
CONSTRUCTION OF AN INTELLIGENT DATABASE

APPLICATION DEVELOPMENT ENVIRONMENT

USING OBJECT-ORIENTED CONCEPT

SuHoun Vandy Liu

Certificate of Approval:

____;..,....;..:;;...ZLCl,,J.i...&-:~~~~:M---- ~: 6'(.~:;(~

Assistant Professor
Management Management

Assistant Professor
Management

N OS, Dean
Dean
Graduate School

CONSTRUCTION OF AN INTELLIGENT DATABASE

APPLICATION DEVELOPMENT ENVIRONMENT

USING OBJECT-ORIENTED CONCEPT

SuHoun Vandy Liu

A Thesis

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

requirements for the

Degree of

Master of Science

Auburn, Alabama

December 9, 1988

CONSTRUCTION OF AN INTELLIGENT DATABASE

APPLICATION DEVELOPMENT ENVIRONMENT

USING OBJECT-ORIENTED CONCEPT

SuHoun Vandy Liu

Permission is granted to Auburn University to make copies
of this thesis at its discretion, upon the request of indi­
viduals or institutions and at their expense. The author
reserves all publication rights.

Copy sent to:
~

Date

iii

VITA

SuHoun Vandy Liu, son of Jih-Hung Liu and Kwei-Yun Li

Liu, was born June 14, 1962, in Miao-Li, Taiwan, Republic

of China. He attended Chang-Kwang Primary School and grad­

uated from the Pan-Chou High School in 1980. In September,

1980, he entered Tung-Hai University and received the

degree of Bachelor of Business Administration in June,

1984. In September, 1986, he enterd Auburn University for

graduate studies in management. Mr. Liu has held the posi­

tion of graduate teaching assistant in the Department of

Management at Auburn University.

iv

THESIS ABSTRACT

CONSTRUCTION OF AN INTELLIGENT DATABASE

APPLICATION DEVELOPMENT ENVIRONMENT

USING OBJECT-ORIENTED CONCEPT

SuHoun Vandy Liu

Master of Science, December 9, 1988
(B.B.A., Tung-Hai University, 1984)

178 Typed Pages

Directed by Dr. Kenny w. Jih

Throughout the world, managers are beginning to recog­

nize the potential of computers and information processing

technology to help them cope with today's complex business

world. When the demand for new or expanded computer-based

information systems grows rapidly, it far exceeds the capa­

bility of present DP organizations to meet this demand.

One feasible solution is to allow end-users to function as

their own developers. However, to accomplish this transfer

of application development from DP professional to DP user,

support must be provided to these end-user developers.

One promising technical approach toward this end is to

provide them an intelligent development aid. Such a devel­

opment aid should contain general knowledge about system

development to provide assistance to it's users, and it

V

must be easy to use. Two techniques have been recognized

to have great potential for the development of such an

intelligent development aid. They are the knowledge-based

technology and the object-oriented concept.

The purpose of this thesis was to explore the feasibil­

ity of developing an intelligent development aid for end­

users by using the object-oriented concept and knowledge­

based technology. This study investigates this feasibility

by developing a conceptual model for such a development

aid. A prototype was implemented to test the validity of

the conceptual model. The prototype demostrates that the

conceptual model can be implemented and that the resulting

system does exhibit the kind of interaction process

desired.

vi

TABLE OF CONTENTS

LIST OF TABLES ..

LIST OF FIGURES ..

I. BACKGROUND AND INTRODUCTION.

Introduction
Problem Statement
Objective of This Research
Research Hypothesis and Research Methodology
Significance
Organization

. ix

X

1

II. LITERATURE REVIEW 16

End-User Computing
Intelligent System Development Aid
Object-Oriented Development Paradigm

Description of Object-Oriented concept
Object-Oriented Paradigm for System

Development
Chapter Summary

III. DEVELOPMENT OF THE CONCEPTUAL MODEL 32

Introduction
Description of the Intelligent Database

Application Development Aid
Architecture of the Intelligent Database

Application Development Aid
Intelligent Development Aid
Object Specification Dictionary
The Object-Oriented Application System
Personnel Roles in the End-User Application

Development Environment
The System Development Procedure of IDADA
Summary

vii

IV.

v.

PROTOTYPE DEVELOPMENT 54

User's Model for Database System
Prolog Notations for Object-Oriented Programming
Prototype Description

System Structure
Implementation of the Object Class Library
Implementation of the Intelligent

Development Aid
Implementation of the Object Specification

Dictionary
An Example

SUMMARY AND CONCLUSION.

Summary
Contributions of This Study
Suggestions for Further Research

91

BIBLIOGRAPHY ..

APPENDICES ..

98

. . 106

A. Database Development Environment Source
Listing

B. Object Class Library Source Listing

c. Intelligent Development Aid Source Listing

D. Object Specification Dictionary
Faculty Service Database

viii

LIST OF TABLES

1. Object Class and Method List .. 65

ix

r

LIST OF FIGURES

1. Traditional Application Development Environment .. 10

2. End-User Application Development Environment. . 11

3. End-User Application Development Environment 35

4. Application Development Process in Application
Development Environment 37

5. Application System Processing in Application
Operating Environment 38

6. structure of the Intelligent Development Aid. . 40

7. structure of the Object-Oriented Application
Sys tern. 4 3

8. structure of the Object Class .. . 44

9. Responsibility Sharing in End User Application
Development Environment. 48

10. The Development Procedure of Intelligent
Database Application Development Aid. . . . 51

11.

12.

13.

User's Model of the Database System.

structure of the IDADA Prototype.

Object "dbde" Screen ..

14. System Structure of the Database System ..

15. Processes of the Database System

. 56

. 60

. 61

. 6 3

. . 6 6

16. structure of the Intelligent Development Aid 72

17. End-User Database Development Process.

18. Specify Form Format Screen ..

19. Specify Key Fields Screen.

X

. 73

. 74

. 75

20. Specify Functional Dependency Screen. 76

21. Specify Report Format Screen. 78

22. Processing List 80

23. OSD Format. 81

24. Faculty Service Report. 84

25. Processing List 1 - Faculty Service Database. . . . 87

26. Processing List 2 - Faculty Service Database. . . . 88

27. Processing List 3 - Faculty Service Database. . . . 90

xi

I. BACKGROUND AND INTRODUCTION

Introduction

The basic purpose of information system installations

is to effectively support needed information resources for

the organization. Recent research has indicated that

information systems are fast becoming indispensable allies

in marketing, customer services, management, strategic

planning, and many other tasks {Bryce, 1987; Gerstein and

Reisman, 1982). The need for information systems grows

substantially as more complex systems are required for

users' more sophisticated problems.

As the demand grows, the MIS department is under great

pressure from their users. As users become more sophisti­

cated and systems become more essential to the success of

the organizations, the need for reliable, high-quality

software escalates. This need has created a dilemma of

unprecedented proportions for the MIS department. The

major problems for MIS departments in most organizations

are discussed as follows.

1. Limited human resources. A study conducted by the

Department of Defense estimated that by 1990 there could be

a deficit of as many as 1 million software developers

1

2

(Case, 1986). Qualified system development personnel

(including analysts, programmers, project managers) are

rare and very expensive resources. Since a massive expan­

sion of MIS professionals is impossible, many MIS depart­

ments and organizations will fail to meet the booming

demands for their services.

2. cost overrun. While the hardware has decreased in

price and increased in performance, the software has

steadily increased in cost. Unlike hardware development,

today software development is largely composed of manual

tasks performed by system developers. Unstandardized

procedures are employed and no mass production is used to

reduce the cost of development. Therefore, costs of sys­

tems can be unaffordably high.

3. Growing backlog. A critical aspect of the software

crisis is the large backlog of application development

requests. There are two primary reasons for this backlog.

On the supply side, the productivity of system developers

has not increased significantly in the past. On the demand

side, as more users realize the benefits of computerized

solutions to their problems, more requests are made. The

backlog grows as the supply continues to fall behind

demand. In addition to the documented backlogs, there are

invisible backlogs resulting from the requests which are

never submitted. Realizing that the MIS department is hav­

ing difficulty meeting the demand, many users are now opt­

ing for small computers and are attemping to computerize

3

their applications by themselves. Many problems associated

with inefficient resource allocation as well as lack of

control have occurred with regard to this situation.

4. user dissatisfaction and system failure. User dis­

satisfaction occurs when the system delivered to the user

fails to meet their needs and expectations. These system

development failures are usually caused by miscommunication

between the developer and the user. A frequently quoted

statistic is that 50-80% of the budget for a system devel­

opment project is spent in maintaining the system after it

has been delivered to the user (The Report of Alvey Commit­

tee HMSO, 1982; Ramamoorthy, 1984).

Because of the concern for these problems, improving

information systems development productivity has become a

critical issue in MIS research. A 1984 survey revealed

that MIS professionals identified productivity as one of

the ten most urgent issues facing organizations (Dickson,

1984). During the past decade, business, government

agencies, and academic institutions have extensively inves­

tigated various issues of system development productivity.

As a result, two approaches have been identified as being

of great potential. One approach is to make the MIS pro­

fessionals more productive. The other approach is to allow

end-users to function as developers of their own applica­

tions.

The first approach aims to increase the productivity of

MIS personnel by providing more useful tools and more

4

practical development methodologies. The efforts in this

direction have met with a fair measure of success. A wide

variety of technologies has been developed for the MIS per­

sonnel to be able to communicate better, to test the proto­

type easier, and as a result, to develop systems faster and

cheaper. Examples of these productivity enhancement tech­

nologies are codes generators, structured analysis, and

fourth-generation languages, etc.

The second approach attacks the problem from a differ­

ent angle: end-users are allowed to develop their own sys­

tems. Empirical evidence supports the proposition that

sufficient user involvement leads to more effective system

development (Kasper, 1985). During the past ten years,

capabilities of technologies have been improved to a degree

that users may function as system developers. Since end­

users know their business better than computer profession­

als, they do not have to spend so much time in analyzing

and specifing their information requirements. The need for

the programmer "middle man" is thus reduced.

Not only the creation but also the modification of the

system may be performed by end-users. This helps relieve

the MIS departments• applications development workload, and

it helps distribute the maintenance burden (Ronald, 1987).

However, in order to transfer part of the application

development responsibility from the MIS department to

application users, both hardware and software tools must be

provided.

5

Today, the implementation of desktop computers in the

business community contributes a positive hardware factor

for end-user application development. Desktop computers

provide more local control over and easier access to much

of the desirable computing power for a relatively low cost

(Gibson, 1988). However, developing an application system

is a complicated task. One problem end-user developers

have is that they do not posses the knowledge required for

development of the system. Fortunately, recent research

has created a variety of concepts and techniques capable of

making system development tasks easier and more understand­

able to end-users. Among these, two have been recognized

to have great potential. They are the knowledge-based

technology and the object-oriented concept (Schmucker,

1986; Simon, 1986).

It is widely recognized that knowledge-based systems

can play an important role in cornrnerical DP systems devel­

opment (Barder et. al., 1987). Because of the unique sys­

tem architecture, a knowledge-based system can store the

specialized development knowledge that the end-users do not

have. These knowledge bases then can be made available to

end-user developers, resulting in an interactive system

development environment. A number of knowledge-based sys­

tems had been developed for this purpose (Bader, Hannaford,

Cochran & Edwards, 1987; Choobineh, Mannino, Nunamaker &

Konsynski, 1988; Hull, 1987; Karimi, 1988; Madhavji, 1988).

However, these systems were designed primarily for MIS

6

professionals. A considerable amount of training is

required for these systems to be used by novices. In a

survey conducted by Rivard and Huff (1985), the training

requirement was found to be one of the main problems in

making "everybody ... his own programmer" (Sammet, 1969).

The object-oriented concept relates to both the object­

oriented design paradigm and the object-oriented implemen­

tation technique. Object-oriented (0-0) design is viewed

as a software decomposition technique (Meyer, 1987).

Unlike classical (functional) design, it bases the modular

decomposition of a software system on the classes of

objects the system manipulates. 0-0 design decomposes a

system in a way that closely matches the model of reality

which the users already know. Thus 0-0 design can be

understood by nonprofessional users easier than the tradi­

tional functional decomposition approach (Feuche, 1988).

Furthermore, 0-0 design leads to a new approach to system

implementation -the 0-0 implementation. Booch (1985} pro­

posed that, given a rich set of reusable object components

(objects or object classes), implementation may proceed via

composition of these object components.

When the knowledge base and the 0-0 concepts are

applied to the development of an end-user application

development aid, many benefits can be achieved. Literature

on these topics abounds. In Chapter Two some of the most

significant research will be reviewed.

7

Problem statement

A general problem we are facing today is the need to

significantly increase our productivity in producing

quality systems to meet the tremendous demand. Both manage­

ment and technical measures must be explored in this

endeavor. One promising technical approach is to provide

an intelligent environment within which end-users may

develop their own applications. Most existing tools devel­

oped to improve system development productivity deal pri­

marily with the implementation stage in the development

life cycle. Since most problems require some degree of

design, such types of tools are limited in their functions.

An intelligent system development aid not only will auto­

mate the implementation task, but also is capable of auto­

mating much of the design function.

Three issues must be considered in developing an intel­

ligent aid for user application development. First, the

system must contain general knowledge of system develop­

ment. For instance, in a relational database environment,

normalization of relations is a critical task in the design

stage. An intelligent system development aid should be

capable of performing database normalization with only a

minimal amount of user interference. Second, the problem

domain must be well bounded in the sense that most activi­

ties must be identifiable and representable. The more the

system knows about the activities in the domain, the more

powerful the system could be in providing intelligent

8

assistance. The third issue is user interface. Any system

aimed at end-users must be easy to use. This is even more

important for a system dealing with both design and imple­

mentation. An easy-to-use system provides more than just

friendly interaction prompts and messages. The views of

real world contructs used by the system must also have a

natural correspondence with those of the users. For

example, an input screen is often regarded as an insepara­

ble object by the user. If a screen format is also viewed

by the system as an object, rather than as a collection of

relatively independent entities, there would be a natural

communication channel between the system and the user.

objective of This Research

The main goal of this research is to explore the possi­

bility of applying the 0-0 concept in developing a knowled­

ge-based development aid. The system's main function is to

provide an environment within which novice users can design

their own applications by specifying objects that corre­

spond to the real world constructs of their problem

domains. Once the design phase is finished the user can

proceed into the usage phase. With this system's assis­

tance the user acts both as a system developer and as a

system user.

The system developed in this study represents a funda­

mentally different approach to applications development.

Figure 1 depicts the model of the application development

9

environment in a traditional approach. In this environ­

ment, system developers translate users' problem descrip­

tions into application systems in a specific computer lan­

guage. The programs are then compiled or interpreted into

machine code and executed by computers. The model proposed

in this research is shown in Figure 2. In the End-User

Application Development Environment, users' specifications

may be directly translated into executable code by the

knowledge-based application development aid.

In order to construct the End-User Application Develop­

ment Environment, this study first develops an architecture

for an automatic application development environment. The

environment consists of a knowledge-based development

assistance component which was developed using the 0-0 con­

cept. The architecture will be discussed in the third

chapter. According to McCracken (1980), an end-user appli­

cation development aid should have a natural syntax, should

be interfaced with a database management system, should

provide a query language plus a report generator, and

should have the ability to insure data integrity and vali­

dity. In order to test the proposed architecture, a proto­

type of an end-user application development aid has been

developed using this architecture.

Research Hypothesis and Research Methodology

The hypothesis for this research was that it is

feasible to develop an object-ori~nted, knowledge-based

10

Application Development Environment

User's Developer'
Problem Problem
Descri tio System Desert tlo Softvvare Descri tio

In Developer In System In
Human Computer Machine
Language Language Language

Figure 1. Traditional Application Development Environment

11

AppOcation Development Environment

User's Compute(~
Problem End User Problem
Dsscriptlon ~ Appllcatlon Development . Descrlotlon ...

In Aid In
Human Machine
Language Language

Figure 2. End-User Application Development Environment

12

system for end-users to use in designing and implementing

their own applications. This hypothesis was tested by

developing a conceptual model and implementing a prototype

system based on that model to demonstrate the function of

the system. The focus was placed upon the feasibility

rather than the efficiency and effectiveness aspect of the

issue. Statistical testing for efficiency and effective­

ness evaluation for this system was not feasible in this

case. First of all, if statistical testing were to be

used, it would be necessary to duplicate the development

many times so that enough sample points would be available

for statistical testing. Also, because of the different

nature of this system, the intelligent system development

environment proposed here supports a new development

approach. That is, system development in this environment

has a different meaning when compared to system development

in a traditional development environment. In this intelli­

gent system development environment, system development is

a process of object specification while in the traditional

development environment it is a process of processing

description.

significance

The development of a successful application system is

usally complicated by an unfortunate fact: The paradigm

(model of realty) of the end-user and the internal model of

the software system are substantially different (Meyer,

13

1987). Meyer (1987) and Booch (1986) believe that end­

users view their world in terms of objects they encounter

in their work environment. They employ abstraction and

tend to develop models for their work environment by iden­

tifying the objects and operations that exist at each level

of interaction (Booch, 1986). For example, a student views

a world as consisting of courses, faculty, and so forth.

Software systems traditionally hold the world view in terms

of functions or processes in the problem domains. For

example, a system probably views the student world in terms

of "adding_a_course", "dropping_a_course", and so forth.

The main contribution of this research is that the pro­

posed development model frees the end-user developers from

following the footsteps of the professional developers.

Capturing the abstract knowledge of the environment in the

object-oriented paradigm makes the assumptions, policies,

and rules of the work environment formal and explicit,

instead of embedding them in procedures, as is the case in

traditional function/process-view models (Karimi, 1987).

By applying the 0-0 approach, the end-user's models of

reality for their work environment can be implemented into

reusable object classes in the development environment.

Thus, the end-user developers can design and develop their

own application systems based on their own problem descrip­

tions. For example, if student, faculty and course are the

object types in a student's model of reality, these can be

captured and implemented into three object classes in the

14

development environment. When this student makes a problem

description, student, faculty and course will be used and

specified in his description (e.g. who is the faculty that

teaches the course COBOL). Then a process can be triggered

by the development aid to search for a specific object in

the object class "faculty" that has a certain relationship

(teach) with an object (COBOL) in the object class

"course".

The second contribution of this research is that it

proposes a way to design a high level user interface in an

automatic development system. Applying 0-0 development can

simplify the normally complicated task of designing a user­

friendly interface. In an object-oriented system, the

interface directly matches the internal content of the sys­

tem. This could significantly reduce the need for user

training as well as the fear of computer usage. Also,

since the system is object-oriented, a graghic-based inter­

face can be implemented more easily. For example, student,

faculty and course can be represented by graphic symbols in

the interface. If functional decomposition were employed,

the system would have to incorporate functions such as

"teaching_a_course" and "taking_a_course". Any user speci­

fication in this interface will have to be translated into

"teaching_a_course" and "taking_a_course" functions before

they could be incorporated into the system.

The third contribution of this study is that it pro­

poses a way for organizations to manage their software

15

assets. In the End-User Application Development Environ­

ment object classes will facilitate the sharing and reuse

of program code. Application systems developed by differ­

ent users are implemented by sharing the object classes.

Also, the 0-0 implementation protects the independence

between the design phase and implementation phase as the

system evolves. Thus, end-users and MIS professionals can

share the responsibility of maintenance. The independence

allows implementational changes (changes on the object

class library) to be made by MIS professionals while the

design changes (changes on the specifications for the

application systems) are made by users.

organization

The remainder of this reseach is organized into four

chapters. Chapter II is a review of the literature relat­

ing to the construction of an end-user development aid.

Chapter III presents the conceptual model which is proposed

by this study. In Chapter IV, the conceptual model is

applied to a database application to develop a prototype

system. Finally, Chapter v summarizes the conclusions of

the study and outlines recommendations for further

research.

II. LITERATURE REVIEW

This research investigates the feasibility of develop­

ing an end-user application development aid using knowledge

base techniques and object-oriented concepts. The areas

involved include end-user computing, intelligent system

development aid, and the object-oriented development para­

digm. The following sections present an overview of these

subjects. The first section provided a discussion of the

end-user developers. The next section reviews studies con­

cerning intelligent development aid. The last section of

this chapter presents an overview of object-oriented con­

cepts used in the system development.

End-user computing

In an effort to design more effective systems, informa­

tion systems managers are constantly searching for new man­

agement ideas and new technologies. Although the develop­

ment of new assistance tools for system development can

benefit the productivity in system development, such tools

are currently seen by management in many organizations as

only a part of the overall picture. The basic philosophy

about system development is changing in those organizations

to allow individuals with little or no formal DP training

16

17

to develop and use their own computer-based applications

(Hughes, 1988). McLean described this approach as follows:

Another approach is to allow end-users to func­
tion as their own developers. In this way, the
programmer "middle man" is eliminated and users
can create and modify their own applications as
need arises (McLean, 1979:37).

Discussions on end-user computing abound in the aca­

demic literature and popular press. For example, back in

1969, Sammet (1969) argued in favor of making everyone his

own programmer. Boehm (1973) foresaw a trend toward the

day when most problems could be programmed by a user "in

less than an hour ... with one day of specialized train­

ning". Gibson and Hughes (1987) discussed the role of

design and development environment in the overall end-user

work environment. Dolotta et. al. (1976) suggested that

this approach appeared to be the only way the growth of the

data processing industry could be sustained. Leitheiser

and Wetherbe (1986) stated the reasons that end-users would

choose to do their own computing:

1. Lead times on development requests are shorter.

2. End-users have more control over system development and

use.

3. Services are not available from the MIS department.

4. MIS department procedures are not appropriate for small

applications.

s. The MIS department is not perceived as being concerned

about users' needs.

18

6. End-users want to learn about computing.

7. End-users gain more flexibility.

8. The information systems developed better meet users'

needs.

9. Development costs are lower.

Besides the advantages for users, Leitheiser and

wetherbe (1986) also identified the benefits for the MIS

department. They were

1. The shortage of systems development personnel can be

relieved.

2. End-user computing allows users to avoid going through

the time consumming and error-prone process of communi­

cating requirements to an outside developer.

3. The responsibility of the MIS department for successful

system implementation is removed.

The report of a survey in December of 1985 (Journal of

Systems Management Report, 1985) indicates that after

adding the development function into a group of end-users'

work environment, those users believe that their work envi­

ronment now allows them to "complete more work in a given

amount of time, freeing them for other activities." Fur­

thermore, another study (Benson, 1983) shows that the

increased productivity due to the use of these development

functions indicates that the benefits largely outweigh the

cost.

