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Abstract

The demand for mobile data rates has grown tremendously in recent years, but the cur-

rent low-frequency spectrum is insufficient to support the rapidly growing demand for data

rates. Therefore, the upcoming 5G and future 6G technologies move data transmissions into

the unused higher frequency bands for more bandwidth. However, moving the network to a

higher frequency band also brings additional difficulties, such as reduced network coverage

and reliance on the line-of-sight (LoS) path. Fortunately, today’s smart wireless systems have

already transformed from purely communication networks into integrated systems that com-

bine sensing, computing, and communication. This integration facilitates the aggregation of

various data streams to form an intelligent and context-aware system that could overcome the

limitations presented by high-frequency radio signals.

This dissertation focuses on improving the efficiency, reliability, and security of networks

that work in the mmWave band and beyond, with a special perspective of using smart sensing

to obtain environmental information and building cognitive networks to obtain context knowl-

edge. In the first work, we explore the environment perception capability of the commercial

off-the-shelf (COTS) mmWave device to build a reflector map of the environment. The map is

used to find the backup Non-line-of-sight (NLoS) path directions to sustain the communication

when the LoS path is blocked. In the second work, we optimize the Reconfigurable Intelligent

Surface (RIS)-aided mmWave network topology by considering the directional communication

property. A novel (k,α)-Coverage model is proposed to fully characterize the impact of the path

difference on the availability of the path. Two deployment schemes are proposed to address the

problem of using the least number of RIS to achieve (k,α)-coverage. In the third work, to ensure

the data correctness of light detection and ranging (LiDAR) sensors in autonomous vehicles, we
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propose a Doppler frequency shift-based physical layer spoofing detection method. A statisti-

cal spoofing detection framework is also proposed to jointly consider the impact of short-term

uncertainty in vehicle velocity.

iii



Acknowledgments

First, I extend my profound gratitude to my doctoral advisor, Dr. Tao Shu, who has been a

beacon of inspiration and wisdom throughout my academic journey. He instilled in me the un-

derstanding that pursuing a Ph.D. requires unwavering persistence and an indomitable spirit to

never give up, regardless of the obstacles that lie ahead. From him, I learned that perseverance

is not merely about enduring but about overcoming and thriving through the rigors of research.

I am also immensely thankful to my dissertation committee, including Dr. Shiwen Mao,

Dr. Alvin Lim, Dr. Richard Chapeman, and Dr. Xiaowen Gong, for their invaluable feedback,

which significantly enriched my work. I am also deeply grateful to Dr. Diep Nguyen from the

University of Technology Sydney for the insightful comments I received.

I am honored to have had the opportunity to work and collaborate with the colleagues at

the Wireless Networking and Security Lab (WINGS). My special thanks go to Drs. Tian Liu, Li

Sun, Jing Hou, and Jian Chen, as well as Minarul Islam, Amit Das, Hairuo Xu and Guan Huang.

In particular, I express my deepest gratitude to Dr. Tian Liu for her exceptional collaborative

support and guidance.

Also, I want to acknowledge the financial support that has been received in my research.

This includes contributions from the Department of Computer Science and Software Engineer-

ing and the National Science Foundation, under the awards CNS-2006998 and CNS-1837034.

My years at Auburn would have been different without all the friends. My special thanks

goes to Jiaxiang Ren, Jingwei Liu, Yaoxuan Luan, Tong Li, Gaoxiang Li, Ruoyu Xu, among others.

Lastly, my heartfelt gratitude is extended to my parents, whose constant love and support

have been instrumental in shaping me into the best version of myself. Thank you for your end-

less kindness and for everything you have provided me with, beyond what I could ever imagine.

iv



Table of Contents

Abstract ii

Acknowledgments iv

1 Dissertation Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Environment Perception based Smart Beam Switching for Commercial Off-
the-shelf (COTS) mmWave Product . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Network Topology Optimization for Reconfigurable Intelligent Surface(RIS)
Assisted mmWave Directional Communication Network. . . . . . . . . . . . 5

1.2.3 Physical Layer Spoofing Attack Detection for LiDAR Sensors . . . . . . . . . 6

1.3 Publication Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Fast and High-Resolution NLoS Beam Switching over Commercial Off-the-Shelf mmWave
Devices 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Problem Statement and Solution Framework . . . . . . . . . . . . . . . . . . 14

2.2.2 Locating Dominant Reflectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3 Model Driven RSSI Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



2.2.4 Overhead/Cost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.5 Limitation of the Method and Extension to Larger Space . . . . . . . . . . . . 33

2.3 Testbed and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Test Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 (k,α)-Coverage for RIS-aided mmWave Directional Communication 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Coverage in RIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Coverage in mmWave Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Coverage in Directional Sensor Network . . . . . . . . . . . . . . . . . . . . . 55

3.3 (k,α)-Coverage Model and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 (k,α)-Coverage Model and Problem . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.3 (k,α)-Coverage Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 (k,α)-Coverage under Deterministic Deployment Scheme . . . . . . . . . . . . . . . 67

3.4.1 The Optimal k-sided Regular Polygon Pattern . . . . . . . . . . . . . . . . . . 68

3.4.2 Optimality Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 (k,α)-Coverage Probability under Random Deployment Scheme . . . . . . . . . . . 81

3.6 Numerical and Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

vi



3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Spoofing Detection for LiDAR in Autonomous Vehicles: A Physical-layer Approach 96

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Attacks Against AV Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.2 Perception Model Level Defense Methods . . . . . . . . . . . . . . . . . . . . 100

4.2.3 Signal Level Defense Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 LiDAR Working Principle and Vulnerability . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 LiDAR Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.2 Motivating LiDAR Security via Real-world Observations . . . . . . . . . . . . 104

4.4 Doppler Frequency Shift in LiDAR Sensing . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4.1 Doppler Frequency Shift Difference Between Legitimate Signal and Spoof-
ing Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4.2 Feasibility Study of Extracting Doppler Frequency Shift . . . . . . . . . . . . 110

4.5 Doppler Shift based Spoofing Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5.1 Attack Model 1: Static Attacker and Moving LiDAR . . . . . . . . . . . . . . . 115

4.5.2 Attack Model 2: Moving Attacker and Moving LiDAR . . . . . . . . . . . . . . 116

4.5.3 Attack Model 3: Moving Attacker That Controls Both Its Velocity and Signal
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6 Spoofing Detection with Joint Consideration of Velocity and Acceleration . . . . . . 129

4.6.1 Hypothesis Test Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.6.2 Joint Consideration of Velocity and Acceleration. . . . . . . . . . . . . . . . . 131

4.6.3 Formulation of Ha for Power Analysis . . . . . . . . . . . . . . . . . . . . . . 132

4.6.4 Settings for Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

vii



4.6.5 Numerical Results of Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . 137

4.6.6 Discussion on Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.7 Applicability Discussion, Future Works , and Conclusion . . . . . . . . . . . . . . . 140

4.7.1 Applicability Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Conclusion and Future Work 142

5.1 Dissertation Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2.1 Multi-modal Sensing with mmWave Radar . . . . . . . . . . . . . . . . . . . . 143

5.2.2 UAV-Assisted Reconfigurable Intelligent Surface Deployment . . . . . . . . . 144

5.2.3 Autonomous Vehicle Cooperative Lidar Security . . . . . . . . . . . . . . . . 144

References 146

viii



List of Figures

2.1 First order reflection model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Single reflector scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Multiple reflectors scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Out-lobe resolving based on measured RSSI (scanning step ω= 5◦). . . . . . . . . . 24

2.5 Normalized MSE v.s. N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 NLoS path matching between two different client locations. . . . . . . . . . . . . . . 28

2.7 System prototype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Dominant reflector map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 RSSI color map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.10 Performance of different NLoS links. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.11 RSSI distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.12 The CDF of RSSI estimation error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.13 Transport layer throughput trace in UDP. . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.14 Performance comparison with RSSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.15 Transport layer throughput trace in TCP. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 A circular list and a point (k,α)-coverage examples. . . . . . . . . . . . . . . . . . . . 60

3.2 Feasible region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Area (k,α)-coverage examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Boundary condition for region A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ix



3.5 The (k,π/k)-coverage area for k = 3,4,6. . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 The maximum side-lengths for equilateral triangle, square and regular hexagon
patterns w.r.t. the communication radius r . . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 The (3,α)-coverage area in a triangle pattern. . . . . . . . . . . . . . . . . . . . . . . 73

3.8 A d∗
3 example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.9 The (4,α)-coverage area in square pattern . . . . . . . . . . . . . . . . . . . . . . . . 76

3.10 A d∗
4 example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.11 The (k,α)-coverage probability example for k = 3. . . . . . . . . . . . . . . . . . . . . 83

3.12 The maximum feasible side length d∗
k and the maximum (k,α)-coverage area S ∗

(k,α)
generated by a pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.13 Performance comparison results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.14 The simulation and estimation results for Lemma 3.5.1. . . . . . . . . . . . . . . . . 91

3.15 f (k,α,k ′) vs. k ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.16 The (k,α)-coverage probability result for uniform distribution (solid lines) and
Poisson distribution (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.17 (3,α)-coverage probability (r = 0.15 and r = 0.25) for uniform distribution (solid
lines) and Poisson distribution (dashed lines). . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Normal LiDAR sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Spoofing device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Outdoor spoofing test environment and setup. . . . . . . . . . . . . . . . . . . . . . 106

4.4 LiDAR point-cloud data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Doppler frequency shift illustration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 Testbed design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 Doppler shift spectrum results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.8 Spoofing attack in Scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.9 The Cartesian coordinate system and signal tuple. . . . . . . . . . . . . . . . . . . . 117

x



4.10 Cooperative LiDARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.11 Numerical examples for spoofing detection when attacker controls its velocity. . . 124

4.12 Illustration of a Statistical Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.13 The number of samples needed for each road conditions under different spoofed
signal proportion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.14 The number of samples needed for each road conditions under different SNR. . . 138

xi



List of Tables

2.1 Multi-path channel resolving result. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Complexity of each step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Comparison between related work (Def LV: defense method level, Def Strategies:
defense strategies, Phy Inva: physical invariants used ) . . . . . . . . . . . . . . . . . 102

xii



Chapter 1

Dissertation Introduction

1.1 Background and Motivation

As data traffic consumption grows exponentially in wireless networks, the contradiction be-

tween capacity requirements and spectrum shortage becomes increasingly prominent [77]. Cur-

rently, the widely used frequency bands are already congested with TV and radio signals, along

with 4G LTE networks, which mainly span the frequency range between 800 to 3,000 MHz. This

saturation challenges not only the efficiency of current wireless services, but also poses signif-

icant barriers to the deployment of emerging technologies that require higher data rates, such

as virtual reality (VR), augmented reality (AR), 5G networks, and beyond [104, 8, 4].

To tackle the ever-increasing demand on higher transmission rate, one of the most effec-

tive solutions is to move the data transmissions into an unused higher section of the spectrum

where enormous bandwidths are available. The next-generation 5G network, is planned for the

first time to be deployed in a spectrum beyond 6 GHz, in the millimeter wave (mmWave) fre-

quency bands [1, 99, 103]. Compared to existing wireless technologies, mmWave communica-

tion has several advantages. First, with a huge bandwidth from 30 to 300 GHz, it can easily sup-

port multi-gigabit communication services such as real-time high-definition (HD) streaming

and ultra-high-definition video (UHDV). Second, due to the short wavelengths of the mmWave

signal, mmWave devices can pack a large number of antenna arrays to support multiple-input

and multiple-output (MIMO) [82, 64] transmission while only occupying a small physical space.

1



Third, with the large number of antennas being used, the mmWave device can utilize beam-

forming technology [95, 57] to focus the transmission energy to certain directions, which not

only increases the signal quality by suppressing the multipath effect but also facilitate the de-

velopment of other applications, such as detection radars. Furthermore, future 6G technology

will operate in the Terahertz (THz) frequency band [29, 24] to harvest even more unused and

unexplored spectrum to further improve network throughput.[97, 58, 136, 6].

Although moving the network to a higher frequency band can provide many appealing ad-

vantages, how can these physical layer advantages be fully capitalized by higher layers of the

network, so that it is ultimately translated into an equally significant user-perceivable through-

put/QoS performance gain, still remain as a critical challenge. First, due to the much higher

carrier frequencies than those used in conventional wireless technologies, high-frequency sig-

nals, particularly those in the mmWave band, are severely attenuated by oxygen [42, 26], leading

to increased free-space loss and reduced network coverage. Second, signals experience poor

diffraction upon encountering blockages due to their short wavelengths. Specifically, mmWave

communication heavily rely on the availability of the line of sight(LoS) path between users and

a base station. When the LoS path is blocked by treetops or pedestrians, the mmWave signal

cannot circumvent or penetrate through these obstacles, leading to a sudden loss of the signal.

Fortunately, with the expansion of communication bands, the landscape of wireless de-

vices is also undergoing rapid changes, creating new opportunities that could overcome the

limitations imposed by current design techniques. Unlike a traditional wireless device that is

basically a radio for communication, today’s smart wireless system is commonly equipped with

powerful application processors and strong multi-modal, multi-functional sensors. Conse-

quently, modern wireless networks are transforming from purely communication-focused net-

works to integrated systems that combine sensing, computing, and communication capabili-

ties. This integration facilitates the aggregation of various data streams from various channels

to form an intelligent, context-aware system that can make smart decisions. Generally, context

2



is a collection of measured and inferred knowledge about the environment where the network-

ing takes place, and context awareness refers to the ability of a system to acquire and reason

about context information and adapt to the corresponding applications accordingly [67]. With

environmental perception results and network context information, cross-layer optimization

approaches can be adopted to achieve end-to-end performance improvement.

The overarching goal of this dissertation is to improve the efficiency, reliability, and security

of networks and systems operating in the mmWave and beyond frequency bands, particularly

from perspectives of harnessing environmental information and network context information

to develop intelligent, cross-layer optimization approaches. This dissertation focuses on two

key areas related to this topic.

• Network Efficiency & Reliability Improvement: By leveraging the perceptual capabilities

and contextual information within the mmWave network, we can aggregate information

from other channels with the special physical properties of the network to develope in-

telligent, context-aware algorithms/methods for efficiency and reliability improvement.

• Sensing Security Protection: Exploiting the open nature of the wireless medium, an ad-

versary can easily launch attacks to compromise the security of a sensor and manipulate

perception results. We focus on protecting the accuracy and trustworthiness of sensor

data, which is a crucial and fundamental point in maintaining the normal operation of

the network.

In the first work, we leverage the environmental perception capabilities of commercial off-the-

shelf (COTS) mmWave devices to identify dominant reflectors in the environment, which are

used to determine suitable NLoS path directions to sustain communication when the LoS path

is being blocked. In the second work, our focus shifts from pure perception of the environ-

ment to proactive manipulation of the environment. Considering the unique context of direc-

tional communication networks, we investigate a network topology optimization problem for

3



the Reconfigurable Intelligent Surface(RIS)-assisted mmWave directional communication net-

work. A novel coverage model, the (k,α)-Coverage, is proposed to fully characterize the impact

of the difference in path direction on the availability of the path. We propose two deployment

schemes: random and deterministic deployment schemes, to address the problem of using the

least number of RIS to achieve (k,α)-coverage. In the third work, we focus on addressing the

sensing security problem associated with the modern light detection and ranging (LiDAR) sen-

sor. As LiDARs are susceptible to malicious spoofing attacks, we propose a physical layer spoof-

ing attack detection method that uses the Doppler frequency shift of the signal to verify the

sender of the signal and identify potential spoofing attempts. In addition, a statistical spoofing

detection framework is proposed to jointly consider the impact of short-term uncertainty in

vehicle velocity, which can provide more accurate spoofing detection results in realistic envi-

ronments.

1.2 Overview of Research Contributions

1.2.1 Environment Perception based Smart Beam Switching for Commercial Off-the-shelf (COTS)

mmWave Product

The high directionality of mmWave communication makes its line-of-sight (LoS) path suscep-

tible to blockage when the user is moving. Most existing solutions have very stringent require-

ments on the antennas of the transmitter and the receiver, which are hardly met by today’s

consumer-level commercial off-the-shelf (COTS) mmWave products. In reality, a COTS de-

vice uses low-resolution wide-beam antennas, and hence cannot support the aforementioned

methods for NLoS beam switching in response to the LoS blockage. In this work, we develop

a new method to support high-resolution mmWave multi-path channel resolving based on

coarse-grained wide-beam phased array antennas. We design a novel real-time beam-switching

algorithm that allows COTS devices to estimate the location and reflection coefficient of the

dominant reflectors. Whenever the current LoS is blocked, our algorithm can compute in real-

time the best alternative beam direction based on estimated reflectors to establish a strong
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NLoS link. We implemented the proposed algorithm on a COTS mmWave device and evaluated

the system’s performance on the physical and transport layer. Our experiments demonstrate

the effectiveness of our algorithm on estimating dominant reflectors and calculating strong al-

ternative beam directions, and its efficacy in providing robust connections for COTS mmWave

devices.

1.2.2 Network Topology Optimization for Reconfigurable Intelligent Surface(RIS) Assisted mmWave

Directional Communication Network.

Reconfigurable Intelligent Surface (RIS) offers a new way to provide controllable non line-of-

sight (NLoS) propagation paths for millimeter-wave (mmWave) directional communication to

overcome the performance degradation caused by line-of-sight blockage. However, current

coverage models do not consider the impact of path direction difference on path’s availability,

which is a crucial property of mmWave directional communication network. In the work, we

propose a new coverage model called (k,α)-coverage. A receiver is (k,α)-covered if it is covered

by at least k RISs to have k different NLoS path directions and the angular separation between

any two adjacent path directions is at leastα . In this case, when the current communication di-

rection is blocked by an obstacle, other RIS created paths are still likely to be available for trans-

mission, which increases the robustness of mmWave directional communication. To tackle the

problem of using the least number of RISs to achieve the (k,α)-coverage, we formally define the

(k,α)-coverage models and propose methods to verify if the target area is (k,α)-covered by the

given set of RISs. Then, we solve the problem under both deterministic and random RIS de-

ployment schemes. For the deterministic deployment scheme, we derive the optimal k-sided

regular polygon deployment patterns and use it to achieve area (k,α)-coverage. An analytical

performance bound on the number of RISs needed is also derived. For the random RIS deploy-

ment scheme, we derive the (k,α)-coverage probability under uniform and spatial-Poisson RIS

distributions. Finally, extensive simulation results are provided to validate our analyses.
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1.2.3 Physical Layer Spoofing Attack Detection for LiDAR Sensors

Recent years have witnessed the ever-growing interest and adoption of autonomous vehicles

(AVs), thanks to the latest advancement in sensing and artificial intelligence (AI) technologies.

The LiDAR sensor is adopted by most AV manufacturers for its high precision and high relia-

bility. Unfortunately, LiDARs are susceptible to malicious spoofing attacks, which can lead to

severe safety consequences for AVs. Most current work focuses on protecting LiDAR against

spoofing attacks by using perception model-level defense methods, whose effectiveness un-

fortunately depends on the correctness of the LiDAR’s sensing outcome. A spoofer thus can

elude from these methods as long as it fabricates points that maintain the right contextual re-

lationship held by the legitimate points. In this work, we propose to use the signal’s Doppler

frequency shift to verify the sender of the signal and detect potential spoofing attacks. To this

end, we first thoroughly analyze the working principle of LiDAR and conduct real-world ex-

periments to deeply understand and reveal the vulnerability of LiDAR sensors. We then prove

that the Doppler frequency shifts of legitimate and spoofing signals present different charac-

teristics, which can be used to fundamentally protect the LiDAR sensing outcome. For better

demonstration purposes, we consider three attack models, including static attacker, moving

attacker, and moving attacker with control of both velocity and signal frequency. For each of

the models, we first show how the spoofing attack is performed and then present our counter-

measures. We then propose a statistical spoofing detection framework to jointly consider the

impact of short-term uncertainty in vehicle velocity, which can provide more accurate spoofing

detection results in realistic environments. Extensive numerical results are provided in a wide

range of settings and road conditions.

1.3 Publication Contributions

During my Ph.D. study, I have contributed to the following publications (listed chronologi-

cally)
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1.4 Dissertation Overview

In the rest of this dissertation, three works are presented, each addressing a set of problems as-

sociated with the efficiency, reliability, and security of the network and system in and beyond

the mmWave band. Each chapter focuses on presenting one work, along with comprehensive

evaluations and comparisons between the solutions to the state-of-the-art methods. Specifi-

cally, the remainder of this dissertation is as follows:

In Chapter 2, we use the perception capabilities of COTS mmWave devices to identify dom-

inant reflectors in the environment. We also introduce a novel method for high-resolution

mmWave multipath channel resolving. The proposed algorithm is implemented and evaluated

on a COTS mmWave device. Our experiments demonstrate the effectiveness of our algorithm

in estimating dominant reflectors and its efficacy in providing robust connections for COTS

mmWave devices.

In Chapter 3, we propose a novel coverage model called (k,α)-Coverage for RIS-aided mmWave

networks to fully characterize the properties of directional communication. We address the

challenge of achieving (k,α)-coverage with the minimum number of RIS units, using both de-

terministic and random deployment schemes. Extensive simulation results are provided to val-

idate our analyses.

In Chapter 4, we propose a Doppler shift-based physical layer spoofing attack detection

method to fundamentally protect the LiDAR result. We prove that Doppler frequency shifts

can be used to verify the sender of the signal and detect possible spoofing attacks. A statistical

spoofing detection framework is also proposed to provide more accurate spoofing detection

results in realistic environments. Extensive numerical results are provided in a wide range of

settings and road conditions.

Chapter 5 concludes the dissertation and discusses future research.
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Chapter 2

Fast and High-Resolution NLoS Beam Switching over Commercial Off-the-Shelf mmWave
Devices

2.1 Introduction

Millimeter-wave (mmWave) communication is considered as one of the most promising tech-

nologies for the next generation high-speed wireless networks [41, 91, 90]. In contrast to cur-

rent WiFi and LTE-based 4G communications that operate at sub-6 GHz frequencies, mmWave

network works at a much higher frequency band, therefore is able to provide much wider band-

width for wireless applications [33, 77, 92]. For example, a mmWave link working at 60 GHz

can support a data rate more than 7 Gbps [38]. Such a high-throughput transmission fits well

with data-hungry real-time applications such as live high-definition video streaming and vir-

tual reality (VR), which are envisioned to be the dominant killer applications in the era of 5G

[14, 86].

Although mmWave provides many desirable features, a big challenge for its practical ap-

plication is the susceptibility to line-of-sight (LoS) blockage [66, 65, 108]. In particular, the

mmWave transmission relies on directional communication to overcome the high oxygen at-

tenuation and the signal’s propagation heavily relies on LoS [57, 89]. When the LoS is blocked

by an obstacle, the mmWave signal can not penetrate through or circumvent around the obsta-

cle, leading to a significant drop of the received signal strength. In this situation, one solution

is to promptly steer the communication beam towards a strong non line-of-sight (NLoS) signal

propagation path to maintain the communication [88].
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Many methods have been proposed to find such a strong NLoS path in the literature, which

can be divided into three categories. The first category uses beam-scanning to search over the

space when a strong NLoS path is needed [80, 118, 143, 49]. The proposed methods include

sequential scanning through the space and hierarchical scanning, which begins with a low-

resolution scanning over the entire space, followed by iterative higher-resolution scannings

over particular smaller (finer) ranges of directions that are selected based on the outcome of

the previous round lower-resolution scanning. The average overhead of the scanning is usually

around 100 ms to 200 ms [131, 25]. The second category assumes a nominal mmWave multi-

path channel model, and then attempts to estimate the parameters of this model, including the

amplitude, angle of departure (AoD), angle of arrival (AoA), and phase shift of each signal prop-

agation path, by reverse engineering. For example, in [113, 152], based on a measured channel

impulse response (CIR), reverse engineering is performed to find the optimal channel parame-

ters that best match the nominal multi-path channel model with the measured CIR. The third

category includes those well-studied array signal processing techniques, such as MUSIC [102]

and ESPRIT [96, 125], that are pertinent to phased array antennas. These techniques conduct

angular spectrum analysis over signals received at each antenna element to resolve the multi-

path channel.

Despite their good performance, these existing methods all have very stringent/high re-

quirements on the antennas of the transmitter and the receiver, which are hardly met by today’s

consumer-level commercial off-the-shelf (COTS) mmWave products. More specifically, since

the methods in Category 1 require sequential scanning through N different beam patterns, each

of which covers a non-overlapping (360/N )◦ slice of the space, the fundamental limitation of

the methods is that the spatial resolution of the beam scanning is upper bounded by the min-

imum beam width of the phased-array antenna. When these methods are directly applied to

the coarse-grained wide-beam antenna, they may fail to identify those paths that happen to

fall within the same beam pattern. As a result, signal propagation paths whose AoDs (or AoAs)

are separated less than the minimum beam-width of the antenna would not be distinguishable.
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Therefore, to be able to accurately locate a strong NLoS path, these methods require the use of a

narrow-beam horn antenna or a high-precision narrow-beam phased array antenna that has a

large number of antenna elements, typically costs over $10K. Clearly such a high price tag is un-

affordable to a COTS device. As a matter of fact, current COTS mmWave products typically use

a quasi-omni-directional antenna (e.g., 180◦ beam width) for reception, and a coarse-grained

wide-beam (e.g., 60◦ beam width) phased-array antenna for transmission [15, 72]. Similar is-

sue exists in the methods of Category 2. In particular, to measure the CIR, the receive antenna

needs to be able to accurately separate, measure, and report both the amplitude and the phase

of each lag of the CIR components (in a typical indoor environment where a COTS mmWave

device operates, the length of a lag is in the order of nanoseconds). Such a high-time-resolution

CIR time-sequence information is typically not provided by COTS devices. Similarly, the array-

signal angular spectrum analysis techniques in Category 3 require the accurate amplitude and

phase information of the signal received at each individual antenna element. While a COTS

receiver indeed reports the amplitude information of the aggregate signal combined from all

antenna elements, it typically does not provide detailed amplitude and phase information of

the received signals at individual antenna elements.

Due to the above limitations, the aforementioned methods are not directly applicable to

consumer-level COTS mmWave devices. Only recently, several new path resolving methods

that are suitable for COTS devices are proposed. Among them, non-coherent compressive path

tracking proves to be the most effective algorithm, e.g., see [94, 111, 93, 12, 22]. Based on reverse

engineering, this algorithm aims to find the direction of the strongest NLoS path by using only

the signal’s amplitude information. Instead of relying on a measured CIR, the algorithm probes

the channel by sending out a sequence of compressive beacons, each of which is separated

apart in time by a dozen microseconds. By measuring the amplitude of each received beacon

on the receiver side, the algorithm finds the optimal AoA and AoD that best match the sequence
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of amplitudes calculated according to the nominal channel model to that of the received bea-

cons. While upon each channel probing (i.e., the transmission of a group of compressive bea-

cons) this method is able to obtain the strongest NLoS path of that moment, it incurs high

channel-probing overhead when one needs to keep tracing the change of the strongest NLoS

path. For instance, this happens for a user playing an electronic VR game, whereby the direc-

tion of the strongest NLoS path keeps changing due to the user’s movement. Due to this rea-

son, compressive sensing-based approach is mostly suitable for dynamic application scenarios

with frequently changing environment and moving users, under which repetitively probing the

channel to catch up with the frequent movement of reflectors in the environment is necessary.

However, for those application scenarios where the environment is mostly static but the user

could be moving, which are typical in most of the household applications, such repetitive prob-

ing may not be an efficient solution, as the reflectors in the environment are hardly changed.

Keeping the limitations and weaknesses of existing methods in mind, in this paper we are

interested in developing a new method to achieve high-resolution mmWave multi-path chan-

nel resolving result using coarse-grained wide-beam phased array antennas that are commonly

equipped on today’s COTS mmWave devices. Based on this new method, we further propose an

efficient computation-based beam-switching algorithm that can directly predict a strong NLoS

path (i.e., without the overhead of per-prediction probing) whenever the LoS blockage happens

and a strong NLoS backup path is needed. With these efforts, it becomes feasible for a commer-

cial available device to perform fast and high-resolution NLoS beam switching. Our proposed

method is most suitable for static-environment application scenarios, thus fills into the regime

where the non-coherent compressive path tracking method does not perform efficiently.

More specifically, to address the challenge of achieving high-resolution multi-path channel

resolving based on a coarse-grained wide-beam antenna array, we perform fine-grained spatial

scanning of the antenna array and exploit the high spatial resolution of the differential received

signal strength (RSS) information measured when the antenna array is turned to point to differ-

ent directions with small steps. One key insight here is that the wide beam-width of the antenna
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array does not prevent the array from turning to scan the space in a fine resolution (e.g., with

a step of 1◦ increment in the direction of the antenna beam). The differential RSS information

associated with the spatial scanning process, which naturally has a high spatial resolution (e.g.,

in a resolution of 1◦), is then exploited by a novel two-step multi-path channel resolving algo-

rithm. In particular, a low-resolution out-lobe resolving step is first performed to identify the

clusters of paths that are separated more than the beam width of the antenna array. Then, for

each cluster, a high-resolution in-lobe resolving step is performed, which utilizes reverse engi-

neering to compute the optimal in-cluster fine-grained paths that offer the closest match with

the measured RSS of that cluster.

