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Abstract 
 

 Paddlefish Polyodon spathula river section use, and summer backwater use (where 

zooplankton is thought to be abundant) vary seasonally. I quantified Paddlefish habitat use in 

Dannelly Reservoir, Alabama, which includes the confluence with the Cahaba River. I 

considered three longitudinal reservoir sections based on channelization and available backwater 

habitat, and tagged, and tracked 63 Paddlefish using both active and passive telemetry. In 

addition, I collected seasonal zooplankton samples across the system to quantify food 

availability. Zooplankton density did not differ between mainstem and backwater sites but was 

significantly lowest in the Cahaba River. Paddlefish detection upstream was associated with 

lower temperatures and higher water levels and likely represents an area critical for Paddlefish 

spawning. The midstream section was used year-round. The downstream section and backwaters 

were primarily used late spring/early fall, and backwater detections were negatively associated 

with food availability. I also observed limited emigration by Paddlefish from the reservoir. 
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Introduction 

Dams are prevalent on every major river globally. There are currently 91,457 

impoundments in the United States, according to the U.S. Army Corps of Engineers (USACE) 

National Inventory of Dams (2021), with 45,177 exceeding 7.62 m in height. This number does 

not include small impoundments which are estimated to be between 2.6 and 9 million, exceeding 

278,000 in Alabama alone (Renwick et al. 2006; Chaney et al. 2012). Dams are constructed for a 

variety of purposes including recreation, flood control, water supply, navigation, and 

hydroelectric power. As of 1995, only 42 United States rivers longer than 200 km remained 

unimpounded out of the nation’s original 5,200,000 km of rivers (Lydeard and Mayden 1995). 

Dams affect habitat quantity, habitat quality, and connectivity of riverine fish populations 

(Cooke et al. 2002; Mettee et al. 2005; Waples et al. 2008; Jelks et al. 2008; Lapointe et al. 

2014). The combination of habitat fragmentation, habitat degradation, habitat loss, and altered 

flows are thought to be some of greatest threats to aquatic biodiversity (Helfman 2007; Jelks et 

al. 2008). Even if they are passable, dams can cause injury, trauma or even death to fish 

attempting passage, and they may not always be passable during spawning migrations (Hoover et 

al. 2019).   

Dams alter the natural flow and temperature regimes of a river (Poff et al. 1997; Cassie 

2006; Ellis and Jones 2013). These alterations include less flow variability upstream and 

depending on seasonal conditions and the purpose of the dam, can further reduce or increase 

flow downstream. They trap sediments and alter sedimentation patterns where sediment starved 

waters downstream of a dam can cause increased erosion. This increased downstream erosion 

and sedimentation can cover previously available habitats and affect the ability of aquatic 

organisms to reproduce and survive (Poff et al. 1997). Reduced aquatic biodiversity has also 
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been observed immediately downstream of dams (Travnichek and Maceina 1994; Ellis and Jones 

2013; Franssen and Tobler 2013). Upstream of dams, lentic environments are created out of 

historically lotic environments. These controlled lentic environments have reduced interaction 

with the floodplain, affecting nutrient cycles (Ward and Stanford 1995). The creation of lentic 

environments can be beneficial for more generalist species, while leading to reductions in species 

that are adapted to fluvial habitats (Franssen and Tobler 2013). After impoundment, upstream 

tributary confluences and any low-lying areas become flooded and form reservoir arms that can 

accumulate coarse woody debris.  This process can also create additional backwaters or expand 

existing backwaters. These habitats are beneficial for many fish species that thrive in low flow 

environments. While creating some new habitats, other habitats like rocky shoals and gravel beds 

often used for spawning can become submerged. In a Colorado river, species like the Fathead 

Minnow Pimephales promeias and non-native fishes dominated samples upstream of the dam in 

the years after dam construction and reservoir formation (Martinez et al. 1994). Marcrohabitat 

generalists such as Largemouth Bass Micropterus salmoides and Blacktail Shiner Cyprinella 

venusta can dominate reservoir habitats as reductions in fluvial specialists are observed (Herbert 

and Gelwick 2003). This is also true for invasive species that appear to thrive in these newly 

created lentic waters (Johnson et al. 2008). Although these changes in species composition have 

been studied, habitat use in these impoundments by many riverine fish has not been well 

described.  

In some systems, pelagic migratory species like Paddlefish Polyodon spathula appear to 

have adapted and perhaps thrived in human created lentic environments (e.g., Paukert and Fisher 

2001a). Much of the work with Paddlefish throughout their range has focused on passage at 

dams and seasonal migrations (Paukert and Fisher 2001b; Stancill et al. 2002; Miller and 
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Scarnecchia 2008, 2011; Schwinghammer et al. 2019). However, less is known about habitat use 

outside of spawning season nor of factors associated with that habitat use. Since the construction 

of dams, Paddlefish have been observed congregating in the tailraces of dams, presumably due to 

blockage of their historical migration routes, although they could also be using this habitat to 

filter zooplankton flowing in from the upstream impoundment (Southall and Hubert 1984). 

Paddlefish have also been observed using slow-moving areas like backwaters and oxbow lakes 

during summer and fall (Rosen and Hales 1981; Hoxmeier and DeVries 1997; Scarnecchia et al 

2011). Paukert and Fisher (2000) found lower water levels to be associated with downstream 

movement by Paddlefish, and postulated they could be following a food resource, although no 

zooplankton samples were taken. 

Objectives 

Here I will use telemetry to determine the movements and factors related to habitat use of 

Paddlefish in William Dannelly Reservoir. I will also quantify emigration to areas below Millers 

Ferry Lock and Dam, above R. F. Henry Lock and Dam, and movement into the Cahaba River 

during upstream spawning migrations.  

Specifically, I address 3 questions: 

1) What is the seasonal use of different reservoir sections and associated habitat 

(main channel, backwater) by Paddlefish? 

2) Do Paddlefish in Dannelly Reservoir move past Millers Ferry Lock-and-Dam and 

R. F. Henry Lock-and-dam (i.e., emigration by adult Paddlefish from the 

reservoir)? 

3) Do Paddlefish make long distance movements and are those movements related to 

sex and abiotic factors? 



 

 11 

Methods 

Study Species 

The Paddlefish Polyodon spathula is a relatively long-lived and slow-growing 

potamodromous species that is native to the Mississippi and Mobile river basins and coastal 

drainages in Louisiana and Alabama (Boschung and Mayden 2004; Pikitch et al. 2005; Jennings 

and Zigler 2009). The most significant threats to Paddlefish sustainability are thought to be 

habitat degradation and overexploitation (Jelks et al. 2008; Jennings and Zigler 2009). Paddlefish 

are pelagic, ram suspension filter feeders capable of long-distance spring spawning migrations 

(Southall and Hubert 1984; Mettee et al. 2009) that include spawning site fidelity (Hoxmeier and 

DeVries 1997; Lein and DeVries 1998; Paukert and Fisher 2001a; Stancill et al. 2002; 

Firehammer and Scarnecchia 2006; Miller and Scarnecchia 2008; Mettee et al. 2009; Simcox et 

al. 2015). These long-distance spawning migrations are thought to be cued abiotically by 

increasing temperatures (typically starting at 10°C) and pulses of discharge (Paukert and Fisher 

2001a; Firehammer and Scarnecchia 2006; Miller and Scarnecchia 2008). Spawning occurs 

during spring high flows over gravel or cobble (O’Keefe et al. 2007; Jennings and Zigler 2009). 

In general, spawning periodicity for Paddlefish differs between males (every 1-2 years) and 

females (every 2-3 years), but in Alabama there is evidence that at least some individuals may 

spawn annualy (Lein and DeVries 1998; Stancill et al. 2002; Miller and Scarnecchia 2011; 

Paukert and Fisher 2001a; Tripp et al. 2019b). Studies have also shown seasonal variation in 

Paddlefish habitat selection, association with structure, and summer use of backwater habitats 

that are thought to be richer in zooplankton which is critical for all Paddlefish life stages (Rosen 

and Hales 1981; Southall and Hubert 1984; Tripp et al. 2019a). Paddlefish consume primarily 

crustacean zooplankton and occasionally insect larvae when in high abundances, with 
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cladocerans and copepods representing a primary food source (Ruelle and Hudson 1977; Rosen 

and Hales 1981; Blackwell et al. 1995; Hoxmeier and DeVries 1997). Food availability appears 

to strongly affect Paddlefish early growth (Jennings and Zigler 2009; Hintz et al. 2017), 

particularly availability of large cladocerans (Scarnecchia et al. 2019b). As such, understanding 

food density patterns is vital for understanding overall population health, given that early 

survival and growth are both critical elements of successful recruitment (Scarnecchia et al. 

