate between years with abundant and well-distributed rainfall (wet) 

and those with sparse and low rainfall (dry) we employed a statistical approach. First the 

mean was determined and then the standard deviation (STD) of annual rainfall averages of 

these values. Dry years were identified as those with AWDR values below the mean minus 

one STD, representing limited rainfall and distribution. Contrarily, wet years were identified 
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as those with AWDR values exceeding the mean plus one STD, indicating high amount of 

rainfall and better distribution.  

RESULTS AND DISCUSSION 

1. Weather conditions  

During the crop growing season 2021 in Society Hill (AL), the monthly total 

precipitation values exceeded the 30-year historical average in June, July, August, and 

October. This contrasted with May and September, which experienced below-average 

precipitation (Figure 1.2). The maximum and minimum temperatures during the peanut 

growing period varied between the two years of study in this project. Specifically, in 2021, 

the average minimum temperature was 18.9°C, and the maximum temperature was 30.2°C. 

On the other hand, in 2022, the temperatures were slightly higher, with averages of 19.6°C 

and 31.6°C for the minimum and maximum temperatures, respectively. 

To further assess the impact of precipitation, a selection was made, comprising six dry 

years (2010, 2007, 1999, 1998, 1997, 1990) and seven wet years (2022, 2017, 2008, 2005, 

2004, 1996, 1992) based on the AWDR values below 76 (representing the driest years) and 

exceeding 170 (describing the wettest years) (Table 1.6). Limited water supply and infrequent 

rainfall in dry years hinder crucial growth processes, including leaf expansion, the production 

of photosynthetic pigments, and pod yield (Tojo Soler et al., 2013). Particularly in dry years, 

inadequate water during critical growth stages slows nutrient uptake and affects overall plant 

health, ultimately impacting yield potential. 

The exceptionally high precipitation during 2021, especially in June, July, and August 

(Figure 1.5), led to elevated precipitation levels during the peanut reproductive growth stage. 

While adequate moisture is favorable for plant growth, excessive rainfall can lead to 

waterlogging and increased humidity, creating a conducive environment for fungal diseases. 
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These conditions  align with the observation of Ahmed et al. (2019), who noted a negative 

correlation between heavy rainfall and peanut yield due to disease risk. On the positive side, 

optimal water availability can promote leaf expansion, enhance photosynthetic pigment 

levels, and support pod development, contributing to improved yield potential.  

2. Model Calibration 

2.1 Cultivar Coefficients 

The 18 peanut cultivar coefficients on the CSM-CROPGRO-Peanut model were 

modified to represent the phenology, growth, and yield of the ACI 3321 peanut variety 

utilized in this study (Table 1.7). The cultivar coefficients were estimated based on measured 

data of phenology, crop growth, above-ground biomass, yield components, and yield. The 

differences between the initial cultivar coefficient values (Georgia Green peanut variety) and 

the final values (ACI3321 variety used for this study) could be explained by the differences 

in the growing cycle and their own genetic characteristics. Using the coefficients of the 

Georgia Green, a variety planted in the Southeast USA in past years, as initial values to start 

calibrating and generating the new cultivar coefficients improved the process and decreased 

the time to do manual calibrations using the sensitivity analyses. The outcomes of the model 

simulations, incorporating the newly generated cultivar coefficients for the ACI 3321 variety, 

revealed that in 2021 (Table 1.8), the simulated day of anthesis (41 DAP) occurred two days 

after the observed day (39 DAP). Similarly, in 2022, the simulated anthesis day (40 DAP) 

was three days ahead of the measured value (43 DAP), as indicated in Table 1.9. 

While the observed day of physiological maturity matched the simulated value in 

2022, there was a difference in 2021. In 2021, the observed day of physiological maturity was 

delayed by ten days compared to the simulated day. This variation underscores the dynamic 

nature of the growth and maturation processes, which weather conditions and genetic 
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responses can influence. These discrepancies reflect the complexity of plant growth dynamics 

and the interaction between genetics and environmental conditions. 

2.2 Soil Water Content 

The DUL and LL and the daily dynamics of the simulated soil water content at the 15-

30 cm, 30-45 cm, and 45-60 cm soil depth were adjusted based on the DUL and LL values 

estimated for each layer under laboratory conditions. In 2021, at location 3 within Field 1.2a, 

the LL values for the 15-30 cm, 30-45 cm, and 45-60 cm ranged from 0.113 cm3 cm-3 to 

0.195 cm3 cm-3 before the calibration process (Table 1.10). After calibration, these values 

shifted to 0.088 cm3 cm-3 to 0.192cm3 cm-3. Similarly, the pre-calibration DUL values 

fluctuated between 0.207 cm3 cm-3 to3 0.28 cm3 cm-3 before calibration and 0.176 cm3 cm-3 to 

0.284 cm3 cm-3 after the calibration. The calibration results showed a good agreement 

between the observed and simulated values with a d-Stat value of 0.725 and RMSE of 0.04 

cm3 cm-3 for layers 15-30 cm (Figure 1.7).  

For 2022, Field 1.2b – location 1.1, the initial values for LL ranged from 0.095 cm3 

cm-3 to 0.186 cm3 cm-3 before the calibration. After the calibration the LL value in the 45 cm 

layer was adjusted from 0.183 cm3 cm-3 to 0.13 cm3 cm-3. For DUL, initial values ranged 

from 0.183 cm3 cm-3 to 0.267 cm3 cm-3 before the calibration, with the 45 cm and 68 cm 

layers having values of 0.268 cm3 cm-3 and 0.267 cm3 cm-3, respectively. After calibration, 

these values were adjusted to 0.19 cm3 cm-3 and 0.21 cm3 cm-3 for the 45 cm and 68 cm 

layers, respectively (Table 1.11). The calibration of the soil water characteristics at Field 1.2b 

resulted in a good agreement between simulated and observed SWC values at the 15-30 cm 

soil depth with a d-Stat of 0.73 and RMSE of 0.034. At the depths of 30-45 cm and 45-60 cm, 

the RMSE decreased but the d-Stat increased (Figure 1.8). The model is a simplified 

representation of the soil-water dynamic, which involves complex interactions, such as soil 
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characteristics, climate and weather patterns, crop requirement and root depth, hydraulic 

conductivity and porosity, and model precision and validation.  

2.3 Leaf Area Index and Above-Ground Biomass 

The Leaf Area Index (LAI) consistently increased during the vegetative phase. This 

phenomenon aligns with the observed data (Figure 1.9), where LAI values for the ACI 3321 

variety showed a consistent increasing trend over time. After the model calibration, there was 

a good agreement between observed and simulated LAI values. LAI increased until it reached 

saturation towards the end of the vegetative period. The LAI was calculated from the average 

five subsamples and input into the model. The maximum LAI value for the simulated was 

5.82 m2 m-2, while the observed value was 5.87 m2 m-2 (Table 1.8). For the 2022 season, the 

simulated LAI was 6.12 m2 m-2, and the observed LAI was 6.31 m2 m-2 (Table 1.8). Figure 

1.9b shows that the d-stat between the observed and simulated value for LAI during 2022 

season was 0.942, higher than 0.792. The high d-stat values for both years reflect the 

consistency between the simulated and observed LAI values. The variation in d-stat values 

between the two years (2021 and 2022) can be attributed to the impact of weather conditions. 

In a study conducted in Argentina, Haro et al. (2008) found that the maximum LAI for 

peanuts cultivated under water stress conditions was 3.93, while fully irrigated plots exhibited 

an LAI of 6.2. The relationship between LAI and biomass is intrinsic; a higher LAI usually 

corresponds to more significant biomass accumulation due to increased photosynthetic 

activity.  

 The leaf weight during the 2021 season (Figure 1.11a) does not show good 

agreement, as seems with a d-Stats of 0.609.  However, the first and second collected point 

shows a good agreement between simulated and observed value, suggesting that that the 

lower d-stat might be the result of the low biomass value which could be due to a human 
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error. In 2022 season (Figure 1.11b), the calibration had better results with a d-Stat of 0.816, 

indicative of the model's capability for simulating leaf weight. For steam weight (Figure 

1.12), 2021 had a d-Stat of 0.914, indicating a good agreement between simulated and 

observed, and in 2022, the d-Stat was 0.809, which means the model can simulate this 

variable well. 

The simulated above-ground biomass values at maturity, determined by adding the 

above ground biomass and the biomass of the pods, were higher than the observed values 

(Table 1.8). In 2021, the data input into the model was an average of four meters in specific 

locations. However, in 2022, the model incorporated individual values (each row) from each 

subsample collected at each respective location. In 2021, the final observed value was 7459 

kg ha-1, and the simulated was 11333 kg ha-1, 34.2% lower than the observed value. An 

RMSE value of 1937 kg ha-1 and a high d-Stat value of 0.938 were found, indicating an 

agreement between the simulated and observed values for above-ground biomass (Figure 

1.10a). Contrarily, for the 2022 season, the situation was reversed; the simulated value was 

lower than the observed value, measuring 11467 kg ha⁻¹ and 15488 kg ha⁻¹, respectively. The 

RMSE and d-stat were 2588 kg ha-1 and 0.930. 

2.4 Yield and Yield Components 

After calibrating the cultivar coefficients and soil water balance, the final simulated 

yield for the 2021 season was 6014 kg ha-1, higher than the observed average value of 4200 

kg ha-1 (Table 1.8). In the 2022 season, the simulated was 5773 kg ha-1, and the observed 

value was 6658 kg ha-1 (Table 1.9). The 2021 wet season might explain the main yield 

differences between the observed and simulated values. DSSAT requires ideal conditions for 

calibration; the study was conducted on-farm, and conditions could not be fully controlled. 

During 2022 in contrast, less rainfall and well-drained soil contributed to better peanut 
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growth and yield. The model simulated the 2022 peanut crop well, Figure 1.3b, resulted in a 

d-Stat of 0.974, compared to 0.813 in 2021. These results align with the findings of Tojo 

Soler et al., (2013) who demonstrated the CMS-CROPGRO-Peanut model's accuracy in 

simulating yield reductions attributable to drought in Geogia.  

3. Model Validation 

Data from Field 1.3c in 2021 and Field 1.3b in 2022 were collected for model 

validation. In the 2021 growing season, pod weight was collected several times during the 

growing season. In the 2022 growing season, pod weight was collected at harvest (Figure 

1.14). Pod weight in 2021 was well predicted, showing a good agreement between simulated 

and observed pod weights for locations 20 and 49, with d-Stats of 0.951 and 0.943, 

respectively (Figure1.15).  

4. Seasonal Analysis – Evaluation of the impact of deficit irrigation on peanut 

growth and yield  

Following the model calibration and evaluation, the application of the seasonal 

analysis tool aimed to evaluate three irrigation deficit treatments by examining their impact 

on leaf area index, yield, the frequency of irrigation during the growth season, and the 

volume of irrigation water (mm). Past studies have used seasonal analysis tools from DSSAT 

to explore different management scenarios over multiple years (Sarkar and Kar, 2006; Arshad 

Awan et al., 2021; Tekle, 2021; Singh et al., 2023), yet this tool has not been widely used to 

analyze irrigation strategies on peanut crops. However, there are similar uses of the tool, for 

example, in maize studies to predict irrigation and nitrogen application (Tekle, 2021). 

Analyzing the peanut yield response to three distinct irrigation strategies over 30 

years of weather data, growing on a light soil texture, shows significant variability (Figure 

1.16). The impact of irrigation during dry years, categorized by low AWDR during the 
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reproductive peanut growth period, indicates that rainfall alone did not meet the peanut's 

water requirements. Results show that lower water depletion, achieved through more frequent 

irrigation, leads to increased yield. For example, in 2019, the yield disparity between the 

rainfed scenario (374 kg ha-1) and depletion levels of 70%, 50%, and 30% were 2,704 kg ha-1, 

3,808 kg ha-1, and 4,691kg ha-1, respectively (Fig. 1.16). The lowest yield observed in the 

70% depletion strategy can be attributed to less frequent irrigation, resulting in prolonged 

periods of crop water stress. In contrast, the higher yield observed in the 30% depletion 

strategy can be attributed to timely and more frequent irrigation. In this approach, the crop 

received irrigation at regular intervals, ensuring that it did not experience prolonged periods 

of water stress. 