Other studies show that end-users are capable of becom­

ing good system developers. For example, Kozar and Mahlum

19

(1987) demonstrated that system design tasks could be done

successfully by end-users. In their study a project was

conducted in which users, with tutoring and guidance, per­

form as system analysts. In the study, the end-users not

only accomplished the task, but also did it very effi­

ciently.

To help end-users function as system developers, proper

development support is needed. In a 1979 article, McLean

discussed the key variables that must be understood in the

transfer of application development from DP professional to

DP user. His work provided excellent background knowledge

about the relavant factors in supporting end-users to func­

tion as developers.

An empirical study conducted by Rivard and Huff (1985)

in ten large Canadian firms showed that proper training is

one of the most important types of support for end-user

developers. In their study, nearly 75% of the survey

respondents had at least some exposure to a programming

language. But most users interviewed indicated that they

required relatively longer learning periods and consider­

able practice to become proficient with the software tools.

A study conducted by Kozar and Mahlum (1987) suggested that

more time should be spent teaching user groups how to

define problems or to describe the environment of the prob­

lem than in applying technology to the problem.

Assistance during the system development process is

another important support for end-user developers. McLean

20

recognized the value of applying system prototyping in end­

user developers' development process. Gibson and Corman

(1987) identified the possible causes of errors in the end­

user programmers' development tasks. Their recommendations

for supporting end-users in dealing with these problems

are, first, to provide sufficient aids such as information

center, computer-assisted instruction or other tutorials,

seminars, and continuing education; and second, to use the

technological advances in the areas of natural languages

and artificial intelligence to provide the ability to

reduce the risk of errors.

Intelligent system Development Aid

System development is a knowledge-intensive activity.

It has been suggested that knowledge base technologies are

a promising approach to significantly improving the effi­

ciency of this activity (Goldberg, 1986). The need for an

intelligent system development environment was recognized

in the mid-1970s as a result of continual problems with

software development (Karimi & Konsynski, 1988). For

example, Goldberg (1986) suggested that a knowledge-based

development aid would increase productivity of the system

developers by (1) providing a rapid prototyping capability,

(2) reducing the cost of development and maintenance, and

(3) increasing reliability. Simon (1986) explained the

necessity of automating system development function and the

21

potential of artificial intelligence in this area by stat­

ing that:

It is not a question of whether we want to auto­
mate more of this (system development) process,
and since part of the (development) system we want
now to automate is a highly unstructured part of
the process, it is not really a question of
whether we want to use artificial intelligence
methods in software engineering: it is a question
of whether artificial intelligence is powerful
enough, whether we yet know enough about artifi­
cial intelligence, or whether it is advanced
enough to really help us (Simon, 1986; 726).

An important issue that must be considered when assess­

ing the potential of knowledge-based systems in a particu­

lar domain is whether the application area is mature enough

to be the basis for a knowledge-based system (Bader,

Hannaford, Cochran & Edwards, 1987). The area of software

engineering, when compared with more mature areas such as

the legal, medical or geological domain, has had a short

evolutionary span. However, a number of sophisticated sys­

tems with training, engineering, and heuristic knowledge

have been constructed. For example, Vitalari (1985) pre­

sented a summary of the knowledge for the system analysis,

and Goldberg (1986) presented a framework for the organiza­

tion of the knowledge for program development. For the

development of a knowledge-based system development aid,

the traditional system development life cycle (SDLC) model

provides useful guidelines. Different types of systems may

be developed to address different portions of the life

cycle. Some development aids that provide assistance in

different stages of the SDLC are reviewed below.

22

A number of knowledge-based tools are now available for

the system analysis and requirement specification. For

example, IS-DOS (Teichroew & Hershey, 1977), SREM (Alford,

1978), and SPECIF (SPECIF, 1984) are three automated tools

for software requirement specification. With SPANNER

(Aggarwal, Babra & Meth, 1988), a software design environ-

ment, the user can formally produce a specification of a

distributed computing problem, and then verify its "cor­

rectness" through reachability analysis and simulation.

Henry (1979) defined and validated a set of software met­

rics which were based on the measurement of information

flow between system components. The metrics were demon­

strated to be useful in design and development of the UNIX

operation system. Giddins and Colburn (1984) developed

rules to quantify notions of good design based on the con­

nectivity and the complexity of the components. Karimi and

Konsynski (1987; 1988) applied metrics to the design phase

and built an automated software design aid which would

derive a structured modular design from the logical model.

In the area of database design, a forms-oriented model

was proposed to be of great value for construction of an

intelligent aid. Properties of forms were used as the

inputs to generate requirements specification for the sys­

tem. Sue, Wong, and Lum (1982) reported a forms-o~iented

approach to database design. However, no computer-assisted

database design aid in support of their standardized form

was described. Batini, Demo, and Leva (1984) proposed a

23

methodology for deriving a conceptual schema from a collec­

tion of forms. Their approach was to derive the global

schema in a bottom-up fashion starting from subparts of

forms. For each form, the designer compiled a data glos­

sary of the form fields. These form fields then were

grouped into entity types and were used to generate the

entity type for each form.

Holsapple, Shen, and Whinston (1982) implemented the

form-oriented approach for database design. Their expert

system designed database schema from business reports.

Each report was formalized into a report schema and

consequently transformed into a database schema. Knowledge

about the design was represented as production rules which

could be used as a consultation system by the database

designer. Choobineh, Mannino, Nunamaker and Konsynski

(1988) developed an expert system for logical database

design. The system created an entity-relationship dialog

by analyzing a collection of forms. The conceptual schema

was created by incrementally integrating related collec­

tions of forms. It applied a collection of rules against a

form definition database to interactively guide a designer

in constructing an Entity Relationship Diagram for the

database.

various computer-Assisted Software Engineering (CASE)

systems such as report generator, screen generator and some

very high level computer language have been proposed to

help automate the system implementation stage in the SDLC.

24

Sample works include Luo and Yaos' work (1981) in develop­

ing a language for office information processing based on

examples. There also have been a number of automated tools

for database application implementation. For example, the

form-oriented information management model developed by

Tsichritzis in 1982.

Automatic programming is a well-investigated field in

improving the system development productivity. Madhavji

(1988) proposed a basis for automatic programming environ­

ments. users in this programming environment may develop

software programs based on objects called fragtypes. Frag­

types range from a simple expression type to a complete

subsystem type. MUPE-2, which is currently under develop­

ment at McGill University, is a programming environment

that uses fragtypes as the building blocks. Programmers of

the MUPE-2 environment may assemble their programs from

fragtypes (Madhavji, 1988; 1986). Meyer suggested that the

object-oriented design could be used as a decomposition

technique to form reusable objects. Henderson developed

"The Trillium user Interface Design Environment" which pro­

vided a means of interactively designing user interfaces

through the exploitation of some key abstractions from the

language of interface design and used the notion of func­

tioning frames as the basic representation style (Easterby,

1987).

Because of the significant difference between design

and implementation, few studies have been conducted

25

on systems with capabilities of supporting both design and

implementation tasks. The development of Intellipse is one

of them. Intellipse is a knowledge-based tool for support­

ing both the design and implementation of commercial data

processing systems (Bader, Hannafold, Cochran and Edwards,

1987). Also, some of the intelligent design aid systems

discussed previously, such as the one reported by Hull and

Metcalfe (1987), exhibited the possibility of integrating

with some high level languages for system implementation.

Studies have demonstrated that knowledge-based systems

can provide effective support for the operation and mainte­

nance stages. Some intelligent systems were developed to

produce system documentation. For example, Munro (1983)

constructed a system, SADIST, which functioned as an inter­

active editor in a computer-aided documentation system.

Hull and Metcalfe (1987) outlined the design and develop­

ment of a software tool for the generation of SADT (Struc­

tured Analysis and Design Technique) diagrams implemented

on a Fortune microcomputer. studies show that the mainte­

nance of computer systems could benefit greatly if the pro­

cess knowledge could be captured and used in order to rea­

son about the consequences of changing conditions or

requirements (Dyer, 1984; Hurst, Frewin & Hamer, 1985;

Leung, 1985). Dunning (1985) developed an expert system

that supported rapid prototyping of conventional software.

Dhar and Jarke (1988) proposed a formalism called REMAP

which accumulated design process knowledge to manage system

26

evolution. REMAP acquired and maintained dependencies

within the design decision made during a prototyping pro­

cess, and was able to learn general domain-specific design

rules on which such dependencies are based.

Object-oriented Development Paradigm

Description of Object-Oriented Concept

This section introduces basic concepts of programming

with objects and reviews some of the major works related to

the object-oriented development paradigm. Simply stated,

the object-oriented development paradigm is an approach to

system development in which the decomposition of the system

is based upon the concept of objects. Many of the ideas

behind object-oriented programming have roots going back to

SIMULA {Stefik & Bobrow, 1984). The first substantial

interactive, display-based implementation for object­

oriented paradigm was SMALLTALK {SMALLTALK, 1984). Rentsch

{1982; 51) predicted that "object-oriented programming will

be in the 1980 1 s what structured programming was in the

1970 1 s".

Object-oriented development is fundamentally different

from traditional functional methods. Using the object­

oriented concept, the primary criteria for system decompo­

sition is that each module in the system represents a com­

ponent in the overall problem domain instead of a function

the system performs {Meyer, 1987). All information in an

object-oriented system is represe?ted as objects. Each

27

object responds to certain messages that are sent to it.

Associated with each message is a method in the object that

describes how the object should react when it receives the

message. As an object responds to a message, the corre­

sponding method is invoked and the associated action taken.

The components (physical or logical) in the problem domain

are simulated by means of objects and their methods in the

object-oriented system. In developing an object-oriented

system, one may identify the objects by looking at the

nouns within the requirement specification. Methods within

each object can be identified by the verbs associated with

the object in the problem description. Stefik and Bobrow

(1986) provide a good comment on the themes and variations

in object-oriented programming.

There are a number of object-oriented programming lan­

guages in use today. Examples are SMALLTALK, LOOP, and

c++. Object-oriented programming features can be added to

nearly any conventional programming language by grafting a

small number of new syntactic features alongside the exist­

ing capabilities of the language. The new language retains

the efficiency and compatibility of the base language, but

it provides the reusability and productivity of an object­

oriented programming language (Cox, 1986). Some AI lan­

guages such as LISP and PROLOG appear to be appropriate for

the object-oriented approach. Object-oriented programming

has already been adopted extensively in some LISP-based

systems (Cannon, 1982). The inherent rule-based processing

28

capability of PROLOG also makes it a good vehicle for the

use of the object-oriented approach (Stabler, 1986).

Object-Oriented Paradigm For
System Development

The object-oriented approach provides system developers

with a new system decomposition technique and a new system

building approach. The concepts of object and object­

oriented programming represent a promising unifying para­

digm for the design of knowledge-based systems, database

systems, and programming language (Carlo et. al., 1986).

Booch (1986) detailed the major steps for the development

process in an object-oriented development environment:

1. Identify the objects and their attributes.

2. Identify the operations suffered by and required of each

object.

3. Establish the visibility of each object in relation to

other objects.

4. Establish the interface of each object

s. Implement each object.

Traditionally, system development has decomposed the

system by functions, routines, or procedures. Stein and

Maier (1986) argue that the traditional decomposition is

imperative in nature and concentrates on the major pro­

cesses of a system and ignores the objects that perform or

suffer these actions or processes (Karimi, 1986). Booch

compared the object-oriented and the traditional functional

29

approaches and concluded that "the object-oriented decompo­

sition closely matches our model of reality. On the other

hand, the functional decomposition is only achieved through

a transformation of the problem space" {Booch, 1986; 212).

In constrast with the functional approach, the object­

oriented approach captures the abstract knowledge of the

environment in the object-oriented specification. Borgida

{1985) believes that the object-oriented approach makes the

assumptions, policies, and rules of the application envi­

ronment formal and explicit. This leads to systems that

better conform to the real requirements. Bohem-Davis and

Ross {1984) reported that the object-oriented approach

seemed to produce a better specification for systems with

natural concurrency and real-time processing. Kroenke

{1987) suggested that since the object-oriented design

decomposed the system directly from the user's view, it is

a powerful tool for database design.

In addition, object-oriented decomposition leads to

better maintentability and reusability. Booch found that

there is a basic relationship between reusable software

components and object-oriented development: "reusable soft­

ware components tend to be objects or class of objects"

{Booch, 1986; 220) and are implemented as modules. Meyer

explained this as follows:

The top-down functional approach is probably ade­
quate if the program you are writing solves a
fixed problem once and for all. But the picture
changes when you take a long-term view, for what

30

the system will do in its first release is prob­
ably going to be a little different from what you
think it will do at requirements time, and very
different from what it will do five years later,
if it survives that long.
However, the categories of objects on which the
system acts will probably be more or less the
same. An operating system will always work on
devices, memories, processing units, communication
channels, and so on; ...
Thus it is wiser in the long term to rely on cate­
gories of objects as a basis for decomposition
(Meyer, 1987; 53).

The object-oriented paradigm is also viewed as a sys­

tem-building tool. Meyer (1987) noticed that object­

oriented development blurs the distinction between design

and implementation. Booch (1986) proposed that, given a

rich set of reusable software components, implementation

should proceed via composition of these parts, rather than

by further decomposition. He concluded that object­

oriented development is amenable to automated support. cox

(1986) used a concept which he labeled Software-IC to spe­

cify the nature of such support. The name Software-IC is

normally used to emphasize the parallel with the way hard­

ware engineers build circuits from a stockroom of generic,

reusable silicon chips. Each Software-IC implements a

class of objects, such as a class of Envelopes or a class

of FileFolders. It is a package of programming effort that

is independent of the specific job at hand and highly reus­

able in future jobs.

31

chapter summary

This chapter has reviewed some of the research on end­

user computing, intelligent system development aid, and the

object-oriented development paradigm. The literature

review reveals that there are a variety of ways to aid

users to function as system developers. Two conclusions

result from this review. First, with proper assistance,

end-users are capable of developing their own application

systems. Secondly, an intelligent development aid and the

object-oriented concept are capable of supporting such

assistance for end-users.

The purpose of this study is to investigate the feasi­

bility of developing an intelligent application development

aid based on the object-oriented concept. There is an

apparent need for conceptual and implementation research on

such an object-oriented intelligent application development

aid. In the next chapter, a conceptual model is presented

for the development of an end-user application development

aid, and a prototype system which implements this concep­

tual model is described in Chapter IV.

III. DEVELOPMENT OF THE CONCEPTUAL MODEL

Introduction

The literature review presented in the preceding chap­

ter identified two limitations in making end-users as

developers of their own application systems. These limita­

tions are discussed as follows.

1. Traditional system development tools support func­

tional decomposition which requires transformation of the

problem space into a collection of functions. This trans­

formation demands a sufficient degree of professional

expertise which end-users normally do not have. This

requirement makes these tools usable only by specially

trained system developers. Even with tools that are

intended for end-users, a considerable amount of time for

training and learning is required (Rivard & Huff, 1985).

--An example is the ASSIST interface in dBase III Plus. It

is assummed to be easier to use than the command mode

(dBase III Plus, 1986). However, when the interface is

needed as an end-user database development tool, the prob­

lem described above remains. For users of any database

system (manual or computer-based), the model of reality is

composed by objects such as files or folders that they

32

33

encounter at work. When dBASE is used to develop their

applications, users first have to learn to view their data­

base in terms of dBASE functions and commands before they

can actually develop any database application.

2. Under the traditional system development approach

the program codes are constructed by functions, procedures,

or routines. The limitation with the functions, procedures

and routines is that they do not provide much flexibility

because they force programmers to decide on too much detail

too early in the system development process (Meyer, 1987).

As a result these program codes tend to have low reusabil­

ity. This leads to the waste of valuable resources because

most end-user applications usually have high similarity

(Wartik & Penedo, 1986; Hall, 1987; Kamel, 1987; Prieto­

Diaz & Freeman, 1987; Biggerstaff & Richter, 1987).

This chapter describes a conceptual model for the end­

user application development aid developed in this study.

The model was formulated in a way that the limitations out­

lined above may be alleviated, if not eliminated. Specifi­

cally, the model specifies an architecture for an end-user

application development aid called Intelligent Database

Application Development Aid (IDADA). The way that IDADA

alleviates these limitations is explained below.

IDADA represents an integration of three distinct tech­

nologies. First, the object-oriented concept was used for

the decomposition and implementation of the application

systems. second, the knowledge-based concept was employed

34

to provide intelligent design assistance to the end-user.

That is, the knowledge base component in the IDADA provides

users with portable design knowledge. The third approach

is the use of a dictionary to coordinate.all the activities

in developing the application systems. Most of the exist­

ing development aids generate program code for the applica­

tion systems. The dictionary approach, in contrast, has

two advantages. First of all, the dictionary is non­

procedural, a key feature for rapid prototyping. Secondly,

the dictionary approach allows multiple application systems

to share generic programs in object classes. The program

generation approach generates programs which can only be

used by certain application systems.

Description of the Intelligent Database Application
Development Aid

Architecture of the Intelligent Database
Application Development Aid

Figure 3 portrays the structure of the End-User Appli­

cation Development Environment with IDADA. The environment

includes two subenvironments - the knowledge-based applica­

tion development subenvironment and the interactive appli­

cation operation subenvironment. These two subenvironments

interface with each other through the Object Specification

Dictionary.

The knowledge-based Application Development Environment

differs from the traditional application development

35

~~
End User Application Development Environment "'

~ ",

I
I -,---------

\
\

Object Specification Nsed Object-Oriented
Application

/
I

I
I
I

lntelllgent
Development •
Aid

""' .. ,,
---~

I
I
I
r
I
t
I
\
\

Dictionary

lntelli nt DatabaseA
\
\
\
\
\

Application',,
Development,",
Environment

'- ~----------

' ' ' l
' I
f
I
I

lication Develo

I
I

I

I
I

, /Application
.,/, Operation

Environment
-..... ~ ____ - ---- --,.,./

\
\
\

Figure 3. End-User Application Development Environment

\
I

' I
I

36

environment in that the application systems are designed

and developed by users with the assistance of a knowledge­

based system. Users interact with the Intelligent Develop­

ment Aid to specify objects in the problem domain. The

specifications of these objects are stored in the Object

Specification Dictionary. The input-processing-output

relationship of this portion of the environment is shown in

Figure 4.

In the Application Operating Environment, users inter­

act with the Object-Oriented Application System to perform

their normal daily work with the computer. The Object­

Oriented Application System is constructed by consulting

the Object Specification Dictionary which is created in the

Application Development Environment and the Object Class

Library of the !DADA. The input-processing-output rela­

tionship in the Application Operating Environment is shown

in Figure 5.

Intelligent Development Aid

The major role of the user is generally considered to

be using application systems to support their normal func­

tioning in the business. This also applies to the users in

End-User Application Development Environment. However,

these same users expend time and effort, perform design and

development roles, and produce results of design and devel­

opment activities {Gibson & Hughes, 1988). The Intelligent

Input

End User

37

Processing

,-:-------,
10estgn :
!Support I
I I
'Objects I I I
I I

'-------'
lntell

r------,
I Spec. :
I Generator :
I Objects :
I I

'-------'
entAld.

Output

Object
.-.--~spec.

Dictionary

Figure 4. Application Development Process in Application
Development Environment

38

Input Processing Output

In ut
r-------, r------,
IObJeci

I !Object I 0 t I I

!Classes I 15 I I I pee. I

-from Use I I
1Llbary I

I I , Dlctfonary , - for User
I I I I

'-------' I ______ J
0 -OrientedA tem

Figures. Application System Processing in Application
Operating Environment

39

in Development Aid (IDA) is a knowledge-based development

assistance system. It is comprised of two types of compo­

nents: Design Support Objects and Specification Generator

Objects. The IDA provides an object-oriented application

development environment. Figure 6 depicts the structure of

the IDA. The Design Support Objects contain design knowl­

edge to assist user developers in formulating a proper

design. They work interactively with the user developer to

generate proper designs for the application system. The

resulting design is then sent to the Specification Genera­

tor Objects, which contain the knowledge about the format

of the object specifications, to generate the Object Speci­

fication Dictionary.

Object Specification Dictionary

The Object Specification Dictionary (OSD) is the ouput

from the Intelligent Development Aid and the input to the

Object-Oriented Application Systems. Communications

between the Application Development Environment and Appli­

cation Operating Environment take place through the OSD.

This interface between the two environments provides an

independence between the design (specified by the OSD) and

programming tasks of an application system. In this way,

the generic programs employed by certain application sys­

tems can also be used by other application systems with

different OSD. In the IDADA those generic programs are

40

Intelligent Development Aid

(Design SupportObJ4

/ I \ -
/ I \ ---.// I \ -.._ / I \ .._ __

,- \ ✓--

/ \ // Spec. ",
___ ...t__ \ Generator ,

/ '· Object I

// Spec. " '- ' / \ _--1-__ ' •
I G t ' _.,., ' ./
\,.

0
enerbjecta or J / Spec. ", -... ___ -~-.,.

✓- t Generator '
'· _ _.,,.,,.. \ Object / , _____ .,, . ____ ,,,..

S flcatlonGen

·-►

OqectSpecification Dictionary

Call

Create

Figure 6. structure of the Intelligent Development Aid

41

grouped under object classes in the Object Class Library.

The advantage of this independence is that the maintenance

responsibility of the user developer is separated from that

of the MIS personnel. The development and maintenance of

OSD are mainly the user's responsibility, while the respon­

sibility of the development and maintenance of generic pro­

grams in the Object Class Library belongs to the MIS per­

sonnel. Thus, users can develop and maintain their appli­

cation system by themselves if no major changes in generic

programs are required.

In order to fully achieve this advantage, the OSD must

have a standard and structured format. This is the reason

that the output of the Intelligent Development Aid is a

specification dictionary instead of a computer program. A

dictionary has a standard structure. A computer program, in

contrast, is based on processing procedures. The advan­

tages of using a dictionary format is that certain elements

can always be found in certain positions. Users can make

changes to the application system by only changing the por­

tion of the OSD that needs to be changed, which saves the

work load of user developers in both system development and

maintenance.

It must be noted that this study does not attempt to

establish a generic format for the object specification in

the OSD. There are two reasons. First, such a format

would be highly dependent on the objects and object classes

that are used to simulate the user's model of reality.

42

unless some standardized object decomposition techniques

are developed so that the concept of Software-IC (Cox,

1986) becomes reality, a generic format would not be avail­

able. Second, the development of a generic format for

object specification is beyond the scope of the present

research in that it is primarily concerned with the manage­

ment of the object-oriented development. This research

relates primarily to the feasibility of applying the

object-oriented concept in a user developer environment.

