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Abstract

Future challenges in aerospace problems, spanning space exploration and military aircraft,

demand advancements in several areas, including in-space 3D printing, high-performance

missile technology, and rapid structural failure modeling for aircraft and rockets. However,

materials used in these applications, such as additively manufactured (AM) materials and

Energetic Materials (EM), exhibit defects at atomistic and microstructural scales, impacting

their structural integrity and failure behavior. Addressing these challenges requires improved

computational models for material characterization and dynamic failure simulation. Machine

learning (ML) methods offer a promising approach to develop such models and enhance data

processing efficiency. In this study, we propose various ML frameworks and techniques to aid

in the development of efficient computational models for characterizing and simulating failure

response in heterogeneous 3D printed materials and EMs.

The first framework proposed is an autonomous ML model for fast characterization of

pores, particles, grains and grain boundaries (GBs) from microstructural images of additively

manufactured (AM) materials. To automate the process, the first ML model involves a classifier

Convolutional Neural Network (CNN) to detect microstructures of pores or powder particles,

versus GBs. For microstructures of pores or particles, a Convolutional Encoder-Decoder Network

(CEDN) is used for generating binary segmentation images. Using an object detection ML

network (YOLOv5), the particles’ or pores’ number, size and location are predicted with high

accuracy. For GBs, Red-Green-Blue (RGB) segmentations are generated using an additional

optimized CEDN. The Deep Emulator Network SEarch (DENSE) method (which employs the

Covariance Matrix Adaptation - Evolution Strategy (CMA-ES)) is implemented to optimize

the RGB CEDN in terms of computational speed. The characterization framework showed a

significant improvement in analysis time when compared to conventional methods. The extracted

defects can be used to rapidly estimate material properties in new unique heterogeneous AM
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material configurations. Lastly, the predicted defects and estimated material properties can be

used as input to computational models to simulate their failure dynamics.

Towards this effort, moving to simulation models of material failure, we then develop a

Graph Neural Network (GNN) framework for simulating the failure response of brittle materials

with multiple initial microcracks (5 to 19 microcracks) subjected to tension. First, a conventional

eXtended Finite Element Model (XFEM-based) fracture model was used to generate training,

validation, and test datasets. The number of cracks (5 to 19), their initial positions and orienta-

tions (0o, 60o, and 120o) were varied. The graph representation involved vertices placed at each

crack-tip and edges connecting each crack-tip to its neighboring crack-tips within a 750mm

radius. To achieve high prediction accuracy, the framework architecture is established using a

sequence of physics-informed GNN-based predictions. The first prediction stage determines

Mode-I and Mode-II stress intensity factors (stress distribution), the second stage predicts which

microcracks will propagate (quasi-statics), and the final stage propagates crack-tip positions to

the next time instant. The trained GNN framework is capable of simulating crack propagation,

coalescence and corresponding stress distribution with speed-ups 6x–25x faster compared to an

XFEM-based simulator.

Next, while Microcrack-GNN was able to emulate crack propagation in problems involving

multiple cracks with length of 300mm, orientations of 0o, 60o, and 120o, in a 2000mm ×

3000mm domain under tensile load, the framework did not consider other problem-specific

inputs. For instance, problems involving shear loadings, arbitrary crack orientations, arbitrary

crack lengths, and different domain sizes were not predicted. An important challenge in

supervised ML applications is the need for large training datasets. Extending Microcrack-GNN

to handle these varying problem-specific inputs using traditional approaches would require

generating large datasets for each parameter change. Therefore, to circumvent the issue of

needing large training datasets for new initial conditions and loading cases, we use Transfer

Learning (TL) approaches from ML theory to extend Microcrack-GNN’s capability. The new

framework, ACCelerated Universal fRAcTure Emulator (ACCURATE), is generalized to a

variety of crack problems using a sequence of TL update steps. The TL update steps are

defined by sequentially training on significantly smaller datasets for: (i) arbitrary crack lengths,
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(ii) arbitrary crack orientations, (iii) square domains, (iv) horizontal domains, and (v) shear

loadings. Using significantly small training datasets (20 simulations for each TL update step),

ACCURATE achieves high prediction accuracy in Mode-I and Mode-II stress intensity factors,

and crack paths for these problems. A key addition of ACCURATE is its ability to predict crack

growth and stress evolution with high accuracy for unseen cases involving the combination of

new boundary sizes with arbitrary crack lengths and crack orientations, for both tensile and

shear loading. Additionally, we demonstrate a significant acceleration in simulation time of

up to 2 orders of magnitude faster (200x) compared to the XFEM-based fracture model. The

ACCURATE framework provides a universal computational fracture mechanics model that can

be easily modified or extended in future work.

Following this GNN framework along with TL, where the graph representation is formulated

using vertices at each crack-tip, we then considered a mesh-based fracture simulator for phase

field (PF) fracture models. As such, we develop a mesh-based GNN framework for emulating

PF simulations of crack propagation. A key addition of this work is the introduction of Adaptive

Mesh Refinement (AMR) to the graph representation itself. The framework (ADAPT-GNN)

exploits the benefits of both ML methods and AMR by describing the graph representation

at each time-step as the refined mesh itself. ADAPT-GNN is able to add nodes and edges

dynamically as the mesh is refined. We predict the evolution of displacement fields (u,ν) and

scalar damage field (or crack field, ϕ) with good accuracy compared to a conventional PF

fracture model. The stress field (σ) is as also computed using the predicted displacements and

PF parameter. In terms of computational efficiency improvement, ADAPT-GNN is 15-36x faster

compared to serial execution of the PF model.

While ADAPT-GNN showed significant speed-up and overall good prediction accuracy,

the framework involved limitations. Mesh-based GNNs such as ADAPT-GNN require a large

number of message-passing (MP) steps and suffer from over-smoothing for problems involving

very fine mesh. To mitigate challenges with conventional mesh-based GNNs such as ADAPT-

GNN, we develop a multiscale mesh-based GNN framework mimicking a conventional iterative

multigrid solver, coupled with adaptive mesh refinement (AMR). We use the framework to
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accelerate PF fracture problems involving coupled partial differential equations with a near-

singular operator due to near-zero modulus inside the crack. We define the initial graph

representation using all mesh resolution levels. We perform a series of downsampling steps

using Transformer MP GNNs to reach the coarsest graph followed by upsampling steps to reach

the original graph. We use skip connectors from the generated embedding during coarsening

to prevent over-smoothing. We use Transfer Learning (TL) to significantly reduce the size of

training datasets needed to simulate different crack configurations and loading conditions. The

trained framework showed accelerated simulation times, while maintaining high accuracy for

all cases compared to physics-based PF fracture model. This work provides a new approach

to accelerate a variety of mesh-based engineering multiphysics problems. In future efforts,

the microstructure characterization framework can be used in conjunction with the developed

mesh-based GNNs to accelerate computational failure models for heterogeneous AM materials

with defects such as pores, particles, grains and GBs.

Lastly, in an effort to aid in the development of new high-performance missiles we also

integrate ML methods for Heterogeneous Energetic Materials (HEM). In the realm of HEMs,

where structural defects like pores are prevalent, predicting initiation metrics such as pressure,

temperature, and particle velocity becomes complex due to the diverse arrangements of these

defects. Current prediction methods rely heavily on experimental data and computational simu-

lations, which are limited by the need for exhaustive testing across various pore configurations.

To overcome this limitation, we introduce a novel ML framework to forecast critical velocities

in PBX-9501 samples featuring multiple pores of varying sizes, quantities, and spatial distri-

butions. In this framework, we employ the Computational Hydrocode (CTH) to simulate the

shock response of each sample upon impact by a flyer plate, followed by the utilization of an

automated bisection algorithm to compute critical velocities. We then develop two ML models,

CNNs and GNNs, for predicting critical impact velocities. We perform rigorous evaluation

of these models to assess their performance in predicting critical velocities across scenarios

involving diverse spatial distributions, pore quantities, and pore sizes. The ultimate objective of

this work is to develop ML-guided models capable of directly predicting critical velocities for

unseen pore structures without the need for CTH simulations. By doing so, this framework lays
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the groundwork for accelerated comprehension of how different pore configurations influence

shock sensitivity in HEMs.
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Chapter 1

Introduction

1.1 Motivation

Over the past few decades, a manufacturing technique which has found applications towards

aerospace rocket components, automotive parts, biomedical equipment, and infrastructural

materials is additive manufacturing. Building on its success, current research endeavors focus

on advancing additive manufacturing technologies for in-space 3D printing applications and

developing higher-performance explosives. A notable characteristic of this technique is its

dependence on a variety of adjustable input parameters, which can theoretically be optimized to

achieve desired material properties, contributing to the development of stronger space structures

and more efficient explosives. However, the relation between the manufacturing input parameters,

the build process, and the resulting material properties is not well understood. This relation

is defined as the process-structure-property of AM materials; understanding process-structure-

property relations of AM materials is an ongoing effort in the materials science and solid

mechanics fields [1].

A key observation made is that AM materials result in heterogeneous microstructures of

various types of defects which are randomly distributed. Some of these microstructural defects

are powder particles of different size distribution and morphology, microstructural pores, grain

boundaries (GBs), and microcracks which are directly related to the manufacturing process

itself. Multiple studies have shown that the interaction of these defects at various length scales

is one of the leading cause of structural failure. For instance, microstructural pores and GBs

are shown to affect the Young’s Modulus, strength, fatigue life, and hardness of materials. As
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such, the first step in the process-structure-property study is to understand the relation between

the manufacturing parameters and the resulting microstructure (process-structure). Secondly,

a connection between the AM material microstructure and its resulting mechanical properties

and failure response (structure-property) must be established. Being able to comprehensively

model the process-structure-property relation would grant a framework where optimal material

microstructures can be tailored towards desired material properties or failure responses using

specific manufacturing parameters (i.e., moving backwards through property-structure-process).

In the proposed work, we focus on the second portion of the process-structure-property relation

(i.e., structure-property).

First, let us address some of the challenges involved in current approaches used for mi-

crostructure characterization. Popular approaches used to extract meaningful information of

the microstructure (e.g., defects’ size distribution, locations, etc.,) include imaging techniques.