To better analyze the impact of irrigation on peanut yield, differences among 

irrigation treatments during two distinct groups of peanut reproductive period years were 

considered: dry years with AWDR values below 89 (one standard deviation from the historic 

AWDR mean) and wet years with AWDR values exceeding 173 (Figure 1.6). Peanut yield 

differences among the irrigation treatments under the dry and wet years was analyzed using 

the Tukey-Kramer least square mean different test (Table 1.12). A broader comparison 

between wet and dry years reveals a substantial impact on yield, with a significant P-value of 

0.0005. During wet years, the Tukey test indicated that treatments with 30% and 50% 

depletion did not result in significant yield differences, suggesting that a moderate reduction 

in plant-available water does not significantly affected peanut crop yield. However, treatment 

with 70% soil water depletion in wet years exhibited significantly lower yield compared to 

other treatments, suggesting that excessive water depletion negatively affects crop yield. 

Contrasting with wet years, significant yield differences among the three deficit irrigation 

treatments were observed in dry years. Higher and significantly different peanut yield was 

observed with 30% depletion than the other two depletion treatments. Peanut yield 
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significantly decreased as the depletion level increased (Table 1.12). . The results demonstrate 

a yield loss trend as soil water depletion increases (Figure 1.17). Wet years consistently show 

higher yields across all soil water depletion levels compared to dry years. Within each AWDR 

year category, there is a decline in yield as the level of soil water depletion increases, 

emphasizing that a decrease in available soil water negatively impacts peanut yield. 

Maximum productivity is achieved under the 30% soil water depletion due to reduced water 

stress in this treatment, aligning with the findings of Rao et al. (1985) and highlighting the 

critical role of irrigation in mitigating water stress and optimizing peanut yield under varying 

weather conditions. 

The number of irrigation events and irrigation amounts follow the same trend as yield 

(Figures 1.18 and 1.19). The 70% depletion treatment has fewer irrigation events and lower 

water application compared to other treatments, as expected. On the contrary, the 30% 

depletion treatment has the most significant amount of water applied and the highest number 

of irrigation events, aligning with the soil's behavior and the plant's water uptake dynamics. 

The seasonal analysis emphasizes the influence of weather conditions on irrigation 

application strategies for each specific year. It is noteworthy that in the 30% depletion 

treatment, there were years with up to 27 irrigation events, which may not be practical. 

Maintaining a soil water depletion rate of 50% provides an optimal balance between water 

conservation and ensuring an adequate water supply for plant growth. This threshold 

achieved high yields while limiting the maximum reported number of irrigation events to 17 

in some years (Figure 1.18). 

In wet years, the maximum leaf area index (LAI) (Table 1.13) exhibits no significant 

difference between the 30% and 50% depletion treatments (group A). However, in dry years, 

the 50% depletion treatment forms a distinct group (B), indicating a noticeable impact on 

maximum LAI compared to the 30% depletion. Regardless of rainfall conditions, the 70% 
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depletion consistently forms a separate group (C) with significantly lower maximum LAI, 

emphasizing a pronounced reduction in leaf area with more substantial water depletion. This 

difference is particularly pronounced in the driest years, underscoring maximum LAI's 

sensitivity to severe water limitations. Overall, the results underscore maximum LAI's 

responsiveness to variations in plant-available water, with depletion extent playing a crucial 

role, especially during water-scarce periods. Throughout the study, it has been emphasized 

that LAI is significantly influenced by water stress, impacting crop yield. Figure 1.20 

illustrates the response of maximum LAI to three irrigation treatments, demonstrating how 

this response varies in years with insufficient rainfall distribution compared to those with 

abundant rainfall. In years with poor rainfall distribution (Figure 1.20a), maximum LAI 

shows higher variability, with the 50% depletion treatment exhibiting less variability. 

Conversely, during wet years (Figure 1.20b), the 50% depletion treatment displays less 

variation than other treatments. As expected, the 30% depletion treatment exhibits the highest 

LAI. Haro et al. (2008) noted that soil water stress influences peanut LAI, linking water 

availability to leaf growth. Effective irrigation management is highlighted as crucial for 

optimal crop productivity and water resource conservation. 

The results for irrigation water productivity (IWP), as shown in Table 1.14, indicate 

that in dry years, IWP was highest at 30% depletion (22.3333, group A). However, as the 

depletion increased to 50%, the IWP decreased to 13.6667 (group B) and further to 8.3333 at 

70% depletion (group C). In wet years, a similar trend is observed, with the highest IWP at 

30% depletion (14.6667, group B), followed by 50% depletion (7.8333, group C), and the 

lowest IWP at 70% depletion (4.0000, group C). The box plots (Figure 1.21) further illustrate 

the trend, indicating that as the depletion of plant-available water increases, there is a 

consistent decline in IWP. This decline is likely due to reduced water availability for crops, 

affecting their growth and productivity. In dry years, the impact of higher depletion levels is 
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evident, with lower IWP values. In wet years, while the impact is less pronounced, the trend 

still aligns with the general understanding that as plant-available water decreases, irrigation 

water productivity is adversely affected. Figure 1.21 illustrates the irrigated water 

productivity (IWP) differences among the soil water depletion treatments evaluated and how 

the response changes over the years. In the AWDR dry years, when the depletion level 

SUMMARY AND CONCLUSIONS 

In conclusion, the analysis of weather conditions, model calibration, and the impact of 

deficit irrigation on peanut growth and yield provides valuable insights about peanut crops in 

Society Hill, AL. The weather conditions during the study periods varied, with 2021 

experiencing exceptional precipitation levels during certain months, creating challenges such 

as waterlogging and disease risk. The selection of dry and wet years based on the Available 

Water Depletion Rate (AWDR) offered a nuanced understanding of the impact of water 

availability on crucial growth processes. 

 

The calibration of the CSM-CROPGRO-Peanut model involved modifying cultivar 

coefficients, soil water content, LAI, and above-ground biomass. The model demonstrated its 

capability to simulate variables, although discrepancies between simulated and observed 

values were present, attributed to the complexity of genetics and environmental factors. 

The seasonal analysis, evaluating three irrigation deficit treatments over 30 years, 

revealed significant variability in peanut yield, emphasizing the critical role of irrigation in 

mitigating water stress. The impact of irrigation strategies on yield was particularly 

pronounced during dry years, where lower water depletion, achieved through more frequent 

irrigation, led to increased yields. The analysis of peanut yield response to irrigation during 

wet and dry years highlighted the importance of adapting irrigation strategies based on 
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weather conditions. The influence of weather and irrigation management strategies on peanut 

yield evaluated for the conditions of peanut fields planted in Society Hill Alabama was 

evident, with a 50% soil water depletion rate identified as optimal strategy during wet years 

and 30% depletion in dry years. The identification of those strategies is important for 

balancing water conservation and ensuring an adequate water supply for plant growth. 

In summary, this research contributes valuable insights into the intricate relationship 

between weather conditions, model dynamics, and irrigation strategies in peanut crops. The 

findings underscore the importance of considering both genetic and environmental factors 

when calibrating models and designing irrigation strategies for optimal crop productivity. 

This holistic approach is crucial for addressing the challenges posed by variable weather 

conditions and achieving sustainable peanut crops practices. 
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Table 0.1 Location and crop management practices of peanut fields included in this study. 

 

Field 2(a) Field 2(b) Field 3(c) Field 3(b) 

Calibration 

2021 

Calibration 

2022 

Validation 

2021 

Validation 

2022 

Location 
32°25’18” N 

85°24’56” W 

32°25’08” N 

85°26’10” W 

32°29’59” N 

85°26’24” W 

32°25’08” N 

85°26’10” W 

Field sampling 

locations per year 
4 1 3 5 

Planting date 
May 21st 

and 22nd 

May 19th 

and 20th 
May 26th 

May 19th 

and 20th 

Seeding rate, kg ha-1 168.13 145.71 168.13 145.71 

Row width, m 0.91 0.91 0.91 0.91 

Area planted, ha 25 26 8.5 26 

Irrigation amount, 

mm 
54.61 none 15.24 none 

Irrigation events 4 none 1 none 

Harvest October 13th October 1st October 10th October 1st 
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Figure 0.1 Sampling locations during the 2021 growing season showing the different 

management zones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 

15 

13

3

6

5

7

9



58 

 

 
Figure 0.2 Fields and locations where peanut biomass and yield were collected for model 

calibration locations during the (a) 2021 growing season and (b) 2022 growing season. 

 

 
Figure 0.3 Sampling locations within two peanut fields used for model validation during the 

2021 (b) and (c) 2022 growing seasons. 
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Table 0.2 Monthly average weather conditions during the study period (2021-2022). 

2021 Minimum 

Temperature 

(oC) 

Maximum 

Temperature 

(oC) 

Solar Radiation 

(MJ m-2 day-1) 

Accumulative 

Rainfall (mm day-1) 

May 7 34 21 80 

June 16 34 17 138 

July 18 35 17 154 

August 19 35 17 165 

September 9 32 15 62 

October 5 30 12 188      

2022 Minimum 

Temperature 

Maximum 

Temperature 

Solar 

Radiation  

Accumulative 

Rainfall 

May 10 33 20 110 

June 18 39 20 41 

July 20 36 19 151 

August 20 35 17 139 

September 9 36 17 99 

October -1 30 15 57 
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Table 0.3 Simulated and observed pod weight and statistics of all locations collected throughout 

the 2021 and 2022 growing seasons. 

Field/Year 
Location 

Number 

Simulated 

Pod Weight 

(kg ha-1) 

Observed 

Pod Weight 

(kg ha-1) 

d-stata RMSEb 

Calibration     

1.2a - 2021 3 6022 4200 0.813 1620 
 6 4092 3635 0.923 1046 
 7 4072 3846 0.936 951 

1.2b - 2022 1.1 5256 6658 0.947 1005 

Evaluation     

1.3c - 2021 20 6306 5645 0.951 471 
 49 5601 6022 0.943 555 
 71 5443 4391 0.717 1081 

1.3b - 2022 1 5187 5048 - 140 
 2 5969 6395 - 430 
 4 5031 4578 - 454 
 7 5019 5678 - 698 
 19 5575 5479 - 96 
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Table 0.4 Soil texture characteristics of the locations within Field 2(a) used for crop simulation 

modeling analyses. 

Depth 

(cm) 

Location 3 Location 6 Location 7 

Clay 

(%) 

Silt 

(%) 

Soil 

Texture 

Class 

Clay 

(%) 

Silt 

(%) 

Soil 

Texture 

Class  

Clay 

(%) 

Silt 

(%) 

Soil 

Texture 

Class 

5 6.2 12.2 
Loamy 

Sand 
4.2 14.2 

Loamy 

Sand 
6.2 14 

Loamy 

Sand 

15 10.3 12.2 
Sandy 

Loam 
6.2 16.2 

Loamy 

Sand 
8.2 15.9 

Sandy 

Loam 

23 12.2 10.2 
Sandy 

Loam 
12.2 18.2 

Sandy 

Loam 
10.2 16 

Sandy 

Loam 

30 18.3 10.2 
Sandy 

Loam 
20.2 18.2 

Sandy 

Clay Loam 
16.2 20 

Sandy 

Loam 

46 32.3 10.1 
Sandy Clay 

Loam 
30.2 16.2 

Sandy 

Clay Loam 
22.2 18 

Sandy Clay 

Loam 

61 34.3 8.1 
Sandy Clay 

Loam 
30.2 16.2 

Sandy 

Clay Loam 
26.3 16.3 

Sandy Clay 

Loam 

76 34.28 8.08 
Sandy Clay 

Loam 
32.16 14.2 

Sandy 

Clay Loam 
22.28 16.3 

Sandy Clay 

Loam 

91 36.3 8.1 Sandy Clay 38.2 12.2 
Sandy 

Clay 
22.2 14.3 

Sandy Clay 

Loam 

107 36.3 8 Sandy Clay 40.2 14.2 
Sandy 

Clay 
26.3 12.4 

Sandy Clay 

Loam 

122 42.3 6.1 Sandy Clay 44.2 14.3 Clay 30.3 12.3 
Sandy Clay 

Loam 
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Table 0.5 Soil texture characteristics from Field 2(b) locations used for model validation. 

Depth (cm) 

Location 2022 Field 2b 

Clay (%) Silt (%) Soil Texture Class 

23 10.12 16.6 Sandy Loam 

30 30.12 14.46 Sandy Clay Loam 

68 31.08 13.38 Sandy Clay Loam 

91 35.08 14.34 Sandy Clay Loam 

122 37.08 13.24 Sandy Clay 
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Figure 0.4 Acclima TDR-315H sensor used for collection of real-time soil moisture data. 
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Table 0.6 Abundant and Well-Distributed Rainfall (AWDR) index values for 32 years of rainfall 

data (Society Hill, Alabama). 