The Object-Oriented Application System

The application systems are the systems that the user

uses to accomplish his daily data processing works. An

Object-Oriented Application System is similar to other

application systems except its design and development is

based on objects. An Object-Oriented Application System is

made up of object classes. Figure 7 shows an example

structure for an Object-Oriented Application System. The

structure of the basic component, object class, is shown in

Figure 8. Each object class has several objects. They are

specified by the Object Specification Dictionary. Each

object employs the methods under the object class to per­

form processing functions. Methods are generic programs

that are written in a particular computer language. These

programs have high flexibility and are generic to all the

objects defined under the object class. Object classes and

43

Object-Oriented Application System

..,,,,,,,,,,,..------- , .,,,.,,,,,..,,-----. ,
/ ' / '

/ \ / \ ' Object ,:-----Ill, Object ;
-. aass i , Class i ' / ' /

'-... _____ ., -- ·, __ ~---·' . ,,,.,.. -- ,
/ ' / \

,,-------- I Object '
,,,. ' \ Class ' -- --, / ,, '. i /' '

'· / I \ { Object } ,,_ _ __ _,. Object ,

\Class./ / '\ aass t
• __ ;'r/:~ \ ___ /,,.,.

\ Class / '· ,,/ ,....._ _____ ...
Message
Sending

Inheritance
Qs_a)

Figure 7. Structure of the Object-Oriented Application
System

44

r-----------------------------------
l Object Classes in Object Class Library
I
I
I
: ObjectClass
I

----------------, I
Defined by .---'i----' ___ __,
Ob1ect s DI I -------,

1 pee. C. l---------, I
I I
I I

ObjectGroup _____ LQfl.N-_____ MethodGroup

• • • Method

Figure 8. Structure of the Object class

• • •

45

their methods are predefined and stored in the Object Class

Library. There are two kinds of relationships between

object classes in the library. First, object classes may

interact with each other by message sending. Second, one

object class inherits characteristics from the upper level

object classes. Inheritance is represented by an is a

relationship between object classes. For example, a gradu­

ate student is a student. So the object class "gradu-

ate student" can inherit characteristics from the object

class "student". Any process and function (e.g. Add, Drop)

that an object under the object class "student" can perform

can also be performed by an object under the object class

"graduate_student". The object class "graduate_student"

can have its own methods which may be used to perform the

processings and functions that are unique to a graduate

student.

There are two components in the Object-Oriented Appli­

cation System: (1) The Object Class Library, and (2) the

Object Specification Dictionary. The following sections

describe their functions within the application processing.

The object class Library

In order to perform his task in the work environment,

every user first must develop mental models for his work

environment. The user uses these models of reality to

understand his work environment (Booch, 1985). These mod­

els of reality may be represented by object types that the

46

user encountered in the work environment. The Object Class

Library simulates the end-user's mental model(s) in a spe­

cific domain by object classes. For example, the following

is an expression about a student work environment - school:

"student takes courses."

This description can be simulated in the Object Class

Library by two object classes ("student" and "course").

The object class "student" should have a method call TAKE

which sends out a message to the object class "course" to

set up the relation between a student object and several

course objects. The object classes "student" and "course"

simulate the object types, and the method TAKE simulates

the relationship of students taking courses in the model of

reality.

object specification Dictionary

The Object Specification Dictionary provides required

information about objects in the object classes. To speci~y

an object, two kinds of information must be present in the

OSD. The identification information identifies the object

and the description information is needed for the object to

perform methods. For example, the specification for an

object in the object class "student" may have a format like

this

student(NAME, MAJOR, ADDRESS)

where NAME is the identification information, and MAJOR and

ADDRESS are the description information. Suppose that

47

student Tom Brown's major is Business. When one of the

other objects sends out a message asking about Tom Brown's

major, the object, student('Tom Brown'), associated with

the object class "student" will use the information t-A..AJOR

to respond to the message.

It must be emphasized that the specifications in the

Object Specification Dictionary must follow certain for­

mats. When changes occur in the user's model, the formats

may be changed to accommodate the changes in the object

class library. Also, when new classes are added into the

library, new formats need to be defined for the new

classes.

Personnel Roles in the End-User Application
Development Environment

The use of an Intelligent Database Application Develop­

ment Aid involves the corporative efforts of end-users and

MIS personnel. Both groups share the responsibilities for

creation, operation and maintenace of the End-User Applica­

tion Development Environment as illustrated in Figure 9.

This section discusses the responsibilities of these two

groups.

End-users

End-users are the developers and users of the applica­

tion system. Their responsibility is to develop and to

maintain the Object Specification Dictionaries. The role

of end-users in the End-User Application Development

....

£IC'

Problem Domains

(
I
I
I
I
I
I
I

Application Systems

Object Specification
Dictionaries

I • R -bil!l_y \--l!~~-~f!.S.!.""'."_ ------
/
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I

48

Intelligent
Development
Aid

\
\
\

\Simulate
\

\
\
\
\
\ ------,-------------,

\ \

\

\

\
\
\
\ I

\ I
------.l.-----------,

\ \

\ I
\ I

Object Class

I
I
I

~
I

Library A
" /: -.._______,,,- :

: I

l MIS Personnels• R~nsibili!Y _________________________ - - - - - - .. '

I

~-------------- --

Figure 9. Responsibility Sharing in End-User Application
Development Environment

49

Environment involves three tasks:

1. They use existing application systems to perform their

daily data processing activities at their work.

2. They develop the application systems with the assistance

of the Intelligent Database Application Development Aid.

3. They maintain the application systems. End-users are

responsible for the changes that can be made by changing

the Object Specification Dictionaries.

MIS Personnel

MIS personnel are MIS professionals who construct the

software systems such as IDADA. They are: (1) the techni­

cal supporters or developers of the Object Class Library;

(2) the builders of the Intelligent Development Aid, who

design and construct the development aid; and (3) the

intermediaries to assist the users when necessary. The

structure of the IDADA (Figure 3) suggests that the MIS

personnel's responsibilities are as follows.

1. They develop the system such as the IDADA. Developing an

intelligent development environment for end-users

involves the following tasks:

1) Identify the structure of the user's model(s) of

their work environment.

2) Implement the Object Class Library.

3) Define the Object Specification Dictionary formats

4) Implement an intelligent development aid

50

2. Maintain the development environment. MIS personnel are

responsible for changes that can not be made by changing

the Object Specification Dictionaries. These major

changes require more sophisticated analysis and program­

ming knowledge~

The system Development Procedure of IDADA

The system development procedure of IDADA is a four­

step interactive process (Figure 10) derived from the

approachs proposed by Abbott and Booch (198 1986). These

steps are described below:

Step 1: Identify work environment model

1) Identify the object types and their attributes.

The object types in the model of reality are identi­

fied at this step.

2) Identify the processing and functions required for

each object type. This step characterizes the behav­

ior of each object class. It establishes the static

semantics of the object class by determining the

operations that will be performed on the object or by

the object.

3) Establish the abstraction of each object type in

relation to other object types. Here, developers

establish the interfaces and the visibility of each

object. The purpose of this step is to capture the

topology of objects from the model of reality.

51

Step1: ldentifyWork
Environment
Model

Step2: Implement Object
Class Library

Define Object
Specification
Dlctlona Format

lmpement
Intelligent
~lo entAid

Step3: Use the Prototyp~
and Refine
A

Initial Prototype

Step4: Revise and Enhance
Prototype

Figure 10. The Development Procedure of Intelligent Data­
base Application Development Aid

52

Step 2: Develop the initial prototype

1) Implement Object Class Library. A system that sim­

ulates the model of reality is implemented using

suitable notations. In this research Prolog was used

as the implementation vehicle.

2) Define Object Specification Dictionary formats.

This determines the identification information and

description information for the specifications in

each object class and defines the OSD formats.

3) Implement Intelligent Development Aid. In this

step the Specification Generator Objects that gener­

ate the OSD and the Design Support Objects that

assist the design process are developed.

Step 3: Use the prototype and refine requirement.

This allows the user(s) to experiment with the devel­

opment aid to learn the system's functions as well as

its limitations. If the prototype is accepted by

users, it becomes the operational system and the

development process is completed.

Step 4: Revise and Enhance Prototype.

The developers modify the system based on users'

request and return to Step 3.

summary

This chapter has presented an architecture for the

Intelligent Database Application Development Aid. The

architecture suggests that the ability to support end-user

53

developers results from the integration of a knowledge­

based system (Intelligent Development Aid) and an object­

oriented system (Object Class Library). The architecture

suggests further that the knowledge-based component of the

IDADA should serve to overcome the end-user developers'

lack of professional development knowledge. Also, The

Object class Library of the IDADA should support the user's

model of the work environment in order to minimize the

knowledge required to develop application systems. In the

next chapter, a prototype system is described which is used

to evaluate this architecture and to demostrate the devel­

opment procedure in the IDADA.

IV. PROTOTYPE DEVELOPMENT

The conceptual model described in chapter Three defines

the architecture for the Intelligent Database Application

Development Aid. The purpose of this chapter is to

describe a system prototype which demonstrates an implemen­

tation based upon that conceptual model. This prototype,

the Intelligent Database Application Development Aid

(IDADA), implements an intelligent environment for the

development of database systems. Prolog was used as the

implementation language, primarily because prolog possesses

many convenient features for implementing the object­

oriented concept. This chapter describes the user's model

supported by this prototype, explains the prolog notations

for object-oriented programming, and examines the structure

of the prototype. Finally, an illustrative example is used

to demonstrate operation of the system.

user's Model for Database system

The Intelligent Database Application Development Aid

was developed to support the user's models of his work

environment. The application system the user developed with

the IDADA prototype is a database system with a menu inter­

face. Its main purpose is to help its user to manage

54

55

business forms or files and to generate reports based on

these forms or files. For the research, several models

were identified by different users through informal inter­

views. One of these models was chosen to be supported by

this prototype.

Figure 11 summarizes the chosen model. Essentially, a

database is an integrated collection of files. The user

selects the database processing activity to perform through

the menu interface. There are two kinds of database pro­

cessing activities. First, when new information comes in,

the user goes through certain processes to update the data­

base. Second, when a report is needed, the user generates

the report by selecting one of the report options from the

menu interface. There are four object types (object

classes) incorporated in this model. They are menus, dis­

play screens, reports, and database. A menu object can

call another menu object, a report object, or a display

screen object. When an display screen object is called, it

display display screens to perform a process to update the

database. When a report object is called, it retrieves

data from the database and then generates the report.

Prolog Notations for Object-oriented Programming

In the prototype, objects are represented by a flexible

Prolog data type known as structure. Functionally, struc­

ture is a general purpose data type for definition of com­

plex entities. The simplest form of a structure consists of

56

l User
_.I
l

I

' Menus

' •
Display

- I
Report .. Reports _J

Screen ,,.,..,----

i ', /
-------✓✓

I

Database

I

End User Database

Figure 11. user's Model of the D~tabase System

57

a functor and its associated arguments. For example, a

structure,

report(class_rpt)

is an implementation of an object whose job is to generate

report "class_rpt". The functor, "report" in this example,

names the object class, and the argument, "class_rpt" iden­

tifies the object in the object class "report". An object

class defines a group of object instances with similar

properties. For example,

report(class_rpt)

is an object instance of

report(Rpt_Name).

Since object instances inherit the characteristics pos­

sessed by the object class they are associated with, it is

only necessary to specify unique features in their defini­

tions.

Structure is also used to implement messages. The

functor names the message, whereas the arguments specify

the parameters required for the corresponding operations to

be performed. An example of message implementation is

add([s_id, s_name, s_addr, s_major]).

This message essentially asks the object that receives this

message to add a record to the file.

Methods are represented by prolog predicates (either

facts or rules). Methods are invoked as a response to a

message reception. The outcome of a method processing

58

could be operations or sending messages or a combination of

both.

Message sending involves specifying the predicate

"send" with two arguments. The first argument indicates

the target object of the message, and the second specified

the message.

For example, the predicate

send(database(student),
add([s_id, s_name, s_addr, s_major]))

sends a message, add, to the object instance data­

base(student). The operation requested here is, as

described previously, adding the record [s_id, s_name,

s_addr, s_major] into the database file - student.

Many benefits of object-oriented programming are

derived in the fact that the entity, the methods, and the

message-sending mechanisms are "encapsulated" into a pack­

age. Operations are invoked in reference to the entity.

The following is an example of such an object specifica­

tion:

database{Table) with [

(add(Record) :- add{Table, Record)),
(del(Record) :- del(Table, Record)),
(retrieve(Record, Out Rec)

retrieve(Tabie, Record, Out Rec)),
description('Object class - Database')].

A message referring to an object instance, e.g., database

(student), will cause one of the associated methods to be

executed.

59

Prototype Description

System Structure

Figure 12 shows the structure of the system prototype

as derived from the architecture described in Chapter

Three. The database system developed by the prototype is a

prolog internal database which is constructed by reading

the object specification dictionary files and the object

class library files. An Intelligent Development Aid was

developed to assist users in developing or revising a data­

base system by creating or revising five object specifica­

tion dictionaries.

In this prototype, the development process is con­

trolled by the object "dbde" which was implemented by the

program DEDE.ARI (Appendix A). When provoked, it displays

a menu (Figure 13) for the object options in both the oper­

ation and development phases. The user can select options

under Operation Manager to get into the operation phase or

select options under Development Manager to work with the

-.. Intelligent Development Aid. Available options are

described below.

operation Manager

Option 1: Test Run the Database System. The user can

test his development by selecting this option. The Oper­

ation Manager constructs the prolog internal database with

test data.

60

~~-------~~ ~~-------~~ ,,-- -,___ -,,
/ /' '

,,,,,,, DevelopmentPhase ', OperationPhase ',

/ / " " / _______________ .__________ '
/ DB Develo User ' ',

I I \ \ 1 Developmen 1 , DataBase ,
I I \ \

/ Process / ________________ \ __ Process ___ \

/ r$t1 Object Specification l Fteac(, \
: Intelligent . ' , Dictionary Files ~ Data Base l \
(Development (' J ~ t . ; ~ ' ' '--------------- : '------ ______ :
\ Aid \ , Read . ,
\ \ I I
\__ _____ __. \ J ObjectClass /
\ \ / Libra /

' \ /___...=,;;;;.;..;;;;;;.;.L.. __ ___,1.,

\. \ I I \ \ ,/ / -·

' ', ,/ /,
,, ... ''-... // ,//

'--..... ,,~.,.'' .,. ,,,-... ,,,--............... ~~ ____ _,.,-~~-------~- --~-~--~-~~

Figure 12·. structure of the !DADA Prototype

Figure 13.

61

Select an Option:

Operation Manager

l)Test Run the Database System

2) Build The Operational Database

Development Manager

a) Database Designer

b) Report Revisor

c) Screen Revisor

d) Henu Revisor

x) Exit

Object "dbde" Screen

62

Option 2: Build the Operational Database. This option

completes the development for the database system. The

Operation Manager constructs the internal database without

the test data and saves it under the name specified by the

user.

neyelopment Manager

Option a. Database Designer. The Development Manager

calls the DB Designer to develop a new database system.

This option will rewrite all the specification files in the

Object Specification Dictionary.

Option b. Report Reviser. The Development Manager

calls the Report Reviser to redefine the report specifica­

tion in OSD.

Option c. Screen Revisor. The Development Manager

calls the Screen Reviser to redefine the specification file

for the display screens.

Option d. Menu Reviser. The Development Manager calls

the Menu Reviser to redefine the specification file for the

menu interface.

Implementation of the Object Class Library

In the Object Class Library, four object classes with

their methods were developed to simulate the user's model

discussed in earlier. The resulting source listing is pro­

vided at Appendix B. Figure 14 shows the structure of the

object class library and its relationship with the object

specification dictionary files.

V.P.F.
s
Screen
s

No.
(1)

(2)

(3)

(4)

(5)

I
I
I
I

I
I
I
I
I
I
I
I
I
I

(2)

(4)

63

User

1

----------------,
Menu

Object Class

Database
Object Class

(3)

Report
Object Class

(5)

I
I
I
I
I

Menu
s

L __________ o~~.!Q~~-Ll~~ry _________ _.

Database System

Messaaes
DB
ADD-DEL MOD
QUERY.REPORT
ADD- DEL RETRIEVE
RETRIEVE

-+ Message Sending
_ Read Specification

Figure 14. System Structure of ·the Database System

64

Table 1 lists these object classes and the messages

they respond to. A typical message sent in this prototype

includes two prolog structures - the object and the mes­

sage. The object contains an object class name and an

object ID that identifies the object in its object class.

The message contains a message name and may or may not have

several parameters. These parameters carry the data that

is required by the receiver object to perform the associate

method. For example, in the following message sending,

send(database(student), add(['xyz', data])), data­

base(student) is the object and add(['xyz', data]) is the

message. Student is the object ID for an object in the

object class "database". Add is the message name and

['xyz•, data] is the parameter carried by this message.

A discussion of the object classes in the object class

library follows. Their processes are summarized in Figure

15.

The object class "menu" performs the menu selection

process. Two messages may be sent to this object class.

(1) menu: This message invokes method menu/11 to dis­

play specific menu objects and accept the user's selection.

The name of the menu object comes with the message sending.

Its format is defined by the menu specification in the

object specification dictionary.

1menu/1 means a prolog predicates (function) that contains
one argument (parameter). In this case this argument is the
object ID.

65

Table 1

Object Class and Method List

ObiectClass Method
menu menu

return

update add
del
rrod

b 1able add
del
retrieve

report report
query

Query

Process

Spec.SOL
Coo1mand

End

Report
Gener.
Process

,' Exec.
A Def

66

Start

Display
Menu

Add
Process

Display
Screen

Add
Record

Delete
Process

DL-splay
Screen

__________________ __J

Figure 15. Processes of the Database System

Modify
Process

Display
Screen

67

(2) return: This message invokes method return/1. When

responding to this message the object class closes the menu

object currently in processing and returns control to the

sender of the menu message.

The object class "display screen" performs the update

process to the database. One of the following three mes­

sages may be sent to this object class:

(1) add: This message triggers method add/1 to perform

the add record process. When processed, method add/1 dis­

plays the input screen of the update process object and

asks the user to fill in the data field values. It then

sends a message to object class "database" to insert this

record into the correspondent database file.

(2) del: This message invokes method del/1 to delete a

record from the database. When processed, method del/1

first displays the input screen of the update process

object and asks the user to specify the record. The method

then sends a message to object class "database" to retrieve

the first record which meets the specification. After dis­

playing the record to the user and user confirmation is

obtained, the record is removed from the database; other­

wise the next record which meets the specification is dis­

play.

(3) mod: This message calls method mod/1 to modify a

record from the database. When executed, method mod/1

first displays the input screen of the update process

object and asks the user to specify the record. The method

68

then sends a message to object class - database to retrieve

the first record which meets the specification and displays

it to the user. After examining the record the user can

either make changes to this record or skip it and view the

next record.

The object class "report" generates reports and per­

forms a query process for the user. This object class is

built base on the Arity/SQL Development Package 2 and

responds to the following two messages:

(1) report: When responding to this message, the object

class calls its report generator program (method). The

specification for this report in the object specification

dictionary is consulted and generates the report by

retrieving data from the object class "database".

(2) query: This message triggers a query process which

performs a database query. A menu-driven SQL facility is

used as the interface to specify the query selecton.

The construction of object class "database" is based

on Arity/SQL Development Package 3 It performs three

basic file processes: add, delete, and retrieve~

(1) add: This message comes with one parameter. The

parameter contains the record that needs to be added to the

database. When the method add/2 is called, the database

2 Arity/SQL Development Package is a trademeark of Arity
corp.

3 Arity/SQL Development Package is a trademeark of Arity
Corp.

69

file specified by the message sent is found and the record

is inserted into it.

(2) del: This message also comes with the record of

interest as a parameter. Method del/2 is executed to

remove this record from the correspondent database file.

(3) retrieve: This message triggers method retrieve/3.

When processed, the method finds the first record that

meets the specification in the message and returns it to

the message sender. If the sender fails to return the mes­

sage, the method finds the next record and returns it.

This process continues until either no record is left or

the message sender accepts the return record.

Implementation of the Intelligent Development Aid

The main purpose for the Intelligent Development Aid

(IDA) is to provide assistance to user developers in gener­

ating their database systems. The prolog programs that

implement the IDADA are listed in Appendic c. The develop­

ment aid was constructed with two categories of objects -

the design support objects and the specification generator

objects. The design support objects include the following

objects.

1. Development manager: controls the other objects in

the IDA. It calls the DB Designer when the user wants to

develop a new database. When the user is prototyping the

database, it calls objects - Report Reviser, Screen Revi­

sor, or Menu Reviser - to modify the original design.

70

2. DB Designer: Helps the user to design the database

structure. It prompts the user for the input data file

format. It then works interactivly with the user to nor­

malize the input data files into database files in the

third normal form. After finishing the database design, it

calls DB Developer to generate the object specification

dictionary.

3. DB Developer: Calls the specification generator

objects sequencially to construct the object specification

dictionary.

4. Report Reviser: Loads and calls the Report Reviser

to redefine the report specification.

5. Screen Reviser: Loads and calls the Screen Reviser

to redefine the specifications for input screens.

6. Menu Reviser: Loads and calls the Menu Reviser to

redefine the specifications for the menu interface.

The output of the Intelligent Database Development Aid

is the object specification dictionary files. These are

generated by the specification generator objects. The fol­

lowing is the list of these generator objects:

1. Database Specification Generator,

2. Report Specification Generator,

3. View Processing Facility Specification Generator,

4. Screen Specification Generator,

5. Menu Specification Generator.

When executed each of these generators work interac­

tively with the user to generate a text file that contains

71

the specification. Figure 16 shows the structure of the

Intelligent Development Aid.

To develop a database, the user goes through a proto­

typing process. The steps in developing a database under

the IDADA are:

1. Input file formats and normalize

2. Specify database

3. Specify report process

4. Specify update process

s. Specify menu interface

6. Test run

7. Revise and enhance

These steps are shown in Figure 17.

Step one is to input file formats and normalize the

files. This is performed by the object DB designer. In

this step, the user defines the files or forms to be stored

in the database. The output is the database design. The

user inputs three types of information to define a file or

form. First, the user specifies the name and length of

every field in this file or form. Second, the user speci­

fies all the key fields in this file or form. Third, the

user specifies the functional dependencies in this file or

form. Figures 18, 19, and 20 show the input screens which

input this information. DB Designer uses the information

to normalize this file into the third normal form (3NF)

database files and develops the database design.

72

r - -- -- -r
Intelligent Development Aid

' DesignSupportObjects ~

I
I
I
I
\

,----

I/

(
Development

'- Manager
--.....

____ _,..

-----.
(\ ,

I
I
I
I
I
I
I
I
I
I
I
I

Spooi icationGenera orObjects

'----- -------- --------- ____ _,.