Some of these techniques entail the development of image segmentation algorithms. For ex-

ample, the watershed city-block distance (WCBD) method and the point-sampled intercept

length method (PSILM), are used to generate binary segmentations of pores and particles, and

semantic RGB (red-green-blue) image segmentations of GBs, respectively. Although these

techniques have been useful, they require time-consuming pre-processing image operations,

extensive computational resources for post-processing, and cannot handle more than one type

of defect or microstructure at a time. Therefore, it is crucial to develop new computational

microstructure characterization tools which are fast, autonomous, can handle various types of

microstructure, and do not require pre/post-processing.

Next, the structure-property study requires for the extracted microstructural features to

be incorporated into computational fracture mechanics models in order to simulate the failure

behavior of the resulting defects. Towards this goal, popular computational fracture mechanics

models used to emulate material failure include the eXtended finite element method (XFEM),

cohesive zone model (CZM), and phase field (PF) technique. These high-fidelity fracture

mechanics models, however, require solving complex systems of equations where computational

costs increase quickly with problem complexity. For instance, a 3D microcrack coalescence

problem involving a 1 m3 domain can take several CPU-days to simulate. Therefore, the last
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goal of the recent surge in understanding the linkage between AM material microstructure

and resulting material failure behavior is the development of computationally efficient fracture

mechanics models for heterogeneous microstructures.

Lastly, another notable material characterized by microscale and macroscale defects in-

volves Energetic Materials (EMs). EMs date back to 6th century old China when the combustion

process of black powder was introduced. In principle, EMs undergo a rapid and powerful release

of chemical energy in the form of heat and gas upon the application of loads. This explosive

property has made them the prime candidates for military applications. While much work has

been done in the past to characterize EMs’ macroscale behavior using experimental approaches,

a knowledge gap was introduced when considering Heterogeneous Energetic Materials (HEMs)

(i.e., EMs involving material defects). Typical defects observed in HEMs are particles, microc-

racks, voids and grain interfaces. These defects can be located at the binder, at the energetic

crystals and at the interfaces between the binder and the energetic crystals. Shock properties

such as detonation initiation, pressure distribution, temperature distribution, particle velocity

and shock velocity vary on a sample-to-sample basis due to the unique arrangements of material

defects. Over the past few decades, multiple works have investigated the effects of microstruc-

ture on the resulting shock behavior of HEMs. These works have found that defects cause

significantly greater sensitivity to shock compared to homogeneous HEMs (or pure crystals).

As a result, understanding how various configurations of macroscale and microscale material

heterogeneities, and impact or detonation affect the resulting shock response and macroscale

behavior of HEMs has become a crucial subject of research. While computational models

for simulating the shock response of HEMs have shown to produce faster and cheaper results

compared to experiments, using computational models to study various HEM configurations

and account for each possible arrangement of defects would require an extensive number of

computational simulations, making them unfeasible for this problem.
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1.2 Integration of ML into mechanics and materials science

1.2.1 Microstructure characterization

ML techniques offer a way to dramatically improve data processing efficiency of these problems

and shorten the turnaround time. For microstructure characterization tasks and extraction of

defects in 3D printed materials, tools such as Convolutional Neural Networks (CNNs) have

been used for defect type detection or classification in microstructural images. Convolutional

Encoder-Decoder Networks (CEDN) have also been implemented in image segmentation tasks.

While current works introduced ML models capable of outperforming human expert defect

quantification and conventional image processing tools, they were restricted by extracting a

single type of defect for a single material, high GPU memory, prolonged training time, and

complex network architecture depth. As a result, to mitigate these challenges we developed

a fast, autonomous and optimized ML framework for microstructure characterization in AM

materials with multiple types of defects (pores, particles, and grain boundaries) without requiring

image pre-processing tools and prior-user information. First, the framework includes a ML

classifier CNN for recognition of defect type (e.g., pores, particles, or GBs) given the initial

microstructure, thus, making the framework independent of defect type. We then developed a

simplified CEDN capable of generating binary segmentations for pores and particles to reduce

the network’s complexity (depth), GPU usage, and required training time. A key addition to the

framework is the use of the Deep Emulator Network SEarch (DENSE) algorithm introduced in

2020 for ML neural network optimization. We used DENSE to optimize the simplified CEDN

which further reduced training time and GPU usage by orders of magnitude. The framework then

uses an object detection model to extract the location, size, and quantity of pores and particles.

Additionally, for characterization of grains, we used the optimized CEDN for generating RGB

segmentations of the GBs. We then developed a regression CNN to predict histograms of

the grain size distribution. In this thesis, we present the framework’s prediction for multiple

types of materials involving various types of defects, and accelerated time performance analysis

compared to conventional image processing algorithms.
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1.2.2 Simulating fracture mechanics

Furthermore, an important aspect of the microstructure characterization framework outlined in

Section 1.2.1 is its capability to extract defects information swiftly, enabling rapid estimation

of material properties in new heterogeneous AM material configurations. This information on

predicted defects and estimated material properties can then be employed to inform the modeling

of failure dynamics across a range of diverse material configurations. However, incorporating the

unique defect arrangements into existing physics-based simulation models would require solving

highly intricate systems of equations, leading to computationally demanding models. As a result,

ML methods have also been recently explored towards accelerating fracture mechanics problems.

For instance, a graph-theory-inspired artificial neural network was recently introduced for

predicting coalescence of cracks in systems with 19 microcracks and their material failure time.

However, the developed models resulted in high prediction errors for some cases, and did not

predict material failure dynamically at each time-step. Similarly, 2D crack growth in graphene

was recently predicted using R-CNNs. This work was then extended using a convolutional

long-short term memory (ConvLSTM) model to simulate crack propagation dynamically from

molecular dynamic simulations. Although these works demonstrated promising results in

using ML to simulate fracture dynamics, their ML models relied on binary image-based inputs,

and their output consisted of binary images depicting the crack paths at future time-steps,

failing to capture additional physics-based quantities throughout the material domain such as

displacements and stresses. Therefore, new ML techniques capable of predicting both defect

and stress evolution throughout the material domain in higher-complexity systems involving

large number of initial defects have not been presented.

Towards this effort, in recent advancements, ML has introduced dynamic Graph Neural

Networks (GNNs) for simulating physics problems with notably faster performance than tra-

ditional models. This innovative approach integrates graph theory with ML by representing

problem configurations using nodes and edges, enabling the transfer and learning of physics

through artificial neural networks. Recently, this method was applied to accelerate particle

dynamics simulations involving fluids and deformable materials interacting with rigid bodies.
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Additionally, it has been utilized in finite element simulations of plate bending, airflow over

airfoils and cylinders, and flag dynamics, demonstrating high accuracy compared to conventional

models. As a result, in an effort to explore higher-complexity problems involving multiple initial

material defects, this thesis introduces various ML GNN techniques such as crack-tip-based

GNNs, mesh-based GNNs, Multiscale GNNs, and Transfer Learning (TL) for simulating fracture

dynamics with faster performance compared to classic computational fracture models.

The first framework, Microcrack-GNN, simulates crack propagation and coalescence in

brittle materials involving 5 to 19 microcracks based on the XFEM-based approach. The

structure of the Microcrack-GNN framework includes four GNNs: (i-ii) KI-GNN and KII-GNN,

to predict Mode-I and Mode-II stress intensity factors respectively, (iii) Class-GNN to predict

propagating versus non-propagating cracks, and (iv) CProp-GNN to predict future crack-tip

positions. Using this approach, Microcrack-GNN not only predicts crack coalescence and

propagation with high accuracy, but also the stress evolution.

Next, while Microcrack-GNN showed promising results to crack propagation and coales-

cence with faster performance, its accuracy sufferred when including new problem-specific

inputs (e.g., loading type, domain size, etc.,) unknown to the training data. These cases re-

quire generating new large training datasets to retrain new individual models for each possible

problem-specific input which is not a feasible approach. As possible solution for large data

challenges we made use of TL methods. TL methods allow the transfer of learned information

through the pre-trained weights from a baseline ML model. TL has been shown to significantly

reduce the size of the training dataset, thus, reducing training time while achieving high accura-

cies. As a result, we applied TL to Microcrack-GNN, in order to develop the second framework

- a generalized GNN framework - ACCelerated Universal fRAcTure Emulator (ACCURATE).

The ACCURATE framework is able to predict crack propagation and stress evolution for various

fracture mechanics problems involving new problem-specific inputs. ACCURATE handles

the problem parameters of arbitrary crack lengths, crack orientations, domain size, and shear

loading effects. The framework not only required significantly smaller training datasets for

each problem-specific input, but it is also capable of predicting new cases unseen to the training

datasets. Through the use of TL in ACCURATE, we demonstrate the efficacy of TL approaches
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in using significantly smaller training samples, thus, reducing training time. The ACCURATE

framework shows accelerated performance in simulation times with approximately 200x speedup

compared to the XFEM-based surrogate model.

The third framework developed is an ADAPTive mesh-based GNN (ADAPT-GNN) for

emulating PF models of single-edge crack propagation. Although in the Microcrack-GNN

and ACCURATE frameworks the graph representation was formulated using vertices at each

crack-tip, the ADAPT-GNN framework was inspired by recent works where mesh-based GNNs

were introduced using the mesh points and edges from FEM simulations to directly represent

the graph architecture itself. In ADAPT-GNN, we also leveraged the computational efficiency of

Adaptive Mesh Refinement (AMR) for mesh-based approaches by dynamically adding/removing

graph nodes and edges to mimic the refined mesh at each time-step of the PF simulation. The

framework predicts displacements, (u, ν), and a scalar damage field field, ϕ, for each point in the

adaptive mesh at each time-step with up to 36x faster performance compared to a conventional

PF model.

