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A partial differential equation was used to predict 

population structures in channel catfish, Ictalurus 

punctatus, fingerlings stocked at low (150,000/ha), medium 

(300,000/ha), or high (600,000/ha) densities in earthen 

ponds. An exponential growth rate function incorporated 

into the model gave better prediction than a constant mean 

growth rate at low and medium densities. However, both 

expressions of the growth rate could be used at high fish 

density without affecting the solutions of the model. 

Mortality did not have substantial effect on the solutions 

of the model at either of the three densities. 

The components of the total variance in size in channel 

catfish fingerlings were also determined using populations 
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cultured in tanks. After a 90 day culture period, 86% of 

the total variance for length and 65% of the total variance 

in weight could be explained by conditions of the 

environment. A variance model was used to described the 

rate of increase in the coefficient of variation (CV). 

Initial stocking density and time had substantial impact on 

the rate of increase in the CV. However, fish size did not 

account for the increase in CV over time. The variance 

model suggested an asymptotic CV for each population, a 

value of which was a function of the environment in which 

the fingerlings where cultured. 

Mortality was predicted using variations of the length­

based method. The traditional method underestimated 

mortality rates. However, using the descending limb above 

the modal length improved the prediction of mortality. 

Growth rate of channel catifsh fingerlings was related 

to feeding levels and stocking density. In 1992, growth 

rate was similar at 150,000/ha and 300,000/ha, but greatly 

reduced at 600,000/ha. Increasing the stocking density from 

150,000 to 300,000/ha resulted in 50% more fish harvested 

and a yield of 2,745 kg/ha rather than 1,809 kg/ha. 

However, increasing the density from 300,000 to 600,000/ha 

resulted in only 9% higher fish harvest and lower yield 

(1,213 kg/ha). Partial harvest increased yield and mean 

size but not survival. 
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I. INTRODUCTION 

In the United States, catfish farming has become the 

largest aquacultural industry. Commercial production 

increased from 12 million kilograms of farm-raised channel 

catfish Ictalurus punctatus in the 1970s to about 276 

million kilograms in 1989 (Engle et al. 1989; Masser et al. 

1991) . 

The ability to forecast production and population 

structures in fingerling culture is important in commercial 

aquaculture. As the catfish market requires a more 

standardized size fish, knowledge of the factors that 

contribute to size variation and to the prediction of size 

stucture can aid in the development of feeding and 

harvesting policies, the assessment of operating conditions, 

and the evalution of economic aspects of food-size fish and 

fingerling production. 

Stochastic models coupled with growth models, can be 

used to predict size structures of fish populations (Ricker 

1979). Several types of stochastic models, such as the 

Sinko-Streifer partial differential equation and population 

balance models, have been used to describe and predict the 

structure of distinct populations and the associated growth 

rate of individuals within them (Sinko and Streifer 1967; 
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DeAngelis and Coutant 1979; Thompson and Cauley 1979; 

DeAngelis and Huston 1987). 

Variance models describe the increase in variation in 

size with time and provide additional information, which 

otherwise, could not be perceived by simple observation of 

size-frequency distribution charts (Arnasson et al. 1992). 

It is also well documented that environmental, behavioral, 

and genetic factors play an important role in growth 

variation. Variance models help test and quantify the 

effects of those factors and their interactions. 

Studies leading to the development of population 

balance and variance models are needed to better understand 

the effects of enviromental, behavioral, and genetic factors 

on growth and production of channel catfish fingerlings with 

the ultimate goal of optimizing production while minimizing 

operating cost. 

The major objectives of this series of studies were: 

1. Develop a mathematical model to predict the 

population structure of channel catfish fingerlings 

in ponds 

2. Determine the relative importance of genetic and 

environmental factors on growth variability and the 

modelling of the coefficient of variation. 

3. Evaluation of the effects of density, partial 

harvest and survival on catfish fingerling growth, 

yield, and size distribution. 



II. LITERATURE REVIEW 

Mathematical models have been used to describe the 

effects of factors such as temperature, food, density, and 

size on fish growth in capture fisheries (Ricker 1979; 

DeAngelis and Coutant 1979) and more recently in aquaculture 

(Cuenco et al. 1985; Cacho 1990). In both areas, the models 

were either deterministic or stochastic. 

Deterministic models are models in which the transition 

processes involved always give the same response for the 

same initial set of conditions (Kitchling 1983). In 

aquaculture, deterministic models are used to predict mean 

weight or length (Arnason et al. 1992). 

Stochastic (or probabilistic) models define transition 

relationships in terms of probability where several 

responses may be obtained for the same process if different 

computations of the transition are possible, even with the 

same initial set of conditions (Kitchling 1983). Added to 

deterministic growth models, stochastic equations may be 

used to predict fish size structure (Arnason et al. 1992). 

Generally three parameters are used to describe size 

structure in a population: the coefficient of variation 

(CV), the skewness, and the kurtosis. The CV is a 

dimensionless quantity which describes variability in 

3 
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measurements about their mean within and between 

populations. CVs have proven to be a convenient measure of 

uniformity of size in cohorts of animals (DeAngelis and 

Coutant 1979; Thompson and Cauley 1979), and plants (Hara 

1984; DeAngelis and Huston 1987). 

Recent studies have focused on the use of CV in models 

of genetic and fish culture experiments as well as in 

commercial production with the purpose of providing a more 

comprehensive comparison among strains or culture conditions 

(Wismer et al. 1985; Arnason et al. 1992). It is often 

difficult to separate between the confounding effects of 

genetic differences and other factors in promoting 

heterogeneity in growth within and between fish populations. 

However, some models including CV can help elucidate these 

confounding effects (Arnason et al. 1992). 

In general the magnitude of the CV for linear, surface 

and volume measurements of the same population are often 

different. Yablokov {1974) reported that .CV for 

measurements of body length are smaller than those of body 

weights in 218 of 221 cases studied. Lande {1977) suggested 

a ratio of approximately 1:3 between CV measurements for 

length and weight for the same population. It is, 

therefore, important when comparing CV across growth studies 

that the same units of measurement be used. 

What magnitude of CV should a set of measurements have 

for a population to be regarded as uniform? Several authors 
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considered CV below 10% to be small and values above 20% 

large (Lande 1977; Arnason et al. 1992). This infers that a 

population with a CV below 10% is considered uniform while a 

population with CV values above 20% is heterogeneous. A 

population may be uniform in body length and heterogeneous 

in body weight. 

Consideration of Skewness shows the symmetry of size 

distribution around the mean. For a symmetric distribution, 

the median and the mean coincide and the skewness value is 

zero. When the number of large individuals is less than the 

number of individuals having size equal to the mean of the 

population, the distribution is skewed to the left or 

negatively skewed. In this case, the mean is less than the 

median. Inversely, when the number of large individuals is 

more than the number of individuals having the mean size, 

the distribution is skewed to the right, or positively 

skewed. McNew and Summerfelt (1978) reported a wide range 

of coefficient of skewness from -1.77 to 1.88 in 10 

populations of largemouth bass Micropterus salmoides which 

length-frequency distributions at age were determined by 

scale reading. In aquaculture, McGinty (1980) found that 

the skewness of channel catfish fingerling populations were 

affected by the form of the diet they receive. Fish fed 

pelleted feed were positively skewed while their 

counterparts fed with crumbled pellet were negatively 
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skewed. Wohlfarth (1977) working extensively with carps 

came to the following conclusions: 

1. The quantity and quality of food are primary factors 

in determining skewness. Limited food environment 

produces highly skewed populations. 

2. If larger individuals are removed from a population 

and the remainder are allowed to grow, then 

frequency distribution becomes skewed again. This 

secondary skewness is a negative function of size 

and age. 

3. Differences in stocking densities have no direct 

influence on skewness. Populations of different 

stocking densities with food levels proportional to 

the number of fish stocked may produce similar 

skewness coefficient. 

Kurtosis measures the spread (peakness or flatness) of 

the distribution. When most of the data are squeezed into 

the middle of the distribution, the kurtosis has a positive 

value. A negative kurtosis suggests many extreme values 

that spread over a wide range. McNew and Summerfelt (1978) 

recorded kurtosis values ranging from 1.82 to 8.42 in 

largemouth bass populations. 

Convenient statistics for comparing frequency 

distributions use normal distributions distributed 

approximately as x2 . The Pearson chi-square, usually known 

as chi-square, is the most widely used, especially when the 
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sample size is large (Steel and Torrie 1980). The Pearson 

chi-square is defined by: 

x2=E·E-co•• - E·•) 2 /E·· 1 J 1J 1J 1J 

where o and E are the observed and the expected frequencies 

of the considered parameters. 

The continuity-adjusted chi-square and the likelihood­

ratio chi-square are very similar to the Pearson chi-square 

and are more useful for smaller sample sizes. The 

continuity-adjusted chi-square, as the name suggests, is 

adjusted for the continuity of the x2 distribution and o.s 

is added to include end most observations. The continuity­

adjusted chi-square is used only when the degree of freedom 

is equal to one. Likelihood-ratio chi-square is simply 

derived from a general test procedure and involves the 

ratios between the observed and the expected frequencies. 

Other statistics such as the Mantel-Haenszel chi-square and 

the Fisher's exact test are also used to test differences 

between frequency distributions, although rarely used in 

biology. 

Population balance models are stochastic equations that 

describe the changes in population structures as a specific 

variable (or variables) changes. The population balance 

equation for a fish population has been expressed by the 

following formula {Thompson and Cauley 1979): 

6N/6t + 6{NG¢)/6¢ + 6(NGL)/6L = B - D + Dg62N/6L2 
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Where N is the density function of fish number, tis time 

elapse,¢ is age, Lis the length, GL is the growth rate, B 

is the birth rate, Dis the death rate, and Dg is the growth 

diffusivity. In fingerling populations, the birth rate 

could be ignored. Since most of the individuals are of the 

same age, o(NG¢)d¢ could also be ignored. However, the 

solutions of the equation are complex because of the 

presence of the growth diffusivity function. Growth 

diffusivity is a function of random individual fish growth 

rates relative to the mean growth rate of the population 

from which they are drawn. The population balance equation 

developed by Thompson and Cauley (1979) is a variation of an 

earlier model developed and known as the Sinko-streifer 

differential equation (Sinko and Streifer 1967): 

o~(t,a,m)/ot + o~(t,a,m)/oa + og(t,a,m)~(t,a,m)/om = 

D(t,a,m)~(t,a,m) 

where ~(t,a,m) is the density function, i.e number of 

individuals at time t, between ages a and a+ ~a, and of 

masses m, g is the growth rate, Dis the death rate. 

Sinko and Streifer (1967) used the partial differential 

equation to describe dynamic size distribution in a 

population of Cladocerans, Daphnia pulex, through time. The 

main difference between the population balance equation and 

the Sinko-Streifer model is the presence of the growth 

diffusivity expression. The Sinko-Streifer equation is 

greatly simplified in cases where there is no mortality. 
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DeAngelis and Coutant (1979) and Wismer et al. (1985) 

used a partial differential equation similar to that of 

Sinko and Streifer to describe population growth rate and 

size distribution of different age groups of smallmouth bass 

Micropterus dolomieu. In their analysis, DeAngelis and 

Coutant (1979) were able to show that the average length of 

fish increased linearly with time during the first few weeks 

of their life. The variance associated to the length 

increased in a quadratic form with time when fingerlings had 

different growth rates. Wismer et al. (1985) used the same 

model to predict the length-frequency distribution of 

smallmouth bass in Lake Huron. They assumed a size­

dependent growth rate within the population but no size­

dependent mortality and concluded that size-dependent growth 

was very important in explaining the spread in the length­

frequency distributions. on the other hand, they suggested 

that size-dependent mortality had absolutely no effect on 

the change in the distribution over time. 

Thompson and Cauley (1979) applied their population 

balance model to a population of brown trout Salmo trutta. 

All individuals in the fish population described by Thompson 

and Cauley (1979) were of the same age which greatly 

simplified the solutions of the equations. Thompson and 

Cauley (1979) also addressed two major problems usually 

encountered when trying to predict the size distribution 
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within a population: the growth rate and the mortality rate. 

They came to the following conclusions: 

1. When all individuals in a size distribution grow at 

randomly different rates relative to the mean 

growth rate, the CV of the predicted population 

increases with time. However, if the growth rate 

is assumed identical for all individuals within the 

population, then the CV remains constant. 

2. When mortality is assumed to be zero, the CV 

remains constant over time, and when mortality is 

different from zero, the CV changes over time. 

Brett (1969) defined two groups of environmental 

factors, abiotic and biotic, that influence growth and 

variation in growth among individuals within the same 

population. The first group, the abiotic factors 

(temperature, light, seasons, oxygen, etc.) are usually less 

influential in themselves but strongly interact with some 

biotic factors such as food quantity and quality, density, 

size, and other social behaviours and genetic factors to 

foster growth. Among the abiotic factors, temperature is 

the most important factor that can influence growth of fish. 

Fry (1971) depicted temperature as the controlling factor 

which operates at all levels of the hierarchical arrangement 

of growth processes. Temperature generally governs the rate 

of metabolism (catabolic reactions) involving food 

requirements and food processing. Although, Stauffer (1973) 
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stressed the fact that any growth model should at least 

include temperature as an independent variable though less 

is known on the role or importance of this factor in 

explaining size variation within a population 

While attempting to explain size distribution and 

variation in growth within a population, it is often 

difficult to separate the effect of food availability, 

density, space, and eventually size because of the multiple 

intercorrelation among the effects. Brett (1979) stressed 

the importance of biotic factors such as food quantity and 

quality on growth and growth variation in studies conducted 

in communal systems. He suggested that the quality of food 

was directly involved with the increase in weight and feed 

conversion, but only the quantity of the ration, coupled 

with some social interactions such as competition, can 

influence growth variability and subsequently, size 

differences within a population. 