2019a).  

Food availability can also influence migration decisions by some fish species (Gross et al. 

1988; Archer et al. 2020), and in Paddlefish it is essential for developing the fat stores needed for 

long-distance migrations and spawning (Scarnecchia et al. 2009; Miller and Scarnecchia 2011). 

Zooplankton abundance in river systems exhibits both spatial and temporal variation (Blackwell 

et al. 1995; Kobayashi et al. 2011; Chará‐Serna and Casper 2020). Slow-moving backwater areas 

can be richer in zooplankton than main channels, which has been proposed as a reason for higher 

condition factors in Paddlefish found there (Blackwell et al. 1995; Hoxmeier and DeVries 1996). 

Zooplankton in rivers has also been observed reaching peak densities in spring and summer 

(Pace et al. 1992; Blackwell et al. 1995) and during periods of high water (Scarnecchia et al. 

2009) which could influence Paddlefish movement. Zooplankton are also typically patchily 

distributed (Kobayashi et al. 2011; Chará‐Serna and Casper 2020) and can exist in dense patches 

based on ecological conditions within specific sub-regions of a river (Thorp et al. 2006).  

Study Area 

The Alabama River forms at the confluence of the Coosa and Tallapoosa rivers. It is 

Alabama’s longest river, with the main stem extending approximately 503 river km to the 

confluence with the Tombigbee River to form the Mobile River, with a 15,825 km² watershed 
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(Deutsch 2018). The Alabama River lies in the coastal plain physiographic region, with 

sediments consisting of chalk, marl, claystone, soft limestone, gravel, sands and clays (Williams 

et al. 2008). The coastal plain lies below the fall line which marks the steep gradient between the 

coastal plain and the upland physiographic provinces of the state (Williams et al. 2008).  

The Alabama River has three lock-and-dam structures: Claiborne Lock and Dam (CLD), 

Millers Ferry Lock and Dam (MFLD), and Robert F. Henry Lock and Dam (RFHLD). Claiborne 

Lock and Dam, located at RKM 116, was completed in 1969 and is the furthest downstream of 

the three dams. CLD has a crested spillway, six flood gates, and a navigational lock chamber 

(U.S. Army Corps of Engineers 2015). MFLD (RKM 214) is the middle dam that creates 

William Dannelly Reservoir (hereafter referred to as Dannelly Reservoir) and was also 

completed in 1969.  MFLD has 17 gates, a hydropower plant, and a navigational lock chamber 

(U.S. Army Corps of Engineers 2015). The dam furthest upstream on the Alabama River is 

RFHLD (RKM 380) which was completed in 1972 and has 11 gates, a hydropower plant, and a 

lock chamber.  

Dannelly Reservoir (6,960 ha in Dallas and Wilcox counties) is relatively shallow 

(average depth = 6 m) due to the coastal plain topography (Deutsch 2018). Dannelly Reservoir 

lacks the characteristic dendritic shape of many reservoirs and has a relatively short residence 

time of water (average six days) (Deutsch 2018). Gage height in Dannelly Reservoir typically 

peaks in the winter through early spring. Alabama is in the humid subtropical region and average 

temperatures around Dannelly Reservoir reach their highest in July (33.3 °C) and lowest in 

January (1.9 °C) (U.S. Climate Data 2023).   

The Cahaba River, a major tributary of the Alabama River, begins in the Valley and 

Ridge physiographic province, flowing through limestone and dolostone before crossing the fall 
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line into the Coastal Plain where it meets with the Alabama River just south of Selma, Alabama 

(Williams et al. 2008). Once in the Coastal Plain, the Cahaba River substrate consists primarily 

of sand, gravel, and chalk (Williams et al. 2008). The Cahaba River contains Alabama's longest 

reach of free-flowing river that starts at the Highway 280 diversion dam in Birmingham and 

flows 241 km to the confluence with the Alabama River (Thom et al. 2013; Deutsch 2018). 

Despite the Cahaba River being mostly un-impounded, distribution of numerous species in the 

Cahaba River are potentially affected by the presence of lock-and-dam structures on the 

Alabama River that block migrating fish from moving further upriver (Thom et al. 2013). 

To characterize the locations of Paddlefish relative to areas of the reservoir, I chose to 

divide Dannelly Reservoir into three sections based on availability of backwater habitat and 

channel structure (Figure 1). Compared to the other downstream sections of the reservoir, the 

upstream section (Section 1) between RFHLD and Section 2 is the most lotic, features the 

tailwaters of RFHLD and has very few backwater habitats. Section 2 remains lotic but has some 

interspersed small to midsized backwater habitats and includes the confluence with the Cahaba 

River (at RKM 303.5). The most downstream reach (Section 3) is wider, more lentic, and 

includes several large backwater habitats. 

Fish Collection and Tag Implantation 

I captured and tagged 63 Paddlefish, including 23 (2 males, 2 females, 19 unknown sex) 

during the 2021-22 season and 40 (20 males, 8 females, 12 unknown sex) during the 2022-23 

tagging season. All fish tagged in the 2021-22 season and the first 11 fish during the 2022-23 

season were collected at or downstream of the mouth of the Cahaba River and tagged and 

released in the same location where they were caught. This was done to reduce bias of 

potentially tagging all migrating fish, and this was the furthest downstream location where fish 
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could consistently be sampled at this time of year. The remaining 29 fish during the 2022-23 

season were tagged in the upper segment of the Alabama River, upstream of Selma, Alabama. 

Only sexually mature fish (at least 650 mm EFL; Hoxmeier and DeVries 1997) were tagged. 

Paddlefish were collected using a 45.72 m long and 6.71 m deep, large mesh (304.8-mm stretch) 

gillnet. To reduce mortality and undo stress due to length of time entangled in the net, nets were 

set for no longer than 2 hr and were always in sight of the boat permitting removal of Paddlefish 

when there was an indication that a fish was entangled. Once fish were retrieved from the net, 

they were placed in a holding tank prior to tagging. Before surgery, fish were weighed (nearest 

g) and measured (nearest mm, eye-to-fork length [both flat and curved], block length, and girth). 

Sex was determined by the presence of tubercules or by the presence of oocytes during surgery. 

Fish were surgically implanted with a combined acoustic and radio transmitter (LOTEK 

Wireless CART tag model MM-MC-16-50), that included temperature and pressure sensors and 

transmit a signal every 10 seconds. Tags did not exceed 2% of the fish’s body weight (Winter 

1996; Cooke et al. 2012). These tags transmit a radio and acoustic signal every 10 seconds, and 

they were inserted through an approximately 2-cm incision that was then closed using a 

combination of interrupted sutures and 3M Vetbond veterinary adhesive. Incisions were made on 

the left ventral side just anterior to the pelvic girdle (Hershey 2019; Thomas et al. in press; 

Hershey et al. 2021). Water was continuously pumped over the animal’s gills during surgery. 

Surgery time was kept to approximately 2 min, and all surgical instruments and tags were 

sterilized in chlorhexidine. Uniquely numbered anchor tags were inserted on the right ventral 

side to ensure identification should the fish be recaptured. After surgery, fish were allowed to 

recover in the holding tank and released once equilibrium was regained. GPS coordinates were 

recorded to mark the release site, which was within 100 m of the capture locations.  
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Stationary Acoustic Telemetry 

An array of 12 Lotek acoustic receivers (model WHS 3250L) was deployed in Dannelly 

Reservoir’s main channel, with 4 located in each of the 3 sections (Figure 1). I attempted to 

space the receivers approximately equally (~15 km), and selected sites that allowed for retrieval 

of the receiver and assured the receiver would detect a fish across the width of the river. 

Additional receivers (n = 17) were located downstream of Miller's Ferry Lock and Dam (16 

receivers) and just upstream of R. F. Henry Lock and Dam (1 receiver) to allow detection of any 

fish leaving Dannelly Reservoir. Using satellite images from Google Earth 

(https://earth.google.com), I identified 67 backwater areas on Dannelly Reservoir, most of which 

were concentrated in the lower third (Section 3) with some smaller backwaters in the middle 

third of the river (Section 2). I visited each identified backwater site to determine both 

accessibility for Paddlefish and suitability for receiver placement. Backwaters were defined as 

sloughs, lentic arms of the reservoir, and intermittent or low current velocity off channel areas 

connected to the main stem of the river (Southall and Hubert 1984). This included flooded creek 

channels created by the reservoir. Backwater sites were evaluated by examining maximum depth 

and depth at the backwater’s connection to the main reservoir during the average low period. If a 

backwater was mostly shallow (< 2 m), too shallow at the connection to the reservoir to be 

accessible to fish year-round or did not have a location where a receiver could be deployed that 

prevented detections by the receiver of fish in the main channel, it was excluded from 

consideration for receiver placement.  I identified six suitable backwater sites in Section 2, and 

20 suitable sites in Section 3. I then used a random number generator to select 5 suitable sites 

from Section 2 and two suitable sites from Section 3 (Figure 1). In addition, I had already 

preselected three sites in Section 3 based on the observed presence of Paddlefish while scouting 
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sites which were added to the 2 randomly selected sites noted above (Figure 1). Receivers were 

installed in all 10 backwater locations. I also installed three receivers in the Cahaba River, one 

near the US-80 bridge (approximately 34 RKM from the confluence with the Alabama River), 

one near the Highway 22 bridge (approximately 12 RKM from the confluence), and one just 

upstream of the confluence with the Alabama River (Figure 1). Due to a lack of accessibility 

throughout the study period, only the lower two receivers could be maintained. All other 

receivers were downloaded, and batteries changed every 4 months.  