Our reflector-based NLoS beam-switching mechanism is then built upon the above chan-

nel resolving process. In particular, our method consists of two phases: the offline site survey

phase and the online operational phase. In the site survey phase, our model aims to construct

a reflector map by estimating the locations and reflection coefficients of the dominant reflec-

tors in the environment, through a sequence of coordinated differential RSS measurements at

multiple locations. At each location, the above channel resolving process is called to compute

the top-K strongest NLoS paths generated by the dominant reflectors. Exploiting the sparse

nature of the mmWave channel, the NLoS paths computed at different locations are then used

to estimate the location of the dominant reflectors. Furthermore, based on the Fresnel reflec-

tion model assumption, the reflection coefficient of each dominant reflector is calculated by a

minimum mean square error (MMSE) estimator based on the RSS measurements. Note that

the offline site survey phase is basically a one-time operation for static or quasi-static environ-

ments. The next offline site survey is not needed until there is a significant change on the layout

of the environment (e.g., a new steel furniture is just added so the reflection layout is changed).

This reflector map is subsequently used in the online operational phase to calculate the

supposedly strongest NLoS path at the current location of the user. Note that during this phase,

our system can instantly calculate the NLoS path and does not require any additional probing
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effort. The main beam of the transmit antenna is then steered accordingly to maintain the

ongoing connection when the LoS is blocked.

To verify the performance of the proposed method, we implement our algorithm on a

COTS mmWave device MikroTik WAP 60G transceiver set [72].The system is tested in an in-

door environment for both static and mobile applications. The results show that our system

is able to accurately estimate the locations of the strong reflectors in the test environment. In

case of LoS blockage, by steering the transmit antenna towards the directions indicated by the

proposed algorithm, the system is able to achieve a 200% to 300% throughput gain over the case

that the transmit antenna is always pointing to the LoS direction. Our received signal strength

indicator (RSSI) measurement at the physical layer also shows that our algorithm can recover

the link performance more quickly from blockage and achieves better stability than the device’s

built-in 802.11ad based method.

The remainder of the paper is organized as follows. We present our system design in Sec-

tion 2. The test-bed implementation is described in Section 3. The test settings and test results

are presented in Section 4. And we conclude our paper in Section 5.

2.2 System Design

2.2.1 Problem Statement and Solution Framework

We consider an indoor mmWave communication scenario where the room layout is static, and

there is only one link consisting of one mmWave access point (AP) and one mmWave adapter

(referred to as the client). Without loss of generality, we consider an uplink case: the AP is the

receiver and the client is the transmitter. Just like those consumer-level off-the-shelf mmWave

products, we assume the AP uses a quasi-omni-directional beam pattern for receiving, while the

client is equipped with a low-end phased array antenna with coarse beamforming capability for

directional transmission.

For indoor mmWave communication, a strong NLoS path is used to maintain the connec-

tion when LoS is being blocked. In a static communication scenario where both the transmitter
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and the receiver are located at fixed positions, the NLoS paths should also remain static there-

fore can be measured in advance. However, what we consider here is a more common but

challenging scenario: the AP is static but the client is mobile, e.g., in a wireless VR game, mak-

ing the NLoS paths change as the client moves . The pre-measurement method will fail under

this scenario due to the infinite number of possible transmitter locations. So how to determine

the real-time NLoS paths for a mobile transmitter is the problem we are trying to solve here.

Fortunately, the strong NLoS paths are not randomly distributed. Instead, they are heavily

dependent on the locations of the transmitter, the receiver, and the mmWave signal reflectors

in the environment. Specifically, the high frequency of mmWave and the usage of transmit an-

tenna array make the communication quasi-optical: in a typical indoor environment such as an

office or home, most of the strong NLoS paths are formed by the first-order specular reflection

from reflectors in the environment. Note that we are mainly focused on indoor applications in a

small-to-moderate-size room, where the likelihood for the existence of some reflective surfaces,

such as concrete walls and book shelves, is high. Due to the wide availability of these reflective

objects, the NLoS paths generated by these reflectors can cover most area of the room. There-

fore the assumption that there exists a strong NLoS path should be reasonable for the indoor

scenarios considered in this work.

Based on this fact, we take a generative method to solve our real-time NLoS paths resolu-

tion problem. In particular, we intend to create a model for dominant reflectors in the environ-

ment based on some site survey process. This model describes the location, orientation, and

reflection coefficient of each dominant reflector. We then put the model into operation: at a

given client location, the real-time NLoS paths are simply computed as the specular reflections

generated by those dominant reflectors according to the model.

This idea is better illustrated in Figure 2.1, where the locations of the client and the AP are

(xt , yt ) and (xr , yr ), respectively. And we assume there is only one reflector R (the solid black

line) for simplicity of presentation. Clearly, given (xt , yt ), (xr , yr ), and the location and orienta-

tion of the reflector R, there is a unique path, highlighted in yellow in Figure 2.1, by which the
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Figure 2.1: First order reflection model.

signal transmitted from the client can be specularly reflected by the reflector, and received by

the AP. The uniqueness of this path is owing to the law of reflection, i.e., in the case of specular

reflection, for each incident ray, the angle of incidence equals the angle of reflection. It is easy

to verify that point D is the only position on the reflector through which the incident ray from

the client can be specularly reflected and received by the AP, while other positions on the reflec-

tor contribute to the weak diffusive scattering, as denoted by the blue dotted lines. Here, point

D is the intersection between reflector R and the line segment connecting the client and the

mirrored image of the AP (referred to as virtual AP), defined w.r.t. the reflector. Consequently,

the reflection-induced NLoS path cluster simply consists of a strong specular reflection path

(the solid yellow path), surrounded by a set of weak diffusive reflection paths (the dotted blue

paths).

The insight is that point D can be uniquely decided by the AoD (say α) and the AoA (say

β) of the specular reflection path: it is just the intersection between a line passing through the
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client with an orientation of α and a line passing through the AP with an orientation β. There-

fore, given α and β are known, the location and orientation of the reflector R can be uniquely

decided by two independent sets of AP and client locations. However, β is unknown in our

problem setting, due to the omni-directional receive antenna of the AP. This condition poses

challenges to the reflector modeling.

We propose the following approach to address the above challenge in the localization of

R. The reflector in a 2-D space can be modeled as a line segment with math representation

Ax +B y +C = 0 (A,B ,C ∈ R), where R is the set of real numbers. In this assumption, we do not

consider the actual length of the reflector, because in reality the size of a dominant reflector is

usually big enough to cover most of the locations through reflection in a small-to-moderate-size

room, which is the setting of interest considered in this work. Let the AP’s position be (xr , yr ),

and the client’s location be (xt , yt ). Denote the location of the virtual AP by (x ′
r , y ′

r ). The location

of the virtual AP satisfies the following condition:


A

xr +x ′
r

2
+B

yr + y ′
r

2
+C = 0

A(y ′
r − yr )

B(x ′
r −xr )

= 1.
(2.1)

The virtual AP’s location can be further calculated as:
x ′

r =
(B 2 − A2)xr −2AB yr −2AC

(A2 +B 2)

y ′
r =

(A2 −B 2)xr −2AB xr −2BC

(A2 +B 2)
.

(2.2)

Next we will find another constraint for the virtual AP’s location. Let φ be the angle of

departure (AoD) of the specular ray (φ ̸= π
2 ). Then the incidence part of the specular reflection

path can be represented by:

t an(φ)(x −xt ) = (y − yt ). (2.3)
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The incidence ray follows the law of reflection: the incident angle equals to the reflection

angle. So the location of the virtual AP must satisfy Eq.(2.3). Substituting (x ′
r , y ′

r ) into the equa-

tion, we get:

y ′
r = t an(φ)(x ′

r −xt )+ yt . (2.4)

Substituting Eq.(2.4) into Eq.(2.2), we have:

t an(φ)(
(B 2 − A2)xr −2AB yr −2AC

(A2 +B 2)
−xt )

= (
(A2 −B 2)xr −2AB xr −2BC

(A2 +B 2)
− yt ).

(2.5)

Eq.(2.5) provides an analytical condition that must be met by the locations of the AP and

the client, the AoD, and the location and orientation of the reflector. Because the locations of

the AP and the client can be measured, and (xr , yr ) and (xt , yt ) are considered known. Mean-

while, as will be clarified in Section 2.2.2, the AoD φ of the specular reflection path can be esti-

mated through a sequence of RSS measurements accompanying the steering of the wide-beam

transmit antenna. So φ is also considered as a known value. Therefore, Eq.(5) only depends on

variables A, B , and C . As a result, we need at least three independent sets of < φ, (xt , yt ) > to

uniquely determine the location and orientation of the reflector.

To the best of our knowledge, this is the first framework in the literature that supports the

computation of the reflector’s location and orientation without knowing AoA, neither any phase

information of the received signal. Our framework does require some knowledge on AoD, but

the acquisition of this information does not rely on high-precision narrow-beam transmit an-

tennas or any phase information of the signal, as will be described in Section 2.2.2. This is in

sharp contrast to existing methods that rely on high precision phased array antennas and the

phase information on both sides of the link to obtain accurate AoA and AoD in order to localize

the reflectors [125].
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2.2.2 Locating Dominant Reflectors

Design Philosophy

Dominant reflectors are reflectors that create strong NLoS paths for most of the indoor posi-

tions. Although the number of reflectors a mmWave radio can see vary with the device’s loca-

tion, there are only a few dominant reflectors in a realistic environment because of the sparsity

of the mmWave channel, and most of dominant reflectors are static metallic surfaces that have

low reflection losses.

We already show that a reflector can be uniquely determined by three independent sets of

< φ, (xt , yt ) >, so deriving the AoD of the specular ray associated with the dominant reflectors

(i.e.,φi , for the i -th dominant reflector) is a crucial step in determining the dominant reflectors’

location and orientation. We propose to determineφi ’s by measuring the RSS at the receiver as a

function of the beam direction of the transmit antenna. In particular, let θmi d denote the center

angle of the main lobe of the transmit antenna. Given an omni-directional receive antenna, the

RSS at the receiver is a function of θmi d , denote as Pr (θmi d ) and is given by

Pr (θmi d ) = Pt

∥∥∥ N∑
i=0

D(θmi d |φi )gi e jδi

∥∥∥2
, (2.6)

where Pt is the transmit power, and we have assumed that the mmWave channel has N + 1

paths (so there are N dominant reflectors), and the i -th path has a path loss, AoD, and path

phase shift of gi , φi , and δi , respectively. e is the natural logarithm, and j is the imaginary unit.

D(φi |θmi d ) is the transmit antenna gain at the AoDφi , given that the main beam of the antenna

is pointing at θmi d . Without loss of generality, we assume D(φi |θmi d ) = 1 if |φi −θmi d | ≤Θbeam

and D(φi |θmi d ) = 0 otherwise, where 2Θbeam is the beam width of the main lobe of the transmit

antenna.

Clearly, according to Eq.(2.6), φi ’s can be easily resolved by steering a narrow-beam trans-

mit antenna with small Θbeam to perform a 360◦-scanning of the space. However, note that in
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our problem we have a low-end phased array antenna with a wide beam-width. The reduced

angle resolution (i.e., largeΘbeam) makes it challenging to resolve the φi ’s.

One way to resolve φi ’s is through reverse engineering, i.e., by considering (φi , gi ,δi )’s as

variables, and then resolve them by solving a set of nonlinear equations defined by Eq.(2.6),

where Pr is measured at multiple θmi d ’s. In this case, the optimal N o and (φo
i , g o

i ,δo
i ), 0 ≤ i ≤ N o ,

can be simply calculated as the optimal solution to the following minimum mean square error

(MMSE) problem:

minimize
1

2π

∫ 2π

0
|Pr (θmi d )−Pm

r (θmi d )|2dθmi d , (2.7)

where Pr (θmi d ) is defined in Eq.(2.6) and Pm
r (θmi d ) is the RSS measurements.

Although the above method fits in our problem and provides promising solutions, the

computation complexity is high, which makes it unsuitable for COTS devices. In addition, it

provides more than what the problem needs. Notice that, for the purpose of finding a NLoS

backup path, what we are interested in is only the top few (say K , where K is a small integer)

dominant reflectors that provide the strongest NLoS paths. Therefore, resolving the whole set

of NLoS paths, as in the MMSE method, is unnecessary. Based on this observation, we propose

to only consider the K particular θmi d ’s that correspond to the top-K RSS peaks in the function

Pm
r (θmi d ), and use these K θmi d ’s to estimate the AoDs of the top-K dominant reflectors in the

environment.

This idea can be better illustrated as follows. We begin with the simplest scenario: suppose

we only have one reflector, say R1, in the environment. The specular reflection direction to R1 is

denoted as φ1, as shown in Figure 2.2(a). As the transmit antenna scans from θmi d = 0 to 360◦,

the RSS measured at the AP should present a trapezoid shape as shown in Figure 2.2(b), where

the high RSS level in the range of φ1−Θbeam ≤ θmi d ≤φ1+Θbeam is due to the fact that the AoD

of the specular ray φ1 is within the main lobe when the transmit antenna is scanning in this

range. So, for the single-reflector case, the peak of the RSS, defined as the center of the RSS high

level, corresponds to the AoD of the specular ray φ1, as shown in Figure 2.2(b).
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(a) Single reflector specular reflection case.
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(b) RSS pattern of single reflector.

Figure 2.2: Single reflector scenario.

Now let us consider a more complicated scenario where there are two reflectors in the

environment, as shown in Figure 2.3(a), where AoDs of the two specular rays are denoted by

φ1 and φ2, respectively. Without loss of generality, we assume that φ1 < φ2. Note that if φ1

and φ2 are separated far apart such that φ2 −φ1 > 2Θbeam , then each of the two AoDs can be

resolved separately as two independent single-reflector cases (i.e., the two peaks of the RSS

curve correspond to φ1 and φ2 respectively). Now let us consider the case that φ1 and φ2 are

close enough such that φ2 −φ1 ≤ 2Θbeam . In this case, as the transmit antenna scans from

θmi d = 0 to 360◦, the RSS measured at the AP should present the pattern shown in Figure 2.3(b),

where the different levels of RSS are due to the fact that different combinations of the specular

rays are in the main lobe as the transmit antenna scans. Clearly, in this case, the peak of the

measured RSS corresponds to the center angle of φ1 and φ2, i.e., 1
2 (φ1 +φ2). Physically, this

means that because φ1 and φ2 are close to each other, the reflectors R1 and R2 are actually

considered as a cluster of reflectors, and the peak of the measured RSS simply corresponds to

the center AoD of this cluster.

To simplify the presentation, we have assumed that the beam pattern of COTS devices has a

regular pie shape, but the insight here is general enough to accommodate any regular/irregular

beam pattern function. This is because changing the beam pattern only changes the coeffi-

cients of antenna gain, but does not change the structure/nature of the problem.
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(a) Multiple reflectors specular reflection case.
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(b) RSS pattern of multiple reflectors.

Figure 2.3: Multiple reflectors scenario.

Note while Figures 2.2(b) and 2.3(b) are showing symmetric RSS peaks in concept, the mea-

sured RSS peaks in reality are rarely symmetric. As shown in Figure 2.4, the measured peaks

are usually skewed, mainly due to the large number of scatters (i.e., small/minor reflectors)

surrounding the major reflector and the heterogeneous reflection efficiency of the reflectors.

Therefore, while a measured RSS peak provides a rough range of directions where one or sev-

eral major reflectors could reside in, simply interpreting the mid-point of the RSS peak as the

AoD of one major reflector is inaccurate and misleading, for the peak could be generated by

multiple close-by major reflectors.

How to accurately resolve the major reflector(s) from the skewed RSS measurements con-

stitutes a challenge.

Two-step Fine-Grained Multi-path Channel Resolving

We solve this challenge by a novel two-step multi-path channel resolving algorithm. The main

idea is to first identify clusters of major reflectors by evaluating the peaks of measured RSSI, and

then apply reverse engineering within each RSSI peak to resolve the optimal in-cluster reflector

setting that offers the best match with the measured RSSI in that peak.

The detail of our algorithm is described below:
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(1) Low-resolution out-lobe resolving: Since the goal of the algorithm is to resolve for k

dominant reflectors, we first need to decide the ranges of θmi d where these K dominant reflec-

tors reside in. This is done by picking the K highest peaks in the curve Pm
r (θmi d ), as illustrated

in Figure 2.4. Notably, the curve Pm
r (θmi d ) is obtained by using the fine-grained spatial scan-

ning process. Specifically, the process steers the transmit antenna to point θmi d to a sequence

of N angles respectively, denoted by θ1, . . . ,θN , which are evenly distributed between 0◦ and

360◦ with a step size ω = 360◦/N , i.e., θi = iω for 1 ≤ i ≤ N . At each θi , let the measured RSSI

at the receiver be Pm
r (θi ). Recall that we are only interested in NLoS paths, so those θi ’s that

belong to the LoS should be excluded in our subsequent range selection. Let the LoS direction

be θLoS . Since the half beam width of the transmit antenna isΘbeam , a θi is considered belong-

ing to the LoS if θLoS −Θbeam ≤ θi ≤ θLoS +Θbeam . For example, in Figure 4, the LoS direction

θLoS is 330◦, and the half beam width of antenna is 30◦. So RSS measurements between 300◦ to

360◦ are considered belonging to the LoS range and are ignored during subsequent NLoS path

ranges selection procedure.

Our range decision is iterative: we decide one non-overlapping range for θmi d in each it-

eration, and our decision concludes after K iterations, resulting in K non-overlapping ranges.

In particular, in the k-th iteration we decide a range
[
θ(k)

low ,θ(k)
hi g h

]
that includes the following

angles:

θo
k = argmax

{
Pm

r (θi )

∣∣∣∣∣θi ∉
k−1⋃
j=1

[
θ

( j )
low ,θ( j )

hi g h

]}
. (2.8)

And all adjacent θi ’s that are within the half beam of θo
k but are not included in any of the ranges

decided in previous iterations, i.e.,
[
θ(k)

low ,θ(k)
hi g h

]
includes the following θi ’s:

{
θi |θo

k −Θbeam ≤ θi ≤ θo
k +Θbeam

}
and θi ∉

k−1⋃
j=1

[
θ

( j )
l ow ,θ( j )

hi g h

]
, (2.9)

where θ(k)
low and θ(k)

hi g h are the smallest and the largest elements in the above set, respectively.

A θi is excluded from the subsequent iterations if it has been included in one of the ranges

decided in previous iterations. Note that by picking the above K ranges, we do not mean that

23



the AoDs of the top-K dominant reflectors should reside in each of these K ranges (i.e., one in

each range). Instead, the AoDs of the top-K dominant reflectors should reside in the union of

these K ranges.

Figure 2.4: Out-lobe resolving based on measured RSSI (scanning step ω= 5◦).

(2) High-resolution in-lobe resolving: Now that we have the top-K ranges of θmi d as
[
θ(k)

low ,θ(k)
hi g h

]
,

1 ≤ k ≤ K , we need to resolve the reflectors whose AoDs are within these ranges. Without loss

of generality, let us consider the k-th range. Suppose there are N reflectors in this range, and

accordingly there are N NLoS paths (this is because each reflector generates exactly one NLoS

path via its specular reflection) in the cluster defined by this range. And each path can be char-

acterized by its propagation (and reflection) path loss, AoD, and path phase shift, denoted by gi ,

φi , and δi respectively, for the i -th NLoS path, where 1 ≤ i ≤ N . Considering the beam width of

the transmit antenna, notice that for the k-th range, we have θ(k)
low −Θbeam ≤φi ≤ θ(k)

hi g h +Θbeam

for all 1 ≤ i ≤ N . Given that the main beam of the transmit antenna is pointing at θmi d , the
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transmit antenna gain for the i -th NLoS path is given by

D(θmi d |φi ) =


1 φi −Θbeam ≤ θmi d ≤φi +Θbeam

0 otherwise.
(2.10)

Therefore, when the transmit antenna is scanning within the k-th range, the RSS at the

receiver can be analytically described as

Pr (θmi d ) = Pt

∥∥∥ N∑
i=1

D(θmi d |φi )gi e jδi

∥∥∥2
,θ(k)

low ≤ θmi d ≤ θ(k)
hi g h . (2.11)

To resolve for gi ’s,φi ’s, and δi ’s, we use reverse engineering: we would like to decide the optimal

g o
i ’s,φo

i ’s, and δo
i ’s that would make Pr (θmi d ) the closest match, in the mean square error (MSE)

sense, with the measured RSS Pm
r (θmi d ) at the discrete angles θi ∈

[
θ(k)

l ow ,θ(k)
hi g h

]
, i.e.,

minimize
g o

i ,φo
i ,δo

i ,i∈N

θ(k)
hi g h∑

θi=θ(k)
l ow

∣∣Pr (θi )−Pm
r (θi )

∣∣2
. (2.12)

In our evaluation part, the signal gain g is from -50 dB to -70 dB with step size 0.01 dB. The angle

direction φ is from [θ(k)
low ,θ(k)

hi g h] with a step size 0.1◦. And phase δ is from 0◦ to 360◦ with a step

size 0.1◦

Compared with the global range (from 0 to 360◦) reverse engineering in Eq.(2.7), the scale

of the above local range optimization, in terms of the number of variables to be optimized, is

much smaller therefore the optimization can be achieved much faster. This is for the ground

truth number of reflectors in
[
θ(k)

low ,θ(k)
hi g h

]
should be much smaller than that in [0◦,360◦], so

a small N in Eq.(2.12) is usually sufficient to obtain small MSE in the objective function. To

verify the point, we solve the optimization problem in Eq.(2.12) for the top-3 ranges highlighted

in Figure 2.4 under various N ’s. As a representative outcome, Figure 2.5 plots the normalized

MSE for the optimization in range 1 as a function of N , where the normalization is w.r.t. the

square of the maximum measured RSS in range 1. It can be observed that the normalized MSE
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in this case goes down quickly as N increases, and remains almost flat after N ≥ 3, implying that

N = 3 is an acceptable estimation for the ground truth number of major reflectors in this range.

Note that our resolved top-N dominant reflectors are in fact dominant reflector clusters, each

of which represents an aggregation of multiple closed-by reflectors and do not have one-to-

one correspondence with actual physical reflectors. Both specular and diffusive (or scattering)

reflection effects have already been aggregated into these reflector clusters.
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Figure 2.5: Normalized MSE v.s. N .

The AoDs of the top-K dominant reflectors are decided by pooling the reflectors resolved

over all K ranges together, and picking the top-K among them with the smallest propagation

losses (i.e., highest gi ’s). For example, Table 2.1 lists the optimized gi ’s and φi ’s for the top-

3 ranges in Figure 2.4 for N = 3. The optimized δi ’s are not shown in the table due to space

limit. The top-3 dominant reflectors are decided as: Reflector 1 in range 1 (path loss = -55.83

dB, AoD = 172.5◦), Reflector 1 in range 3 (path loss = -55.96 dB, AoD = 275.8◦), and Reflector

3 in range 3 (path loss = -56.19 dB, AoD = 235.2◦). Among them, it can be observed that the

AoDs of the last two dominant reflectors are separated less than the beam width of the transmit

antenna. These results verify that the proposed two-step algorithm can achieve fine-grained

multi-path channel resolving by only using coarse-grained wide-beam antennas. We then use

a real testbed to evaluate the accuracy of the resolved paths and their effects in maintaining

mmWave connections in Section 2.3.
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Table 2.1: Multi-path channel resolving result.

Par g1 φ1 g2 φ2 g3 φ3

P (1)
top −55.83 172.5◦ −57.60 134.4◦ −60.37 152.3◦

P (2)
top −61.47 210.9◦ −56.84 196.8◦ −56.54 243.2◦

P (3)
top −55.96 275.8◦ −58.15 257.8◦ −56.19 235.2◦

Localization for the client and the AP

Aiming for real-time beam switching under the mobile scenario, the accurate location infor-

mation of the client and the AP is essential in the proposed framework. However, the GPS lo-

calization is not suitable for the indoor usage scenario. Moreover, the resolution of the GPS

system is low, typically in several meters, which does not meet the precision requirement of our

problem. To obtain high precision localization information, we use the HTC VIVE VR system to

track the real-time location of the client. Note that the VR system can be replaced by any indoor

mmWave device localization method, such as the mmWave AP triangulation [15] or AP device

localization mentioned in [16].

Matching the AoDs

To fully determine a dominant reflector using our framework, we need at least three indepen-

dent sets of <φ, (xt , yt ) >. Therefore, in an environment with multiple dominant reflectors, how

to identify those AoDs that are measured at different client locations but are associated with the

same dominant reflector raises another challenge.

To address this issue, we exploit the sparsity of the mmWave channel, which dictates that

the mmWave channels at two nearby locations are caused by the same set of dominant reflec-

tors. So their spatial channel profiles (SCPs) are tightly correlated in the sense that their AoD

realizations associated with the same reflector are also close-by to each other [152]. To utilize

this property, we propose the following AoD measurement and matching process. We fix the

AP’s location, and measure the RSSI at the AP as a function of θmi d when the client is posi-

tioned at several nearby locations, respectively. Denote this set of nearby locations as set S. We
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then identify the top-K AoDs at the first client location based on the RSSI-θmi d measurement

made at that location. Let φ(1)
1 ,φ(1)

2 , . . . ,φ(1)
K denote these top-K AoDs, associated with K strong

dominant reflectors, say R1,R2, . . . ,RK , respectively. Let φ( j )
i denote the AoD realization associ-

ated with reflector Ri at a different client location j ∈ S. To decide φ( j )
i , one simply finds the

peak RSSI measured at client location j that is nearest to φ(1)
i . The θmi d corresponding to this

peak RSSI is φ( j )
i .

The above process is illustrated in Figure 2.6, where the RSSI-θmi d measurements have

been made at two close-by locations, represented by the blue curve and the red curve, respec-

tively. To decide the AoD realizations of three strong dominant reflectors at these two locations,

we first pick the top-3 AoDs on the blue curve, and label them as NLoS1 through NLoS3 in blue.

Then, the AoD realization of NLoS1 on the red curve is simply the red peak nearest to the blue

peak of NLoS1. The AoD realization of NLoS2 and NLoS3 on the red curve can be decided in a

similar way.
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Figure 2.6: NLoS path matching between two different client locations.

Based on our methods, we are able to obtain a sufficient number of<φi , (xt , yt ) >’s for each

of the K strongest dominant reflectors identified in the AoD matching process, based on which

the proposed framework in Eq.(2.5) can be applied to calculate the location and orientation for

each of these strong dominant reflectors.
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2.2.3 Model Driven RSSI Estimation

In this section, we present a received signal strength estimation model to predict the link per-

formance of the mmWave NLoS backup paths in real-time. When the LoS path is blocked, the

aforementioned dominant reflector map provides K NLoS candidate paths for the transmit an-

tenna to steer to. Selecting the best one among them will be critical to retain a comparable per-

formance to that of the LoS path. However, the naive sequentially trial-based method will result

in significant delays in beam switching, therefore undermining the stability of the connection.

To achieve a better seamless beam switching performance, we use a model-driven approach on

the transmitter side to predict the quality of each NLoS backup paths, so the transmit antenna

can choose the best path directly.

Among the K NLoS candidate paths provided by the dominant reflector map, let us con-

sider the one associated with the i -th dominant reflector. If the transmit antenna beam is

switched to this path, then the received power Pr at the receiver is given by:

Pr = PtGtGr

L f Rl
. (2.13)

Here Pt is the total transmission power, Gt and Gr are the transmitter and receiver’s antenna

gain for the path; L f and Rl are the free space loss and the reflection loss of the path, respec-

tively. The total transmission power is a constant for a COTS device. The antenna gains are also

fixed, because the receive antenna is omni-directional, and the path is in the main lobe of the

transmit antenna (so Gt = 1). Next, we will explain how to calculate L f and Rl .

1)Free space Loss: According to the Friis’s law, the free space loss L f is:

L f (d) =
(
λ

4πd

)2

, (2.14)

where λ is the wavelength of the carrier frequency and d is the length of the NLoS path.
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Our model considers the specular reflection, so the transmission path length d between

the client and the AP is equal to the distance between the client and the virtual AP, which can

be calculated using:

d =
√

(xt −x ′
r )2 + (yt − y ′

r )2, (2.15)

where the virtual AP’s location (x ′
r , y ′

r ) is defined w.r.t. the i -th dominant reflector and is given

by Eq.(2.2).