Year  

AWDR Index value 

Vegetative Period Reproductive Period 

2022 99 197 

2021 66 110 

2020 174 118 

2019 118 137 

2018 385 128 

2017 250 202 

2016 68 169 

2015 197 118 

2014 78 146 

2013 327 138 

2012 124 86 

2011 70 80 

2010 84 56 

2009 143 95 

2008 62 181 

2007 103 49 

2006 25 129 

2005 182 194 

2004 110 180 

2003 275 137 

2002 225 115 

2001 188 117 

2000 61 137 

1999 247 50 

1998 110 65 

1997 220 76 

1996 101 192 

1995 78 96 

1994 344 107 

1993 53 152 

1992 116 182 

1991 217 86 

1990 68 33 

Vegetative period: Mid-May to mid-July. 

Reproductive period: Mid-July to beginning of September.
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Figure 0.5 Monthly precipitation differences in 2021 and 2022 crop growing seasons concerning the historical monthly average (1990-2020). 

0

20

40

60

80

100

120

140

160

180

200

May June July August September October

P
re

ci
p
it

at
io

n
 (

m
m

)

Month

2021 2022 Historic Monthly Average



66 

 

 
Figure 0.6 Historical August precipitation at Lazenby 1.2a field (Society Hill, Alabama). 
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Table 0.7 Cultivar coefficients of the peanut variety ACI 3321 in the CROPGRO-Peanut model – DSSAT-CSM v4.8. 

Cultivar coefficients Coefficient label Unit Initial Values Final Values 

Critical Short-Day Length (for short-day plants)  CSDL hour 11.84 11.84 

Slope response of development to photoperiod with time 

(positive for short-day plants)  
PPSEN 1/hour 0 0 

Time between plant emergence and flower appearance 

(R1)  
EM-FL photothermal days 21.2 25.8 

Time between first flower and first pod (R3)  FL-SH photothermal days 9.2 7.2 

Time between first flower and first seed (R5)  FL-SD photothermal days 18.8 20.5 

Time between first seed (R5) and physiological maturity 

(R7)  
SD-PM photothermal days 77.3 78.59 

Time between first flower (R1) and end of leaf expansion  FL-LF photothermal days 85 85 

Maximum leaf photosynthetic rate and high light  LFMAX mg CO2 m
-2 s-2 1.45 1.02 

Specific leaf area under standard growth conditions  SLAVR cm2 g-1 270 234 

Maximum size of full leaf (three leaflets)  SIZLF cm2 18 16 

Maximum fraction of daily growth (seed + shell) XFRT g 0.95 0.90 

Maximum weight per seed WTPSD g 0.69 0.67 

Seed filling duration for pod cohort at standard growth 

conditions  
SFDUR photothermal days 42 29 

Average seed per pod under standard growing conditions  SDPDV #/pod 1.65 1.49 

Time to reach final pod load (optimal conditions)  PODUR photothermal days 28 33 

The maximum ratio of seed at maturity THRSH Seed (seed + shell) -1 80 72 

Fraction protein in seeds SDPRO g(protein) g(seed) -1 0.27 0.27 

Fraction oil in seeds  SDLIP g(oil) g(seed)-1 0.51 0.51 
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Table 0.8 Simulated and observed data for the model calibration using 2021 growing season 

data at Society Hill, Alabama (field 1.2a). 

Variable Simulated Observed 

Anthesis day (DAP) 41 39 

Physiological maturity day (DAP) 135 145 

Yield at harvest maturity (kg [dm]/ha) 4240 3072 

Pod weight at maturity (kg [dm]/ha) 6014 4200 

Tops weight at maturity (kg [dm]/ha) 11333 7459 

Number at maturity (no/ m²) 485 498.1 

Unit weight at maturity (g [dm]/unit) 0.8737 0.615 

Harvest index at maturity 0.374 0.412 

Leaf area index, maximum 5.82 5.87 

DAP: Days after planting. 
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Table 0.9 Simulated and observed data for the model calibration using 2022 growing season 

data at Society Hill, Alabama (field 1.2b). 

Variable Simulated Observed 

Anthesis day (DAP) 40 43 

Physiological maturity day (DAP) 135 135 

Yield at harvest maturity (kg [dm]/ha) 3796 4073 

Pod weight at maturity (kg [dm]/ha) 5773 6658 

Tops weight at maturity (kg [dm]/ha) 11467 15488 

Number at maturity (no/ m²) 510 369.4 

Unit weight at maturity (g [dm]/unit) 0.7446 0.719 

Harvest index at maturity 0.331 0.263 

Leaf area index, maximum 6.12 6.315 

DAP: Days after planting. 
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Table 0.10 Soil properties were calibrated using 2021growing season data at Society Hill, 

Alabama (field 1.2a). 

Depth 

(cm) 

  

Initial  

Lower 

Limit (LL) 

(cm3 cm-3) 

Final  

Lower 

Limit (LL) 

(cm3 cm-3) 

Initial 

Drained Upper 

Limit (DUL) 

(cm3 cm-3) 

Final 

Drained Upper 

Limit (DUL) 

(cm3 cm-3) 

5 0.59 0.068 0.12 0.153 

15 0.113 0.088 0.207 0.176 

23 0.98 0.097 0.166 0.183 

30 0.128 0.124 0.201 0.211 

46 0.195 0.183 0.273 0.277 

61 0.205 0.192 0.28 0.284 

76 0.201 0.192 0.273 0.284 

91 0.211 0.201 0.284 0.294 

107 0.212 0.201 0.285 0.294 

122 0.242 0.229 0.315 0.324 
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Table 0.11 Soil properties were calibrated using 2022 growing season data at Society Hill, 

Alabama (field 1.2b). 

Depth 

(cm) 

  

Initial  

Lower 

Limit (LL) 

(cm3 cm-3) 

Final  

Lower 

Limit (LL) 

(cm3 cm-3) 

Initial 

Drained Upper 

Limit (DUL) 

(cm3 cm-3) 

Final 

Drained Upper 

Limit (DUL) 

(cm3 cm-3) 

23 0.095 0.095 0.183 0.183 

45 0.183 0.13 0.268 0.19 

68 0.186 0.186 0.267 0.21 

91 0.204 0.204 0.288 0.288 

122 0.216 0.216 0.299 0.299 
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Figure 0.7 Simulated and observed soil water content at 15-30 cm depths (a) and 45 - 60 cm 

depths (b), at location 3, during the 2021 season (field 1.2a). 
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Figure 0.8 Simulated and observed soil water content at 15-30 cm depths (a), 30 - 45 cm 

depths (b), and 45 – 60 cm depths (c), at location 1, during the 2022 season (field 1.2b). 
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Figure 0.9 Observed and simulated leaf area index for the peanut ACI 3321 at field 1.2a in 

2021 season (a), at location 3, and at field 1.2b in 2022 season (b), at location 1, in Society 

Hill, Alabama. 

 

 
Figure 0.10 Observed and simulated above-ground biomass for the peanut ACI 3321 at field 

1.2a in 2021 season (a), at location 3, and at field 1.2b in 2022 season (b), at location1, in 

Society Hill, Alabama. 
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Figure 0.11 Observed and simulated leaf weight for the peanut ACI 3321 at field 1.2a in 2021 

season (a), at location 3, and at field 1.2b in 2022 season (b), at location 1, in Society Hill, 

Alabama. 

 

 

 
Figure 0.12 Observed and simulated the peanut ACI 3321 at field 1.2a in 2021 season (a), at 

location 3, and at field 1.2b in 2022 season (b), at location 1, in Society Hill, Alabama. 
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Figure 0.13 Observed and simulated pod weight for the peanut ACI 3321 at field 1.2a in 2021 

season (a), at location 3, and at field 1.2b in 2022 season (b), at location 1, in Society Hill, 

Alabama. 

 

 

 
Figure 0.14 Validation pod weight for the peanut ACI 3321 at field 1.3c in 2021 at locations 

20 (a) and 49 (b) at Society Hill, Alabama. 
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Figure 0.15 Validation pod weight for the peanut ACI 3321 at field 1.3b in 2022 at locations 1 

(a) and 19 (b) at Society Hill, Alabama. 
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Figure 0.16 Yield (kg ha-1) simulated with 30 years of weather data (1990-2019) and with Marvyn Loamy Sand (location 01 Field 1.2b), with 

three deficit irrigation/soil water depletion treatments at Society Hill, Alabama. 
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Table 0.12 Tukey-Kramer Grouping for Least Squares Means of yield analysis, with respect to 

depletion levels versus AWDR, at a significance level of 0.05. 

AWDR Treatment Estimate   

Wet 30 4778.33  A 

Wet 50 4489.50  A 

Dry 30 4219.67 B A 

Wet 70 3804.00 B C 

Dry 50 3677.17  C 

Dry 70 2720.00  D 

LS-means with the same letter are not significantly different. 

 

 

 
Figure 0.17 Yield (kg ha-1) distribution and variability regarding AWDR driest years (a) and 

wettest years (b) with Marvyn Loamy Sand (location 01 Field 1.2b), with three deficit 

irrigation/soil water depletion treatments at Society Hill, Alabama. 
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Figure 0.18 Number of irrigation applications simulated with 30 years of weather data (1990-2019) and with Marvyn Loamy Sand (location 01 

Field 1.2b), with three deficit irrigation/soil water depletion treatments at Society Hill, Alabama. 
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Figure 0.19 Irrigation amount (mm) simulated with 30 years of weather data (1990-2019) and with Marvyn Loamy Sand (location 01 Field 

1.2b), with three deficit irrigation/soil water depletion treatments at Society Hill, Alabama. 
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Figure 0.20 Maximum LAI (m2 m-2) simulated with 30 years of weather data (1990-2019) and with Marvyn Loamy Sand (location 01 Field 

1.2b), with three deficit irrigation/soil water depletion treatments at Society Hill, Alabama. 
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Table 0.13 Tukey-Kramer Grouping for Least Squares Means of LAI analysis, with respect to 

depletion levels versus AWDR, at a significance level of 0.05. 

AWDR Treatment Estimate   

Dry 30 6.8500  A 

Wet 30 6.6667  A 

Wet 50 6.5000  A 

Dry 50 6.4167 B A 

Wet 70 5.9167 B C 

Dry 70 5.5000  C 

LS-means with the same letter are not significantly different. 

 

 

  
Figure 0.21 Maximum LAI (m2 m-2) distribution and variability regarding AWDR driest years 

(a) and wettest years (b) with Marvyn Loamy Sand (location 01 Field 1.2b), with three deficit 

irrigation/soil water depletion treatments at Society Hill, Alabama. 

 

(a) (b) 
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Table 0.14 Tukey-Kramer Grouping for Least Squares Means of irrigation water productivity 

analysis, with respect to depletion levels versus AWDR, at a significance level of 0.05. 

AWDR Treatment Estimate  

Dry 30 22.3333 A 

Wet 30 14.6667 B 

Dry 50 13.6667 B 

Dry 70 8.3333 C 

Wet 50 7.8333 C 

Wet 70 4.0000 C 

LS-means with the same letter are not significantly different 

 

 

    
Figure 0.22 Irrigated water productivity (IWP) distribution and variability regarding AWDR 

driest years (a) and wettest years (b) with Marvyn Loamy Sand (location 01 Field 1.2b), with 

three deficit irrigation/soil water depletion treatments at Society Hill, Alabama. 
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III. EVALUATION OF THE FIELDPRINT CALCULATOR AS A TOOL TO ASSESS 

PROGRESS TOWARDS CONSERVATION AGRICULTURE AND TO 

PROMOTE BENCHMARKING AMONG FARMERS   
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ABSTRACT 

Sustainable agriculture is crucial for environmental preservation and food security. 