Manual Tracking 

Manual tracking was conducted twice per season (winter = December – February, spring 

= March – May, summer = June – August, Fall = September - November) from December 2021 

through September 2023 to supplement stationary receiver detection data. A three-bar Yagi 

antenna was used in combination with a Lotek SRX 800 radio receiver (gain set to 70) while 

navigating a boat at approximately 22 km/hr. When a fish was first detected, the boat speed was 

reduced, and I began using a Lotek AcouTrack acoustic receiver. The acoustic receiver includes 

two hydrophones, one placed on each side of the boat, to provide more precise location and 

reception of the pressure and temperature data transmissions. Each tracking event was concluded 

when either all fish were located, or the entire study area was covered. The study area included 

the entire main channel of Dannelly Reservoir, backwater sites, and up to the most upstream 

Cahaba River receiver location. The backwaters and arms of the lower portion of the reservoir 

that did not contain a receiver were not tracked unless a fish was detected there from the main 

channel.  
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Tag Testing 

To check the pressure and temperature values I was getting in the field, I conducted a test 

in a pond at the E.W. Shell Research Center, Auburn, Alabama. A stationary receiver was 

deployed in the pond, and the manual acoustic receiver was used from a boat. I then deployed a 

tag at 0.5 m increments from 0 m to 4.0 m approximately 30 m from the stationary receiver. The 

tag remained at each 0.5 m increment until the manual tracker detected it at least 10 times. 

Temperature readings were also taken at each depth with a YSI Pro 20. Once complete, I 

compared the YSI readings, the known depth, the stationary receiver readings, and manual 

receiver readings to confirm accuracy of the readings using an analysis of variance (ANOVA).  

Gage Height 

Because discharge is not available from the United States Geological Survey (U.S.G.S. 

2023) gages in Dannelly Reservoir, daily and weekly percent changes in gage height were used 

as a surrogate for discharge. There are two gaging stations in the upper portion of Dannelly 

Reservoir, one at Selma, Alabama and the other just below R. F. Henry Lock and Dam. The 

Selma gage was used because it is close to the confluence with the Cahaba River and therefore 

better reflects water conditions in the reservoir away from R. F. Henry Lock and Dam. For the 

weekly percent change in discharge, the first gage height of the week on Sunday was subtracted 

from the last gage height of the week on Saturday, then divided by the starting value, and 

multiplied by 100. Daily percent change in gage height was calculated by subtracting the average 

gage height from the subsequent day’s average gage reading, dividing by the previous day’s 

average value, and multiplying by 100.  
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Zooplankton Sampling 

To quantify food availability in the study area, each of the three reservoir sections was 

divided into two sub-regions for zooplankton sampling (Figure 1). Due to year-round 

accessibility issues, only the lower receiver site of the Cahaba River was sampled. All backwater 

areas with a stationary receiver were also sampled. Zooplankton samples were taken once per 

season. At each site, 3 replicate samples were taken by lowering a plankton net to twice the 

observed Secchi depth (to incorporate the photic zone) and slowly pulled to the surface. The 

conical plankton net was 300-mm diameter, 1050-mm long, with 100-µm mesh. Mesh size was 

selected to incorporate zooplankton sizes consumed by Paddlefish, (Rosen and Hales 1981). 

Vertical plankton tows were used to provide a vertically integrated sample. Dissolved oxygen 

readings (YSI Pro 20) were also taken at all zooplankton sampling sites. Samples were preserved 

in 95% ethanol and transported to the lab. Zooplankton were subsampled until a minimum of 200 

of the most common taxa was counted (Dettmers and Stein 1992; Welker et al. 1994). 

Zooplankton were identified to genus for cladocerans and to family for copepods. If 

macroinvertebrates occurred in samples, they were also identified, measured, and counted. A 

subsample (n=10) of individuals from each taxon from each subsample was measured. Two 

replicate subsamples were quantified if values were within 30%, otherwise the third sample was 

also quantified. 

Data Analysis 

All analyses were performed in Rstudio (version 2023.06.2, Rstudio Team 2023). To 

obtain total zooplankton density, replicate subsample counts were extrapolated to the whole 

sample, volume of water filtered was used to calculate density, and density values were averaged 

across replicates. Zooplankton density in the main channel was compared to that in backwater 
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habitats across the reservoir using a Wilcoxon Ranked Sum Test. I used a Kruskal-Wallis Test to 

compare zooplankton density across sections, given that the data were not normally distributed. I 

then performed a Dunn test with Bonferroni correction to determine any significant differences 

between sections. The same tests were used to determine if zooplankton density differed across 

seasons. 

Paddlefish detection data were filtered to minimize the potential for false detections. 

Each individual had to be detected at least twice by a passive receiver on a given date or it was 

not retained in my data set. Manual tracking data were manually sorted by locating the highest 

strength detection (as it provides the most accurate temperature and pressure reading), and then 

merged with the passive receiver data. Each detection was assigned to a reservoir section based 

on the receiver location. Because each section has four receivers and two zooplankton sites, two 

receivers per section were assigned each a zooplankton site. The furthest two upstream receivers 

within the section were assigned to the section’s upstream zooplankton site, and the furthest two 

downstream receivers were assigned to the section’s downstream zooplankton site. All 

backwater sites and the Cahaba River were assigned to their individual zooplankton sampling 

site. The average zooplankton density for each sampling event at each site was then merged with 

the fish detection data. Gage data were incorporated as both daily and weekly percent changes in 

gage height that were assigned to the date for each detection.  

Covariates considered for the analysis included daily and weekly percent change in gage 

height, gage height on the day of the detection, release location, sex, zooplankton density, 

average daily temperature and average daily water depth from the tag sensors, eye-to-fork length, 

weight, and girth. Generalized linear mixed models (GLMM) were built using the glmmTMB 

(Brooks et al. 2017) package in R to determine which factors were correlated with Paddlefish 



 

 21 

location (defined by main channel sections and backwaters) throughout the entirety of the study 

(Bolker et al. 2008). All numerical covariates were centered and scaled so that their mean = 0 

and standard deviation = 1 to facilitate model convergence and interpretation of results. For each 

reservoir section a new column was created in the data matrix which had a 1 indicating if that 

section was being used and a 0 if it was not, and separate GLMMs were run using a binomial 

distribution where each reservoir section was the response variable. Once a full model was 

constructed, the MuMIn package in R (Bartoń 2023) was used for automated model selection 

and comparison. The DHARMa package (Hartig 2022) was then used to verify there was no 

overdispersion, and no outliers, and a Q-Q plot was used to assess model fit.  The top model was 

then selected based on the AICc rating and how parsimonious the model was. If multiple AIC 

ratings fell within 2 points of each other, the most parsimonious model was chosen. Detections 

were also filtered to unique days on which an individual was detected and then summed by 

reservoir section and habitat (mainstem sections, backwaters) to determine the number of days an 

individual was detected in each reservoir section and habitat. I then performed a Kruskal-Wallis 

Test to determine if there was a difference in location between sexes (Kruskal and Wallis 1952). 

A Dunn’s Test with a Bonferroni correction on significant results of the Kruskal-Wallis Tests 

was then performed to determine if males, females, and unknown sex fish differed in habitat use 

(Dunn 1964).  

Results 

Zooplankton  

Zooplankton densities differed among reservoir sections (Kruskal-Wallis 𝜒2	=	42.24,	p	< 

0.001), being lower the Cahaba River than each of the other sections (Dunn’s test; z range: -3.47 

to -4.16,  p < 0.001 for each pairwise comparison) (Figure 2). No other comparisons were 
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significant. Zooplankton density did not differ between mainstem and backwater sites (Wilcoxon 

rank-sum test; W = 1165, p = 0.087), but did differ across seasons (Kruskal-Wallis 𝜒2	=	67.84,	p	

< 0.001), being higher in fall than spring (Dunn’s test; z = 5.16, p < 0.001) and winter (Dunn’s 

test; z = 6.43, p < 0.001), and higher in both spring (Dunn’s test; z =5.087, p < 0.001) and winter 

(Dunn’s test; z = 6.35, p < 0.001). There were no differences between summer and fall. The most 

abundant taxa in the main channel were Bosmina and cyclopoid copepods, although in the 

summer and fall copepod nauplii was also present in high densities, particularly in the upstream 

section and midstream backwaters. 