The competitive interaction for food caused by high 

population density and the resulting differential growth 

rate, or growth depensation, has been the subject of 

extensive speculation. It has been suggested (Weatherley 

1972, 1976) that in high density populations, larger 

individuals which are dominant in the system may prevent the 

smaller ones access to the food source and therefore, grow 

faster while the smaller fish grow more slowly. As a 
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result, differential mortality occurs in the system thereby 

lowering the density of fish and reducing competition. 

Hanes and Ciborowski (1991) studied the effect of 

density and food limitation on size variation and mortality 

in larval mayfly Hexagenia rigida (Ephemeroptera: 

Ephemeridae, Class: Insecta). They found that stocking 

densities and food levels have no effect on growth, 

survival, and structure at 30 and 60 days. However, 

densities and food levels significantly influenced growth, 

survival, and size structure at 90 and 120 days, with the 

lowest density and high food level combination giving the 

highest growth rate and lesser variation in size. 

In channel catfish, few studies have demonstrated the 

importance of the genetic make-up on the variation in growth 

and the correlation between the genetic factor and the 

environmental factors. Can the growth patterns in fish be 

inherited? The answer has to be yes, though there may be no 

genetic variation in growth pattern which can be selected. 

It is known that fish can display intraspecific growth 

differences but how this relates to the intensity of 

competition for food has not received appropriate attention 

by biologists. Moav and Wohlfarth (1974) observed that 

initial size differences compounded with genetic differences 

were magnified over time as the fish grew and the final size 

differences were greater when the initial size differences 

were greater. 
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Weatherley and Rogers (1978) argued that only the upper 

limits of growth, which are species-specific in fish, could 

be inherited. Because these upper limits to growth are 

achieved during the early development stages, initial 

uniformity in size during the nursery phases cannot be 

improved through selection. Brown (1957) observed that 

growth in brown trout was related to egg size. Similarly, 

Smitherman and Duhnam (1985) suggested that initial 

variation in size in channel catfish was associated with egg 

quality and size. Individuals hatched from large and good 

quality eggs were larger. However, this competitive 

advantage is lost after the first month due to the influence 

of environmental factors (Reagan and Conley 1977). Fowler 

(1972) also came to a similar conclusion when studying the 

effect of egg size on growth and mortality of fingerling 

chinook salmon Oncorhynchus tshawytscha. He concluded that 

larger fry hatched from larger eggs but their size 

superiority lasted only 11 to 12 weeks. This trend also 

held true for brown trout (Brown 1957). 

El-Ibiary et al. (1976) reported that male channel 

catfish grew faster than female. In an experiment where 50 

fry were stocked in J-m3 fiberglass tanks and hand-fed a 40% 

commercial ration four times daily, they found that male 

catfish were 33% heavier and 9% longer after 14 months than 

females. Simco et al. (1989) showed that this differential 
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growth between sexes did not occur in ponds until the fish 

were 10 months old or weighed more than 50g. 

Two types of analysis have been used to determine the 

proportion of the genetic and environmental components in 

the expression of the variance in size: the analysis of 

variance {ANOVA) and the analysis of covariance {ANCOVA). 

The analysis of variance is a statistical method which 

identify and measure sources of variation within a 

collection of data. Its main purpose is to partition the 

total variation of the data into its component parts. The 

analysis of covariance, on the other hand, takes into 

account the correlation between the different sources of 

variation (Kachigan 1986). 

Using ANOVA, Wetherington et al. {1989) found that 

about 10% to 13% of the total variation in growth in fish 

hemiclones (Poeciliopsis: Poeciliidae) could be explained by 

genetic differences among strains within 60 days of culture. 

Hutchings (1991) used ANOVA to describe juvenile survival 

probabilities as a function of egg size. He found that the 

influence of egg size on juvenile survival in brook trout, 

Salvelinus fontinalis, ceased after 50 days of exogenous 

feeding and that maternal fitness had no effect on the 

individual growth of the juvenile after 50 days. 

Arnason et al. (1992) argued that in growth variability 

analysis with multiple interactions among factors, an ANOVA 

would provide information only on the proportion of the 
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different components in the expression of the CV while an 

ANCOVA, not only would provide the same information, but 

also would help eliminate the confounding effects by using 

the factors that interact as covariates. As a result, group 

effects can be adjusted to account for differences among 

groups with regards to these factors. However, for the 

ANCOVA to be effective, the dependence of the CV on the 

covariates has to be correctly modelled. 

A variance model is a general expression for a model 

that explains the change in variation in size within a 

population or among populations. Sparre (1976) first 

developed a variance model for fish with the same initial 

weight and grown under the same environmental conditions 

(temperature and feeding levels). He found that the growth 

conditions, temperature and feeding levels, or the initial 

weight have no effect on the prediction of the final 

variance-in-weight. Only the final weight was the 

contributor in the expression of the variance. Arnason et 

al. (1992) underlined the importance of a time factor in the 

expression of the variance. The inclusion of a time factor 

in a variance model explains the increase in variance when 

the environmental conditions and the mean size are constant. 

Variance models have been used to predict and test for 

genetic and environmental effects on growth variation and to 

quantify such effects on variance over time. Using three 

feeding levels (O, 75, and 150% of table values), two 
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temperatures (10.5 and 14°C), and different genetic strains 

of rainbow trout Oncorhynchus mykiss and Artie char 

Salvelinus alpinus, Arnason et al. (1992) were able to 

demonstrate that genetics had little influence on the rate 

of increase in variance-in-weight, but did have a strong 

influence on the increase in weight itself. Feeding rates 

were found to be a poor predictor of the variance-in-weight, 

probably because feeding rate is difficult to quantify in a 

meaningful way. On the other hand, temperature was found to 

be a stronger predictor of the CV. 

Mathematical models have been used to predict or 

calculate growth and mortality rates in biological 

populations. In fisheries, those models often used size­

frequency distributions or empirical relationships between 

length and age estimated from otoliths (MacDonald and 

Pitcher 1979). Ricker (1975) described a model that 

predicts mortality known as instantaneous mortality based 

upon evolution of a cohort over a period of time. Johnston 

and Mathias (1993) used Ricker's formula to calculate 

mortality rates in postlarval walleye, Stizostedion vitreum, 

populations in ponds with variable success. Another method 

of predicting mortality is the length-based method which 

uses the slope of the descending limb of the cumulative 

length-frequency distribution of the biological population 

(Smith and Richardson 1977; Pepin 1993). This method, 

unlike Ricker's formula which expresses mortality per unit 
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of time, calculates mortality as number per unit of length. 

The length-based method uses size-specific mortality and 

growth rates as vital assumptions and its accuracy depends 

upon the shape of the size distribution. Van Sickle (1977) 

discussed the importance of the shape of the size 

distribution in estimating mortalities. Using data from 

length-frequency distributions from Black abalone Haliotis 

cracherodii and Pismo clams Tivela stultorum, he showed that 

mortalities were greatly underestimated when the slope of 

the descending limb of the size distribution was not steep. 

On the other hand, dome-shaped size distributions with 

steeper slopes were most likely to give high mortality 

estimates. 



III. POSSIBLE APPLICATION OF PARTIAL DIFFERENTIAL 

EQUATIONS IN FORECASTING POPULATION STRUCTURES OF 

CHANNEL CATFISH FINGERLINGS IN PONDS 

Introduction 

Biological processes that regulate population 

structures in fish have been the subject of much 

speculation. Among these processes, growth and mortality 

are thought to be selective so that some individuals are 

more likely to survive or grow faster than others, based on 

their genetic, physical, behavioral and physiological 

characteristics. The selective forces are effective in 

shaping size structures within cohorts (Hutchinson 1978; 

Weatherley and Rogers 1978; McGinty 1980; and Rice et al. 

1987) . 

The ability to forecast growth and population structure 

of fish is important in commercial aquaculture. Knowing the 

number and range of sizes of fish that may be expected at 

any time during the growing period would allow refinement of 

feeding, pond management, and harvest practices. 

Mathematical models have been developed in fisheries 

biology to describe growth rate and size distribution at age 

in natural environments (DeAngelis and Coutant 1979; Wismer 

18 
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et al. 1985) and have been applied in aquaculture. Cuenco 

et al. (1985) discussed the importance of mathematical 

models to improve fish production. Fox and Flower (1990) 

used growth models to describe the effects of fish density 

on growth and survival of walleye, Stizostedion vitreum, in 

ponds. Cacho (1990) also developed a bioenergitical model 

that described the effect of fish weight, feeding levels and 

environmental temperature on fish growth and body 

composition and speculated upon the benefits of the models 

in aquacultural production. However, few reports on the use 

of mathematical models to predict size distribution and 

growth rate in fishpond have been published. Thompson and 

Cauley (1979) used a population balance equation to predict 

size structures in a brown trout, Salmo trutta, fingerling 

population. Ricker (1979) suggested a strong correlation 

between growth and size that could have some applications in 

the field of aquaculture. 

In the present study, the possibility of using 

mathematical models to forecast population structures in 

channel catfish, Ictalurus punctatus, cultured in earthen 

ponds at different densities is evaluated. Our major goal 

is not to predict populations that are exactly identical to 

the actual fingerling populations but to construct size 

structures that are very close to those observed in ponds. 

The models used are derived from population structure based 

models previously used in modeling microbial growth, 
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particle size distributions in crystals, and fish (Von 

Foerster 1959; Sinko and Streifer 1969; Randolph and Larsen 

1971; and Thompson and Cauley 1979). With adequate 

assumptions and accurate estimation of the different 

parameters, valuable information on the growth rate and size 

distribution can be developed and used in production plans. 

The objectives of this study are to evaluate the use of 

partial differential equations in predicting population 

structure of channel catfish fingerlings in ponds. The 

sensitivity of the prediction to growth and mortality rates 

are also investigated. 

Materials and Methods 

Experimental methods 

The field experiment was conducted at the Fisheries 

Research Unit, Alabama Agricultural Experimental Station, 

Auburn University, Alabama. In 1992, 15-day old channel 

catfish fry were stocked in 12 ponds (0.04 ha) for 120 

days. Fry were stocked at low density of 1so,ooo/ha, medium 

density of 300,000/ha, or high density of 600,000/ha with 

four replicates per treatment. 

In 1993, channel catfish fry were stocked at 300,000, 

and 600,000/ha with six replicates per density. In three of 

the medium density ponds, an estimated 10% and 3% (by 

weight) of the population were partially harvested at 60 and 

90 days post stocking, respectively. An estimated 25% and 
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6% (by weight) of the population were also removed from 

three high density ponds at the same time intervals to 

simulate mortality. 

In all ponds, fry were fed a 36% protein crumble 

catfish feed twice a day, increasing the rate to a maximum 

of 40 kg/ha/day during the experiment. The feeding level 

was identical in every pond regardless of the initial 

stocking density. 

At the end of each 30-day culture period, a sample of 

100 fingerlings was removed from each pond and individually 

weighed to the nearest gram and measured to the nearest 

millimeter total length. Ponds were harvest after 120 days. 

Total number of fish harvested was estimated by dividing the 

total harvest weight by the average weight. 

Approach to modeling 

A series of simulations were designed to examine the 

sensitivity of model to growth rates and mortality. In 

these simulations, each group of fish was assigned either a 

constant growth rate equivalent to the absolute mean growth 

during the JO-day time interval or a variable growth rate as 

an exponential function. Exponential growth has been 

observed in fingerlings of several species of fish (Thompson 

and Cauley 1979; Drew and Hecht 1994). 
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The model developed in this study is a variation of the 

partial differential equation known as the Von Foerster 

(1959) or the Sinko-Streifer's (1969) equation: 

oN(l,t)/ot + oN(l,t)G(l,t)/ol = -Z(l,t)N(l,t) (1) 

where oN(l,t)/ot is the rate of change overtime in the 

number at length 1, oN(l,t)G(l,t)/ol is the net rate of 

change in the number at size 1 resulting from growth (G) in 

size of individuals, and -Z(l,t)N(l,t) is the rate of 

decrease in number at size 1 due to mortality (Z). N(l,t) is 

the density function of fish number at length 1 and time t, 

G(l,t) is the growth function and Z(l,t) is the mortality 

function. 

Although many experiments have been carried out to 

estimate survival and growth rates, very little data exist 

on the mortality distribution within a given population and 

the specific growth rate of each individual in ponds. 

Usually, what are known are a gross estimate of mortality, 

monthly average length and standard deviations, and monthly 

length-frequency distributions, as it is the case in the 

present study. Thus there are not sufficient data to 

specify all the terms in equation (1). To solve equation 

(1) the following assumptions are made and the sensitivity 

of the model to these assumptions are tested: 

1. There is no mortality in the population. Equation 

(1) becomes: 

oN(l,t)/ot + oN(l,t)G(l,t)/ol = 0 (2) 
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2. There is either a constant growth rate for all 

individuals during time t + at (dG(l,t)/dt=c) or a 

variable growth rate that is size and time 

dependent. 

3. Finally, there is no fish having zero length 

(N(l,t)=O, l=O). 