Lastly, while the ADAPT-GNN framework demonstrated impressive capabilities in simu-

lating complex multiphysics problems with significantly reduced computational times, it faced

challenges such as requiring a high number of message-passing (MP) steps and susceptibility to

over-smoothing. To address these issues, the fourth framework introduced a multiscale mesh-

based GNN framework inspired by iterative multigrid solvers and integrated with AMR. This

framework aimed to alleviate the limitations of conventional mesh-based GNNs such as ADAPT-

GNN. In this framework, the initial graph representation encompassed all mesh resolution levels,

and a series of downsampling steps utilizing Transformer MP networks were employed to reach

the coarsest graph resolution. Subsequently, upsampling steps were executed to revert to the

original graph resolution. Skip connectors were incorporated from the generated embedding

during coarsening to mitigate the risk of over-smoothing. Additionally, TL techniques were

leveraged to drastically reduce the size of training datasets required for simulating various crack

configurations and loading conditions. The trained framework exhibited accelerated simulation

times while maintaining high accuracy across all cases compared to physics-based PF fracture
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models. Ultimately, this work presents a novel approach to expedite a wide range of mesh-

based engineering multiphysics problems, offering significant advancements in computational

efficiency without compromising predictive accuracy.

1.2.3 Predicting sensitivity of heterogeneous energetic materials

In recent years, ML approaches have emerged as promising tools for HEMs. Various works

have implemented ML for predicting chemical properties of HEMs based on their molecular

configurations. CNNs have also been successfully applied to predict material properties of HEMs

with crystal microstructures. However, the effects of macroscale defects on these materials have

not been explored using ML techniques in recent works.

To address this gap, our study focuses on developing an ML framework for predicting

critical velocities in PBX-9501 samples with multiple macroscale pores characterized by varying

quantity, size, and spatial distribution. Initially, we employ CTH simulations to emulate the shock

response of each sample upon impact by a flyer plate. Subsequently, we utilize an automated

bisection algorithm to compute the resulting critical velocities. Two distinct ML models are

employed in our framework: a CNN and a GNN. We thoroughly evaluate the performance of

each model in predicting critical velocities and assess their robustness in scenarios involving

new spatial distributions, pore quantities, and pore sizes. Our objective is to develop models

capable of directly predicting critical velocities for unseen pore structures without the need

for executing CTH simulations. Ultimately, our work aims to pave the way for ML-guided

models that elucidate how different pore structures influence shock sensitivity in HEMs. By

leveraging ML techniques, we seek to enhance our understanding of the complex interplay

between macroscale configurations and material properties in HEMs, thereby facilitating the

development of more efficient and tailored energetic materials for various applications.

1.2.4 Contributions

The development of aerospace structures and materials for space exploration and military

applications requires new manufacturing techniques such as additive manufacturing. However,

AM materials involve unique arrangements of defects at multiple length scales which affect the
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resulting material properties and structural failure. While these defects can negatively affect

structural integrity, specific heterogeneous arrangements can also be tailored to obtain desired

material properties and behavior. Currently, high-fidelity computational models employed to

simulate the failure dynamics in complex heterogeneous materials are computationally expensive.

Therefore, the main contributions of thesis focus on the development of novel and accelerated

ML models for material characterization and accelerated dynamic failure simulation of aerospace

structures with multiple microscale and macroscale defects.

• In Chapter 2, we present an optimized ML framework designed to autonomously and

efficiently characterize pores, particles, grains, and grain boundaries in AM materials.

The framework comprises Classifier and Regression CNNs, Semantic Segmentation

Encoder-Decoder Networks, and an object detection model. To enhance the performance

of the Semantic Segmentation Encoder-Decoder Networks, we implemented the DENSE

optimization algorithm for Neural Architecture Search (NAS). Overall, our framework

achieved a remarkable speed-up in material characterization time compared to conven-

tional methods. A published version of this work can be found in [2]: R. Perera, D.

Guzzetti, and V. Agrawal, “Optimized and autonomous machine learning framework for

characterizing pores, particles, grains and grain boundaries in microstructural images,”

Computational Materials Science, vol. 196, p. 110524, 2021.

• In Chapter 3, we develop GNN based framework tailored for simulating structural failure in

brittle materials with multiple initial microcracks. The trained GNN framework effectively

captures crack propagation, coalescence, and stress evolution across a broad spectrum of

initial microcrack configurations, ranging from 5 to 19 microcracks, without requiring

further modification. Compared to an XFEM-based fracture simulator, our framework

demonstrates high prediction accuracy. Furthermore, the simulation time of our framework

exhibits notable speed-ups, ranging from 6x to 25x faster than conventional XFEM models.

A published version of this work can be found in [3]: R. Perera, D. Guzzetti, and V.

Agrawal, “Graph neural networks for simulating crack coalescence and propagation in
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brittle materials,” Computer Methods in Applied Mechanics and Engineering, vol. 395, p.

115021, 2022.

• In Chapter 4, we employ TL approaches to extend and enhance the previously developed

GNN framework tailored for simulating structural failure in brittle materials with multiple

initial microcracks. By leveraging a series of TL update steps, we effectively avoid the

need for retraining with large datasets (only 20 simulations were needed). Our results

demonstrate the newfound capability of the framework to accurately simulate crack growth

and stress evolution in unseen scenarios, encompassing various boundary dimensions,

arbitrary crack lengths, and orientations, under both tensile and shear loading conditions.

This generalized GNN framework, dubbed ACCURATE, yields significantly accelerated

simulation times, achieving up to 200x faster performance compared to the XFEM-based

fracture model. A published version of this work can be found in [4]: R. Perera and V.

Agrawal, “A generalized machine learning framework for brittle crack problems using

transfer learning and graph neural networks,” Mechanics of Materials, vol. 181, p. 104639,

2023.

• In Chapter 5, we proceed to develop a mesh-based GNN framework tailored for emulating

phase field simulations of crack propagation, augmented with Adaptive Mesh Refinement

(AMR) capabilities to accommodate various crack configurations. Dubbed ADAPT-GNN,

this framework capitalizes on the strengths of both machine learning methods and AMR

by representing the graph at each time-step as the refined mesh itself. ADAPT-GNN

exhibits remarkable accuracy in predicting the evolution of displacement fields, scalar

damage field, and stress field, showcasing accuracy on par with conventional phase field

fracture models. Moreover, this mesh-based GNN framework yields substantial simulation

speed-ups, ranging from 15 to 36 times faster compared to the serial execution of the

phase field model. A published version of this work can be found in [5]: R. Perera and

V. Agrawal, “Dynamic and adaptive mesh-based graph neural network framework for

simulating displacement and crack fields in phase field models,” Mechanics of Materials,

vol. 186, p. 104789, 2023.
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• In Chapter 6, we focus on mitigating current challenges of large scale mesh-based

GNNs which require a substantial number of message-passing steps and suffer from

over-smoothing. To address this issue, we introduce a novel multiscale mesh-based GNN

framework, inspired by conventional iterative multigrid solvers, coupled with AMR ca-

pabilities. This framework is tailored to accelerate simulation times for multiphysics

problems, such as phase field fracture models entailing coupled partial differential equa-

tions, which involve a near-singular operator arising from near-zero modulus regions

within the crack. Our approach pioneers a unique downsampling and upsampling strategy,

dynamically adding/removing the finest mesh resolution level at each time step within

the refined mesh. Moreover, leveraging TL techniques, we notably reduce the size of

required training datasets, thereby broadening the framework’s applicability to encompass

diverse crack configurations and loading scenarios. Our multiscale GNN framework

not only demonstrates accelerated simulation times but also upholds high prediction

accuracy across all tested cases when compared with traditional physics-based phase

field fracture models. A published version of this work can be found in [6]: R. Perera

and V. Agrawal, “Multiscale graph neural networks with adaptive mesh refinement for

accelerating mesh-based simulations,” arXiv preprint arXiv:2402.08863, 2024. (under

review)

• In Chapter 7, we consider the effects of macroscale defects such as pores on the resulting

shock sensitivity of explosives, and focus on the development of new ML approaches for

predicting sensitivity faster than current computational models. To this end, we introduce

a novel ML framework tailored for predicting critical velocities in PBX-9501 samples

characterized by multiple macroscale pores exhibiting varying quantities, sizes, and spatial

distributions. Leveraging both CNNs and GNNs architectures, our framework attains

remarkable accuracies exceeding 95%. These results show the importance of relying on

ML models to rapidly predict material sensitivity in the future without the need for a

hydrocode.
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Chapter 2

Autonomous and Optimized Machine Learning Framework for Microstructure Characterization
of Additively Manufactured Materials

2.1 Introduction and motivation

In recent years, additively manufactured metals (AM) have been utilized towards biomedical

parts [7], automobile components [8], rocket equipment [9], and infrastructural elements [10].

However, the mechanical properties and failure behavior of these materials is affected by their

resulting microstructure from the manufacturing process itself. For example, metallic materials

manufactured using powder bed fusion (PBF) result in powder particles with varying morphology

and size distribution. The resulting configurations of powder particles significantly affect the

material hardness, energy absorption, strength, surface roughness, and thermal conductivity [11,

12]. Another important microstructural defect in AM metals which affects material properties is

pores. Microstructural pores occur during the solidification process where inert gases become

trapped within the material. These microstructural pores create additional stress concentrations

that can cause crack initiation and nucleation [13]. Additionally, microstructural pores have been

found to decrease mechanical properties such as strength, Young’s Modulus, and fatigue life

[14, 15, 16]. The build direction used in the manufacturing process also leads to the generation of

microstructural columnar grains [17]. These microstructural defects defined as grain boundaries

(GBs) have been found to affect the stress-strain behavior, hardness, strength, and fatigue life

of AM materials [18]. As a result, a crucial step in determining the mechanical properties and

failure behavior of AM materials involves the characterization of their microstructural features.

In the past, numerous imaging techniques have been established towards this effort. For

instance, scanning electron microscopy, electron back scattering diffraction, helium pycnometry,
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energy dispersive spectroscopy, X-Ray computed tomography, and laser and X-Ray diffraction

[19]. However, imaging techniques require computational time for post-processing which

quickly becomes expensive due to the large amount of data these methods generate. Another

computational tool used to characterize GBs, particles and pores is image segmentation. Popular

image segmentation algorithms used to identify pores include city-block distance function +

watershed segmentation [20] and assisted threshold binarization procedure [21]. Another widely

used image segmentation algorithm used for GB characterization includes the point-sampled

intercept length method (PSILM) [22, 23]. The PSILM algorithm first employs a standard

edge detection algorithm to position a fixed number of points over the edges detected. Various

lines are then generated for each point-pair along the following four directions: 0◦, 90◦, 45◦,

and −45◦. Lastly, the PSILM algorithm develops RGB segmentations and histograms of the

resulting grain size using the resulting intersecting lines.