Tag Testing 

I collected 106 temperature and 100 depth detections using the manual tracker and 31 

temperature detections and 31 depth detections from the stationary receiver from the 9 tested 

depths of the stationary tag during the pond test. Neither temperature (F = 2.47, df = 2, p = 0.09), 

nor depth (F = 20, df = 2, p = 0.82) differed across any of the measures.  

Section Use 

I had a total of 6,754,169 detections of tagged fish on either passive receivers or during 

manual tracking. The total number of days of detection of individual fish was 6,718 (detection 

days). All 63 fish were detected during the study. The mean (± S.D.) number of days individual 

fish were detected was 106.63 ± 79.59 (range = 2 – 323, n = 63). No fish were detected passing 

above RFHLD, and only 2 individuals were detected below MFLD. Of the 3 mainstem sections, 

the middle section had the highest detection days (3,123, range = 0 – 229, n = 57 fish) followed 

by the upstream section (1,287 detection days, range = 0 - 168, n = 42 fish), and the downstream 

section (1,106, range = 0 – 134, n = 32 fish. Six individuals were detected entering the Cahaba 

River, generating 22 detection days (mean ± S.D. = 0.35; ± 1.27) (Figures 3 - 5). Paddlefish did 
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not appear to avoid hotter temperatures by using deeper waters in the summer months (Figure 6). 

Male and female Paddlefish appeared to show more typical upstream – downstream migration 

patterns (Figure 7 and 8), while unknown sex fish did not (Figure 9).   

Given that all AICc scores for the upstream section detection model were within 2 and, 

therefore insufficient to fully separate models, model selection criteria included model weight, 

and the model being parsimonious. This model included gage height, temperature, release 

location, zooplankton density, girth, and weight (Table 1). Zooplankton density was negatively 

correlated with presence in the upstream section (β = 0.66, 0.53 - 0.81 C.L., p < 0.001). 

Paddlefish were more likely to be present in the upstream section of the reservoir when the gage 

height was higher (β = 1.043, 1.012 - 1.074 C.L., p = 0.006). Temperature was negatively related 

to presence in the upstream section (β = 0.14, 0.12 - 0.17 C.L., p < 0.001). Fish released near 

Selma were more likely to be detected in the upstream section than fish released near the Cahaba 

River, but there was a lot of uncertainty associated with that relationship (β = 1.68e+4, 4.086e+4 

– 6.91e+5 C.L., p < 0.001). Fish detected in the upstream section had larger girth (β = 378.11, 

1.76 – 8.13e+4 C.L., p = 0.03) but weighed less (β = 0.0013, 5.58e-6 – 0.28 C.L., p = 0.016) at 

the time of tagging.  

Presence of Paddlefish in the midstream section was associated with all covariates except 

gender and the body size metrics (Table 2). Zooplankton density showed a positive correlation 

with presence in the midstream section (β = 1.97, 1.75 – 2.21 C.L., p < 0.001). Gage height (β = 

0.92, 0.89 – 0.95 C.L., p < 0.001) and daily percent change in gage height (β = 0.87, 0.81 – 0.93 

C.L., p < 0.001) were negatively correlated with the midstream section. Weekly percent change 

in gage height had a positive correlation with presence in the midstream section (β = 1.079, 

1.0024 – 1.16 C.L., p = 0.043). Lower temperatures (β = 0.63, 0.57 – 0.70 C.L., p < 0.001) and 
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fish use of deeper depths (β = 1.15, 1.073 – 1.24 C.L., p < 0.001) were associated with 

Paddlefish presence in the midstream section. Fish released upstream of Selma were less likely 

to be detected in the midstream section than fish tagged near the Cahaba River (β = 0.036, 

0.0069 – 0.19 C.L., p < 0.001).  

Body metrics of Paddlefish led to the residuals in the downstream model to be 

overdispersed and have significant outliers, so they were removed from the analysis. The model 

for the downstream section only excluded release location given that it was not a significant 

factor (Table 3). After fitting the model, daily percent change was not a significant variable, so it 

was removed for the model. Females were more likely to use the downstream section compared 

to unknown sex individuals (β = 0.0012, 5.72e-5 – 0.027 C.L., p < 0.001). Zooplankton density 

was positively associated with downstream detections (β = 1.48, 1.31– 1.68 C.L., p < 0.001). 

Gage height had a negative correlation with downstream detections (β = 0.94, 0.91 – 0.96 C.L., p 

< 0.001), while weekly percent change in gage height had a positive correlation (β = 1.12, 1.049 

– 1.20 C.L., p < 0.001). Higher temperatures (β = 1.14, 1.036 – 1.24 C.L., p = 0.0065) and 

deeper depths were also associated with downstream detections (β = 1.48, 1.39 – 1.58 C.L., p < 

0.001).  

Use of different reservoir sections by the different sexes differed significantly for the 

midstream section (𝜒2	= 7.002, d.f. = 2, p = 0.03), the downstream section (𝜒2	= 15.29, d.f. = 2, p 

< 0.001), and the downstream backwaters (𝜒2	= 9.83, d.f. = 2, p = 0.0073). Females were 

detected less often and had fewer detection days in the midstream section than unknown sex 

individuals (Dunn’s Z = -2.34, p = 0.029), but all other comparisons were not significant.  Both 

males and females were detected more in the downstream section than unknown sex individuals 

(females: Dunn’s Z = 3.41, p < 0.001; males: Dunn’s Z = 2.9, p = 0.0057) (Figures 3 - 5). Males 
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were also detected in the midstream backwaters less than unknown sex individuals (Dunn’s Z = -

3.04, p = 0.0036).  

Backwater Use 

There were 1,115 (n = 22 fish) detection days for Paddlefish in backwaters with 74 (n = 

11 fish) in the midstream section and 1,041 (n = 17 fish) in the downstream section. The mean 

number of days during which an individual fish was detected was 1.17 (± 4.58 S.D.) in the 

midstream backwaters and 16.52 (± 48.76 S.D.) in the downstream backwaters. Downstream 

backwaters had the highest number of individuals detected during spring through fall, and 

individuals in midstream backwaters were only detected during winter and spring (Tables 4 and 

5). Males were detected in backwaters on 334 days (n = 7 individuals) and used backwaters an 

average of 15.77 days (± 38.42 S.D.) during the study period. Females were detected in 

backwaters 308 days (n = 4 individuals), and their average backwater use was 31.5 days (± 55.04 

S.D.). There were 473 backwater detection days (n = 11 individuals) for unknown sex fish with a 

mean of 15.71 days (± 55.04 S.D.). The most visited backwater sites had from 19-513 detections 

days by 4 – 9 unique fish (Table 6).  

The GLMM selected using AICc criteria for backwater habitats included zooplankton 

density, gage height, weekly change in gage height, temperature, depth, weight, and girth (Table 

7). Zooplankton density was negatively related to backwater detections (β = 3.91e-4, 0.00018 – 

0.00087 C.L., p < 0.001). Gage height was positively correlated with backwater detections (β = 

1.14, 1.091 – 1.20 C.L., p < 0.001). Weekly percent change in gage height was negatively 

correlated to backwater detections (β = 0.51, 0.43 – 0.61 C.L., p < 0.001). Fish using backwaters 

experienced higher water temperatures (β = 94.68, 62.91 – 142.47 C.L., p < 0.001) and used 

shallower depths (β = 0.45, 0.38 - 0.53 C.L., p < 0.001) compared to detections elsewhere. Fish 
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that were detected in backwaters were heavier (β = 1.44e+4, 1.55 – 1.33e+8 C.L., p = 0.040) but 

had smaller girth (β = 1.24e-4, 1.075e-8 – 1.44 C.L., p <0.001) at the time of tagging. 

Spawning Migration 

During the spring 2022 spawning season, one tagged fish was found in the tailrace of 

RFHLD and two fish entered the Cahaba River while temperatures were between 10-17°C 

(Table 8). I also found that two out of the 23 fish were in a ~21 km area starting around RKM 

356 of the river (Table 8) which potentially represents spawning habitat (Figures 1, 10, and 11). 