2)Reflection Loss: The reflection loss depends on the material of the reflector, and can be

characterized using the Fresnel reflection coefficient(Γ) [135, 79]. There are two Fresnel equa-

tions for two different polarization cases. And we use a simplified version of the horizontally

polarized model, under which the Fresnel coefficient is given by:

ΓH = sinψ−√
εr −cos2ψ

sinψ+√
εr −cos2ψ

, (2.16)

where εr is the relative permittivity of the reflective material,ψ is the grazing angle. Notably, the

εr remains as a constant and does not depend on the carrier frequency [135]. The grazing angle

is the angle between the incident ray and the reflecting surface, since we have already modeled

the reflector as a line segmentation Ax +B y +C = 0, the grazing angle can be calculated by:

ψ= arctan

(∣∣∣∣ k − tan(φ)

1+k · tan(φ)

∣∣∣∣) , (2.17)

where k =−A/B is the slope of the reflector surface, φ is the specular ray AoD, given by:

tan(φ) = (B 2 − A2)xr −2AB yr −2AC − (A2 +B 2)xt

(A2 −B 2)xr −2AB xr −2BC − (A2 +B 2)yt
, (2.18)

where (xt , yt ) is the real-time location of the client, and (xr , yr ) is the location of the AP. The

reflection loss can then be represented as [135]:

Rl =
∣∣∣∣ 1

ΓH

∣∣∣∣2

=
∣∣∣∣∣sinψ+√

εr −cos2ψ

sinψ−√
εr −cos2ψ

∣∣∣∣∣
2

. (2.19)
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Note that the above theoretical model only describes the general pattern followed by the RSS on

this path. To make this model fit in our particular operation environment, we use a regression

for model parameter fitting. In particular, we consider the following decibel form of the RSS for

the NLoS path associated with the i -th dominant reflector:

P (i )
r (d ,ψ) = κi −20ηi log10 (d)−20γi log10(

∣∣∣∣∣sinψ+√
ζi −cos2ψ

sinψ−√
ζi −cos2ψ

∣∣∣∣∣). (2.20)

We estimate the parameters κi , ηi , γi and ζi of the model offline using regression when the

transmit beam is switched to the i -th dominant reflector with known AP and client locations (so

d andψ can be calculated). The data is gathered using the empirical RSSI readings generated by

the device’s firmware (unit in decibel). The regression functions P (i )
r (d ,ψ), i = 1, . . . ,K , are then

used online to model the received signal strength for the K NLoS paths offered by the dominant

reflector map at new client locations. When the LoS is being blocked, our system can compute

the RSS of different NLoS paths and directly switch the transmit beam to the best one among

them.

2.2.4 Overhead/Cost Analysis

In this section, we provide a overhead/cost analysis for our proposed method. The total over-

head of the system consists of the following two components:

1) Offline calibration phase: As we have discussed in Section 2.1, to fully determine the

location and orientation of environmental reflectors, we need at least three independent sets of

< φ, (xt , yt ) > for algorithm processing. During the calibration phase, we fixed the AP location

and move the client to three different locations to perform a 360◦ fine-grained spatial scanning.

The scanning step is ω. For each step, we record the RSS from the AP side, so in total we collect

3 · 360◦
ω

RSS measurements. In our test, each RSS measurement is represented by a 4 byte float

number, and ω is set to 5◦, so the total information needed is 864 byte.
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Low-resolution out-lobe resolving: In this part, for each (360◦/ω) number of RSS measure-

ments, our algorithm determines K RSS ranges for high-resolution in-lobe resolving. An iter-

ative approach is used to determine these K ranges, so the time complexity is O (K ). Since the

number of dominant reflectors in an indoor environment is usually limited, a small K is suffi-

cient to provide stable NLoS paths for robust communication. In our experiments, we set K to

3 and the actual time spent by low-resolution out-lobe resolving process is negligible.

High-resolution in-lobe resolving: For each RSS range extracted from the low-resolution

out-lobe resolving phase, it contains (2Θbeam/ω) RSS measurements, whereΘbeam denotes the

half beam width of the main lobe. And we need to solve N sets of g o
i ’s, φo

i ’s, and δo
i ’s for each se-

lected range. In this step, we use an optimization tool to solve the proposed MMSE problem. In

our test, we use the MatLab fmincon function with default interior-point method. We have vali-

dated that a small N (3 to 4) is usually sufficient to obtain a sufficient small error in the objective

function. With an Apple iMac with 3.4 GHz Quad-Core Intel Core i5 CPU, the optimization can

be done within 10 seconds for each range when N is set to 3.

RSSI Regression: For each of the K dominant reflectors, we estimate the parameters κi ,

ηi , γi and ζi , i ∈ K of the model offline using regression when the transmit beam is switched

to the i -th dominant reflector with known AP and client locations. The data is gathered using

the empirical RSSI readings generated by the device’s firmware. In our evaluation part, 10 to

15 different client locations are enough for the regression model to reach a high accuracy. The

regression is performed by using the MatLab curving fitting with the nonlinear least-squares

fitting procedure. With an Apple iMac with 3.4 GHz Quad-Core Intel Core i5 CPU, the regression

can be done within 1 seconds for each range when K is set to 3.

2) Online operation phase: In the online operation phase, our algorithm uses specular

reflection model to calculate the NLoS paths for current locations. The time complexity to cal-

culate K paths is O (K ).

The complexity analyses are summarized in Table 2.2
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Phase Operation Complexity

Offline
sensing

Fine-grained 360◦ scanning O ( 360◦
ω ) for 3 times

Low-resolution out-lobe resolv-
ing

O (K ) for each scanning

High-resolution in-lobe resolv-
ing

Fmincon with interior-point
method

Path loss regression Nonlinear least-squares fitting
Online
opera-
tion

NLoS paths calculation and
switching

O (K ) to calculate K paths

Table 2.2: Complexity of each step.

2.2.5 Limitation of the Method and Extension to Larger Space

A dominant reflector is defined naturally in a local sense, because the strength of its reflected

signal will go down with the distance between the reflector and the user increases. So a reflector

being dominant when the user was close may not remain dominant when the user moves far

away. Because of this, our proposed method can only be directly applied to a small-to-moderate

room scenario, where at least one reflector defined in the top-K dominant reflector map re-

mains to be dominant at any location of the room. In reality, this may correspond to practical

application scenarios such as wireless VR/AR gaming, in which a player does not move too far

but may frequently turn their body, or multiple players interact with each other in one game, so

the LoS may be frequently blocked by the player’s or the other player’s body. In the multi-user

scenario, other users can not only block the LoS but also the estimated NLoS path with each

other. This issue can be trivially solved by simply turning to the second or next optimal esti-

mated NLoS direction, as the proposed method is actually able to compute the top-K optimal

NLoS directions based on the top-K dominant reflector map.

The proposed method can be trivially extended to a larger-space scenario (e.g., a ballroom

or an auditorium) by partitioning the space of the room into smaller areas, and then applying

the proposed method to each area to construct a individual dominant reflector map. The maps

of individual areas are then aggregated and fused into a master map that describes the location

and reflection efficiency of all dominant reflectors in the room. This master map is distributed
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to each user in the operational phase for their online strong NLoS path prediction and beam

switching. Such an extension is out of the scope of this work and will be pursued in our future

research.

Also, we want to point out that our proposed mechanism is suitable for most of the in-

door household application scenarios, where the room layout (i.e., the environment) is static or

quasi-static but the users could be moving. For instance, when a user is playing an electronic

VR game or using wireless cell phone in indoor environment, the direction of the strongest

NLoS path keeps changing due to the user’s movement but the environment is static (i.e., the

locations of the dominant reflectors do not change or remain static for a long period of time).

This static environment assumption should be true in most of the indoor application scenarios,

because those major reflectors are usually large-size furniture, walls, and windows of metallic

surfaces, which are hardly mobile.

2.3 Testbed and Implementation

We implemented our prototype system based on COTS components. The system architecture

and prototype are shown in Figure 2.7. Our system consists of four main parts: 1) two MikroTik

WAP 60G mmWave radios [72] are used for mmWave communication; 2) a robotic arm is used

for 360◦ mechanical steering of the transmit beam. This robotic arm is needed only during the

one-time offline site survey (installation) phase to perform stepped scanning. In the online op-

erational phase, this robotic arm is optional. If it is not available, the COTS device can simply

steers the transmit beam to the particular beam mode (e.g., 64 beam modes are provided by

MikroTik WAP 60G) that is the closest to and covers the desired NLoS direction, achieving an

approximation to the original mechanism presented in Section 2.2 when the arm is available

to steer the beam to the exact desired direction. 3) A VR system is used to provide accurate
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position information for the AP and the client. Note that this VR system is used only for con-

venience/ease of our implementation. It can be replaced by any state-of-the-art indoor WiFi-

based localization algorithm that does not require any additional infrastructure [15]; 4) a PC

host is used to control the beam switching procedure according to our proposed method.

Our testbed is only intended to serve as a prototype to demonstrate the feasibility of the

proposed method. The robotic arm is not an indispensable part to perform our algorithm.

In particular, in the online NLoS prediction phase, instead of using the robotic arm for fine-

grained mechanical steering of the antenna beam, the COTS firmware we are using allows a

coarse-grained electronic steering of the beam by selecting an appropriate beam pattern that

covers the desired direction to which the beam should be turned. In the offline measurement

phase, using the robotic arm to do the automatic space scanning can significantly expedite the

measurement process. However, in case that the robotic arm is not available, the above scan-

ning can also be done manually.

When the LoS is blocked, in order to allow the user to turn its beam to the estimated NLoS

direction, say α, we do need to know the direction/orientation of the beam right before the LoS

blockage, i.e., the direction of the LoS path, denoted as β. So after the blockage the beam needs

to turn α−β degrees from its current orientation in order to point to the estimated NLoS direc-

tion. Given the availability of the locations of the AP (denoted as (x0, y0)) and the user(denoted

as (x1, y1)), the orientation of the user’s beam before the LoS blockage can be calculated as

β = arctan x1−x0
y1−y0

(without loss of generality, here we are assuming that the direction of the Y-

axis is the 0◦).

2.4 Evaluation

2.4.1 Test Setting

Test environment: The performance test is conducted in an indoor lab with a 4.9 m × 4.8 m

layout. We set up a pair of AP and client. The AP is placed at a fixed location with coordinate

(−1.44,0.05), and its receive antenna is omni-directional. For the client, its location is random
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(a) Testbed architecture.

(b) Testbed overview.

Figure 2.7: System prototype.
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picked to cover the whole test area and a VR HMD is bounded with the client to track its loca-

tion(VR base stations are mounted on wall for HMD position tracking). The client uses a beam-

forming mode that forms a 60◦ beam for transmission. We use the iPerf as the traffic source to

drive the mmWave link, and the RSSI measurement is extracted from the integrated RouterOS

operating system.

Reflectors reconstruction: To reconstruct dominant reflectors, we need multiple corre-

lated tests to fully locate them. So we fix the AP to an anchor location and move the client to

three different locations to perform a 360◦ scanning with a step angle 5◦. The measured RSSI

patterns are fed as input for the two-step AoD derivation method to extract the AoDs of dom-

inant reflectors. Then we use these AoDs and location information as the input for specular

reflection model to reconstruct the dominant reflectors’ geometry.

The NLoS path directions are calculated using dominant reflectors’ geometry and real-time

client locations. To compare the performance of different NLoS paths, we conduct a link perfor-

mance test under 30 different client locations and use the RSSI as the performance metric. In

addition, a transport layer performance test under TCP/UDP, containing both static and mobile

scenarios, is also conducted to show the performance of our system under different conditions.

In the static test, both the AP and client’s locations are fixed, whereas in mobile scenario, only

the AP’s location is fixed and the client moves across the room with 0.5 m/s velocity. The real

time TCP/UDP throughput is used as the performance metric.

Performance benchmarks: For the purpose of performance comparison, we conduct two

types of performance benchmarks. The first is the performance using LoS link for commu-

nication, which is the upper bound performance of the system. The second is the perfor-

mance using auto beam steering method [71], which is the default beam steering method for

the MikroTik WAP 60G devices. The method follows the IEEE 802.11ad standard and can auto-

matically change the beam among the 64 predefined beam patterns to maximize the through-

put.
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2.4.2 Experimental Results

Dominant Reflector Reconstruction

In our test, we successfully reconstruct two dominant reflectors, namely the left side reflector

1 and bottom side reflector 2, as specified in Figure 2.8. The reflection coefficients obtained by

our regression model is 1 and 0.224 for reflector 1 and reflector 2. The rectangle denotes the

lab’s layout. The blue and red lines represent the two reconstructed dominant reflectors.

Figure 2.8: Dominant reflector map.

Link Performance Test

After locating the dominant reflectors in the environment, we set the AP to the anchor position

as in Figure 2.8 and randomly select client test locations to conduct a comprehensive perfor-

mance test. For each test location, we first measure the RSSI value of the LoS link under the

blockage, then we calculate two NLoS directions corresponding to those two reflectors. A high

RSSI value usually indicates a better channel status. For a LoS link without any blockage, the av-

erage RSSI value is -50 dB. Figure 2.9 plots the RSSI color maps for four different beam steering

strategies under LoS blockage.
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Figure 2.9: RSSI color map.

Figure 2.9a shows the performance under no beam steering strategy. We refer this as the

baseline performance. The average RSSI drop is -12 dB. At some test points, the link even suffers

from outage. Intuitively, we would think a broad width beam pattern to be beneficial to stabi-

lize the linkage. However, in our test, a broad width beam pattern does not mitigate the perfor-

mance drop when blockage happens. The finding indicates the LoS link is no longer available

for stable mmWave communication under the blockage.

Figure 2.9b shows the performance when the beam direction changes to reflector 1’s spec-

ular reflection direction. These paths are denoted as N LoS1. In this case, the RSSI values are
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acceptable for most of the test locations. We observe that test points at the center of the envi-

ronment usually have lower RSSI values comparing to other points. A possible reason is that

although reflector 1 can always create available NLoS links, the performance for different NLoS

links highly depend on the client locations.

Figure 2.9c shows the performance when the beam direction changes to reflector 2’s spec-

ular reflection direction. These paths are denoted as N LoS2. Compared to Figure 2.9b, the

performance is better for most of the test locations. As mentioned before, the performance of

the NLoS link highly depends on the reflector’s physical properties, such as the material and

area size. Reflector 2 contains a metal cabinet, which has a larger reflective area than that of

reflector 1.
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Figure 2.10: Performance of different NLoS links.

Figure 2.9d shows the result of our proposed beam steering algorithm, where the NLoS link

is selected based on estimated RSSI values of different NLoS paths. The overall performance is

better than using either N LoS1 or N LoS2.

Figure 2.10 shows the numerical results of Figure 2.9. The average RSSI of the LoS block-

age case is -61 dB, which is far below that of N LoS1 or N LoS2. N LoS2 has a higher average
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RSSI value compared to that of N LoS1(-52.1 dB over -53.5 dB). The RSSI values of N LoS1 are

bounded by a tighter range, indicating a greater stability. Our algorithm takes advantage of both

reflectors. The average RSSI measured using our system is -52.1 dB, which is the same as the

N LoS2. The distribution of the RSSI values is less dispersed. In addition, most of the measure-

ment locations achieve RSSI strength higher than -55 dB, which is a huge performance boost

compared to the baseline.

Figure 2.11 shows the CDF of RSSI. From left to right, the lines represent the RSSI of ground

truth, our system and LoS link under blockage, respectively. The ground truth is generated

by comparing the NLoS link measurement result in each test location and choose the highest

RSSI value, which is treated as the oracle value of the current location. The performance of our

system is close to the oracle value, which indicates our system can successfully choose the best

NLoS link by predicting the link performance using the RSSI estimation model.
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Figure 2.11: RSSI distribution.
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Evaluation of Path RSSI Estimation Model

The RSSI estimation model is an essential part in deciding the best NLoS path direction, so

we compare our prediction results with the real world measurements. Figure 2.12 illustrates

the RSSI estimation model accuracy for the two dominant reflectors. The horizontal axis refers

to the estimation error. For both reflectors, about 80% RSSI estimation errors are below 4 dB,

and 40% are below 2 dB. Therefore, our RSSI estimation model accurately estimates the RSSI

measurement, and thus efficiently assists our system in selecting the best NLoS.
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Figure 2.12: The CDF of RSSI estimation error.

System Performance under Static and Mobile Scenarios

Our system is designed to handle indoor mobile device communication, such as VR gaming. So

we use a bandwidth testing software (integrated in the WAP 60G system) to conduct a transport

layer throughput test. To provide more convincing results, we test our system on both UDP

and TCP. For all test scenarios, the LoS link test is conducted without any blockage to serve as
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the upper bound performance, and the LoS direction is blocked by human bodies to test the

performance under blockage.

(a) UDP test. (b) TCP test.

Figure 2.13: Transport layer throughput trace in UDP.

Static scenario performance test: We first perform a static test where we fix the locations

of client and AP. The purpose is to test the performance for different methods under a static

scenario where the LoS is blocked and each method tries to recover the high performance.

Figure 2.13 shows the bandwidth test results of four methods. The “LoS”, “Ours”, “Blocked

LoS” and “Auto” represent the throughput measured by the LoS link, our system, LoS being

blocked and auto beam steering method, respectively. For each method, we conduct a 60-

second bandwidth test and record the throughput sequence. The UDP result is shown in Fig-

ure 2.13(a), the average throughput of “LoS” is 1612 Mbps, and the throughput is stable, as the

LoS link is the most reliable link. The average throughput of “Ours” is very close to that of “LoS”,

which is 1603 Mbps. The “Blocked LoS” shows that as the RSSI values suffer from a drastic

degradation when blockage, the throughput also drops dramatically. The average throughput

is only 503 Mbps, which is about only 30% of the throughput of “Ours”. The “Auto” method,

which automatically select a beam pattern among the 64 pre-defined patterns to maximize the

throughput, has a higher average throughput (869 Mbps) than that of “Blocked LoS”, but only

50% of “Ours”. The distribution of the “Auto” spread widely, with a minimum value 466 Mbps

and maximum value of 1569 Mbps.
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Figure 2.13(b) shows the TCP test results. Compared to UDP, TCP is more reliable and can

tolerate severer signal strength drop. In compensation, the maximum TCP throughput is lower

than that of UDP. This is reflected in our result that the average throughput for the “LoS” in TCP

(791 Mbps) is about half value of that in UDP. Similar to UDP case, the average throughput of

“Ours” in TCP (774 Mbps) is very close to the “LoS” in TCP (791 Mbps). Compared to UDP, the

throughput of “Auto” in TCP is closer to “LoS”.
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Figure 2.14: Performance comparison with RSSI.

The “Ours” method has a higher TCP/UDP throughput than the “Auto” method since “Ours”

can achieve higher RSSI values than the “Auto” method. To justify this point, we test the RSSI

of “Ours” and “Auto” under a static scenario and plot the measured RSSIs in Figure 2.14. More

specifically, our test is performed under a static scenario where we block the LoS at 15 random

locations and collect the RSSIs under “Ours” and “Auto” methods respectively at each location.

The RSSI of the blocked LoS is also collected to provide a baseline for the comparison. When

the LoS is blocked, the average RSSI of the LoS link drops to -60.6 dB. While both the “Auto” and

“Ours” methods bring in some RSSI gains over the blocked LoS, the “Ours” method can achieve

a higher RSSI than the “Auto” method. In particular, as shown in Figure 2.14, the average RSSI of

44



“Auto” is -55.4 dB, while the average RSSI of “Ours” is -52.8 dB, so a 2.6 dB gain over the “Auto”

method. In addition, it can be observed that the variance of RSSI under “Ours” is smaller than

that of the “Auto”, which indicates that the performance of “Our” is more consistent at different

locations than that of the “Auto” method.

The throughput result of “Ours” should be considered as the upper bound performance of

our proposed method, which can be achieved when fine-grained steering of the beam (either

electronically or mechanically) is available. Note that such an upper bound cannot be achieved

by the “Auto” search method, even if fine grained beam steering is available (e.g., by having

more higher-resolution patterns in the codebook). This is because a finer grained beam scan-

ning will require the “Auto” method to scan through a larger number of beam patterns, and thus

increases the delay for the method to select the optimal pattern, undermining the overall aver-

age throughput (where the increased delay should be accounted for as overhead) that can be

achieved by the method. On the other hand, when fine grained beam steering is not available

to our proposed method, our method will directly pick the pattern in the codebook that cov-

ers the estimated optimal NLoS direction. In this case, our method still outperforms the “Auto”

method due to its much shorter beam switching delay and faster response time.

In summary, our system outperforms other methods from stability and throughput per-

spectives, in UDP, TCP and RSSI.

Mobile scenario performance test: We conduct a system level usage test, using TCP and

UDP throughput as evaluation metrics. We fix the AP position and move the client across the

lab. We conduct a 90-second system test: no blockage to the LoS direction in the first 30 s (0-30

s); human body blockage to the LoS direction continuously following the client movement in

the second 30 s (30 s-60 s); blockage moved away from LoS direction in the third 30 s (60 s-90 s).

We also test the auto beam steering method for performance comparison.

Figure 2.15(a) shows the test result based on UDP. During the first 30 s, due to no blockage,

all three methods select the LoS link for communication. Hence all methods reach a throughput

of 1600 Mbps. Then the LoS link is blocked during the second 30 s. When a blockage happens,

45



0 10 20 30 40 50 60 70 80 90

Time (in second)

200

400

600

800

1000

1200

1400

1600

1800

T
h

ro
u

g
h

p
u

t 
(i

n
 M

b
p

s
)

Ours

Auto

LOS
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(b) TCP 90 s test.

Figure 2.15: Transport layer throughput trace in TCP.

both “Auto” and “LoS” suffer from instantaneous performance drop. Due to the fact that the

“LoS” only uses the direct LoS direction whereas the “Auto” selects among different beam pat-

terns to maximize the throughput, the performance for “Auto” is better than “LoS” when block-

age happens. However, both “Auto” and “LoS” throughput drop below 800 Mbps, which is only

50% of the maximum speed of the system.

As for our system, the throughput slightly drops when the blockage occurs. Then the

throughput swiftly restores close to the maximum throughput, which is around 1600 Mbps.
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The overall throughput is stable during entire blockage period, but there still exist some unsta-

ble points. This is because the NLoS path signal strength is not uniformly distributed in the

environment. Therefore, the throughput fluctuates as the client goes through strong and weak

NLoS signal strength areas. This is consistent with our previous finding in Figure 2.9: the NLoS

link performance highly depends on the client’s location. In the meantime, the client changes

the beam direction accordingly to maintain the high performance. We remove the blockage at

the 60th second, bringing the LoS link available again. So all three methods can use the LoS

direction and the throughput restores to the maximum level.

Figure 2.15(b) shows the TCP test results under the same test setting. Due to the error

handling mechanism in TCP, the performance drop of “Auto” and “LoS” during the 30 s to 60 s

is less compared to that of UDP, but still catastrophic for the mmWave communication.

Similar to UDP case, our system can maintain a throughput to an “almost LoS link” (800

Mbps) throughput level with a little fluctuation. Our system shows a superiority in stability and

performance aspects.

In summary, our system successfully handles the LoS blockage under mobile scenarios for

COTS mmWave devices and provides robust link for mmWave communication.

2.5 Conclusions

In this paper, we develop a NLoS beam switching algorithm for off-the-shelf mmWave devices

to maintain a stable connection when its LoS communication path is blocked. The main idea of

our method is to leverage the sparsity of the mmWave channel and the spatial correlation of the

close-by mmWave channels to resolve for the location and orientation of the dominant reflec-

tors in the environment. Strong NLoS backup paths are then computed based on these resolved

dominant reflectors. We also propose a model-driven RSSI estimation algorithm, which allows

the transmitter to predict the quality of each backup NLoS path and pick the best one among

them.

47



In contrast to existing methods, our model does not rely on high precision phased array

antennas, nor does our model require accurate phase information of the received signals, and

therefore is applicable to a wide line of COTS mmWave products. We validate the feasibility

and effectiveness of our system on a mmWave off-the-shelf testbed and demonstrate that it

supports efficient and stable mmWave communication under human blockage.

Our system can serve as a prototype for off-the-shelf mmWave devices to handle the LoS

blockage. The simplicity and low cost of our system can benefit a wide range of low-end com-

mercial mmWave devices.
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Chapter 3

(k,α)-Coverage for RIS-aided mmWave Directional Communication

3.1 Introduction

Millimeter-wave (mmWave) communication is an essential technology in the next generation

high-speed 5G networks. However, a fundamental problem of mmWave communication is the

susceptibility to line-of-sight (LoS) blockage [91, 46]. In particular, the mmWave transmission

relies on directional communication to overcome the high free-space attenuation and the sig-

nal’s propagation heavily relies on LoS paths [66, 65]. When the LoS is blocked by an obstacle,

the mmWave signal cannot penetrate through or circumvent around the obstacle, resulting in

a significant drop of the received signal strength. In this situation, a possible solution is to

steer the communication beam towards a strong non line-of-sight (NLoS) propagation path to

maintain the communication quality. However, the NLoS paths generated by a natural envi-

ronment are inherently unstable and uncontrollable, whose quality may not be good enough

to be used for mmWave communication. To prevent the sudden performance drop caused by

random blockage to the LoS path and increase the communication robustness, a novel concept

called reconfigurable intelligent surface (RIS) [139, 129, 28, 40] is proposed, which can provide

controllable high quality NLoS paths for mmWave directional communication.

RIS, also called intelligent reflecting surface or smart reflect-array, is a planar surface formed

by a large group of passive reflecting meta-elements, each of which is able to control the phase

and amplitude of incident signal independently by dynamically tuning an on-board positive-

intrinsic-negative (PIN) diode [130]. The joint effect generated by massive number of reflecting
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meta-elements can change the propagation property of the reflected signal, and achieve nu-

merous functionalities such as anomalous reflection, beam refocus [47] and beam split [7]. By

smartly deploying multiple RISs in the environment and coordinating their reflection proper-

ties, the wireless channels in the environment can be artificially reconfigured, which provides

new means to fundamentally increase the quality of NLoS channels.

However, how to deploy RISs to provide effective NLoS paths for mmWave directional com-

munication, which is often modeled as a coverage problem, still remains a challenge, as direc-

tions of NLoS paths have decisive influence on the paths’ availability. In particular, if the avail-

able NLoS paths are all from the same or nearby directions, when an obstacle blocks one of the

paths, it is likely that other paths are also blocked, leading to failure of multiple NLoS paths and

degradation of the communication quality. Therefore, a desirable case in mmWave directional

communication is that the receiver is not only within the transmission ranges of (i.e., being

covered by) multiple RISs at the same time, but also the signal propagation paths from these

RISs to the receiver are separated far enough in their directions. In this case, when the current

communication direction is blocked by an obstacle, other paths are still likely to be available.

In the literature, although there have been extensive results on the coverage problem in

the context of wireless sensor networks, few of them assure the minimal angular separation

between different signal propagation/sensing paths when designing the coverage strategies.

In traditional isotropic sensor networks, most sensor deployment strategies aim to guarantee

that every point in the area is within the sensing ranges of a certain number of sensors. For

example, in the wildly studied k-coverage problem [35, 36], a receiver is required to be within

the sensing ranges of at least k sensors. However, the k-coverage problem only considers the

distance between receiver and sensors as the coverage criteria and there is no requirement on

the angular separations between the paths from each sensor to the receiver (a.k.a. angle of

arrivals or AoAs). In the directional sensor networks, i.e., sensors with a limited angle of view,

e.g., cameras, existing literature on coverage mainly study the following three types of problems:

(1) single-perspective coverage [61, 18], which ensures that any point in a target area is always
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within at least one sensor’s angle of view; (2) multi-perspective coverage [76], which provides

at least k views at the same time for the same object from k different directions (as seen by k

directional sensors); (3) full-perspective (360◦) angular coverage [150, 133], which guarantees

that the union of the angle of views of the sensors covers every point of the object, i.e., there

is no blind point on the object that cannot be viewed/sensed by any of the sensors. Despite

their different goals, these works mainly aim to combine the limited angle of views of several

directional sensors to partially or fully cover an object. Angular separation between AoAs is

simply not a consideration/objective in these problems.

Motivated by the drawbacks of existing coverage models, in this paper we propose a novel

min-number (k,α) area coverage (MNkaAC) problem. In particular, we define that a receiver

is (k,α)-covered if it is within the transmission range of at least k RISs so that not only it has

k different NLoS communication paths, but also, from the receiver’s perspective, the angular

separation between any two adjacent NLoS paths must be not smaller than a predefined angle

α. The angular separation parameter α may vary for different application scenarios to provide

different levels of anti-path-blockage robustness. Our MNkaAC problem aims to minimize the

number of RISs deployed in a target area such that every point in the area is (k,α)-covered.

The proposed MNkaAC problem not only ensures that the number of available NLoS paths is

at least k, but also guarantees that the directions of these NLoS paths are sufficiently separated

to avoid simultaneous paths failure, at the minimum cost of RIS deployment. With the con-

sideration of angular separation, the model can enhance the robustness of RIS-aided mmWave

communication network, especially in the scenarios where random blockages are common.