While the WCBD algorithm has found applications in characterization of pores and parti-

cles, and the PSILM algorithm has been useful for grain boundaries extraction, these methods

still require additional computationally expensive and time consuming pre-processing image

operations. For instance, morphological operators, edge detection, gamma corrections, inter-

polation functions, and threshold value selection [20, 21, 22, 23]. Another drawback of these

conventional image segmentation algorithms is that they can only be implemented to one type

of AM material and microstructural feature (pores, particles, or GBs) independently. As a result,

to improve computational time and costs of current microstructure characterization approaches

it is critical to develop new autonomous frameworks with faster turnaround time.

A tool that offers a route to mitigate these challenges and develop such frameworks is

Machine Learning (ML). ML tools have shown significant data processing efficiency with fast

performance [24] while providing comparable accuracy to current state-of-the-art methods.

Additionally, an autonomous ML framework would not require prior information from the

operator for the input material or the specific microstructural feature (pores, particles, or GBs).

ML techniques have been employed in recent years for material microstructure characterization.

For example, for predicting vertical or horizontal microstructural dendrites [25], predicting

coarse-grained dislocation of different dislocation density field variables [26], and predicting
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the AM powder feedstocks of varying particle size distribution (PSD) [27]. These works,

however, were only able to predict one detail of the microstructure. For example, the effects of

grain clustering and grain spatial distribution which is linked to the resulting hardness of the

material [28, 29] were not predicted. Further integration of ML techniques along with image

processing tools have successfully shown to characterize additional microstructural features.

In [30], the authors developed a ML and image processing framework for predicting the size,

shape, and location of line and loop dislocations in irradiated steel. The framework involved a

15-layer Convolutional Neural Network (CNN) along with conventional image processing tools

(watershed flood algorithm, MATLAB built-in regionprops tool, and cascade detector). In [31],

the authors developed an autonomous workflow to detect helium bubbles in microstructures of

Irradiated X-750. The authors were able to predict bounding boxes for each defect in Irradiated

X-750 samples with orders of magnitude speedup using the open-source LabelImg program

along with a ML model (Region Proposal Faster R-CNN). While these works showed the

benefits of using ML for material characterization, they were still restricted in extracting a single

type of microstructural feature (particles, pores, GBs, etc).

In the past, ML models such as CNNs and encoder-decoder networks have also been

developed towards binary and semantic segmentation of material microstructure. For instance,

in [32] the state-of-the-art encoder-decoder model, U-Net, was implemented to generate binary

segmentations of aluminum alloys. In [33, 34], the authors developed Residual Neural Networks

(RNNs) and Fully Convolutional Neural Networks (FCNNs) to first predict microstructural

shapes (i.e., ”lamellar”, “duplex”, or “acicular”) and then generate binary segmentations of

the resulting microstructure. Additionally, [35] used SEM images of steel to generate binary

segmentations for the voids, precipitates and line dislocations using a Convolutional Encoder-

Decoder Network (CEDN) called DefectSegNet. The DefectSegNet framework outperformed

defect characterization of human expert with significantly faster performance. While these works

show the advantages of ML image segmentation tools, current CEDNs involve highly complex

and large architectures which lead to prolonged training times and high GPU requirements.

For instance, in Sections 2.4.1 and 2.4.4, we show the state-of-the-art U-Net CEDN model to
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require a training time of 1:55 hours with GPU usage of 998.28 MBs to generate accurate RGB

segmentations of GBs.

In the recent years, the challenge of high GPU usage in ML studies has led to the develop-

ment of new NVIDIA GPUs aimed to improve their storage capacity and performance speed.

However, as network architecture becomes more complex the development of new faster and

smaller models may be crucial, especially for problems involving large dataset. An existing GPU

resource which provides free usage (12 GBs for 12 hours) is Google Colab. Therefore, using

these free-to-use resource-bound machines will require the development of new computationally

efficient ML models which produce results with similar accuracy as state-of-the-art ML models.

This challenge may be solved through the Deep Emulator Network SEarch (DENSE)

framework [36]. DENSE was introduced in 2020 to optimize the architecture of existing ML

models in terms of their GPU usage and training time, while maintaining good accuracy. As a

result, we use DENSE in this work to optimize the GPU memory and training time requirements

of current state-of-the-art semantic segmentation networks such as U-Net. Using DENSE, we are

able to significantly reduce the architecture complexity of U-Net while achieving high-accuracy

binary and RGB semantic segmentations for pores, particles, and GBs, respectively. To gather a

large training dataset of particles and pores, we make use of the standard city-block distance

function along with the watershed segmentation algorithm presented in [20]. For GBs, we gather

a large training dataset using the standard PSILM algorithm in [37, 38]. We then develop a

ML classifier CNN for predicting which type of defect is present in each microstructure (i.e.,

particles, pores, or GBs). Using the initial architecture of the stat-of-the-art U-Net model, we

significantly simplify its complexity by removing various convolution and transpose convolution

layers. This results in a simplified network with reduced training time and GPU usage. We

also optimize the resulting simplified U-Net CEDN model by employing DENSE for RGB

segmentations of GBs. For GBs, we develop an additional regression CNN for predicting a

histogram of the resulting grain size. Lastly, the integration of the Classifier CNN, binary and

RGB CEDNs, and Regression CNNs, provide an autonomous microstructure characterization

framework for AM materials involving particles, pores, and GBs without prior user input of the

individual microstructural features.
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2.2 ML methods and optimization

2.2.1 Convolutional Neural Networks for classification and regression tasks

A widely used supervised neural network involves Classification CNNs. Classification CNNs

have found applications in prediction of spam emails, handwritten digits, clothing, real-time

recognition of objects, and gender [39, 40, 41, 42, 43]. These models are typically used for

predicting binary outputs (single classification tasks), as well as predicting multiple classes (i.e.,

up to thousands) using the activation function “Softmax” [44]. Unlike Classification CNNs

where the predictions are discrete numbers, another widely used supervised neural network

involves Regression CNNs which focus on the prediction of continuous numbers. Example

applications of Regression CNNs include stock market prediction, facial landmark detection,

and human-pose landmark detection [45, 46, 47].

In this work, we develop a classifier CNN to automate the detection process for the

initial microstructure type. In essence, the classifier CNN is used to predict whether the input

microstructure involves pores, particles, or GBs. This model allows the user to input a mixed

database of microstructural images involving varying defect types without time-consuming

separation of the images prior to extracting their features. Lastly, we generate histograms

depicting the grain size distribution in images involving GBs using two regression CNNs for

predicting the grains radii and their frequencies (i.e., distribution).

2.2.2 Convolutional Encoder-Decoder Networks for semantic segmentation

In 2015, the CEDN SegNet model was developed for image semantic segmentation [48]. The

SegNet model was initially aimed at real-time semantic segmentation of nature, animals, people,

and objects (e.g., cars) for applications such as scene understanding and self-driving vehicles.

CEDNs were then developed following the SegNet methodology for image segmentation of

higher complexity tasks. For instance, the CEDN U-Net, also developed in 2015, followed the

SegNet approach with the addition of multiple feedforward and fully connected convolutional

layers at the center of the encoder and decoder [49]. However, the initial purpose of the U-Net
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was specifically for the task semantic segmentation of biomedical images involving microscopic

neural structures.

The U-Net model has been extended in recent years for multiple tasks by integrating

additional state-of-the-art ML methods. A common example of an extension to the U-Net

model is the Res-UNet. The Res-UNet made use of Residual Networks (ResNet) for replacing

the fully connected convolution and feedforward layers between the encoder and decoder

section [50]. The use of ResNet was shown to mitigate exploding or vanishing gradients

with the use of skip connectors and identity layers [51]. The Res-UNet has been successfully

applied towards biomedical image segmentation of brain tumors [52], retina vessels [53],

photovoltaic panels [54], and photoacoustic panels [55]. As a result, in this work we optimize

the architectures of conventional U-Net and Res-UNet models towards accurate binary and RGB

image segmentations of microstructural images involving particles, pores, and GBs.

2.2.3 Deep Emulator Network SEarch (DENSE) for optimization of ML models

In Januray 2020, M.F. Kasim introduced a framework called Deep Emulator Network SEarch

(DENSE) for rapid optimization of ML models’ architecture [36]. The DENSE framework

initially aimed at fast emulation of large-scale systems using ML. Current predictive models for

emulation of large-scale systems such as climate change, high energy density physics, seismol-

ogy, astrophysics, and biogeochemistry are extremely computationally expensive. Although ML

models have demonstrated significant speed up compared to conventional approaches, deter-

mining the optimal architecture (e.g., channels, filter dimensions, stride and padding size, etc.)

for each problem requires significant computational processing time. Therefore, the purpose of

DENSE was to dynamically search for optimal architecture parameters in ML emulators. To

generate the search space of network architectures and optimize them iteratively, the DENSE

framework integrated CNNs along with the evolution algorithm of Covariance Matrix Adap-

tation - Evolution Strategy (CMA-ES) [56]. The authors showed that the DENSE framework

was capable of speeding up the architecture optimization dynamically, thus, producing faster

emulation with maintained high accuracy. As a result, in this work we make use of the DENSE

17



Figure 2.1: Simple-UNet: The architecture of the simplified U-Net encoder-decoder network.

framework for optimizing the CEDNs for binary and RGB image segmentation, as well as the

Regression CNNs.

2.2.4 Development of Simple - UNet, and DENSE - UNet for image segmentation

In order to develop the CEDNs for binary segmentation of particles and pores, we used the

conventional U-Net model and simplified its architecture to obtain the Simple U-Net model.