The absolute growth rate equation, as defined by Ricker 

(1979), can be expressed by: 

(3) 

where 1 2 and 11 are characteristic lengths at time t 2 and 

t 1 , respectively. A growth rate function that charaterizes 

the dependence of growth to size and time can be represented 

by the general expression: 

dl/dt=Kf(t) (4) 

with Kf(t) being always a positive expression. K is a 

constant that can be determined experimentally. In the 

present study, f(t) may be expressed in the form: 

f(t)=e-at (5) 

where a is a positive constant. After equation (5) is 

incorporated into (4), the following result is obtained 

after integration: 

1 = 10 exp{(-K/a) (e-at - e-ato) (6) 

where 10 is the initial length at time t 0 that is the time 

at which the initial size distribution is known. The growth 

rate function G(l,t) is found by combining equations (5) and 

( 4) : 
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G(l,t)=dl/dt=Kle-at (7) 

Equation (7) indicates that growth rate is both size- and 

time-dependent. The different coefficients in the growth 

function were estimated by first determining the average 

length for each month. These average lengths were then 

plotted through the growing season and an exponential 

function fitting the plot was generated. 

Either equation (3) or (7) can be incorporated into 

equation (1) to describe the length-frequency distribution 

of the channel catfish fingerlings at any time. The 

solutions of equation (1) are formulated by the initial and 

boundary conditions. The initial length 10 chosen to solve 

equation (1) is derived from the length-frequency 

distribution at 30 d. The length distribution at 30 d was 

chosen over the length distribution at stocking because fry 

were near uniform size at stocking and did not constitute a 

good baseline for the prediction. 

A Pearson chi-square statistic (x 2 ) was used to 

determine the goodness-of-fit of the modeled frequencies to 

the observed frequencies. Individual lengths were grouped 

into 10-millimeter size classes. Classes with less than 

five individuals where included with adjoining classes to 

meet the minimum required for a proper use of x2 (Steel and 

Torrie 1980). 

The standard deviation, a, is given by the expression: 

a 2=a20 exp{(-2K/a) (e-at - e-ato) (8) 
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where is the standard deviation of the inital length­

frequency distribution. 

The coefficient of variation, CV, is expressed by: 

CV=a/mean 1 (9) 

The skewness is defined in terms of its third moment about 

the mean: 

Sk=E(l-mean 1) 3/a = E(l0 -mean 10 ) 3/a0 (10) 

and the kurtosis (or coefficient of kurtosis) is measured as 

the fourth moment about the mean: 

K=[E(l-mean 1) 4/a]-3 = [E(l0 - mean 10 ) 4/a0 ]-3 (11) 

The effect of mortality on the prediction was also 

investigated by assuming a 20% mortality in the population 

at the end of the 30 d period. The choice of a 20% 

mortality was dictated by previous mortality rates observed 

in pond at the Alabama experiment Station, Auburn University 

(McGinty 1980; Phelps and DeGomez 1990). Mortality was 

assummed to be random with respect to length. The impact of 

this mortality was then assessed at 60, 90, and 120 d. 

The model was solved numerically for each density using 

finite difference techniques. Most simulations were run 

with 400 individuals per stocking density. Simulations were 

run using 30-days intervals to increase the quality of the 

predictions. It has been shown that prediction using large 

time intervals usually poor goodness of fit (Randolph and 

Larsen 1971). 
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Results 

First, the 1992 fingerling data was used to build and 

test the model. To determine the effects of growth rate on 

the prediction, 18 simulations were run assuming no 

mortality. This assumption seems most appropriate based 

upon observation of the monthly plots of the length­

frequency distribution since size-dependent mortality that 

impacts a length-frequency distribution can easily be 

detected on frequency plots as shown by Thompson and Cauley 

(1979). A change in the growth rate from an exponential 

function (for an individual fish) to a constant mean growth 

rate (entire population) resulted in higher x2 values at 

150,000/ha and 300,000/ha but had no effect at 600,000/ha 

(Of= 395). Moreover, a constant mean growth shifted the 

predicted frequencies to the left (Fig. 1, 2 & 3). 

The effects of mortality on the prediction of the size 

distribution were evaluated. Nine simulations were run over 

the 120 d period for each initial stocking density assuming 

a 20% randomly distributed with respect to length and 

assessed at the end of the first 30 d. The simulations were 

run using a variable growth rate. The inclusion of 

mortality values in the models had no substantial effects on 

the prediction at all densities. Values of x2 increased 

from 78 to 86 (Df = 394) at 60 d and from 83 to 91 (Df = 

394) at 120 d at low densities. Similar magnitudes of 

increase were observed at the medium density. On the other 
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Figure 1. Predicted (Pred.) and observed (Obs.) length­

frequency distributions of channel catfish fingerlings 

stocked at 150,000/ha and fed up to 40 kg/ha/day for 120 d. 

Predicted frequencies were generated assuming no mortality. 

(a): 60 d; (b): 90 d; and (c): 120 d. 
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Figure 2. Predicted (Pred.) and observed (Obs.) length­

frequency distributions of channel catfish fingerlings 

stocked at 300,000/ha and fed up 40 kg/ha/day for 120 d. 

Predicted frequencies were generated assuming no mortality. 

(a): 60 d; (b): 90 d; and (c): 120 d. 
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Figure 3. Predicted (Pred.) and observed (Obs.) length­

frequency distributions of channel catfish fingerlings 

stocked at 600,000/ha and fed up to 40/ha/day for 120 d. 

Predicted frequencies were generated assuming no mortality. 

(a): 60 d; (b): 90 d; and (c): 120 d. 
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hand, higher magnitudes of increase in x2 were observed at 

high density with values increasing from 62 to 73 (Of= 394) 

at 120 d (Fig.4). 

Second, a sensitivity analysis was done on the model 

using different levels (or expressions) of growth and 

mortality. To determine the sensitivity of the model to 

growth rates, simulations were run assuming no mortality. 

Increasing both coefficients (Kand a) in the growth 

function {G(l,t) = Kle-at) spread the predicted 

distributions over a wider range and increased the x2 

statistics by two folds. Similarly, increasing Kand 

decreasing a also spread the predicted distributions. 

However, decreasing Kand increasing a not only narrowed the 

size range but also shifted the predicted distributions to 

the left. When different values of constant growth rate 

were introduced into the model, smaller values shifted the 

distributions to the right while larger values shifted those 

distributions to the left without affecting the size range. 

Simulations were run using either a constant growth or 

an exponential growth with different levels of mortality. 

Increasing the mortality up to 60% had no effect on the 

predicted distributions. However, increasing mortality 

above 60% truncated the predicted distributions by removing 

individuals at both ends. The model was also sensitive to 

the initial size distribution. When applied to the initital 

size distribution at stocking where only two size classes 
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were present, it failed to provide size structures commonly 

observed in fingerling populations after 30 d. 

The model was then applied to channel catfish 

fingerling data collected in 1993. Series of simulations 

were run with the partial harvest data assuming either an 

exponential or a constant mean growth rate. The removal of 

fingerlings during the partial harvest is technically 

equivalent to mortality. When the same growth rates used in 

1992 were included in the model to predict the population 

structures in 1993, x2 values increased from 78 to 86 (Of= 

394) at 60 d but increase drastically from 83 to 158 (Of= 

394) at 120 d for the medium density of 300,000/ha for the 

exponential growth function. The x2 values were even higher 

with the constant growth rate increasing from 105 to 254 (Of 

= 394) at 120 d. Replacing the 1992 growth rate expressions 

by the actual growth (either exponential or constant) 

observed in 1993 generated predicted size distributions 

closer to the actual distributions observed in the ponds 

(Fig. 5 & 6). 

The coefficient of variation (CV), skewness, and 

kurtosis remained constant between time intervals when no 

mortality was assumed. A growth function (exponential) 

tends to give higher mean values (Table 1). The 

introduction of the mortality term in the model also gave 

higher mean lengths when compared to the observed values. 
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Figure 4. Predicted (Pred.) and observed (Obs.) length­

frequency distributions of channel catfish fingerlings 

stocked at three densities. Predicted frequencies were 

generated assuming a variable growth rate and a 20% 

mortality assessed at 30 d and assuming no additional 

mortality between 30 and 60 d (a), between 60 and 90 d (b) 

and between 90 and 120 d (c). 
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Figure 5. Predicted (Pred.) and observed (Obs.) length­

frequency distributions of channel catfish fingerlings 

stocked at 300,000/ha and partially harvested at 60 and 90 

d. (a): 60 d; (b): 90d; and (c): 120 d. 
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Figure 6. Predicted (Pred.) and observed (Obs.) length­

frequency distributions of channel catfish fingerlings 

stocked at 600,000/ha and partially harvested at 60 and 90 

d. (a): 60 d: (b): 90 d; and (c): 120 d. 
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However, CV, skewness, and kurtosis were lower than 

their respective observed values but increased with time 

(Table 2). 

Discussion 

The solutions of the models clearly show that partial 

differential equations can be used to predict size 

distributions with results close to actual size structures 

in aquaculture ponds. Those results also suggest that 

growth rate, more than mortality has a greater impact on the 

accuracy of the prediction of population structure in 

fingerlings in ponds. Similar conclusions were drawn by 

Wismer et al. (1985) on the impact of size dependent growth 

and size-dependent mortality on the prediction of length­

frequency distribution of smallmouth bass. Indeed, 

discernable mortality that appears in the form of marked 

depressions on the length-frequency distribution or the 

absence of size classes of smaller fish has to be observed 

for a size-dependent mortality to substantially impact the 

prediction of the size structures. Such mortality is not 

observed in the present study where all size classes were 

basically represented in each length-frequency plot. This 

evidence that size-dependent mortality does not naturally 

occur in channel catfish population, at least after the 

first month of the growing season. McGinty (1980) observed 
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Table 1. Mean length, standard deviation (SD), coefficient of 
variation (CV), skewness (Sk), and kurtosis (Ku) of channel 
catfish fingerlings at 60, 90, and 120 dafter stocking in 
ponds at three densities. 

Parameters Densities (fish/ha) 

150,000 300,000 600,000 

Obs. Pred.* Obs. Pred. Obs. Pred. 

60 days 

Mean length 88 103 88 97 73 68 
(mm) 
SD 13.1 5.3 11.2 12.3 12.4 8.6 
CV (%) 14.9 8.1 12.7 12.3 17.0 17.1 
Sk 0.4 0.3 - 0.4 - 0.1 0.2 - 0.1 
Ku 0.4 1. 7 0.8 - 0.3 - 0.0 - 0.5 

90 days 

Mean Length 107 116 101 109 83 75 
(mm) 
so 16.1 13.1 15.4 11.2 18.1 12.4 
CV(%) 15.0 15.0 15.3 12.7 21.7 17.0 
Sk - 0.7 - 0.4 0.0 - 0.4 - 0.1 0.8 
Ku 0.3 - 0.4 - 0.1 0.8 0.8 0.0 

120 day 
§ 

Mean length 118 119 116 114 85 87 
(mm) 
SD 22.5 16.1 15.4 18.6 20.8 21.7 
Sk - 0.1 - 0.7 - 0.3 - 0.1 0.7 0.8 
Ku - 0.1 - 0.3 - 0.7 - 0.1 0.7 0.8 

Obs. = Observed 
Pred.= Predicted 
* Predicted values were generated assuming a variable growth 

rate and no mortality. 
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Table 2. Mean length, standard deviation (SD), coefficient of 
variation (CV), skewness (Sk), Kurtosis (Ku) of channel 
catfish fingerlings at 60, 90, and 120 and assuming a 20% 
mortality. 

Parameters 

Mean length 
(mm) 
SD 
CV(%) 
Sk 
Ku 

Mean length 
(mm) 
SD 
Sk 
Ku 

Mean length 
(mm) 
SD 
CV{%) 
Sk 
Ku 

150,000 

Obs. 

88 

13.1 
14.9 

- 0.4 
- 0.4 

107 

16.1 
- 0.7 

0.3 

118 

22.5 
19.3 

- 0.1 
- 0.1 

Obs.= Observed 
Pred.= Predicted 

Densities (fish/ha) 

300,000 

Pred.* Obs. Pred. 

107 

4.9 
10.9 
o.o 
0.5 

114 

9.1 
o.o 

- 0.1 

126 

15.5 
15.0 

0.4 
0.2 

60 days 

88 

11.3 
12.7 

- 0.4 
0.8 

101 

4.2 
8.4 
0.4 

- 0.8 

90 days 

101 

15.4 
o.o 

- 0.1 

110 

9.3 
0.5 

- 0.1 

120 days 

116 

21.6 
18.6 

- 0.3 
- 0.7 

118 

14.4 
19.6 

0.5 
0.1 

600,000 

Obs. 

73 

12.3 
13.1 

0.7 
0.4 

83 

18.0 
0.9 
0.8 

85 

17.6 
20.8 
0.7 
0.7 

Pred. 

71 

8.1 
8.2 
o.o 

- 0.4 

87 

12.0 
1.0 
1.1 

86 

17.7 
19.7 
0.9 
1.1 

* Predicted values were generated assuming a variable growth 
rate and a 20% mortality assessed at the end of first 30-day 
period. 
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a size-dependent mortality due to predation in 3-day old 

channel catfish fry stocked in earthen ponds treated with 

diesel fuel. 

The solutions of the models also suggest that channel 

catfish fingerlings could have different expressions of the 

growth rate dependent upon the culture conditions. Clearly, 

it is not realistic for all individuals within a population 

to have the same growth rate throughout a culture period. 