Solving the MNkaAC problem faces the following unique challenges. Firstly, to satisfy the

angular separation requirementα, the deployment of an RIS has to be dependent on the deploy-

ment of neighboring RISs (this is because the angular separation of two NLoS paths is defined

by two RISs and the receiver). This is in sharp contrast to the traditional k-coverage problem, in

which the deployment of multiple RISs is essentially a range-coverage problem and thus can be
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considered independently. The dependent RISs deployment makes the (k,α)-coverage prob-

lem much more challenging. Secondly, as will be shown shortly, in contrast to the traditional

coverage model that assumes a regular disk or pie-shaped coverage area for each RIS, the cov-

erage area of an RIS in (k,α)-coverage model is irregular and has a complex relationship with

the parameter α. How to characterize such a complicated and irregular coverage area is chal-

lenging.

This paper takes the first step to systemically study the MNkaAC problem under the afore-

mentioned challenges. Our contributions are summarized as follows:

• We formulated and solved the MNkaAC problem for RIS-aided mmWave directional com-

munication networks respectively under two different RIS deployment conditions, namely,

deterministic RIS deployment and randomized RIS deployment (and hence a determin-

istic version and a random version of MNkaAC problem). In the former case one has full

control over the exact position where each RIS should be placed, while in the latter case

there is no such control and instead RISs are deployed randomly so that their positions

after the deployment follow certain spatial distribution. The deterministic deployment

model is usually applicable for installing a mild number of RISs to cover a limited tar-

get area (e.g., a shopping mall or an apartment building), while the random deployment

model applies to the scenarios of large-scale RIS deployment.

• To develop solutions to the problem of both versions, we first give formal definitions

for the concepts of point-(k,α)-coverage and area-(k,α)-coverage, and then propose and

prove a necessary and sufficient condition for an area to be (k,α)-covered. Based on this

condition, two efficient feasibility-check methods are proposed to decide if a target area

is (k,α)-covered by a given set of RISs.

• We derive a quasi-optimal solution to the deterministic version of the MNkaAC problem.

Specifically, we first find an optimal regular k-sided polygon deployment pattern and use

it to obtain an approximate solution (i.e., a good feasible solution) to the deterministic
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MNkaAC problem. We then derive a performance bound on this solution in terms of its

optimality gap, i.e., an upper bound that curbs the ratio of the number of RISs required

by this approximate solution to that required by the optimal solution.

• Under the random RIS deployment condition, for a given RIS deployment density, we

show that the target area can only be (k,α)-covered with a probability (defined as the

probability that an arbitrary point in the area is (k,α)-covered). So the random version of

MNkaAC problem is formulated as an optimization to minimize the required RIS density

under the constraint of a desired coverage probability for the target area. We solve this

problem under two RIS distributions, uniformly random distribution and Spatial Poisson

distribution. Under each distribution, we derive the functional relationship between the

RIS density and its (k,α)-coverage probability, based on which the minimum RIS density

to reach the desired coverage probability can be readily decided.

The rest of the paper is organized as follows. Section 3.2 reviewed the related work. Sec-

tion 3.3 defines the (k,α)-coverage problem and proposes two (k,α)-coverage verfication meth-

ods. Section 3.4 proposes a quasi-optimal solution to the MNkaAC problem and derives ana-

lytical performance bound of the solution under the deterministic deployment scenario. Sec-

tion 3.5 derives the (k,α)-coverage probability under the random deployment scenario. Sec-

tion 3.6 provides numerical results for our analyse and we conclude our work in Section 3.7.

3.2 Related Work

Coverage problem in wireless sensor network (WSN) has been extensively studied in the past

few years. There are many existing works in area coverage in traditional scalar wireless sensor

networks (WSN) [85, 31, 48, 5, 154]. In this section, we review the most relevant works.
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3.2.1 Coverage in RIS

As the concept of RIS becomes more and more popular, coverage problem in RIS has attracted

extensive interests [13, 32, 100, 115]. Although most of the works are under directional com-

munication scenarios, none of their works considers the angular separation between two com-

munication paths. Authors in [78] determined the optimal RIS placement w.r.t. the transmit-

ter and receiver antenna positioning. Their results indicated that the RIS should be optimally

placed closer to the receiver than the transmitter so that the signal to noise ratio is maximized.

In [144], the authors focused on the joint effect of RIS orientation and placement. In particular,

their work maximized the cell coverage by adjusting the RIS orientation and the horizontal dis-

tance between the RIS and the base station. However, most of their research focus on increasing

the overall RIS network performance by changing the distance between transmitter and RIS,

and none of their works pays attention to the angular separation among different RIS-created

paths.

3.2.2 Coverage in mmWave Network

The coverage problem in the mmWave network has drawn much attention [74, 10]. Since the

mmWave network is highly dependent on LoS path for signal transmission, most studies con-

sider the coverage and placement of the mmWave nodes with the aim of maximizing the LoS

coverage area. For example, in [114, 81], the authors automated the process of placing mmWave

access points (APs) by computational geometry to maximize the LoS coverage area in dense

cities. In [87], the authors considered the impact of the height of the AP placement on the prob-

ability of LoS coverage. The deployments of high-rise and low-rise APs were jointly optimized

to maximize the probability of LoS coverage of the target field. In addition to the LoS coverage

area, the authors in [9] proposed a geometry-and-blockage-aided coverage model for mmWave

communication with RISs, which also considered the area covered by the first-order reflection

of RISs. Then, the problem of deploying APs and RISs is formulated as a maximization of the

total coverage area under several practical constraints.
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To adapt to the mobile user scenario and increase the reliability of mmWave communica-

tion, some research works consider the angular separation between different paths in the cover-

age model. In [137], the authors formulated the problem of placing mmWave APs to maximize

both the number of multipath channels and the angular spread between these channels. And

in [30], the authors developed an AP deployment scheme that maximizes the average minimum

angular separation between paths to increase the robustness of communication. However, their

scheme is based on mixed-integer linear programming and can be applied only to point cov-

erage problems. In contrast, in our paper, we build a geometry model for path separation and

develop a pattern-based deployment scheme, in which the requirement of angular separation

is always guaranteed for both the point and area coverage problems.

3.2.3 Coverage in Directional Sensor Network

In directional sensor network, the sensor can only detect objects within a limited angle of view.

Any target that lies out of the angle of view cannot be detected, regardless of the distance to

the sensor. Also, the viewing direction of the sensor have important influence on the coverage

quality. So based on the coverage goal, we divide the work in direction sensor network into three

categories (1) single-perspective coverage, which ensures any point in a target area is within at

least one sensor’s angle of view. For instance, in [18], the authors investigated the problem of

using the least number of directional sensors to cover 3-D space while maintaining the connec-

tivity and link quality. And a novel distributed parallel multi-objective evolutionary algorithm is

also proposed to solve the problem. And in [83], the authors formulated a coverage and energy

consumption optimization problem and solve it by the improved adaptive particle swarm opti-

mization. (2) Multi-perspective coverage. In the multi-perspective coverage model, the goal is

to provide distinct views for an object from k different directions, so an object must be covered

by at least k sensor at a time. As in [76], the authors proposed multi-perspective coverage, in

which the cameras are used to gather disparate views of events from different perspectives. A

novel metric is proposed to measure the multi-perspective coverage for a region from a given
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number of perspectives. Further, in [140], an exact algorithm based on binary-level mixed inte-

ger programming was proposed to provide the multi-perspective coverage with the least num-

ber of camera sensors. Although the authors pointed out that for the optimal multi-perspective

coverage, the angular separation between different camera’s viewing directions must be maxi-

mized, they do not constrain the minimal angular separation. (3) Full-perspective coverage, or

full angular coverage, which is to select a set of cameras circle around an object and the union

of their angle of view arcs fully covers the object (i.e., creates a 360◦ circle). For instance, the

work in [150] considered the problem of determining optimal camera placement to achieve an-

gular coverage continuously over a given region. A bi-level algorithm is proposed to find the

minimum-cost camera placement. And in [23], the angle coverage problem is combined with

an additional image resolution requirement, the author transform it into a set cover problem

and propose a greedy algorithm to solve it. However, all the aforementioned fails guarantee the

angular separation among different viewing directions.

Full-view coverage is another important coverage model in camera sensor networks [138,

52, 128, 45, 132]. Wang et al. [138] proposed a novel coverage model called full-view cover-

age. The full-view coverage model requires the object’s face direction to be captured by at least

one camera sensor. He et al. [45] further showed that full-view area coverage problem can be

transferred to full-view point coverage problem, and several set cover based algorithms were

therefore proposed to solve the full-view point coverage problem. Wu et al. [132] investigated

the necessary and sufficient conditions to achieve full view coverage under different random

deployment schemes. Their work provides a performance bound for randomly deployed cam-

eras sensor to guarantee area full-view coverage. Note that to achieve the full-view coverage,

an object is required to be monitored by a set of cameras and the angular separation between

two adjacent cameras must be less than a predefined effective angle. While in the proposed

(k,α)-coverage model, an object is required to be covered by k different RISs and the angular

separation between two adjacent RISs must be greater than the parameter α, which is different

from the full-view coverage model. In addition, in this work, we investigate the (k,α)-coverage
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problem under both random and deterministic deployment scenarios and study the problem

of selecting the minimal number of RISs to ensure the (k,α) area coverage.

Among all the existing literature, [119, 134] are the most relevant to our work. Especially

in [119], Tseng et al. proposed the k-angle object coverage model for camera sensor network.

The k-angle object coverage model requires an object to be simultaneously monitored by at

least k sensors from multiple angles satisfying certain angle constraints ω. Although the defi-

nition is similar to our (k,α)-coverage model, their work only defines the coverage for discrete

points and investigates the problem of using the minimum number of sensors to k-angle cover

the maximum number of discrete objects. In particular, they defined a coverage contribution

function of each sensor and propose a greedy algorithm to pick the sensor with the highest con-

tribution to the total coverage. In contrast, in our work, we not only define the (k,α)-coverage

for discrete points, but also investigate the geometry relationship of (k,α)-coverage and provide

a necessary and sufficient condition for a continuous region to be (k,α)-covered. Meanwhile,

we derive the coverage probability under random deployment scheme and use deployment pat-

terns to achieve (k,α)-coverage under the deterministic scheme, which provide more insightful

results than their works.

3.3 (k,α)-Coverage Model and Verification

In this section, we provide basic definitions for the (k,α)-coverage and propose two methods to

verify if a target area is (k,α)-covered by a given set of RISs. We first define the (k,α)-coverage

and the MNkaAC problem. Then, we derive a necessary and sufficient condition for an area

to be (k,α)-covered (Lemma 3.3.2). Finally, we show that (k,α)-covering an area is equivalent

to (k,α)-covering the boundary of the area (Theorem 3.3.1). Based on this equivalence, we

propose two methods to verify whether a region is (k,α)-covered. Our analysis is inspired by

the works in [138, 45].
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3.3.1 Notations

We consider that multiple mmWave-based RISs are deployed in a bounded area A (target re-

gion) to provide controllable high-quality NLoS paths for mmWave communication. And the

channel between the RIS and the receiver is the LoS channel.The motivation to consider the

RIS-aided mmWave communication, rather than other mmWave technologies such as the con-

ventional cooperative relay, is that RIS is a more relevant and suitable application of the (k,α)-

coverage problem studied in this paper. The proposed (k,α)-coverage problem is most valuable

when the problem setting involves a large-scale and dense deployment of nodes to cover a large

target area. Since RISs are small planar surfaces made up of passive reflecting elements, which

are low-cost, nearly energy-free, and easy to deploy, they can be flexibly and pervasively at-

tached to almost any surface such as billboards and buildings, to provide strong and pervasive

reflection for mmWave signals

Denote the set of RISs deployed in the region by N and |N | represents the cardinality of

N . We use Ri to represent the i -th RIS (1 ≤ i ≤ |N |). Without ambiguity, we also use Ri to

denote the RIS position, and all RIS has the same transmission radius r . Let d(P1,P2) denote

the Euclidean distance between points P1 and P2. The communication coverage model for RIS

is a disk coverage model: an RIS Ri can cover point P if P is within the transmission range of

Ri , i.e., d(P,Ri ) ≤ r . And let C S(P ) denote the coverage set of point P , which is the set of all RISs

that cover P .

Note that the novelty of the (k,α)-coverage model lies in the special requirement for the

angular separation between two adjacent NLoS paths. To quantify the path angular difference,

we use the vector
−−→
PRi to represent the NLoS path direction from point P to RIS Ri , and let

ANG(
−−→
PRi ,

−−→
PR j ) denote the path angular difference between two path directions

−−→
PRi and

−−→
PR j ,

which ranges from 0 to π (0 to 180◦).
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3.3.2 (k,α)-Coverage Model and Problem

We first give basic definitions for the (k,α)-coverage model and problem. Since the angular

separation α is required between two adjacent paths, we use the concept of coverage circular

list to accurately define which paths are adjacent.

Definition 3.3.1 (Coverage circular list). The coverage circular list for a point P , denote as

CC L(P ), is a sequence of RISs in C S(P ) in counterclockwise (or clockwise) direction. And the

coverage circular list for region A , denoted as CC L(A ), is a sequence of RISs that preserves the

same counterclockwise (or clockwise) direction for every point in A .

For example, in Figure 3.1(a), point U is an interior point of A and A is covered by R1, R2,

R3, R4 and R5, i.e., C S(A ) = C S(U ) = {R1,R2,R3,R4,R5}. The coverage circular list for point U

and region A is CC L(A ) =CC L(U ) = {R1,R2,R3,R4,R5}. As the list is circular, it can be also rep-

resented as CC L(A ) =CC L(U ) = {R3,R4,R5,R1,R2}. In the rest of the paper, the adjacent paths

are the paths created by two consecutive RISs in the coverage circular list. e.g., In Figure 3.1(a),

two adjacent paths can be
−−→
U R1 and

−−→
U R2 or

−−→
U R5 and

−−→
U R1. Based on the coverage circular list,

we can further define the (k,α)-coverage.

Definition 3.3.2 (Point (k,α)-coverage). A point P is (k,α)-covered if there exists a CC L(P ) with

k elements (k ≥ 2), denoted as CC L(P ) = {R1,R2, . . . ,Rk }, in which the angle separation between

any two adjacent path vectors
−−→
PRi and

−−→
PRi ′ is greater than or equal to α, i.e., ANG(

−−→
PRi ,

−−→
PRi ′) ≥

α, for any i ∈ [k] and i ′ = mod (i +1,k), where mod is the modulo operator and 0 ≤α≤ 2π
k .

Figure 3.1(b) shows an example for a point U to be (3,50◦)-covered. In this case, the cov-

erage circular list for point U is CC L(U ) = {R1,R2,R3}. The angular separation between any

two adjacent path vectors is greater than or equal to 50◦, i.e., ANG(
−−→
U R1,

−−→
U R2) = 60◦ ≥ 50◦,

ANG(
−−→
U R2,

−−→
U R3) = 150◦ ≥ 50◦ and ANG(

−−→
U R3,

−−→
U R1) = 150◦ ≥ 50◦.

Definition 3.3.3 (Area (k,α)-coverage). An area is (k,α)-covered if and only if every point in the

area is (k,α)-covered. In the rest of the paper, the (k,α)-coverage refers to area (k,α)-coverage

unless otherwise specified.
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(a) Coverage circular list.

(b) A (3,50◦)-coverage case.

Figure 3.1: A circular list and a point (k,α)-coverage examples.
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Definition 3.3.4 (Minimum-number (k,α) area coverage (MNkaAC) problem). For a target

region and a collection of RISs N in the region, the minimum-number (k,α) area coverage

(MNkaAC) problem is to find a (k,α) coverage set C of the target region, such that the cardinal-

ity of C , i.e., |C |, is minimized.

3.3.3 (k,α)-Coverage Verification

To tackle the MNkaAC problem, we need to first verify whether an area is (k,α)-covered by a

given set of RISs. However, it is practically infeasible to verify if an area is (k,α)-covered by Def-

inition 3.3.3, because there are infinite number of points in the area. Therefore, in this subsec-

tion, we propose two methods to detect if a target region is (k,α)-covered by a set of deployed

RISs.

Given a set of deployed RISs N , the target area A can be partitioned into sub-areas, and

each sub-area S A is defined as a set of points with the same coverage circular list. This can be

done by first dividing the area by the communication border of all deployed RISs and the border

of A , such that each sub-area is covered by the same set of RISs. Then, for each sub-area with

the same coverage set, we further divide it by the method provided in [132] to obtain the sub-

areas with the same coverage circular list. In the following discussion, the sub-area refers to the

sub-area with the same coverage circular list.

It is clear that area A is (k,α)-covered if every sub-area S A is (k,α)-covered. However,

verifying if S A is (k,α)-covered is still time-consuming as it is a 2-D region. To tackle this

problem, we first provide and prove a necessary and sufficient condition for the (k,α)-coverage,

which can be used to verify if a sub-area is (k,α)-covered. Then, we further reduce the prob-

lem’s dimension by showing that S A is (k,α)-covered if and only if its boundary, denoted as

∂S A , is (k,α)-covered. As a result, the area (k,α)-coverage verification problem is reduced to

a boundary (k,α)-coverage verification problem. And two methods are proposed to verify if the

boundary is (k,α)-covered.
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Necessary and Sufficient Condition for (k,α)-Coverage

We begin by introducing the concept of feasible region, which is defined as the (2,α)-coverage

area generated by two RISs. The concept of feasible region serves as a building block for our

area (k,α)-coverage verification.

Definition 3.3.5 (Feasible region and infeasible region). For any two RISs Ri and R j , the fea-

sible region is defined as the region in which any point P satisfies ANG(
−−→
PRi ,

−−→
PR j ) ≥ α for a

given α (α ≤ π); and the infeasible region is defined vice versa, in which any point P satisfies

ANG(
−−→
PRi ,

−−→
PR j ) <α for a given α (α≤π).

Next, we show how to find the feasible and infeasible region.

Lemma 3.3.1. Given Ri and R j , there are two arcs ÚRi R j and ÚRi R j
′
, which connect Ri and R j and

are symmetrical with respect to line Ri R j . The feasible region is the enclosed region bounded

by the two arcs and the infeasible region is the complementary region of the feasible region.

Proof. We proof the lemma by finding the two arcs. The cases for 0 ≤ α≤ π/2 and π/2 < α≤ π

are discussed separately.

(1) For 0 ≤α≤π/2 (illustrated in Figure 3.2(a)), we first find a point Pα on the mid-perpendicular

line of Ri R j such that ∠Ri PαR j =α. Based on basic geometry, there are two points that satisfy

this condition. Denote the other point as P ′
α. We obtain two triangles △Ri R j Pα and △Ri R j P ′

α.

Next, we draw the circumcircles for triangles △Ri R j Pα and △Ri R j P ′
α respectively, and denote

the centers of the two circumcircles as ORi R j and O′
Ri R j

, respectively. Based on geometric re-

lationships, the feasible region is the union of the two circumcircles ⊙ORi R j and ⊙O′
Ri R j

. Then

the arc ÚRi R j is a portion of the perimeter of ⊙ORi R j on the left and arc ÚRi R j
′

is a portion of

the perimeter of ⊙O′
Ri R j

on the right. As shown in Figure 3.2(a), the shaded area is the feasible

region for α≤π/2;

(2) For the π/2 < α ≤ π case (illustrated in Figure 3.2(b)), the steps are similar but the

result is different. First, we find two points on the mid-perpendicular line of Ri R j such that
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∠Ri PαR j = π−α. Denote these two points as Pπ−α and P ′
π−α, respectively. Then, we find the

circumcircles for △Ri R j Pπ−α and △Ri R j P ′
π−α as ⊙ORi R j and ⊙O′

Ri R j
, respectively. In this case,

the feasible region is the intersection of the two circumcircles. And the arc ÚRi R j is the right por-

tion of the perimeter of ⊙ORi R j and arc ÚRi R j
′

is the left portion of the perimeter of ⊙O′
Ri R j

. As

shown in Figure 3.2(b), the shaded area is the feasible region for π/2 <α<π.

(a) Feasible region for α<π/2.

(b) Feasible region for α>π/2.

Figure 3.2: Feasible region.

Based on the definitions of the feasible and infeasible region, we can provide a necessary

and sufficient condition for area (k,α)-coverage.

Lemma 3.3.2 (Necessary and sufficient condition). For a sub-area S A with a coverage circu-

lar list with cardinality k, i.e., CC L(S A ) = {R1,R2, . . . ,Rk }, S A is (k,α)-covered if and only if
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S A is contained in the intersection of feasible regions of all pairs of Ri and R ′
i , where i ∈ [k],

i ′ = mod (i +1,k) and 0 ≤α≤ 2π/k.

Proof. This is a result from Lemma 3.3.1 and (k,α)-coverage model.

By using Lemma 3.3.2, we can easily verify if a region is (k,α)-covered. Figure 3.3(a) shows

two area (k,α)-coverage examples. In Figure 3.3(a), the dotted circles represent the feasible

regions for the four pairs of RISs, R1R2, R2R3, R3R4 and R4R1. The region of interests, A , is

(4,α)-covered since it is fully contained in the intersection of all feasible regions (the shaded

area). As for Figure 3.3(b), the feasible regions for RIS pairs, R1R2, R2R3, R3R4, R4R5 and R5R1,

do not have a common overlapping area, therefore A is not (5,α)-covered.

The Boundary Condition and (k,α)-coverage Verification Methods

Next, we shows that to (k,α)-cover an area is equivalent to (k,α)-cover the boundary of the area.

And propose two (k,α)-coverage verification methods.

Lemma 3.3.3 (Boundary condition). Given an area A is k-covered by k different RIS. The area

is (k,α)-covered by the k RISs if and only if its boundary ∂A , is (k,α)-covered by the given set

of RISs

Proof. When the region is (k,α)-covered, because the boundary of A is a part of the A , it is

obvious that ∂A is also (k,α)-covered by the given set of RISs. This proves the “only if" part.

Now we prove the “if" part: if the boundary of the region is (k,α)-covered by the given

set of RISs, then the whole region is (k,α)-covered. We prove it by contradiction. Suppose all

points on ∂A are (k,α)-covered, and there exists an interior point V in A that is not (k,α)-

covered by the set of RISs. By definition, there exist at least two RISs, Ri and R j , being adjacent

in CC L(A ), such that d(V ,Ri ) ≤ r,d(V ,R j ) ≤ r and ANG(V Ri ,V R j ) < α. Now consider a point

Q on ∂A , and points Q, V and R j is on the same line. As shown in Figure 3.4, Q is a boundary

point and (k,α)-covered, i.e., ANG(
−−→
QRi ,

−−−→
QRi ′) ≥α for i ∈ [k] and i ′ = mod (i +1,k), indicating

that α ≤ ∠Ri QR j ≤ ∠Ri V R j . However, based on geometric relationships, we have ∠Ri QR j ≤
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(a) (4,α)-covered.

(b) Not (5,α)-covered.

Figure 3.3: Area (k,α)-coverage examples.
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∠Ri V R j < α, which is a contradiction. Hence we have proved that any interior point in A is

(k,α)-covered if the boundary of A is (k,α)-covered.

Figure 3.4: Boundary condition for region A .

Theorem 3.3.1 (Boundary (k,α)-coverage). Given S A with CC L(S A ) = {R1,R2, . . . ,Rk }, S A

is (k,α)-covered if and only if its boundary ∂S A is contained in the intersection of feasible

regions of all pairs of Ri and R ′
i , where i ∈ [k], i ′ = mod (i +1,k) and 0 ≤α≤ 2π/k.

Proof. This is a result from Lemma 3.3.1, 3.3.2 and 3.3.3.

By Theorem 3.3.1, we have proved that the area (k,α)-coverage is equivalent to the bound-

ary (k,α)-coverage. Here, we further provide two methods to check whether a boundary is

(k,α)-covered or not. A simple method is to select a collection of points on the boundary as

control points such that the distance between any two adjacent control points is less than a

constant δ. When δ is sufficiently small and all control points are (k,α)-covered, the area is also

(k,α)-covered. Another method is to directly check if every segment of the sub-area boundary

is (k,α)-covered. As the total number of boundaries generated is O (|N |4), where |N | is the to-

tal number of RISs deployed. We can check if every boundary segment is (k,α)-covered for the

area (k,α)-coverage verification.
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3.4 (k,α)-Coverage under Deterministic Deployment Scheme

To tackle the MNkaAC problem under deterministic deployment scheme, we first approximate

the continuous target region by discrete target points. According to Theorem 3.3.1, a region is

(k,α)-covered if and only if its boundary is (k,α)-covered. Therefore, we can select a collection

of points on the boundary as target points such that the distance between any two adjacent

target points is less than δ. And if all target points are (k,α)-covered, the target region is also

(k,α) covered. Approximating the continuous region by discrete points is a commonly used

method to tackle the coverage problem in a 2-D region. And the MNkaAC is thereby transferred

to the MNkaPC problem, which is defined as follows.

Definition 3.4.1 (MNkaPC). Given a RISs network N and a set of target points, which is (k,α)

covered by N . The minimum-number (k,α) point coverage (MNkaPC) problem is to find a set

C of RISs with the minimal cardinality that ensures (k,α) coverage for every target point.

Since the MNkaPC problem is NP-complete (proofed in Lemma 3.4.1), the computational

complexity to solve the MNkaPC problem grows exponentially with the number of RISs. We will

derive an approximation solution to the MNkaPC problem.

Proposition 3.4.1. The MNkaPC problem is NP-complete.

Proof. We prove its NP-completeness by showing a special case of MNkaPC problem to be NP-

complete. When α = 0, the MNkaPC problem can be reduced to a minimum-number k point

coverage problem, which is to identify the minimal number of RISs such that every target point

is within the transmission range of k different RISs. And this problem is NP-complete[56, 39].

Specifically, in this section, we use regular k-sided polygon (regular k-gon) deployment

patterns to solve the MNkaPC problem approximately. A regular k-gon deployment pattern is

formed by deploying k RISs at k vertices of a regular k-sided polygon, for example, equilateral

triangle and square. In the following discussion, the deployment pattern refers to the regular
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k-gon deployment pattern. The basic idea of using deployment patterns for the (k,α) area cov-

erage is similar as tiling tiles. Specifically, each deployment pattern generates an (k,α)-coverage

area, and by repetitively applying the deployment pattern to the target region, we can achieve

the full area (k,α)-coverage. Among all the regular k-gon deployment patterns, we are more

interested in the pattern that generates the maximum (k,α)-coverage area, which is referred as

the optimal deployment pattern, because it reduces the number of RIS needed to the utmost

extent.

In the next few subsections, we focus on the optimal deployment pattern and our analyses

are twofold: (1) The optimal pattern derivation: We resolve the optimal deployment pattern by

finding its side length and calculate the (k,α)-coverage area size generated by the optimal de-

ployment pattern. Specifically, we first derive a general formula to calculate the (k,α)-coverage

area for any regular k-gon deployment pattern. Then, we find the maximum side length for the

deployment pattern under the constraint of the communication radius and use it to calculate

the (k,α)-coverage area for the optimal pattern. (2)The optimality bound: We point out that

applying the optimal pattern to (k,α)-cover the target region yields a good feasible solution to

the MNkaPC problem. And we derive the optimality bound for this feasible solution in terms of

the approximation ratio to quantify how good the solution is.

3.4.1 The Optimal k-sided Regular Polygon Pattern

The optimal pattern refers to the k-sided regular polygon pattern with the maximum (k,α)-

coverage area. To optimize the pattern, we need to find the maximum side length of the k-sided

regular polygon pattern, because a larger side length of the deployment pattern leads to larger

(k,α)-coverage area. But the side length cannot be too large since the (k,α)-coverage area must

be fully enclosed in the k-coverage area of the pattern (i.e., every point in the (k,α)-coverage

area must be within the communication radius of all k RISs in the pattern). Therefore, the max-

imum side length also has complex relationship with the (k,α)-coverage area. In this section,

we will derive the maximum side length of the k-sided regular polygon pattern considering the
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communication radius r , and use it to calculate the maximum (k,α)-coverage area of the pat-

tern.

We begin by introducing the notations. Let S (k,α,dk ) be the size of the (k,α)-coverage

area generated by a regular k-sided polygon deployment pattern with side length dk , which

is a function of k,α and dk . Denote the maximum value of dk as d∗
k , which is the maximum

feasible side length for the k-sided regular polygon deployment pattern. Then S (k,α,d∗
k ) is

the correspondingly maximum (k,α)-coverage area. For the ease of the presentation, we define

S ∗
(k,α)

def= S (k,α,d∗
k ). Next, we discuss α<π/k and π/k ≤α< 2π/k separately in finding d∗

k and

S ∗
(k,α).

α<π/k.

As proved in Theorem 3.4.1, any point in the circle that circumscribes a regular k-sided polygon

is (k,α)-covered with α≤ π/k. Therefore, S ∗
(k,α) is the area size of the circle that circumscribes

the regular k-sided polygon pattern. In this case, we can directly derive d∗
k and S ∗

(k,α). Since the

diameter of the circle that circumscribed the regular k-sided polygon must be no greater than r

to ensure all (k,α)-coverage area is k-covered, the maximum side length for the regular k-sided

polygon deployment patterns d∗
k = r sin(π/k) and S ∗

(k,α) = 0.25πr 2.