This study, conducted in Alabama, USA, aimed to evaluate the application of sustainability 

indicators, particularly those in the Field to Market Fieldprint Calculator, to promote 

sustainable agricultural practices. The study's objectives involved understanding the current 

indicators' applications and benefits and identifying opportunities and barriers to their 

adoption. Five farmers were selected based on their crop rotation and conservation practices, 

and data was collected from 2019 to 2021. Comparative analyses were conducted by pairing 

farmers with the same crops and year but different management practices, which were then 

presented during two field days. The analysis aimed to evaluate the impact of farming 

practices on energy use, water quality, soil carbon, soil conservation, and greenhouse gas 

emissions indicators. The results revealed that Farmer 14 consumed more energy per acre 

than Farmer 22 due to the use of conventional tillage. Fertilizer energy, influencing overall 

energy use scores, was significantly higher for Farmer 14 due to increased fertilizer 

application. Higher fertilizer application by Farmer 14 led to a lower water quality score 

compared to Farmer 22. Conventional tillage resulted in a negative soil carbon score, 

indicating a higher risk of organic matter loss. In contrast, simulating strip tillage showed a 

positive soil carbon score, suggesting potential for improved soil carbon content. This 

transition also positively impacted soil conservation scores. In the greenhouse gas emission 

analysis, Farmer 71 emitted more CO2e/acre than Farmer 17 due to conventional tillage and 

more trips to the field. Using sustainability indicators, such as the Fieldprint Calculator, for 

educating farmers, consultants, and NRCS personnel presented both challenges and 

opportunities. Some challenges identified included the understanding of the tool’s 

complexity, interpreting the entry datasets, and acquiring a profound understanding of diverse 

agronomic practices used by farmers and their influence and contribution to the indicator 
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outputs. Opportunities include active participation within farmers' networks to promote 

conservation practices, while targeted educational programs can enhance basic knowledge 

and proficiency. In essence, this chapter emphasizes the importance of a comprehensive 

perspective of sustainable agriculture, focusing not only on implementing sustainable 

practices but also establishing a supportive atmosphere. 
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INTRODUCTION 

Adopting sustainable agricultural methods is crucial in tackling global challenges 

such as food security and climate change. Achieving agricultural sustainability involves 

implementing cover cropping, crop rotation, reduced or no-till methods, integrated pest 

management, precision agriculture, and best management practices. However, these methods 

typically demand increased management efforts. In the United States, the adoption of 

conservation practices remains limited, with recent data indicating that for example, only 

5.1% of U.S. cropland utilizes cover crops (Wallander et al., 2021). Cultural beliefs and 

values often hinder the widespread adoption of these sustainable practices (IPCC, 2022). 

Social pressures, including the desire for visually perfect fields, peer pressure, and negative 

views on sustainable agriculture, discourage farmers from adopting new methods (Rodriguez 

et al., 2008). Additionally, the lack of positive examples and successful cases hinders 

adoption. Traditional beliefs and the reluctance to change established practices, especially 

among older generations who control land, present significant barriers (Rodriguez et al., 

2008).  

Farmers face significant challenges when adopting these practices to maintain 

productivity (Foley et al., 2011). To achieve agricultural sustainability, it is essential to 

implement practices that are economically viable, environmentally, and socially responsible 

(Philip Robertson and Hamilton, 2015; Pretty, 2018). The barriers to adopting sustainable 

agricultural practices in the Southern United States are complex and multifaceted, involving 

issues related to finance, education, social perceptions, and institutional support. Overcoming 

these barriers requires targeted efforts in education, financial support, and changing social 

perceptions to encourage the widespread adoption of sustainable farming methods (Rodriguez 

et al., 2008). The adoption outcomes can vary significantly from year to year due to factors 

like crop type, climate, soil conditions, and management practices (Marcillo and Miguez, 
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2017; Laborde et al., 2020; Allam et al., 2021). Hence, balancing economic viability, 

environmental responsibility, and social sustainability becomes crucial in diverse agricultural 

contexts. 

Although numerous sustainability assessment tools have been developed, questions 

arise regarding their practical implementation and contribution promoting change (de Olde et 

al., 2018). Promoting sustainable agricultural practices requires indispensable tools to help 

farmers comprehend the consequences of their actions and guide them towards adopting more 

sustainable approaches. Several factors, including economic incentives, farm characteristics, 

and risk perceptions, influence farmers' decisions regarding conservation practices 

(Rodriguez et al., 2008; Trujillo-Barrera et al., 2016; Bagnall et al., 2020; Hatanaka et al., 

2022). Collaborative efforts and knowledge sharing with research and outreach specialists are 

pivotal in driving adoption (Fujisaka, 1994; Gielen et al., 2003; Kemp et al., 2014). 

Agricultural extension services, both public and private, have been shown to have a positive 

impact on adoption rates (Cole, 2010; Schirmer et al., 2012; Santiago et al., 2018; Nath et al., 

2023). Connecting these programs with national extension systems can result in a notable 

change in agricultural sustainability. A study conducted by Laborde et al. (2020) revealed that 

using sustainability tools such as the Fieldprint Calculator led to the adoption of more 

sustainable practices by farmers. 

In recent years, private industry initiatives and multi-stakeholder alliances have 

emerged as influential forces in promoting sustainability within the agriculture sector, often 

complementing governmental efforts (Ponte, 2014). Some multi-stakeholder initiatives have 

shifted from setting specific standards to using metrics to measure and evaluate sustainability. 

Prominent U.S. food and agriculture companies, grower associations, and environmental 

groups endorse the metrics and data approach to boost agricultural sustainability (Freidberg, 

2017, 2020; Konefal et al., 2019; Hatanaka et al., 2022). This approach is embraced by Multi-
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Stakeholder Initiatives (MSIs) like Field to Market, the Sustainability Consortium (TSC), the 

Stewardship Index for Specialty Crops (SISC), and the U.S. Cotton Trust Protocol. Metrics 

provide farmers with the means to measure and evaluate their performance, enhancing their 

sustainability efforts (de Olde et al., 2016).  

Using sustainability indicators to assess the environmental impact of agricultural 

practices represents a crucial step toward bolstering sustainability efforts. One notable 

initiative in this realm is the Alliance for Sustainable Agriculture, also known as Field to 

Market, a nonprofit organization in the United States that promotes sustainable agricultural 

practices across the entire food and agriculture value chain. It is a diverse collaboration of 

stakeholders, including farmers, agricultural retailers, food companies, conservation groups, 

and universities. Field to Market works to unite the agricultural supply chain to create a more 

sustainable food system by providing resources, tools, and initiatives that help farmers, 

businesses, and organizations measure and improve their environmental and social 

performance. The Fieldprint Calculator tool measures and compares sustainability 

performance from several crops using NRCS tools to calculate eight indicators: biodiversity, 

energy use, greenhouse gas emissions (GHG), irrigated water use, land use, soil carbon, soil 

conservation, and water quality (Field to Market, 2023). Another prominent example, besides 

Field to Market, is the Cool Farm Tool, developed by the Cool Farm Alliance. This non-profit 

organization enables farmers to measure and reduce their carbon footprint and environmental 

impact (Haverkort and Hillier, 2011). It originated in the United Kingdom and was developed 

collaboratively by experts, including researchers, farmers, and agricultural organizations. It is 

not limited to a specific region or country; instead, it is applicable globally, allowing farmers 

from different parts of the world to assess and improve the environmental sustainability of 

their farming operations (Cool Farm Alliance, 2021). Similarly, companies like Indigo Ag 

have introduced innovative sustainability calculators to assess environmental impacts and 
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promote sustainable farming practices. Among their initiatives is carbon farming, operated 

through the Indigo Carbon program. The carbon farming approach was designed to sequester 

carbon dioxide from the atmosphere and store it in the soil, thus mitigating climate change 

(Indigo Ag., 2022). 

Benchmarking is a vital strategy adopted by various industries, including agriculture, 

to improve performance by learning from others. In agriculture, especially since the late 20th 

century, this approach has been pivotal in bolstering productivity and sustainability efforts. 

Tools like the Fieldprint Calculator have significantly contributed to benchmarking 

sustainability in agriculture, empowering agribusinesses (Field to Market, 2023). Despite the 

widespread acceptance of the Fieldprint Calculator, concerns have been raised regarding its 

benefits, data accuracy, and the practical interpretation of benchmarking reports (Hoffelmeyer 

et al., 2022). Parrish's (2016) study, focusing on establishing benchmarks for the 

environmental impact of cotton production, showcased that, on average, Georgia cotton 

producers outperformed the national Fieldprint Calculator average in sustainability. Another 

research by (Robertson et al., 2020) demonstrated the positive impacts of conservation 

practices on soil carbon and soil conservation, emphasizing the need for documenting 

sustainable practices, a crucial aspect for brands and retailers seeking sustainable products. 

Black (2018) highlighted the Fieldprint Calculator's utility in encouraging resource 

conservation, efficient water management, and analyzing profitability metrics. Several 

universities have integrated this tool into their practices, such as Tennessee University 

(Gibson and Buschermohle, 2013), University of Georgia (Parrish, 2016; Reagin and Porter, 

2021, 2022; Reagin et al., 2022), University of Arkansas (Robertson et al., 2020), and Texas 

A&M University (Gillum and Johnson, 2015, 2016; Gillum et al., 2016; Black, 2018), 

showcasing the tool's versatile application in promoting sustainable agriculture practices.  
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Although the Fieldprint Calculator has been effectively employed in other regions, its 

usability, and benefits towards increasing adoption of conservation practices by Alabama 

farmers must be explored. This study aims to identify opportunities and challenges in using 

sustainability indicators within the Field to Market Platform to document environmental 

conditions related to the adoption of conservation practices. The objectives include 

identifying applications and benefits of sustainability indicators and exploring potential 

opportunities and barriers to their adoption, particularly tracking environmental management 

practices and emphasize the importance of stakeholder engagement. Actively involving 

stakeholders, including farmers, consultants, and relevant agricultural organizations, we 

aimed to explore potential opportunities and barriers to the adoption of these indicators. This 

inclusive approach seeks to establish connections between the sustainability indicators and 

the perspectives of those actively involved in using environmental management practices. 

Ultimately, the study aims to contribute to the knowledge base of sustainable agriculture and 

offers insights into enhancing understanding of the relationship between agronomic practices 

and their impact or contribution towards sustainability among farmers. 

MATERIAL AND METHODS  

This section is divided into several parts. Firstly, it starts with a description of  how 

participating farmers were chosen and identified. The next part details the selection of the 

sustainability indicators tool, emphasizing why the Fieldprint Calculator was chosen and its 

widespread use in different regions of the USA. The following subsection goes into a detailed 

description of the Fieldprint Calculator, providing information on each indicator metric. After 

this, the steps for learning how to use the indicators' tool and understanding the report outputs 

are explained. The process of collecting data, analyzing it, and presenting and discussing the 

results is then outlined. Finally, the section concludes with insights into the sharing and 
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engagement activities with farmers, crop consultants, NRCS personnel, and other 

stakeholders, especially during two field days in the summer of 2023. 

1. Selection/Identification of Participating Farmers 

The study was part of the Future of Farming project, funded by the Natural Resources 

Conservation Service (NRCS), spanning five years (from 2020 to 2025). The 

interdisciplinary team leading the project involved experts from Auburn University and the 

Alabama Cooperative Extension System, along with graduate students and Postdoctoral 

scientists from Crop, Soil, and Environmental Science department. This collaborative effort 

spanned various vital areas, including precision irrigation, nutrient management, soil health, 

rural sociology, and economy. The project encompassed three components: farmer-owned 

demonstration sites in different regions of Alabama, "Farmer-Focused Learning Groups" 

composed of local farmers, crop consultants, Extension agents, and NRCS representatives, 

and an incentive payment program to implement cover crops. Therefore, with the assistance 

of a local extension agent, five farmers were selected from the Central Alabama focus group. 

The farmers’ selection criteria included crop rotation type (cotton, peanut, or corn), use of 

irrigation, use or not use of conservation practices. After identifying the potential cooperating 

farmers, each farmer was contacted by phone, and a brief description of the study's goal was 

provided. After the conversations, some farmers and a few declined the invitation, which 

resulted in identifying a few more. This study is part of a six-year NRCS funded project and 

then, pseudonyms are used for all project participants. The cooperating farmers included in 

this specific study were F14, F17, F22, F40, and F71. The Fieldprint Calculator analyzes 

year-to-year crop management data on a field-level basis. Therefore, just one or two fields 

from their farm were selected for the study. Crop management data from the period 2019 to 

2022 was input into the calculator with the expectation that during those years farmers would 
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have made changes in their management practices that could have resulted into advances 

towards conservation and could be used as study cases to other farmers.    

2. Selection of the Sustainability Indicators Tool  

The study started with the goal of using the sustainability indicators as benchmarking 

tools to facilitate dialogues and knowledge exchange among farmers concerning their 

experiences and challenges related to conservation practices. Field to Market comprises 

diverse organizations representing the entire supply chain, including universities, 

agribusinesses, grower organizations, conservation groups, and public sector partners. In 

2023 Field to Market are boasting over 190 organizations in the Field to Market community 

(Field to Market, 2023). Field to Market also has a partnership to integrate NRCS tools and 

models into the Fieldprint Platform (Field to Market, 2022a). Currently available for various 

crops, including alfalfa, barley, corn (grain and silage), cotton, peanuts, potatoes, rice, 

sorghum, soybeans, sugar beets, and wheat. The Fieldprint Calculator has been extensively 

used by universities, including Tennessee, Georgia, Arkansas, and Texas A&M, to promote 

conservation practices. Its widespread use along with its user-friendly interface, led to the 

selection of the Fieldprint Calculator for this study. 