The Simple U-Net model (shown in Figure 2.1) removed four convolution and four transpose

convolution layers from U-Net, as well as the feedforward neural network between the encoder

and decoder sections. By removing these layers, the architecture size, GPU requirements, and

training time of Simple U-Net were significantly reduced compared to the conventional U-Net.

The Simple-UNet model also provided accurate binary segmentations for microstructures of

particles and pores.

Lastly, we further optimized the architecture of Simple-UNet towards RGB segmentations

of microstructural images involving GBs. We made use of DENSE and optimized Simple U-Net

in terms of the filter dimensions: (i) 1x1, (ii) 3x3, (iii) 5x5, (iv) 7x7, and (v) 9x9. We call the

optimized CEDN for RGB segmentation of GBs DENSE-UNet. We note that the number of

channels for DENSE-UNet were kept fixed as in Simple-UNet shown in Figure 2.1.
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2.2.5 YOLOv5

Region-based Convolutional Neural Network (R-CNN) gave rise to ML techniques for object

detection [57]. The R-CNN approach was significantly improved shortly after its introduction

for the task of object detection by the YOLO (You Only Look Once) model. A key contribution

of YOLO to the R-CNN approach was the use of a single regression CNN for predicting the best

detection box size (i.e., window size) for the given image [58]. Since its introduction, the YOLO

model has been refined. For instance, YOLO9000 increased the number of recognizable objects

in a single image [59], YOLOv3 improved the prediction accuracy [60], YOLOv4 increased

the speed of real-time prediction [61], and YOLOv5 leveraged previous high GPU memory

requirements [62]. We note that the YOLO approach continues to be improved each year for

faster, more accurate, and higher complexity real-time object detection tasks [63, 64]. Therefore,

in order to detect particles and pores from the generated binary segmentation images, we made

use of the YOLOv5 network in this work due to its low GPU memory requirements, ease of

implementation, and portability.

2.2.6 Google Colab and Pytorch for training and optimization of ML models

Google Research provides a free and easy-to-use online programming platform called Google

Colab. Google Colab is hosted by Jupyter Notebooks and grants users with up to 12 GBs of

NVIDIA Tesla k80 GPU memory for up to 12 hours [65]. Additionally, one of the most recent

and widely used libraries for programming ML projects is Pytorch [66]. Pytorch is formulated in

Python language through the use of dynamic computation graphs. The Pytorch library provides

a class of “tensors” (i.e., similar to “NumPy” arrays) However, these Pytorch “tensors” have

CUDA capabilities in order for GPU operations which accelerate tensor computations and

required training times [67]. Therefore, in this work we make use of the Pytorch library and the

Google Colab platform to train and optimize the ML framework.
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2.3 Microstructural feature characterization framework

2.3.1 Training data and augmentation procedure

In order to train the ML models in the framework, we generated two datasets involving (i)

powder particles, and (ii) GBs. First, for powder particles we gathered an open-source dataset

from [68] (i.e., through Mendeley Data) consisting of 2048 synthetic microstructure images. We

note that the 2048 synthetic images were categorized into 8 groups of varying PSD. To generate

the resulting labels of binary segmentations, we made use of the watershed and city-block

distance (WCBD) method from [20]. The WCBD method also provided the bounding boxes

defining each particle’s size and position for training the YOLOv5 model. We emphasize that to

extend the WCBD method from powder particles to pores the open-source WCBD algorithm

from [20] was modified by inverting the binary values. In essence, we set the locations of the

defects using black pixels, and the locations of the surrounding material using white pixels.

For the training labels of the YOLOv5 model, we extracted the centroid and diameter of each

powder particle. Ultimately, to develop the training dataset for YOLOv5 consisting of bounding

boxes, we made use of the free online tool, “Roboflow.ai”. Next, we gathered an additional

dataset consisting of GBs from [69]. The dataset contained 59 (2048x1532) high-resolution

microstructural images obtained through selective laser melting (SLM) of 316L stainless steel.

To obtain a large training dataset consisting of 3776 GBs images, we first resized each high-

resolution image to 2048x2048 dimensions, and then cropped each resized image to 256x256

separate smaller images. Lastly, we implemented the PSILM algorithm from [37, 38] to each

256x256 microstructural image and obtained their resulting RGB image segmentations, along

with their histogram for grain size distribution.

Next we trained the Classifier CNN described in Section 2.2.1 using 4000 images of

powder particles and GBs (i.e., 2000 images of powder particles, and 2000 images of GBs). We

distributed the training, validation, and test datasets for GBs using 3800, 100, and 100 images,

respectively. Similar to the cropping approach used for GBs, we cropped each of the 512x512

high-resolution synthetic images of powder particles into 256x256 smaller separate images.

This resulted in a total of 8192 training images for powder particles. We then distributed the
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training, validation, and test datasets for powder particles using 7850, 512, and 100 images,

respectively. Additionally, we note that YOLOv5 requires significantly smaller datasets in order

to reach high prediction accuracies [62]. Therefore, we set the training, validation, and test sets

for the YOLOv5 model as 800, 100, and 100 images, respectively. Finally, we distributed the

training, validation, and test sets used to train the DENSE-UNet for RGB segmentations, and

the Regression CNNs for grain size distribution using 3560, 108, and 108 images, respectively.

2.3.2 Overview of framework architecture

A flowchart depicting the architecture of the developed framework is shown in Figure 2.2. As

mentioned in previous sections, a key advantage of the framework is that users are not required

to input additional specifications or prior knowledge of the defects type present for each image.

To accomplish this autonomy, the first ML network involved a “Classifier CNN”. The objective

of the Classifier CNN was to predict whether the input microstructural image involved particles,

pores, or GBs. Depending on which type of defect was predicted by the Classifier CNN, the

framework involved two separate paths.

The first path (i.e., top path in Figure 2.2) was for particles and pores. The path for particles

and pores included the Simple U-Net CEDN described in Section 2.2.4 for generating binary

segmentations. The segmented images for particles and pores described the locations of the

defects using black pixels, and the surrounding bulk material using white pixels as shown in

Figure 2.2. The next ML model for particles and pores was the YOLOv5 network described in

Section 2.2.5. The YOLOv5 network was used to predict the centroid location of each particle

or pore, and a bounding box for their size (i.e., height and width). We note that the YOLOv5

was also capable of predicting centroid locations and bounding boxes for overlapping particles

or pores.

The second path following the Classifier CNN (i.e., bottom path in Figure 2.2) was for

grains and GBs. The first ML model for the bottom path of GBs involved the DENSE-UNet

CEDN described in Section 2.2.4. The DENSE-UNet CEDN used the input microstructural

image to generate RGB segmentations of the grains as shown in Figure 2.2). We note that

particles and pores are typically scattered and nicely separated throughout the microstructure
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Figure 2.2: Diagram illustrating the structure of the machine learning framework for microstruc-
tural feature characterization

allowing the use of YOLOv5 to predict separate bounding boxes. However, gains and GBs are

typically continuous in the material’s microstructure. Therefore, while for particles/pores the

YOLOv5 network was sufficient to extract the locations of each defect along with their size (i.e.,

bounding box), we needed to implement a different approach for grains and GBs. Instead, we

made use of the color variations from the generated RGB segmentations. For instance, from

Figure Figure 2.2 it can be seen that regions of darker red color depict the larger sized grains,

while the regions of darker blue color depict the smaller sized grains. We took advantage of

these color variations provided by the PSILM algorithm and implemented two Regression CNNs

for extracting a histogram of the grain size distribution (i.e., radii and their frequencies).

2.4 Results and discussion

2.4.1 Number of training parameters and GPU requirements

To compare the computational costs of each CEDN model used towards the development of the

framework (i.e., Simple-UNet, DENDE-UNet, U-Net, and Res-UNet), we computed the number

of training parameters and their GPU MBs usage. The obtained number of training parameters

and GPU usage of each model are shown in Figures 2.3a and 2.3b, respectively. For total number

of training parameters, it can be seen that the state-of-the-art models U-Net and Res-UNet have
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(a) Number of trainable parameters (b) GPU-Usage (MB)

Figure 2.3: a) Total number of trainable parameters for each model and b) Total GPU-usage of
each model.

the highest requirements of 33,824,003, and 30,639,171 parameters, respectively. As expected,

the CEDN with the lowest required number of training parameters was the simplified Simple-

UNet model (i.e., designed for binary segmentation of particles/pores) with only 4,249,309

(approximately 8x smaller than U-Net). Additionally, the second CEDN model with the lowest

required number of training parameters was the DENSE (i.e., designed for RGB segmentation

of GBs) with only 15,718,109 parameters (approximately 2x smaller than U-Net)

Next, we compare the GPU requirements of each CEDN model in Figure 2.3b. An

interesting observation to make is that although the U-Net model involved the largest number of

training parameters, the Res-UNet model shows higher GPU usage of 1621.63 MBs compared

to the U-Net model of 998.28 MBs. We note that this higher GPU requirement of the Res-UNet

is due to its higher forward/backward pass of 1504 MBs, compared to the U-Net of 868.5 MBs.

Comparing the DENSE-UNet and Simple-UNet, both model show a significant decrease in

GPU usage compared to the state-of-the-art CEDNs. For instance, the Simple-UNet shows the

lowest GPU usage of 239.8 MBs (approximately 4x smaller compared to Res-UNet), followed

by DENSE-UNet of 282.83 MBs (approximately 3.5x smaller compared to Res-UNet).

2.4.2 Predictions for powder particles and pores

First, we compare the prediction accuracy of the standard WCBD method against the developed

Simple-Net model to generate binary segmentations of synthetic powder particles. The resulting

binary segmentations using both methods are shown in Figure 2.4. From Figure 2.4, we see
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(a) Input 1

(b) Input 2

(c) WCBD

(d) WCBD

(e) Simple-UNet

(f) Simple-UNet

Figure 2.4: Comparison of particle binary segmentation obtained through the watershed and
city-block distance segmentation methods versus the ML Simple-UNet.

that the predicted binary segmentations by the Simple-UNet model are virtually identical to the

segmentations produced by the WCBD method.