All other fish (n = 19) remained in the midstream section and the lower portion of the 

downstream section. During the spring 2023 spawning season, eight of 51 individuals detected 

during that time were found in the tailrace of RFHLD, 28 were in RKM 356 - 375, and four 

entered the Cahaba River (Table 8). Females and males were first detected at each of these three 

potential spawning habitats within a day of each other, except for RKM 356 – 375 in the spring 

2022 where a female was detected 16 days after a male arrived. In this instance, the tagged male 

and female fish were not detected in the area during the same time period, and the end dates were 

within 1 day of arrival.  In the second season at the RFHLD tailrace, one female was present for 

18 days, while one male was only detected for 2 days. In the Cahaba River, tagged male and 

female fish were not present at the same time.  

Discussion 

Paddlefish did not always move or use habitat as would have been expected based on 

what has been reported in the literature. My first study question related to quantifying seasonal 

use of section/areas of the reservoir by Paddlefish, and the factors associated with detections 

there. Many of the fish tagged in the middle reservoir section, near the confluence with the 

Cahaba River, during the first spawning season did not move directly upstream and then directly 
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back downstream as would have been expected based on previous work (Stancill et al. 2002; 

Miller and Scarnecchia 2009; Hershey et al. 2022). Furthermore, most of the fish tagged there 

did not have tubercules or presence of oocytes that would indicate spawning condition, despite 

being near the time of their spawning window. Fish having larger girth at the time of tagging 

being positively associated with detections in the upstream section is further indirect evidence of 

tagged fish migrating to spawn. Most fish I could positively identify as female through presence 

of eggs (7 of the 10) were tagged in the upstream section and could be what is driving this result. 

The upstream section of the reservoir was mostly used by Paddlefish during winter and spring, 

with some individuals remaining there during summer in 2022. Zooplankton density was not 

associated with upstream section use and did not support the suggestion that Paddlefish in 

tailwaters may be congregating there to filter zooplankton from the upstream reservoir (Southall 

and Hubert 1984). Increased gage height being associated with detections in this section, while 

lower gage height was associated with detections in the midstream and downstream sections, are 

consistent with previous observations that temperature and higher water levels cue Paddlefish 

upstream migrations (Schwinghammer et al. 2019; Tripp et al. 2019b). 

Paddlefish, particularly unknown sex individuals, used the middle river section 

throughout the year. Mettee et al. (2009) found that over half of the tagged fish tagged in the next 

downstream Alabama River reservoir remained in that reservoir, while the rest migrated past the 

downstream dam. This is a similar behavior to what I observed, except fish in my study had little 

opportunity to pass the downstream dam. During winter, Paddlefish in the Missouri River have 

been noted to congregate below the confluence with the Yellowstone River (Scarnecchia et al. 

2011). This behavior was suggested to be a result of decreased oxygen demands during colder 

temperatures making mid-reservoir areas in the mainstem more favorable than the slower 
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moving waters of the lower reservoir (Scarnecchia et al. 2011). Stancill et al. (2002) also 

observed Paddlefish congregating in the Missouri River near the confluence of the White River 

during spring and suggested that it was a result of fish responding to environmental cues such as 

water temperature and flow. I also observed fish congregations at or just upstream of the mouth 

of the Cahaba River during winter. The lower temperatures and increasing weekly gage height 

associations with midstream section detections I found agree with environmental cues 

contributing to presence there. In other seasons, presence in the midstream section could be a 

combination of factors, including comparable food availability relative to other sections, and 

reduced migration distance for those fish that are migrating. This year-round mid-reservoir 

presence may indicate the possibility of spawning periodicity (i.e., some individuals spawning in 

alternate years) in this population (Lein and DeVries 1998; Paukert and Fisher 2001 a, b). Thus, 

an alternative hypothesis could be that the high numbers of unknown sex individuals found there 

were not actively spawning, and due to adequate food availability had no need to travel into the 

more lentic downstream section to avoid higher flows. 

The Paddlefish I tagged were detected in the downstream section more frequently during 

late spring through early fall, than during other seasons, which also coincided with the timing of 

increased backwater use in the downstream section of the reservoir. Most Paddlefish that used 

the downstream section left it by mid-fall, which differs from the findings of Stancill et al. 

(2002) who found that Paddlefish congregated in lower reservoir reaches during winter. The 

tagged fish in my study identified as male or female, on average, displayed more typical 

upstream-downstream migration behavior than did unknown sex fish, leading to higher rates of 

detection of male and female fish in the downstream section than unknown sex fish. Paukert and 

Fisher (2000) suggested food availability likely played a role in Paddlefish movements. 
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Interestingly, Paddlefish movements in Dannelly Reservoir do not appear to be solely a function 

of food availability, given that food availability did not differ across the three mainstem sections 

(similar to Blackwell et al. 1995). Rather, it may be that a combination of factors meets an 

individual’s needs at a given time of year. The positive correlation of zooplankton density and 

downstream detections aligns with the peak zooplankton densities found during summer and fall 

which are times when fish used this section. Paddlefish use of the downstream section may be a 

function of available food resources during non-spawning seasons, combined with 

presence/availability of backwaters, and the generally more lentic nature of the downstream 

section, providing some refuge from flow after fish have migrated from the reservoir up to 

RFHLD and then back downstream. 

Paddlefish in other systems have been observed to use backwater habitats more heavily 

than mainstem habitats during summer (Scarneccia et al. 2011). Interestingly, the only time the 

midstream backwaters were used here was during winter and spring, and even then, they were 

only briefly used. The downstream backwaters saw far more use than midstream backwaters, and 

fish used these backwaters for longer periods of time. These habitats were primarily used during 

late spring through early fall, consistent with previous work (Hoxmeier and DeVries 1997; 

Scarnecchia et al. 2011). I detected 4 fish that each used backwaters more than 100 days, with 

one individual tagged in the first year being detected in backwaters 296 days and another tagged 

in 2023 already having spent 117 days in backwaters. I did not observe a higher percentage of 

fish in backwater habitats versus mainstem habitats during summer, however. There were 11 fish 

that were not detected during summer for a month or more after entering the downstream section, 

that were later detected again. Given that I did not detect them in the mainstem during manual 

tracking efforts, there is a strong possibility that these fish were using one of the many 
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backwaters available in this section (most of which did not have receivers). More extensive 

tracking of backwater habitats may reveal an even higher proportion of Paddlefish using these 

habitats during the summer.  

Zooplankton density was not positively associated with backwater use which has 

previously been suggested as being a contributing factor in backwater residency (Rosen and Hale 

1986; Blackwell et al. 1995; Scarnecchia et al. 2011). I did not find any difference in 

zooplankton density between the mainstem and backwater sites, contrary to the findings of 

Blackwell et al. (1995) who found significantly higher zooplankton densities in backwaters 

during the summer. Backwater habitat use may represent the best choice of habitat use in 

Dannelly Reservoir for several reasons. First, the low flow environment could act as a refuge 

from excess activity constantly required in moving waters during thermally stressful periods. 

Second, adequate food availability in backwater habitat could provide an opportunity for fish 

growth. By maximizing their growth potential and prey encounter rates in a habitat with limited 

prey loss to flow, Paddlefish would likely improve their survival, ability to migrate, and 

reproductive potential (i.e., their fitness) (Brandt and Kirsch 1993; Goyke and Brandt 1993; 

Leone et al. 2012). 

My second study question related to the extent of movements above and below the 

reservoir. I detected only 1 male and 1 female fish passing below Millers Ferry Lock-and-Dam, 

and no fish passed above R.F. Henry Lock-and-Dam. This, combined with previous findings on 

the Alabama River below Miller’s Ferry Lock and Dam (Mettee et al. 2009, Simcox et al. 2015), 

supports that the population between these two dams may be isolated from the population below 

Millers Ferry Lock-and-Dam which is consistent with conclusions of Kratina et al. (2023) based 

on a microchemical analysis of fish hard parts. To fully determine how isolated these populations 
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of Paddlefish are from one another, downstream movement (or lack of same) of both adults and 

juveniles will need to be more fully quantified. Such habitat fragmentation can lead to genetic 

bottlenecking in populations (Schwemm et al. 2019), although such an effect is not yet evident in 

such a long-lived fish population on the Alabama River (Kratina et al. 2023). However, 

modeling of the Paddlefish metapopulation on the Alabama River suggested that improved 

downstream passage at these structures may be necessary to maintain long-term population 

sustainability (Hershey 2023). 