'·------t-----t-----+------+--------4----

Screen
s

Object Specification Dictionary

Da~base
s

\. ·----------------------------

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 16. -structure of the Intelligent Development Aid

Output

,-----------
! Object Spec. ~
~ - _Q.lglQrr~ry _ - ~
I I
I I
I I
I I

l 1 . Database :
I Specification :
I I
I I

I
I
I

2.Report l
Specification

3. V.P.F. &

4.Screen
Specification

5. Menu ,
I

Specification ,
I

\ ___________ /

73

Procedure

Input Forms and
Normalization

Specify End User
Database

Spocify Report
Process

Specify Display
Screen Process

Specify Menu
Interface

Initial Prototype

lstn

/ Operational /i/!i,::--· User Developer --------

/ System I ----~stily? ~
.__ ___ -J ho L-------.-J

~-~
<',..- ltBeRevisedor ~ Yes
------- ----. Enhanced? _.,,-,,

------------ ___ _,...
No

Figure 17. End-User Database Development Process

74

*Specify Form~Format. _______________________ _

Figure 18.

Form Name: grade_rpt
Specify the Fields in This Form

Field Name
id_no
name
cur_no
title
cr_hrs
grade

Lengh
9
20
5
20
1
1

Specify Form Format Screen

75

*Candidate Key __________________________ _

Figure 19.

Key Fields Specification Screen

*choice unique key fields __

* id_no
name

* cur_no
. title
. cr_hrs
. grade

Enter Return to END

Specify Key Fields Screen

76

*Functional Dependency _______________________ -.
Dependencies Specification Screen

*choice determinant _____ . *choice dependants ____ _

Figure 20.

* id_no
. name
* cur_no
. title

cr_hrs
grade

.id_no
name

. cur_no
* title
* cr_hrs

grade

Enter Return to END

Specify Functional Dependency Screen

77

After step one, the object DB developer is called,

which then calls specification generators sequentially to

finish steps two through five. In step two, the database

generator translates the database design into the database

specification of the object specification dictionary. The

system asks the user to name each 3NF database file and

then to generate the database specification in a file

called bt.osd.

The user defines the output reports in step three. The

menu-driven inferface helps the user to specify the SQL

SELECT commands used by these reports. The basic format

for the SELECT command is:

SELECT (field names)
FROM (database file names)
WHERE (conditions)
GROUPED BY (field names)
ORDER BY (field names)

After specifying the SELECT command, the system asks

the user to input the name, the main heading, and the head­

ings and lengths for each selected field of this report

(Figure 21).

Step four generates the View Processing Facility (VPF)

Specification and the Input Screen Specification. The VPF

Specification specifies the update processing for each

database files defined in step two. It is directly derived

from the Database Specification. The Screen Specification

specifies the input screens that are used in those update

processings. For each screen, the system asks the user to

78

SELECT student.nU1e 1 course.cur_no. course.title, grade.grade FROM
FR.OH grade. course. student WHERE grade.cur_no = course.cur_no and
grade.id_no = student.id_no ORDER BY student.name

What is the name of the report you just defined 7- ·

grade_rpt

Key in the heading for the report you just defined

Student Grade Report

Figure 21. specify Report Format screen

79

name the screen and input descriptions for each input field

of the screen.

The output of step five is the specification for the

menu interface. The system lists all the input and output

processes available in this database (Figure 22). The user

can group several types of processing into one menu by

associating the same group number with each process or he

can delete a process by associating a 1 d 1 with it. The

user can also change the option descriptions shown in the

menu by changing the processing descriptions on the list.

With the completion of these previous steps, the ini­

tial prototype is ready for the test run. After each test

run, the user can call the reviser objects to revise the

Object Specification Dictionary until this development is

acceptable. If the revision does not satisfy the user, the

database system can be abandoned and redefined completely.

Implementation of the Object
Specification Dictionary

The Object Specification Dictionary is constructed by

five object specification dictionary files. They are

BT.OSD for database specification, RPT.OSD for report spe­

cification, VPF.OSD for view processing facility specifica­

tion, SCRN.OSD for input screen specification, and MENU.OSD

for menu specification. Their formats are shown in Figure

23. Both the view processing facility (VPF) specification

and screen specification are read by object class - display

screen to construct its objects. VPF specification defines

80

Group the options you want to put in the same
menu by put same group no. in front of those options

1 Input student grade 1 Delete student grade
2 Add new course 2 Delete course
3 Input new student 3 Delete student info.
4 Student Grade Report 4 Perform SQL Query

1 Modify student grade
2 Modify course info.
3 Modify student info.

Figure 22. Processing List

81

Figure 23 - 1

---- Formats tor sy~L~~ Dictionary----

% menu definitioln

% menu definition format
begin_def(ACTIVE KEY).
% option fields
choice_box(begn, 0, 0, 24. 79, none, •Menu•, radio. 3,_).
choice(rone, 10.20, "OPTION l', unchecked,_).
choice(rtwo, 12.20. "OPTION 2', unchecked,_).
choicti:(rthree. 20.20. 'Exit'. pushed,) .
% option fields end -
choice_box_end.
end_d.f(ACTIVE KEY).

% static display
begin_def(STATIC KEY).
text(4,35. 'HEADING').
text (7, 20, • Select Option•).
end_def(STATIC KEY).

% option process specification
begin def(KEY).
menu choice(l,.PROCESS FOR OPTION 1•).
menu-choice(2,•PROCESS FOR OPTION 2').
menu -choice (3, • ?RCCESS FOR EXIT THIS MEIW •) .
.irnd_def(KEY).

, screen definition format

begin_def(ACTIVE KEY).
% input fields
efield(one, 5. 30, 9, $$, _).
etield(two, 7, 30, 15, $$, _).
efield(three. 9, 30, 20, SS,).
efield(four, 11, 30, 10, $$, -,.
% input fields end -
end_def(ACTIVE KEY).

% static display
beqin_def(STATIC KEY).
text(2,20, •HEADING').
% notation$ for fields
text(5, 5, •Id Number: ").
tt:=xt (7. 5. • Iia11e : ·) .
text(9, 5, 'Address: •).
text(ll, 5. •Major : •).
% notation end
end_def(STATIC KEY).

% headings for different processing
begin_def(KE,).
operation ('aJd', "ADD ?iEW STUDENT PERSONAL INFORMATIOH') .
operation('del., ·oc:LETE STUDE,iT PERSOHAL It-lFORMATIOil·).

Figure 23. OSD Format

82

Figure 23 - 2
operation('D&od','MODIFY STUDENT PERSOHAL IHFORMATION').
end_dc:f (KEY) .

% View File Definition

begin_def (KEY).
view .Cile (

[Sinswrt contJDand capsules; $,$insert command capsules;$, ...],
(Sdel•te coJnJDand capsules; $,$delete command capsules; $, ...],
(• p_fil• name• , •field no•,• p_tile name•, 'f i,=ld no',]) .

end_def(ltEY).

% Report definition

begin def (kEY J .
report(S select coJllllland capsules; S, $heading$).
end_def (UY).

% Phisical File Definition

create table FILE NAME
FIEi..D_HAMEl
FIELD_IiAME2
FIELD_HAMEJ

) ;

Figure 23. (Continued)

(
type (li&nqh)
typi=(lenqh),
type(lenqh),

not null,

83

the update processes while the screen specification speci­

fies the input screen format used in these processes.

A demonstration of the IDADA is presented in the fol­

lowing section.

An Example

Problem description

The following example application demonstrates the

operation of the Intelligent Database Application Develop­

ment Aid in developing a faculty service database. The

description of the problem is as follows.

A university manages its faculty services by
forms called Faculty Service Reports. Each fiscal
year faculty members are asked to report their
service information by completing a new Faculty
Service Report. These reports are then stored in
the dean's office until the next fiscal year. Fig­
ure 24 shows the input - the Faculty Service
Report. The three sections included are:

1. Faculty Personal Information
2. Service Information
3. Teaching Information
The following reports are generated from these

Faculty Service Reports:
1. Faculty Teaching Report.
2. Course Report.
3. Class Report.

Development process

The following is the user's input for development of

this Faculty Service Database, described in five steps.

Step one:
(1) File fields:
Field Name
name
rank
department
SS#
quarter

Lengh
20
20
3
9
1

Name
Rank
Dep3rtrnent
Soc. Sec.#

a Course
No. Trtle

s
u
F
A

w
I

s
p

.'

84

Faculty Service Report, 19_

Percent of Full Time
Distribution of Effort
Instruction
Research

Sum. Fall. Wtr. Spr.

Hours Per Week Number of Students
Cr.Hr. Lee. Lab. Under Grad. Other

Signed _______ Approved by

Figure 24. Faculty Service Report

serv perc
instruction
research
cur no
cur name
er hrs
lee hrs
lab-hrs
under stu
grad stu
other stu

(2) candidate keys
SS#
quarter
cur no

3
3
3
5
20
1
1
1
3
3
3

85

(3) Functional dependencies
ss# -> name, rank, department
ss#, quarter -> serv perc, instruction,

research
cur no -> er hrs, lee hrs, lab hrs
ss#~ quarter, cur no-> under stu, grad stu,-

other-stu -

Step two:

Database File Name
course

service

faculty
class

Step three:

Heading

Fields
cur no, cur name, er hrs,
lee-hrs, lab hrs -
ss#~ quarter~ serv perc,
instruction, research
ss#, name, rank, department
ss#, quarter,cur no,
under stu, grad stu,
other-stu -

Report Name

teach_rpt Faculty Teaching Report

SELECT quarter, name, cur_no, cr_hrs, cur name
FROM faculty, class, course
WHERE faculty.ss# = class.ss# and

class.cur no= course.cur no

ORDERED BY quarter, name

r

course_rpt

86

Courses Report

SELECT quarter, cur no, cur name, under_stu,
grad stu,-other stu

FROM class, course -
WHERE class.cur no= course.cur no
GROUP BY quarter, cur no
ORDERED BY quarter, cur no

class_rpt Classes Report

SELECT quarter, name, cur no,
grad stu, other-stu

under_stu,

FROM class, faculty -
WHERE class.ss# = faculty.ss#
ORDERED BY quarter, name, cur no

Step four:

Name
faculty

Processing
add

Screen Title
Add New Faculty Member
Delete Faculty Member
Modify Personal Infomation

del
mod

service add
del
mod

course add
del
mod

class add
del
mod

Step five:

Add Service Information
Delete Service Information
Modify Service Information

Add New Course
Delete Course Information
Modify course Information

Add New Class
Delete Class Information
Modify Class Information

Processing List - Level 1 menus (Figure 25)

Group no
1
2
3
4
5

Menu name
up_class
up_cur
up serv
up-facu
out_rpt

Heading
Update Cl Info.
Update Course Info.
Update Service Info.
Update Personal Info.
Reports Generation

Processing List- Level 2 menus (Figure 26)

87

Group the options you want to put in the same
aenu by put same group no. in front of those options

1 Add New Class 1 Delete Class Info.
2 Add New Course 2 Delete Course Info.
3 Add Service Info. 3 Delete Service Info.
4 Add New Faculty 4 Delete Faculty Member
5 Faculty Teaching Rpt.5 Courses Report
_ Perform SQL Query

1 Modify Class Info.
2 Modify Course Info.
3 Modify Service Info.
4 Modify Personal Info
5 Classes Report

Figure 25. Processing List 1 - Faculty Service Database

88

Group the options you want to put in the same
■enu by put saae group no. in front of those options

2 Perform SQL Query 1 Update Class Info. 1 Update Course Info.
1 Update Service Info. 1 Update Personal Info. 2 Report Generation

Figure 26. Processing List 2 - Faculty Service Database

Group no
1
2

Menu name
up menu
outputs

89

Heading
Database Update
Output Generation

Processing List - Level 3 menus (Figure 27)

Group no
1

Menu name
main

Heading
Faculty Service Database

Object Specification Dictionary

Appendix Dis the listing of the object specification

dictionary that is generated by the Intelligent Database

Development Aid after the development process.

90

Group the options you want to put in the same
■enu by put saae group no. in front of those options

1 Database Update 1 Output Generation

Figure 27. Processing List 3 - Faculty Service Database

V. SUMMARY AND CONCLUSION

summary

To help cope with the current software crisis, organi­

zations are beginning to recognize the potential for end­

users to function as their own application developers.

This study explores the feasibility of using the object­

oriented concept to develop an intelligent application sys­

tem development aid and illustrates the development and

implementation of such a system. The literature review

summarizes studies in the area of end-user application

development, identifies the advantages and limitations of

this application development approach, and reviews the

research in the area of intelligent development aid and

object-oriented concepts. It was found that the latter two

techniques have great potential for the implemention of an

intelligent end-user development environment. The intelli­

gent development aid and object-oriented concepts were

therefore integrated into the development of the conceptual

model for the database application development environment.

The result is a system architecture for an intelligent sys­

tem development aid called Intelligent Database Application

Development Aid. The Intelligent Database Application

91

92

Development Aid is capable of providing intelligent support

in developing database application systems. In order to

test the feasibiliy of this architecture, a prototype was

constructed which conformed to the architecture. This pro­

totype demonstrated the validity of the architecture for

the development of an intelligent end-user development

environment. A hypothetical Faculty Service Database case

was used to show the development process and to illustrated

an implementation using the Intelligent Database Applica­

tion Development Aid.

contributions of This study

The architecture of the Intelligent Database Applica­

tion Development Aid represents an integrated application

development environment with convenient features for many

development considerations. The prototype, which was based

on this architecture, demonstrated that the conceptual

model can be implemented and that the resulting system does

exhibit the kind of interaction process and design aid

capabilities expected.

The principal contribution of this study is the inte­

gration of the intelligent (knowledge-based) development

aid and object-oriented concepts. The integration provides

a development environment for end-users who have little or

no system development knowledge to perform system develop­

ment tasks.

93

The Intelligent Database Application Development Aid

represents a perspective on application development which

is different from the perspective of the majority of

computer-assisted development aids existing today. In the

prototype system, the use of the object-oriented paradigm

to mimic an end-user's model of reality for the work envi­

ronment was demonstrated. Thus, both the development aid

and the user's problem description can be based on the same

model. In other words, the development aid can directly

support the user's problem description without having it

translated by professional developers. Furthermore, intel­

ligent assistance is provided by the IDADA to help end­

users develop a better design for their system. For

example, IDADA provides a normalization facility to help

users normalize their database into third normal form files

to avoid anomalies. These efforts minimize the knowledge

requirement of application development and thus eliminate

the programmer "middle man" in the application system

development process.

A second contribution of the study is that the pre­

sented architecture provides a very high level interface

for the end-user developers. In the IDADA, all the

instances in the user's model of reality are represented as

objects in the development aid. This automatically pro­

vides users with a friendly interface for their development

effort. In other words, IDADA uses the user's model of

reality as its interface design. ·This may significantly

94

reduce the requirement of user training as well as fear of

computer usage.

The last major contribution is that this study estab­

lishes a base for managing software assets in an organiza­

.:ti.Qn. As previouly pointed out, when compared to tradi­

tional functional decomposition, the object-oriented decom­

position has higher reusability (Meyer, 1987). The use of

IDADA breaks the original system development life cycle

into two different development processes. The IDADA devel­

opment process (Figure 10) is performed mainly by MIS pro­

fessional, and the application development process (Figure

17) is performed by users with assistance from IDADA.

Their responsibilities - shown in Figure 27 - are clearly

defined by the presented architecture. In addition, these

two processes, IDADA development and application develop­

ment, interface with each other by the nonprocedural object

specification dictionary, allowing end-user developers and

MIS personnel to work with minimal interference with each

other.

SuQgestions for Further Research

Results of this study provide an excellent basis for

further research, which may be conducted in two areas:

1. Enhancement of the current study; and

2. Extension of the current study.

To alleviate limitations of the current study, several

areas appear to be promising for further investigation.

95

First. system performance. The processing performance

of the IDADA suffered from two factors: first, the use of

object-oriented programming; and second, the use of prolog

as the implementation language. Object-oriented program­

ming causes lower performance since all the processing has

to be performed through massage sending (Stefik & Bobrow,

1986). Prolog programming requires programmers to write

programs by describing known facts and relationships about

a problem (Clocksin & Mellish, 1984). The computer then

runs the program by applying certain logic on the program

codes. This approach may cause unnecessary loops or pro­

cessings and therefore lower the performance. The perfor­

mace may be improved at least three ways; first, by reexam­

ing the prolog programs to eliminate unnecessary process­

ing; second, by compiling the object class library and

intelligent development aid into object programs instead of

using an interpreter; third, by using a lower level lan­

guage as the implementation language.

second. the development of a more sophisticated IDADA.

Because of the limitation of resources, the system proto­

type developed in this study does not provide complete pro­

cessing capabilities, as a real database system have. To

develop a full-functioning development aid, methods in the

object class library need to be more sophisticated and

increased in number. For example, in the prototype, the

relationship between each view processing facility and

database file is a one-on-one relationship. In a more

96

advanced system prototype both one-to-many and many-to-one

relationships should be supported.

Third. the development of muti-user IDADA. Although

users in the same work environment may have similar models

of reality, it is possible for different users to have dif­

ferent models. Under this circumstance, the IDADA should

be able to build different views to accommodate different

user models. Since the work environment is the same, the

basic methods should be the same for every user, but dif­

ferent object classes and method lists should be built to

represent different views.

Fourth. the development of reQuirements analysis for

object-oriented development. As discussed in chapter Two,

the object-oriented paradigm does not provide a comprehen­

sive system development methodology. It focuses upon the

design and implementation stage of the system development

life cycle. It is therefore necessary to couple object­

oriented development with appropriate requirements analysis

and specification techniques (Booch, 1986). Further

studies are required to identify and/or develop these tech­

niques.

Perhaps the most obvious extension to this study would

be the implementation of more prototype systems. This

would further validate the conceptual model and extend the

research concerning the effects of the development aid in

different application situations. Furthermore, additional

implementations would likely lead for some degree of

97

refinement and modification of the architecture, resulting

in a more pratical design of the IDADA.

In addition to providing additional implementations, a

controlled experiment focusing specifically on problem for­

mulation would be intere~ ing and valuable. After a more

sophisticated IDADA prototype is built, a study should be

conducted to compare the prototype to a traditional data­

base management system. The major outcome of such a study

would be evaluations of the effects and contributions of

the IDADA to system development productivity.

Finally, although the IDADA focuses on database appli­

cation, its conceptual model can be applied to any applica­

tion development such as Decision Support Systems and

Expert Systems. studies in different application areas may

contribute to the development of an end-user development

environment which will enable user developers to create

different kinds of application systems.

BIBLIOGRAPHY

Abbott, R. "Report on Teaching Ada," Science Applications,
Inc., Rep. SAI-81-312WA, Dec. (1980).

Aggarwal, s., Barbara, D. and Meth, K. z. "A Software Envi­
ronment for the Specification and Analysis of Problems
of Coordination and concurrency," IEEE Trans. on Soft­
ware Engineering, Vol. 14, No. 3, (March 1988).

Alford, M. w.. "Software Requirements Engineering Methodol­
ogy (SREM) at the Age of Two," (Proceeding COMPSAC
1978, IEEE, Nov. 1978, pp. 332-339.

An Introduction to Arity Prolog. Arity corp. 1986.

Appleton, D. s. "Information Asset Management." Datamation,
pp 71-76, Feb., 1986.

Arity Prolog Programming Language, Arity corp. 1986.

Barder, J., D. Hannaford, A. Cochran, and J. Edwards
"Intellipse: Towards Knowledge Based Tools for The
Design of Commercial Data Processing Systems." Informa­
tion and software Technology, vol. 29, No. 8, pp
431-439, Oct., 1987.

Batini, c., Demo, B. and DiLeva, A. "A Methodology for con­
ceptual Schema Design of Office Databases," Infomation
Systems, Vol. 9, No. 3, pp. 251-263, (1984).

Benson, D. H. "A Field study of End-User computing: Find­
ings and Issues," MIS Quarterly, Vol. 9, No. 3, (Dec.
1983), pp. 35-45.

Bharath, Ramachandran 'Logic Programming: A Tool for MS/OR
?' INTERFACES, 16: 5, Sep.-Oct. 1986, pp. 80-91.

Biggerstaff, T. and c. Richter "Reusability Framework,
Assessment, and Directions." IEEE Software, pp 41-49,
March, 1987.

Blaha, M. R., Premerlani, w. J. and Rumbaugh, J.E. "Rela­
tional Datadase Design Using an Object-Oriented Metho­
dology," Comm. of the ACM, Vol. 31, No. 4, (1988).

98

99

Boehm, B. W. "Software and its Impact: A Quantitative
Assessment," Datamation, Vol. 19, No. 4, (May 1973),
pp. 48-59.

Bohem-Davis, D. and Ross, L. "Approach to Structuring the
Software Development," (Process. Report,
GEC/DIS/TR-84-Bl V-1, General Eletric Co., Oct. 1984).

Booch, G. "Object-Oriented Development." IEEE Transactions
on software Engineering, vol. SE-12, No. 2, pp 211-221,
Feb. , 1986.

Borgida, A. "Features of Language for the Development of
Information Systems at the Conceptual Level," IEEE
Software, Vol. 2, No. 1, (Jan. 1985), pp 63-72.

Brown, D. "A Decision Support System for Reliable Software
Develoipment." IEEE Transactions on systems. Man. and
cybernetics, Vol. 17, No. 1, pp 86-91, Jan./Feb., 1987.

Bryce, M., "The IRM Idea" DATAMATION, April 15, 1987, pp.
89-92.

Building Arity/Prolog Application, Arity corp. 1986.

Case, A. F., Information Systems Devenlopment, New Jersey,
Prentice-Hall, 1986.

Choobineh, J., M. v. Mannino, J. F. Nunamaker, and B. R.
Konsynski, "An Expert Database Design System Based on
Analysis of Forms." IEEE Transactions on Software Engi­
neering. Vol. 14, No. 2, Feb. 1988, pp 242-253.

Clocksin, w. F. and c. s. Mellish Programming in Prolog,
Berlin, Springer-Verlag, 1984.

covington, M.A. Programming in Prolog:, ACMC Research
Report, The University of Georgia, 1986.

Covington, M.A. Prolog on The IBM PC, ACMC Research
Report, The University of Georgia, 1986.

covington, M.A. Expressing Procedural Algorithms in
Prolog, ACMC Research Report, The University of Geor­
gia, 1986.

covington, M.A. on Looping in Prolog:, ACMC Research
Report, The University of Georgia, 1986.

cox, B. J. Object-Oriented Programming: Evolutionary
Approach. Reading, Mass., Addison-Wesley, (1986).

100

De, P. and A. Sen "A New Methodology for Database Require­
ments Analysis." MIS Quarterly, pp 179-193, Sep., 1984.