Theorem 3.4.1. For a regular k-sided polygon deployment pattern, the interior area of its cir-

cumcircle is (k,π/k)-covered.

Proof. For a regular polygon with k vertices v1, v2, ..., vk (in clockwise), its circumcircle passes

through all vertices of the polygon. For any two adjacent vertices vi and vi ′ (i ′ = mod (i +1,k))

and a point P on the circumcircle, the inscribed angle of chord vi vi ′ , i.e., ∠vi P vi ′ = π/k or

∠vi P vi ′ =π−π/k. And for any point P ′ within ⊙Ok , we have ∠vi P ′vi ′ ≥π/k for i = [k].

Figure 3.5 shows the (k,π/k)-coverage area for equilateral triangle, square and regular

hexagon patterns, respectively. The interior area of the circumcircle satisfy (3,π/3), (4,π/4),

(6,π/6)-coverage, respectively. Figure 3.6, from left to right, shows the maximum side-lengths
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for equilateral triangle, square and regular hexagon patterns, where r is the communication ra-

dius of RIS. For each of the three cases, the small red circle represents the (k,α)-coverage area

and the big dotted circle is the communication circle of a RIS. The d∗
k is obtained by letting the

radius of the big circle, i.e., r , equal to the diameter of the red circle.

Figure 3.5: The (k,π/k)-coverage area for k = 3,4,6.

Figure 3.6: The maximum side-lengths for equilateral triangle, square and regular hexagon pat-
terns w.r.t. the communication radius r .
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π/k ≤α< 2π/k.

For π/k ≤ α < 2π/k, we aim to derive an explicit expression for S (k,α,dk ) to find the d∗
k , and

then calculate S∗
(k,α). However, the derivation of S (k,α,dk ) is difficult since finding the inter-

section area of all feasible regions is complicated. Recall that in Section 3.3, we have pointed

out that the (k,α)-coverage area is the intersection area of k feasible regions. So, for a regular

k-sided polygon pattern, we can also draw k feasible regions for every two adjacent RISs, and

S (k,α,dk ) is the intersection area of these k feasible regions, and each feasible region is either

the union or overlap of two circumcircles. The S (k,α,dk ) calculation thus involves finding the

common intersection area of all 2k circles, which is a NP-complete problem.

Fortunately, we can decrease the problem difficulty by reducing the number of circles in-

volved. According to Property 3.4.1, instead of calculating the intersection area of k feasible

regions (2k circles), we can calculate the intersection area of k feasible circles. Based on this

observation, we use the feasible circle to calculate S (k,α,dk ).

Property 3.4.1. For a regular polygon pattern, the intersection area of all feasible regions is only

enclosed in one circumcircle of every feasible region, and we refer to this circle as the feasible

circle.

In addition, in a regular k-sided polygon pattern, the feasible circles have the same radius

and their centers also form a regular k-sided polygon. In this case, the intersection area of these

k feasible circles, i.e., S (k,α,dk ), is a curvilinear polygon with k identical curved sides. And the

area size of this curvilinear polygon can be analytically derived.

In the following, we will use equilateral triangle deployment patterns and square patterns

to illustrate the detailed calculation steps. For each of the patterns, we begin with calculating

the radius of feasible circles and the side length of the polygon formed by centers of feasible

circles. Then we calculate the area of the curvilinear polygon as S (k,α,dk ).

Equilateral triangle pattern for (3,α)-coverage: For an equilateral triangle deployment

pattern △R1R2R3, the side length d(R1,R2) = d(R2,R3) = d(R3,R1) = d3 and the internal angle is
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π/3. As shown in the black triangle in Figure 3.7(a). To find the (3,α)-coverage area, we draw

the feasible circles for all adjacent RISs with centers as OR1R2 , OR2R3 and OR3R1 , and the radii are

d3/(2sinα). The (3,α)-coverage area S (3,α,d3) is the overlapping area of three feasible circles

⊙OR1R2 , ⊙OR2R3 and ⊙OR3R1 , which is shown as the red dashed area in Figure 3.7(a).

By connecting OR1R2 , OR2R3 and OR3R1 , the △OR1R2OR2R3OR3R1 is also an equilateral trian-

gle. Denote its side length as d ′
3, as shown in Figure 3.7(b). We have

d ′
3 =

d3

2sinα

√
2+2cos(2α+π/3). (3.1)

Then, S(3,α,d3) is the overlapping area of which the three feasible circles ⊙OR1R2 , ⊙OR2R3 and

⊙OR3R1 , each has the radius of d3/(2sinα), and the distance between any two centers of feasible

circles is d ′
3.

The S (3,α,d3) is a circular triangle, which can be decomposed into three circular seg-

ments and an equilateral triangle, and the chord length of the circular segment is equal to the

side length of the equilateral triangle, as shown in Figure 3.7(b). Denote the chord length of the

circular segment as c3, we have

c3 =
p

3

√( d3

2sinα

)2
−

(d ′
3

2

)2
− d ′

3

2
. (3.2)

And S(3,α,d3) can thereby be calculated by summing the area of three circular segments with

chord length c3 and an equilateral triangle with side length c3, which gives

S (3,α,d3) =
p

3

4
c2

3 +3
(
(

d3

2sinα
)2 arcsin

c3 sinα

d3
− c3

4

√
(

d3

sinα
)2 − c2

3

)
.

(3.3)

After obtaining the shape and size of S (3,α,d3), we derive the maximum feasible side

length d∗
3 to obtain S ∗

(3,α). To ensure that the (3,α)-coverage area is within the communica-

tion radii of R1,R2 and R3, the largest distance between a RIS and a point in the (3,α)-coverage
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(a) Triangle pattern and feasible circles.

(b) Overlap area calculation.

Figure 3.7: The (3,α)-coverage area in a triangle pattern.
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area must be smaller than r , which gives

c3

2sin(π/3)
+ d3

2sin(π/3)
≤ r. (3.4)

The maximum feasible side length for the equilateral triangle pattern, i.e., d∗
3 , can be reached

by taking the equality in Eq. (3.4), which is

d∗
3 =

4
p

3r sinα

(6−6cos(2α+π/3))
1
2 − (2+2cos(2α+π/3))

1
2 +4sinα

.
(3.5)

Figure 3.8: A d∗
3 example.

Figure 3.8 shows the case where d∗
3 is the side length of the equilateral triangle pattern

△R1R2R3. In this case, the largest distance between R1 and a point in the (3,α)-coverage area

(red dashed area) is r .

Square pattern for (4,α)-coverage: For the square pattern□R1R2R3R4, the analysis follows

the similar procedure. Let d4 be the side length of □R1R2R3R4, we have d(R1,R2) = d(R2,R3) =
d(R3,R4) = d(R4,R1) = d4 and the internal angle of □R1R2R3R4 as π/2. The feasible circles of

adjacent RISs are ⊙OR1R2 , ⊙OR2R3 , ⊙OR3R4 and ⊙OR3R4 , and the (4,α)-coverage area is the over-

lapping area of the four feasible circles, as shown in the red dashed area in Figure 3.9(a).
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The quadrilateral OR1R2OR2R3OR3R4OR3R4 is a square. Denote its side length as d ′
4, and we

have

d ′
4 =

d4

2sinα

√
2−2sin(2α). (3.6)

And S (4,α,d4) is the overlapping area of four feasible circles ⊙OR1R2 , ⊙OR2R3 , ⊙OR3R4 and

⊙OR3R4 , each with the radius of d4/(2sinα), and the distance between any two adjacent RISs

is d ′
4, as shown in in Figure 3.9(b).

Similar to the equilateral triangle pattern analysis, S (4,α,d4) is the summation area of four

circular segments and a square, and the chord length of each circular segment is equal to the

side length of the square. Denote the chord length of the circular segment as c4, as shown by

the red dashed area in Figure 3.9(b), we have

c4 =
p

2 ·
√

(
d4

2sinα
)2 − (

d ′
4

2
)2 −

p
2

2
d ′

4. (3.7)

And S (4,α,d4) can be calculated by summing four circular segments with chord length c4 and

one square with side length c4, which is

S (4,α,d4) =

c2
4 +4

(
(

d4

2sinα
)2 arcsin

c4 sinα

d4
− c4

4

√
(

d4

sinα
)2 − c2

4

)
.

(3.8)

And to calculate the maximum feasible side length for square deployment pattern, i.e., d∗
4 ,

we have to ensure any point in the (4,α)-coverage area is within the transmission radii of all four

RISs. As shown in Figure 3.10, the red dashed area is the (4,α)-coverage area of square pattern

□R1R2R3R4. To insure that any point in the (4,α)-coverage area is within distance r to R1, the

largest distance between R1 and a point in the red dashed area must be smaller than or equal to

r , therefore

c4

2sin(π/4)
+ d4

2sin(π/4)
≤ r. (3.9)
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(a) Square pattern and feasible circles.

(b) Overlap area calculation.

Figure 3.9: The (4,α)-coverage area in square pattern
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By taking the equality, the maximum side length d∗
4 for the square pattern □R1R2R3R4 is

d∗
4 = 2

p
2r sinα(

1+ sin2α
) 1

2 − (
1− sin2α

) 1
2 +2sinα

. (3.10)

Figure 3.10: A d∗
4 example.

S ∗
(4,α) is calculated by substituting Eq.(3.10) into Eq.(3.8).

General Formulations for d∗
k and S ∗

(k,α)

Based on the above analyses, we can extend the results to any k-sided regular polygon deploy-

ment pattern for S ∗
(k,α) and d∗

k calculation.

For 0 ≥α≥π/k, as proved in Theorem 3.4.1, S ∗
(k,α) is the area size of the circle that circum-

scribes the regular k-sided polygon pattern. Therefore, d∗
k = r sin(π/k) and S ∗

(k,α) =πr 2/4.

As for π/k ≥α≥ 2π/k. Let d ′
k be the side length of k-sided regular polygon created by the

centers of the k feasible circles, we have

d ′
k = dk

2sinα

√
2+2cos(2α+ (π−2π/k)). (3.11)
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Then, S (k,α,dk ) is composed of a regular k-sided polygon with side length ck and k circular

segments with chord length ck , we have

ck = 2sin(
π

k
)

(√
(

dk

2sinα
)2 − (

d ′
k

2
)2 − d ′

k cot πk
2

)
, (3.12)

And S (k,α,dk ) is

S (k,α,dk ) = k sin 2π
k

4(1−cos 2π
k )

c2
k

+k
(
(

dk

2sinα
)2 arcsin

ck sinα

dk
− ck

4

√
(

dk

sinα
)2 − c2

k

)
.

(3.13)

As dk must be chosen to ensure the (k,α)-coverage area is also k-covered, we have

ck

2sin(π/k)
+ dk

2sin(π/k)
≤ r. (3.14)

The maximum feasible side length of the k-sided regular polygon pattern, i.e., d∗
k , is

d∗
k =

2
p

2r sin(α)(
1−cos(Φ(k,α))

) 1
2 −cot(πk )

(
1+cos(Φ(k,α))

) 1
2 +

p
2sinα

sin(π/k)

,
(3.15)

where

Φ(k,α) = 2α+π−2π/k.

In summary, the general formulations for d∗
k and S ∗

(k,α) are

d∗
k =


r sin(πk ) 0 ≤α≤π/k

Eq.(3.15) π/k <α≤ 2π/k

, (3.16)
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and

S ∗
(k,α) =


1
4πr 2 0 ≤α≤π/k

Eq.(3.15) into Eq.(3.13) π/k <α≤ 2π/k

. (3.17)

3.4.2 Optimality Bound

After obtaining the optimal deployment pattern, we can apply it to (k,α)-cover the target region

and derive an approximation solution to the MNkaPC problem. The solution can be obtained

by using a greedy algorithm: At each iteration, select the pattern that (k,α)-cover the most num-

ber of uncovered target points until there is no point left as un-(k,α)-covered. Since the optimal

deployment pattern has the largest (k,α)-coverage area, the approximation solution obtained

by using the optimal pattern is a good feasible solution to the MNkaPC problem. Next, we will

analyze the performance guarantee of the approximation solution in terms of the approxima-

tion ratio.

Let C (k,α) be the set of RISs selected by applying the optimal deployment pattern to the

MNkaPC problem. And let OPT (k,α) be the optimal solution to the MNkaPC problem. The

approximation ratio ρ is defined as

ρ = |C (k,α)|
|OPT(k,α)|

, (3.18)

which is the ratio between the number of RIS selected by the proposed method to the optimal

solution, and it can be used to quantify how good the approximation solution is. A smaller ρ

represents a better approximation.

To calculate ρ, we must know |C (k,α)| and |OPT(k,α)|. Although we can apply the optimal

pattern to the target region and numerically derive |C (k,α)|, |OPT (k,α)| is hard to derive. There-

fore, instead of calculating the exact value of ρ, we derive an upper-bound for it. We have the

following theorem about ρ.
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Theorem 3.4.2. Denote C (k) be the solution given in [153], which is an approximation solution

to the problem of using the minimal of number RIS to k cover the target points, we have

ρ ≤ 2r log(k|N |)|C (k,α)|
|C (k)| . (3.19)

where r is the transmission radius of RIS and |N | is the size of the RIS network.

Proof. Consider the minimal-number k point coverage problem, which is to select the minimal

number of RIS such that the every target point is within the communication radius of at least k

different RISs. The minimal-number k point coverage problem is a special case of the MNkaPC

problem where the angular constrain α = 0 (no angular constrain). Therefore, the optimal so-

lution to the minimal-number k point coverage problem, denoted as OPT (k), is a subset of the

optimal solution to the MNkaPC problem OPT (k,α), i.e., OPT (k) ⊂OPT (k,α). And we have

|C (k,α)|
|OPT (k,α)| ≤

|C (k,α)|
|OPT (k)| (3.20)

Since the minimal-number k point coverage problem is NP-complete, only approxima-

tion solution is derived for it. According to [153], the authors gave a solution to achieve the

k-coverage with size at most 2r log(k|N |)|OPT (k)|, where r is transmission radius of a RIS and

|N | is the size of the RIS network. Denote the approximate solution given in [153] as C (k) , we

have |C (k)| ≤ 2r log(k|N |)|OPT (k)|. Therefore,

ρ ≤ |C (k,α)|
|OPT (k)| ≤

2r log(k|N |)
|C (k,α)| |C (k)| (3.21)

Given a target region, both |C (k,α)| and |C (k)| can be derived. And we can use them to cal-

culate the optimality bound in Theorem 3.4.2 for a worst-case performance guarantee.

Remark: In addition, we can further derive another optimality bound for ρ since we have

derived the (k,α)-coverage area size of each optimal pattern, i.e., S∗
(k,α). Denote the area size of
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the target region as S0, and assume it is far greater than the (k,α)-coverage area generated by

an optimal pattern, i.e., S0 ≫ S∗
(k,α), which is a common scenario in most real-world cases. we

have

|C (k,α)| ≤ kS0

S∗
(k,α)

. (3.22)

And the optimality bound in Theorem 3.4.2 can be further derived as

ρ ≤ 2kr S0 log(k|N |)
S∗

(k,α)|C (k)| . (3.23)

3.5 (k,α)-Coverage Probability under Random Deployment Scheme

In this section, we calculate the probability that an arbitrary point in the target region is (k,α)-

covered given a number of RISs are randomly deployed in the region. Due to its convenience,

random deployment scheme is widely used to deploy RISs in a large complex environment.

The calculation we derived can be used to estimate the least number of RISs that are needed to

achieve (k,α)-coverage with a required coverage probability.

Without loss of generality, we assume the target region is a 1×1 squared region. And the

coverage area of an RIS, i.e., πr 2, is less than 1. We first consider the case where there are k

uniformly deployed RISs to find the probability that an arbitrary point is (k,α)-covered by these

k RISs. Then we consider the number of RISs to be N (N > k) to derive the (k,α)-coverage prob-

ability. Finally, we consider the case where the RISs are distributed following a homogeneous

spatial Poisson distribution with density λ for more general applications.

When RISs are deployed in a bounded region, boundary effect takes place in which the

number of RISs in the area that is close to the boundary is likely to be less than that in the inte-

rior area. As a result, the area close to the boundary is less likely to satisfy the coverage condition

than the interior area. However, the boundary effect can be trivially avoided by deploying the

RISs in a larger deployment region, which can be achieved by slightly increasing the side length
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of the original target region. When the target region is large enough, the difference is negligible.

Therefore, the boundary effect is ignored in our analysis.

Lemma 3.5.1. Given k uniformly distributed RISs in area A , the probability that an arbitrary

point P is (k,α) (α in rad and α≤ 2π/k ) covered by the set of RISs is

P (k)
(k,α) = (πr 2)k (

2π−kα

2π
)k−1. (3.24)

Proof. The RISs are uniformly distributed, therefore the probability that all k RISs are within

distance r to the point P is p = (πr 2)k .

Next, we consider the probability that k RISs can (k,α) cover P . Consider a disk area with

radius r and centered at P . Since RISs are uniformly distributed in A , they are also uniformly

distributed in the disk area. For each RIS Ri , i ∈ [k] within the disk area, consider its projec-

tion point R ′
i on the perimeter of the disk, which is the intersection point of vector

−−→
PRi and the

perimeter of the disk. R ′
i is also uniformly distributed on the perimeter of the circle, and all R ′

i s

divide the perimeter of the circle into k non-overlapping arc segments. Therefore, the proba-

bility that P is (k,α)-covered is equal to the probability that the length of any k arc segments is

no less than rα. This probability can be calculated through geometric probability[109]. We use

k = 3 as an example, and the results of other k values can be derived using similar approach.

Suppose r = 1, and the length of the j -th arc segment is denoted as x j . So, we have x j > 0 for

any j ∈ [1,2,3] and
∑3

j=1 x j = 2π. Draw the constraints on a Cartesian coordinate system with

the x-axis as x2 and y-axis as x1, as shown in Figure 3.11. The area formed by these constrains,

which is denoted as S0, is (2π)2

2 , as shown in the black dashed area in Figure 3.11. And if the

lengths of all 3 arc segments are no less than α, we have x j >α for j ∈ [1,2,3] and
∑3

j=1 x j = 2π.

The area, which is denoted as S(3,α), is (2π−3α)2

2 (The red dashed area in Figure 3.11). Therefore,

the probability Pr(all 3 arc segments are no less than α) = S(3,α)
S0

= (1− 3α
2π )2.

Following this idea, the probability that the k RISs can (k,α)-cover P can thus be derived,

which is (1− kα
2π )k−1. The lemma is proved.

82



Figure 3.11: The (k,α)-coverage probability example for k = 3.

Theorem 3.5.1. Given N (N > k) RISs uniformly distributed in area A , the probability that an

arbitrary point P is (k,α) (α in rad and α≤ 2π/k ) covered by the set of RISs is

P (N )
(k,α) =

N∑
k ′=k

(
N

k ′

)
(πr 2)k ′

(1−πr 2)N−k ′
f (k,α,k ′), (3.25)

where

f (k,α,k ′) =
(
1−

(
1− (

2π−kα

2π
)k−1

)(k′
k ))

. (3.26)

Proof. Given N RISs in A , the probability that point P is covered by exactly k ′(k ′ ≤ N ) RISs is

p =
(

N

k ′

)
(πr 2)k ′

(1−πr 2)N−k ′
. (3.27)

Given point P covered by k ′ (k ′ ≥ k) RISs, we need to calculate the probability that point P is

(k,α)-covered. Denote the probability as f (k,α,k ′), and let f̃ (k,α,k ′) be the probability that P

is not (k,α)-covered by k ′ RISs, we have

f (k,α,k ′) = 1− f̃ (k,α,k ′). (3.28)
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By Definition 3.3.2, f (k,α,k ′) is the probability that given point P covered by k ′ RISs, there exists

at least one CC L(P ) with k elements that satisfies theα angular constraint. Therefore, f̃ (k,α,k ′)

is the probability that given point P covered by k ′ RISs, all CC L(P ) of P with k elements do not

satisfy the α angular constraint. Given k ′ RISs, the probability that P is not (k,α)-covered is

f̃ (k,α,k ′) = (1− (
2π−kα

2π
)k−1)(k′

k ). (3.29)

(k,α)-coverage requires at least k RISs, so k ′ ranges from k to N . By summing k ′ from k to N ,

the lemma is proved.

Theorem 3.5.2. Given that RISs are deployed following a homogeneous spatial Poisson distri-

bution with density λ in region A , the probability that an arbitrary point P is (k,α) (α in rad

and α≤ 2π/k ) covered by the set of RISs is

P(k,α) =
∞∑

k ′=k

(λπr 2)k ′
e−λπr 2

k ′!
f (k,α,k ′), (3.30)

where f (k,α,k ′) is given in Theorem 3.5.1.

Proof. This is proved by putting together the homogeneous Poisson probability and the proba-

bility in Theorem 3.5.1.

3.6 Numerical and Simulation Results

In this section, we provide simulation results for both random and deterministic schemes for

(k,α)-coverage. In deterministic deployment scheme, we first show the d∗
k and S ∗

(k,α) to illus-

trate the performance of using k-sided regular polygon patterns to achieve the (k,α)-coverage.

Then, we compare the proposed deterministic schemes with a modified k-coverage algorithm

to highlight the performance improvement of our method. In the random deployment scheme,

we first validate the probability derivation in Section 3.5 and get a pictorial view of the relation-

ship between the RIS density and the (k,α)-coverage probability under different settings.
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3.6.1 Simulation Setup

To normalize the results, the area size of the target region A is set to 1 (unit area). The exper-

iments are done by MatLab for both the random and deterministic deployment simulations.

The detailed simulation setup is described along with the figure explanations.

3.6.2 Simulation Results

Deterministic Deployment Scheme.

Theoretical results: In the deterministic deployment scheme, we first show the theoretical re-

sults derived from section 3.4. Specifically, we show the maximum (k,α)-coverage area S ∗
(k,α)

and the maximum feasible side length d∗
k under different α. The communication radius r is set

to 1 (unit length) in the simulation.

Figure 3.12(a) shows the maximum feasible side length d∗
k for the k-sided regular polygon

deployment pattern vs. α. We show d∗
k for k = 3, 4, 6. For α ≤ π/k, the interior area of the

k-sided regular polygon’s circumcircle is (k,π/k)-covered. In this case, d∗
k does not vary with

the α, and remains as r sinπ/k. For π/k ≥α≥ 2π/k, d∗
k increases as α increases. The reason is

that as α increases, the k-sided regular polygon pattern must also increase to ensure that every

(k,α)-covered point is k-covered. Figure 3.12(b) shows the maximum (k,α)-coverage area

S ∗
(k,α) for the k-sided regular polygon deployment pattern with maximum feasible side length

d∗
k for different α. Here, we show the results for k = 3, 4, 6. For α≤ π/k, the interior area of the

circumcircle is (k,π/k)-covered, therefore, S ∗
(k,α) = (0.5r )2π = 0.25π. For π/k ≥ α ≥ 2π/k, the

S ∗
(k,α) is calculated through Eq.(3.13). Although d∗

k increases as α increases, S ∗
(k,α) decreases

as α increases. The reason is that the angular constrain α is the most strict requirement in

the (k,α)-coverage model, as α increase, the (k,α)-coverage area generated by the deployment

drops fast. When α = 2π/k, S ∗
(k,α) = 0, because only one point satisfy the (k,2π/k)-coverage

requirement, and the area size of a point is 0.
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Performance comparison. We then compare our deterministic deployment pattern-based

scheme with a modified k-coverage algorithm to highlight our contribution. We must empha-

size that, to the best of our knowledge, our paper is the first work in the literature that studies

the (k,α)-coverage problem. In the absence of any existing scheme that considers similar con-

straints to those in the (k,α)-coverage problem, the best we can do in order to obtain a mean-

ingful comparison is to modify an existing algorithm that was originally developed to solve a

different coverage problem (e.g., the k-coverage problem in our simulations) in such a way that

the modified algorithm can give a feasible solution to the (k,α)-coverage problem.

More specifically, we consider the minimum-number (k,α) point coverage problem (MNkaPC),

which finds the minimum number of RISs that provides (k,α)-coverage for all points in a target

area. To demonstrate the performance gain of our proposed method, we compare the solution

offered by our proposed deterministic deployment scheme with that by a well-known greedy

algorithm that solves the classical k-coverage problem [153]. Note that the greedy algorithm by

itself only yields a quasi-optimal solution to the k-coverage problem, so we have to modify it as

follows to obtain a feasible solution to the MNkaPC problem. To avoid any ambiguity in the fol-

lowing presentation, we replace the letter k in the k-coverage by k ′. The modified greedy algo-

rithm works as follows: Given a desired (k,α)-coverage requirement, we start by setting k ′ = k,

and test whether the solution offered by the greedy algorithm constitutes a feasible solution to

the (k,α)-coverage problem for every point in the target area. If it is not a feasible solution, we

increase k ′ by 1 and repeat the above process. The iteration will continue until the smallest k ′

for which the greedy algorithm offers a feasible solution to the (k,α)-coverage problem. This

feasible solution can then be compared with the solution offered by our proposed algorithm.

Our simulation is performed as follows. We consider a target area of 300×300 m2, which

is fully confined to an RIS deployment area of 500× 500 m2. We partition the target area and

the RIS deployment area into grids of 50×50 m2 and 1×1 m2, respectively. Each cross-point

of grids is denoted as a target point or a RIS candidate position. There are 49 target points and

251,001 RIS candidate positions in total. The communication radius of an RIS is set to 75 m. We
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compare our method with the k ′-coverage method by two metrics: (1) the (k,α)-coverage ratio,

which is the percentage of target points that are (k,α)-covered under a given RIS deployment

scheme; (2) the number of RISs needed to achieve (k,α)-coverage for all target points.
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Figure 3.13: Performance comparison results.

Figure 3.13(a) plots the (k,α)-coverage ratio against the angular separation parameter α

under various RIS deployment schemes. Our deterministic deployment scheme (marked by
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the red dotted line) maintains a ratio of 1, as it guarantees that all target points are (k,α)-

covered. For the k ′-coverage, we consider k ′ = k, where k = 3,4,6, respectively. As α or k ′

increases, the (k,α)-coverage ratio achieved by the k ′-coverage method decreases rapidly. An

extreme case is when k ′ = 6, the 6-coverage method hardly provides (6,0.5)-coverage for any tar-

get points. Another observation is that the k ′-coverage method can only achieve an acceptable

(k,α)-coverage ratio whenα is small. For example, for the special case ofα= 0, the coverage ra-

tio achieved by the modified greedy algorithm conforms with our proposed method (i.e., 100%).

In case of blockage, multiple RIS generated paths with small angular separation are more likely

to be blocked at the same time. In contrast, our method can maintain a high (k,α)-coverage

ratio for large α, which is more robust than k ′-coverage when multiple path blockages occur.

Figure 3.13(b) shows the number of RISs needed for different (k,α)-coverage scenarios by

our method and the modified k ′-coverage method. Specifically, we consider (3,π/12)-coverage,

(3,π/6)-coverage, and (4,π/12)-coverage. As mentioned above, k ′ could be greater than k to

achieve the (k,α)-coverage. For example, we find that the smallest k ′ to achieve (3,π/12)-

coverage and (4,π/12)-coverage by the k ′-coverage method is 10 and 30, respectively. This ex-

plains why the number of RIS needed by the k ′-coverage method is significantly higher than

that of our method. For example, it requires 264 RISs for k ′-coverage to achieve (4,π/12)-

coverage, while it only needs 98 RISs by our method, a reduction of 62.8%.

In conclusion, compared to k ′-coverage, our method is more robust against multiple path

blockages and requires significantly fewer RISs to be deployed.

Random Deployment Scheme.

In the random deployment case, we first use Monte Carlo simulation to verify the correctness

of our probability derivation in Section 3.5. Then we present the theoretical results for the

probability function to better illustrate the impact of different parameters in the (k,α)-coverage

model.
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Result verification. In this simulation, each experiment is run 10000 times and the results

are averaged. For comparison, we also give the theoretical estimation for each configuration. To

decrease the complexity of the simulation and highlight the (k,α)-coverage probability, we omit

the k-coverage requirement, i.e., the probability πr 2 is set to 1. Since the k-coverage problem

is well studied and the probability of k-coverage can be simply calculated by using Bernoulli

distribution function.

We first validate the probability result derived from Lemma 3.5.1. Figure 3.14 shows the

the simulation and estimation result for (k,α)-coverage probability. In the simulation, we uni-

formly random place k number of RISs in the target region 10000 times and calculate the ratio

of points that satisfy the required (k,α)-coverage, and the results are drawn by dotted black

lines. The estimation results are calculated through Eq. 3.24 and are marked as colored solid

lines. In Figure 3.14(a), the x-axis represents the number of RISs k in the (k,α)-coverage model,

and the y-axis is the (k,α)-coverage probability. We vary α from 15◦,30◦,45◦ to test different

scenarios. In Figure 3.14(b), the x-axis represents the angular separation parameter α in the

(k,α)-coverage model and the y-axis is the (k,α)-coverage probability. The k is chosen from

4,5,6. From both figures, the estimation based on our derivation accord with the Monte Carlo

simulation results, which validate Lemma 3.5.1.