Moreover, the calculator generates scores based on the practice implemented and the 

potential impact (positive or negative) on the environment (Field to Market, 2022b). This 

enables growers to compare their sustainability scores with enrolled project benchmarks and 

state and national benchmarks. Many agribusiness industries, such as the cotton industry, 

have already embraced this tool. For instance, in the cotton industry, producers can compare 

their current management techniques with growers from different areas, regions, and states. 

This functionality enables them to modify scenarios within the system, thereby understanding 

how they can reduce inputs and enhance sustainability (Parrish, 2016). Such practical 
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applications underscore the effectiveness and versatility of the Fieldprint Calculator in 

driving sustainable agricultural practices. 

2.1 Fieldprint Calculator Description  

The Fieldprint Calculator offers a comprehensive suite of sustainability indicators, 

including measures for biodiversity, energy use, greenhouse gas emissions (GHG), irrigated 

water use, land use, soil carbon, soil conservation, and water quality. The report of those eight 

indicators is presented in two ways, a written report with tabular results and suggest 

management practices that should be considered for improvement and in the form of a 

spidergram (Figure 2.1) to visually present the agricultural footprint with respect to state and 

national benchmarks for each indicator. These comparisons aid producers in determining 

which practices are best suited for their operation. Smaller values, closer to the center of the 

spidergram, indicate more efficient resource use and more progress towards sustainability. 

The spidergram allows user to easily visualize the impact of crop management and how that 

compares to other farmers in the state and national level. 

2.2 Group of Sustainability Indicators available in the Fieldprint Calculator  

Indicators measure environmental outcomes based on individual farm field operations 

data and environmental factors like soil, landscape, and weather. These indicators are created 

collaboratively through a multi-stakeholder process to establish a common framework for 

measuring environmental progress in the U.S. commodity crop production. The metrics 

generated by these indicators represent measurable sustainability outcomes calculated using 

algorithms within the Fieldprint Platform. These calculations can be simple or complex, 

resulting in either quantitative (efficiency) or qualitative (risk) assessments (Field to Market, 

2022c). Factors that affect the sustainability metrics are described in Table 2.1, and 

Tools/models used to estimate the metrics are described in Table 2.2.   
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2.2.1 Land Use 

The land use metric quantifies the number of acres used to produce a single unit of 

crop yield (acres/unit of crop production), which is influenced by the farmer’s operational 

efficiency. A lower score indicates more efficient land use, influenced by crop yield, 

operational efficiency, variety selection, and management decisions such as irrigation and 

pest control. Increasing crop yield could decrease land use score and therefore, increase land 

use efficiency. Although weather events significantly affect yields, farmer decisions play a 

significant role in optimizing productivity. 

2.2.2 Irrigation Water Use 

Irrigation water use metric accounts for the volume of water applied per unit of 

increased production compared to dryland cultivation. A lower metric indicates superior 

water efficiency. This metric is calculated as the volume of irrigation applied in acre-inches 

divided by the yield from irrigated land minus the yield from non-irrigated land. Factors 

affecting irrigation water use are crop species, variety and crop development stage, 

evapotranspiration, soil texture, structure, and salinity. Although a grower cannot change the 

soil texture, its impacts can be mitigated using management practices that improve water 

holding capacity and infiltration. 

𝐼𝑊𝑈 =
𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝐴𝑚𝑜𝑢𝑛𝑡 (𝑎𝑐𝑟𝑒 𝑖𝑛𝑐ℎ𝑒𝑠)

𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑌𝑖𝑒𝑙𝑑 − 𝑁𝑜𝑛 𝐼𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑 𝑌𝑖𝑒𝑙𝑑
 

2.2.3 Energy Use 

Energy use measures all energy consumed throughout the growing season, 

represented in gallons of diesel per production unit. It is also quantified in British thermal 

units (BTU) per unit of crop production, such as bushels, pounds, or hundredweights. A lower 

value signifies more efficient energy use in producing a unit of crop. To illustrate, one BTU 
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can increase the temperature of one pound of water by 1°F, and a single gallon of diesel 

generates 137,452 BTU (Field to Market, 2017). The metric encompasses the entire crop 

cultivation process, from pre-planting to the first sale or transfer to a processing facility. 

Direct energy accounts for various fuel types (diesel, electricity, gasoline, natural gas, and 

liquefied petroleum gas), while indirect energy includes embedded energy in inputs like 

fertilizers and crop protectants. National-level data from sources like the USDA Agricultural 

Resources Management Survey (ARMS) and the Irrigation and Water Management Survey 

are used to calculate irrigation energy based on operating pressure and water lift factors. 

Management energy related to tillage and residue management is estimated using data from 

ARMS and other sources. Manure application energy is calculated using application rates and 

treated acreage data. The energy associated with equipment used for fertilizer and crop 

protectant applications is also considered, incorporating factors such as the number of 

applications and energy conversion values. Post-harvest treatment energy, including grain 

drying and transportation, is factored in up to the first point of sale. Energy from synthetic 

fertilizers is calculated based on application rates and energy conversion factors, considering 

improvements in production efficiency over time. Crop protectant energy is determined using 

active ingredient data and energy factors. Seed energy is estimated based on industry 

judgment and expert input, considering the intensive management and input use involved in 

seed production. The analysis focuses on various crops, adjusting energy components based 

on specific crop characteristics and agricultural practices, providing a comprehensive 

overview of the energy inputs across various stages of crop production. 

2.2.4 Greenhouse Gas Emissions 

The Greenhouse gas emissions (GHG) indicator within the Fieldprint platform 

assesses emissions from various sources in agricultural activities. Significant sources include 

energy use, residue burning emissions, nitrous oxide emissions from soils, and methane 
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emissions from flooded rice production. Emissions from energy use are converted to GHG 

emissions using factors considering energy sources. Emissions from equipment operation for 

different tillage systems are calculated, with conventional tillage producing the most 

emissions. Emissions from irrigation water pumping and application are estimated based on 

energy use data, accounting for different fuel sources. Greenhouse gas emissions embedded 

in seeds, crop protectants, and synthetic fertilizers are calculated using established models 

and emission factors. Nitrous oxide emissions from soils are estimated considering nitrogen 

application, application method, and soil conditions. Emissions from field burning and 

residue removal are accounted for, with residue burning contributing a small portion of total 

emissions. Methane emissions from flooded rice fields are calculated based on available data, 

with emissions varying due to changes in rice acreage. Methane emissions from other crops 

due to flood irrigation are not considered due to limited data. 

2.2.5 Soil Conservation  

The soil conservation metric within the Fieldprint platform measurement is computed 

using the USDA NRCS Integrated Erosion Tool (IET), which consists of two models: WEPP 

(Water Erosion Prediction Program) and WEPS (Wind Erosion Prediction Service) and is 

reported as tons of soil lost per acre. It utilizes USDA NRCS models, specifically the 

Integrated Erosion Tool (IET), which integrates two models: Water Erosion Prediction 

Program (WEPP) for water erosion and Wind Erosion Prediction Service (WEPS) for wind 

erosion (Flanagan et al., 2007). To calculate the Soil Conservation metric value, users provide 

information on field characteristics (slope, slope length, and soil properties) and crop 

management practices like tillage, cover crop and crop rotation. Data is sourced from various 

databases, including USDA SSURGO (SSURGO, 2023) for soil profile properties and 

PRISM Climate Group (PRISM, 2023) for climate data. Users select field characteristics, 

confirm drainage systems, and enter management details using the rotation builder tool. High 
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in clay and silt, fine soils are more prone to erosion than sandy soils (Field to Market, 2018). 

The soil disturbance coverage, like plants and residue, also affects the metric values. Soil that 

has been disturbed is easily picked up by wind and water and carried away. Soil covered 

reduces erosion potential as the plant roots hold soil in place. 

2.2.6 Soil Carbon 

The Fieldprint Platform assesses soil carbon, a crucial factor supporting water 

infiltration, nutrient retention, crop productivity, and carbon storage. Soil carbon and organic 

matter are closely related. Organic matter, being rich in carbon, is a key component of soil 

carbon (Bhattacharyya et al., 2022). So, the decomposition of organic matter directly affects 

the soil's carbon levels. Due to the challenge of measuring yearly changes in soil carbon, the 

platform employs a qualitative and directional measure represented by the Soil Conditioning 

Index (SCI). The outcome varies based on the crop and ranges from -1.0 to +1.0, with values 

closer to +1.0 signifying a higher likelihood of management practices enhancing soil organic 

matter over time (Field to Market, 2018). Both the soil carbon and conservation metrics 

necessitate information about field activities affecting the soil, like tillage, and how crop 

residue and crop rotation are managed. Tillage and other practices that disturb soil stimulate 

decomposition and change the location of organic matter in the soil profile. While soil 

characteristics are derived from the USDA SSURGO database, users can modify specific 

inputs, such as organic matter content, based on soil tests conducted in their fields. 

2.2.7 Water Quality 

This metric assesses nutrient loss from a farm field to nearby waterways, focusing on 

four pathways: Surface Nitrogen, Subsurface Nitrogen, Surface Phosphorous, and Subsurface 

Phosphorous. For each pathway, two scores are assigned: the Field Sensitivity Score (FSS), 

indicating field sensitivity to nutrient loss based on location, climate, soil, and topography, 
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and the Risk Mitigation Score (RMS), indicating the effectiveness of management practices 

in preventing loss. The final metric score is divided into four pathways which indicate 

whether mitigation scores exceed sensitivity scores for each pathway or not. The goal is to 

mitigate all four nutrient loss pathways. A pathway is mitigated if the pathway ratio 

(RMS/FSS) is equal to or greater than 1 (Field to Market, 2021). The RMS is influenced by 

the nutrient management techniques used, nitrification inhibitors and precision application, 

cover crop, tillage type, and nutrient management techniques (right rate, right time, right 

location, right source, defined as 4Rs). 

The water quality metric uses the NRCS Stewardship Tool for Environmental 

Performance (STEP) to calculate the score. The STEP tool utilizes complex biophysically-

based crop and water quality models, Agricultural Policy / Environmental Extender (APEX) 

(Gassman et al., 2010) and The Soil and Water Assessment Tool (SWAT, 2023), along with 

detailed survey results from the National Resources Inventory (NRCS/NRI, 2023) to assess 

nutrient loss potential and conservation practice effectiveness. The Fieldprint platform 

accesses USDA models and data services through the Cloud Services Integration Platform 

(CSIP) hosted by Colorado State University (CSU) to calculate STEP scores.   

2.2.8 Biodiversity  

The biodiversity metric assesses a farm's ability to support a diverse community of 

plants and animals using the Habitat Potential Index (HPI). This metric is unique as it 

evaluates all lands on a farm, whereas other metrics focus on individual crop fields. The HPI 

determines the potential biodiversity capacity by considering land properties, ecoregion 

(structural score), and land management practices (management score). The structural score is 

influenced by land types and any conversions that occurred in the previous five years. 

Different land types (cultivated fields, forests, wetlands) have varying ecological values 



101 

 

based on their region-specific ecoregion classification. The management score is determined 

by user inputs, encompassing activities like tillage, cover crops, grazing, and invasive species 

management. The management score contributes two-thirds to the ecological quality score, 

while the structural score contributes one-third. Each land type receives a separate HPI score, 

and a full-farm HPI score is calculated, indicating the percentage of potential habitat realized. 

Scores below 50% present significant opportunities for enhancing habitat potential, while 

values between 50% and 80% indicate moderate realized potential. Scores exceeding 80% 

demonstrate farms that have fully exploited opportunities for biodiversity to thrive. 

3. Steps followed to learn how to use the indicators' tool and understand the 

indicator report outputs  

Before identifying applications and benefits of sustainability indicators and exploring 

potential opportunities and barriers to their adoption using the Fieldprint Calculator tool, a 

series of steps were taken. First, contact with the Field to Market team was made to gain 

access to the tool and associated resources. Collaborative meetings with specialists from the 

University of Georgia and the University of Tennessee were conducted to facilitate the 

learning process and share insights on data collection and input procedures. Self-guided 

learning was used to ensure a deep understanding of the tool's functionalities and capabilities 

and continuous contact with the Field to Market team to understand metrics and the meaning 

of the outputs, disparities, and problems with the outputs. 