Individual fish would have growth rates that vary from day 

to day according to their size, density, and other 

environmental conditions such as feed quantity and quality 

and water quality (Rice et al. 1993; Ricker 1979). The 

prediction of channel catfish fingerling populations at 

different time intervals while assuming a constant growth 

rate would be a rather conservative approach relative to the 

more realistic assumption that juvenile fish grow at 

randomly different rates. This is seen at low and medium 

densities where the predicted frequencies are shifted to the 

left comparative to the observed frequencies and a better 

fit is observed with the exponential growth rate (Fig. 1 & 

2). However, either a constant growth or a variable growth 

could be used at high density without affecting the 

solutions of the models. The use of a constant growth at 

high density does not by any means downgrade the assertion 

that growth is size-dependent. At high density, larger fish 

may still grow at different rate (or faster) than the 
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smaller fish but their proportion in the population is so 

small that they have very little impact on the overall 

growth rate of the entire population. 

The results of the simulations ran for the 1993 data 

validate the use of partial differential equations to 

predict size structure in population with high mortality. 

However, growth expressions have to be adjusted to 

accomodate the mortality rates. This confirms the assertion 

that growth expressions, more that mortality, have greater 

impact on the solutions of the model. 

Although, the predicted frequencies are close to the 

observed frequencies which make this model a good tool in 

projecting length structures of the fingerling populations, 

it failed to provide an overall accurate prediction of the 

population structure parameters. To support this 

quantitatively, we compared the mean length and standard 

deviations of the model and the field data. The model 

showed an increase in the mean length but the standard 

deviations did not increase proportionally. Moreover, the 

CV, skewness, and kurtosis remained constant between two 

sample dates although they were expected to change over 

time. It is possible that an uneven mortality had occurred 

within the population. However, this mortality was not 

severe enough to alter the length-frequency distribution 

and, therefore, had little impact on the prediction per se. 

Thompson and Cauley {1979) came to similar conclusions when 
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applying their population balance equation to actual brown 

trout data. It is likewise possible that mortality was 

evenly distributed over all size classes and the changes in 

CV, skewness and kurtosis are the results of real effects of 

factors such as feeding efficiency and density which the 

model does not account for. 

Conclusion 

The present sudy showed that mathematical models 

previously used in fisheries biology can also be applied in 

aquaculture with much accuracy. The solutions of the 

partial differential equation allowed us to meet our goal 

that is to predict size structures close to those of the 

actual populations in pond. Poor agreement of the model to 

the increase in CV, and the change in skewness and kurtosis 

should not undermine the usefulness of the model in 

predicting size structure for management purposes. The 

solutions of the model also underline the correctness of 

size-dependent growth rate which help explain the spread of 

the length-frequency distribution with time. 



IV. FACTORS AFFECTING SIZE VARIATION AND MODELING OF THE 

COEFFICIENT OF VARIATION AND MORTALITY IN CHANNEL 

CATFISH FINGERLING POPULATIONS 

Introduction 

Variability in fish growth is impacted by behavioral, 

environmental and genetic factors and their interactions 

(Weatherley and Rogers 1978; Brett 1979; Arnason et al. 

1992). Understanding how those factors contribute to fish 

growth variability is one of the most important questions in 

commercial fish culture as variation in size often results 

in poor harvest and increased operating costs. 

Several models have been introduced to predict 

variation in size in fish populations (Thompson and Cauley 

1979; Arnason et al. 1992). However, very few addressed the 

important question relative to the effective interactions of 

factors that influence variation in size in controlled and 

uncontrolled environmental conditions and their relative 

importance. How much variation is due to the genetic make­

up of the fish population, and what is the contribution of 

the environmental factors to variation are very important 

questions, answers to which should provide valuable 

47 
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information for assessing stock performance, marketing, and 

production planning. 

Moav and Wohlfarth (1974) observed that initial size 

differences confounded with genetic differences were 

magnified when initial size differences were greater in 

carps. Smitherman and Dunham (1985) found that initial size 

variation in channel catfish was associated with egg size 

and quality. Individuals hatched from large and good 

quality eggs were larger. However, this competitive 

advantage was lost after the first month because of 

environmental effects (Reagan and Conley 1977). Fowler 

(1972) came to a similar conclusion when studying the growth 

and mortality of fingerling chinook salmon as affected by 

egg size. He also concluded that larger fry hatched from 

larger eggs but the size superiority lasted only 11 to 12 

weeks. 

Coefficient of variation in channel catfish fingerling 

growth (CVt) can be expressed as: 

~=~+~ 

where cvg is the coefficient of variation due to genetic 

differences and eve is the coefficient of variation due to 

the reponse to environmental factors. Understanding the 

contribution of cvg and eve assuming no genetic-environment 

interaction and the ability to predict CVt at any time 

during the culture period will facilitate the production of 

a more uniform crop of fish. 
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The main objectives of this study were: 

1. To estimate the variance components of juvenile 

channel catfish due to genetic differences among 

families and that due to differences in 

environmental conditions. 

2. To Predict the coefficient of variation and discuss 

the importance of the different factors affecting 

the CV and its implications in channel catfish 

fingerling productions. 

3. To assess predicted CV as a criterion for 

estimating mortality among channel fingerlings. 

Materials and Methods 

Experiment 1 

This experiment was conducted at the Fisheries Research 

Unit, Alabama Agricultural Experimental Station, Auburn 

University, Alabama. Sixteen families of Marion channel 

catfish were used. Female broodfish were either three or 

four years old. Each female was mated to a single male 

(Table 3). Individual pairs were allowed to spawn naturally 

in pen and eggs were hatched in separate aquaria. Full-sib 

fry from each mating, 1 to 3-day post swim-up, were stocked 

separately in 20-m2 outdoor concrete tanks at a density of 
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Table 3. Allocation and characteristics of each family of 
channel catfish at the start of experiment 1. 

Family Weight of female Weight eggs Age female 
(kg) (g) (year) 

1 1.45 214.0 3 
2 2.30 787.0 4 
3 2.25 1,176.0 4 
4 2.20 389.0 4 
5 3.60 532.0 4 
6 3.60 487.0 4 
7 2.90 961.0 4 
8 2.75 954.0 4 
9 1.25 420.0 3 

10 3.30 790.0 4 
11 0.80 267.0 3 
12 1.55 454.0 3 
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600 fry per tank. Before stocking, an additional 100 fry 

from each full-sib family was randomly taken to estimate 

average weight, and each fry was then measured to the 

nearest millimeter to determine the initial size 

distribution and the CV. 

Fry were fed a 36% protein crumble catfish feed twice a 

day, increasing the rate to a maximum of 40 kg/ha/day during 

the experiment. At the end of the 90-day culture period, 

tanks were drained and all fingerlings were collected and 

counted to determine survival. A sample of 100 fingerlings 

was taken from each tank and fingerlings were individually 

weighed and measured to the nearest millimeter total length. 

Experiment 2 

Three-day post swim-up fry from the same family were 

stocked in indoor circular tanks (1.55 diamter, 0.6 m deep) 

containing 1.1 m3 of water at the Fisheries Research Unit, 

Alabama Agricultural Experimental Station, Auburn 

University. Water flow rate was set at 4.5 L/min and reset 

once a week. Photoperiod was a diurnal light:dark cycle of 

14:10 using incandescent lighting set on a timer. 

Fry were stocked in each tank at the density of 4,500 

fry/1.1 m3 . Fry averaged 0.036 g and 15 mm at the time of 

stocking. Fry were fed a 36% protein trout chow. Diets 

were fed twice daily to triplicate groups at the rates of 5, 

10, and 20% wet body weight per day for a 30-day period. 
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One hundred fish from each tank were randomly selected, 

weighed each week and amount of feed adjusted accordingly. 

At the end of the experiment, tanks were drained and 

all fish weighed. A sample of 100 fish was once again 

randomly selected from each tank and total length of each 

fish measured to the nearest millimeter. 

Experiment 3 

Experiment 3 was also conducted at the Fisheries 

Research Unit, Alabama Agricultural Experiment Station, 

Auburn University. In 1992, 15 day-old channel catfish fry 

from different families were stocked in 12 earthen ponds 

(0.04 ha) for 120 d. Fry were stocked at the low density of 

150,000/ha, medium density of 300,000/ha, or high density of 

600,000/ha with four replicates per treatment. 

In 1993, fry were stocked at 300,000/ha and 600,000/ha 

with six replicates per density. In three of the medium 

density ponds, an estimated 10% and 3% (by weight) of the 

population were partially harvested at 60 and 90 d post 

stocking, respectively. An estimated 25% and 6% (by weight) 

of the population were also removed in three other high 

density ponds for the same periods. 

In both experiments, fry were fed a 36% protein crumble 

catfish feed twice a day, increasing the rate to a maximum 

of 40 kg/ha/day in all treatments. Descriptions of the 

three experiments are summarized in Table 4. 



Table 4. Summary of design factors for the three experiments on channel 
catfish fingerling populations in different environmental conditions. 

Experiment 

1 

2 

3 

Stock 

full-sib 
families 

mixed 
families 

mixed 
families 

Controlled 
factors 

same density 
(30/m2 ) 
same feeding 
levels 

same densitj 
(4,500/1.lm ) 
flow rate: 
4.5 L/min 
Temperature: 
24-25°C 
Culture period: 
30 days 

same feeding 

culture period: 
120 days 

Environment 

outdoor 
tanks 

indoor 
tank 

earthen 
ponds 

Treatment 

None 

3 feeding levels: 
5, 10, and 120% 

3 densities: 
- 150,000/ha 
- 300,000/ha 
- 600,000/ha 

U1 
w 
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Statistical analysis 

Experiment 1 

Coefficients of correlations were estimated between the 

female weight, the weight of egg mass, the percent survival, 

the initial CV, and the final CV. The correlations between 

the initial CV and the weight of egg mass, and the percent 

survival led to the division of the 12 families into two 

groups. Within each group, families were divided into two 

sub-groups (high and low survival). 

The coefficient of variation (CV) was expressed using a 

model similar to that used by El-Ibiary (1976): 

cvijk = µ + gi + fij + eik +(fe)ijk + €ijk 

where cvijk = the coefficient of variation in the kth 

environment in the jth family in the ith group. 

µ=the actual observed value, 

gi= the effect of the ith survival group, 

fij= the effect of the jth full-sib family in the 

ith group, 

eik= the effect of the environment in the ith 

group, 

(fe)ijk = the interaction between the kth 

environment and the jth family in the 

ith group, 
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€ijk = normally distributed uncontrolled 

environmental and genetic deviation between 

families and between tanks. 

Variance components due to differences between groups 

(a2g), families in groups (a2 fg), environment in group 

(a2eg>, families and environment interaction in group 

(a2 feg> were estimated in a one-way analysis of variance 

with a nested classification (Steel and Torrie 1980). 

Negative variances are considered zero in the analysis. 

Experiment 2 

The contribution of the feeding level in the expression 

of the CV was estimated using a simple linear regression. 

Experiment 3 

An ANCOVA was used to determine the effects of some 

factors on the change of the CV over time. For the 

analysis, the increase in variance was analyzed and the CV 

was derived from the expression of the variance model. The 

increase in variance-in-length with time is a non-linear 

function which was expressed by the general equation (Sparre 

1976; Arnason et al. 1992): 

a2t = atPµYt (1) 

where a 2t is the increase in the CV for the mean size, µt 

(length or weight), and is a function of time (t). Alfa (a) 

specifies the rate of increase in the CV per unit of time. 
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Beta (P) and gamma {y) are coefficients assigned tot andµ. 

Using the logarithmic transformation, we obtain: 

log (a2t)=log(a) +Plog(t) + ylog(µt) (2) 

We can now fit the model with a weighted multiple linear 

regression in the form of: 

Yi= Yo+ bt'i + gµ'i + €i (3) 

where Yi=log(a2t>, t'i=log(ti), and µ'i=log(µi)• €i is the 

residual error which is assumed to be normally distributed 

with mean o and variance proportional to 1/ni (sample size). 

y 0 , b, and g are the estimates of log(a), P, and y 

Results 

Experiment 1 

From the 16 families initially stocked, only 12 were 

used for the analysis because of high mortality in the other 

four families. Final CVs for length ranged from 9.6 to 

21.1%. Final cvs for weight ranged from 21 to 102%. 

Survival in tanks was highly variable and ranged from 55 to 

97% {Table 5). Correlation coefficients were relatively 

high and positive between survival and final CVs for length 

(r = 0.74) and between survival and weight (r = 0.694). 

There was high correlation (r = 0.968) between average 

weight and final average length. Similarly, final CV for 

weight and final CV for length were highly correlated (r = 

0.968). However, there were no correlations between the 



Table 5. Initial and final length, weight, CV for length and weight of full-sib 
families of channel catfish cultured in outdoor tank and fed up to 40 kg/ha/day for 
90 d (init. wt for all families= 0.036g). 

Families 

Variables 1 2 3 4 5 6 7 8 9 10 11 12 

Initial length (mm) 14 15 13 14 14 15 13 13 13 12 12 14 

Final length (mm) 117 101 115 113 117 142 121 113 95 114 96 112 

Initial CV TL(%) 3.9 6.6 5.0 4.6 3.0 4.9 3.7 3.2 3.9 4.0 5.0 4.6 

Final CV TL(%) 18.2 17.2 16.3 12.9 15.4 9.6 19.3 12.3 17.3 18.2 21.1 14.6 U1 
-.J 

Final weight (g) 13 9 10 13 11 22 15 11 8 14 9 12 

Final CV weight (%) 55 53 50 38 21 28 58 40 67 57 102 54 

Survival (%) 95 92 78 57 67 55 96 59 88 92 97 78 
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final and initial CV for length (r = 0.049). The initial CV 

for length were negatively correlated to the weight of the 

egg mass (r = -0.528) and to the female weight (r = -0.436) 

(Table 6). The variances for components of the CV ranged 

from o to 65% for total length and from Oto 86% for weight 

(Tables 7 & 8). 