Next, we validate the probability result derived from Theorem 3.5.1 Eq. 3.26. Note that

if the derivation in Eq. 3.26 is correct, it will also validate the correctness of Theorem 3.5.1.

The result in Eq. 3.26 stands for the probability that a point can be (k,α) covered when given

k ′(k ′ ≥ k) RISs available for transmission. Figure 3.15 shows the simulation and estimation

results. For the simulation, we uniform randomly place k ′ number of RISs in the target region

10000 times and calculate the ratio of points that satisfy the required (k,α)-coverage, and the

results are drawn by dotted black lines. The estimation results are calculated through Eq. 3.26 in

Theorem 3.5.1 and are marked as colored solid lines. To cover different scenarios, we simulate

the (3,90◦)-coverage (red line), (4,60◦)-coverage (blue line) and (5,50◦)-coverage (green line)

cases. The estimation results accord with the simulation results, which validate Theorem 3.5.1.
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Theoretical result. To better understand the impact of k and α on (k,α)-coverage prob-

ability under random deployment scheme, we present the theoretical results for uniform ran-

dom deployment scheme derived from Theorem 3.5.1 (the solid lines) and Poisson distribution

based deploy scheme derived from Theorem 3.5.2 (the dashed lines) under different (k,α) set-

tings.

Figure 3.16 shows the results of the (k,α)-coverage probability vs. RIS number/density

under different k and α. The y-axis represents the (k,α)-coverage probability and x-axis repre-

sents both the RIS number and the density (λ) of Poisson point distribution. Note that the area

size is 1 in our simulation, the density of Poisson point distribution (λ) and the number of RISs

deployed are the same in quantity. The transmission radius is set to 0.25. In Figure 3.16(a), k

is fixed to 3 and α = π/12,π/4,5π/12,7π/12 (or 15◦,45◦,75◦,105◦ in degree). Both exact num-

ber deployment scheme and Poisson deployment scheme show the same trend as the num-

ber/density increases. The (k,α)-coverage is hard to satisfy in the random deployment scheme

and when α becomes larger, the RIS number/density increases rapidly. In Figure 3.16(b), α is

fixed as π/12 and k = 3,4,5,6. As k increases, the RISs needed for (k,α)-coverage also increases.
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However, compared to Figure 3.16(a), the density increment caused by k is much smaller, as the

angular separation requirement is harder to satisfy in random deployment scheme.
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Figure 3.16: The (k,α)-coverage probability result for uniform distribution (solid lines) and
Poisson distribution (dashed lines).

Figure 3.17 shows the results for the (3,α)-coverage probability vs. RIS number/density

under different r and α. We set the transmission radius of a RIS r as 0.25 and 0.15, and we

vary α from 15◦,45◦,75◦ to highlight the difference. As r decreases, the coverage area of a RIS
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decreases, leading to the RIS density needed to achieve the 100% coverage probability increases

dramatically. Also, although the number of RISs needed to achieve 100% coverage probability is

very high, the density needed to achieve high coverage probability is much lower. For example,

when the RIS density is 23 and r = 0.25, (3,15◦)-coverage probability reaches about 80%, while

it takes another 25 RISs density to increase the (3,15◦)-coverage probability from 80% to 100%.
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Figure 3.17: (3,α)-coverage probability (r = 0.15 and r = 0.25) for uniform distribution (solid
lines) and Poisson distribution (dashed lines).

3.7 Conclusion

In this paper, we have studied the minimal-number (k,α) area coverage problem for RIS-aided

mmWave directional communication network. To overcome the limitations in the traditional

coverage models, we introduced a novel coverage model called (k,α)-coverage, which requires

a receiver to be covered by k different RISs to provide k different NLoS path directions while the

angular separation difference between adjacent path directions is no less than α. Two meth-

ods were proposed to detect if the target area is (k,α)-covered by the given set of RISs. For the

deterministic deployment scheme, we derived a quasi-optimal solution for the (k,α)-coverage

problem using deployment patterns. An analytical optimality bound was also obtained for this
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solution. For the random RIS deployment scheme, we derive the (k,α)-coverage probability

under uniform and spatial-Poisson RIS distributions. In the simulation, we first compare our

deterministic deployment pattern based scheme with a modified k-coverage algorithm to high-

light our contribution. And the results show that our method is more robust against multiple

path blockages and requires significantly fewer RISs than the k-coverage method. Then, we

conducted extensive simulations to verify the correctness of our theoretical derivation.
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Chapter 4

Spoofing Detection for LiDAR in Autonomous Vehicles: A Physical-layer Approach

4.1 Introduction

In recent years, the development of autonomous vehicles (AVs), i.e., vehicles that can drive by

themselves without the real-time intervention of human drivers, is rapidly progressing with

the advancement of sensing and artificial intelligence (AI) technologies [27, 121]. Some AVs

are already operating on public roads, e.g., Google’s Waymo One self-driving taxis [124]. For

all these AVs, driving safety is always the No.1 requirement. To this end, all existing AVs are

equipped with certain types of environment-perception sensors, such as cameras, mmWave

radar, ultrasonic sensors, and light detection and ranging sensor (LiDAR). With the rise of the

Internet of Things (IoT), AVs can connect to other devices and systems, such as traffic lights and

road sensors, to collect real-time data and make more informed decisions. This can enhance

the accuracy of the AVs’ sensing and decision-making abilities, leading to improved safety and

efficiency. Additionally, IoT-enabled AVs can communicate with each other, allowing them to

coordinate their movements and further improve safety on the road.

Among the various environment-perception sensors used by AVs, LiDAR sensor is adopted

by almost all AV manufacturers due to its high precision and high reliability [59, 17, 75]. The

LiDAR sensor employs highly directional laser pulses to probe the surrounding environment.

An accurate depth image of the surrounding objects is then collected by the time of flight (ToF)

of the received pulse, on which a high-resolution 3D point cloud map of the environment can

be built. In addition, the usage of an infrared laser signal not only makes LiDAR less affected
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by ambient light in the environment, but also enables LiDAR to remain functional even under

poor light conditions.

Ensuring correct and truthful sensing outcome from all environment-perception sensors

is essential to ensure reliable safety-critical decision making in autonomous driving. Unfor-

tunately, recent studies have found that LiDARs are susceptible to malicious spoofing attacks

that aim to alter LiDAR’s sensing outcome by adding fake objects to and removing real objects

from the LiDAR’s sensed point cloud map, and hence leading to severe safety consequences.

For example, the feasibility of injecting fake points into the LiDAR’s sensed point cloud was first

demonstrated in [84]. They showed that LiDAR sensing results can be easily manipulated by

a black-box attack using low-cost commodity hardware (less than 60 US dollars). Subsequent

work in [19] launched LiDAR spoofing attacks that successfully fooled a real-world AV percep-

tion system, Baidu Apollo 2.5, to detect (faked) objects that do not actually exist in reality. The

work in [112] further demonstrated that by spoofing only a small number of points (up to 100),

the LiDAR object detection system can be fooled to detect non-existing objects. Their work

shows the severity of the threats posed by spoofing attacks on AV LiDARs, which urgently calls

for promising countermeasures that can better guarantee the safety of autonomous driving, so

as to offer a peace of mind to users when they are using the technology.

In the last couple of years, many works have been focused on mitigating the effect of LiDAR

spoofing attack using perception model-level defense methods [37, 62, 117, 147]. For exam-

ple, the work in [112] proposed CARLO, which harnesses occlusion patterns between objects

in the LiDAR point cloud for spoofed vehicle detection. The intuition is that, if there are many

LiDAR points appearing to pass through a detected object, the object is likely to be a fake object

Another anomaly detection system, Shadow-Catcher [44], identifies spoofed ghost objects by

checking the contextual consistency between the object and its shadow. Treating the LiDAR’s

sensed point cloud as a depth image, these methods essentially follow the image-recognition

research ideas in AI, which mainly consider the high-level contextual relationship, i.e., the per-

ception, between the points to decide the presence of a spoofer. A critical weakness of these
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post-sensing methods is that their effectiveness fully depends on the correctness/truthfulness

of their input, i.e., the LiDAR’s sensing outcome (the point cloud). Therefore, a spoofer will be

able to elude from these methods as long as it fabricates/fakes points that maintain the right

contextual relationship among them.

Keeping the weakness of the above model-level methods in mind, another category of work

is dedicated to fundamentally protect LiDAR from spoofing attacks based on physical-layer au-

thentication (PLA). These methods work on the signal level, and try to authenticate LiDAR’s

signal based on some physical properties of the light so as to ensure the correctness of LiDAR’s

sensing outcome. For example, the work in [69] uses amplitude modulation (AM) to directly

encrypt LiDAR signals with side channel information leaked from a cryptographic device. Since

side channel information cannot be recreated without the knowledge of the secret key, attack-

ers cannot inject spoofing signals while remaining undetected. In [70], the authors used the

signal-to-noise ratio (SNR) of the received signal as an authentication metric and developed a

probabilistic approach based on the Neyman-Pearson criterion to select the best SNR thresh-

old for spoofing attack detection. However, a major limitation of their methods is that they use

the intensity of the received signal for spoofing detection, which is not a robust metric for Li-

DARs. In LiDAR sensing, the intensity of the reflected signal faces complicated distortions that

are related to the material, size, and roughness of the reflector. Therefore, the sensing signals

encrypted by the method in [69] may become unrecognizable after reflections. Furthermore,

the SNR of the sensing signal used in [70] has a large variance due to the dynamics of the en-

vironment (e.g., reflectors are moving), making it difficult to accurately identify the spoofing

signal.

In this paper, we find that the intrinsic vulnerability of LiDAR is caused by the fact that

current LiDAR sensors blindly accept incoming signals without verifying the sender of the sig-

nal. Therefore, we propose to use the signal’s Doppler frequency shift to verify the sender of

the signal and detect potential spoofing attacks. The fundamental difference between a spoof-

ing signal and a legitimate signal is that the spoofing signal is generated by the attacker and
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directly sent to the LiDAR receiver, while the legitimate signal is originally sent by the LiDAR

transmitter and then echoed/reflected by some objects. Based on this observation and through

experiments on real-world testbed, we find that the propagation differences between legitimate

and spoofing signals can be characterized by the Doppler shift of the received signal, which can

then be used for spoofing attack detection. Specifically, the major contributions of our work are

four-folds:

• To have a deep understanding on the vulnerability of today’s LiDAR sensors, we thor-

oughly analyze the working principle of LiDAR and conduct real-world experiments to

demonstrate how easily a spoofing attack can be launched against LiDAR, so as to show

such attacks are realistic to current LiDAR technology, and hence the urgency of a promis-

ing countermeasure.

• We prove that the Doppler frequency shifts of legitimate and spoofing signals present dif-

ferent characteristics, and this signal-level difference can be used to fundamentally pro-

tect the sensing outcome of LiDAR. We then build a testbed to verify the feasibility of

extracting Doppler shift from LiDAR signals with only minor modifications to the LiDAR

system. Compared to amplitude and AM-based authentication methods [69, 70], the sig-

nal’s Doppler frequency shift is a more robust and reliable decision statistic for spoofing

detection, because it is decided by the motion between the LiDAR and sensed object and

is less affected by the RF environment.

• To show how the Doppler shift can be used to detect spoofing attacks under different

scenarios of attacker capabilities, we thoroughly consider three attack models, including

static attacker, moving attacker, and moving attacker with control of both velocity and

signal frequency. In each of these models, we first show how spoofing attacks can be

performed and then present our countermeasures for spoofing detection.

• We make the proposed detection mechanisms more accurate and practical by further ac-

counting for the short-term variance/uncertainty in the vehicle’s velocity, caused by the
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vehicle’s acceleration and random perturbation on its movement by the road condition.

A statistical spoofing detection framework is proposed to jointly consider the impact of

velocity and acceleration on the Doppler shift, which can provide more accurate spoofing

detection in realistic application environments. Extensive numerical results are provided

in a wide range of settings and road conditions.

The remainder of the paper is as follows. We begin by briefly reviewing related work in

Section 4.2. Then, we analyze the working principle and vulnerability of LiDAR in Section 4.3.

We analyze the difference in Doppler frequency shift between legitimate and spoofing signals

in Section 4.4. We consider three attack models and present the spoofing detection method in

Section 4.5. The statistic-based spoofing detection framework is presented in Section 4.6. And

finally, we conclude our paper in Section 4.7

4.2 Related Work

4.2.1 Attacks Against AV Sensors

Attacks against AV sensors can be classified into three categories according to the physical chan-

nel used by the attacker [106, 70], namely, the regular, side, and transmission channel attacks.

Regular channel attacks use the same working channel as the sensor (e.g., laser for LiDAR) to

directly alter the sensing results. Side channel attacks use a physical channel other than the sen-

sor’s working channel to attack the LiDAR [60, 98]. Lastly, transmission channel attacks focus

on the transmission channel that connects the sensor and other parts of the system [20, 3, 50].

4.2.2 Perception Model Level Defense Methods

Since the point cloud data generated by LiDAR is used by the AI-based perception model for 3D

object detection, many research works focus on mitigating the effect of spoofing attack by the

perception model level defense methods. For example, in [44], the authors proposed Shadow-

Catcher, which validates object identities by examining the shadow of the object in the LiDAR
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point cloud. The idea is that, for the genuine object representations in the LiDAR point cloud,

they are closely followed by regions void of measurements (shadow region). For the injected

spoofed object, it is either does not have shadow regions or its shadow regions are inconsis-

tent with the object’s size or shape. In [141, 147], the authors leveraged the spatio-temporal

consistency of the genuine object for spoofing attack detection. The authors utilized a motion

prediction framework to analyze the spatio-temporal consistency of objects across consecutive

frames in a driving scene. The spoofed object is detected if it violates the law of temporal con-

sistency. However, the major limitation of the above model-level defense methods is that they

rely on the geometric formation of points in the LiDAR point cloud and its evolution over time

(i.e., the contextual relationship between points) to detect spoofing. These mechanisms first

aggregate multiple points in the point-cloud to establish an object representation, and then

check whether the object representation remains contextually consistent over a certain time

period. Therefore, if an attacker can maintain the correct contextual relationship among the

fabricated points, it can evade from being detected by these spoofing detection methods. In

contrast, our proposed method works in the signal space and evaluates each point in the LiDAR

point-clould individually, by testing whether the Doppler shift of the received signal matches

with the expected Doppler shift caused by the velocity of the LiDAR. A spoofing LiDAR signal

(i.e., a point in the point cloud) causes mismatch between the received Doppler shift and the

expected Doppler shift, and hence will be detected by the proposed method, irrespective of its

geometric relationship with the other points in the point-clould.

4.2.3 Signal Level Defense Methods

The signal-level defense method mainly uses physical-layer authentication (PLA) for spoof-

ing detection. Unlike perception model-level defense methods, PLA protects LiDAR sensors

against spoofing attacks by identifying the malicious signal in the analog domain [11, 120].

The most widely used PLA method is to endow the probes used by active sensors with a spe-

cial designed feature and use the feature to authenticate the responses. For example, in [107],
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Shoukry et al. proposed PyCRA, which identifies spoofing attacks for magnetic sensors and

radio-frequency identification (RFID) tags. PyCRA turns off the probe signal at random instants

to verify the existence of any spoofers. If there is no spoofer, it will receive nothing; otherwise,

the spoofing attack is identified. However, PyCRA does not meet the high availability require-

ment in safety-critical systems, such as an autonomous driving system. When using PyCRA, an

AV LiDAR should be turned off at random times for attack detection. As a result, the LiDAR sen-

sor becomes unavailable for environmental sensing during that period, which may cause safety

problems for AVs.

Def LV Ref Attack Model Phy Inva Def Strategies

Model

[141]
Add/remove Points

in
Point-Cloud N/A

Spatio-temporal Consistency
[112] Occlusion Pattern Verification
[44] Shadow Pattern Verification

[147] Disparity Errors Verification

Transmission
[11] Data Tamping

in Transmission
Dynamic Watermark

[20] QIM-based Watermark

Signal

[69]
Change

Signal ToF

Amplitude Signal Amplitude Encryption
[107] Time Challenge-Response Authentication
[70] Amplitude SNR Distribution Analysis

Ours Frequency Doppler Shift Verification

Table 4.1: Comparison between related work (Def LV: defense method level, Def Strategies: de-
fense strategies, Phy Inva: physical invariants used )

For better readability, we summarize the related work in Table 4.1, to highlight the differ-

ence between our work and other works.

4.3 LiDAR Working Principle and Vulnerability

To defend LiDAR against spoofing attack, we first need to understand the working principle

and vulnerability of LiDAR. In this section, we first analyze the working principle and vulnera-

bility of LiDAR. Then, we conduct real-world experiments to demonstrate the practicability and

easiness of conducting spoofing attacks against LiDAR.
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Figure 4.1: Normal LiDAR sensing.

4.3.1 LiDAR Working Principle

LiDARs detect and localize objects by actively probing objects with pulses of infrared laser sig-

nals between 750 nm to 1.5 µm. Figure 4.1 shows a typical LiDAR sensing scenario. A LiDAR

sensor consists of two parts: a laser diode as transmitter and a photodetector as receiver. Dur-

ing LiDAR sensing, the transmitter periodically emits laser pulses to the environment. After the

pulses reach the objects in the environment, they are reflected back and received by the LiDAR

photodetector. The reflected signals are called echo signals. The time difference between the

emitting and arriving time of the signal, i.e. Time of Flight (ToF), is used to calculate the dis-

tance d between the LiDAR and the object. Let ts denote the time of the laser pulse being sent

by the transmitter, and ta denote the time of the echo signal being received by the photodetec-

tor. The ToF of the received signal τ is ta − ts , and the distance d between the LiDAR and the

detected object is

d = c

2n
τ, (4.1)

where n is the refractive index of the propagation medium (n = 1 for air) and c is the speed

of light. By mechanically or electronically steering the laser pulses towards different directions

and calculating the ToF distances of the echo signals, LiDAR is able to generate a point cloud,

which is a high-resolution depth image of the environment.
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4.3.2 Motivating LiDAR Security via Real-world Observations

Existing LiDAR only accepts the first arrival signal and uses the signal’s arrival time for ToF dis-

tance calculation without verifying whether that signal was sent out by the LiDAR’s laser diode

(i.e., the legitimate transmitter). This leaves a sufficient loophole for many possible forms of

spoofing attacks. In the following, we first present a simple toy example implemented in [19] to

illustrate a basic type of spoofing attack that fakes a point in the LiDAR point cloud through ToF

manipulation. Such a basic attack can be used as building blocks by the attacker to create more

sophisticated spoofing attacks, e.g., those that fake an object. We then present our real-world

experiments that are built upon two commercial YD X2L LiDARs to demonstrate how spoofing

attacks can actually take place in real-world applications. The main purpose of this section is

two-fold: (1) To better motivate the LiDAR spoofing attack problem studied in the paper. In

particular, by demonstrating a real LiDAR spoofing attack over a commercially available LiDAR

system, we wish to show that such an attack is very realistic for LiDAR systems available in to-

day’s market. Note that even though such attacks have been demonstrated in the past, most

of them were based on experimental testbeds in a lab rather than directly over a commercially

available LiDAR product. We believe that showing the spoofing attack on a commercial LiDAR

product will make the attack more convincing, especially for readers not familiar with LiDAR

and its vulnerabilities. (2) To better show the compelling nature of the problem: By showing

how easy it is to launch a spoofing attack against current LiDARs, we highlight the urgent need

for solutions to this compelling security problem.

A Toy Example for Spoofing Attack

A basic point-faking attack was proposed and implemented in [19], as illustrated in Figure 4.2.

This system features a photodiode, a time delay component, and a laser diode. The total cost of

the system is less than 50 US dollars. The goal of this spoofing system is to deceive the LiDAR by

sending signals with false ToF that simulate a fake object. The spoofing signal can be injected

to LiDAR via an attacker-controlled laser diode, whose working wavelength is the same as the
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victim’s LiDAR. By properly controlling the timing of the spoofing signal, the attacker can alter

the ToF measurements of the victim LiDAR, which in turn results in a counterfeit point at the

distance that the attacker desires. More specifically, suppose that the attacker aims to mislead

the LiDAR in detecting a counterfeit point at distance dspoo f , while the actual physical distance

between the LiDAR and the attacker is d . To achieve the attack goal, the attacker first needs to

synchronize with the victim LiDAR to obtain the sending time of the laser pulses. The attacker

then sends a spoofing signal to LiDAR and ensures that the arrival time of the spoofing signal

t spoo f
a is:

t spoo f
a = ts +τspoo f . (4.2)

where τspoo f = 2dspoo f /c. In this case, when the spoofing signal is received by LiDAR, the calcu-

lated ToF distance between the LiDAR and the attacker is now manipulated to be dspoo f (instead

of being d), resulting in a faked point in the LiDAR’s point cloud.

To launch a real-world spoofing attack, the photodiode in Figure 4.2 serves as a synchro-

nization device to trigger the delay component whenever it captures laser signals from the vic-

tim LiDAR. And the delay component activates the laser diode to send a spoofing signal towards

the victim LiDAR after a specified time delay τspoo f .

Figure 4.2: Spoofing device.

Our Real-world Experiments

To show how easily a spoofing attack can be launched against current LiDAR systems, we con-

duct the following real-world experiment. We use two YD X2L LiDARs [116]. One of the LiDARs
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acts as the victim LiDAR to generate point cloud data for the test environment. The other Li-

DAR is configured as a spoofing attacker that periodically generates spoofing signals with ran-

dom ToF to attack the victim LiDAR. We conduct our spoofing attack experiments in an outdoor

parking lot, and the test environment and test location are shown in Figure 4.3. In the test, the

victim LiDAR is running normal operation to sense the environment and generate point cloud

data, and the spoofing attacker is located 1.5 meters away from the victim LiDAR and shooting

signals with random time delays.

Figure 4.3: Outdoor spoofing test environment and setup.

(a) Normal point cloud. (b) Point cloud under attack.

Figure 4.4: LiDAR point-cloud data.

Figure 4.4 shows a comparison of LiDAR point cloud with and without spoofing attack. In

Figure 4.4(a), the point cloud with no spoofing attack clearly captures the shape and distance of
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the surrounding objects. In contrast, in Figure 4.4(b), there are multiple spoofed points shown

on the point cloud map (marked by red squares). It can be seen that under the random attack,

two small clusters of spoofed points are generated in the LiDAR point cloud. These clusters

of spoofed points may deceive the LiDAR system to mis-interpret them as two small objects in

front of the LiDAR: one in the 12 o’clock direction and the other in the 2 o’clock direction, which

actually do not exist at all in reality. This indeed poses a serious safety threat for the AVs. Note

that the experiment in Figure 4.4 is just a simple example. In reality, instead of a random attack,

the attacker can enhance their attack effects (i.e., generate a bigger cluster of spoofed points in

the point cloud) by launching more sophisticated attacks.

4.4 Doppler Frequency Shift in LiDAR Sensing

To fundamentally protect LiDAR against spoofing attacks in the analog domain, it is crucial

to distinguish legitimate sensing signals and spoofing signals based on signal-level features.

However, choosing an appropriate physical feature that can correctly represent the difference

between legitimate and spoofing signals is a challenge.

In this section, we first prove that the Doppler frequency shift of the received signal can

properly characterize the propagation difference between the legitimate and spoofing signal

and distinguish the spoofing signal. Then, we build a real-world testbed to show the practica-

bility of extracting Doppler shift from LiDAR’s laser signal.

4.4.1 Doppler Frequency Shift Difference Between Legitimate Signal and Spoofing Signal

The Doppler effect, or Doppler frequency shift, is the change in frequency of a signal in relation

to the relative movement between the signal’s transmitter and receiver. In LiDAR sensing, due

to the relative motion between the LiDAR and the detected object, the echoed signal presents a

frequency shift caused by the Doppler effect.

In LiDAR sensing, the legitimate sensing signal is sent by LiDAR’s transmitter, reflected by

an object in the environment and then received by the LiDAR’s receiver, which travels through

107



a round trip. Let us consider a two-dimensional case to derive the Doppler frequency shift of

the legitimate sensing signal. Let the velocity vector of LiDAR be v⃗L and the velocity vector of

the object detected be v⃗(ob). The Doppler shift of the legitimate sensing signal is determined

by the relative radial speed between the LiDAR and the object, which is defined as the rate of

change of the distance between them. The relative radial speed ∆v between the LiDAR and the

object is calculated as ∆v = (v⃗L − v⃗(ob)) · l⃗ , where · is the dot product and l⃗ is the direction of

arrival (DoA) vector of the signal (i.e., the direction along the line connecting the LiDAR and

the detected object). Due to the large magnitude of the speed of light, the DoA of the received

signal is considered to be the same as the sending direction of the signal, which is considered

as known.

Recall that the legitimate sensing signal travels through a round trip. We introduce an in-

termediate signal frequency f ′
r , which is the frequency of the signal that reaches the object. Let

f0 be the frequency of the signal transmitted by LiDAR and fr be the frequency of the received

signal, as shown in Figure 4.5(a). In the forward trip of the round trip, the signal with frequency

f0 is sent to the object, and f ′
r is

f ′
r = (

c

c −∆v
) f0. (4.3)

Then, the signal with frequency f ′
r is reflected back to LiDAR on the same route, and the received

signal frequency fr is

fr = (
c +∆v

c
) f ′

r . (4.4)

The Doppler frequency shift ∆ f of the received signal is calculated as the frequency difference

between the transmitted and received signals, which is:

∆ f = fr − f0 = (
c +∆v

c −∆v
−1) f0 ≈ 2 f0

c
∆v. (4.5)

The approximation is valid since∆v is much smaller than the speed of light c (3×108m/s).
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(a) Normal Sensing (round trip). (b) Spoofing attack (single-way).

Figure 4.5: Doppler frequency shift illustration.

In contrast, the spoofing signal is sent directly to LiDAR by the attacker, which only travels

one-way. Let v⃗a be the velocity vector of the attacker. The relative radial speed between the

LiDAR and the attacker is ∆va = (v⃗L − v⃗a) · l⃗ , as shown in Figure 4.5(b). Since the frequency of

the transmitted spoofing signal is also f0, the Doppler frequency shift of the spoofing signal∆ fa

is

∆ fa = (
c

c −∆va
) f0 − f0 = ∆va

c −∆va
f0 ≈ f0

c
∆va . (4.6)

Based on the above analysis, it is clear that the Doppler shifts of the legitimate and spoofing

signals are different due to their different propagation paths: The Doppler frequency shift of the

legitimate sensing signal is twice as much as that of the spoofing signal under the same radial

speed due to its round trip propagation. As will be elaborated shortly in Section 4.5, the above

margin (a factor of 2) between the Doppler frequency shifts of legitimate and spoofing signals

can be utilized to construct reliable and accurate spoofing detection mechanisms under various

attack conditions.

Next, we present a proof-of-concept testbed to demonstrate the feasibility of extracting

Doppler frequency shift from the laser signal of a moving LiDAR.
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4.4.2 Feasibility Study of Extracting Doppler Frequency Shift

Proof-of-concept Testbed Design

We design and build a proof-of-concept testbed to test the feasibility of extracting the velocity-

based Doppler shift from the laser similar in nature to those used in LiDAR systems. The schematic

diagram of the testbed is shown in Figure 4.6(a). The Doppler shift is extracted by using the self-

mixing effect of the signal. Specifically, the laser signal with frequency f0 is first split into two

orthogonal beams by a 3 dB beam splitter in the middle. Then, one beam of signal, which is

called the local signal, is reflected back by the fixed mirror M0. And the other beam of signal,

termed the modulated signal, is reflected back by a moving mirror M2 whose velocity is v . The

local signal and the modulated signal are mixed together and received by the photodiode to

extract the Doppler frequency shift of the modulated signal.

(a) Schematic diagram. (b) Testbed layout.

Figure 4.6: Testbed design.

The Doppler shift of the modulated signal is extracted by the homodyne detection method.

The local signal YLO and the modulated signal YM can be expressed as
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YLO = ALO ·e− j (2π f0t+φLO ),

YM = AM ·e− j (2π( f0±∆ f )t+φM ),

where ALO ,φLO , AM ,φM denote the amplitude and phase shift of the local and modulated

signal, respectively. j is the imaginary unit and∆ f = 2v
c f0 is the Doppler frequency shift caused

by the movement of the mirror M1.

The output of the photodetector is the combined signal power of YLO and YM . Due to the

low pass filtering effect of the photodetector, the high frequency components of YLO +YM are

filtered out, and the output power is

Pout =
A2

M

2
+ A2

LO

2
+ AM ALO cos(2π∆ f t +φM −φLO),

which is a beat signal with frequency∆ f . By filtering out the direct current (DC) signal, ∆ f

can be extracted by fast Fourier transform (FFT).