To verify these observations, we performed a quantitative analysis by computing the average

pixel error and the maximum pixel error from the Simple-UNet against the WCBD method

following the approach presented in [49]. For this quantitative analysis, we first gathered 10

randomly chosen synthetic particle images and obtained their binary segmentations. For the

predicted “black pixels” (i.e., 0 pixels) we obtained a maximum error of 0.65 % and average

error of 0.15 %. For the predicted “white pixels” (i.e., 1 pixels) we obtained a maximum error

of 0.19 % and average error of 0.06 %. These results all show maximum percent errors below

1%, therefore, the Simple-UNet model predicted binary segmentations for synthetic particles

with high accuracy.

To further validate the framework’s prediction accuracy, we gathered additional microstruc-

tural images from different distributions involving particles and pores. As shown in Figure

2.5, we show two microstructures of (i) austenite involving pores, and (ii) Ti-6Al-4v involving

powder particles. We then used the Simple-UNet CEDN to generate their binary segmentations,

and used them as input to the YOLOv5 network to predict the size and location of each defect.

The predicted bounding boxes for pores are shown in Figure 2.5e, and the predicted bounding

boxes for powder particles in Figure 2.5f using purple boxes. The bounding boxes generated
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(a) Input: Pores

(b) Input: Particles

(c) Simple-UNet: Segmentation

(d) Simple-UNet: Segmenta-
tion

(e) WCBD (Green) VS
YOLOv5 (Purple)

(f) WCBD (Green) VS
YOLOv5 (Purple)

Figure 2.5: Results for the ML framework when tested on various distributions of microstructural
images depicting pores and particles.

by the WCBD method are shown using green boxes in Figures 2.5e and 2.5f. It can be seen

that the bounding boxes generated by the WCBD method are usually smaller with square shape,

compared to the bounding boxes predicted by the YOLOv5 network. We note that a limitation

of the WCBD method is that it generates a single diameter value for each defect, while the

YOLOv5 network is able to predict the height and width of each detected defect.

For additional quantitative validation of these results, we generated Tables 2.1, 2.2 and 2.3.

To gather the ground truth bounding boxes for the austenite and Ti-6Al-4V microstructures we

made use ”CVAT.org”. ”CVAT.org” is an open-source online labeling tool for object detection

problems. In Table 2.1 we compare the total number of detected defects from WCBD and

YOLOv5, against the ground truth obtained using ”CVAT.org”. From Figure 2.5e and Table 2.1,

the austenite microstructure involves 12 pores. We note that the YOLOv5 network successfully

predicted a total of 12 pores for austenite as seen in Table 2.1. However, the WCBD algorithm

only detected 11 pores. For particles it can be observed from Figure 2.5f that the Ti-6Al-4V

sample includes a total of 10 particles. The YOLOv5 network and WCBD method did not

capture the particle located towards the bottom left of the microstructure. Additionally, a key
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Number of Predicted Defects
Number of Particles Number of Pores

Ground Truth 10 12
WCBD Method 8 11

YOLOv5 Method 9 12

Table 2.1: Comparison of the number of detected bounding boxes for powder particles in
Ti-6Al-4V, and pores in Austenite, using the YOLOv5 network and conventional WCBD method
versus the ground truth.

Particles Microstructure - Ti-6Al-4V
Bounding Boxes Error

Center (X) Center (Y) Width Height
WCBD % Error

(Avg. ± Std. Dev.)
5.45± 7.88 13.29± 28.43 44.76± 28.22 51.19± 34.20

YOLO % Error (Avg.
± Std. Dev.)

3.34± 4.97 10.15± 28.80 17.42± 30.46 19.59± 29.94

Table 2.2: Percentage error for the predicted bounding boxes parameters (centroid locations,
height, and width) in powder particles of Ti-6Al-4V, using the YOLOv5 network and the
conventional WCBD method compared to the ground truth.

observation to make is that the WCBD method generated a single bounding box for the two

largest overlapping particles located at the center of the microstructure. However, the YOLOv5

network accurately predicted a single bounding box for each of particle.

To further analyze these results, we show the resulting percent errors for the YOLOv5

network and WCBD method compared to the ground truth in Tables 2.2 and 2.3. Here, we

computed the difference in distance between the predicted and the ground truth centroid, height,

and width of each defect. As shown in Table 2.2, because the WCBD method typically generated

larger bounding boxes compared to YOLOv5 for powder particles in Ti-6Al-4V, the percent

errors of WCBD were higher for the centroid, height, and width parameters. While the percent

errors for YOLOv5 are significantly lower than the WCBD method for Ti-6Al-4V, it also showed

high errors of approximately 17 % for the width, and 19% for the height. We note that the errors

in Table 2.2 account for errors from the particle located at the bottom left of the microstructure

not being detected, thus, significantly increasing the errors.

Next, the percent errors for the YOLOv5 network and WCBD method in the predicted

centroid, height, and width of each pore in austenite are shown in 2.3. Here, we computed the
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Pores Microstructure - Austenite
Bounding Boxes Error

Center (X) Center (Y) Width Height
WCBD % Error

(Avg. ± Std. Dev.)
6.06± 18.58 6.79± 21.31 27.46± 25.05 18.82± 27.30

YOLO % Error (Avg.
± Std. Dev.)

0.59± 0.59 0.78± 0.58 11.74± 7.39 22.52± 12.15

Table 2.3: Percentage error for the predicted bounding boxes parameters (centroid locations,
height, and width) in pores of Austenite, using the YOLOv5 network and the conventional
WCBD method compared to the ground truth.

(a) Input (b) PSILM (c) Res-UNet (d) U-Net (e) DENSE-UNet

Figure 2.6: Comparison of grain boundary segmentation results using ASTM’s PSILM, Res-
UNet, U-Net, and DENSE-UNet models.

difference in distance between the Here, the WCBD method also resulted in higher percent errors

compared to the YOLOv5 network for the centroid coordinates, and width parameters. However,

the YOLOv5 network shows higher error for the height prediction compared to the WCBD

method. The highest accuracy is shown by YOLOv5 for predicting the center coordinates at

approximately 3.2 % error, while the the WCBD method resulted in approximately 10.5 % error.

Ultimately, these results show that the YOLOv5 predicted a higher number of defects for both

austenite and Ti-6Al-4V samples, and predicted the center, height, and width with overall higher

precision compared to the WCBD method.

2.4.3 Predictions for grain boundaries

We then analyzed the prediction accuracy of state-of-the-art CEDNs (i.e., Res-UNet, U-Net)

and the developed optimized CEDN (i.e., DENSE-UNet) to generate RGB segmentations for

GBs. We also compared the prediction accuracy of these models versus the conventional PSILM

technique. The generated input microstructure of GBs, and the resulting RGB segmentations of

each model are shown in Figure 2.6.
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(a) Grain Boundary

(b) PSILM Output

(c) DENSE-UNet Output (d) PSILM vs ML Framework: Grain boundary
size distribution histograms

Figure 2.7: Comparison of grain boundary size distribution histograms obtained from both the
PSILM method and the ML framework.

From Figure 2.6, it can be seen that all the CEDNs accurately predicted the grain sizes as

darker red for larger grains, and darker blue for smaller grains. However, Figure 2.6b shows

that the PSIM did not fully capture various larger sized grains. The PSILM algorithm relies on

conventional image-processing edge detection tools. Once the PSILM performs edge-detection,

a number of random points are positioned over the detected edges. The line intercept method

[38, 37] is then implemented to compute the horizontal, vertical, and diagonal lengths between

neighboring points. Finally, the computed lengths are interpolated in order to formulate the

grain sizes and generate the resulting color ranges (i.e., RGB segmentation). The errors shown

in Figure 2.6b for the PSILM algorithm may originate from conventional edge detection tools.

Conventional edge detection tools are known to incorrectly label lighter shadows in the images

as small grains [70], thus, omitting various larger sized grains. Additionally, the line intercept

method does not account for larger sized grains positioned around the edges of the microstructure,

thus, incorrectly labeling them as smaller sized grains.

Next we compared the grain size distribution histograms generated by the PSILM algorithm

versus the framework in Figure 2.7. The PSILM resulted in average grain size (radius) of 4.22±

3.75, while the framework predicted grain size of 4.34± 3.63. We note that the ML framework

predicted overall grain size close to the PSILM approach, it predicted higher frequencies
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compared to the PSILM histogram. This may be due to the conventional edge detection tool

from the PSILM not capturing some of the larger sized grains as mentioned previously. In

contrast, it can be seen from Figure 2.7c that the DENSE-UNet model captures a higher number

of larger sized grain sections.

For further validation of the DENSE-UNet model, we analyzed its prediction accuracy on

microstructural images of GBs obtained from a different distribution. We gathered four GB

microstructures for (i) Copper Alloy in Figure 2.8a, (ii) Titanium in Figure 2.8b, (iii) an Inconel

Alloy in Figure 2.8c, and (iv) Steel in Figure 2.8d. We then generated their resulting RGB

segmentations using the PSILM algorithm as shown in Figures 2.8e, 2.8f, 2.8g, and 2.8h, and

the DENSE-UNet as shown in Figures 2.8i, 2.8j, 2.8k, and 2.8l. Similar to Figure 2.7b, the

PSILM struggles to capture some of the larger sized grains, especially near the edges of the

microstructures.

A clear example of this error is shown for steel by comparing the PSILM RGB segmentation

versus the DENSE-UNet model in Figures 2.8h and 2.8l. Here, multiple larger sized grains

are captured as smaller grains by the PSILM. However, the DENSE-UNet model accurately

captured the larger grains, thus, outperforming the PSILM for steel. Therefore, these results

show that the optimized CEDN model, DENSE-UNet, was able to generate accurate RGB

segmentations. The DENSE-UNet model was able to distinguish larger grains and label them

using darker red colors, and smaller grains using darker blue colors.