Experiment 2 

Food availability can be a significant factor in size 

variability of small catfish. Fish fed at 20% body weight 

had a CV of 7.8% while fish fed at 5% body weight had a CV 

of 11.7% (Table 9). The coefficient of variation (CV) was 

quadratic, decreasing with an increase feeding rate but at a 

declining rate (Fig. 7). 

Experiment 3 

The analysis of covariance was carried out in a number 

of stages. Covariates were t'(log elapse time) and µ'(log 

final length). Only the analysis for length was done and 

the principle applied also to weight. The class variable 

was initial stocking density. 

The results of the ANCOVA showed the importance of the 

class variable initial stocking density (ISO) (P<0.01) in 

explaining the increase in variance among treatment. This 

high level of significance scored by the class variable ISO 

is evidence that a is not the same at all densities. 



Table 6. Estimates of coefficient of correlation between pairs of variables for full-
sib channel catfish fingerlings cultured in outdoor tanks and fed up to 40 kg/ha for 
30 d. 

Variables* 

Weight Length 

Female Egg Average Final CV Initial CV Final CV Average Surv. 
Variables 

Female -** 0.32 0.71 0.71 -0.44 -0.44 0.77 -0.44 

Egg 0.32 - 0.09 -0.26 -0.53 -0.06 0.13 -0.04 

Average 0.71 0.09 - -0.49 -0.10 -0.52 0.97 -0.42 

Final CV 0.71 -0.26 -0.49 - 0.26 0.94 -0.65 0.69 

Initial CV-0.44 -0.53 -0.10 0.26 - 0.05 -0.18 0.19 

Final CV -0.44 -0.06 -0.52 0.94 0.05 - -0.61 0.74 

Average 0.77 -0.06 -0.49 -0.65 -0.18 -0.61 - 0.69 

Surv. -0.40 -0.04 -0.42 0.69 0.19 0.74 -0.52 

* surv.= survival. 
** All coefficients are significant at P<0.01 except the coefficients between 
initial cv and final length and initial cv and survival (P>Q,1), 

U1 
\0 



Table 7. Analysis of variance and estimation of the variance components of the 
coefficient of variation (CV) for weight of full-sib channel catfish fingerlings. 
Fingerlings were fed up to 40 kg/ha/day for 90 d. 

Sources Df Mean square Variance model Estimates Proportion 
(10-3 ) of variance 

(%) 

Between groups 1 0.234 2 2 2 2 a2 =-0.01 o.o a feg+2a eg+6a fg+12a g g 

Within group 

-Families 5 0.094 2 2 2 a feg+2a eg+6a fg a 2fg=-0.60 o.o 

-Environment 1 3.723 2 2 a 2eg= 1.72 86.2 a feg+2a eg "' 0 

Fam.x Envir. within 
group 4 0.268 2 

a feg a 2feg=0.27 6.2 



Table 8. Analysis of variance and estimation of the variance components 
of the coefficient of variation (CV) for length of full-sib channel catfish 
fingerlings. Fingerlings were fed up to 40 kg/ha/day for 90 d. 

Sources Df Mean square Variance model Estimate Proport. 
of var. 

(%) 

Between groups 1 0.0080 2 2 2 2 a 2 =-0.001 o.o a feg+2a eg+6a fg+12a g g 

Within group 

-Families 5 0.0216 2 2 2 
a feg+2a eg+6a fg a 2fg=-0.034 0.0 

-Environment 1 0.2287 2 2 a 2eg= 0.090 65.0 a feg+2a eg O'I .... 
Fam. x Envir. 4 0.0486 2 

a feg a 2feg=0.048 35.0 



Table 9. Average length and standard deviation (SD) for length, final weight, 
initial and final CV for length of channel catfish fingerlings cultured in indoor 
tanks for 30 d (Initial TL= 15 mm; Initial Wt= 0.036 g) 

Parameters 

Feeding levels Ave. TL SD Ave. Wt Init. CV Final CV Surv 
(%bodyweight) (mm) (g) (%) (%) (%) 

5% 33 5.36 0.24 3.1 11.7a* 85 

10% 40 3.56 0.49 3.0 9.lab 81 

20% 43 3.67 0.69 3.0 7.8b 84 

* Treatments with the same letter are not statistically different at the 5% level 
°' N 
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Figure 7. Coefficient of variation for length of channel 

catfish fingerlings cultured in indoor tanks and fed at 5%, 

10%, and 20% body weight per day for 30 d. 
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The covariate t' was also important (P<0.001) in explaining 

the increase in variance which made the coefficient p also 

important. However, the interaction term t'xISD was not 

significant enough (P = 0.0670) to suggest different values 

of P for each stocking density. The term (µ'=log {final 

length}) was less important and contributed very little in 

the expression of the variance-in-length. The interaction 

term µ'xISD contributed very lttle into the model (P = 

0.0682) (Table 10). Therefore, the interaction terms t'x 

ISO and µ'xISD could be dropped without affecting the 

overall goodness of fit of the complete model (a) (Table 

11). Dropping the interaction terms decreased the r 2 from 

94 to 74% in model (b). However, the drop in r 2 did not 

necessarily mean that model (b) is significantly poorer than 

model (a) and the reduction in r 2 may largely be attributed 

to fewer parameters being used in model (b). Finally, the 

simplest model (c) gave the lowest r 2 (r2 = 0.65) but better 

estimates of the coefficients (Table 12). 

The analysis of the estimate of the coefficients in 

model (c) (y = y 0 + bt'+ gµ') or in its original form (log 

(a2t> = log(~) + Plog(t) + ylog(µt)> showed that the 

increase in the initial stocking density from 150,000 to 

300,000/ha had no substantial impact on the rate of increase 

in the variance. Log (a) increases from 0.26 to 0.33 

between the low and medium density ponds (Table 12). 

Similarly, log (a) increased by two-fold between the low 
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Table 10. Analysis of Covariance ANCOVA on y= log variance 
increase-in-length of channel catfish fingerlings. The class 
variable is the initial stocking density (ISD). t'is log time 
elapse and µ'is log final length. 

Sources Df* F** P*** r2**** 

ISD 2 3.21 0.01 
t' 3 19.85 0.0001 
µ' 3 1.77 0.0852 
µ'xISD 6 2.96 0.0682 
t'xISD 6 2.96 0.0670 
Overall goodness 
of fit 20,30 7.18 0.001 0.9432 

* Of is the degree of freedom 
** F gives the stepwise significance 
*** P if the probability level for significance 
**** r is the stepwise percent of total variance in y 
explained by the term 
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Table 11. Summary of model fits of the ANCOVA on y=log 
variance increase in length. The covariates were t' (log 
elapse time) and µ' ( log final length) . The class variable was 
the initial stocking density (ISO) 

Model Model Df* r2** 
designation 

a y=y + bt' + gLµ' + x•ISD .o . i 
+ interaction terms 20,30 0.94 

b y=yo + bt' + gµ'+ xiISD 8,44 0.74 

C y=yo + bt' + gµ' 6,48 0.65 

*Df is the degree of freedom 
**r2 gives the goodness of fit of the models as explained by 
the parameters. 
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Table 12. Parameter estimates for the model (d) y=y + bLt. 
Log(a) is the rate of increase in the variance-in-lengih, Pis 
the temporal effect on y, and y is the size effect. 

Parameters Estimates SE* P>ITI** 

log(a) 
-150,000/ha 0.2620 0.13 0.055 
-300,000/ha 0.3312 0.12 0.043 
-600,000/ha 0.5789 0.15 0.001 

p 1. 5737 0.27 0.000 
y -0.8782 0.48 0.084 

* SE is the standard error of the estimate 
**P> IT I is the probability for which the estimate of the 
parameter is different from zero. 
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and high density. The estimate of pis different from 1 

suggesting a non-linear response of log (a) to time. The 

estimate of y also showed that fish length played very small 

role in explaining the increase in variance and could be 

dropped without affecting the prediction. It is important 

to signal that values of log (a), P, and y vary change as 

different models are used. Since the estimate of the 

parameter y is not different from o (P = 0.084), it could 

further be dropped in the expression of the variance in 

length. The final expression of the variance in length 

becomes: 

y =Yo+ bt' (4) 

or: 

log (a2t) = log(a) + Plog(t) (5) 

If the reduced model (5) is back-transformed, the following 

expression of variance-in-length is obtained: 

a 2t = a(d)tP (6) 

with a (d) being a function of density. The expected CV is 

given by the following: 

E(CVt) = [a(d)tPJ 1 / 2 (7) 

where a (d) is the relative rate of increase of the variance 

due to the initial stocking density, and P describes the 

temporal effect on the rate of increase. Equation (7) 

presents two important characteristics: 
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1. The rate of increase of the CV is independent of 

the fingerling size as suggested by the present 

study. 

2. Each treatment density tends to have an asymptotic 

CV over time when other environmental factors are 

held constant (Fig. 8). 

To validate the model, it was applied to channel 

catfish fingerlings stocked in earthen ponds at 300,000 and 

600,000/ha and partially harvested at 60 d and 90 din 1993. 

Because of high mortality incidence in the non-harvested 

ponds, the number of fish at harvest was not different from 

that of the partially harvested ponds (Appendix B). 

The ANCOVA for this study gave log (a) and P values 

higher than those observed with in 1992. The plots of the 

expected CV (E(CV) versus time showed an increase in the CV 

which ultimately reached asymptotic values with time 

confirming the results previously obtained (Fig. 8). 

The expected CV generated by equation (7) also gave 

some interesting insights into the dynamics of fingerling 

population structures. It appears from the plot of E(CV) 

over time that the CV limit is dependent of the 

environmental conditions. At high density, the expected CV 

increased rapidly and reached CV limit earlier. This is 

seen by extending the plot over the 120-day period. 
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Figure 8. Predicted coefficient of variation (CV) of 

channel catfish fingerlings cultured in ponds at different 

densities. Expected CV {E(CV)} were generated using the 

model E(CVt) = [atPJ 1 / 2 • (a): 150,000/ha; (b): 300,000/ha; 

(c): 600,000/ha; (d): 300,000/ha with partial harvests; (e): 

600,000/ha with partial harvest. 
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The medium and low densities followed the same pattern and 

reached their asymptotic values later. The partial harvest 

not only postponed the time at which the population reached 

the asymptotic value but also increased that value. 

Discussion 

The original assumption in the general formulation of 

the coefficient of variation was: 

cvt = cvg + eve 

where cvg and eve represent the genetic and environmental 

components of the coefficient of variation. 

Experiment 1 showed that the initial genetic 

contribution in regards to broodfish and egg characteristics 

had no effect on the expression of the CV at harvest. The 

proportion of 86 and 65% of the total variance in weight and 

in length scored by variance component due to the 

environment showed the overwhelming importance of the 

environmental factors in the expression of the CV. 

factors in the expression of the CV. 

The low family-environment interaction for length (6%) 

and the higher interaction for weight (35%) may be justified 

by the theory of Weatherley and Rogers (1978) in which they 

suggested that length is species-specific and does not 

change easily with the conditions of the environment as 

opposed to weight as fish grow older. This is illustrated 

by the lower CV for length when compared to the values for 
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weight. As genetic influences fade away with time, it is 

legitimate to express the CV in the form CV= eve based on 

the results of experiment 1. A more elaborate expression of 

the CV is given by the following: 

cvjk= µ + ejk + (fe)jk + €jk 

with: 

eve= cvjk 

Where cvjk is the coefficient of variation in the kth 

environment in the jth family,µ is the observed value, (fe) 

is the family-environment interaction, and€ is the error 

term. 

Brown (1957) first concluded that the effects of 

parental factors on the growth disappeared within the first 

month when studying the growth pattern in brown trout. 

Fowler (1972) later found in chinook salmon fingerlings that 

initial variation in size was related to egg quality and 

size. He observed that larger fry hatched from larger eggs 

but their size superiority lasted only 11 to 12 weeks. 

Silverstein and Hersberger (1992) found in coho salmon 

Onchorhynchus kisutch the maternal factors lasted up to 3 

months. 

In channel catfish, Smitherman and Dunham (1985) 

suggested that initial size variation was also associated 

with egg size and quality. Larger individuals hatched from 

larger eggs would have competitive advantage over smaller 

ones. However, as Reagan and Conley (1977) suggested 
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earlier, this competitive advantage is lost within the first 

month due to environmental effects. Those conclusions 

support the lack of correlation between the parental 

characteristics and size variation at harvest and also 

between the initial variation and the size variation at 

harvest. It is evident that the environmental conditions 

are the driving factors that govern the growth variability 

in a catfish fingerling population. 

Experiment 2 provides the simplest formulation of the 

CV for length. From this experiment, it appears that CV can 

be expressed as a quadratic function of the feeding levels. 

This experiment showed that feeding levels have to be 

increased in a large order of magnitude to effect size 

variability. As an example, there was no statistical 

difference was observed between 5 and 10% and between 10 and 

20% but statistical difference was observed between 5 and 

20% (P<0.05). 

Experiment 3 provides a good demonstration of a non­

linear function of CV for a more extended period of time. 

The inclusion of the power term tP for time is necessary 

because it helps explain the increase in CV even when mean 

length remains constant or changes very little. This is 

seen in high stocking density ponds where growth rate is 

reduced with time (Fig. 8) 

In the present study, the overwhelming effect of the 

initial stocking densities on the rate of increase log(a) on 
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the variance-in-length (thus on the increase in the CV) 

justifies the fact that fingerlings stocked at different 

densities would have different rates of increase in their 

CVs. However, the CVs ultimately reach asymptotic values 

which are specified by the time coefficient p. The theory 

of asymptotic CVs also find support in the fact that the 

number of fish harvested (or survival) had very little 

effect on the change in CV over time. 