Testbed Implementation

Regarding the implementation of the testbed, we use a 635 nm ThorLabs PL202 laser diode to

send laser signals. A cubic beam splitter, ThorLabs CCM1-BS013, is used to split the beam. The

photoreceiver is OPT101 from Texas Instruments. The moving mirror is attached to a motor-

ized camera slider for stable and continuous movement. An oscilloscope is connected to the

photoreceiver for data collection and visualization. The layout of the testbed is shown in Fig-

ure 4.6(b).

Note that for the demonstration purpose, we use mirrors instead of real obstacles. In real-

world scenarios, the surface roughness and color of the obstacle can affect the received sig-

nal’s SNR. Rough surfaces can scatter laser light, and darker colors absorb more light, resulting

in weaker reflections (i.e., smaller reflection coefficient of the obstacle) and hence lower SNR.
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However, in practice, the reduced reflection coefficient can be well compensated by using a

higher power laser emitter and filter lenses, which are commonly adopted by vehicle LiDARs.

Therefore, in real-world use cases, the LiDAR’s SNR should be sufficient for reliable and accu-

rate Doppler shift extraction.

Test Results

We then use the above testbed to extract the Doppler frequency shift of the received signal and

estimate M1’s velocity v . Figure 4.7 shows the Fourier spectrum of the signals for different ve-

locities of M1. In the experiment, the moving speed of M1 is set to 0.75 cm/s and 1.50 cm/s,

respectively. The estimated velocity ṽ of M1, which is calculated from the Doppler shift ∆ f , is

ṽ = ∆ f
2 f0

c. In Figure 4.7(a), the Doppler shift of the signal is 24.10 KHz, which corresponds to ṽ=

0.75 cm/s and is match with the M1’s ground truth speed v = 0.75 cm/s. In Figure 4.7(b), there

are two peaks found, and the peak with the highest value is chosen as the Doppler shift that

corresponds to the real signal. In this case, the Doppler frequency of the signal is 48.72 KHz,

which corresponds to ṽ= 1.55 cm/s. Under real-world conditions, the Doppler spectrum of the

received signal may contain multiple peaks due to random noise and subtle movement of the

object. A general principle of identifying the real signal is to choose the frequency component

with the highest energy, as this is caused by the dominant movement of the object. Compared

to the ground truth speed of v = 1.50 cm/s, the small variance between v and ṽ is caused by

noise in the photodiode. This small variance does not affect the accuracy of our proposed

spoofing attack detection method. As will be shown in later sections, the velocity detection

error (about 3% as shown in Figure 4.7(b)) caused by random noise is much smaller than the

separation between the detected velocity of a real object and the detected velocity of a spoofed

object (the former is twice as much as the latter). Furthermore, the impact of random noise can

be reduced by our statistical spoofing detection framework presented in Section 4.6.
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(a) ∆ f = 24.10 KHz, ṽ = 0.75 cm/s

(b) ∆ f = 48.72 KHz, ṽ = 1.55 cm/s

Figure 4.7: Doppler shift spectrum results.

In summary, this experiment establishes the feasibility of extracting the Doppler shift of

high-frequency LiDAR signals over a testbed that is open for redevelopment. The same struc-

ture of the testbed can be integrated into real-world LiDAR systems to extract the Doppler shift

and detect spoofing attacks. Specifically, the testbed is based on an interferometer structure

and can be integrated into LiDARs. The potential challenges of incorporating our method into

the LiDAR system include: (1) Cost Issue: Implementing the structure shown in Section IV.B re-

quires an additional frequency mixer and A/D converters, which increases the manufacturing

cost of LiDAR sensors. (2) Standardization Issues: The lack of industry-wide standards for Li-

DAR systems can cause compatibility and interoperability issues between different AV models

and brands. At this point, all commercial LiDAR products available on the market are propri-

etary and are not open for redevelopment.

We understand that there have been numerous existing commercial products on the mar-

ket that are capable of extracting Doppler shift from laser signals. However, these products are
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often proprietary, and hence are not friendly to redevelopment. The spoofing detection mea-

sures developed in the subsequent sections can be implemented on the testbed presented in

this section.

4.5 Doppler Shift based Spoofing Detection

In the previous section, we demonstrated that the Doppler shift of the laser signal can be used

to distinguish between a spoofing signal and a legitimate sensing signal. In this section, we

present the detailed designs that utilize the Doppler frequency shift for LiDAR spoofing attack

detection under various attack models. Specifically, we first study the uniform-motion sce-

nario, where the velocities of the attacker, the LiDAR, and genuine objects in the environment

are assumed to be constants during the window of detection (we will relax this assumption and

consider accelerations in the next section). We consider three different spoofing attack models,

respectively: a static attacker, a mobile attacker, and a mobile attacker that controls both its ve-

locity and signal frequency. Each of these models can be considered as a generalization of the

model before it. We start off our detection design with the simplest attack model – the static at-

tacker, and gradually make the design more general by considering more realistic conditions in

the attack. For each attack model, we first show how the spoofing attacks are performed. Then,

we illustrate the countermeasure that uses the signal Doppler shift to identify the spoofing at-

tack.

We need to point out that the spoofing attack models adopted by the related works are

essentially based on the same assumption of the attacker’s most basic attack capability con-

sidered in this work. In particular, no matter it is the fake object injection attack or the target

object removal attack, they are all built upon the attacker’s foundational capability of being able

to manipulate the time-of-flight of the LiDAR signal, so that the attacker can either inject a fake

point into or remove a real point from the LiDAR’s point cloud. Our work considers exactly the

same foundational capability of the attacker, as shown in Figure 2 and Section III.B.(1). In this

regard, the comparison between our work and those related works is fair. In addition, our work
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not only considers the same foundational capability of the attacker, but also studies how such

a foundational capability can be achieved by an attacker and how such capability can be coun-

tered under various realistic scenarios, e.g., when the attacker is static, or when the attacker

is mobile, or when the attacker can control its movement and the frequency of the LiDAR sig-

nal, etc. Because the detection methods proposed in our work essentially target detecting the

manipulation of the time-of-flight of the LiDAR signals, they are also able to detect those fake

object injection attacks and the target object removal attacks which are based on the above

manipulations.

4.5.1 Attack Model 1: Static Attacker and Moving LiDAR

Spoofing Attack in Model 1

We first consider the case where only LiDAR is moving with constant velocity v⃗L , and any other

objects and the attacker remain static. This is a common scenario for LiDAR spoofing attacks.

For example, the attacker can place the spoofing device on the roadside to shoot malicious

laser pulses to AVs passing by. We also assume that the LiDAR system already knows that all

genuine objects are static. In this scenario, similar to the example illustrated in Section 4.3.2,

the attacker aims to mislead the LiDAR in detecting a counterfeit point at distance dspoo f while

the real distance between the LiDAR and the attacker is d . This is achieved by sending spoofing

signal with time delay τspoo f to the victim LiDAR, as shown in Figure 4.8.

Figure 4.8: Spoofing attack in Scenario 1.

In this attack scheme (and also the subsequent two attack models), it is assumed that the

attacker is aware of the working frequency of the victim LiDAR, and the transmitted spoofing
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signal has the same frequency as the victim LiDAR’s working frequency. This assumption is

practical because the working frequency of a vehicle’s LiDAR can be easily obtained through

the product specification. We also assume that the attacker is aware of its distance to the victim

LiDAR, so that it can decide the timing of emitting the spoofing signal that misleads the victim

LiDAR to calculate dspoo f . This assumption is reasonable because the attacker can simply use

its own LiDAR to monitor its distance to the victim in real time.

Spoofing Detection in Attack Model 1

In Attack Model 1, a spoofing signal can be identified by testing whether the Doppler shift of

the received signal matches the expected Doppler shift caused by the velocity of the LiDAR.

Specifically, for the legitimate sensing signal sent to direction l⃗ , since only LiDAR is moving

with velocity v⃗L , the expected Doppler frequency shift of the reflected signal is 2 f0
c v⃗L · l⃗ . Here,

due to the small field of view of LiDAR receiver (less than 1◦), the transmission direction of the

signal is the same as the receive direction. Let the Doppler shift of the received signal be ∆ fr

(∆ fr can be measured as illustrated in Section 4.4.2). To detect a spoofing signal, the following

should be tested:

∆ fr
?= 2 f0

c
(v⃗L · l⃗ ). (4.7)

For the spoofing signal sent by the attacker from direction l⃗ , since the attacker is static and

the spoofing signal travels one way, its Doppler shift is only f0
c v⃗L · l⃗ , – a margin of a factor of 2.

Therefore, the spoofing signal can be detected.

4.5.2 Attack Model 2: Moving Attacker and Moving LiDAR

Next, we consider a more general attack model, where the LiDAR, the attacker, and the object

in the environment are moving. This scenario is more common than attack model 1. For exam-

ple, the attacker can drive a vehicle in close proximity to the victim AV, e.g., in the same lane or
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adjacent lanes, to shoot the laser pulses to the victim AV’s LiDAR. To better present the spoof-

ing attack and the proposed spoofing detection in this model, we first introduce some basic

notation and definitions.

Let us consider a 2-D Cartesian coordinate system shown in Figure 4.9. Let the LiDAR’s

velocity be v⃗L . Without loss of generality, we assume that the direction of v⃗L is the same as

the y-axis, and the x-axis is perpendicular to v⃗L . With the movement of the LiDAR and the

object, the LiDAR receives a series of signals emitted by the LiDAR and then reflected by the

object at different locations. In particular, at times t1, t2, ..., tK , let the locations of the LiDAR

and the object be LiDARt1 , Objectt1 , LiDARt2 , Objectt2 , . . ., and LiDARtK , ObjecttK , respectively.

Denote the signal that is emitted from the LiDAR, reflected by the object, and then received by

the LiDAR at time tk by Stk , where k = 1,2, . . . ,K . The signal Stk can be presented as a tuple

Stk = [∆ ftk ,dtk ,θtk ], where ∆ ftk , dtk , and θtk represent the signal’s Doppler frequency shift, ToF

distance, and angle of arrival (AoA), respectively, at time tk , as shown in Figure 4.9. LetS denote

the set of signals reflected by the object and received by the LiDAR from time t1 to time tK .

Figure 4.9: The Cartesian coordinate system and signal tuple.

Using S, we can determine the velocity of the object in one of two ways: (1) by the signal’s

Doppler shift or (2) by the ToF distance. We refer to the velocity determined from the ToF dis-

tance as the object’s ToF velocity, and the velocity determined by the Doppler frequency shifts

as the Doppler velocity. More specially, these velocities can be calculated as follows.
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ToF Velocity: The ToF velocity of the object, denoted as v⃗ToF , can be determined based on

the ToF distances of the signals. In particular, the velocity vector can be represented as v⃗ToF =
|v⃗ToF |(cosφToF , sinφToF ), where |v⃗ToF | and φToF denote the magnitude and direction angle of

v⃗ToF . Given any two signals received at time tm and tn (tm < tn), i.e., Stm = [∆ ftm ,dtm ,θtm ] and

Stn = [∆ ftn ,dtn ,θtn ], v⃗ToF can be calculated as

|v⃗ToF | =[(dtn sinθtn −dtm sinθtm )2+

(dtn cosθtn +|v⃗L|∆t −dtm cosθtm )2]
1
2 ,

(4.8)

and

φToF = arctan
dtn cosθtn +|v⃗L|∆t −dtm cosθtm

dtn sinθtn −dtm sinθtm

, (4.9)

where ∆t = |tn − tm |.
Doppler Velocity: The object’s Doppler velocity v⃗Dop , can be represented as v⃗Dop = |v⃗Dop |(cosφDop , sinφDop ),

where |v⃗Dop | and φDop are the magnitude and direction angle of the velocity. Given two signals

Stm = [∆ ftm ,dtm ,θtm ],Stn = [∆ ftn ,dtn ,θtn ] ∈S, |v⃗Dop | and φDop can be calculated by solving the

following set of nonlinear equations:


|v⃗L|sin(θtm )−|v⃗Dop |cos(θtm −φDop ) = c

2 f0
∆ ftm

|v⃗L|sin(θtn )−|v⃗Dop |cos(θtn −φDop ) = c
2 f0
∆ ftn

(4.10)

Depending on whether the attacker controls its velocity to facilitate the spoofing, the at-

tacker’s spoofing attack schemes can be divided into the following two cases.

Spoofing Attack When Attacker Does Not Control Its Velocity

We first consider a simple spoofing attack in which the attacker only manipulates the ToF dis-

tance of the probing signal, but does not control its velocity to facilitate the attack. Specifically,

to launch a spoofing attack, the attacker injects spoofing signals into the victim LiDAR so that
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the legitimate signal set S that corresponds to a genuine object is replaced by the spoofing sig-

nal set S(sp f ), where S(sp f )
tk

= [∆ f (sp f )
tk

,d (sp f )
tk

,θtk ] ∈ S(sp f ). Note that due to the small field of

view of the LiDAR receiver, the spoofing signal can only be injected when the LiDAR is trans-

mitting to and receiving from the attacker’s direction, and the AoAs of the spoofing signal can

not be changed by the attacker. The goal of the attacker is to mislead the LiDAR’s calculation

of its distance to the faked object by manipulating d (sp f )
tk

, similar to that in Section 4.5.1. The

ToF of the spoofing signal is determined by the attacker according to its attack goal, i.e., how far

does it want the faked object to be from the LiDAR, based on Eq.(4.2).

Spoofing Detection When Attacker Does Not Control Its Velocity

The key insight in the above attack model is that ∆ f (sp f )
tk

and d (sp f )
tk

are not independent be-

tween each other. This is because both quantities are related to the velocity of the attacker/faked

object, and both can be used to calculated that velocity according to Eqs.(4.8), (4.9), and (4.10).

Since the attacker does not adjust its velocity according to the ToF distance it claims to be, there

exists a mismatch between the Doppler velocity v⃗Dop and the ToF velocity v⃗ToF . This allows us

to detect spoofing by testing the following:

v⃗ToF
?= v⃗Dop . (4.11)

For legitimate signals reflected by genuine objects, its ToF distance is authentic (i.e., not

manipulated), and therefore v⃗Dop = v⃗ToF . Otherwise, a mismatch indicates the presence of a

spoofing attack.

Spoofing Attack When Attacker Controls Its Velocity

An attacker can tailor its velocity to its claimed ToF distance to ensure that the calculated Doppler

velocity v⃗Dop matches the ToF velocity v⃗ToF . In particular, this can be achieved according to the

following:
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Proposition 4.5.1. Given the attacker’s velocity v⃗a = |v⃗a |(cosφa , sinφa), where φa is the direc-

tion angle of v⃗a , to maintain consistency between the Doppler velocity and ToF velocity of the

spoofing signals, for any two spoofing signals S(sp f )
tm

,S(sp f )
tn

∈S(sp f ), where S(sp f )
tm

= [∆ f (sp f )
tm

,d (sp f )
tm

,θtm ]

and S(sp f )
tn

= [∆ f (sp f )
tn

,d (sp f )
tn

,θtn ], θtm ̸= θtn , d (sp f )
tm

and d (sp f )
tn

must satisfy the following equation

set:

d (sp f )
tm

=
cos(θtn )|v⃗L|∆t + f (θtm )sin(θtn−Φ)

2cos(θtm−φa ) ∆t

sin(θtn −θtm )
, (4.12)

d (sp f )
tn

=
cos(θtm )|v⃗L|∆t + f (θtn )sin(θtm−Φ)

2cos(θtn−φa ) ∆t

sin(θtn −θtm )
. (4.13)

where

f (θ) = |v⃗L|sin(θ)+|v⃗a |cos(θ−φa),

Φ= arctan
f (θtn )∗cosθtm − f (θtm )∗cosθtn

f (θtm )∗ sinθtn − f (θtn )∗ sinθtm

.

and ∆t = |tn − tm |.

Proof. The ToF velocity derived from the spoofing signals v⃗ToF must be equal to the Doppler

velocity of the spoofing signals v⃗Dop . Denote v⃗Dop = |v⃗Dop |(cosΦ, sinΦ). Since the attacker is

directly sending the spoofing signals to the victim LiDAR, the Doppler shifts of the spoofing

signals are determined by the relative radial velocity between the LiDAR and the attacker. We

also have the Doppler shifts of the spoofing signals as

∆ f (sp f )
tm

= f0

c
(|v⃗L|sin(θtm )−|v⃗a |cos(θtm −φα))

∆ f (sp f )
tn

= f0

c
(|v⃗L|sin(θtn )−|v⃗a |cos(θtn −φα))

And v⃗Dop can be obtained by substituting ∆ f (sp f )
tm

and ∆ f (sp f )
tn

into equation (4.10), which

gives
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|v⃗Dop | =
f (θtm )

2cos(θtm −Φ)
(4.14)

Φ= arctan
f (θtn )∗cosθtm − f (θtm )∗cosθtn

f (θtm )∗ sinθtn − f (θtn )∗ sinθtm

.

where f (θ) is the function value of θ, and we have

f (θ) = |v⃗L|sin(θ)+|v⃗a |cos(θ−φa),

The ToF velocity can be obtained by equations (4.8) and (4.9). Letting v⃗ToF = v⃗Dop , we can

obtain d (sp f )
tm

and d (sp f )
tn

as specified in the proposition.

According to Proposition 4.5.1, given a pair of desired spoofing ToF distances d (sp f )
tm

and

d (sp f )
tn

at time tm and tn , the attacker can calculate the required velocity that ensures a match

between v⃗ToF and v⃗Dop by solving equations (4.12) and (4.13), so as to elude from being de-

tected by the aforementioned detection mechanisms.

Spoofing Detection When Attacker Controls Its Velocity

A key insight of Proposition 4.5.1 is that the attacker’s velocity must be coordinated with the ToF

of the spoofing signals for a successful spoofing attack. Specifically, according to Eqs. (4.12) and

(4.13), given a pair of desired fake ToF distances and the victim LiDAR’s velocity, the attacker’s

velocity v⃗a is fully determined. Therefore, when there exist two LiDARs of different velocities,

both are scanning the attacker at the same time, then there is no way for the attacker to adjust

its velocity to satisfy the requirements from both LiDARs – one key cannot open two locks. In

this case, there will be at least one LiDAR, whose calculated ToF velocity is inconsistent with

the Doppler velocity. Based on the above insight, we propose a cooperatiave LiDAR sensing

scheme [21, 68, 149, 55] for our spoofing detection. A basic cooperative LiDAR system is shown

in Figure 4.10, which consists of two LiDARs: a Coop-LiDAR and an Ego-LiDAR. In cooperative

LiDAR sensing, each LiDAR independently senses the environment and generates the data, and
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the generated sensing data are shared between them [149]. Note that in this scenario, it is essen-

tial to ensure the trustworthiness of the Cooperative LiDAR system, which can be guaranteed

by using secured vehicle-to-vehicle (V2V) communication [63, 127, 54].

To detect the spoofing attack, we require LiDARs in the cooperative LiDAR system to move

at different velocities. Each LiDAR computes its ToF velocity and Doppler velocity based on its

received signals. The spoofing detection is conducted by checking whether the computed ToF

velocity is consistent with the Doppler velocity at every LiDAR. To be more specific, suppose

that we have N LiDARs in the cooperative LiDAR system with velocities v⃗ (1)
L , ..., v⃗ (N )

L , respec-

tively. There exists at least a pair of LiDARs, say LiDAR i and LiDAR j , where 1 ≤ i , j ≤ N , whose

velocities are not equal, i.e., |v⃗ (i )
L | ̸= |v⃗ ( j )

L |. Each LiDAR calculates the Doppler velocity and the

ToF velocity based on its received signals, which gives v⃗ (1)
Dop and v⃗ (1)

ToF ,...,v⃗ (N )
Dop and v⃗ (N )

ToF , respec-

tively.

For legitimate signals, the ToF and Doppler velocities computed by each LiDAR are con-

sistent, i.e., v⃗ (1)
Dop = v⃗ (1)

ToF = . . . = v⃗ (N )
Dop = v⃗ (N )

ToF , because they all correspond to the velocity of the

same object. However, when a spoofing attacker is in place, it faces the following dilemma: On

one hand, given the velocity of LiDAR i and the desired ToF distances to LiDAR i at time tn

and tn+1, the attacker must set its velocity to, say v⃗ (i )
a , where v⃗ (i )

a is decided based on Proposi-

tion 4.5.1, in order to elude from the detection of LiDAR i . On the other hand, given the velocity

of LiDAR j and the desired ToF distances to LiDAR j at time t ′n and t ′n+1, where t ′n is close to tn ,

and t ′n+1 is close to tn+1, the attacker must set its velocity to, say v⃗ ( j )
a , where v⃗ ( j )

a is decided based

on Proposition 4.5.1, in order to elude from the detection of LiDAR j . Because |v⃗ (i )
L | ̸= |v⃗ ( j )

L |, we

can expect that in general v⃗ (i )
a ̸= v⃗ ( j )

a . Therefore, no matter which velocity the attacker chooses,

at least one of LiDAR i and LiDAR j will be able to detect the attacker by testing the inconsis-

tency between its calculated ToF velocity and Doppler velocity.

Alternatively, the attacker may just choose to move at velocity v⃗ (i )
a , and instead customize

the spoofing ToF distances to LiDAR j at time t ′n and t ′n+1 according to Eqs.(4.12) and (4.13). In

this way, the ToF velocity is consistent with the Doppler velocity at each of the LiDARs i and j ,

122



i.e., v⃗ (i )
Dop = v⃗ (i )

ToF and v⃗ ( j )
Dop = v⃗ ( j )

ToF , however, it must be true that v⃗ (i )
Dop ̸= v⃗ ( j )

Dop . Therefore, by shar-

ing their ToF velocities and Doppler velocities with each other, LiDARs i and j can also detect

the spoofing attack based on the inconsistency between their respective Doppler velocities.

Figure 4.10: Cooperative LiDARs

The proposed spoofing detection can be better illustrated by the following numerical ex-

amples. Without loss of generality, we use the 2-LiDAR cooperative LiDAR system shown in

Figure 4.10 as an example. The cooperative LiDAR system has one ego-LiDAR and one coop-

LiDAR, and their velocities are denoted as v⃗ (cop)
L and v⃗ (eg o)

L , respectively. The Doppler veloci-

ties and ToF velocities computed by the two LiDARs for the same object are denoted as v⃗ (cop)
Dop ,

v⃗ (cop)
ToF and v⃗ (eg o)

Dop , v⃗ (eg o)
ToF . For the attacker, denote its velocity by v⃗a = |v⃗a |(cosφa , sinφa). The

attacker sends spoofing signals S(sp f )
eg o and S(sp f )

cop to ego-LiDAR and coop-LiDAR, respectively.

And the ToF distances of S(sp f )
eg o and S(sp f )

cop are designed according to Proposition 4.5.1 to main-

tain that for each LiDAR, the calculated Doppler velocity is consistent with the ToF velocity, i.e.

v⃗ (cop)
Dop = v⃗ (cop)

ToF and v⃗ (eg o)
Dop = v⃗ (eg o)

ToF .

The numerical results are shown in Figure 4.11. In each subfigure, the x axis denotes |v⃗a |,
which varies from 0 to 20 m/s. The y axis represents the difference between the magnitudes

of the two Doppler velocities, i.e., |v⃗ (cop)
Dop | − |v⃗ (eg o)

Dop |. Recall that v⃗ (cop)
Dop and v⃗ (eg o)

Dop are 2-D vec-

tors, therefore if |v⃗ (cop)
Dop | − |v⃗ (eg o)

Dop | ̸= 0, then we must have v⃗ (cop)
Dop ̸= v⃗ (eg o)

Dop . We plot |v⃗ (cop)
Dop | −

|v⃗ (eg o)
Dop | as functions of |v⃗a | in different combinations of |v⃗ (eg o)

L | and |v⃗ (cop)
L | in the four sub-

figures: (a)|v⃗ (eg o)
L | = 2 m/s, |v⃗ (cop)

L | = 1 m/s. (b)|v⃗ (eg o)
L | = 2 m/s, |v⃗ (cop)

L | = 3 m/s. (c)|v⃗ (eg o)
L | =

2 m/s, |v⃗ (cop)
L | = 4 m/s. (d)|v⃗ (eg o)

L | = 2 m/s, |v⃗ (cop)
L | = 2 m/s. In each subfigure, we also vary the

angle of the attacker’s velocity, i.e., φa , by setting φa = π
2 , π3 , π4 ,0, respectively.
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(a) (b)

(c) (d)

Figure 4.11: Numerical examples for spoofing detection when attacker controls its velocity.
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In Figure (a), (b), and (c), the two LiDARs in the cooperative LiDAR system have different

velocity magnitudes, i.e., |v⃗ (eg o)
L | ̸= |v⃗ (cop)

L |. Although the spoofing attack maintains that the ToF

velocity is consistent with the Doppler velocity at each of LiDARs ( v⃗ (cop)
Dop = v⃗ (cop)

ToF and v⃗ (eg o)
Dop =

v⃗ (eg o)
ToF ), when the Doppler velocities are shared in the cooperative LiDAR system, ego-LiDAR and

coop-LiDAR can detect spoofing attacks because v⃗ (cop)
Dop ̸= v⃗ (eg o)

Dop (|v⃗ (cop)
Dop |− |v⃗ (eg o)

Dop | ̸= 0). A special

case is shown in Figure (d), when the two LiDARs have the same velocity magnitude, that is,

|v⃗ (cop)
L | = |v⃗ (eg o)

L |, we have |v⃗ (cop)
L |− |v⃗ (eg o)

L | = 0 even when the spoofing attack is in place. In this

case, the cooperative LiDAR system cannot detect spoofing attacks based on the inconsistency

between their respective Doppler velocities. Therefore, our spoofing detection scheme requires

that the LiDARs in the cooperative LiDAR system have different velocities to successfully detect

the spoofing attack.

4.5.3 Attack Model 3: Moving Attacker That Controls Both Its Velocity and Signal Frequency

A basic assumption in Attack Models 1 and 2 is that the attacker transmits spoofing signals of

the same frequency as that of the victim LiDAR and it does not manipulate the frequency of the

spoofing signal during the attack. Although this assumption is valid for many spoofing attack

scenarios and has been adopted by many existing studies, e.g., [84, 19, 105], an attacker may

use frequency modulation or a tunable laser source to dynamically change the frequency of

the spoofing signal, so as to create a faked Doppler frequency shift to mislead those spoofing

detection mechanisms proposed in the previous sections. This is elaborated as follows.

Spoofing Attack in Attack Model 3

When an attacker can dynamically adjust the frequency of the spoofing signal, besides sending

spoofing ToF signals to the victim LiDAR, the attacker also compensates for the frequency off-

set caused by the Doppler effect by changing the frequency of the transmitted spoofing signal,

making the frequency offset of the spoofing signal received by the victim LiDAR identical to the

Doppler frequency shift of the legitimate signal.
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Specifically, let us consider a typical spoofing attack scenario, where at the current moment

the distance between the (victim) LiDAR and the attacker is d . The relative radial velocity be-

tween the victim LiDAR and the attacker is∆va = (v⃗L− v⃗a) ·⃗l , where l⃗ is the unit vector along the

direction from the LiDAR to the attacker. The goal of the attacker is to create a fake object that

is d ′ away from the LiDAR, in the same direction of l⃗ (so the LiDAR, the attacker, and the fake

object are collinear) and of a relative radial velocity of∆vspoo f , where∆vspoo f = (v⃗L − v⃗spoo f ) · l⃗ ,

and v⃗spoo f denotes the velocity of the fake object. With time continues, the trajectory of the

faked object (i.e., d ′s) should be consistent with v⃗spoo f .

To achieve the attack goal, in the time domain, the attacker sends spoofing signals with

faked ToF distance of d ′. In the frequency domain, the attacker adjusts the frequency of the

transmitted spoofing signal to mimic the Doppler shift experienced by a legitimate signal. Specif-

ically, if a genuine object of velocity v⃗spoo f is at the location of the fake object, then the Doppler

shift experienced by a legitimate signal (this is the signal sent out by the LiDAR, reflected by the

object, and then received by the LiDAR) is given by ∆ fr = 2 f0
c ∆vspoo f , where f0 is the frequency

of the transmitted (legitimate) signal. Therefore, the frequency of the received legitimate signal

is given by f0 +∆ fr . To mimic the legitimate signal, the attacker chooses a frequency fa for the

transmitted spoofing signal, such that when the spoofing signal is received by the victim LiDAR,

the frequency of the received spoofing signal is identical to that of the received legitimate signal.

Since the spoofing signal is sent directly to the LiDAR, its Doppler shift is given by ∆ fa = fa
c ∆va .

So the frequency of the received spoofing signal is fa +∆ fa . Therefore, the fa that satisfies the

aforementioned requirement is given by

fa = c +2∆vspoo f

c +∆va
f0. (4.15)

In this way, the Doppler shift measured by the victim LiDAR happens to be ∆ fr . As a re-

sult, the calculated Doppler velocity is consistent with the ToF velocity (both are equivalent to

v⃗spoo f ), and hence the fake object will be accepted by the LiDAR as a genuine one.
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Spoofing Detection When Attacker Controls Signal Frequency

The cooperative LiDAR system can also be used for spoofing detection when the attacker con-

trols its signal frequency. Specifically, according to Equation (4.15), the attacker must adjust the

frequency of the transmitted signal each time when sending a spoofing signal to a LiDAR. When

there exist multiple LiDARs with different velocities (so they have different∆va ’s and∆vspoo f ’s),

the attacker must choose different transmission frequencies when sending to different LiDARs

to spoof each of them.