Dickson, G. w., Leitheser, R.L., Wetherbe, J.C., and
Nechis, M. "Key Information Systems Issues for the
1980's." MIS Quarterly, Vol. 8, No. 3, 1984, pp.
135-159.

Dock, D.R. and R. A. Kirsch II "A Relational Information
Resource Dictionary System" Communication of the ACM,
Vol. 30, No. l, pp 48-61, Jan., 1987.

Dolotta, T. A. et. al. Data Processing in 1980-1985. John
Wiley and Sons, NY, (1976).

Dunning, B. B. "Expert System Support for Rapid Prototyping
of Conventional Software," (Proceeding Autotestcon '85,
IEEE NY, USA, Oct. 1985).

Dyer, c. A. "Expert System in Software Maintainability,"
(Proceeding Annual Reliability and Maintainability
Symp. San Francisco, CA, USA, Jan. 1984), pp 295-299.

Easterby, R. "Trillium: an Interface Design Prototyping
Tool." Information and software Technology, vol. 29,
No. 4, pp 207-213, May, 1987.

Feuche, M. "Object DBMS for the '90s," MIS Week, (March 21,
1988).

Garner, B. J. "Expert Systems: from Database to Knowledge
Base." Information and software Technology, vol. 29,
No. 2, pp 60-65, March 1987.

Gerstein, M. and H. Reisman "Creating Competitive Advantage
with computer Technology." Journal of Business
strategy, pp 53-60, Summer, 1982.

Gibson, M. L., "Component of User Work Station." Journal of
Systems Management, Feb. 1988, pp 6-14.

Gibson, M. L., and c. T. Hughes, "The User
Designer/Developer and the User Work Station." Journal
of Systems Management, Feb. 1988, pp 36-41.

Gibson, M. L. and Corman, L. s. "User Programmer and costs
of the Misinformed User," Journal of Systems Manage­
ment, (May 1987), pp. 23-29.

Giddings, N. and Colburn, T. "An Automated Software Design
Evaluater," (Proceeding Annual Conferrence-ACM 84 San
Francisco, CA, (Oct. 1984).

101

Glorfeld, L. w. "Exploring Database Concepts Using
Prolog." The Journal of crs, pp 2-4, Summer 1987.

Goldberg, A. T. "Knowledge-Based Programming: A Survey of
Program Design and Construction Techniques." IEEE Tran­
saction, Vol. SE-12, No. 7, pp 752-, July, 1986.

Goldberg, A. Smalltalk - The Interactive Programming Envi­
ronment. Reading, Mass., Addison-Wesley, (1984).

Hall, P.A. v. "Software Components and Reuse - Getting
More out of Your Code." Information and Software Tech­
nology, vol.29, No. 1, pp 38-43, Feb., 1987.

Hamilton, s. and B. Ives "Knowledge Utilization Among MIS
Researchers." MIS Quarterly, pp 61-77, Dec., 1982.

Henry, s. M. "Information Flow Metrics .. for the Evolution of
Operating Systems' Structure," (Ph. D. dissertation,
Iowa State University, 1979).

Hewitt, c. "Viewing Control Structures as Patterns of
Passing Messages." Artificial Intelligence, 8, pp
323-364, 1977.

Hogger, c. J. Introduction to Logic Programming, London,
Academic Press, 1984.

Holapple, c., Shen, s. and Whinston, A. "A Consulting Sys­
tem for Database Design," Information Systems, Vol. 7,
No. 3, pp. 281-296, (1982).

Hughes, c. T., "Managing the Work Station Environment."
Journal of Systems Management, Feb. 1988, pp 30-35.

Hull, M. c. E. and F. G. Metcalfe "An Automated systems
Design Tool." Information and Software Technology, vol.
29, No. 5, pp 257-264, June, 1987.

Hurst, R. s. Frewin, G.D. and Hamer, P. G. "A Rule-Based
Approach to a Software Production and Maintenance Man­
agement System," Esprit '84, North-Holland, Amsterdam,
(1985), pp. 127-144.

Jarke, M. and J. Shalev "A Database Architecture for Sup­
porting Business Transactions." Journal of MIS. Vol. 1,
No. 1, pp 63-80, Summer, 1984.

Jarvepaa, s. L., G. w. Dickson and G. Desanctis "Methodo­
logical Issues in Experimental Research: Experiences
and Recommendations" MIS Quarterly, pp 141-156, June,
1985.

102

Journal of Systems Management Report, "Knowledge Workers
and Office Automation," Journal of Systems Management,
(Dec, 19 8 5) .

Kamel, R. F. "Effect of Modularity on System Evolution."
IEEE Software, pp 48-54, Jan., 1987.

Karimi, J. "An Automated Software Design Methodology Using
CAPO," Journal of MIS, Vol. 3, No. 3. (1987).

Karimi, J., and Konsynski, B. R., "An Automated Software
Design Assist" IEEE Transactions on Software Engineer­
ing. Vol. 14, No. 2, Feb. 1988, pp 194-210.

Kasper, G.M. "The Effect of User-Developed DSS Applications
on Forcasting Decision-Making Performance in an Exper­
imental setting." Journal of MIS, Vol.11, No. 2, pp.
26-39, 1985.

Kozar, K. L. and Mahlum, J.M. "A User Generated Informa­
tion System: An Innovative Development Approach," MIS
Quarterly, (June 1987), pp. 163-173.

Kroenke, D. M. "Teaching Database Processing With an Object
Orientation." SRA MIS Newsletter, Vol. 1, No. 1, Fall,
1987.

Leavitt, Don "The Proper Design Tools Can Bring Improved
Productivity." Software News, pp 80-83, Feb., 1985.

Leitheiser, R. La and Wetherbe, J. c. "Service Support Lev­
els: An Organized Approach to End-User Computing," MIS
Quarterly, (Dec. 1986), pp. 337.

Leung, c. H. E. "A Knowledge-dase for Effective Software
Specification and Maintenance," (Proceeding Third
International Workshop Software Specification and Des.
London, UK, Aug. 1985), pp. 139-142.

Lientz, B.P., Swanson, E.B., and Tompkins, G.E. "Character­
istics of Application Software Maintenance," Communica­
tions of the ACM, Vol. 21, No. 6, June 1978, pp.
466-471.

Luo. D and Yao, S.B. "Form Operation by Example-A Language
for Office Information Processing," (Proceeding ACM
SIGMOD, 1981, pp 212-233)

Madhavji, N.H. "Fragtypes: A Basis for Programming Environ­
ments," IEEE Trans. on Software Engineering, Vol. 14,
No. l, pp. 85-97, (1988).

103

Madhavj i, N. I-i. , Pinsonneault, L. and Toubache, K. "Modu­
la-2/MUPE-2: Language and Environment Interactions,"
IEEE Software, Vol. 3, No. 6, pp. 7-17, (1986).

McCracken, D. D. "Software in the 1980's: Perils and Prom­
ises," Compuiterworld, Vol. 14, No. 38, (Sep. 1980).

McLean, E. R. "End-Users as Application Developers," MIS
Quarterly, (Dec. 1979), pp. 37-46.

Meyer, B. "Reusability: The Case for Object-Oriented
Design." IEEE Software, pp 50-64, March, 1987.

Munro, A. T. D. "SADIST: an Interactive Editor for Struc­
ture Analysis" Computer Graphics Forum, Vol. 2, No. 2/3
(1983), pp. 104-114.

Navathe, s. B. and M. Schkolnich "View Representation in
Logical Database Design." pp 144-156,

Nolan, R.L. and J. c. wetherbe "Toward a Comprehensive
Framework for MIS Research." MIS Quarterly, pp 1-19,
June, 1980.

Prieto-Diaz, R. and Freeman, P. "Claaifying Software for
Reusability." IEEE Software, pp 6-16, Jan., 1987.

Ramamoorthy, c. v. Prakash, A. Tsai, w. and Usuda, Y.
'Software Engineering: Problems and Perspectives' IEEE
Computer, (October 1984), pp 191-209

Rentsch, T. "Object-Oriented Programming," SIGPLAN Notices,
Vol. 17, No. 9, (1982), pp. 51.

Richards, R. M., and J. c. Windsor, "Documentation in a
User Work Station Environment." Journal of Systems Man­
agement, Feb. 1988, pp 23-29.

Rivard, s. and Huff, s. L. "An Empirical Study of Users as
Application Developers," Information and Managfement,
Vol. 8, No. 2, (1985), pp. 89-102.

Sammet, J.E. Programming Language: History and Fundamen­
tals. Prentice Hall, Englewood Cliffs, NJ, (1969).

Schmucker, K. Object-oriented Programming for the Macin­
~, New Jersey, Hayden, 1986.

Shu, N. C., Lum, V. Y., Tung, F. C. and Chang, C. L., "Spe­
cification of Forms Processing and Business Procedures
for Office Automation," IEEE Trans. Software Engineer­
ing, Vol. SE-8, No. 5, pp. 499~511, Sep. 1982.

104

Simon, H. A. "Whether Software Engineering Needs to Be
Artificial Intelligent." IEEE Transactions on software
Engineering, Vol. SE-12, No. 7, pp 726- , July, 1986.

SPECIF, Institut de Genie Logical, Toulouse, France (1984).

Spence, J. w. "End-User Computing - The Human Interface."
Journal of Systems Management, Feb. 1988, pp 15-21.

stabeer, E. P. "Objectj-Oriented Programming in Prolog." A.I
Magazine, pp 46-57, Oct., 1986.

stefik, Mark and D. G. Bobrow "Object-Oriented Programming:
Themes and Variations." The AI Magazine, pp 40-62,
1986.

stein, J. and Maier, D. "Concepts in Object-Oriented Data
Management," Database Programming and Design, (April
1988), pp. 58-67.

Teichroew, D. and Hershey, E. "PSL/PSA: A computer aided
technique for structured documentation andf analysis of
information processing systems," IEEE Trans. Software
Engineering, Vol. SE-3, No. 1, pp. 41-48, Jan. 1977.

The Arity screen Design Toolkit, Arity corp. 1986.

The Report of Alvey Committee HMSO, London UK (1982)

Tsichritzis, D. "Form Management," Comm. ACM, Vol. 25, No.
7, pp. 453-478, July 1982.

Vitalari, N. P. "Knowledge as a Basis for Expertise in Sys­
tem Analysis: ~-n Empirical Study." MIS Quarterly, Vol.
9, No. 3, (Sep. 1985), pp. 221-241 .

. Wong, w. "Prolog - A Language for Artificial Intelli­
gence." agazine, pp 247-263, Oct., 1986.

wartik, s. P. "Fillin: A Reusable Tool for Form-Oriented
Software." IEEE Software. pp 61-69, March, 1986.

wetherbe, J. • C. and Leitheiser, R. L. "Information centers:
A Survey of Services, Decisions, Problems, and Suc­
cesses," Journal of Information Systems Management,
Vol. 2, No. 3. (Summer 1985), pp. 3-10.

Wiederhold, G. "Databases." Computer, pp 211-223, Oct.,
1984.

Wiederhold, G. "Knowledge and Database Management." .I.EEE
Software, pp 63-, Jan., 1984.

105

zaniolo, c. "Object-Oriented Programming in Prolog." Inter­
nation Logic Programming spectrum, pp 265-270, 1984.

zaniolo, c., H. Ait-Kaci, D. Beech, s. Cammarata, L. Ker­
schberg, and D. Maier "Object Oriented Database Systems
and Knowledge Systems." Expert Database systems, ed
Larry Kerschberg, pp 49-65, 1984.

APPENDICES

106

APPENDIX A

DATABASE DEVELOPMENT ENVIRONMENT-.

SOURCE LISTING

107

dbde ·- Cuti],
introd2,
restore,
[dbde],
prototyping.

pt:- prototyping.

prototyping:­
dsp_option,
get(Option),
next(Option).

dsp_option :-
els,
tmov~(6,10),

108

write(' .. Operation Manager'),
tmove(S,13),
write('l) Test Run the Data Base System'),
tmove(l0,13),
write('2) Build up Operational Data Base'),
tmove(l2,10),
write(' .. Development Manager'),
tmove(l4,13), •
write('a. Data Base Designer'),
tmove(16,13),
write('b. Report Revisor'),
tmove(lS,13),
write('c. Screen Revisor'),
tmove(20,13),
write('d. Menu Revisor'),
tmove(22,10),
write('x) Exit'),
tmove(J,15),
write('Choice an Option ').

set_up_l ·-
els,
tmove(S,25),
write('Set The Data Base To Work'),
tmove(l0,20),
write('Please Name This Data Base System ''),
read_line(0, Begn),
atom_string(Begnl,Begn),
tmov~(l2,20),
write('Please Enter The Main Menu Name: '),
read_line(0, Menu),
atom_string(Henul,Menu),
asserta((run :- send(menu(Henul),menu))),
save(Begnl),
tmove(lS,20),
write('You Now Can Run The System by Type'),
tmove(l6,25),
write('restore('),

.. -

write(Begnl),
write('). and'),
tmove(l7,25),
write (•run. •) ,
tmove(lS,25),

109

write('under api command entry mode'),
getO(A).

next ('1) :­
[start],
start,
go.

next('2) :­
[start],
startl,
set_up_l.

next ('x).

next ('X).

next ('a) :-
[aid],
aid.

next ('b) :­
[idb_out],
start.

next ('c) :­
[idb_scrn],
start.

next (• d) :-
[idb_menu],
start.

next(.A) :-
[aid],
aid.

next('B) :-
[iau_out],
start.

next ('C) :­
[idb_scrn],
start.

next('D) :­
[idb_menu],
start.

introd2 ·- introd(SWELCOME TO END USER DATA BASE DEVELOPMENT ENV~$>

: •. ---·-·-- --·--·-·- ••••••• -·· ·-
110

[S This prototype is an Object-Oriented System tors,
S End User Data Base Development. It was developed to demostrate theS.
S feasibility of appling Object-Oriented Development in a End Users,
S Designer/Developer Environment. $]).

I

r.

APPENDIX B

OBJECT CLASS LIBRARY SOURCE LISTING

111

112

/* MENU-DRIVEN SQL QUERY INTERFCE
/* SQL QUERY - ehang from SQLDEMO.ARI
/* Copyright (C) 1986 Arity Corporation.

run_query :-
els,
set_up_qrys,
repeat,
ge(full),
els,
tmove(0,2),
write('SELECT FROM'),
tables(Y),
rest(Y),
done.

rest([]) :- !.
rest (Y) :-

columns (Y ,L, Z,X),
erest(Y,L,Z,X), !.

crest(Y,_,_, []) :­
• • I

tmove(S,0),
exec_i t ([] , Y, [] , [] , []) .

crest(Y,L,Z,Ai :­
where(L,W),
group(Z,G,Gl),
order(Z,O,Gl),
tmove(S,0),
exec_it(X,Y,W,G,O).

write_string_list(Handle,A) :­
write_s_list(Handle,A,'').

write_s_list(Handle,(],Comm) :- !.

write_s_list(Handle,[A,B,CfList],Comm) ·­
write(Handle,Comm),
write(Handle,A),
write(Handle,','),
write(Handle,B),
write(Handle,•,•),
write_string(Handle,C),
fit(Comml, ','),
write_s_list(Handle, List, Comml).

/* do_banner :-
els,
tmove(l0,23),
write('Arity/SQL Demo program'),
tmove(ll,23),
write('Copyright (C) 1986, Arity Corporation'),
set_up_qrys,
get0_noecho(X).*/

set_up_qrys :-

*I
*I
*I

eraseall(select),
eraseall(sw),
eraseall(sg),
eraseall(so),
eraseall(swg),
eraseall(swo),
eraseall(sgo),
eraseall(swgo),

113

make_query(Ssel(X,Y);•select #X from #Y;S,Sel),
recorda(select,Sel,_),
make_query(

Ssw(X,Y,Z);•select #X from #Y where %Z;$,Whr),
recorda(sw,Wn.r,_),
make_query(

$sg(X,Y,Z);•select #X from #Y group by #Z;$,Sg),
recorda(sg,Sg,_),
make_query(

Sso(X,Y,Z);•select #X from #Y order by #Z;S,So),
recorda(so,So,_),
make_query(

Sswg(W,X,Y,Z);•select #W from #X
where %Y group by #Z;S,Swg),

recorda{swg,Swg,_),
make_query(Sswo(W,X,Y,Z);•select #W from #X

where %Y order by #Z;$,Swo),
recorda(swo,Swo,_), •
make_query(Ssgo(W,X,Y,Z);•select #W from #X

group by #Y order by #Z;S,Sgo),
recorda(sgo,Sgo,_),
make query(Sswgo(V,W,X,Y,Z);•select IV from #W

- where %X group by #Yj()rder by #Z;S,Swgo),
recorda(swgo,Swgo,_), •
make_query(Ssa(X1;•seiect * from #X;S,Sa),
recorda(sa,Sa,_).

tables([HIT]) :­
findall{itm(X,6),table(X,_,_,_),L),
tmove(4,0),
write("From clause"),
get_list([itm('DONE",6) IL],_,_,List,6),
List• [HIT],
tmove(4,0),
write(' '),
tmove(0,9),
write(' FROM'),
write(H),
write_list(T), !.

tables ([]).

write_list([]).
write_list([HIT]) ·-

write (• , •) ,
dwri te (H) ,
write_list(T).

114

get_list{X,L2,Ll,L,W) :­
region_c((J,10), {24,30),R),
get_lst{X,L2,Ll,L,W,l),
region_c((J,10),(24,30),R),
!.

get_lst{X,L2,Ll,L,W,C) :-
box vmenu(S:10,X,W,0,Choice),
unhighlight {W),
handle_choice(X,Choice,L2,Ll,L,W,C).

handle_choice(X,'DONE',[],[],[],_,_).
handle choice{X,'Expression',Ll,L2,L3,W,C) :-

- expression(X,Ll,L2,LJ,W,C).
handle_choice(X,T:C,[itm{T:C,W)ILl],(.(T,C)IL2J,

[.{T,C)IL],W,Cl) :-
inc{Cl,C2),
get_lst{X,Ll,L2,L,W,C2).

handle_choice(X,C,[itm{C,W)JLl],[CJL2],[C:L],W,C2) •-
inc (C2,Cl),
get_lst{X,Ll,L2,L,W,Cl).

expression(X, [itm(con{C) ,W) ILl], [AJL2], [BIL] ,W,C) ·­
tmove(20,0),
write('Enter the expression: '),
read_line{0,A),
tmove(20,0),
write { •

A\• SS,
error{se,A),
scalar_expression(A,B),
inc (C,Cl),
get_lst(X,Ll,L2,L,W,Cl).

expression(X,Ll,L2,L,W,C) :­
get_lst{X,Ll,L2,L,W,C).

error(_,_).
error(se,A) :-

tmove{20,0),
write('Error in expression':A),
get0_noecho (_) ,
tmove{20,0),
write('

fail.
error(wh,AJ :­

tmove(S,O),
write('Error in condition':A),
get0_noecho (_) ,
tmove(S,0),
write('

fail.

wbere((R,C),Y) ·­
tmove(S,0).

.) ,

.) ,

.) ,

115

write('Enter your where clause: '),
read_line (0 ,X),
tmove(S,0),
write (•

X \= SS,
error(wh,X),
predicate(X,Y),
tmove(R,C),
write(' WHERE'),
write (X) , ! .

where(_,(]).

wherel((R,C),X) ·­
tmove(S,0),
write('Enter your where clause: '),
read_line(0,X),
tmove(S,0),
write ('

.) ,

.) ,
X \a: SS,
error(wh,X),
tmove(R,C),
write(' WHERE'),
write (X) , ! .

wherel(_,[]).

get_columns([],[J).
get_columns([H:T],Y) :-

findall(itm(H:X,15),colwnn_table(X,H,~,_,_),Cols),
I ;· . , /
get_columns(T,Cl),
append(Cols,Cl,Y).

append C [J , L, L) .
append((HIT],L,(BILl]) :- append(T,L,Ll).

~olumns (LO, (R,C) ,L,Ll) :-
get_columns (L0,Cols),
tmove (4 , 0) , •
write('Select clause'),
get list([itm('DONE',15),

- itm('Expression',15) 1Cols],L,L2,L1,15),
tmove(4,0),
write(' '),
write_c(L2),
write_t(L0),
tget(R,C),
! .

columns(_,_,_,[]).

write_c((HIT]) :­
tmove(0,9),
dwrite(H),
wri te_lis t (T) , ! .

write_t([H:T]) ·-

write (' FROM ') ,
write(H),
wri te_list CT),
!.

group(Cols,Gl,L) ·-

116

remove_expressions(Cols,Colsl),
tmove(4,0),
write('Grouping clause'),
get_list([itm('DONE',lS)IColsl],_,_,Gl,15),
tmove(4,0),
write(' '),
write_g(Gl,L),
! .

remove_expressions([],[]).
remove_expressions([itm(con(_),_)IT],Tl) :-

1 . ,
remove_expressions(T,Tl).

remove_expressions([HIT],[H:Tl]) :­
remove_expressions(T,Tl).

wri te_g { [] , (2, 9)) .
write _g ([H I T] , (R, C)) • -

tmove(2,10),
write('GROUP BY'),
dwrite(H),
write_list(T),
tget(R,C),
! .

order(Cols,Gl,L) :­
tmove(4,0),
write('Order by clause'),
get_list([itm('DONE',lS)ICols],_,_,Gl,15),
tmove(4,0),
write(' '),
write_o(Gl,L),
! .

wri te_o ([] , _) .
write_ o ([H : T] , (R , C)) : -

tmove(R,C),
write(' ORDER BY'),
dwrite(H),
wri te_list (T) ,
! .

exec_it(A,B,C,D,E) :­
execit(A,B,C,D,E,T,Cap),
exec_capsule(T,Cap,Key,Err,Var),
report_error(Err,Var),
! .