The model, E(CVt)=[a(d)tPJ 1 / 2 , presents some elegant 

characteristics with tremendous implications in channel 

catfish fingerling production. Both a and p vary according 

to the culture conditions. The coefficient a is lower in 

low density condition and increases with increasing stocking 

density as shown in the 1992 pond experiment with a being 

the lowest (0.26) at the low density of 150,000/ha and the 

highest (0.58) at the high of 600,000/ha. However, the 

ANCOVA gave much lower values of log(a) (0.21) at 300,000/ha 

and 0.41 at 600,000/ha for the 1993 pond experiment than 

those observed in 1992. On the other hand, P was higher in 

1993 (1.88) than in 1992 (1.41). Consequently, it appears 

that log(a) and p vary not only with the initial density but 

more importantly with the survival rate within a given 

population. Therefore, those two parameters could be used 

to assess mortality rate in fish populations. 

The model also showed that the CV ultimately reaches an 

asymptotic value regardless of the initial stocking density. 
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At high density, the rate of increase is higher and the CV 

reaches the asymptotic value earlier than in the case of the 

medium and the low densities. 

Conclusion 

The multiple regression model for CV provides 

meaningful! ·information on the different components of CV, 

especially in situations where performance of fish from 

different origins are evaluated. This study showed that the 

parental conditions have no effect on the expression of the 

CV and only environmental factors coupled with some 

interactions contribute to the variation-in-size. 

The different expressions of CV can find several 

applications in aquaculture. Selection for uniform growth 

may not be feasible because environmental factors result in 

competition which translates into size variation. 



V. INTERACTIONS OF DENSITY AND SURVIVAL AND THEIR IMPACT 

ON GROWTH AND YIELD OF CHANNEL CATFISH, ICTALURUS 

PUNCTATUS, FINGERLINGS 

Introduction 

In the United States, catfish farming is the largest 

aquacultural industry with more than 3.75 million hectares 

of water producing 276 million kilograms of farm-raised 

catfish in 1989 (Masser et al. 1991). catfish farming has 

evolved from the traditional two-season production cycle to 

a multiple stocking-multiple harvest strategy. In the 

traditional cycle, broodfish are spawned in May-June and fry 

are stocked in the nursery ponds at densities varying from 

25,000 to 500,000 fry per hectare. Fingerlings are 

harvested in the fall-winter when they average 10 to 15 cm, 

and restocked in grow-out ponds at densities from 5,000 to 

7,500/ha to final weights of 300 to 450 g the following 

fall. Most of the fish were sold either live or dressed 

through local outlets. 

The majority of catfish now produced is sold to 

processing plants which require year round supplies of fish. 

More catfish are being sold as filets, requiring at least a 

675 g fish whole weight for processing. The new orientation 
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of the market resulted in a change in the production 

technology. This included higher stocking rates of 10,000 

to 12,500 fish per hectare in grow-out ponds, multiple 

harvests and multiple restocking over several years before a 

complete harvest. 

In the attempt to explain growth within a population, 

it is often difficult to separate the direct effects and 

interactions of food availability, density, space and size. 

Brett (1979) stressed the importance of biotic factors such 

as food quantity and quality on growth and growth 

variability in communal systems. He suggested that the 

quality of food was directly involved in the increase in 

weight and feed conversion, but only the quantity of fbod 

coupled with some social interactions affect growth 

variability, and subsequently, size differences within fish 

populations. These interactions are not well understood as 

they affect channel catfish fingerling production. 

Partial harvest techniques have been used in young 

Atlantic salmon Salmo salar and Artie charr Salvelinus 

alpinus production to improve growth rate and produce 

uniform-size fish {Gunnes 1976; Wallace and Kolbeinhavn 

1988). The theory behind the partial harvest technique is 

that removal of some individuals in the population increases 

food availability and reduces competition. 

The objective of this study was to determine the 

effects of density and survival on growth rate and yield of 
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fingerling channel catfish in fingerling ponds. The effects 

of partial harvests on the size distribution and change in 

the population structure was also examined. 

Materials and Methods 

This study was conducted at the Fisheries Research 

Unit, Alabama Agricultural Experimental Station, Auburn 

University, Alabama. In 1992, 15 day-old channel catfish 

fry were stocked in 12 earthen ponds (0.04 ha) and cultured 

for 120 days. Fry were stocked at the low density of 

150.000/ha, medium density of 300,000/ha, and high density 

of 600.000/ha with four replicates per treatment. 

In 1993, channel catfish fry were stocked at 300,000/ha 

and 600,000/ha with six replicates per density. In three of 

the medium density ponds, an estimated 10% and 3% (by 

weight) of the population were partially harvested at 60 and 

90 day post stocking, respectively. An estimated 25% and 6% 

(by weight) of the population were also removed in three 

other high density ponds for the same periods to reduce the 

estimated standing crop to 1,000 Kg/ha. 

In all treatments, fry were fed 36% protein crumble 

catfish feed twice a day, increasing the rate to a maximum 

of 40 kg/ha/day during the experiment. The feeding level 

was identical in every pond regardless of the initial 

stocking density. 
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At the end of each 30-day culture period, a sample of 

100 fingerlings was removed from each pond, individually 

weighed to the nearest gram and measured to the nearest 

millimeter total length. Ponds were harvested after 120 

days. Total number of fish harvested was estimated by 

dividing the total harvest weight by the average weight of 

fingerlings. 

Growth variability was described as the coefficient of 

variation (Brett 1979): 

CV(%)= (SD/mean L) x 100 

where SD is the standard deviation, and Lis the length. 

The growth rate function is given by the expression 

(Thompson and Cauley 1979): 

GL = KLe-at 

where Lis the length, tis the age (or time) and Kand a 

are constants. The growth coefficients Kand a were 

determined graphically by fitting growth curves via Ricker's 

growth models (Ricker 1975). 

Results 

Growth and production 

In 1992 the average weight of fish between the low and 

medium densities was not significantly different but average 

weight at high density was significantly lower from the 

medium density ponds (P<0.05). Survival was a function of 

density, 90% at low density, 70% at medium density, and 44% 
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at high density. Consequently, a 100% difference in the 

stocking density between the low and the medium densities 

resulted in 50% more fish being harvested in the medium 

treatment; and a 100% difference in the stocking rate 

between the medium and the high density ponds resulted only 

in 9% more fish harvested at the high density. Yield was 

the highest at the medium density (2,745 kg/ha) and the 

lowest at the high density (l,213kg/ha) 

(Table 13). 

In 1993, the average weight of fish was not 

significantly different between partial and batch-harvested 

ponds within and across all treatments. Yield and survival 

were higher in partially harvested ponds than in batch­

harvested ones but not significantly different in all 

treatments (Table 14). 

Values for K increased and a decreased as density 

decreased. The growth curves associated with the 

coefficients Kand a showed that maximum growth occurred 

during the first month of the culture period with the low 

density ponds having the greatest maximum growth. The 

growth curves of batch-harvested and partially harvested 

medium density ponds are identical. In high density ponds, 

the growth rate of the population was reduced at 30 and 60 

days, and was near zero at 90 days. Partial harvest at 60 

days increased the growth rate (Fig. 9). 
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Table 13. 
(FCR) of 
densities 
weight of 

Growth, survival, yield, and feed conversion ratio 
channel catfish fingerlings stocked at three 

and fed up to1 40kg/ha/day. FCR is the ratio of 
feed to weigh~ gained of fish. 

Stocking densities (fish/ha) 

Variables 150,000 300,000 600,000 

Initial length (mm) 17 17 17 

Final length (mm) 118 117 85 

Initial weight (g) 0.04 0.04 0.04 

Final weight (g) 13.4 13.0 4.9 

survival (%) 90.0 70.0 44.5 

Yield (kg/ha) 1,809 2,745 1,213 

FCR 2.3 1.8 2.3 



Table 14. Production data for channel catfish fingerlings cultured in ponds 
at the densities of 300,000 and 600,000/ha with or without partial harvest 
at 60 and 90 d post stocking and fed up to 40 kg/ha/day. 

Stocking density (fish/ha) 

Variables 300,000 300 oooPh 
I 600,000 600,000Ph 

Initial length (mm) 15 15 15 15 

Final length (mm) 144 148 126 128 

Initial weight (g) 0.04 0.04 0.04 0.04 

Final weight (g) 26 31 24 20 

Number harvested (per ha) 89,838 73,650 96,225 67,283 

Number removed (per ha) - 39,980 - 184,283 

Total number 89,838 103,630 96,225 251,533 

Survival (%)* 30 38 16 42 

Yield 2,309 2,305 2,285 1,332 

Total yield 2,309 3,557 2,285 4,980 

Ph= Partial harvest 
* Survival includes number harvested and number removed. 

(X) 

~ 
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Figure 9. Growth curves of channel catfish fingerlings 

cultured in ponds and partially harvested at 60 and 90 days. 

The treatments were A: 150,000/ha, B: 300,000/ha, c: 

600,000/ha, D: 300,000 with partial harvest and E: 

600,000/ha with partial harvest. 



86 

2 

-0- A 
ci, 1.6 
>, 

B C'l:I -e-
32 
~ 1.2 

--tr- C -Cl) -~ 0.8 
.c 
i 
0 ... 
C, 0.4 

0 

Time (days) 

2 

--0- B 
-;:: 1.6 

C'l:I 
"0 

~ C -E 
E 1.2 

......_. D -Cl) 
E - --tr-C'l:I 

~ 0.8 
i 
0 ... 
c, 0.4 

Time (days) 



87 

Population structure 

At low and medium densities, the populations were 

similar at 30 and 60 days and the CVs increased with age. 

About 10 and 20% of the population were at or above 100 mm 

(acceptable size) at 60 d, 75 and 80% were of acceptable 

size at 120 days in the low and medium densities, 

respectively. However, about 10% of the population failed 

to increase their length after 60 days. 

At high density, population structures at 30 and 60 

days were similar. At 60 days, 3% of the population was 

above 100 mm. At 120 days, only 10% of the population was 

above 100 mm (Fig. 10). 

In the partially harvested medium density treatment, 

over 90% of the population was above 10 cm after 120 days. 

In partially harvested high density ponds, about 50% was 

above 10 cm for the same period (Fig. 11). 

The coefficient of variation (CV) for total length 

increased with time and is related to the number of fish 

harvested (r = 0.69). At low and medium densities, the CVs 

increased from 3 to 19%, and similarly, increased from 3 to 

21% in the high density ponds after 120 days. The increase 

in CVs were not statistically different across densities. 

The increase in CV over time was inversely related to the 

estimated percent body weight fed (r = 0.77). Partial 

harvest did not improve the uniformity in size within each 
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Figure 10. Structure of channel catfish fingerling 

populations over 120-day culture period in earthen ponds and 

at three densities (A: population at 30 days; B: populations 

at 60 days; C: populations at 120 days). 
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Figure 11. Structure of channel catfish fingerling 

populations over a 120-day culture period at two densities 

and with partial harvest at 60 and 90 d (A: populations at 

30 days; B: populations at 60 days; and C: populations at 

120 days). 
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population. Harvest CV increased to 21% at medium density 

and 22% at high density. 

Skewness changed throughout the culture period. The 

populations were negatively skewed in the low and medium 

density ponds and positively skewed in the high density 

population at 60 and 120 days. After the partial harvest, 

the populations were all negatively skewed in all 

treatments. 

Discussion 

Goals in fish farming include maximizing the use of 

pond space and maintaining biomass near the critical 

standing crop while minimizing inputs. In the present 

study, those goals were best reached at a stocking density 

of 300,000/ha. Growth rates were similar in both low and 

medium density ponds. The populations were negatively 

skewed in the low and medium density reaching harvestable 

size by 120 days but with the absolute number of 

harvestable-size fish lower at low density. The additional 

150,000 fry stocked to obtain a density of 300,000/ha gave 

75,650 more fish {50%) than that obtained at 150,000/ha. 

Therefore, pond space and resources were not fully used at 

150,000/ha. A stocking rate of 600,000/ha gave the greatest 

number of fish at harvest, but growth rate and the 

percentage of harvestable-size fish were low. The 

additional 300,000 catfish fry stocked to obtain the density 
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of 600,000/ha resulted in the production of only 27,925 more 

fish (9%) than that obtained when fry .were stocked at 

300,000/ha. 

Low and medium stocking densities were fed at 

approximately 15 and 11% body weight on day 30 and 9 and 6% 

on day 60. These percentages were well above the maximum 

values of 4.5 to 6.5% body weight needed for sustained 

growth for channel catfish fingerlings grown in aquaria 

(Mangalik 1986). For fingerlings grown in ponds at 30° c, 

Lovell (1989) also advocated maximum feeding rate from 4.5 

to 10% from swim-up fry to fish of 16 cm in size and grown 

in ponds at 3o0 c. There was both individual and population 

growth in low and medium density ponds at 30 and 60 days. 

At 90 days, fish at low and medium densities received 

approximately 3.5 and 2.5% body weight, the standing crop 

increased above 1,000 kg/ha and a depression in growth was 

observed. 

High stocking density ponds were fed an estimated 7 and 

4% body weight at 30 and 60 days. Despite these percentages 

being above the assumed minimum required, growth rate was 

lower than that in the low and medium densities. 

Fingerlings were fed 1.4 and 1.3% at 90 and 120 days 

resulting in a reduction in the growth rate by 25% between 

day 90 and day 120. 