Although the Fieldprint Calculator’s documentation includes information on how to 

input data, that was not enough to fully understand some of the data needed by the tool to 

generate an accurate report of each field and how to interpret the outputs. After creating the 

account into the platform, individual interviews with the cooperating farmers were initiated to 

collect the data, with each interview being on average two hours in length. During each 
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interview, a better understanding about the crop and the most common management practices 

used in each farm was gained. One of biggest challenge in collecting the data required by the 

tool was the lack of farm records on the crop management practices, then we relayed on the 

farmers’ memories. Therefore, any unclear questions were reevaluated and rephrased so 

growers would better understand the concept, or the type of data needed. All the data 

necessary for the Fieldprint Platform and the respect metrics associated with it as shown in 

Table 2.3. 

4. Data Collection 

Data collection involved conducting in-person semi-structured interviews with 

farmers selected for this study, who were participants in the Future of Farming Project. 

During these interviews, growers were explained the study's purpose and how the collected 

information would be used. An Excel spreadsheet with a questionnaire of the basic data 

required by the Fieldprint calculator was created, then enabling data collection even without 

internet access. Individual interviews to gather data from 2019 to 2021 typically occurred at 

one of the farmers' fields or barns, lasting around two hours to inquire about all their 

management practices, which were documented in the Excel spreadsheet. The initial goal was 

to assess farmers' performance and changes over time. Questionnaire topics include crop 

rotation, use of cover crops, tillage and irrigation practices, nutrient and fertilizer methods 

and application rate, chemical applications, and annual harvest yield (Table 2.3). Parrish' 

(2016) and Reagin et al. (2022) studies used the same data collection format. Following the 

interview, the responses were entered into the Fieldprint Calculator for each field that was 

collected.  

The process of inputting the data creating a field in the Fieldprint Calculator involves 

the following steps: it initiates with the field creation by providing basic information, such as 
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the field's location, size, and the specific crops grown. Subsequently, detailed information on 

management practices is entered, encompassing aspects like crop rotation, tillage methods, 

irrigation practices, fertilizer usage, and other relevant factors. Additionally, a rotation 

template is required, necessitating detailed data from at least two growing seasons; however, 

for this study, three years of data were entered. This template involves recording crop 

management data over multiple years to evaluate changes and trends in management 

practices, including crop types, rotation sequences, tillage, and specific practices adopted 

each year. The accuracy of data is very important, as adding or missing on travel to the field, 

for example, already affects the outcome. The time needed to generate a rotation template 

depends on factors like the complexity of management data, the number of fields, and the 

user's familiarity with the platform. Typically, this process may take a few hours to input data 

over a three-year period. Given the complexity involved, additional contact with the farmer 

was often necessary during data entry into the calculator to ensure comprehensive and precise 

information. Follow-ups were typically conducted via phone calls, and occasionally, multiple 

follow-up calls were necessary, caused by the identification of discrepancies upon reviewing 

the outcomes. 

5. Data Analysis 

Once data was entered into the Fieldprint Calculator, sustainability metric scores were 

calculated and presented in a report. Scores in the report are offered as a spidergram (Figure 

2.1), a graph shows the farmer’s field, state, and national indicator values for each one of the 

eight sustainability metrics. This graph could be used as a benchmarking tool to compare 

farmer’s management with respect to other farmers at the state and national level.    Each 

field’s score was analyzed to interpret the sustainability level of each of the eight metrics. On 

the spidergram, each sustainability indicator can receive values from zero to one hundred. If 

the values are closer to one hundred, they are further away from the center of the spidergram 
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and indicate that the management practices used on a field are more resource-intensive and 

less environmentally sustainable. In addition to showing the indicator values of a farmer’s 

field, the spidergram shows the scores at the state and national allowing comparison and 

benchmark. Comparative analyses were performed to assess variations among fields and 

farming practices, which included comparing metrics. These benchmarks give the grower an 

insight into how their scores compare to growers across the state and nation. These 

spidergram comparisons help farmers see how their own metrics change from year to year, 

giving them a clear picture of their progress.  

The Fieldprint Calculator report includes the individual scores for the different factors 

that comprise the metrics. Among the farmers selected for this project and based on the 

knowledge gained from their operations and practices used, data analyses and comparisons 

were done by "pairing" farmers with the same crop and year, but different management 

practices. This strategic pairing resulted in divergent outcomes, intended to foster discussions 

and engagement (Table 2.5). Comparisons among each pair of farmers were done with 

respect to the impact of their management practices on indicators such as energy use, water 

quality, soil carbon, soil conservation, and greenhouse gas emissions. Three case studies were 

created: Case Study 1 examined energy use and water quality between corn fields from 

Farmers 14 and 22 on 2021 growing season. Case Study 2 focused on soil carbon and soil 

conservation between cotton field of Farmer71 in 2019 simulating the field on conventional 

tillage versus strip tillage. And Case Study 3 analyzed greenhouse gas emissions between 

cotton fields from Farmers 71 and 17. These case studies were selected to represent different 

practices used not only by the five farmers selected for this study, but the practices used by 

farmers in Central Alabama.  

A simulation using just one field was done for soil carbon and conservation, changing 

from conventional tillage to strip-till. This approach allowed for more accurate comparisons 
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as soil and weather conditions fundamentally shape soil carbon levels and erosion rates.  It is 

essential to consider local and temporal variations to make meaningful comparisons and 

analyses using soil carbon and conservation indicators. This consideration ensures that the 

results and recommendations are context-specific and obtainable for farmers and land 

managers in their unique agricultural settings.   

6. Sharing and Engagement with Farmers and Field to Market Team 

The metrics results from the case studies were presented during two field days in the 

summer of 2023, aimed at introducing sustainable practices and indicators to farmers, crop 

consultants, NRCS personnel and other relevant stakeholders in Central and Southeast 

Alabama (AL). The first field day took place in Ashford, AL, on June 26th, covering topics 

such as fertigation, variable rate irrigation, soil sensors for irrigation scheduling, and 

conservation practices' impact on profitability and environmental sustainability. The second 

field day, held in Society Hill, AL, on July 19th, focused on the effects of conservation 

practices on profitability and environmental sustainability, the impact of optimal irrigation 

practices on productivity and profitability, and variable rate irrigation methods. It is worth 

noting that the identities of participating farmers in the Fieldprint Calculator study were kept 

confidential to uphold their privacy. 

Farmers were expected to engage with the presented data during these field days, 

fostering discussions about sustainability initiatives. The results were visually presented, 

using large posters to illustrate comparisons of the impact of agronomic practices on the 

sustainability indicators and metrics. To further engage the farmers and facilitate 

understanding of the indicator outputs and differences among crop management practices 

used by each farmer, an economic expert from the Future of Farming Project conducted 

analyses to highlight the differences between various practices. The sessions with farmers 
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where the results of the sustainability indicators’ analyses were presented started with an 

interactive game designed to promote peer-to-peer knowledge exchange regarding crop 

management practices and their impacts. Farmers, representatives from the NRCS, and 

industry professionals were divided into two groups, each tasked with evaluating farming 

practices (sustainable or not) and selecting practices to create a whole-season crop 

management and rotation. Throughout the game, participants had the opportunity to 

collaborate and share insights. A representative from Field to Market was also invited to 

discuss the tool briefly. These field days were designed to facilitate knowledge exchange, 

offering valuable information to farmers and project stakeholders, and aiding in developing 

sustainable farming practices.  

RESULTS AND DISCUSSION 

The coming section describes the results and discussions derived from pair-

comparisons of farmers' fields, particularly focusing on the impact of different crop 

management practices on the sustainability indicators provided by the Fieldprint calculator. 

The sequence of topics included below corresponds to the potential impact of agronomic 

practices performed at pairs of farmers’ fields on the sustainability indicators of Energy Use, 

Water Quality, Soil Carbon, Soil Conservation, Greenhouse Gas Emissions. The opportunities 

and barriers in engaging farmers through the use of each indicator are also discussed. Each 

indicator will be presented through case studies, comparisons, and implications of crop 

management and conservation practices.  

1. Energy Use  

In Case Study 1 a comparative analysis of two corn farmers, F22 practicing strip 

tillage on the study field and F14 using conventional tillage, revealed differences with respect 

to energy use (Table 2.6). Besides the difference in tillage method, they present difference in 
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fertilizer rate too. With farmer 14 applying 320.4 lbs/ac of N, 117 lbs/ac of P and 108 lbs/ac 

of K, while farmer 22 applied 191.8 lbs/ac of N, 138lbs/ac of P and 91 lbs/ac of K. The 

simulation suggested that farmer 14 consumed a total of 11,178,782 BTU per acre, higher 

than the 9,490,989 BTU per acre used by farmer 22. Analyzing the components of energy use 

(Table 2.7 and Figure 2.2), fertilizer energy, which means the energy used to manufacture 

fertilizers, had a substantial contribution towards the final energy budget. Farmer 14 had a 

higher fertilizer energy score due to the use of a higher fertilizer rate (320.4 lbs/acre) than 

farmer 22 (191.8 lbs/acre). Protectant energy, which refers to the energy used to manufacture 

the protectants, also influenced the total energy score, with farmer 14 utilizing 942,698 BTU 

per acre, higher than the 591,425 used by farmer 22. The energy use score is also affected by 

the number of trips over a field done with farm machinery with a higher number of trips 

increasing  the energy use score (Reagin and Porter, 2022). Additionally, management energy, 

including diesel fuel usage for various operations, was noteworthy. Farmer 22, despite 

practicing strip-till and theoretically requiring fewer trips, registered a higher management 

energy score of 1,389,055 BTU/acre. However, unlike farmer 14, he planted cover crops and 

applied lime, which involved additional trips to the field and could have explained the higher 

score. 

Upon analyzing both reports in preparation for the field days, concerns arise about the 

high nitrogen applied by farmer 14. Therefore, to comprehend this better, one more call was 

made to this farmer. The farmer explained that this variation in nitrogen was due to field 

variability, requiring variable rate nitrogen application across the field. This change in 

nitrogen rate promoted discussions among fellow farmers during the field day, with some 

suggesting that this adjustment in nitrogen might have been made to compensate for 

fertilization in another year. Results showed that the data provided by the energy use 

indicator provides an opportunity to discuss with farmers and consultants the role and impact 
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various crop management practices have not only on energy but the environment. Consultants 

collaborating with farmers could employ conversations adhering to the principles of 4R 

nutrient stewardship (right source, right rate, right time, right place of nutrient application) to 

guarantee efficient fertilizer absorption and decrease indirect energy consumption.  

On the first field day, the focus of the presentation of the energy use indicator 

highlighted the fertilizer and protectant energy components. The facilitate comprehension of 

the energy scores, the energy indicator output, BTU, was converted into gallons of diesel 

fuel, units of measure farmers are more familiar with. The goal with presenting the fertilizer 

and protectant energy outputs using the metric of gallons of fuel per acre was to use metrics 

and concepts more familiar to farmers, common expenses, and then facilitate comprehension 

of the impacts current practices might have to their fixed costs and how that could translate 

into the environment. The choice aimed to bridge the gap between abstract BTU values (the 

unit used in the Calculator report) and tangible, relatable concepts. Despite the efforts of 

simplification of the metric, the challenge understanding it persisted, prompting discussions 

with peers and experts. 

In retrospect, the initial aim was not merely to present numbers but to foster a deeper 

understanding of conservation practices. The indicators, exercises, presentations, and 

feedback promoted discussions not just about the results but also the opportunities these 

indicators offered in teaching the essence of best management practices in conservation 

agriculture.  

2. Water Quality 

In Case Study 1, farmer 14, who had moderate-high field sensitivity and a 2.3 

(RMS/FSS) pathway ratio, managed one pathway (surface P). On the other hand, farmer 22, 

with pathway ratios of 2.38 for surface P and 1.25 for N, effectively managed two pathways. 
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Field sensitivity determined by factors like soil texture and slope, and pathway ratios, are 

influenced by practices such as nutrient management and tillage, are key factors influencing 

this metric. A pathway ratio equal to or higher than 1 indicates successful pathway 

management. 

Therefore, farmer 14, opting for a higher fertilizer rate, fewer nitrogen splits, not 

using cover crops and doing conventional tillage reflected on a lower simulated water quality 

score compared to farmer 22. Differently, farmer 22 does strip tillage, does the use of cover 

crop, apply a lower rate of N, and split it more times during the growing season. Strategic 

fertilizer application (4R - right time, right place, right source, and right rate) aligned with 

strip tillage and cover crop use, significantly mitigated the risk of nutrient loss and positively 

influencing water quality (Bijay-Singh and Craswell, 2021) (Table 2.8).  

Comparisons of how those different practices that can impact water, during field days, 

where farmers observe a side-by-side comparison, can provide opportunities to discuss best 

nutrient management practices of farms. Moreover, the study highlighted the significant 

influence of management practices on these sustainable indicators. Adopting NRCS 

conservation practices, such as riparian forest buffers, tailwater recovery systems, and 

vegetative barriers, emerged as strategic approaches. Optimizing nutrient applications 

through the 4R Nutrient Stewardship and minimizing soil disturbance was essential to reduce 

nutrient losses and enhance water quality. 