My third study question addressed potential long-distance movements by Paddlefish, 

including effects of sex and whether these migrations included the Cahaba River. Previous work 

on the Alabama River, both below MFLD and above RFHLD, has observed Paddlefish 

congregating in the tailraces of dams during spawning season (Lein and DeVries 1998; Mettee et 

al. 2009; Simcox et al. 2019; Hershey et al. 2022; Thomas et al. in press), a behavior that has 

also been observed in other systems (Southall and Hubert 1984; Stancill et al. 2002; Jennings and 

Zigler 2009). And Lein and DeVries (1998) also observed Paddlefish in the Cahaba River during 

spawning season. While fish in my study used both the Cahaba River and the RFHLD tailrace, 

far more individuals were found around several upstream gravel beds (RKM 356 – 375) during 

peak spawning temperatures. This area of the river may represent habitat for Paddlefish 

reproduction in Dannelly Reservoir, and future work should focus on quantifying use of and 

potential spawning in these areas. In the Mobile River basin, temperatures associated with 

Paddlefish spawning migration have been documented to be 10.1- 17.1°C in the Tallapoosa and 

Cahaba rivers (Lein and DeVries 1998), 10-23°C in the lower Alabama River (Hoxmeier and 

DeVries 1997), and 16.9-19.4°C in the Tombigbee River (O'Keefe et al. 2007). The temperatures 

observed at potential spawning habitats in this study, (9.42-24.8°C), are generally consistent with 
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previous observations. I did not see a strong trend of either sex arriving at or staying longer in 

potential spawning locations as has been observed in other systems (Stancill et al. 2002, Miller 

and Scarnecchia 2011, Schwinghammer et al. 2019), but my sample size of known sex 

individuals was relatively small.   

 Also of note, I found the invasive Daphnia lumholtzi at all 17 sampling sites (Havel and 

Herbert 1993), with their highest densities being in the downstream backwater sites during 

summer 2022 where they contributed most of the zooplankton present. Their presence may be 

beneficial for Paddlefish (Eachus 2015), but their effects on other native aquatic vertebrates and 

invertebrates can be mixed (Johnson and Havel 2001; Celik et al. 2002). Mussel glochidia were 

also in high enough densities to be detected in our sampling, which could be a potential positive 

sign for mussel conservation, although species that are contributing would need to be identified. 

Conclusions 

In this system, food availability does not appear to be the sole determining factor in 

where Paddlefish spend their time. For fish found in the upstream section during winter and 

spring, it appears likely that they are moving there to spawn, and there is an abundance of habitat 

present for them to do so. Gravel beds found in this river section need to be investigated in the 

spring for indicators of spawning activity. High water and cold temperatures are associated with 

detections in upper reservoir reaches of Dannelly Reservoir. The similar density of zooplankton 

in the middle river section relative to other parts of Dannelly Reservoir, combined with a 

shortened spawning migration may be a reason we see Paddlefish here year-round. This is also 

where the confluence with the largely unimpounded Cahaba River is, and something about this 

confluence attracts large groups of Paddlefish during winter and spawning migrations. The 

downstream reservoir section and its associated backwaters are used primarily during late spring 
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through early fall, and the lentic nature of this river reach, combined with food availability 

peaking in summer and fall likely provide refugia from flow with adequate food for fish that 

have completed their migrations. Immigration and emigration of fish across either Miller’s Ferry 

Lock and Dam or R.F. Henry Lock and Dam appear to be extremely rare during my study period, 

this population is likely mostly self-contained. However, it is important that downstream passage 

of adults and juvenile Paddlefish be more fully quantified to determine the importance of this 

movement to population dynamics. Understanding the connectivity among the mostly isolated 

Paddlefish populations in the Alabama River is important for determining the sustainability of 

Paddlefish in the Alabama River given that improved connectivity between Paddlefish 

populations in the Alabama River may needed for long term population stability.  
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Tables 
 
Table 1. AIC table for GLMM evaluating factors associated with upstream section use by Paddlefish in Dannelly Reservoir. Factors 
are daily percent change in gage height, depth, gage height, fish girth, fish length, release location, fish sex, temperature where the fish 
was detected, weekly % change in gage height, fish weight, and zooplankton density. Degrees of freedom for each model, AIC score, 
change in AIC, and model weight are also included.  

Intercept Day chg. Depth Gage Girth Length Rls. Sex Temp. Wk. chg. Weight Zp.density df logLik AIC delta wt. 

0.000018 1.068 NA 1.04 368.54 NA + NA 0.14 NA 0.0013 0.65 9 -1378.57 2775.14 0.00 0.05 
0.000017 NA NA 1.04 378.11 NA + NA 0.14 NA 0.0013 0.66 8 -1379.68 2775.36 0.22 0.04 
0.000018 1.066 0.93 1.04 382.69 NA + NA 0.14 NA 0.0012 0.65 10 -1377.79 2775.58 0.44 0.04 
0.000011 1.068 NA 1.04 NA 6.47 + NA 0.14 NA 0.0001 0.65 10 -1377.84 2775.69 0.54 0.04 
0.000016 NA 0.93 1.04 392.61 NA + NA 0.14 NA 0.0012 0.65 9 -1378.85 2775.70 0.56 0.04 
0.000010 NA NA 1.04 NA 6.42 + NA 0.14 NA 0.0001 0.66 9 -1378.96 2775.91 0.77 0.03 
0.000011 1.066 0.93 1.04 NA 6.47 + NA 0.14 NA 0.0001 0.65 11 -1377.06 2776.12 0.98 0.03 
0.000010 NA 0.93 1.04 NA 6.43 + NA 0.14 NA 0.0000 0.65 10 -1378.12 2776.25 1.10 0.03 
0.000018 1.069 NA 1.04 NA NA + NA 0.14 NA NA 0.65 7 -1381.44 2776.88 1.73 0.02 
0.000001 1.068 NA 1.04 NA NA + + 0.14 NA 0.0007 0.65 11 -1377.45 2776.89 1.75 0.02 
0.000000 NA NA 1.04 NA NA + + 0.14 NA 0.0007 0.66 10 -1378.56 2777.11 1.97 0.02 
0.000018 1.068 NA 1.04 368.75 NA + NA 0.14 0.00 0.0013 0.65 10 -1378.57 2777.14 2.00 0.02 
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Table 2. AIC table for GLMM evaluating factors associated with middle section use by Paddlefish in Dannelly Reservoir. Factors are 
daily percent change in gage height, depth, gage height, fish girth, fish length, release location, fish sex, temperature where the fish 
was detected, weekly % change in gage height, fish weight, and zooplankton density. Degrees of freedom for each model, AIC score, 
change in AIC, and model weight are also included.  

Intercept Day chg. Depth Gage Girth Length Rls. Sex Temp. Wk. chg. Weight Zp.density df logLik AIC delta wt. 

19.02 0.87 1.15 0.92 NA 0.59 + NA 0.63 1.08 NA 1.97 10.00 -3147.69 6315.37 0.00 0.12 
21.25 0.87 1.15 0.92 NA NA + NA 0.63 1.08 NA 1.97 9.00 -3148.75 6315.50 0.13 0.11 
17.36 0.87 1.15 0.92 NA NA + NA 0.63 1.08 0.64 1.97 10.00 -3148.22 6316.45 1.08 0.07 
18.09 0.87 1.15 0.92 0.68 NA + NA 0.63 1.08 NA 1.97 10.00 -3148.34 6316.67 1.30 0.06 
21.62 0.87 1.15 0.92 NA 0.43 + NA 0.63 1.08 1.52 1.97 11.00 -3147.57 6317.14 1.76 0.05 
4.66 0.87 1.15 0.92 NA NA + + 0.63 1.08 NA 1.96 11.00 -3147.59 6317.17 1.80 0.05 
20.33 0.87 1.15 0.92 1.28 0.50 + NA 0.63 1.08 NA 1.97 11.00 -3147.62 6317.24 1.87 0.05 
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Table 3. AIC table for GLMM evaluating factors associated with downstream section use by Paddlefish in Dannelly Reservoir. 
Factors are daily percent change in gage height, depth, gage height, fish girth, fish length, release location, fish sex, temperature where 
the fish was detected, weekly % change in gage height, fish weight, and zooplankton density. Degrees of freedom for each model, AIC 
score, change in AIC, and model weight are also included.  

Intercept Day chg. Depth Gage Rls. Sex Temp. Wk. chg. Zp.density df logLik AIC delta wt. 
4.4 1.058 1.49 0.93 NA + 1.12 1.11 1.48 10 -3660.99 7341.98 0.00 0.38 
8.8 1.058 1.49 0.93 + + 1.13 1.11 1.48 11 -3660.64 7343.28 1.30 0.20 

3.94 NA 1.48 0.94 NA + 1.14 1.12 1.48 9 -3662.64 7343.29 1.31 0.20 
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Table 4. Number of individual Paddlefish detected at each downstream Dannelly Reservoir backwater site for each season during the 
study period. 