Based on this observation, we can use the cooperative LiDAR system and require all LiDARs

in the system be synchronized to send probing laser pulses that will hit the object at the same

time (and hence will be reflected by the object at the same time too), so that an attacker is not

able to simultaneously change the frequency of spoofing signals for all LiDARs at once. The

key point in achieving full synchronization among a group of cooperative LiDARs, i.e., making

them point to the same object at the same time, is to realize that the first LiDAR that detects

the object actually can compute and then communicate the location of that object to all other

collalborating LiDARs, and hence allow all LiDARs in the group to compute their respective

angles of departure for their laser beams in order for them to point to the same object.

The basic idea of using multiple LiDARs for spoofing detection is that an attacker can only

send out a spoofing signal with a certain frequency at one time. Given that our Coop-LiDAR sys-

tem synchronizes multiple LiDARs to monitor the same object at the same time, it is hard for an

attacker to send a single spoofing signal that can simultaneously satisfy the frequency require-

ments from all LiDARs. In the case where the attacker has k coordinated dynamic-frequency

laser transmitters, at least k +1 synchronized LiDARs are needed, so that at least one LiDAR is

able to detect the spoofing by testing the inconsistency between its calculated Doppler velocity

and ToF velocity. Note that here, the goal of the spoofing detection mechanism is to serve as

a filter (a gate-keeper) that identifies and rejects spoofed LiDAR sensing outcomes. Therefore,

a collective decision-making process is adopted among all (k + 1) LiDARs: a sensed point in
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the point cloud will be accepted only if none of the k +1 synchronized LiDARs has a negative

detection outcome.

4.5.4 Limitations

Although in previous subsections we have demonstrated that the Doppler-shift-based method

is effective for detecting spoofing attacks across various real-world attack scenarios, there still

remain some scenarios where our method may be less effective or not suitable, as elaborated

below:

1. Static or low relative velocities scenarios: Doppler shift is the change of signal fre-

quency due to the movement of the transmitter in relative to the receiver. In the LiDAR case, if

the relative velocity between the LiDAR and the sensed object is 0 or close to 0, then the Doppler

shift will be negligible. In these scenarios, our method is not applicable.

2. Large velocity variation during small time interval scenarios: A basic assumption in

our attack models 2 and 3 is that the relative velocity between the LiDAR and the object remains

constant between the moments of two consecutive LiDAR measurements (usually this is over

the span of a fraction of a second), so that our proposed algorithm is able to resolve the Doppler

velocity and the ToF velocity of the object. While this assumption is valid in most cases, in re-

ality there are special situations where the relative velocity between the LiDAR and the object

changes significantly during the aforementioned small interval. Such changes in velocity could

be caused by, e.g., a bumpy road condition, or a complicated traffic condition that requires

frequent maneuvers (e.g., sudden acceleration, deceleration, or braking) of the car. In these

special situations, the accuracy of the proposed method will be reduced. To deal with this issue,

in Section 4.6, we have proposed a statistical spoofing detection scheme, which accounts for

the short-term variation/perturbation in the vehicle’s velocity. However, the proposed statisti-

cal detection scheme still faces limitations as it is based on certain assumed statistical models

(i.e., the distribution) for the velocity variation. In the real-world scenario, if the actual velocity

variation deviates significantly from the assumed distribution, then the accuracy of this statisti-

cal scheme will be reduced. In this case, a combination of our method with existing model-level

128



defense methods would be a good solution. As model-level defense methods utilize high-level

contextual relationships between multiple data points for spoofing detection, they well com-

pensate for the limitations of the Doppler shift-based method that works only at the physical

layer.

We want to clarify that our proposed spoofing detection method is not a panacea - a “so-

lution to all” that intends to replace existing methods. Instead, it serves as the “first line of

defense” that operates in the signal space and is designed to complement existing model-level

defense methods. Our method uses the physical property of an individual data point within

the point-cloud for spoofing attack detection, which is a validation in the signal space to check

whether the signatures (Doppler shift) of the signal follow physical principles. Because of its

physical feature, our proposed method can fundamentally ensure that the LiDAR sensing re-

sults that are fed to the subsequent high-level processing are authentic. In contrast, current

perception models-level defense methods work at a higher level: They first aggregate multiple

data points to establish a geometric representation for the sensed object, and then examine

whether this geometric representation presents a reasonable contextual consistency over time.

It is clear that our method works in an orthogonal space compared to these model-level defense

methods. In practice, both methods can be applied at the same time to improve the overall de-

tection accuracy against LiDAR spoofing attacks.

4.6 Spoofing Detection with Joint Consideration of Velocity and Acceleration

In the previous section, we assumed a uniform motion model, so that the relative velocity be-

tween the LiDAR and the object can be seen as constant. And we propose to verify the con-

sistency between the ToF velocity and the Doppler velocity for spoofing attack detection. Al-

though, due to the high scanning rate of LiDAR, the motion of an object with acceleration can

be seen as a uniform motion, the presence of acceleration introduces additional variance in

velocity estimation, which makes spoofing detection based only on velocity unreliable. In this
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section, we present a hypothesis-test-based spoofing detection framework that jointly consid-

ers velocity and acceleration. We first formulate the hypotheses for the attack and non-attack

cases on the basis of our previous findings. Then, we demonstrate the necessity to jointly con-

sider acceleration and velocity for spoofing detection and provide the test statistic designing

strategies. Finally, we perform power analysis under various conditions and numerically deter-

mine the smallest test sample size required to achieve an expected performance level.

4.6.1 Hypothesis Test Formulation

According to our discussion in the previous section, the velocity of an object can be obtained

based on the Doppler shift or ToF of the received signal, namely v⃗Dop and v⃗ToF . The incon-

sistency between the two velocities, v⃗Dop and v⃗ToF , can only be caused by spoofing attacks or

noise. Consider a sequence of n Doppler and ToF velocity samples {v⃗Dop }n and {v⃗ToF }n , respec-

tively. For convenience, let vDop and vToF denote the magnitudes of v⃗Dop and v⃗ToF , respec-

tively. And their population means are denoted by µDop and µToF , respectively. The spoofing

detection can be formulated as a hypothesis test, which essentially tests whether the two means

are equal or not, that is, µDop
?=µToF . The null and alternative hypotheses can be formulated as

follows:

H0 : no spoofing attack.(µDop =µToF )

Ha : the presence of a spoofing attack.(µDop ̸=µToF ). (4.16)

When only velocity is taken into account for spoofing detection, the two-sample t-test is

used. The test statistic is calculated as

t = |µDop −µToF |
Spooled

p
2/n

, (4.17)

where Spooled = s2
1+s2

2
2 , and s2

1 and s2
2 are the sample variances of vDop and vToF , respectively.
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Then t is compared with the critical value with the degree of freedom of n − 1 and the

significance level α, tn−1(α/2). Hypothesis H0 is rejected if t > tn−1(α/2), which indicates a

spoofing attack.

4.6.2 Joint Consideration of Velocity and Acceleration.

In real driving scenarios, the AV’s motion not only has velocity but also has acceleration. Such

an acceleration could lead to a broadening spectrum in the Doppler frequency, which increases

the variance in velocity estimations derived from the Doppler shift spectrum. This variance be-

comes more significant for the small velocity and large acceleration cases. For example, sup-

pose that we have v = 0.5 m/s and a = 0.5 m/s2, the Doppler spectrum of the received signals

is likely to display two dominant peaks at velocities of 0.5 m/s and 1 m/s. This phenomenon

can lead to ambiguity in velocity estimation, with potential values ranging between 0.5 m/s or

1m/s, thus introducing a maximal error of 0.5m/s. Hence, when acceleration exists, it increases

the risk of misidentifying a legitimate signal as a spoofing attack, resulting in an increased false

alarm rate in spoofing attack detection. Realizing the limitation of considering velocity alone in

spoofing attack detection, we introduce an advanced detection mechanism that jointly incor-

porates the effect of both velocity and acceleration, which can provide more robust and accu-

rate results in identifying spoofing attacks in realistic driving scenarios.

Let a denote the acceleration and let x = [v, a] denote the multivariate variable that con-

sists of both the velocity v and the acceleration a, which is used for the hypothesis test. We

first use maximum likelihood estimation (MLE) to estimate vToF and aToF . Let µDop ,ΣDop and

µToF ,ΣToF denote the mean and variance of the population for x̄Dop and x̄ToF , respectively. We

assume that {xDop }n is a random sample of size n from the normal distribution N (µDop ,ΣDop )

and {xToF }n is a random sample of size n from normal distribution N (µToF ,ΣToF ). Note that

x̄Dop − x̄ToF follows the normal distribution N (µDop −µToF , 1
n (ΣDop +ΣToF )). Therefore, the

hypothesis test is simplified accordingly to test if µDop =µToF or not, and Hotelling’s T 2 test is

used, whose test statistic is
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T 2
0 =[x̄Dop − x̄ToF − (µDop −µToF )]′[

2

n
Spooled ]−1

[x̄Dop − x̄ToF − (µDop −µToF )], (4.18)

where Spooled = s2
1+s2

2
2 , and x̄Dop and x̄ToF , and s2

1 and s2
2 are the sample mean and sample

variance of xDop and xToF , respectively. T 2
0 follows a non-central F distribution 4n−4

2n−3 F2,2n−3.

For a given significance level α, the critical value τ is calculated as

τ= 4n −4

2n −3
F2,2n−3(α). (4.19)

The null hypothesis H0 is rejected when T 2
0 > τ, and the false alarm rate, a.k.a., type I error,

is:

PH0 (T 2
0 > τ) =α. (4.20)

4.6.3 Formulation of Ha for Power Analysis

Fig. 4.12 illustrates the power and significance level of a statistical test. Previously, we have

determined the distribution of H0 and the critical value. Next, we must ensure that the test

has enough power so that the distribution of H0 and that of Ha are sufficiently apart and both

type I and type II errors are small. The power of a hypothesis test is the probability that the test

correctly rejects the null hypothesis, as illustrated by the red dashed area. It should be noted

that statistical power is positively related to the sample size. The larger the sample size, the

easier it is to achieve the expected statistical power. There are two possible cases where one

fails to reject the null hypothesis: (1) The null hypothesis is really true. (2) The sample size
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is not large enough to reject the null hypothesis (i.e., statistical power is too low). Additional

samples may be needed to either accept or reject the null hypothesis.

Figure 4.12: Illustration of a Statistical Test.

Now, we will design scenarios of Ha , under which the power analysis can be performed to

determine the smallest sample size required to achieve a satisfactory detection performance.

When designing Ha , it is impossible to enumerate all possibilities. In fact, the detector is not

designed to identify every malicious attack, but rather to identify spoofing attacks that can lead

to severe consequences. Specifically, in our study, we focus on two attack goals: (1) emergency

brake triggered by injecting a fake static object in front of the LiDAR; (2) failure of the auto-

matic braking system by injecting a fake object that is relatively stationary to the LiDAR. Specif-

ically, we consider a scenario where the AV is fast-moving towards a static real obstacle, and a

brake decision is required to avoid a collision. Note that the braking decision of the AV system

is based on the combination consideration of the distance and the relative speed between the

AV and the object. Therefore, the attacker launches the attack by sending spoofing signals that

mimic a fake object in close range (so the faked signal will be the first to arrive at the AV’s LiDAR
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than that of the real object) to hide the real obstacle from LiDAR detection and is relatively sta-

tionary to the AV. Although the distance between the fake object and the AV is small, due to the

small relative speed between them, the AV’s decision-making system will not trigger a braking

decision, as it perceives no immediate collision risk. Consequently, the AV might continue at

its current speed and collide with the real obstacle. In addition to the above attack goals, we

also consider the attacker to be static or mobile and design three attack scenarios, in which we

provide the distribution of Ha .

Attack Scenario 1: an emergency brake triggered by a static attacker

A static attacker wants to trigger an emergency brake by faking a static object in front of the

LiDAR. Because both the attacker and the fake object are static, according to Eq. 4.5 and Eq. 4.6,

we have Ha : µDop = 2µToF . The test statistic under Ha is:

T 2
a =[x̄Dop −2x̄ToF − (µDop −2µToF )]′[

5

n
Spooled ]−1

[x̄Dop −2x̄ToF − (µDop −2µToF )]. (4.21)

According to [53], the test statistic T 2
a follows a non-central F distribution 25(n−1)

5n−6 F2,5n−6

with a non-centrality parameter (n.c.p.) equal to

n.c.p. = n

σ2

[
(x̄Dop − µ̄)′(x̄Dop − µ̄)+ (2x̄ToF − µ̄)′(2x̄ToF − µ̄)

]
, (4.22)

where µ̄= (2µDop+µToF )

2 and σ2 is the mean square error. Given a critical value τ, the type II error

is represented as:

PHa (T 2
a < τ) =β. (4.23)
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Attack Scenario 2: an emergency brake triggered by a moving attacker

The attacker is moving at the same speed as the victim LiDAR and wants to trigger an emergency

brake by faking a static object in front of the victim LiDAR. In this case, we have Ha : µDop = 0

and µToF ̸= 0. The test statistic under Ha is:

T 2
a = [x̄Dop − x̄ToF +µToF )]′[

2

n
Spooled ]−1[x̄Dop − x̄ToF +µToF )] (4.24)

with n.c.p. = (4.25)

n

σ2
[(x̄Dop −µToF )′(x̄Dop −µToF )+ (x̄ToF −µToF )′(x̄ToF −µToF )],

which follows 4n−4
2n−3 F2,2n−3.

Attack Scenario 3: Failure of an automatic braking system triggered by a static attacker

The attacker is static and wants to trigger a failure of the automatic braking system of an AV.

The attacker sends spoofing signals that mimic a fake object in close range and is relatively

stationary to the AV. In this case, we have Ha : µDop ̸= 0 and µToF = 0. The test statistic under

Ha is:

T 2
a = [x̄Dop − x̄ToF −µDop )]′[

2

n
Spooled ]−1[x̄Dop − x̄ToF −µDop )] (4.26)

with n.c.p. = (4.27)

n

σ2
[(x̄Dop −µDop )′(x̄Dop −µDop )+ (x̄ToF −µDop )′(x̄ToF −µDop )],

which follows 4n−4
2n−3 F2,2n−3.

4.6.4 Settings for Power Analysis

As mentioned above, the sample size should be large enough to provide the expected statistical

power. As a result, both the type I error α from PH0 (T 2
0 > τ) = α and the type II error from
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PHa (T 2
a < τ) = β are controlled in acceptable ranges. Analysis is carried out in combinations

of road conditions, spoofed signal proportion, signal SNR, and attack scenarios to determine

the minimum sample size required for the detector to produce satisfactory results for the most

practical x .

Road condition

Three typical road conditions are considered: (1) highway driving (v = 33m/s and a = 0.5m/s2);

(2) ramp driving (v = 20 m/s and a = 1.5 m/s2); (3) city driving (v = 11 m/s and a = 5 m/s2). We

note that the relative speed implies the distance between the LiDAR and the object. A low rela-

tive speed indicates a smooth driving condition, under which any attack can be easily detected

due to the sudden change in speed measurements. Rather, a high relative speed may indicate

that an abnormal traffic condition is already in place, making the attack less effective. There-

fore, we set the relative speed of the victim LiDAR to be 50% of that of each road condition to

balance between the difficulty of detection and the consequence of the attack.

Spoofed signal proportion

The high LiDAR sampling rate and the narrow receiver’s field-of-view impose stringent con-

straints on the timing and direction of the spoofed signal. In practice, the attacker hardly has

the luxury of continuously spoofing a sequence of signals [141, 101]. It is more practical that

the attacker spoofs the LiDAR signals intermittently. The spoofed signal proportion is defined

as the ratio of the number of spoofing signal samples to the number of received signal samples.

The higher the ratio of the spoofed signal, the easier the attack is detected. In the experiment,

we consider the range of the proportion of the spoofed signal p to be 0.1 to 1.

Signal-to-noise ratio (SNR)

The noise level of the signals is affected by weather conditions, ambient light, system error,

device noise, etc. Such noises would introduce errors in the velocity estimated from both the
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ToF and Doppler shift, and we discuss them separately. Considering the LiDAR measurement

error [110] and the disturbance of ambient light, we set the error rate of both aToF and vToF to

3%. For the measurement error in Doppler velocity, we follow [2] to calculate the variance of

xDop of MLE:

σ2
v = 1

SN R

3

2π2N 2
,σ2

a = 1

SN R

45

2π2N 4
(4.28)

where N is the sampling length of the signal, which is set to 256 in our simulation to trade-off

the estimation accuracy and the system burden. The SNR is set to {10−6,10−5,10−4} according

to [70] to fit the real-world scenarios.

4.6.5 Numerical Results of Power Analysis

In our simulation, we follow the convention to set the type I error to α = 0.05, and record the

least number of samples to achieve the power of 0.9 at each Ha , i.e., type II error is β = 0.1.

The F 1 score in this setting is 0.923, indicating satisfactory spoofing detection performance. In

real-world application scenarios, the type I and type II error settings can be set differently to

meet different practical requirements.

Impact of spoofing signal proportion

We set the SNR to 10−4 and vary the proportion of the spoofed signal from 0.1 to 1. We record the

least number of samples needed to achieve the pre-set significance level under different attack

scenarios and road conditions. The results are shown in Fig. 4.13. It can be seen that more sam-

ples are needed when the proportion of the spoofed signal is small. When the attacker spoofs

only a small proportion of the LiDAR signals, the mean of xToF is close to that of xDop , therefore,

more samples are needed to separate the two distributions. This phenomenon becomes more

obvious when the proportion of the spoofed signal is less than 40%, especially for attack 1.
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Figure 4.13: The number of samples needed for each road conditions under different spoofed
signal proportion.

Figure 4.14: The number of samples needed for each road conditions under different SNR.
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Impact of signal-to-noise ratio

Then, we fix the proportion of the spoofed signal to 0.1 and vary the SNR from 10−6 to 10−4. The

minimal sample sizes needed to provide the expected statistical power under various attack

scenarios and road conditions are shown in Fig. 4.14. Compared to the spoofed signal propor-

tion that has a greater impact on the difference between the means of {xToF }n and {xDop }n , the

SNR plays a more significant role in affecting their variance. A smaller SNR leads to a larger es-

timation variance in the velocity and acceleration from the Doppler shift, which increases the

uncertainty in detecting spoofing attacks. As a result, more test samples are needed to provide

sufficient statistical power.

4.6.6 Discussion on Implementation

After determining the number of samples required, the spoofing attack detection procedure is

carried out in the following two steps: (1) Data collection: Assuming that the sample size is

50, 50 samples of {xdop } and {xToF } are collected, respectively. (2) Testing: The test statistic is

calculated according to Eq. 4.18, then compared with the threshold τ predefined by Eq. 4.19.

If the test statistic is greater than the threshold, it suggests the potential presence of a spoofing

attack. According to the analysis above, setting the sample size to 50 is sufficient for our test

to achieve an F 1 score of 0.923 in the worst-case scenario. Notably, with sample size of 50, the

F 1-score would be even higher for the remaining cases. For example, under conditions where

40% of the signals are spoofed and the SNR is 10−4, the test produces an impressive F 1 score of

0.97 in all road conditions.

We then evaluate the time complexity of the proposed method by examining the latency

associated with each step above. In the testing step, the calculation of the test statistic directly

from the data and the comparison with the predefined threshold incurs negligible time over-

head. In the data collection phase, considering a typical 16-beam Velodyne LiDAR system with

a rotation speed of 20 Hz [123], 50 samples can be collected in 150 ms. This duration is signifi-

cantly shorter than the average reaction time of 830 ms for autonomous vehicles [34]. Note that
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for more advanced AV LiDAR systems with a higher number of laser beams and a faster rota-

tion speed, the data collection time can be further reduced. As a result, our proposed spoofing

attack detection mechanism can operate simultaneously with established LiDAR processing

algorithms, enhancing the reliability of current AV driving systems without introducing addi-

tional time overhead.

4.7 Applicability Discussion, Future Works , and Conclusion

4.7.1 Applicability Discussion

In this section, we discuss the applicability of the proposed method to other sensors, such as

cameras and radars. The primary focus of this paper is on addressing the unique problem

of safeguarding against LiDAR spoofing attacks, which is distinctive due to the special way of

how a LiDAR sensor detects an object and its distance to that object. Therefore, our proposed

method cannot be applied to cameras, as cameras lack the capability to measure the Doppler

shift of incoming light signals. Specifically, cameras are passive sensors that record natural ra-

diation either emitted or reflected from objects. The resulting signal is represented in terms

of pixel intensity and color, and cameras cannot capture any frequency changes in these light

signals. As for radars, our proposed method can be used for spoofing attack detection but re-

quires adaptations to address the challenges inherent to radar systems. Notably, while radars

are also active sensors and can directly measure the Doppler shift of incoming signals, they

present unique challenges when compared to LiDARs. For example, radars typically offer lower

spatial resolution and emit signals with a larger spectral bandwidth. This means that the re-

ceived signal can be influenced by the Doppler effect from several objects simultaneously, each

contributing different Doppler frequency shift components. Additionally, the broad spectral

bandwidth of radar signals can reduce the precision of Doppler frequency shift measurements.

This complexity heightens the challenge of pinpointing spoofing attacks based solely on the

Doppler shift and potentially increasing the false positive rate of our proposed method when

being applied to radars.
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4.7.2 Future Work

We understand that testing our method in a real-world setup, such as on a real autonomous ve-

hicle, would significantly improve the impact and practical relevance of our method. However,

as a research lab in a university, we are not capable of fully implementing the proposed methods

on a real LiDAR system (note that nearly all LiDAR systems on the market are proprietary and

are not open to redevelopment) and then mounting it on a vehicle to perform real-world test-

ing. Realistically, what our capacity allows us to do is the theoretical study of the mathematical

models for the spoofing attacks and their detection, and mainly computer-simulation-based

performance evaluation for the proposed models. The scope of the paper has to be decided by

our capacity above. We acknowledge that there must exist a significant difference between our

work and a real-world system that can be directly used by the current autonomous driving vehi-

cles. However, our contribution in this paper is mainly on the modeling aspect of the problem

rather than on the system-building/implementation of the model. The theoretical foundation

laid in this work could serve as an important reference/guideline for system implementation in

the next step, which is out of the scope of this paper and may be conducted in our future work.

4.7.3 Conclusion

In this paper, we investigated the LiDAR security problem in the autonomous driving system.

We performed a detailed analysis on the vulnerability of the LiDAR sensors. To better illus-

trate how to use Doppler shift for spoofing attack detection in different attack scenarios, we

considered three attack models, including static attacker, moving attacker without/with con-

trol of velocity, and moving attacker with control of both velocity and signal frequency. Under

each of these models, we first show how the spoofing attack is performed, and then present our

proposed countermeasures. To address the uncertainty caused by vehicle acceleration, we pro-

posed a statistical spoofing detection framework to jointly consider the impact of acceleration

on vehicle velocity. Extensive numerical evaluations are conducted to verify the effectiveness

and accuracy of the proposed methods in a wide range of test settings.
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Chapter 5

Conclusion and Future Work

5.1 Dissertation Conclusion

In this dissertation, we have focused on enhancing the efficiency, reliability, and security of

networks and systems operating within the mmWave and beyond frequency bands. Our focus

has been on leveraging environmental and contextual network information to develop intelli-

gent, cross-layer optimization strategies. Three works are presented. In the first work, we de-

veloped an environment perception-based smart beam switching method for the commercial

off-the-shelf (COTS) mmWave product. In the second work, we investigate a network topology

optimization problem for RIS-assisted mmWave directional communication networks. In the

third work, we propose a physical layer spoofing detection method to fundamentally protect

the sensing data of vehicle LiDAR systems from malicious attacks.

By addressing these critical aspects in the high-frequency band, this dissertation not only

contributes to the existing body of knowledge but also opens up new avenues for future re-

search in wireless network optimization. We hope that the insights and algorithms presented

in this dissertation will inspire further innovation and exploration in the field, leading to the

development of more advanced and intelligent wireless network systems in the near future.
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5.2 Future Work

5.2.1 Multi-modal Sensing with mmWave Radar

With the rapid development of the Internet of Things (IoT) and the rise of 5G communication

networks, mmWave sensing is emerging and beginning to impact our daily lives. Due to the

high frequency of the mmWave signal, it is capable of providing high sensing sensitivity and

precision [51, 146]. In addition, the short wavelength of mmWave signals further enables an-

tennas to be highly integrated in a small space, enabling beamforming and other techniques

that support directional sensing capabilities. As a result, mmWave sensing has great potential

in human subtle motion sensing over low-frequency sensing technologies such as Wi-Fi, UWB,

and LoRa [145].

The first work explores the sensing potential of COTS mmWave radio, following this idea,

my future plan is to explore and maximize the extraordinary sensing potential of mmWave sig-

nals by focusing on the development of accurate and robust applications for non-intrusive hu-

man activity recognition. Traditional mmWave radar applications have been largely confined to

macro-motion identification, such as detecting and tracking large objects [151] or monitoring

vehicle movements [126]. However, the ability of mmWave signals to provide millimeter-level

accuracy presents a largely untapped opportunity for more refined, fine-grained sensing ap-

plications. For example, nuanced gesture recognition [148], vital signs monitoring, and even

extending into the realms of speech recognition and eavesdropping. To achieve this goal, a fea-

sible method includes the integration of various types of sensory data. By combining visual

data (images), mmWave signals, and acoustic inputs (sound signals), and employing advanced

multimodal machine learning models [43, 73], such as Transformer [122], we are able to create

a more holistic, accurate, and versatile framework for human activity recognition. The fusion

of these diverse data types with multimodal machine learning algorithms is expected to yield

insights and capabilities beyond the current scope of individual sensing modalities and make a

significant leap forward in the field of smart sensing technology.
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5.2.2 UAV-Assisted Reconfigurable Intelligent Surface Deployment

RIS serves as a key technology for next-generation wireless networks, which are made of low-

cost metasurfaces that possess the ability to manipulate the propagation of a signal by reflecting

or refracting the signal. With massive RIS being deployed, we can easily manipulate the wire-

less propagation environment according to different working scenarios. In the second work,

we propose a novel coverage model called (k,α)-coverage to characterize the impact of path

direction differences on path availability for the RIS-aided mmWave network. With the (k,α)-

coverage, the system is able to robustness for the path blockage.

In our second work, we considered the static RIS deployment scenario, where RIS are as-

sumed to be deployed in fixed positions to provide the area (k,α)-coverage . Yet, the dynamic

deployment scenario stands out as a more desirable approach, particularly with the integration

of Unmanned Aerial Vehicles (UAVs). In recent decades, UAV systems have gained considerable

attention due to their ability to hover across the area. UAVs, also called drones, can travel to

areas that lack infrastructure and are inaccessible to humans. The UAV-assisted RIS network

can provide dynamic coverage for the area according to the requirement. A possible research

direction is to integrate the dynamic feature of the UAV with the (k,α)-coverage model to pro-

vide dynamic (k,α)-coverage. In this case, a joint optimization problem should be considered

to optimize the UAV trajectory, RIS phase shift, package scheduling, and power consumption

while maintaining area (k,α)-coverage.

5.2.3 Autonomous Vehicle Cooperative Lidar Security

The rapid advancement in autonomous vehicle (AV) technology has created opportunities for

smart urban mobility. A typical prediction of the future of autonomous vehicles includes people

being relieved from the stress of daily commute driving, which is expected to be achieved by

replacing imperfect human drivers with better computer-based autopilots. But how to achieve

such fully autonomous vehicles while maintaining high driving safety is still a challenge.
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In the third work, a physical layer spoofing attack detection method has been proposed

to protect the trustworthiness of a standalone AV LiDAR sensing result. Recently, with the ad-

vancement in wireless communication, cooperation can be realized between different vehicles

equipped with LiDAR, which can form a cooperative LiDAR system and is expected to achieve

synergistic gains in LiDAR sensing performance. In a cooperative LiDAR system, decentralized

federated learning(DFL) [142] is a good fit to exchange perception information. DFL enables

direct communication between clients, resulting in significant savings in communication re-

sources. In addition, DFL requires only model updates, not the raw data, to be shared among

participants, which can protect the privacy of participants. However, recent research revealed

that these shared model updates could be exploited to infer sensitive user data, thereby com-

promising user privacy. A promising research direction in this domain is to enhance privacy in

DFL-assisted cooperative LiDAR systems. Addressing this challenge requires a balanced focus

on both the security of data and the efficiency of data exchange. A feasible solution could in-

volve the development of sophisticated data masking techniques that combine the geographic

location of cooperative AV, which can minimize communication overhead while ensuring data

security.
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