2.4.4 Training time and accuracy of CEDNs for RGB segmentation

We obtained training time required for each CEDN model used for RGB segmentations of GBs

as shown in Figure 2.9a. From Figure 2.9a, we note that the longest training time was obtained

for the Res-UNet model at 5:34 hours. As shown in Section 2.4.1 and Figure 2.3b, the Res-UNet

also resulted in the highest GPU usage. The next model showing the longest training time was

U-Net requiring 3:55 hours. Additionally, from Figure 2.3b we recall that that the CEDN for

RGB segmentation with the lowest GPU usage was DENSE-UNet, thus, resulting in the lowest

training time of 55 minutes. We note a significant decrease of training time compared to the

state-of-the-art Res-UNet (approximately 6x faster).
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(a) Input: Copper

(b) Input: Titanium

(c) Input: Inconel Alloy

(d) Input: Steel

(e) PSILM: Copper

(f) PSILM: Titanium

(g) PSILM: Inconel

(h) PSILM: Steel

(i) DENSE-UNet: Copper

(j) DENSE-UNet: Titanium

(k) DENSE-UNet: Inconel

(l) DENSE-UNet: Steel

Figure 2.8: ML framework evaluated across various distributions of microstructural images
depicting grain boundaries.
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(a) Training time (min:sec) tested for 60 Epochs (b) Accuracy (%) tested for 60 epochs

Figure 2.9: Comparisons of training time and accuracy across different ML encoder-decoder
networks.

Furthermore, we performed a quantitative analysis for the accuracy of each CEDN model

to generate RGB segmentations of GBs (Figure 2.9b). From Figure 2.9b, we observe the highest

accuracy for U-Net at approximately 96.60%, while the most computationally demanding CEDN

Res-UNet resulted in lower accuracy of approximately 96.05% While the Res-UNet requires

higher GPU-Usage, we recall from Figure 2.3a that the U-Net model involved a larger number

of training parameters which may aid towards higher prediction accuracy. For the optimized

DENSE-UNet, the accuracy is nearly parallel to the Res-UNet model at approximately 96.05%.

However, a significant advantage of DENSE-UNet is its reduced training time of 55 minutes

compared to Res-UNet of 5:34 hours. Therefore, we conclude that the optimized DENSE-UNet

is the most efficient model for RGB segmentation of GBs while achieving similar high accuracy

compared to state-of-the-art U-Net and Res-UNet.

2.4.5 Time performance of the entire framework versus PSILM

Lastly, in Figure 2.10 we analyzed the time performance of the developed framework to charac-

terize 10 images of GBs microstructures and compared it to the PSILM algorithm. We note that

this analysis did not include the required training time due to ML models allowing us to save

pretrained models. Therefore, we first accounted for the times required to load the pretrained

weights of the Classifier CNN, the developed CEDNs (e.g., Simple-UNet, and DENSE-UNet),
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Figure 2.10: Analysis time comparison between the ML Framework and PSILM for 10 mi-
crostructural grain boundary images.

and the Regression CNNs. We then recorded the time from initial loading of the pretrained

weights to the generation of the histograms of grain size distribution. Using this approach we

recorder the total average time using both CPU and GPU. Following this method, we com-

puted the analysis time of the PSILM algorithm from the initial input image to the final RGB

segmentation and histogram generation. As shown in Figure 2.10, the PSILM required 15:21

minutes to fully characterize 10 microstructures (i.e., approximately 1:32 minutes per image).

In contract, the framework resulted in only 3:11 minutes (i.e., approximately 19 seconds per

image) to characterize the same 10 microstructures when using CPU. Using GPU, the proposed

ML framework performed significantly faster with only 1:04 minutes total (i.e., 6.4 seconds per

image).

Considering the required training times of the ML framework, the PSILM may prove to

be a better option for characterizing smaller datasets. For instance, to characterize a dataset

involving 36 microstructures using the PSILM approach a total 55 minutes would be required. In

contrast, to train the framework from scratch and perform the same analysis, would require more

than 55 minutes. As a result, we emphasize that when training is required, the framework is only

faster than the PSILM approach for datasets involving more than 36 microstructural images. As

an additional comparison, to characterize 100 microstructures the PSILM approach requires

around 2:33 hours. However, the ML framework using CPU only would require approximately
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44 minutes to train, followed by 32 minutes to characterize 100 microstructures. This shows a

performance improvement of 1:16 hours by the framework.

Ultimately, we emphasize that the framework does not need prior user information for the

types of microstructural defects in each image. For datasets involving mixed microstructures

of pores, particles, and GBs the developed framework is capable of autonomously separating

each microstructure prior to characterizing each defect. This advantage of the proposed ML

framework would also save significant time for analysts and material scientists. While the

proposed ML framework is not a replacement for conventional methods such as PSILM, it is

a useful and computationally efficient tool for autonomous characterization of large datasets

involving different materials and microstructural features.

2.4.6 Case of microstructures involving multiple defects

While the current ML framework performs accurate characterization of microstructures with a

single type of defect (i.e., particles, pores, or GBs), it does not consider single microstructures

with multiple types of defects (e.g., pores and GBs). We address this challenge by testing the

framework’s capability to characterize datasets of microstructures involving both pores and GBs.

We obtain a dataset involving 354 microstructures of materials with pores and GBs from the

DoITPoMS - Micrograph Library. We resize the low resolution images to 512x512 and the high

resolution images to 1024x1024. We then crop each image using dimensions of 256x256, and

perform random rotation, and vertical and horizontal flipping for data augmentation. The final

mixed microstructure dataset resulted in 1416 images. Using the approach described in Section

2.3.1, we obtained the binary segmentations and bounding boxes for the pores, and then obtained

the RGB segmentations for the GBs. We also implemented transfer learning to the CEDNs (i.e.

Simple-UNet and DENSE-UNet) and the object detection YOLOv5 network for the new dataset

of mixed microstructures. We emphasize that an advantage of the PSILM method is its ability to

segment pores as black pixels, thus, removing them from the final grain size measurements

In Figure 2.11, we show the resulting binary segmentations from Simple-UNet. The Simple-

UNet qualitatively shows virtually indistinguishable segmentations compared to the WCBD

method. Next, we compared the bounding boxes generated by the YOLOv5 network versus
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(a) Input 1

(b) Input 2

(c) WCBD: Segmentation

(d) WCBD: Segmentation

(e) Simple-UNet: Segmentation

(f) Simple-UNet: Segmentation

Figure 2.11: Comparison of binary segmentation utilizing the WCBD method against Simple-
UNet for microstructural images containing grain boundaries and pores.

the WCBD method in Figure 2.12. The YOLOv5 network predicted the bounding boxes with

high accuracy compared to the WCBD bounding boxes, thus, demonstrating the framework’s

capability to extract pore size and location in microstructures with multiple defects.

Next, Figure 2.13 first demonstrate the advantage of the PSILM approach to segment pores

using black pixels, and the GBs using color variations. Additionally, it can be seen that the

framework generated RGB segmentations for the pores and GBs with good accuracy compared

to the PSILM algorithm. These results show that the proposed ML framework may be extended

in future work for simultaneous characterization of microstructures with multiple defects.

However, there are several limitations in the current work which may need to be further

studied. First, the current ML framework is autonomous for microstructures involving a single

type of defect. We recall from Sections 2.3.1 and 2.3.2 that the Classifier CNN was trained using

2000 images of pores and 2000 images pf GBs. However, the dataset gathered of microstructures

with both GBs and pores consist of only 1239 images. Therefore, developing a Classifier

CNN capable of predicting microstructures involving two different types of defects will require

compiling larger training datasets.
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(a) Input 1

(b) Input 2

(c) Simple-UNet: Segmentation

(d) Simple-UNet: Segmentation

(e) YOLOv5 Output

(f) YOLOv5 Output

Figure 2.12: Evaluation of YOLOv5’s performance on microstructures containing grain bound-
aries and pores.

(a) Input 1

(b) Input 2

(c) PSILM: Segmentation

(d) PSILM: Segmentation

(e) RGB CEDN: Output

(f) RGB CEDN: Output

Figure 2.13: Performance evaluation of the Encoder-Decoder network for RGB segmentation on
microstructures containing grain boundaries and pores.
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2.5 Conclusion

The developed ML framework resulted in improvements compared to conventional microstruc-

ture characterization methods based in image-processing, as well as existing state-of-the-art

CEDNs for image segmentation. We developed an autonomous and complete feature extrac-

tion process for microstructures involving particles, pores, and GBs through the integration

of multiple ML models. Standard computational tools such as the PSILM algorithm and the

WCBD method were crucial in order to gather the training dataset. However, the final trained

framework can be used autonomously in future work without the need for additional training.

The first step of the framework towards autonomy involves a Classifier CNN for predicting the

types of defects pertaining to each microstructure (i.e., particles, pores, or GBs). Depending

on the predicted defect from the Classifier CNN, we then developed two separate CEDNs (i)

Simple-UNet for binary segmentation of particles or pores, and (ii) DENSE-UNet for RGB

segmentation of GBs. Finally, the generated binary segmentations are used as input to the

object detection YOLOV5 network for predicting the particles/pores size and location, while

the generated RGB segmentations are used as input to two Regression CNNs for predicting

histograms of the grain size distribution.

We emphasize that a time-consuming and tedious challenge in supervised ML methods

involves the generation of the training datasets. Recent online tools and resources aimed at

ML have significantly reduce the need for expensive GPUs. For example, the free online tool

Google Colab grants users with up to 12 GBs of GPU memory for 12 hours. This tool can be

used to train state-of-the-art complex ML models like Res-UNet and U-Net without the need to

purchase expensive GPUs. We note that although these tools are useful for ML applications,

in order to achieve high prediction accuracy some models may require large training datasets,

thus, limiting the GPU usage time. Additionally, the development of ML frameworks with

exportability capabilities requires further reduction of training time and GPU requirements. This

is a limitation in current state-of-the-art complex ML models due to their high GPU usage and

prolonged training times.

36



Therefore, in this work aimed at optimizing state-of-the-art models such as U-Net and Res-

UNet for RGB segmentation of GBs using the DENSE algorithm. Using DENSE, we reduced

the GPU usage of these models by 716 MBs (approximately 4x lower) compared to U-Net.