Downstream Backwater Site   

Season 
Numbers of 
Unique 
Individuals 

4001 4002 4003 4004 4005 

Winter 2021 0 0 0 0 0 0 
Spring 2022 5 0 1 1 4 3 
Summer 2022 6 1 0 1 4 5 
Fall 2022 5 0 0 1 4 2 
Winter 2022 1 0 0 0 0 1 
Spring 2023 8 0 3 2 4 2 
Summer 2023 8 0 0 3 4 1 
Fall 2023 2 0 0 0 2 2 
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Table 5. Number of individual Paddlefish detected at each midstream Dannelly Reservoir backwater site for each season during the 
study period.  

Midstream  Backwater Site 

Season 
Numbers of  
Unique  
Individuals 

4006 4007 4008 4009 4010 

Winter 2021 3 1 0 1 2 0 
Spring 2022 5 0 0 3 2 1 
Summer 2022 0 0 0 0 0 0 
Fall 2022 0 0 0 0 0 0 
Winter 2022 1 0 0 1 0 0 
Spring 2023 4 0 0 2 2 0 
Summer 2023 0 0 0 0 0 0 
Fall 2023 0 0 0 0 0 0 
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Table 6. The five most visited backwater sites throughout the study, seasons during which they were visited, and their general 
characteristics. n is the number of unique individuals that visited the site.  
Receiver Days n  Section Seasons  Characteristics 

4004 513 7 Downstream Spring - Fall Relatively large, fed by Chilatchee Creek, narrow mouth, numerous 
Paddlefish observed breaching during spring and summer manual tracking 

4003 277 4 Downstream Spring - Fall 
Mid-sized, full of submerged timber, wide and shallow mouth, numerous 
Paddlefish observed breaching during spring, summer, and fall manual 
tracking 

4005 246 9 Downstream All four Medium-large, fed by Bogue Chitto Creek, narrow mouth with sections of 
narrow waters leading to larger waters 

4008 45 5 Midstream Winter & Spring Mid-sized, fed by Big Swamp Creek, narrow and shallow mouth, full of 
flooded timber 

4009 19 6 Midstream Winter & Spring Medium-small, fed by Cooks Creek, narrow and shallow mouth, full of 
flooded timber 
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Table 7. AIC table for GLMM evaluating factors associated with backwater use by Paddlefish in Dannelly Reservoir. Factors are daily 
and weekly percent change in gage height, depth, gage height, fish girth, length and weight, release location, fish sex, temperature and 
depth where the fish was detected, and zooplankton density. Degrees of freedom for each model, AIC score, change in AIC, and 
model weight are also included. 

Intercept Day 
chg. 

Dept
h 

Gag
e Girth Lengt

h 
Rls
. 

Se
x 

Temp
. 

Wk. 
chg. Weight Zp.densit

y df logLik AIC delt
a wt. 

1.9E-08 NA 0.45 1.14 
0.0001

2 NA NA NA 94.68 0.51 14353.61 0.00039 9 -
807.69 

1633.3
9 0.00 0.1

0 

0.00062 NA 0.45 1.14 
0.0000

0 NA + + 94.59 0.51 
1725750.6

6 0.0004 
1
2 

-
804.81 

1633.6
1 0.23 0.0

9 

1.5E-07 NA 0.45 1.14 
0.0000

3 NA + NA 94.62 0.51 105420.57 0.00039 
1
0 

-
806.99 

1633.9
8 0.59 0.0

7 

9.9E-09 NA 0.45 1.14 NA NA NA NA 94.27 0.51 NA 0.00039 7 -
810.16 

1634.3
3 0.94 0.0

6 

1.3E-08 NA 0.45 1.14 NA 3.06 NA NA 94.56 0.51 NA 0.00039 8 -
809.63 

1635.2
6 1.87 0.0

4 

1.9E-08 0.98 0.45 1.14 
0.0001

2 NA NA NA 95.42 0.51 14405.84 0.00039 
1
0 

-
807.66 

1635.3
3 1.94 0.0

4 

1.9E-08 NA 0.45 1.14 
0.0001

2 0.93 NA NA 94.67 0.51 16546.00 0.00039 
1
0 

-
807.69 

1635.3
8 2.00 0.0

4 
 



 

 52 

Table 8. Number of individual Paddlefish detected near potential spawning areas when temperatures were between 10-17C, the first 
and last dates for male and female fish to arrive, and the average minimum and maximum temperatures detected in these areas during 
spawning months (February - May). 

 

Season 1 (2021-22)     
Habitats n First Date (M) First Date (F) Last Date (M) Last Date (F) Min. Temp. Max Temp. 
R.F. Henry 
Tailrace 1 none detected 3/23/22 none detected 4/1/22 14.8 16.59 

RKM 354-375 
Gravel Beds 2 3/20/22 4/6/22 3/21/22 4/6/22 14 17.2 

Cahaba River 2 none detected 2/5/22 none detected 4/20/22 13.2 16.4 

        

Season 2 (2022-23)      

Habitats n First Date (M) First Date (F) Last Date (M) Last Date (F) Min. Temp. Max Temp. 
R.F. Henry 
Tailrace 8 3/13/23 3/14/23 3/14/23 3/31/23 14.8 20.4 

RKM 354-375 
Gravel Beds 28 2/16/23 2/15/23 4/3/23 3/26/23 9.42 24.18 

Cahaba River 4 2/1/23 none detected 2/22/23 none detected 11.47 18.8 
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Figures 
 

 
 

Figure 1. Map of the study area that includes section delineations, receiver locations and zooplankton sampling sites. Red arrows at 
the top indicate gravel beds identified during the study.  
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Figure 2. Zooplankton densities (mean ± 95% CI) in each river section when averaged across all seasons. 
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Figure 3. Percentage of female tagged fish found in each river section during each season and year.
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Figure 4. Percentage of male tagged fish found in each river section during each season and year. 
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Figure 5. Percentage of unknown sex tagged fish found in each river section during each season and year. 
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Figure 6. Average daily temperatures and depths transmitted from tagged fish, and average monthly air temperatures in Selma, AL. 
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Figure 7. Average daily female Paddlefish location, average location for all females, backwater detections, Cahaba River detections, 
and numbers of fish detected. The vertical green line indicates the start of the 2022-23 tagging season. The vertical red line indicates 
when I began tagging fish in the upstream section. 
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Figure 8. Average daily male Paddlefish location, average location for all females, backwater detections, Cahaba River detections, and 
numbers of fish detected. The vertical green line indicates the start of the 2022-23 tagging season. The vertical red line indicates when 
I began tagging fish in the upstream section. 
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Figure 9. Average daily male Paddlefish location, average location for all females, backwater detections, Cahaba River detections, and 
numbers of fish detected. The vertical green line indicates the start of the 2022-23 tagging season. The vertical red line indicates when 
I began tagging fish in the upstream section.
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Figure 10. U.S. Army Corps of Engineers navigational chart with arrows indicating potential 
spawning habitat near RKM 355-362. 
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Figure 11. U.S. Army Corps of Engineers navigational chart with arrows indicating potential 
spawning habitat near RKM 368-375.
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Appendix 1 
 

      Summary statistics for gage data by season and section. 
 

  Gage Height Daily % Change in Gage Height Weekly % Change in Gage Height 
Section Season Mean Min. Max. SD Mean Min. Max. SD Mean Min. Max. SD 

Upstream 

Fall 18.99 18.47 19.47 0.24 0.03 -3.36 2.74 1.11 1.83 -2.93 6.39 2.88 
Spring 22.67 18.07 41.28 4.49 -0.42 -22.29 46.79 9.37 -12.78 -44.79 18.58 18.27 
Summer 19.30 18.46 26.09 0.96 0.14 -18.70 29.36 3.52 0.93 -17.24 16.58 9.00 
Winter 24.90 18.99 34.53 4.14 -0.94 -12.37 37.48 9.23 0.65 -47.07 50.07 21.19 

Midstream 

Fall 18.96 17.68 22.35 0.42 0.01 -10.38 26.41 2.38 1.23 -2.93 32.68 3.61 
Spring 21.79 18.07 41.28 3.16 -1.36 -22.29 46.79 8.31 -7.52 -44.79 18.58 17.91 
Summer 19.36 18.46 26.09 0.94 0.17 -18.70 29.36 4.03 -0.03 -17.24 16.58 8.09 
Winter 25.08 19.35 34.96 4.29 0.63 -11.44 42.63 9.48 2.27 -47.07 50.07 23.38 

Midstream Backwaters 
Spring 31.49 19.41 41.28 6.39 1.50 -16.54 46.79 13.02 -21.89 -44.79 18.58 16.42 
Winter 32.18 21.62 41.40 7.57 1.86 -14.70 24.43 10.76 -7.05 -47.07 50.07 41.74 