At the high stocking density, crowding appeared to be 

the controlling factor. Brown (1946) came to similar 
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conclusion when culturing brown trout, Salmo truta 

fingerlings where highly crowded conditions (0.33 

fish/liter) resulted in a reduced feed conversion efficiency 

despite an increase in the feeding level. In the present 

study, the feed conversion ratio increased at the high 

density to 2.41 which one would have expected to be similar 

to that of the medium density. Magnuson (1962) who examined 

the effect of density on growth of the medaka Oryzias 

latipes found that increasing the population four-fold 

reduced growth rate; he attributed growth reduction to both 

feeding and social behavior. In the case of the channel 

catfish fingerlings, the feeding and schooling behaviors may 

help explain the effect of crowding on growth. Weatherley 

(1972) associated size variability to feeding mode and 

schooling behavior and concluded that species which take 

relatively long period of time to complete their meal were 

likely to exhibit high size variation. Nibbling is the 

feeding mode in Ictalurids and the crowded condition is 

antagonistic for this feeding behavior. At high density, 

nibbling becomes less efficient because of the physical 

interference between fish resulting in feed loss and in turn 

less efficient feed conversion (Brett 1985). 

Coefficient of variation (CV) increased with time. 

This is in harmony with the expression of the growth rate 

function which suggests that larger individuals grow faster 

while the smaller grow slowly. At all densities, the 
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smallest size ranges continued to grow at a slower rate than 

the larger fish resulting in greater variations after 60 

days. This trend was also evident in the nature of the 

skewness of the populations as affected by density. At 

150,000 and 300,000/ha, the populations were negatively 

skewed implying that a high proportion of the fish were in 

the larger size ranges. At 600,000/ha the population was 

positively skewed with a small portion able to continue a 

high growth rate while the majority grew very slowly 

resulting in the model length being less than the mean 

length of the population. The amplitude of the CV and the 

degree of skewness increased noticeably once the estimated 

standing crop was in excess of 1,000 kg/ha and the feed 

imput fell below 4% body weight, independent of stocking 

density. 

The primary objective of partial harvest was to reduce 

the standing crop below 1,000 kg/ha to permit a feed imput 

of 5% body weight without exceeding 40 kg/ha and to allow 

fish in the smallest size ranges to increase in size. 

Partial harvest did reduce the standing crop, increased the 

yield at harvest, and allowed both individual and population 

to increase in length and weight. However, partial harvest, 

did not prevent increasing size variation in the population. 

Smaller individuals increased by only 10% while larger fish 

increased by 50 to 100% between 60 and 90 days. It is 

suspected that factors other than feed input and standing 
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crop controlled the individual growth rate in the ponds 

after the 60th day. 

Conclusion 

The growth rate of fish population and individual 

growth are affected by density. The 1992 production data 

showed that optimum standing crop is a combination of 

survival and the final mean weight. Increasing stocking 

density rates decreased survival and at high density of 

600,000/ha reduced average weight yield at harvest. 

In all densities, the portion of the population in the 

smallest size ranges grew at a slower rate than the 

remaining portion of the population resulting in greater 

size variation. Partial harvest did reduce the standing 

crop and allowed the fish population to grow but did not 

control the increasing size variation of the population. 

Finally, partial harvest did increase the total yield. 



VI. USE OF SIZE DISTRIBUTION DATA TO ESTIMATE MORTALITY 

RATES IN CHANNEL CATFISH FINGERLING POPULATIONS 

IN PONDS 

Introduction 

Proper management of fish populations requires accurate 

and precise knowledge of both growth and mortality rates 

(Ebert 1973; Pepin 1991). In fisheries, mathematical models 

using length-frequency distributions or empirical 

relationships between length and age estimated from otoliths 

have been used with success to calculate or predict growth 

rate (MacDonald and Pitcher 1979). However, fisheries 

biologists have been less successful in estimating mortality 

rates from size distributions mainly because of the 

difficulty in sampling an entire population for a long 

period of time (Pepin 1993). 

In aquaculture, prediction of mortality rates using 

mathematical models have received limited attention. 

Traditional methods of calculating mortality rates involve 

harvesting the entire population and dividing the number of 

fish harvested by the total number stocked. Methods such as 

Ricker's formula (Ricker 1975) and the length-based method 

(Smith and Richardson 1977; Pepin 1993) can also be applied 
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with appropriate adjustements to estimate mortality. 

Ricker's formula estimates mortality as a function of time. 

The length-based method uses the slope of the descending 

limb of the cumulative length-frequency distribution of the 

fish population and estimates mortality as a function of 

length. This method is based upon the assumption that 

natural mortality is size dependent and is effective in 

natural fisheries (Houde 1989; Pepin 1993). However, in 

aquaculture, the size dependency of natural mortality has 

not yet been established and the use of this method becomes 

limited, especially for individuals of nearly the same age. 

In our quest for alternative methods of estimating 

mortality rates in populations, we analyzed the possibility 

of using a variation of the length-based method. Using the 

same principle as the length-based method, we considered the 

descending limb of the length-frequency distribution above 

the modal length rather than the entire population to solve 

the population number density equation. our method is based 

upon the assumption that fish mortality is a function of the 

shape of the size structure and that the right hand limb of 

a size-frequency curve is more convincingly representative 

of mortality and growth pattern (Van Sickle 1977). 

The objective of this study is to evaluate an 

alternative method of determining mortality rates in fish 

populations using length-frequency distributions and compare 

this method to the more traditional length-based method. 
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Materials and Methods 

Fish culture and sampling 

Fifteen-day old channel catfish fry were stocked in 12 

earthen ponds (0.04 ha) for 120 days at the Fisheries 

Research Unit, Alabama Agricultural Experimental Station, 

Auburn University. Fry were stocked at the low density of 

150,000/ha, medium density of 300,000/ha, or high density of 

600,000/ha with four replicates per treatment. 

In 1993, fry were stocked at 300,000/ha and 600,000/ha 

with six replicates per density. In three of the medium 

density ponds, an estimated 10 and 3% (by weight) of the 

population were partially harvested at 60 and 90 d post 

stocking, respectively. An estimated 25 and 6% (by weight) 

of the population were also removed in three other high 

density ponds for the same periods. In both experiments, 

fry were fed a 36% protein crumble catfish feed twice a day, 

increasing the rate to a maximum of 40 kg/ha/day in all 

treatments. 

In 1994, fry were stocked at 600,000/ha in nine ponds. 

In three ponds, fry were fed up to 40 kg/ha/day and in the 

other six, fry were fed up to 80 kg/ha/day. In three of the 

six ponds fed at 80 kg/ha/day, fry were partially harvested 

at 60 and 90 d. At the end of each 30-day culture period, a 

sample of 100 fingerlings was removed from each pond and 

individually weighed to the nearest gram and measured to the 
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nearest millimeter total length. Ponds were harvested after 

90 d. Total number of fish harvested was estimated by 

dividing total harvest weight by the average weight. 

Estimates of mortality rates 

The length-based method of estimating mortality rates 

was described by Smith and Richardson (1977) and Pepin 

(1993). The length-frequency distribution for the entire 

population is divided into size classes, and it is assumed 

that mortality is the same for all individuals in each size 

class. The mortality rate is estimated by using the linear 

regression of the log-transformation of the number density 

equation (Smith and Richardson 1977; Pepin 1993): 

N = ae-zl 

where N is the number of fish, 1 is the length, z is the 

mortality rate and a is a constant which is estimated 

graphically. This method requires a sample truly 

representative of the population. In addition, it assumes 

no migration and that growth rate is constant for 

individuals of the same size. 

Method 1 

The number density equation was applied to the entire 

population of channel catfish fingerlings cultured in ponds 

within different environmental conditions in 1992 and 1993. 

The equation was applied to the entire population using a 
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size class width of 10 nun. The slope of the descending limb 

was mathematically determined from the plot of the log­

transformation of the number of fish against fish total 

length. 

Method 2 

The number density equation was applied to the 

population above the modal length for each length-frequency 

distribution using the same size class width of 10 mm. The 

slopes of the descending limb were again used to estimate 

mortality rates. 

Both methods were applied to channel catfish fingerling 

population cultured in ponds in 1992 and 1993. The data 

collected in 1994 was used to validate their applications. 

Results 

Mortality estimates from each method were compared to 

the actual mortality observed at harvest. The length-based 

method applied to the entire population (Method 1) gave 

lower estimates of mortality ranging from 14 to 47% (Table 

15). Relatively flat slopes and an overall poor general 

relationship describing the length-based survival curve with 

r 2 values ranging from 0.18 to 0.91 were observed (Fig. 12). 

Moreover, some estimates were not significantly different 

from O (P>0.05). Method 2 gave steeper slopes (Fig. 13) and 

higher mortality rates which ranged from 25 to 80% 



Table 15. Initial stocking density, actual and estimated mortality rates using the 
entire population (method 1), and estimated mortality using the portion of the 
population above the modal length (method 2) in channel catfish fingerling populations. 

Yr/Trt 

(fish/ha) 

1992 
150,000 
300,000 
600,000 

1993 
300,000Ph(a) 
300,000 
600,000Ph(b) 
600,000 

1994 
600,000/80NG(b) 
600,000/80G(c) 
600,000/40NG(d) 

Length interval 

(mm) 

56-186 
64-170 
52-155 

76-226 
82-226 
86-191 
69-198 

60-120 
72-135 
45-140 

Actual 
mart. 
(%) 

10 
30 
56 

84 
70 
89 
84 

76 
87 
53 

Method 1 

Fish mart. r 2 

18 
18 
41 

14 
17 
42 
20 

43 
47 
35 

(%) 

0.17 
0.16 
0.35 

0.09 
0.16 
0.41 
0.35 

0.91 
0.82 
0.91 

Method 2 

Fish mart. r 2• 

(%) 

25 
38 
64 

44 
47 
42 
44 

80 
80 
60 

0.90 
0.84 
0.92 

0.51 
0.76 
0.95 
0.91 

0.94 
0.91 
0.94 

* r 2 represents the goodness-of-fit of the log-linear transformation of log 
cumulative number. 
(a) Ph: partial harvest 
(b) ponds fed at 80 kg/ha/day with no partial harvest 
(c) ponds fed at 80 kg/ha/day with partial harvest 
(d) ponds fed at 40 kg/ha/day with no partial harvest 

.... 
0 
N 
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Figure 12. Cumulative length-frequency distributions of 

channel catfish fingerlings. The broken lines show the 

average cumulative abundance (a: 300,000/ha with partial 

harvest; b: 300,000/ha without partial harvest; c: 

600,000/ha with partial harvest; and d: 600,000/ha without 

partial harvest). The slopes of the solid lines give the 

mortality estimates using equation 1. Width of size class: 

10 mm. (1) represents slope from method 1 and (2) slope from 

method 2. 
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(Table 15). However, the estimates of mortality for the 

1993 data deviated from the cumulative mortality at harvest 

by about 40%. 

To further our investigation, we remove extreme points 

within the distributions. By doing so, we were able to 

increase the slopes and consequently increase mortality 

estimates. 

The analysis of the length-frequency distributions 

showed that the combined effect modal frequency, the size 

range, and the skewness dictate the mortality estimation. 

The 1994 data showed size ranges smaller than those observed 

in 1992 and 1993. When the method was applied to the 1994 

channel catfish fingerling data, we observed mortality 

estimates from method 1 higher than those of the previous 

years using the same method. Smaller size ranges gave 

steeper slopes and higher mortality estimates (i.e at 

600,000/ha, size range: 103 mm; modal frequency: 42%; 

estimated mortality: 64%). Similarly, larger size range 

coupled with smaller modal frequency gave lower mortality 

estimates (i.e at 600,000/ha, size range: 129 mm; modal 

frequency: 25%; estimated mortality: 44%) (Table 16). 

Similarly, we observed that size structures with positive 

skewness gave lower mortality estimates than those with a 

negative skewness (Fig. 14). However, we were able to 

increase the mortality estimates by removing the extreme 

values within the frequency distributions. 



Table 16. Initial stocking density, size range, modal frequency, estimate and 
actual mortality rates in channel catfish fingerling populations cultured in 
earthen ponds. 

Treatment Size range 
(fish/ha) (mm) 

Freq. 
mode 

of Estimated mort. Actual mort. 
(%) 

(%) 

-
Width size classes Width size classes 

10 mm 20 mm 10 mm 20 mm 

1992 
150,000 56-186 51 25 10 
300,000 64-170 27 38 - 30 
600,000 52-155 42 61 - 56 

1993 
300,000PH 76-226 16 52 44 78 84 
300,000 82;,...226 31 40 47 74 70 
600,000PH 86-198 23 53 42 80 89 
600,000 69-198 25 52 44 78 84 

--
PH: Partial harvest. 

I-' 
0 
CTI 
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Figure 13. Cumulative length-frequency distributions and 

estimates of mortality rates in channel catfish fingerlings. 

The broken lines show the average cumulative abundance (a: 

300,000/ha with partial harvest; b: 300,000/ha without 

partial harvest; c: 600,000/ha with partial harvest; and d: 

600,000/ha without partial harvest). The slope of the solid 

lines gives mortality estimates from number density 

equation. 
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Discussion 

When size-frequency data are available, it is possible 

to estimate mortality on a size-specific basis. Ricker 

{1975) and Van Sickel (1977) regarded mortality and growth 

rate as vital parameters in shaping size-frequency 

distributions. They established a strong relationship 

between the quality of the prediction of mortality and the 

shape of the size-frequency distribution. As Table 15 

shows, the estimation of mortality rates from all size 

classes using method 1 gives values far less than the actual 

mortality estimates. The poor estimation of mortality is 

explained mathematically by less steep slopes which are due 

to the poorly defined size classes and the generally dome 

shape of channel catfish fingerling size-frequency 

distributions. 