3. Soil Carbon   

Case Study 2 examined the cotton farming methods of farmer 71, who initially 

practicing conventional tillage. The study simulated a transition from conventional tillage to 

strip tillage, enabling a comparison of their potential effects on soil carbon buildup or 

depletion (Table 2.9). During conventional tillage, the farmer made 16 trips to the field, 
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including disking two times, hipper, planting, harvesting, and stalking chopper operations. In 

contrast, with strip tillage, the farmer reduced field trips by 3, omitting the disk and hipper 

operations. 

Under conventional tillage, the simulation of soil carbon score was -0.47, indicating a 

high risk of soil carbon loss, and of organic matter loss. Transitioning to strip tillage raised 

the simulated score to 0.23, meaning a significant potential for soil carbon gain. This metric 

score ranges from -1 to +1, with negative scores indicating potential carbon loss and positive 

scores indicating potential carbon gain. Therefore, this transitioning from conventional to 

strip tillage reversed the field's carbon dynamics, highlighting the impact of different tillage 

methods on soil carbon levels and conservation. 

Results from simulations using the FieldPrint Calculator Tool suggested that farmers 

using traditional tillage methods were approximately two times less effective in maintaining 

simulated soil carbon levels and nearly five times less successful in mitigating simulated soil 

erosion than alternative methods (Parrish, 2016). This highlights the substantial enhancement 

in soil carbon levels through the implementation of strip tillage and underscores the 

importance of minimizing soil disturbance. Some of the practices that reduce soil carbon 

losses that farmers and consultants need to have in mind are the integration of cover crops 

and minimizing soil disturbance by considering strip-till or no-till. Keeping the soil covered 

and preventing erosion are factors that increase organic matter and, however, soil carbon. 

This information is a valuable tool for informing fellow farmers about the 

consequences of different tillage practices on their overall sustainability scores. The 

observability and trialability of new practices have been recognized to reduce perceived risks 

(Serebrennikov et al., 2020). It also aids consultants in comprehending the challenges farmers 

face when changing their management practices. Improving farmers' knowledge of soil 
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carbon and related management practices is crucial as there is a lack of scientific 

understanding among farmers regarding sustainable soil management (Joona et al., 2022). To 

achieve understanding of soil organic matter and develop management strategies, strategies 

like training, on-farm trails, and field days with farmers are suggested (Gentry et al., 2018). 

These strategies are essential for the adoption of these indicators and, ultimately, the adoption 

of conservation practices. 

Although not asking the farmer during the in-person interview regarding his 

conventional tillage practice, the farmer voluntarily expressed, "I know this is not the best 

practice, but I already tried strip-till, and it did not work on my soil type." Soil health is just 

one element within the complex decision-making process for agricultural practices 

(Andersson and D’Souza, 2014). Other socioeconomic factors significantly influence this 

decision-making (Hermans et al., 2021). It is crucial to understand whether farmers perceive 

this improvement. 

4. Soil Conservation 

Studying the transition from conventional tillage to strip tillage in case study 2, allows 

to highlight the role of tillage management on soil conservation. The simulated soil 

conservation score for conventional tillage was 2, decreasing to 0.7 when strip tillage was 

used. This metric is described by tons of soil loss, so decreasing the score is desirable. Farmer 

71 planted cover crops, then the only change on the soil conservation score was attributed to 

the change on tillage practice which directly decreased the risks for soil erosion. This change 

underscores the importance of tillage methods in preserving soil integrity and then reducing 

the movement of nutrients, pesticides, and agricultural chemicals into water sources (Gallaher 

and Hawf, 1997).  
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The residue management practices employed, specifically in strip tillage or no tillage 

methods, not only preserve but also enhance soil health. Residues left on the soil surface 

degrade over time, increasing soil organic matter and carbon levels. This increase in soil 

carbon not only fortifies the soil structure but also amplifies water and nutrient retention, aids 

in improved infiltration, and ultimately reduces erosion significantly. 

Improving soil health is essential for sustainability in agriculture and to mitigate 

climate risks. Despite the familiarity most farmers have with the term soil conservation, the 

diverse interpretations they have of soil health cannot be ignored. This variability in 

understanding among farmers underscores the critical need for conservation strategies. 

Farmers’ understanding of soil health is pivotal, yet it is often misrepresented or 

misunderstood by organizations (Wirth-Murray and Basche, 2020; Wade et al., 2021).  

To establish sustainable practices, it is imperative to develop extension programs that 

not only educate but truly understand farmer’s need (Irvine et al., 2023). This approach 

ensures that the scientific objectives are not only communicated effectively but are also 

rooted in practical realities. Specialized programs that consider what farmers think act as an 

essential link between scientific plans and making them work on farms. 

5. Greenhouse Gas Emissions 

From Case Study 3, farmer 71 used conventional tillage, irrigated the crop, made 15 

trips across the field, and applied potash, simulating emissions of 2,200.90 lbs-CO2e/ac. In 

contrast, farmer 17, who did not apply potash, emitted 1,909.60 lbs-CO2e/ac. The main 

difference in their emissions were primarily due to application energy and soil nitrous oxide 

(N2O), followed by post-harvest and management energy (Figure 2.3). The primary 

differences between farmers 71 and 17 are their tillage system, irrigation methods, field trips, 

and post-harvest energy emissions (Table 2.10). Post-harvest emissions are influenced by 
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factors such as mileage from the field to the first point of sale, type of fuel used by 

transportation vehicle, and drying process. Since farmer 71 used conventional tillage, applied 

more fertilizer, and had more field trips, the GHG emissions were expected to be higher. 

Implementing practices that reduce soil tillage decreases soil disturbance and microbial 

activity and lowers CO₂ and N₂O emission rates (Lemke et al., 1999; Drury et al., 2006; 

Mosier et al., 2006).  

Greenhouse gas emissions (GHG) are influenced by various factors such as tillage, 

irrigation, and nitrogen fertilization (Sainju et al 2012). In the past decade (2010-2019), GHG 

emissions reached record levels. Agriculture, forestry, and land-use activities contributed to 

22% of these emissions in 2019 (IPCC, 2022). Although this metric was not included in the 

field day presentation to avoid overwhelming farmers with information, it is crucial for 

analysis.   

Irrigation influences GHG emissions due to the energy required for water pumping 

and application. In the case of farmer 17, the irrigation used to growth cotton contributed to 

the higher total GHG emissions compared to farmer 71. While some practices are beyond 

farmers' control, others can be improved. Reducing energy use linked to GHG emissions is 

crucial. Adhering to the 4Rs of nutrient stewardship ensures optimal fertilizer uptake and 

reduces nutrient loss. Thoughtful crop rotation planning and the incorporation of cover crops 

can help fix nitrogen, offering environmentally friendly alternatives. These strategies can 

significantly impact GHG emissions and promote sustainable farming practices. 

6. Opportunities and barriers engaging farmers 

Using sustainability indicators, such as the Fieldprint Calculator, in educating farmers, 

consultants, and NRCS personnel presents both limitations and opportunities in crop 

management's environmental impact. The limitations are diverse such as challenges in 
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understanding the complexity of the tools, interpreting intricate datasets and reports, 

collecting the management practices data effectively, and acquiring a profound 

comprehension of diverse farming practices and their impact. Learning and utilizing these 

tools demand significant effort and expertise from individuals, especially considering the 

complexity of agricultural systems. Extension services are pivotal in facilitating the learning 

process as highlighted in several studies (Altalb et al., 2015; Sewell et al., 2017; de Olde et 

al., 2018; Piñeiro et al., 2020). However, these challenges also suggest opportunities for 

growth and improvement. Active participation within farmers' networks leads to more 

adoption of conservation practices (Takahashi et al., 2020; Asprooth et al., 2023). Creating 

targeted educational programs and resources tailored to farmers' and consultants' needs can 

bridge knowledge gaps and enhance tool proficiency. Additionally, these indicators could 

serve as valuable resources for NRCS personnel, aiding them in providing more precise and 

informed guidance to farmers. 

Furthermore, using benchmarks, combined with farmer commitment, stakeholders, 

and industry dedication, offers a unique opportunity for engagement (De Snoo, 2006; De 

Snoo et al., 2010; Lokhorst et al., 2010). These tools provide concrete insights into 

environmental impacts, motivating farmers to embrace sustainable practices when they can 

compare their performance with peers. With this knowledge, consultants can provide more 

targeted and practical advice, fostering a deeper understanding of the environmental 

consequences of various farming choices. Incorporating these tools into extension services 

and consultancy practices is essential. Workshops, training sessions, and collaborative 

learning environments empower farmers and consultants to use these indicators effectively. 

Moreover, NRCS personnel can integrate these tools into their advisory services, offering 

farmers concrete data to inform their decisions. Partnerships between researchers, extension 
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services, consultants, and NRCS can enhance tool accessibility, simplifying guides and 

workshops, reducing the learning curve. 

However, challenges persist. Older farmers resist change, believing in traditional 

methods (Rodriguez et al., 2008). Social barriers, like peer pressure and the lack of successful 

examples, hinder adoption (Rodriguez et al., 2008). It is crucial to understand that in crop 

farming initiatives, sustainability usually precedes social and economic aspects due to 

increased consumer awareness, media attention, and stakeholder consensus (Konefal et al., 

2023). Overcoming these challenges means addressing practical obstacles and understanding 

social dynamics within farming communities. 

Such comparative analyses   actively engage farmers and serve as educational tools, 

showcasing the real-world impact of agricultural choices (Rodriguez et al., 2008). Tools like 

the Fieldprint Calculator empower farmers, consultants, and industry, introduce a sense of 

responsibility and encourage proactive engagement in sustainable agricultural practices 

(Whitehead et al., 2020). Through collaborative efforts and tailored education, the path to 

sustainable farming becomes not only clearer but also more accessible for everyone involved. 

CONCLUSION 

In conclusion, this chapter searches through the complexities of promoting sustainable 

agricultural practices, particularly in the context of the Southern United States. Despite the 

critical need to address global challenges like food security and climate change, adopting 

sustainable methods in agriculture faces multifaceted barriers. Social, cultural, financial, and 

educational factors intertwine, hindering the widespread acceptance of practices crucial for 

sustainability. This study analyzed the applications and implications of sustainability 

indicators, notably the Fieldprint Calculator, in enhancing sustainable agricultural practices in 

Alabama. 
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Through case studies, various aspects of sustainability were explored, including 

energy use, water quality, soil carbon levels, soil conservation, and greenhouse gas emissions. 

These analyses provided nuanced insights into the challenges faced by farmers in adopting 

more sustainable practices. Key findings underscored the critical role of factors like fertilizer 

application, tillage methods, irrigation practices, and field trips in shaping environmental 

impacts. 

Utilizing tools like the Fieldprint Calculator highlighted the potential of 

benchmarking sustainability performance. While these tools offer valuable metrics, 

challenges such as data entry and understanding the accuracy of the data required, analyses, 

and practical interpretation persist. Additionally, this study highlighted the positive impact of 

collaborative efforts, agricultural extension services, and multi-stakeholder initiatives. 

Collective attempts facilitate knowledge sharing and bridge gaps in understanding and 

implementing analyses and the best way to present them to farmers. 

Key Insights: 

Energy Efficiency: Fertilizer energy emerged as a significant factor influencing 

overall energy consumption. Utilizing technologies such as irrigation scheduling and 

optimizing grain drying processes can further enhance energy efficiency in agriculture. 

Water Quality: Strategic fertilizer application adhering to the 4 Rs (right time, right 

place, right source, and right rate) significantly impacted water quality. Farmers embracing 

NRCS conservation practices and optimizing nutrient applications can effectively mitigate 

water contamination, ensuring environmental integrity and agricultural sustainability. 

Soil Health: Minimizing soil disturbance, integrating cover crops, and managing 

planting and harvest dates emerged as vital strategies for preserving soil carbon levels and 
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minimizing soil loss. Transitioning from conventional tillage to strip tillage presents a 

substantial opportunity for improving soil health and preventing erosion. 

Greenhouse Gas Emissions: Implementing reduced tillage methods and optimizing 

irrigation practices are crucial avenues for reducing greenhouse gas emissions. These 

strategies not only promote environmental sustainability but also enhance the overall 

efficiency of agricultural practices. 