Cahaba 
Spring 30.58 20.30 39.84 6.30 -1.17 -13.30 26.36 14.78 -17.20 -44.79 -1.70 8.50 
Winter 27.13 21.19 34.90 3.94 -1.73 -11.00 14.30 7.44 6.41 -11.72 50.07 24.40 

Downstream 

Fall 18.87 17.68 19.42 0.25 -0.02 -5.54 2.16 1.14 1.48 -2.93 6.39 2.07 
Spring 21.70 18.07 39.84 2.54 -0.80 -22.29 26.36 6.62 -4.48 -44.79 18.58 17.90 
Summer 19.57 18.46 26.09 1.41 0.36 -18.70 29.36 5.43 0.29 -17.24 16.58 7.94 
Winter 24.28 19.12 34.90 4.66 1.35 -8.36 16.78 7.59 5.24 -11.72 22.39 13.56 

Downstream Backwaters 

Fall 18.98 17.68 22.35 0.84 -0.08 -10.38 26.41 4.62 1.33 -2.93 6.39 2.83 
Spring 22.52 18.07 41.28 4.31 -0.16 -22.29 46.79 8.39 -6.25 -44.79 18.58 19.81 
Summer 19.55 18.46 26.09 1.35 0.03 -18.70 29.36 5.07 0.44 -17.24 16.58 7.89 
Winter 28.21 24.03 34.53 4.52 -3.30 -11.00 7.07 5.58 -10.64 -10.64 -10.64 0.00 
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Appendix 2 
 
        Summary statistics for fish body metrics at the time of tagging by season and section where they were detected. 
 

  Fish Weight Fish Length  Fish Girth  

Section Season Mean Min. Max. SD Mean Min. Max. SD Mean Min. Max. SD 

Upstream 

Fall 6.82 3.77 9.29 1.48 806.71 655.00 932.00 73.58 435.83 345.00 504.00 45.76 
Spring 8.42 3.65 14.42 2.27 861.25 655.00 975.00 67.37 472.95 342.00 615.00 60.24 
Summer 7.10 3.77 8.95 1.58 825.40 655.00 919.00 73.06 447.30 345.00 516.00 52.35 
Winter 7.87 3.65 12.65 1.78 855.26 686.00 946.00 47.99 466.99 342.00 590.00 42.73 

Midstream 

Fall 7.33 4.18 12.65 1.84 833.16 724.00 946.00 62.55 451.46 382.00 590.00 44.99 
Spring 7.57 3.65 14.42 2.08 837.45 655.00 975.00 70.55 453.59 342.00 615.00 50.13 
Summer 7.10 3.77 12.65 1.68 824.35 655.00 926.00 65.01 445.14 345.00 590.00 41.90 
Winter 7.60 3.77 14.48 1.88 852.73 655.00 1001.00 57.30 450.27 345.00 612.00 49.43 

Midstream Backwaters 
Spring 7.52 3.65 9.54 1.67 871.64 686.00 926.00 58.64 448.48 342.00 516.00 53.63 
Winter 6.44 5.78 7.51 0.86 842.19 816.00 877.00 29.40 404.81 383.00 432.00 21.93 

Cahaba 
Spring 7.88 5.65 9.33 1.10 852.14 724.00 914.00 47.56 461.19 417.00 514.00 43.99 
Winter 7.51 5.65 9.33 1.70 828.60 724.00 932.00 91.95 451.90 417.00 514.00 40.88 

Downstream 

Fall 8.23 3.65 12.65 2.45 845.58 686.00 946.00 62.44 469.43 342.00 590.00 67.58 
Spring 9.38 3.65 14.48 2.32 876.62 686.00 1001.00 54.28 491.22 342.00 615.00 66.16 
Summer 9.18 3.65 14.42 2.71 855.52 686.00 975.00 61.22 494.47 342.00 615.00 74.66 
Winter 10.90 8.61 14.48 2.66 932.78 881.00 1001.00 52.13 529.83 454.00 612.00 65.41 

Downstream Backwaters 

Fall 7.97 5.46 12.65 1.49 859.67 747.00 932.00 50.21 458.20 383.00 590.00 41.21 
Spring 8.87 3.65 12.65 2.13 880.01 686.00 944.00 52.21 469.95 342.00 590.00 56.90 
Summer 9.16 5.46 12.65 2.44 873.63 747.00 944.00 50.92 485.80 383.00 590.00 68.59 
Winter 14.48 14.48 14.48 0.00 1001.00 1001.00 1001.00 0.00 612.00 612.00 612.00 0.00 
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Appendix 3 
 

Summary statistics for zooplankton density, temperatures and depth by season and section where fish were detected. 
  

  Zooplankton Density Temperature Depth 
Section Season Mean Min. Max. SD Mean Min. Max. SD Mean Min. Max. SD 

Upstream 

Fall 36.08 26.41 54.14 5.90 28.41 22.80 30.00 2.00 5.78 1.39 11.35 1.91 
Spring 2.54 0.45 3.15 0.78 18.32 13.20 25.77 2.96 4.93 0.08 15.63 2.30 
Summer 32.71 18.96 38.89 8.73 27.90 23.31 30.94 2.09 4.82 0.02 15.12 2.90 
Winter 0.89 0.58 0.92 0.10 12.76 9.42 16.40 1.59 8.21 2.10 14.62 3.14 

Midstream 

Fall 29.94 17.60 67.25 20.05 25.58 14.75 32.08 4.26 6.02 0.01 14.30 2.67 
Spring 4.40 0.22 6.08 2.62 19.74 12.40 26.00 3.01 5.27 0.01 19.60 2.77 
Summer 76.77 2.75 185.16 78.49 28.64 23.91 33.20 2.05 5.72 0.02 20.06 2.89 
Winter 0.57 0.20 1.45 0.24 12.26 9.15 16.40 1.84 5.76 1.40 11.20 2.17 

Midstream Backwaters 
Spring 1.35 0.53 2.81 0.45 16.66 11.60 24.40 2.02 2.72 0.10 4.88 1.22 
Winter 1.62 0.75 4.86 1.15 9.95 8.74 11.60 0.95 2.38 0.10 4.85 1.65 

Cahaba 
Spring 0.55 0.07 0.85 0.38 16.67 13.20 18.80 1.61 4.12 1.72 14.66 3.68 
Winter 0.10 0.05 0.27 0.09 14.40 11.60 18.00 2.33 2.69 1.57 4.20 0.99 

Downstream 

Fall 20.21 16.05 30.94 6.70 27.40 16.40 30.70 3.25 6.12 0.86 16.10 2.68 
Spring 5.01 0.65 5.86 1.80 20.30 12.40 26.40 2.57 5.36 0.10 15.67 2.89 
Summer 31.92 22.93 69.77 17.62 28.32 22.80 31.60 2.10 5.43 0.10 13.65 2.89 
Winter 1.15 0.84 2.89 0.75 13.46 9.20 15.60 2.31 3.66 0.10 9.04 2.74 

Downstream Backwaters 

Fall 15.50 4.95 24.05 7.12 26.58 20.01 30.41 2.70 1.54 0.09 10.63 1.66 
Spring 2.03 0.31 6.97 1.81 22.01 13.87 28.39 3.16 2.12 0.01 9.25 1.82 
Summer 13.61 3.09 69.77 10.51 29.33 22.16 33.20 1.97 2.53 0.01 11.31 2.54 
Winter 0.66 0.66 0.66 0.00 15.07 11.60 18.00 2.63 1.79 0.32 3.42 0.81 
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Appendix 4 
 

     Pearson’s correlation matrix for numeric response variables used in the GLMMs. 
 

 Zooplankton density Gage % Daily Change % Weekly Change Temperature Depth Length Girth Weight 
Zooplankton density 1.00 -0.22 0.04 0.12 0.42 0.05 -0.16 -0.17 -0.22 
Gage -0.22 1.00 0.12 -0.32 -0.59 -0.01 0.12 0.01 0.05 
% Daily Change 0.04 0.12 1.00 0.17 0.09 -0.05 -0.04 0.00 -0.01 
% Weekly Change 0.12 -0.32 0.17 1.00 0.39 -0.05 -0.06 -0.03 -0.05 
Temperature 0.42 -0.59 0.09 0.39 1.00 -0.06 -0.13 0.02 -0.02 
Depth 0.05 -0.01 -0.05 -0.05 -0.06 1.00 0.02 0.10 0.05 
Length -0.16 0.12 -0.04 -0.06 -0.13 0.02 1.00 0.73 0.82 
Girth -0.17 0.01 0.00 -0.03 0.02 0.10 0.73 1.00 0.96 
Weight -0.22 0.05 -0.01 -0.05 -0.02 0.05 0.82 0.96 1.00 

 