117

execit([],Y,_,_,_,sa(Y),Cap) :­
recorded(sa,Cap,_).

execit(A,1,LJ,[],[],sel(X,Y),Cap) ·­
recorded(select,Cap,).

execit(X,Y, [], [] ,w,so(X,Y,w):-cap) ·­
recorded(so,Cap,_).

exec i t (X , Y , [] , W, [] , s g (X, Y, W) , Cap) : -
recorded(sg,Cap,_).

execit(X,Y, [) ,G,O,sgo(X,Y,G,0) ,Cap) :­
recorded(sgo,Cap,_).

execit(X,Y,W,[],[],sw(X,Y,W),Cap) :­
recorded(sw,Cap,_).

execit(X,Y,W, [] ,O,swo(X,Y,W,O) ,Cap) ·­
recorded(swo,Cap,_).

execit(X,Y,W,G,[],swg(X,Y,W,G),Cap) ·­
recorded(swg,Cap,_).

execit(X,Y,W,G,O,swgo(X,Y,W,G,O),Cap) ·­
recorded(swgo,Cap,_).

report_error(O,_).
report_error(Err,Var) :-

done·-

nl,
nl,
write('Error number':Err),
tab(J),
write('Values':Var).

nl,
nl,
write ('Another SQL SELECT ? (y /n) / ') ,
doneaux.

doneaux :-
getO_noecho (C),
handle_i t (C).

handle_i t ("y) :- : , i:ail.
handle_i t ('n) .
handle_it(_) :-

put(7),
doneaux.

dwrite(T:C) :­,
• I

write(T),
put(".),
write(C).

dwri te (. (T, C)) : -
I . ,
write (T) ,
put (• .) ,
write(C).

dwrite(con(X)) :-
1 . ,
cwrite (X).

dwri te (X) : -
write (X).

cwrite(X) :­
string (X),
I . ,
put(''),
write(X),
put (' ') .

cwri te (X) : -
write(X).

118

119

/* Object-oriented programming message sending program */

send(Obj,Msg) :-
isa_chain(Obj,Objl),
Objl with Mthds,
get_meth~d(Msg,Mthds,Mthd),
call (Mthd) .

get_method(Msg,[First:Rest],Mthd) :­
tact or rule(Msg,First,Mthd), !.

get_method(Msg,[_IRest],Mthd) :-
get_method(Msg,Rest,Mthd).

fact or rule(Msg,Msg,true).
fact-or-rule(Msg,(Msg :- Body),Body).
isa chain(Obj,Obj).
isa:chain(Objl,ObjJ) :-

Objl isa Obj2,
not(Objl • Obj2),
isa_chain(Obj2,0bj3).

120

/* Object Class Library
I* - Methods List

fms(Menu_name) :- menu(Menu_name).

menu(Menu_name) :-
repeat,
trans_to{Menu_name, M_static, M_active),
dialog_run((0,0),(24,79),clear,none,",

1,M_static,M_active,Exit),
dialog_val(M_active, box, X),
recorded{Menu_name, menu_choice(X, Action),_),
not(call(Action)),
ifthen(Action \•~ send(menu(return),return),

do_assert) .

screen(Screen_name) :-
trans_to(Screen_name, s_static, s_active),
dialog_run((0,0),(24,79),clear,none,

'',1,S_static,S_active,Exit).

add(Vf_name) :-
trans_to(Vf_name, Static, Active),
set_null(Active),
recorded (Vf_name, operation ('add' , Title).,_) ,
recorded(Static, text(2,20,_), Ref),
·replace(R~i, cext(2,20,Title)),
dsp_screen(Vf_name),
get_values(Active, Value_list),
send(b_table(Vf_name), add(Value_list)).

del(Vf_name) :-
trans_to(Vf_name, Static, Active),
set null(Active),
rec~rded(Vf_name, operation('del',Title),_),
recorded(Static, text(2,20,_), Ref),
replace(Ref, text(2,20,Title)),
dsp_screen(Vf_name),
get_values(Active, Value_list),
send(b_table(Vt_name),

retrive(Value_list, Value_listl)),
set_value(Active, Value_listl),
dsp_screen(Vf_name),
ask,
send(b_table(Vf_name), del(Value_listl)).

mod(Vf_name) :-
trans_to(Vf_name, Static, Active),
set_null{Active),
recorded(Vf_name, operation('mod',Title),_),
recorded(Static, text(2,20,_), Ref),
replace{Ref, text{2,20,Title)),
dsp_screen(Vf_name),
get_values{Active, Value_list),
10::.ud (b_table (Vf_name),

*I
*I

121

retract(row(_)), fail.

build_rpt_body(Report_name, Row, Pos_list) ·­
asserta(row(Row)),
recorded(rpt_result, A, Ref),
A• .. (P:ListJ,
P \== heading,
row (Row2),
retract(row(Row2)),
retract(hold(Hold_list)),
list_body{List, Hold_list, Row2, Pos_list, Row3),
asserta(hold(List)),
Rowl is Row3 + 1,
asserta(row(Rowl)),
fail.

build_rpt_body(Report_name, Row, Pos_list) ·- !.

list_body ([] , (],Row, Col, Row) :- ! .

list_body((FieldlF_list], [], Row,[Col:Col_list], Rowl) ·-
tmove(Row,Col),
write(Field),
list_body(F_list, [], Row,Col_list, Rowl)_.

list_body ([Field: F _lis.t] , [Hold_field: H_list] ,
Row,(CollCol_list],Rowl) ·-

Field•• Hold_field,
list_body(F_list, [], Row, Col_list,Rowl).

list_body([FieldlF_list],
[Hold_fieldlH_list], Row, (CollCol_list],Rowl) ·­

Field\=• Hold_field,
Row2 is Row+ 1,
tmove(Row2,Col),
write(Field),
list_body(F_list, (], Row2, Col_list, Rowl).

query:- run_query.

trans_to(Menu_n, Static_na.me, Active_name) :­
atom_string(Menu_n,Menu_name),
concat(Menu_name, S_staticS, StaticO),
concat(Menu name, S active$, ActiveO),
atom_string(Static_~ame, StaticO),
atom_strino(Active_name, ActiveO).

dsp_screen(Lf_name, add, Scr_name) :­
add_suf(Lf_name,S_aS,Scr_name),
screen(Scr_name).

dsp_screen(Lf_name, del, Scr_name) :­
add_suf(Lf_name,S_dS,Scr_name),
screen(Scr_name).

122

add_suf(Atom_in, Str, Atom_out) :­
atom_string(Atom_in, Str_in),
concat(Str_in, Str, Str_out),
atom_string(Atom_out, Str_out).

get_values(Key, End_list) :­
retract(value_list(_)),
asserta(value_list([])),
parm_list(Key, End_list).

value_list([]).

parrn_list(A_key, End_list) :­
dialog_val(A_key, F, Value),
value_list(List),
retract(value_list(List)),
asser~a(value_list([Value I List])),
fail.

parm_list(A_key, End_list) ·­
value_list(List),
reverse_list(List, [], End_list),!.

reverse_list([],Y,Y) :- !.

reverse_list([X:Tail],Y,Z) ·­
reverse_list(Tail,[XlY],Z).

build_ins(Value_list, Str, Sql_str, Rest_list) :­
set_value(Str, Value_list, Sql_str_, Rest_list).

'

build_del(Value_list, Str, Sql_str, Rest_iist) :-.
set_value(Str, Value_list, Sql_str; Rest_list).

set_value(Str, [Value:value_list], Sql_str, Rest_list) :­
string_search(SaAS,Str,A),
Al is A+ 2,
string_length(Str,T),
A3 is T - Al,
substring(Str,O,A,Pref),
substring(Str,A1,A3,Suf),
concat([Pref, Value, Suf], Strl),
set_value(Strl, Value_list, Sql_str, Rest_list).

set_valu~(Sql, List, Sql, List) :- !.

build_comm(Str,List,Str) :-
write('Error in Building SQL Command'),
getO{_).

screen_process{[Process,A,B,C,D,E I Tail]) :­
processit(Process,A,B,C,D,E,T,Cap),
exec_capsule(T,Cap,_,Err,Var),
report_error(Err,Var),
screen_process(Tail).

123

processit('select',A,B,C,D,E,T,Cap) ·­
execit(A,B,C,D,E,T,Cap).

processit('insert',A,B,C,D,E,T,Cap) ·­
insertit(A,B,C,D,E,T,Cap).

processit("delete',A,B,C,D,E,T,Cap) :­
deleteit{A,B,C,D,E,T,Cap).

processit{ ·update' ,A,B,C,D,E,T,Cap) :-
updateit(A,B,C,D,E,T,Cap).

return:- fail.

dsp_screen(Vf_name) :- screen(Vf_name).

set_value(Active, Value) :- retract(listl(_)), fail.

set_value(Active, Value_list) :-
asserta(listl(Value list)),
recorded(Active,efield(A,B,C,D,V,E),Ref),
listl([Value I Value_listl]),
retract(listl()),
asserta(listl(Va1ue_listl)),
replace(Ref, efield(A,B,C,D,Value,E)),
fail.

set_value(Active, List) ·- !.

ask:-
tmove(23,20),
write(SEnter 'Y' to confirm:$),
get(Ans),
determ(Ans).

determ(l21) :- ! .
determ(S9) :- ! .
determ(Ans) :- fail.

process_f ile (Vf_name, (] , []) : - ! .

process_file_i(Vf_name, List, [Insert I Insert_list]) :-
build_ins(List, Insert, Command, Rest_list),
exec_sql(Command),
process_file(Vf_list, Rest_list, Insert_list).

process_file_d(Vf_name, List, (Delete : Delete_list]) :­
build_del (List, Delete, ComJtaand, Rest_list),
exec_sql(Command),
process_file(Vf_list, Rest_list, Delete_list).

get_record([], (], New_list, New_list).

get_r~cord(List, (File, Args I File_list],
Work_list, New_list) :-

find_value(List, Args, [], Sub_list, Rest_list),
app~nd((File], Sub_list, Rec),
Record= .. Rec,

124

recorded(File, Record,_),
Record: .. Rec_listl,
kick(Rec_listl, Rec_ii»~~),
reverse_list(Rec_list2, [], Rec_list3),
append(Rec_list3, Work_list, Work_listl),
get_record(Rest_list, File_list, Work_listl,

New_list).

find value(List, 0, Work list, Sub list, List) :­
- reverse_list (Work_list, [] :- Sub_list).

find_value((AlList], Args, Work_list, Sub_list, Rest_list) ·­
A== SS,
Argsl is Args - 1,
find_value(List, Argsl, [B: Work_list], Sub_list,

Rest_list).

find_value((AlList], Args, Work_list, Sub_list, Rest_list} :­
A\==$$,
Argsl is Args - 1,
find value(List, Argsl, [A Work_list], Sub_list,

- Rest_list).

kick{[A I Rec_list], Rec_list).

append([],L,L) :- !.

append([X:Ll], L2, [XlL3]} :- append(Ll,L2,L3).

set null(Active, :-
- recorded(Active, efield(A,B,C,D,E,F), Ref),

replace(Ref, efield(A,B,C,D,SS,F)},
fail.

set_null(Active) :- !.

do_assert :-
els, tmove(l0,20),
write('NOTICE: Last Selection DID NOT Perform'},
tmove(l2,20),
write(' Processes on Data Base'),
get0(A), fail.

125

/* Operation Manager */
/* - Set up programs */
/* for Object-Oriented Application Dictionary */

start·- els,
write('Load Object-Oriented Data Base System'),nl,
[set_op], set_op,
[o_o,dialogl,editfld,diccon,obj,objdb],
write('Consulting Object Specification Dictionary'),
nl,
dic_consult('rpt.osd'),
dic_consult('vpf.osd'),
dic_consult('scrn.osd'),
dic_cuusult('menu.osd'),
sql_consult('bt.osd'),
sql_consult('data.tst'),
write('Load Query Module') ,nl,
[+query].

startl :- els,

go·-

writ~('Load Object-Oriented Data Base System'),nl,
[set_op], set_op,
[o_o,dialogl,editfld,diccon,obj,objdb],
write('Consulting Object Specification Dictionary'),
nl, •
dic_consult('rpt.osd'),
dic_consult('vpf.osd'),
dic_consult('scrn.osd'),
dic_consult('menu.osd'),
sql_consult('bt.osd'),
write('Load Query Module '),nl,
[+query].

els,
tmove(S,30),
write('Test Run'),
tmove(l0,20),
write('Please input your main menu name '),
read line(0, Begn),
atom=string(Begnl,Begn),
send(menu(Beqnl), menu).

APPENDIX C

INTELLIGENT DEVELOPMENT AID SOURCE LISTING

126

127

/* Intelligent Development Aid
/* - Development Manager
/* Set up program for IDA

aid·-
[dsp_menu,bld_aux,sql_qry,dialogl, editfld, diccon],
[uti,begin,bt,input,output,vpf,scrn,menu],
dic_consult('kb_inp.res'),
dic_consult('kb_menu.res'),
main.

*/
*I
*I

128

/* Intelligent Development Aid
/* - DB Developer
/* Program to call OSD Generarors

main·-
def_input,
def_output,
def_vpf,
def_screen,
def_menu.

I

*/
*I
*I

/* Intelligent Development Aid
I* - DB Designer

def_input :-
introdl,
create_bt(Handle),
repeat,

129

inp_obj(Obj, Field_list),
name_only(Field_list, [], Name_list),
find_A~y,obj, Name_list, Key_list),
find_dep(Obj, Name_list, Dep_list),
normalization(Obj, Field_list, Name_list,

Key_list, Dep_list, Vpf_list),
name_vpf(Obj, Vpf_list, Field_list),
build_fd(Field_list),
build_bt(Obj),
ask.

inp_obj(Obj, Field_list) ·­
clear(obj_active),
dialog_run((0, 0), (24, 79), clear, single,

*I
*/

$Specify Form Format$, 1, obj_static, obj_active, X),
dialog_val(obj_active, name, Obj),
get_value(obj_active, Field),
kick(Field, Fieldl),
clear_null(Fieldl, [], Field_list).

find_key(Obj, Name_list, Key_list) ·­
introd3,
key_groups(Obj, Name_list, fl, Key_list).

find_dep(Obj, Name_list, Dep_list) ·-
introd4,
dep_groups(Obj, Name_list, [], Dep_list).

normalization(Obj, Field_list, Name_list, Key_list,
Dep_list, Vpf_list) :-

nf2(Obj, Field_list, Name_list,
Key_list, Dep_list, Vpf_listl),

nf3(Obj, Field_list, Vpt_ii~Li,
Dep_list, Vpf_list).

nf2(Obj, Field_list, Name_list,
Key_list, Dep_list, Vpf_listl) ·­

find_part_key([Name_list],
Key_list, Dep_list, Vpf_list2),

gar_col(Vpf_list2,Vpf_listl).

find_part_key(Name_list, [], Dep_list, Name_list) ·- !.

find,J>art_key(Name_list, [KeylKey_list],
Dep list, Vpf listl) :­

check_det(Name_list,Key,Dep_list,Name_list2,Dep_list),

130

find_part_key(Name_list2,Key_list,Dep_list, Vpf_listl).

check_det(Name_list,Key,[],Name_list, Whole_dep_list) :- !.

check_det(Name_list,Key,[[Det,Oep] lDep_list],Name_listl,
Whole_dep_list) :-

ifthenelse(part_of(Det,Key), build_vpf(
Det,Dep,Name_list,Name_list,Name_list2,
Whole_d4:i:p_lis t) , fit CHame_list2, Hame_list)),

check_det(Name_list2,Key,Dep_list,
llame_listl,Whole_dep_list).

n~~\vDJ, Field_list, Name_list, Oep_list, Vpf_listl) ·­
find_tran_dep(Name_list, Oep_list,

Dep_list, Vpf_list2),
gar_col(Vpf_list2,Vpf_listl).

find_tran_dep(Name_list, [], Dep_list, Name_list) ·- !.

find_tran_dep CHame_list, [[Oet: Oep] I Dep_listl] ,
Dep_list, Vpf_listl) :­

check_dep_l(Name_list,Dep,Dep_list,
Name_list2,Dep_list),

find_tran_dep(Name_list2,Dep_listl,
Dep_list, Vpf_listl).

check_dep_l (Hame_lis t, [(]] , Dep_lis t,
Name_list, Whole_dep_list) ·- !.

check_dep_l(Name_list,[(DeplDep_listl]],
Dep_list, Name_listJ, Wbole_dep_list) :­

check_dep(Name_list,[Dep],Dep_list,
Name_list2,Whole_dep_list), !,

check_dep_l(Name_list2, [Dep_listl],
Dep_list, Name_listJ,Wbole_dep_list).

check_dep(Name_list,Dep,(],Name_list,Whole_dep_list) ·- !.

check_dep(Name_list,Depl,([Det,Dep] IDep_list],
Name listl,Whole dep list) :-

ifthenelse(same as(Depl,Det), build vpf(- -Det,Dep,Name_list,Name_list,
Name_list2,Whole_dep_list),
fit{Name_list2,Name_list)),

check_dep(Name_list2,Depl,Dep_list,
Name_listl,Whole_dep_list).

build_vpf(Det,Dep,(], Name_list,Name_list,
Whole_dep_list) :­

write_center{[Serror, error$]),!.

build_vpf(Det,Dep, [NllName_list] ,Name_list2,
Name_listl,Whole_dep_list) ·­

part_of{Oep,Nl),
reverse(Oet, Oetl),

131

reverse(Dep, Depl),
append(Detl,Depl,New_listl),
split(Dep, Nl, New_list2),
fit([New_listl, New_list21Name_list], Name_listl), !.

build_vpf(Det,Dep,(NllName_list], Name_list2,
(NllName_listl],Whole_dep_list) :­

build_vpf(Det,Dep,Name_list, Name_list2,
Name_listl, Whole_dep_list).

split((], List3, List3).

split([AlListlJ ,List2,List3) ·­
d_det(A,List2,New_list2},
split(Listl,New_list2, List3).

gar_c.:ul. ([], []) :- ! .

gar_col(((A,BIF_list] IList],[[A,BIF_list] IListl]) :­
gar_col(List,Listl).

gar_col(((AJ IListJ,Listl) :-
atom(A},
gar_col(List,Listl}.

part_of(A,B) :-
not(sam~_as(A,B}),
partof(A,B).

partof([],Key) :- !.

partof ([Fl: Det] , Key) • -
in (Fl , Key) , ! ,
partof(Det,Key).

in(Fl,[]) :- !,fail.

in(Fl, [FllDetl]) :- !.

in(Fl, [F21Det]) :-
Fl\•= F2,
in(Fl,Det).

same_as((J,(]) :- !.

same_as([J,B) ·- B \== [],!,fail.

same_as (A, (]) • - A \c= (], !, fail.

same as([Fl:A), B) ·- !,
- d_det(Fl,B,Bl),

same_as (A, Bl) .

d_det(Fl, [FllDetl], Detl) ·- !.

d det (Fl, [F2 I Det], [F2 I Detl]) • -
- Fl\== F2,

d_det(Fl,Det,Detl}.

132

name vpf(Obj,Vpf list,Field list} ·-
- ask_name(Obj, Vpf_list, Name_vpf_list},

recorda(obj,obj(Obj,Name_vpf_list,Field_list) ,_).

ask_name(Obj, (], (]}.

ask_name(OOJ,LVPtlVpf_list],[[Name,Vpf]IName_vpf_list]) ·­
els,
tmove(l0,10),
write('Please Name The File with Fields '},
write(Vpf), nl,
tmove(l2,15},
read_line{0,Name_string),
atom_string(Name, Name_string),
ask_name(Obj,Vpf_list,Name_vpf_list).

dep_groups{Obj, Name_list, ([] : Work], Work} ·- !.

dep_groups{Obj, Name_list, Work, Key_list) :­
get_fu_dep(Name_list, Group),
dep_groups(Obj, Name_list, [Group: Work], Key_list).

find_p_key{Obj, Name_list, Key_list) :- •
get_p_group(Name_list, Key_list).

key_groups(Obj, Hame_list, ([] : Work], Work) ·- !.

key_groups(Obj, Name_list, Work, Key_list) :­
get_group (lJame_list, Group),
key_groups(Obj, Name_list, [Group I Work], Key_list).

get_fu_dep(Name_list, Group) :­
clear_choice(func_active),
set_value_2(func_activ~, Hame_list),
dialog_run((0, 0),(24, 79), clear, single,

$Functional Dependency$, 1,
func_static, func_active, X),

get_check_2(func_active, Group).

get_group(Name_list, Group) :­
clear_choice(key_active},
set_value(key_active, Name_list),
dialog_run((0, 0),(24, 79), clear, single,

$Candidate Key$, 1,
key_static, key_active, X),

get_check(key_active, Group).

gc::t_p_group (Name_list, Group) : -
clear_choice(p_active),

133

set_value(p_active, Name_list),
dialog_run ((O, O) , (24, 79) , clear,

single, $Primary Key$, 1,
p_static, p_active, X),

get_check(p_active, Group).

clear null([],Work list,End list) :-
- reverse_list(Work_list, [], End_list).

clear_null([A,BlList],Work_list,End_list) :- A== SS,
reverse_list(Work_list, [], End_list).

clear_null((A,B:List],Work_list,End_list) :- A\=: SS,
clear_null(List,[B,AiworK_list], End_list).

clear(Key) :-
recorded(Key, efield(A,B,C,D,E,F), Ref),
replace(Ref, efield(A,B,C,D,SS,F)),
fail.

cle,ar(Key) :- !.

clear_choice(Key) ·-
recorded(Key, choice(A,B,C,D,E,F), Ref),
replace(Ref, choice(A,B,C,$$,greyed, F)),
fail.

clear_choice(Key) :- !.

find_key_rep(Obj, Field_list, Name_list, Name_listl) :­
asserta(name_list(Name_list)) , f~il.

find_key_rep(Obj, Field_list, Name_list, Name_listl) ·­
find_y(Field_list, Name, Lengh, Times),
name_list(Name_list3),
remove_r(Name, Name_list3, [], Name_list2},
retract(name_list(Name_list3)),
asserta(name_list(Name_list2)),
concat(

($Most Often Used as a Key to Retrive The Field'$,
Name, S'S], String),

write_center(
[Sin The Following Screen Please S,
$Specified the Field or Fields That$,

., crinq]) ,
get_p_group(Name_list2, Group),
append(Group, Name, Vf),
asserta(vf(Obj,Vf)),
fail.

find_k-==y_rep(Obj, Field_list, Hame_list, Name_listl) :­
name_list(Name_listl),
retract(name_list(Name_listl)) ,!.

remove_r(Name, [], Work, Name_list2) :­
reverse_list(Work, [], Name_list2).

134

remove r(Name, [NamelName listJ], Work, Name list2) :­
- remove_r (Harne, Naie_listJ, Work, Name_list2).

remove_r(Name, [AlName_listJ], Work, Name_list2) :­
Name\== A,
r1::mov-=:_r (Name, Name_listJ, (A: Work], Name_lis t2) .

get_check(Key, Group) :- retract(key_group(_)), fail.

get_check(Key, Group) :-
asserta(key_group([])),
recorded(Key, choice(A,B,C,D,checked,F), _),
key_group (List),
retract(key_group(List)),
asserta(key_group([DIList])),
fail.

get_check(Key, Group) :­
key_group(Group), !.

get_check_2(Key, Group) :- retract(key_group(_)), fail.

get_check_2(Key, Group) :-
asserta(key_group([])),
recorded(Key, choice(A,B,C,D,E,F), _),
ifthen(A == 'sone', store),
E == 'checked',
key_group(List),
retract(key_group(List)),
asserta(key_group((DIList])),
fail.

get_check_2(Key, Group) :­
key_group(Groupl),
det_group(Group2),
match((Group2,Groupl], Group), !.

match(((],A], []).

match([A,(]], ()).

match (A, A).
store;-

key_group(List),
retract(key_group(List)),
asserta(key_group((])),
asserta(det_group(List)), !.

store_list(Value) :-
listl(List),
retract(listl(List)),
asserta(listl(Value)),!.