Method 2 helps circumvent this problem by using on1y 

the distribution above the modal length. This method 

generates higher slope values and subsequently higher 

mortality estimates. The strategy of using one portion of 

a length-frequency distribution was described by Van Sickel 

(1977) when comparing different methods of estimating 

mortality rates from distributions from populations of Pismo 

clams {Tivelia stultorum). He showed that considering only 

a segment of the distribution did not affect the prediction 

of mortality when he was confronted with similar problem. 
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In the present study, Method 2 gave higher mortality 

estimation for the channel catfish fingerling data in 1992. 

In the 1993 data, both methods failed to give values 

close to the actual mortality, probably because individuals 

within each size class were sufficiently dispersed in the 

size distribution resulting in a wide size range. The 1993 

data differed from that of 1992 by the size range of the 

different populations and the modal frequency. The channel 

catfish fingerlings in 1992 had smaller size ranges and 

higher modal frequencies than the populations in 1993. It 

appears from this study that smaller size ranges and higher 

modal frequencies give higher mortality estimates. The size 

ranges of the channel catfish fingerling populations in 1994 

varied from 60 to 95 mm and were on the average half of the 

size range of the populations in 1993. Mortality estimates 

in 1994 from Method 2 were about twice the estimates in 

1993. 

To compensate for the wide size range and the low modal 

frequency, an alternative strategy is to increase the width 

of the size classes. Based on this study, increasing the 

width from 10 to 20 mm decreases the dispersion of the size­

frequency distributions and increases the slope estimates 

and eventually increases the mortality estimates. 

The methods discussed in the present study can be 

useful to hatchery managers and fish culturists when size 

distribution of fingerling populations are available. 
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Unlike Ricker's formula (Ricker 1975) which estimates 

mortality over time, the methods described here estimate 

size-specific mortality rates when the stationary size 

distribution is known. The choice of either of the two 

methods should be made after analysis of the length­

distribution. 

The relationship between the mortality estimation and 

the skewness using both method can be better understood 

after observations of length-frequency distributions. 

Positively skewed populations have long right tail as 

opposed to negatively skewed distributions. Populations 

highly skewed to the left (positive skewness) have flat 

slopes as compared to populations skewed to the right 

(negative skewness). As a result, mortality estimates are 

lower in positively skewed populations. 

Conclusion 

The present study shows the possibility of using 

length-frequency distributions to predict mortality rates of 

fish populations in aquaculture ponds. Both methods 

discussed are practical in estimating mortality would 

require a precise estimate of growth rate. 

Both methods 1 and 2 provide mortality estimates of 

fingerlings in ponds. The proposal to use lengths above 

mode may not be good in some instances where it failed to 

give mortality estimates close to the actual mortality in 
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the ponds. It is also questionable to alter the data by 

removing extreme values within the length-frequency 

distributions to increase the mortality estimates. However, 

those questions should not undermine the usefulness of 

method 2 in management fish populations in aquacultural 

ponds. 
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Table 17. Final mean length, standard deviation (SD), CV, 
skewness of channel catfish fingerlings stocked at three 
densities and fed up to 40kg/ha/day (initial length= 16.5 mm; 
initial CV= 3 to 4%). 

Period 
(days) 

30 

60 

Trt/Pond 
(fish/ha) 

150,000 
E-39 
E-42 
E-47 
E-48 

300,000 
E-41 
E-43 
E-44 
E-46 

600,000 
E-37 
E-38 
E-45 
E-55 

150,000 
E-39 
E-42 
E-47 
E-48 

300,000 
E-41 
E-43 
E-44 
E-46 

600,000 
E-37 
E-38 
E-45 
E-55 

Mean length SD 
(mm) 

64.6 
62.4 
64.7 
65.5 

51.7 
51. 0 
51.5 
53.7 

54.3 
46.9 
50.1 
50.8 

92.6 
69.8 
91.1 
97.3 

82.2 
96.6 
85.9 
89.3 

73.2 
61.2 
78.4 
78.3 

5.48 
4.70 
5.28 
5.70 

6.39 
6.43 
6.42 
6.15 

7.52 
8.74 
8.84 
7.87 

7.09 
7.24 
7.42 
9.18 

10.58 
9.27 

10.85 
8.91 

9.02 
10.20 
11.53 
10.12 

CV 
(%) 

S{ 

8.48 0.43 
7.54 -0.63 
8.17 0.61 
7.61 0.70 

12. 3 6 -o. 002 
12.61 -0.075 
12.45 0.089 
11.45 -0.700 

13. 86 -0. 061 
18.65 0.220 
17.65 -0.270 
15.49 -0.240 

7. 65 -o. 090 
10.37 0.270 
8.10 0.110 
9.43 -0.001 

12.87 -0.069 
9.60 -0.290 

12.64 0.320 
9.9 0.320 

12.33 0.089 
16.65 0.820 
14.71 0.280 
12.92 0.640 
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Table 17 ( continued) : Final mean length, standard deviation 
( SD) , CV, skewness (Sk) of channel catfish fingerlings stocked 
at three densities and fed up to 40 kg/ha/day (initial length 
= 16.5 nun; initial CV= 3 to 4%) . 

Period Trt/Pond Mean length SD CV SK 
(Days) (fish/ha) (nun) (%) 

90 
150,000 
E-39 113.7 10.29 9.05 -0.160 
E-42 86.9 12.93 14.88 0.026 
E-47 112.7 10.98 9.75 0.670 
E-48 116.1 8.97 7.73 -0.270 

300,000 
E-41 86.0 13.30 15.47 0.440 
E-43 102.6 9.73 9.48 0.340 
E-44 111.9 13.99 12.51 -0.390 
E-46 102.2 11.98 11. 72 0.400 

600,000 
E-37 83.5 12.89 15.44 0.079 
E-38 79.1 16.19 20.46 0.530 
E-45 71. 9 10.45 14.53 0.810 
E-55 98.5 19.85 20.14 0.530 

120 
150,000 
E-39 132.7 20.64 15.55 0.210 
E-42 94.8 18.37 19.39 0.150 
E-47 121.7 14.99 12.32 0.250 
E-48 124.4 15.59 12.53 0.210 

300,000 
E-41 114.0 24.35 21.35 -0.410 
E-43 126.6 15.20 12.00 0.050 
E-44 114.4 19.56 17.10 -0.050 
E-46 111.2 23.20 20.89 0.090 

600,000 
E-37 82.7 13.68 21.35 0.960 
E-38 75.0 18.27 24.38 1.200 
E-45 83.5 13.84 16.57 0.070 
E-55 97.6 16.40 16.80 -1.260 
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Table 18. Final mean length, standard deviation (SD), CV, 
skewness of channel catfish fingerlings stocked at two 
densities with partial harvest and fed up to 40 kg/ha/day 
(initial length= 15.7 mm; initial CV =3 to 6.1%). 

Period 
(days) 

30 

60 

Trt/Pond 
(fish/ha) 

300,000 
E-38 
E-40 
E-44 
E-47 
E-48 

600,000 
E-39 
E-41 
E-42 
E-43 
E-45 

300,000 
E-38 
E-40 
E-44 
E-47 
E-48 

600,000 
E-39 
E-41 
E-42 
E-43 
E-45 

Mean length 
(mm) 

67 
69 
71 
64 
64 

57 
51 
56 
49 
52 

104 
99 

105 
84 
91 

73 
64 
88 
86 
86 

SD 

4.81 
4.85 
4.07 
3.67 
4.98 

5.12 
6.24 
6.64 
7.07 
3.80 

8.99 
8.12 

10.49 
7.37 

10.22 

6.67 
6.66 
6.89 

10.07 
10.12 

CV 
(%) 

SK 

7 .19 -o. 02 
7. 07 -o. 46 
5.76 -0.21 
5.71 0.21 
7.81 -0.14 

9.20 -0.13 
12.29 0.48 
11.91 -0.10 
14.48 0.48 

7.36 0.03 

8.69 
8.22 

10.00 
8.78 

11.24 

9.09 
7.14 
7.82 

11.78 
10.57 

0.41 
0.42 
0.53 
1.28 
0.74 

0.49 
0.36 
0.19 
0.51 
0.22 
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Table 18 (continued): Final length, standard deviation (SD), 
CV, skewness (SK) of channel catfish fingerlings stocked at 
two densities with partial harvest and fed up to 40 kg/ha/day 
(initial length= 15.7 mm; initial CV= 3 to 6.1%). 

Period Trt/Pond Mean length SD CV Sc 
(day) (fish/ha) (mm) (%) (%) 

90 
300,000 with partial harvest 
E-38 130 19.51 15.02 0.54 
E-44 133 23.45 17.65 0.99 
E-47 112 18.35 16.43 0.50 

300,000 no partial harvest 
E-40 132 19.65 14.85 0.42 
E-48 121 22.78 18.84 0.28 

600,000 with partial harvest 
E-39 103 18.04 17.59 0.45 
E-42 124 18.71 15 .12 0. 23 
E-43 121 20.57 16.94 0.11 

600,000 no partial harvest 
E-41 93 17.19 18.50 1.00 
E-45 100 20.64 20.66 0.38 

120 300,000 with partial harvest 
E-38 165 31.66 19 .19 0 .14 
E-44 134 33.32 24.90 0.39 
E-47 139 32.14 23.10 0.24 

300,000 no partial harvest 
E-40 155 31.17 20.07 0.20 
E-48 133 34.79 26.11 0.26 

600,000 with partial harvest 
E-39 134 23.31 17.39 0.23 
E-42 121 18.10 14.93 0.58 
E-43 122 19.10 15.04 0.44 

600,000 no partial harvest 
E-41 113 23.18 20.44 0.86 
E-45 110 31.86 28.94 0.71 
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The model used to predict the population structures is 

a variation of the partial differential equation described 

by Sinko and Streifer (1969): 

oN(l,t)/ot + oN(l,t)G(l,t)/ol = -Z(l,t)N(l,t) (1) 

where oN(l,t)/ot is the rate of change in the number at size 

1, oN(l,t)G(l,t)/ol is the rate of change in the net number 

at size 1 resulting from growth G. -Z(l,t)N(l,t) is the 

mortality rate. 

If no mortality, then equation (1) becomes: 

oN(l,t)/ot + oN(l,t)G(l,t)/ol = 0 

and using the differential form: 

dN(l,t)dt + dN(l,t)G(l,t)/dl = O 

Equation (3) is then solved numerically using SAS (SAS 

1985) . 

When a growth rate function is used such as: 

G(l) = Kle-at 

(2) 

(3) 

(4) 

Kand a are obtained by plotting successive values of G 

against time and fitting an exponential curve to the data. 

Once the values of Kand a are obtained, calculate the 

different values of length (1) through the equation: 

1 = 1 0exp{(-K/a) (e-at - e-ato)} (5) 

where 1 0 and t 0 are length and time at a selected initial 

distribution. The values of 1 give the new length-frequency 

distribution. The univariate procedure in SAS (SAS 1985) 

gives the standard deviation, the coefficient of variation 

(CV), the skewness (Sk), and the kurtosis (Ku). 
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Table 19. Growth rate functions and coefficient for channel 
catfish fingerlings growth functions after 120 days when 
stocked at densities of 150,000, 300,000, and 600,000/ha (t = 
time (days); L = length (mm); PH= partial harvest). 

Stocking density 
(fish/ha) 

150,000/ha 

300,000/ha 

600,000/ha 

300,000/haPH 

600,000/haPH 

K 

2.0 

1.7 

1.1 

1.4 

1.1 

a Growth function 

0.8 2.0Le-0- 8t 

0.8 1. 7Le-0.8t 

1.3 1. lLe-1. 3t 

0.7 l.4Le-o. 7t 

0.6 l.lLe-O.Gt 
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The mortality rate is estimated by using the linear 

regression of the log-transformation of the following 

equation: 

{l) 

where N is the density number of fish, 1 is the length, and 

z is the mortality. Using the logarithmic transformation, 

we obtain: 

log (N) = log (a) - zl (2) 

First, generate the cumulative frequency distribution and 

plot against the length (1). The slope of the linear 

regression of equation (2) gives the estimated value of z 

which also estimates the mortality rate in fish per unit of 

length. The value of z is further converted into a 

percentage of the population. 

Example 

The channel catfish fingerling population stocked at 

150,000/ha in 1992 gave a slope of 0.8 which corresponded to 

an average mortality estimate of 0.8 fish per millimeter. 

The size range for this population was 130 mm. 

The number of fish dying: 0.8 x 130 = 74 fish. 

Since 397 fish were used to build the length-frequency 

distribution, the mortality as a percent is: 

74/397 = 0.18 (or 18%). 
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Table 20. Slopes (z) and values of the log transformed of the 
number density equation N=ae-z 1 . N is the number density 
function; 1 is the length (mm). Method 1 uses the entire 
population and Method 2 uses the population above the modal 
length. 

Stocking density Method 1 Method 2 
(fish/ha) 

z a z a 

150,000 0.80 5.32 1.4 1.19 

300,000 0.72 4.23 1.2 1.51 

600,000 0.98 4.02 1.7 8.03 

300,000PH 0.4 4.05 0.4 6.39 

300,000 0.58 4.42 0.67 9.04 

600,000PH 0.20 4.58 0.41 8.02 

600,000 0.25 5.22 3.52 6.32 

PH: Partial harvest 