Engaging Farmers: The study identified challenges in understanding complex tools 

and interpreting data but also illuminated avenues for growth. Active participation within 

farmers' networks, targeted educational programs, and collaborative learning environments 

were recognized as powerful tools for engagement. Benchmarking, when combined with 

commitment, served as a motivator for change, enabling farmers to embrace sustainable 

practices when presented with clear benchmarks. 

In addressing these challenges and leveraging these opportunities, this study 

advocates for a multifaceted approach. Integrating sustainability indicators into extension 

services, consultancy practices, and NRCS advisory services is essential. Workshops, training 

sessions, and collaborative learning environments can empower farmers and consultants, 

bridging the gap between scientific knowledge and on-field implementation. Moreover, 

addressing social barriers and practical obstacles within farming communities is crucial. By 

fostering a deeper understanding of the environmental consequences of various farming 

choices and providing concrete data-driven insights, this research sets the stage for a more 

sustainable agricultural future in Alabama. 

In essence, this chapter emphasizes the importance of a comprehensive perspective. It 

is not only about implementing sustainable practices but also about establishing a supportive 

atmosphere. Education, financial support, community involvement, and innovative tools are 
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the foundation of sustainable agriculture. Achieving agricultural sustainability requires 

ongoing discussions, cooperative initiatives, and a dedication to transformation. A more 

sustainable agricultural environment can be achieved by tackling challenges and utilizing 

stakeholders' strengths. 
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2. Two  

Figure 2.1 Example of the spidergram from Fieldprint Calculator results, with metric scores 

on a scale of 1-100. Lower scores indicate reduced resource use and environmental impact. 

Benchmarks, based on USDA data from 2008-2012. 
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Table 2.1 Variables influencing the sustainability indicators within the Fieldprint Calculator. 

Metric Yield 
Crop 

type 

Irrigation 

systems 

Tillage 

systems 

Irrigation 

management 

Environmental 

factors 

Production 

inputs 

Soil 

type 
Topography 

Land use Yes No No No No No No No No 

Irrigation water use Yes Yes Yes No Yes Yes No Yes Yes 

Energy use Yes Yes Yes Yes Yes No Yes No No 

Greenhouse gas emissions Yes Yes Yes Yes Yes No Yes No No 

Soil conservation No Yes Yes Yes No Yes No Yes Yes 

Soil carbon No Yes No Yes No Yes No Yes Yes 

Water quality No Yes Yes Yes Yes Yes Yes No Yes 

Biodiversity No Yes No No No Yes Yes No No 
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Table 2.2 Models and metrics used in each of the Fieldprint Calculator Indicators. 

Metric Model/calculation 

Land Use Math (acre/unit of production) 

Irrigation Water Use Math (acre-inches/unit of production) 

Energy Use Argonne National Labs GREET Model + Field to Market Calculations (btu/unit of production) 

Greenhouse Gas Emission DayCent/Empirical Hybrid (pounds-CO2e/pounds) 

Soil Conservation NRCS WEPPS Models (ton/acre/year) 

Soil Carbon NRCS Soil Conditioning Index 

Water Quality NRCS STEP Model 

Biodiversity Habitat Potential Index + Field to Market calculations 
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Table 2.3 Data necessary for the Fieldprint Platform and its respective metrices. 

Category Input Biodiversity 
Energy 

Use 

GHG 

emissions 

Irrigation 

water use 
Land use 

Soil 

carbon 

Soil 

conservati

on 

Water 

quality 

Location • State x x x   x x x 

 • County x x x   x x x 

 • Area x x x   x x  

 
• Field 

boundary 
 x x   x x x 

Soil • Slope      x x x 

 • Slope length   x   x x x 

 
• Surface soil 

texture 
 x x   x x x 

 • Wind barrier       x  

 
• Organic 

matter 

content 

     x  x 

Crop rotation • Crop x x x  x x x  

 • Seeding rate  x x      

 
• Tile drainage 

system 
x       x 

 • Irrigation  x x x    x 

 

• Yield 

(irrigated 

and/or non-

irrigated) 

 x x x x  x  

 
• Irrigation 

method 
x       x 

 
• Water 

applied 
 x x x     
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Category Input Biodiversity 
Energy 

Use 

GHG 

emissions 

Irrigation 

water use 
Land use 

Soil 

carbon 

Soil 

conservati

on 

Water 

quality 

 
• Pump 

pressure 
 x x      

 
• Pumping 

depth 
 x x      

Management 
• Tillage 

system 
x x x   x x x 

 
• Management 

system 
 x x   x x  

 
• Crop residue 

removal 
  x      

 
• Irrigation 

water source 
x        

 
• Irrigation 

water 

recapture 

x        

 
• Irrigation 

pump energy 

source 

 x x      

 
• Integrated 

pest 

management 

x       x 

 
• Nutrient 

application 

rate 

 x x     x 

 • 4R practices x        

 
• Soil 

condition at 
       x 
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Category Input Biodiversity 
Energy 

Use 

GHG 

emissions 

Irrigation 

water use 
Land use 

Soil 

carbon 

Soil 

conservati

on 

Water 

quality 

the time of N 

application 

 
• Dominant 

application 

method 

       x 

 
• Fertilizer 

application 

type 

       x 

          

 
• Fertilizer 

application 

timing 

 x x     x 

 
• Number of 

fertilizer 

applications 

 x x     x 

 
• Fertilizer 

products 
 x x      

 
• Lime 

application 
       x 

 • Herbicides  x x      

 • Insecticides  x x      

 • Fungicides  x x      

 
• Growth 

regulation 
 x x      

 • Fumigants  x x      

 
• Manure 

application 
 x x      
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Category Input Biodiversity 
Energy 

Use 

GHG 

emissions 

Irrigation 

water use 
Land use 

Soil 

carbon 

Soil 

conservati

on 

Water 

quality 

 
• Timing/Split 

application 
       x 

 
• Manure 

amount 
 x x      

 
• Manure N 

applied 
 x x      

 
• Distance to 

sale 
 x x      

 
• Transportati

on backhauls 
 x x      

 
• Transportati

on fuel type 
 x x      

Drying 
• Drying 

system 
 x x      

 
• Energy 

source 
 x x      

 
• Points of 

moisture 

removed 

 x x      

 • Fuel amount  x x      

 
• Electric 

amount 
 x x      

Conservation 

practices 

• Conservatio

n practices 

adopted 

x       x 
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Table 2.4 Description of farmers’ fields included in the study. 

Specifications F14 F17 F22 F71 

Rotation (2019, 2020, 

2021) 
Cotton, Corn, Corn Cotton, Cotton, Peanuts Cotton, Cotton, Corn Cotton, Peanuts, Cotton 

County Macon County, AL Lee County, AL Autauga County, AL Russel County, AL 

Plantable Acre 398 66 27 105.1 

Soil Type Silty Clay Loamy Sand Silt Loam Fine Sandy Loam 

Tillage Reduced Tillage Strip-till Strip-till Conventional 

Cover Crop No Yes Yes Yes 

Irrigation No No No Yes 
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Table 2.5 Description of soil type and management practices of farmers F14 and F22 growing 

corn during 2021. Case Study 1. 

Specifications F14  F22  

Crop Corn Corn 

Soil Type Silty Clay Silt Loam 

Tillage Conventional Strip-till 

Cover Crop No Yes 

Total Nitrogen (lbs/ac) 320.4 191.8 

Total Phosphorus (lbs/ac) 117.3 183 

Total Potassium (lbs/ac) 108 91 

Final Yield 190 bushes/acre 180 bushes/acre 

 

 

 

 

Table 2.6 Case Study 1. Description of soil type and management practices on a corn field of 

farmers F14 and F22 during 2021 and economic values related to their practices. 
 F14 F22  

Soil type Silt Clay Silt Loam  

Tillage Conventional tillage Strip-till  

Cover crop No Yes  

Fertilizer application Split 2x   Split 3x   

Total N (lbs/ac) 320.4 191.8  

Total P (lbs/ac) 117 138  

Total K (lbs/ac) 108 91  

Crop protectants 4 passes – 8 products 2 passes – 5 products  

Yield (yield goal) 190 bu/ac  180 bu/ac  

Total energy use 11,178,782 btu/acre 9,490,989 btu/acre  

Surface P & N loss sensibility Moderately high Low  

Economics    

Nitrogen value ($1.05 / lb N) $336.4 $197.5  

Phosphorus value (0$0.70 /lb of P) $82.1 $96.6  

Potash value ($0.60 / lb K) $64.1 $54.6  

Total value (not including application) $438.3 $348.7  

Yield equivalent ($6/bu) 80.6 58.1  
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Table 2.7 Energy components from farmers F14 and F22 from a corn field in 2021. 

 F14 F22 

Component (BTU/acre) (BTU/bushel) (BTU/acre) (BTU/bushel) 

Management Energy 322,682 1,98 1,389,055 11,112 

Application Energy 10,668,643 56,151 7,957,279 63,658 

• Seed Treatment 

Energy 

24,790 130 24,790 198 

• Fertilizer Energy 9,594,380 50,497 6,216,157 49,729 

• Protectant Energy 942,698 4,962 591,425 4,731 

• Field Operations 

Energy 

106,776 562 88,980 712 

• Lime Energy 0 0 1,035,929 8,287 

Manure Loading Energy 0 0 0 0 

Seed Energy 21,154 111 17,308 138 

Irrigation Energy 0 0 0 0 

Post-Harvest Energy 0 0 0 0 

Transportation Energy 166,303 875 127,347 1,019 

Total Energy 11,178,782 58,836 9,490,989 75,928 
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Figure 2.2 Energy use components in btu/yield unit from farmers 14 and 22 - Corn 2022. 
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Table 2.8 Water quality metric to assess how likely a field is to lose nutrients to waterways on 

farmers’ 14 and 22 fields in the 2021 crop season. 

Farmer 14 
Loss pathway 

Field sensibility 

category 

Pathway ratio 

(RMS/FSS) 

Pathway 

mitigation 

 Surface P Moderately high 2.3 Mitigated 

 Subsurface P Moderate 0.46 Improve 

 Surface N Moderately high 0.58 Improve 

 Subsurface N Moderate 0.2 Improve 

Farmer 22     

 Surface P Low 2.38 Mitigated 

 Subsurface P Moderate 0.15 Improve 

 Surface N Low 1.25 Mitigated 

 Subsurface N Moderate 0.2 Improve 

RMS: risk mitigation score. 

FSS: field sensitivity score. 

RMS/FSS > 1: basic risk mitigation level for surface nutrient loss met. 

RMS/FSS < 1: excessive nutrient loss likely. 

 

 

 

 

Table 2.9 Case Study 2. Description of soil type and management practices on a cotton field of 

farmer F71 in 2019. 

  Farmer 71  

Soil type Fine Sandy Loam Fine Sandy Loam 

Tillage 
Conventional tillage/Disk 2 

times 
Strip tillage 

Cover Crop Yes Yes 

Trips to the field 16 13 

Soil carbon -0.47 0.23 

Soil conservation 2 0.7 
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Table 2.10 Case Study 3. Description of soil type and management practices on farmers F71 

and 17 cotton fields during 2019. 

  Farmer 71 Farmer 17  

Soil type Fine Sandy Loam Loamy Sand 

Tillage 
Conventional 

tillage 
Strip-till 

Irrigation Yes No 

Cover crop Yes Yes 

Trips to the field 15 11 

Total N (lbs/ac) 90  81.6 

Total P (lbs/ac) 30 
120 (2 tons of chicken 

litter) 

Total K (lbs/ac) 170 0 

Yield (yield goal) 1250 lbs/ac 1250 lbs/ac 

Greenhouse gas emission (lbs-CO2 

e/ac) 
2,200.9 1,909.6 

Economics   

Nitrogen Value ($1.05 / lb N) $94.50 $85.68 

Phosphorus Value (0$0.70 /lb of P) $21 $84 

Potash Value ($0.60 / lb K) $102 $0 

Total Value (not including 

application) 
$217.50 $169.68 

Yield Equivalent ($0.75/bu) 290 226 
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Figure 2.3 Greenhouse gas emission components in lbs-CO2 e/ac from farmer 71 and 17 – Cotton 2019. 
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Appendix – Files prepared for DSSAT simulation modeling 

DSSAT files calibration 

 

 

Soil profile information in DSSAT - Location 3. Field 1.2a 2021
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Soil profile information in DSSAT - Location 6. Field 1.2a 2021

 

 

Soil profile information in DSSAT – Location 7. Field 1.2a 2021

 

 

Soil profile information in DSSAT – Location 1.1 Field 1.2b 2022
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Example of the weather file in DSSAT. 2021 growing season. Society Hill, AL.
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Example of the weather file in DSSAT. 2022 growing season. Society Hill, AL 

 

 

 

 

 