135

name_only([], Work, Name_list) ·­
reverse_list(Work, [], Name_list).

name only([Hame, IField list], Work, Name list) ·-
- name_only(Field=list, [NamelWork]~ Name_list).

get_value(Key, End_list) :­
retract(value_list(_)),
asserta(value list([])),
parm_list(Key~ End_list).

value_lis t ([]) .

parm_list(A_key, End_list) :­
dialog_val(A_key, F, Value),
value list(List),
retra~t(value_list(List)),
asserta(value_list([Value : List])),
fail.

parm_list(A_key, End_list) ·­
value list(List),
reverie_list(List, (], End_list),!.

kick([A: Rec_list], Rec_list).

set value 2(Active, Value list) ·-
- a;serta(listl(Value_list)),

recorded(Active,choice(A,B,C,D,V,E),Ref},
ifthen(A == 'sone', store_list(Value_list)},
listl ([Value I Value_listl]} , :
retract(listl([ValuelValue_listl])),
asserta(listl(Value listl)),
replace(Ref, choice(A,B,C,Value,unchecked,E)),
fail.

set_value_2(Active, List) :- retract(listl(_)), !.

set_value(Active, Value_list) :­
asserta(listl(Value_list)),
recorded(Active,choice(A,B,C,D,V,E),Ref),
listl([Value I Value_listl]),
retract(listl(_)),
asserta(listl(Value_listl)),
replace(Ref, choice(A,B,C,Value,unchecked,E)),
fail.

set_value{Active, List) :- retract(listl(_)), !.

add_list(Work_valuel, Value_list, Work, End_list) ·­
add_l{Value_list,Work_value2),
append{Value_list,Work_value2, End_list).

add_l(Valu~_list,Work) :-
count_mem(Value_list, 0, No),

136

Nol is 16 - No,
add_2(Value_list, Nol, Workl).

add_2(Work, 0, Work).

add_2(Work_list, No, Work) ·­
append([SS], Work_list, Workl),
Nol is No - 1,
add_2(Workl, Nol, Work).

reverse_list ((], Y, Y) :- ! .

reverse list ([X l Tail], Y, Z) :-
- reverse_list (Tail, [X:Y],Z).

count_mem([], No, No) :- !.

count_mem([A:List], Count, No) ·­
Count~ ~s count+ 1,
count_mem(List, Countl, No).

build_fd(Field_list) :-
not(field_def(A)),
asserta(field_def([])), fail.

build_fd(Field_list) :-
field_def(F_listl),
retract(field_def(F_listl)},
append(Field_list, F_listl, New_list),
asserta(field_def(New_list)}.

close_all (19) : - ! .

close_all(A} :­
close (A) ,
Al is A+ 1,
close_all(Al).

introdl :- introd(SDEFINE FORM FORMATS,
[S In the next screen, you will have to specify the$,
S field names and their maximum lengh for the form$,
S you want to store in this data base. After you finished$,
S specify this form, hit enter$,
Sand this step will$,
S be terminat~d. $]).

introd3 :- introd(SSPECIFY UHIQUE KEY(S) IN THIS FORM$,
[$ In the next screens, you will have to specify the$,
S unique key(s) for the forms you just specified.$,
SA unique key is a ~i~~d or fie~ds that can be used to$,
S identify every record in your file for this form.$,
S Specify these keys one by one. Hit enter$,
S after you finish specified one of them. If you don't$,
Shave any more, just hit enter again and this step will$,
Sb~ t~rminated. $]).

137

introd4 :- introd(SDEFINE DEPENDENCY$,
[$ In the next screens, you will have to specify the$,
S dependencies in this form.$,
SA dependency is a field or fields (determinant)$,
$ that is not a unique key$,
S but by identify its or their value(s) the value(s) of$,
S same other field or fields (dependant) can be determined.$,
S Hit ENTER after you finish specified one of them. If youS,
S Don't have any more, just hit enter again and this step$,
Swill be t~rminated. $]).

138

/* Intelligent Development Aid
/* - Report Specification Generator

bld_vpf :- restore, [idb_vpf], start, der_vpt.

def_output :-
create(H, 'rpt.osd'),
close (H),
def _report.

def_report :-
introdS,
els,
set_up_qrys,
repeat,
gc(full),
els,
tmove(0,2),
write('SELECT FROM'),
tables CY) ,
restl (Y),
done.

restl((]) :- !.
restl(Y) :­

columns(Y,L,Z,X),
crestl (Y ,L,Z,X), ! .

crestl (Y,_,_, (]) :-, . ,
tmove(S,0),
wri te_i t ([1 , Y, [] , [] , Cl) .

crestl(Y,L,Z,X) :­
wherel(L,W),
group(Z,G,Gl),
order(Z,O,Gl),
tmove(S,0),
write_it(X,Y,W,G,O),
els.

/* exec_it(X,Y,W,G,O). */

write _it (A, B , C , D , E) : -
name_rpt(Rpt_name,Heading),
write_d~f(Rpt_name,Heading,A,B,C,D,E),
! .

name_rpt(Rpt_name,Heading) ·­
tmove(l0,10),
write(

'What is the name of the report you just defined '),
nl,
tmove(l2,15),
read_line(0,Rpt_name),
tmove(lS,10),

*/
*/

139

write(
'Key in the heading for the report you just defined '},

nl,
tmove(l7,15),
read_line(O,Heading).

write_def(Rpt_name, Heading, A,B,C,D,E) ·­
open (Handle, 'rpt. osd', a) ,
write(Handle,begin_def(Rpt_name)),
write(Handle,'.'),
nl(Handle),
build_sub_pos(A, Sub_list, Pos_list),
write_report(Handle,A,B,C,D,E,Heading,

Sub_list,Pos_list),
write(Handle,'.'),
nl(Handle), nl(Handle),
write(Handle,end_def(Rpt_name)),
write(Handle, '.'),
nl(Handle),
nl(Handle),
nl(Handle),
close(Handle).

build_sub_pos([], [], []) ·­
retract(pos(A)),!.

build_sub_pos([[Table:col] :Field_list],
[HeadlSub_list], [Hold_poslPos_list]) ·­

els,
tmove(l0,10),
write('Key in the heading for '),;
write(Col),
write(' from file - '),
write(Table),
tmove(12,15},
read_line(O,Head),
tmove(lS,10),
write('Key in the width of field'),
write(Col),
write(' in this report '),
tmove(l7,15),
rcad_linc(O,Lenl),
int text(Len,Lenl),
ifthenelse(pos(Hold_pos), retract(pos(Hold_pos)),

Hold_pos is 5),
Posis Hold_pos +Len+ 1,
asserta(pos(Pos)),
build_sub_pos(Field_list, Sub_list, Pos_list).

write_report(Handle,A,B,C,D,E,Heading,Sub_list,Pos_list) ·­
nl(Handle),
write(Handle, 'report('),
nl(Handle),
write(Handle, 'S select '),

140

write_field_list(Handle,A),
write(Handle,' from'),
write atom list(Handle,B),
ifthen(C \;= [], write(Handle,' where ')),
write_exp_list(Handle,C),
ifthen(D \=• [], write(Handle,' group by ·1),
write_field_list(Handle,D),
ifthen(E \== [], write(Handle,' order by')),
write_field_list(Handle,E),
write(Handle,'; $,'),
nl(Handle),
write_atom(Handle,Heading),
write(Handle,','),
nl(Handle),
write(Handle,' ['),
write_a_listl(Handle,Sub_list,''),
write(Handle,'],'),
write(Handle,Pos_list),
write(Handle,')').

introd5 :- introd(SDEFINE REPORT OBJECTS$,
[S In the next process, you will have to specify$,
S the format of reports. This prototype provides a$,
S menu-driven SQL SELECT interface for you. $,
$ GOOD LUCK. S]).

141

/* Intellig~nt Development Aid
/* - Base-table specification generator

build_bt{Obj) :-
open(Handle, 'bt.osd',a),
recorded(obj,obj(Obj,Name list,Field list),Ref),
write_bt_def(Handie,name_list,Field_list),
close(Handle).

write_bt_def(Handle, (],Field_list).

. */
*/

write_bt_def(Handle, ((Name,F_list] :Name_list],Field_list) ·­
nl(Handle),
write(Handle,'create table '),
write(Handle,Name),
write (Handle,' ('),
write_bt_field(Handle,F_list, Field_list, ''),
nl(Handle),
write(Handle, ');'),
input_test_data(Name, F_list, Field_list),
write_bt_def(Handle,Name_list, Field_list).

write_bt_field(Handle,[], Field_list, Comm) :- !.

write_bt_field(Handle, (F:F_list], Field_list, Comm) ·­
writ~_field_def(Handle, F, Field_list, Comm),
fit { ' , ' , Comml) ,
write_bt_field(Handle,F_list, Field_list, Comml).

write field def(Handle,Fl,[Fl,LenllField list], Comm) :-
- write (Handle, Comm), -.

nl{Handle),
write(Handle,' '),
atom_string{F,Fl),
atom_string(Len,Lenl),
wri~~(Handle,F),
write{Handle,' char{'),
write(Handle,Len),
write{Handle,') ').

write_field_def(Handle,F,(A,BIField_list], Comm) :­
F \== A,
write_field_def(Handle,F,Field_list, Comm).

input_test_data(Name, F_list, Field_list) :­
els,
tmove {10, 10) ,
write('Do you want to input some test data for'),
write(Name),
writ~(' ? '),
tmove(l2,15),
get (Ans) ,
ifthen(Ans == ·y,

142

data_spec(Name, F_list, Field_list)).

data_spec(Name, F_list, Field_list) :­
open(Handle, 'data.tst', a),
nl(Handle),
data_loop(Handle, Name, F_list, Field_list),
close(Handle).

data_loop(Handle, Name, F_list, Field_list) ·­
nl(Handle),
write(Handle, 'insert into'),
write(Handle, Name),
write (Handle, ' values (') ,
els,
get_data_vdi(Handle, F_list, Field_list, ''),
write (Handle, •); •),
next_data(Handle, Name, F_list, Field_list).

get_data_val(Handle, [], Field_list, Comm) :- !.

get_data_val(Handle, [FieldlF_list], Field_list, Comm) ·­
write(Field),
wr i t e (• : •) ,
write(Handle, Comm),
read_line(0,Value),
write_atom(Handle, Value),
fit (' , • , Comml) ,
get_data_val(Handle, F_list, Field_list, Comml).

next_data(Handle, Name, F_list, Field_list) ·­
els,

ask·-

tmove(l0,10),
write(

'Do you want to input another test data record?'),
tmove(l2,15),
get (Ans),
ifthen(Ans == ·y,

data_loop(Handle, Name, F_list, Field_list)).

els,
tmove (10, 20) ,
write(SEnter •y• to Define Another Form:$),
get(Ans),
uecerm(Ans).

determ(Ans) :- Ans\== 121, Ans \s• 89.

create_bt(Handle) :-
ereate(Hl, 'data.tst'),
close(HlJ,
create(H2,'bt.osd'),
close(H2).

143

/* Intelligent Development Aid */
/* - View Processing Facility Specification Generator */

bld_scrn :- restore, [idb_scrn], start, def_screen.

def_vpf • - create-CH, 'vpf .osd'), close (H),
retract(hold_table(A)), fail.

def_vpf ·­
introd6,
open (Handle, • vpf. osd', a),
asserta(hold_table(' ')),
d~f_vpf_l(Handle), !.

def_vpf_l(Handle} :­
column_table(Col,Table,Pos,Type,_),
retract(hold_table(Hold_table)),
asserta(hold_table(Table)),
ifthenelse(Hold_table == Table,

conti(Handle,Col,', '),
end_vpf(Handle, Hold_table, Table, Col)),

fail.

def_vpf_l,Handle) ·-
hold_table(Table),
~na_vpf_def(Handle,Table),
retract(hold_table(Hold_table)),
close(Handle), !.

end_vpf(Handle, Hold_table, Table, Col) :~
ifthen(Hold_table \== '', •

end_vpf_def(Handle, Hold_table)),
begin_vpf_def(Handle, Table),
conti(Handle,Col,' '), !.

begin_vpf_def(Handle,Table) :­
atom_string(Table,Table_string),
assert_st,
nl(Handle),
make_info(Table, Vpf_name),
write(Handle, begin_def(Vpf_name)),
write(Handle,'.'),
nl (Handle) ,
write(Handle, 'vpf ('),
fit(Ins_s_f, $($$insert into$),
concat(Ins_s_f, Table_string, Ins_s_fl),
concat(Ins_s_fl, S (S, Ins_s_f2),
retract(ins_s_f(_)),
asserta(ins_s_f(Ins_s_f2)),
fit(Ins_s_v, S values (S),
retract(ins_s_v(_)),
asserta(ins_s_v(Ins_s_v)),
fit(Dcl_s, S[SSdelete from S),
con~at(Del_s, Table_string, Del_s1),

: '

144

concat(Del s1, S where$, Del_s2),
retract(del_s(_)),
asserta(a~~_s(Del_s2)),
fit(Bt_s,S C'S),
concat(Bt_s, Table_string, Bt_s1),
concat(Bt_sl, s• S, Bt_s2),
retract(bt_s(_)),
asserta(bt_s(Bt_s2)), !.

conti(Handle, Col, Comm) :­
retract(ins_s_f(Ins_s_f)),
concat(Ins_s_f,Comm,Ins_s_fl),
concat(Ins_s_fl,Col,Ins_s_f2),
asserta(ins_s_f(Ins_s_f2)),
retract(ins_s_v(Ins_s_v)),
concat(Ins_s_v,Comm,Ins_s_vl),
concat(Ins_s_vl,S •a-• S ,Ins_s_v2),
asserta(ins_s_v(Ins_s_v2)),
retract(del_s(Del_s)),
ifthenelse(Comm \== ••, fit(Comml,' and'),

fit (Comml, • •)) ,
concat(Del_s,Comml,Del_s1),
concat(Del_sl,Col ,Del_s2),
concat(Del_s2,$ = ••-• S,Del_s3),
asserta(del_s(Del_s3)), !.

end_vpf_def(Handle,Table) :-
nl(Handle),
retract(ins_s_f(Ins_s_f)),
concat{Ins_s_f,S) S, Ins_s_fl),
retract{ins_s_v(Ins_s_v)),
concat(Ins_s_v,S) ; SS],S, Ins_s_vl),
write(Handle,Ins_s_fl),
wz:i t.e (Handle, Ins_s_vl),
nl(Handle),
retract(del_s(Del_s)),
concat(Del_s,$; $$], $, Del_s1),
retract(bt_s{Bt_s)),
concat(Bt_s,S , $, Bt_sl),
table(Table,Cols,_,_),
int_text(Cols,Col_s),
concat(Bt_s1,Col_s, Bt_s2),
concat(Bt_s2,S]). $, Bt_s3),
write(Handle,Del_s1),
nl(Handle),
writ~(Handle,Bt_s3},
nl(Handle),
ruake_info(Table,Vpf},
write(Handle, end_def(Vpf)),
w1:i te (Handle,'.'} ,
nl (Handle) , ! .

assert_st :­
a~scrta{ins_s_f(SS}),
asserta(ins_s_v(SS)),

asserta(del_s(SS)),
asserta(bt_s(SS)).

145

make_info(Table,Vpf) :­
atom_string{Table, Table_s),
concat(Table_s,S_infoS, Vpf).

introd6 :- introd(SDEFINE UPDATE OBJECTS$,
[S In the next process, you will have to specify the$,
S objects for the update processes. This prototype$,
Swill generate .all the posible processes for you.$,
S You ~-n select or delete them later when you specify$,
S the menu interface. $]).

146

/* Intelligent Development Aid
/* - Screen Specification Generator

bld_menu :- restore, [idb_menu], start, def_menu.

def_scri:en :-
write_cent~r([Sdefine Input Screens for$,

$the Update Processes$]),
creat~(H, 'scrn.osd'),
close(H),
open(Handle, 'scrn.osd',a),
def_scrn(Handle),
close(Handle).

def scrn(Handle) :-
- table(Table,Cols,_,_),

def_table(Handle,Table),
fail.

def_scrn(Handle) :- !.

def table(Handle,Table) ·-
- % def. static fields and start active field

begin_efield(Handle,Table),
def_efields(Handle,Table),
end_efield(Handle, Table),
begin_text(Handle,Table),
def_texts{Handle,Table),
end_text(Handle, Table),
begin_operation(Handle,Table),
def_operations(Handle,Table),
end_operation(Handle, Table).

begin_efield(Handle,Table) :­
nl{Handle),
make_info(Table,Key),
concat(Key,S_activeS,Keyl),
write(Handle, begin_def(Keyl)),
write{Handle,~.•).

def efields(Handle, Table) :-
- column_table(Col,Table,Pos,string(Len),_),

nl(Handle),
write(Handle, 'efield('),
int_tc:xt(Pos,Pos_s),
conca t (Sf_S, Pos_s, Fid) ,
write(Handlc:,Fid),
wri tc: {Handle:,', '),
R~w is Pos * 2 + 4,
writc:{H~ndlc:,Row),
write (Handle,', •),
write(Handle,30),
write{Handle,', '),
writc:(Handle,Len),

*I
*I

write(Handle,', '),
write(Handle,'SS'),
write (Handle, ',) . ') ,
fail. -

147

def_efields(Handle, Table) :- !.

end_efield(Handle,Table) :-
nl (Hcandld,
make_info(Table,Key),
concat(Key,S_activeS,Keyl),
write(Handle, end_def(Keyl)),
write (Handle,'.'),
nl(Hcandle).

begin_text(Handle,Table) ·-
nl {Handle) ,
waxe_info(Table,Key),
concat(Key,S_staticS,Keyl),
write(Handle, begin_def(Keyl)),
write(Handle,'.'),
nl(Handle),
write (Handle, 'text (2, 20, •),
write (Handle, • SS}. ').

def_texts(Handle, Table) :­
column_table(Col,Table,Pos,string(Len),_),
nl(Handle),
write(Handle, 'text('),
Row is Pos * 2 + 4,
write(Handle,Row),
write (Handle, ' , •) ,
writt:(Handle,5),
write (Handle,', ·),
key_in_desc(Table,Col,Desc),
write_string(Handle,Desc),
write(Handle, •).'},
fail.

def_texts(Handle, Table) :- !.

end_text(Handle,Table) :-
nl(Handle),
make_info(Table,Key),
co~cat(Key,S_staticS,Keyl),
writ~(Handle, end_dt:f(Keyl)),
write (Handle, • . ') ,
nl(Handle).

begin_op~ration(Handle,Tablt:) .
nl(Handle),
mak~_info(Table,Key),
writ~(Handle, beoin_d~f(Key)},
write (Handle, '. ').

148

def_operations(Handle, Tauiel :­
key_in_multi_heading(Handle).

key_in_multi_heading(Handle) :­
input_head_scrn(Handle,'add'),
input_head_scrn(Handle,'del'),
input_head_scrn(Handle,'mod').

input_h~dd_scrn(Handle,Oper) :­
nl(Handle),
write(Handle,'operation{'),
writc_atom(Handle,Oper),
write (Handle,', '),
key_in_headings(Oper,Head),
writ~_string(Handle,Head),
writc(Handle,').').

end_op~ration(Handle,Table) :­
nl(Handle),
make_info(Table,Key),
write(Handle, end_def{Key)),
write{Handle,'.'),
nl(Handle).

key_in_desc(Table,Col,Desc) ·­
els,
tmove(l0,J),
write('Key in the description for'),
write(Col),
write(' from file - '),
write(Table),
write(' for the input screen'),
tmove(l2,15),
r~ad_line(0,Desc).

key_in_headings(Oper,Head) ·­
tmove(17, 15),
write (' ') ,
tmove(lS,3),
write{'Key in the heading for'),
write_atom(0,Oper),
write(' operation'),
write(' of the input screen'),
tJuOVc:: { 17, 15),
read_linc(0,Head).

ruake_info(Table, Key) ·­
atom_string(Table,T_s),
concat(T_s,S_infoS,Key).

149

/* Intelligent Development Aid
I* - Menu Specification Generator

def_menu :­
intrud7,
cr~ate(H, 'menu.osd'),
close(H),
op~n(Handle,'menu.osd',a),
list_vpf_op(l,Endl),
list_rpt_op(Endl,End),
find_group(Handle,End),
close(Handle).

list_vpf_op(B~g, End) :-
ctr_set(0,Beg),
clear_old('scrn.osd'),
dic_consult('scrn.osd'),
recorded('scrn.osd',key_use(Key),Rl),
recorded(Key,operation(Op,Heading),R2),
build_mes~dgel(Op,Key,Msg),
ctr inc(0,No),
fid=build(No,Fid),
eraseall_run(Fid),
recordz(Fid,msg_op(Msg,Heading),_),
fail.

list_vpf_op{Beg,End) :­
ctr_is(0,End), !.

fid_build(No,Fid) :­
fit(Sop_S,Fidl),
.int_text(No,No_s),
concat(Fidl,No_s,Fld2),
atom_string(Fid,Fid2), !.

clear old (File) : -
- recorded(File,key_use(Key),R),

eraseall(Key),
fail.

clear_old(File) ·- eraseall{File), fail.

clear_old(File) ·- !.

erascall_run(Fid) :-
eraseall(Fid),!.

eraseall_run(Fid) :- !.

list_rpt_op(No,End) :-
ctr_set(0,No),
clear_old('rpt.osd'),
dic_consult('rpt.osd'),
recorded('rpt.osd',key_use(Key),Rl),

*I
*I

150

recorded(Key,report(Sql,Heading,_,_),R2),
ctr_inc{0,Nol},
fid_build(Nol,Fid),
build_message2(Key,Msg},
eraseall_run(Fid),
recordz(Fid,msg_op(Msg,Heading),_),
fail.

list_rpt_op{No,End) :-
ctr_is(0,End),
fid_build(End,Fid),
eraseall(Fid),
recordz(Fid,msg_op(Ssend(report(query), query)$,

'Perform SQL Query'),_),
! .

build_messagel(Op,Key,Msg) :­
fit(Ssend(updateS,Msgl),
atom_string(Op,Op_s),
concat(Op_s,S)S, Msg2),
atom_string(Key,Key_s),
concat(S(S,Key_s,Msg4),
concat(Msg4,S), $,MsgS),
concat(Msgl,Msg5,Msg6),
concat(Msg6,Msg2,Msg),!.

build_message2(Key,Msg) :­
fit(Ssend(report(S,Msgl),
atom_string(Key,Key_s),
concat(Msgl,Key_s,Msg4),
concat(Msg4,$), report)S,Msg).

build_me$sage3(Key,Msg) :­
fit{Ssend(menu(S,Msgl),
concat(Msgl,Key,Msg4),
concat(Msg4,S), menu)S,Msg).

find_group(Handle,End) :-
display_group(End),
read_group,
build_menu_def(Handle,End,Endl,End_flag),
ifthen(End_flag \== 'y',find_group(Handle, Endl)).

display_group(End) :-
ctr_set,0,0),
eraseall_run(menu_group_active),
find_msg_op(l,End,Fid,Heading),
ctr_inc(0,No),
Row is No// 3 + 5,
Coll is (No mod 3) * 27,
Col2 is Coll+ 2,
string_length(Heading,Len),
ifth~nelse(Len > 23,

substring(Heading,0,23,Headingl),
fit(Heading,Headingl)),

151

recordz(menu_group_active,
efield(Fid,Row,Coii,,,SS,),),

recordz(menu_group_active, - -
efield(Fid,Row,Col2,24,Headingl,_),_),

fail.

display~roup(No) ·-
dialog_run{(0, 0),(24, 79), clear, none,

$Specify Menu Options$, 1,
menu_group_static, menu_group_active, X),

! .

read_group ·-
asserta (fid (• ')),
record~d(menu_group_active,

efield(Fid, , , ,Group,),Ref),
retract(fid(Hold_fid))~ - -
ifthenelse(Fid == Hold_fid,build_group_rec(Fid,Group),

new_group_rec(Fid,Group)),
asserta(fid(Fid)),
fail.

read_group :-
retract(fid(Fid)),
! .

build_menu_def(Handle,Fid_beg, Fid_end, Flag) :­
ctr_set(l,0},
seek_group(Handle,Fid_beg, 1, Fid_end, Flag),
retract_all,!.

retract_all :­
retract(group_r~ct_,_,_)),
fail.

retract_all :- !.

seek_group(Handle, Fid, 20, Fid, Flag) ·­
del_op_d,
ifthen(not(more_group),

fit(Flag, 'y')).

seek_group(Handle,Fid_beg, Group, Fid_end, Flag) ·­
int_text(Group,G_string),
count_op(G_string,0,No),
ifth~nelse(Uo @> 1,

writc_menu_count(Handle,G_string,Fid_beg,New_fid),
fit(Fid_beg,New_fid)),

ifthen(Uo == 1, ctr_inc(l,_)),
Gr~upl is Group+ 1,
seek~roup(Handle,New_fid,Groupl,Fid_end,Flag).

more_group :­
count_space,
ctr_is(l,No),

152

No a> 1.

count_space :­
retract(group_rec(Fid,SS,_)),
ctr_inc(l,_),
rail.

count_space :- !.

count_op(G_string,No,Tot) ·­
ctr_set{0,No),
group_rec(Fid,G_string,Heading),
ctr_inc(0,Nol),
fail.

count_op(G_string,No,Tot) ·­
ctr_is(0,Tot), !.

del_op_d :-
retract (group_rec (Fid, SdS,Heading)),
recorded(Fid,msg_op(_,_),Ref),
erase(Ref),
fail.

del op d :-
- -·retract(group_rec(Fid,SDS,Heading)),

recorded(Fid,msg_op(_,_),Ref),
erase{Ref),
fail.

del_op_d : - ! .

write~menu_count(Handle,G_string,Fid_beg,New_fid) ·­
ctr_inc(l,NO),
write_menu_def(Handle,G_string,Fid_beg,New_fid).

write_menu_def(Handle,G_string,Fid_beg,New_fid) ·­
els,
ctr_set(2,ll),
tmove (10, 10), •
write('Please name the menu with options :'),nl,
group_rec(Fid,G_string,Heading),
ctr_inc(2,Line),
tmove,1.,ine,15),
write(Heading), nl,
fail.

write_menu_def(Handle,G_string,Fid_beg,New_fid) ·­
ctr_inc(2,_),
ctr_inc(2,Line),
tmove(Line,15),
read_lin~(0,Menu_name),
ctr_inc (2 ,_),
ctr_inc(2,_),
ctr_inc(2,Linel),

153

tmove(Linel,10),
write('Please key in the Heading for this menu'),nl,
ctr inc (2, } ,
ctr=inc(2,Line2),
tmove(Line2,15},
read_line(0,Heading},
concat(M~nu name,S activeS,Active),
concat(Menu-name,S-staticS,Static),
wriL-=:_activ;(Handl;,~ctive,G_string,Msg_list),
write_static(Handle,Static,Heading),
write_option(Handle,Menu_name,Mso_list),
add_msg_op(Menu_name,Heading,Fid_beg,flew_fid).

write_activ-=:(Handle,Activ~,~-string,Mso_list} ·­
write(Handle,begin_def(Active}),
write(Handle,'.'},
nl (Handle) ,
writd_box(Handle},
ctr_set(0,10),
asserta(msg list([])),
retract(gro~p_rec(Fid,G_strino,Heading)),
recorded(Fid,mso_op(Msg,Op),Rl),
erase(Rl},
write(Handle,'choice('),
write(Handle,Fid),
write(Handle,', '),
ctr_inc (0, Row) ,
ctr_inc(0,Rowl},
retract(msg_list(List}),
append(List, [Msg],Msg_listl),
asserta(msg_list(Mso_listl)),
write(Handle,Row),

-write(Handle,S, 20, S),
write atom(Handle,h~daing),
write(Handle,', unchecked,_).'),
nl(Handle),
fail.

write_active(Handle,Active,G_string,Msg_list) :-
retract (msg_lis.t (Msg_listl)),
app~nd(Msg_listl,[Ssend(menu(return), return)$],

Msg_list},
writ~(Handle,'choice(exit,20,20,'),
write_atom(Handle, 'Exit'),
~rit~(HanJl6,', unch~cked, _) .'),
nl(Handle),
write(Handle, 'choice_box_end.'},
nl (Handle) ,
writc(Handle,end_def(Active)),
write (Handle,'.'),
nl (Hcrndh:), ! .

write_static(Handle,Static,Heading) ·­
writ~(Handle,begin_def(Static)),
write (Handle,'.'),

154

nl{Handle),
write (Handle, • text (4, 30, •) ,
write_atom(Handle,Heading),
write (Handle,').•),
nl(Handle),
write (Handle, S text { 7, 20, 'Select Option•) . S) ,
nl (Handle),
write(Handle,end_def(~~~cic)),
write(Handle,'.'),
nl {Handle) , ! .

write_option(Handle,Menu_name,Msg_list) ·­
write(Handle,begin_def(Menu_name)),
write(Handle,'.'),
nl{Handle),
write_menu_choice{Handle,l,Msg_list),
write(Handle,end_def{Menu_name)),
write{Handle,'.'),
nl {Handle) ,
nl(Handle),!.

write_menu_choice(Handle,No,[]) :- !.

write_menu_choice(Handle,No,[Msg:Msg_list]) ·­
write(Handle,'menu_choice{'},
writ~(Handle,No),
write (Handle, •, •) ,
write(Handle,Msg),
write(Handle,').'),
nl {Handle),
Nol is lio + 1,
writc_menu_choice(Handle,Nol,Msg_Iist).

build_grvup_rec(Fid,Heading) :­
retract(group_rec{Fid,Gl)),
assertz(group_rec(Fid,Gl,Heading)).

new_group_rec(Fid,Group) :­
asserta(group_rec{Fid,Group)).

find_msg_op{No,End,Fid,Heading) ·-
No@=< End,
fid_build(No,Fid),
rtcvrded(Fid,msg_op(Msg,Heading) ,Rl).

find_msg_op(No,End,Fid,Heading) ·­
No~~< End,
Uol is l•v + 1,
find_msg_c,p{Nol,End,Fid,Heading).

write_box(Handl~) ·-
write(Handle, 'choice_box{box,0,0,24,79,none,

SHenuS,radio,1,_).'),
nl(Handle).

155

add_msg_op(Menu_name,Heading,Fid_beg,New_fid) ·­
New_fid is Fid_beg + 1,
fid_build(New_fid, Fid),
build_message3(Menu_name,Msg),
recordz(Fid,msg_op(Msg,Heading),_).

introd7 :- introd(SDEFINE MENU OJECTSS,
{S In the next process, you will have to design a$,
S menu interface for your data base.-This prototype$,
Swill list all the available input/output processes.$,
S You can group them into one menu by put same menu numbers,
S infront of the processes. You can delete the unnecessary$,
S processes by put a 'd' infront of them. The options,
S description can be changed by change the process$,
S descriptions SJ).

156

/* Intelligent Development Aid
/* - Report Revisor

start·- [+query],
[dialogl, editfld, diccon],
sql_consult('bt.osd'),
~ql_consult('data.tst'),
[uti,output],
def_output.

*/
*/

/* Intellig~ut uevelopment Aid
/* Screen Revisor

start·-
sql_consult('bt.osd'),
[uti,scrn],
def_screen.

157

*I
*I

158

/* Intelligent Development Aid
/* - Menu Revisor

start·-
[dialogl, editfld, diccon],
dic_consult('kb_menu.res'),
[uti,msnu],
def_menu.

*/
*I

APPENDIX D

OBJECT SPECIFICATION DICTIONARY

FACULTY SERVICE DATABASE

159

create table course (
cur_no char (5),
cur _name char (20) ,
crhrs char(l),
lee hrs char (1),
lab-hrs char (1)

) ;
create table 5 ervjce (

ss# char C 9) ,
quarter char (1) ,
~erv_perc char (3),
instruction chart~),
research char(3)

) ;
create table faculty

ss# char (9) ,
name char (20) ,
rank char (20} ,
department char (3}

) ;
create table ciass (

ss# char (9),
quarter char(l},
cur no char (5-) ,
und;r stu char (3),
grad itu char (·3),
other stu char(J)

) ; -

160

161

begin_def(teach_rpt).

report(
S select

from
where

faculty.name,class.quarter,class.cur_no,
course.cr_hrs,course.cur_name

faculty,class,course
faculty.ss# = class.ss# and

class.cur_no = course.cur_no

order by class.quarter,faculty.name
; s ,
'Faculty Teaching Report',
('Faculty', 'Q.', 'Cur.', 'Cr.•, 'Title'], [5,26,30,37 ,42]).

end_def(teach_rpt).

begin_def(course_rpt).

report(
S select

from
where
group by
order by
s ,

class.cur_no,course.cur_name,class.quarter,
class.under_stu,class.grad_stu,
class.other_stu

class,course
class.cur_no = course.cur_no
class.quarter,class.cur_no
class.quarter,class.cur_no

'Courses Report',
['Cur.','Course Title','Q.','Under','Grad.','Other'],

[5,12,33,37,45,53]). :

end_def(course_rpt).

begin_def(class_rpt}.

report(
S select

from
where

faculty. _name, class. quarter, class. cur _no,
class.under_stu,class.grad_stu,class.other_stu

class,faculty
class.ss# = faculty.ss#

order by class.quarter,faculty.name,class.cur_no
s ,

'Classes Report',
['Faculty','Q.', 'Cur.','Under','Grad.','Other'],

[5,26,30,31,c~,~J]).

end_def(class_rpt).

begin_def(class_info_active).
efield(f_l, 6, 30, 9, SS, _).
efield(f_2, 8, 30, 1, SS, _).
efield(f_3, 10, 30, 5, SS, _).
efield(f_4, 12, 30, 3, SS, _).
efield(f_5, 14, 30, 3, SS, _).
efield(f_6, 16, 30, 3, SS, _).
end_def(class_info_active).

begin_def(class_info_static).
text(2,20,$S).
text(6, 5, $Soc. Sec. No.$).
text(S, 5, SQuarterS).
text(l0, 5, $Course No$).

162

text(12, 5, SNo of Under Grad. Students).
text(14, 5, $No of Graduate Student$).
text(16, 5, $No of Other Students).
end_def{class_info_static).

begin_def(class_info).
operation('add', $Add New Class$).
operation('del', $Delete Class Information$).
operation('mod', $Modify Class Information$).
end_def(class_info).

begin_def(course_info_active).
efield(f_l, 6, 30, 5, SS, _).
efield(f_2, 8, 30, 20, $$, _).
efield(f_J, 10, 30, 1, SS, _).
efield(f_4, 12, 30, 1, SS, _).
efie.ld(f_S, 14, 30, 1, SS, _).
end_def(course_info_active).

begin_def(course_info_static).
text{2,20,S$).
text(6, 5, $Course NoS).
text(S, 5, ·scourse Title$).
text(l0, 5, $Cr. Hours$).
text(l2, 5, $Lecture Hours$).
text(14, 5, $Lab Hours$).
end_def(course_info_static).

begin_def(course_info).
operation('add', $Add New Course$).
operation('del', $Delete Course Information$).
operation('mod', $Modify Course Information$).
end_def(course_info).

begin def(service info active).
efield(f_l, 6, 30~ 9, SS, _).
efield(f_2, 8, 30, 1, SS, _).
efield(f_3, 10, JO, 3, SS, _).
efield(f_4, 12, 30, 3, SS, _).
efield(f_S, 14, 30, 3, SS, _).

end_def(service_info_active).

begin_d~f(service_info_static).
text(2,20,SS).
text(6, 5, $Soc. Sec. No.$).
text(S, 5, SQuarterS).

163

text(lO, 5, SPerc~nt of Full Time$).
text(12, 5, S% of Instruction$).
text(l4, 5, $% of Research$).
end_def (service_inf_o_static) .

begin_def(service_info).
operation('add', $Add Faculty Service Information$).
operation{'del', $Delete Service Information$).
operation('mod', $Modify Service Information$).
end_def(service_info).

begin_def(faculty_info_active).
efield(f_l, 6, 30, 9, SS, _).
efield(f_2, 8, 30, 20, SS, _).
efield(f_J, 10, 30, 20, $S, _).
efield(f_4, 12, 30, 3, $$, _).
end_def(faculty_info_active).

begin_def(faculty_info_static).
text(2,20,$$}.
text(6, 5, $Soc. Sec. No.$).
text(8, 5, $Name$).
text(lO, 5, $Rank$).
text(12, 5, $Department$).
end_def(faculty_info_static).

begin_def(faculty_info).
operation('add', $Add New Faculty Members).
operation('dsl', $Delete Faculty Member$).
operation{'mod', $Modify Perfonal Information$).
eud_def(faculty_info).

beqin_def(class_info).
vpf(
[$insert into class

164

(ss#, quarter, cur_no, under_stu, grad_stu, other_stu)
values (• a" • I • a-. , '.- • , • • , '.-. , •• - •

; s],
[$delete from class
where ss# = ·•·· and quarter= •a""• and cur_no = ••·•
and under_stu = •a-• and grad_stu = 'O"""'
and other_stu = ••-•

; SL
['class' , 6]) .

end_def(class_info).

beqin_def(course_info).

into course
vpf(
[$insert
(cur_no, cur_name, cr_hrs, lec_hrs, lab_hrs)
values (··-· , ··-· , , ,)

; s],
[$delete from course
where cur_no = •a"• and cur_name
and lec_hrs = ••-• and lab_hrs =

; SL
[•course • , 5]) .

end_def(course_info).

begin_def(service_info).
vpf(

=

··-· and cr_hrs =

[$insert into service f
(ssl, quarter, serv_perc, instruction, research}
va1ues (•a"•, ••-•, •a"'•, ••-•, ••-•}

; s],
[$delete from service
where ss# = ·•·• and quarter=••-• and serv_perc =
and instruction=••-• and research= 'O"''

; SL
['service' , 5]}.

end_def(service_info).

begin_def(faculty_info).
vpf(
[$insert into faculty
(ss#, name, rank, department)
values ('a· ' , ' ' , 'a-• , ' •)

; s],
[$delete from faculty
where ss# = , and name=••-• and rank=••·•
and department=••--•

; $],
['faculty' , 4]).

end_def(faculty_info).

• a""' I

165

begin_def(up_class_active).
choice box(box,0,0,~4,19,none,SMenuS,radio,1,).
choice(op 1,10, 20, 'Add New Class', unchecked,).
choice(op:2,12, 20, 'Delete Class Info.', unchecked,_).
choice(op_J,14, 20, 'Modify Class Info.', unch~cked, _).
choice(exit,20,20,'Exit', unchecked,_).
choice_box_end.
end_def(up_class_active).
begin_def(up_class_static}.
text(4, 30, 'Update Class Info.').
text (7, 20, • Select Option') .
end_def(up_class_static).
begin_dcf(up_class).
menu_choice(l, send(update(class_info), add)).
menu_choice(2, send(update{class_info), del)).
menu_choice(J, send(update(class_info), mod)}.
menu_choice(4, send(menu(return), return}).
end_def(up_class).

begin_def{up_cur_active).
choice_box(box,0,0,24,79,none,SMenuS,radio,1,_).
choice(op_4,10, 20, 'Add New Course', unchecked,_}.
choice(op_S,12, 20, 'Delete Course Info.', unchecked,_}.
choice(op_6,14, ~v, 'Modify Course Info.', unchecked,_).
choice(exit,20,20,'Exi~', unchecked,_).
choice_box_end.
end_def(up_cur_active).
begin_def(up_cur_static).
text(4, 30, 'Update Course Info.').
text(7, 20, 'Select Option').
end_def(up_cur_static).
begin_def(up_cur).
menu_choice(l, send(update(course_info), add)}.
menu_choice(2, send(update(course_info), del)).
menu_choice(J, send(update(course_info), mod)).
menu_choice(4, send(menu(return), return)).
end_def(up_cur).

begin_def(up_serv_active).
choice_box(box,0,0,24,79,none,SMenuS,radio,1,_).
choice{op_7,10, 20, 'Add Service Info.', unchecked,_).
choice(op_S,12, 20, 'Delete Service Info.', unchecked,_).
choice(op_9,14, 20, 'Modify Service Info.', unchecked,_).
choice(exit,20,20,'Exit', unchecked,).
choice_box_end. -
end_def(up_serv_active).
n~oin_def(up_serv_static).
text(4, 30, 'Update Service Information').
text(7, 20, 'Select Option').
end_def(up_serv_static).
begin_def{up_serv).
menu_choice(l, send(update(service_info), add)).
menu_choice(2, send(update(service_info), del)).
menu_choice(J, send(update(service_info), mod)).
menu_choice(4, send(menu(return), return)).

166

end_def(up_serv).

begin_def(up_facu_active).
choice_box(box,0,0,24,79,none,SMenuS,radio,1,).
choice(op_l0,10, 20, 'Add New Faculty Member•7 unchecked,).
choice(op_ll,12, 20, 'Delete Faculty Member', unchecked,).
choice(op_12,14, 20, 'Modify Perfonal Informa', unchecked7).
choice(exit,20,20, 'Exit', unchecked,_). -
choice box end.
end_def(up=facu_active).
begin_def(up_facu_static).
text(4, JO, 'Update Personal Info.').
text (7, 20, 'Select Option') .
end_def(up_facu_static).
begin_def(up_facu).
menu_choice(l, send(update(faculty_1nfo), add)).
menu_choice(2, send(update(faculty_info), del)).
menu_choice(J, send{update(faculty_info), mod)).
menu_choice(4, send(menu(return), return)).
end~def(up_facu).

begin_def(out_rpt_active).
choice_box(box,0,0,24,79,none,SMenuS,radio,1,_).
choice(op_l3,10, 20, 'Faculty Teaching Report', unchecked,
choice(op_l4,12, 20, 'Courses Report', unchecked,_).
choice(op_lS,14, 20, 'Classes Report', unchecked,_).
choice(exit,20,20,'Exit', unchecked,_).
choice box end.
end_def(out_rpt_active).
begin_def(out_rpt_static).
text(4, 30, 'Report Generation'}.
text(7, 20, 'Select Option').
end_def(out_rpt_static).
begin_def(out_rpt).
menu_choice(l, send(report(teach_rpt), report)).
menu_choice(2, send(report(course_rpt), report)).
menu_choice(3, send(report(class_rpt), report)).
menu_choice(4, send(menu(return), return)).
end_def(out_rpt).

begin_def(up_menu_active).

_).

choice box(box,0,0,24,79,none,SHenuS,radio,1,).
choice(op_17,10, 20, 'Update Class Info.', unchecked,_).
choice(op_lS,12, 20, 'Update Course Info.', unchecked,_).
choice(op_19,14, 20, 'Update Service Info.', unchecked,_).
choice(op_20,16, 20, 'Update Personal Info.', unchecked,_).
choice(exit,20,20,'Exit', unchecked,_).
choice_box_end.
end_def(up_menu_active). '
begin_def(up_rnenu_static).
text(4, JO, 'Data Base Update').
text (7, 20, 'Select Option') .
end_def(up_rnenu_static).
begin_def(up_rnenu).
menu_choice(l, send(menu(up_class), menu)).

167

menu_choice(2, send(menu(up_cur), menu)).
menu_choice(J, send(menu(up_serv), menu)).
menu_choice(4, send(menu(up_facu), menu)).
menu_choice(S, send(menu(return), return)).
end_def(up_manu}. •

beqin_daf(outputs_active).
choice_box(box,0,0,24,79,nona,SMenuS,radio,1,).
choice(op_l6,10, 20, 'Perform SQL Query', unchecked,_,.
choice(op_21,12, 20, 'Report Generation', unchecked,_).
choice(exit,20,20,'Exit', unchecked,).
choice_box_end. -
end_def(outputs_active}.
begin_def(outputs_static).
text(4, 30, 'Output Generation'}.
text (7, 20, 'Select Option') .
end_def(outputs_static).
begin_def(outputs).
menu choice(l, send(report(query), query)).
menu=choice(2, send(menu(out_rpt), menu)).
menu_choice(J, send(menu(return), return)).
end_def(out.puts).

begin_d~f(main_active).
choice_box (box, 0, 0, 24, 79., none, $Menu$, radio, 1,_).
choice(op_22,10, 20, 'Data Base Update', unchecked,_).
choice(op_23,12, 20, 'Output Generation', unchecked,_).
choice(exit,20,20,'Exit', unchecked,_).
choice_box_end.
end_def(main_active).
begin_def(main_static) .

. text(4, 30, 'Faculty Service Data Base').
text (, , 20, • Select Option') .
end_def(main_static).
begin_def(main).
menu_choice(l, send(menu(up_menu), menu)).
menu_choice(2, send(menu(outputs), menu)).
menu_choice(3, send(menu(return), return)).
end_def (main) .