Additionally, we reduced the required training time to 55 minutes (approximately 6x faster)

compared to Res-UNet at 5:34 hours, while maintaining high accuracy. We then showed good

prediction by the developed DENSE-UNet to generate RGB segmentation of GBs in titanium,

copper alloy, steel, and Inconel alloy. For pores and particles, the Simple-UNet model showed

high prediction accuracy for predicting binary segmentations similar to the standard WCBD

method. Lastly, the framework involved the object detection YOLOv5 network which predicted

the size and location of particles and pores with high accuracy in austenite and Ti-6Al-4V.

Although the autonomous framework showed promising results for microstructure char-

acterization problems, there were certain limitations. While the framework showed faster

performance compared to WCBD and PSILM methods, the model may fall short in performance

when training the framework from scratch is required. If training is required, the framework out-

performs the PSILM method for datasets involving more than 36 images. Another limitation is

that the framework is currently designed to characterized microstructures involving a single type

of defect (i.e., particles, pores, or GBs). We demonstrated that the framework could be extended

to handle microstructures involving both GBs and pores. For instance, the Simple-UNet and

DENSE-UNet predicted binary and RGB segmentations for these microstructures with good ac-

curacy. Also, the YOLOv5 network predicted bounding boxes for the pores locations accurately.

However, the Classifier CNN model did not include cases with two types of microstructural

defects. In order to establish a new autonomous framework capable of predicting microstructures

with more than one type of defect, a larger dataset for these cases is required in future work.

Lastly, the framework currently handles processed images rather than raw experimental images

or data. For example, data collected using SEM requires additional processing in order to

generate the microstructural used as input in the developed framework. In order to handle inputs

of raw data, new ML algorithms must be developed and integrated into the framework.
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2.6 Data availability statement

Supplementary material and code available at:
https://github.com/rperera12/MachineLearning_Framework_

Microstructure_Characterization
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Chapter 3

Graph neural networks for simulating crack coalescence and propagation in brittle materials

3.1 Introduction

Understanding the interaction, initiation, and propagation of microcracks in engineering materi-

als is critical in order to evaluate material performance and structural longevity. Computational

fracture mechanics models play a significant role in modeling material failure due to microcrack

propagation and coalescence. Widely used state-of-the-art computational fracture mechanics

models used to simulate crack behavior in materials include meshfree methods [71], cohe-

sive zone modeling (CZM) [72, 73, 74, 75], scaled boundary finite element method (SBFEM)

[76, 77, 78, 79], phase-field modeling (PFM) [80, 81, 82], and extended finite element methods

(XFEM) [83, 84, 85]. An extensive study and comparative overview for these approaches

can be found in [86, 87]. While these methods have shown success across various applica-

tions, they quickly become computationally expensive for higher-complexity problems (e.g.,

number of cracks, type of material, and loading configuration). For example, simulating

microstructural-scale fracture in materials with high number of microcracks (i.e., multiple micro-

crack propagation and coalescence) is computationally demanding. In [88], it was demonstrated

that modeling fracture due to multiple microcracks in a realistic three-dimensional domain of

1 m3, may require several CPU days.

Reduced-order modeling techniques offer a promising approach to mitigate these challenges

and reduce computational costs [89, 90, 88]. Over the past years, a reduced-order modeling

technique which has shown significant attention across the solid mechanics and materials science

community involves Machine Learning (ML) methods[91, 92, 93, 94, 95, 96, 97, 98, 99, 2, 100,
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101, 102, 103, 104, 105, 106, 107, 108, 109]. Recently, ML models have been developed for

predicting the stress and strain fields in composites [110, 111], stress hotspots for different crystal

configurations [112, 113], behavior of nonlinear materials [114, 110], and tensor decomposition

of complex materials [115]. Specific to fracture mechanics problems, ML models have also been

implemented for various studies [116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127].

In [128] the authors used image-based ML techniques to simulate crack growth in graphene

materials. Other studies have successfully implemented ML approaches to predict displacement

of notched plates [129], and predict structural response in materials due to crack growth [130].

Recently, in [75, 88] a graph-theory-inspired artificial neural network was developed capable

of predicting the final crack coalescence and time of failure in brittle materials. However,

the developed ML model involved considerable errors compared to the high-fidelity model

Hybrid Optimization Software Suite (HOSS) [131, 132], and was only able to predict the

final configurations of microcrack coalescence. Additionally, in [133] the authors introduced

ConvLSTM - a convolutional long-short term memory network - for modeling crack growth

in brittle materials with similar results to a high-fidelity molecular dynamic (MD) simulation

model. Here, the initial crack configurations were depicted as image-based inputs using binary

images. The binary images defined the bulk material using white pixels and the cracks using

black pixels. While these studies have integrated ML techniques to fracture mechanics problems,

simulating the dynamic evolution of stresses and microcrack propagation for higher-complexity

cases involving a large number of initial microcracks has not been explored.

A recent ML technique that has demonstrated significant speedup and accuracy to simulate

various complex physics phenomena is Graph Neural Networks (GNNs). GNNs integrate Multi-

Layer Perceptron (MLP) networks from ML approaches, and graph theory from mathematics.

In typical artificial neural networks, the trainable weights are constructed using the architecture

of the model (i.e., hidden layers, number of nodes, etc.). The resulting weights are then updated

through multiple operations of stochastic backward gradient descent [134, 135, 136]. However,

in the GNN approach the trainable weights are constructed using the graph representation itself

[137] (i.e, node and edge connections). In 2020, [138] presented a dynamic GNN framework

able to simulate the interaction of fluids (e.g., water, sand, etc.) and rigid bodies. The framework
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defined the graph using up to 20k nodes for the fluid particles, and edges connecting the

neighboring nodes. The edges in the graph included information for the node interactions

(e.g., gravitational force, momentum, and/or energy). Message-passing graph convolutions

were then used to generate latent space embeddings from the graphs of previous time-steps

and the particles accelerations and positions were predicted at future time-steps. The graph-

based implementation of GNNs (i.e., connecting nodes and edges) has also shown to be a

suitable candidate for engineering problems. For instance, GNNs were recently studied for

inverse material design of glass structures, to extract Perovskite synthesizability, and predict

material properties [139, 140, 141, 142, 143, 144, 145, 146, 147]. Additionally, GNNs have

been implemented for simulating various engineering problems. In [148], a GNN model was

introduced to simulate the responses of homogenized polycrystals. The graph representation

consisted of nodes for each crystal within the polycrystal structure, and edges to connect the

crystals with sharing faces. The final GNN model was trained on phase-field fracture models to

simulate the anisotropic response, and predict the resulting energy functional. Other recent works

that have implemented GNNs for simulating various engineering problems include prediction

of stresses in anisotropic elastoplastic materials, molecular properties in inorganic materials,

grain-scale toughness in meso-scale experiments, craquelure fracture patterns, and metal organic

CO2 adsorption properties [149, 150, 151, 152, 153, 154]. Moreover, GNNs have also been

developed to forecast molecular dynamics of rotationally-covariant and translationally-invariant

local atomic environments [155], finite element (FE) convergence of elastostatic problems [156],

the dynamics of solid mechanics and fluid mechanics problems [148, 157, 3, 158, 159], and the

graph structures of 3D boundaries for granular flow processes [160].

Therefore, in this chapter we develop a GNN-based framework called Microcrack-GNN

to simulate the stress evolution and microcrack propagation in brittle material with multiple

microcracks. We design the Microcrack-GNN framework to handle higher-complexity systems

involving varying number of microcracks (i.e., from 5 to 19). As shown in Figure 3.1, the

architecture of Microcrack-GNN includes four separate GNNs to model the underlying physics

of material fracture due to multiple microcracks. From the XFEM methodology, the Mode-I

and Mode-II effects are superimposed inn order to compute the stress distribution in the domain
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Figure 3.1: Structure diagram of the Microcrack-GNN framework

[161]. The resulting stress distribution is then used to determine the propagating crack-tips (i.e.,

cracks-tips with highest stresses). To capture this relation, we include the first two GNNs of

the framework, (i) KI-GNN to predict the Mode-I stress intensity factors, and (ii) KII-GNN to

predict the Mode-II stress intensity factors. We then include the third GNN of the framework,

(iii) Class-GNN for predicting propagating and non-propagating crack-tips. We note that Class-

GNN aims to capture the quasi-static nature of the problem. Lastly, the fourth GNN of the

framework, (iv) CProp-GNN, predicts the future crack-tip positions using the predictions from

the KI-GNN, KII-GNN, and Class-GNN models as input. A key feature of Microcrack-GNN

is its ability to predict the evolution of microcrack propagation and coalescence, as well as the

stress distribution using KI-GNN and KII-GNN. The framework provides a new data-driven

ML approach for modeling higher-complexity fracture problems involving multiple microcracks

with reduced computational costs and simulation times.

3.2 Methods

3.2.1 High-fidelity XFEM simulator

In order to simulate various fracture mechanics cases involving multiple microcracks in brittle

materials, we make use of the open-source XFEM-based simulator from [162, 163, 164].

The XFEM-based model is written in MATLAB to model fracture in two-dimensional brittle

material domains with multiple microcracks of arbitrary length and orientation. The XFEM
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model allows the use of different crack growth criteria, including (i) maximum hoop stress, (ii)

minimum total energy, and (iii) symmetric localization criteria. The high-fidelity model also

considers changes in fracture topology to calculate important parameters such as the stiffness

matrices, the timewise force vector, and crack-tips mesh-enrichment. Accounting for fracture

topology to obtain compute these parameters helps reduce computational cost, thus, speeding up

computations. Two additional key contributions of the XFEM model are the use of the resulting

surface pressure and residual stress/strain of each crack to compute the stress intensity factors

(i.e., KI and KII), and the use of the domain-form interaction integral approach [165, 166].

Therefore, to generate a large training dataset of two-dimensional simulations for fracture in

brittle materials with multiple microcracks, we use the high-fidelity XFEM model.

3.2.2 Graph representation

For the graph representation of Microcrack-GNN, we define the graph as ⟨V,E⟩, where V

includes all crack-tips as vertices/nodes, and E includes all the edges in the system. E involves

edges connecting each crack-tip vs ∈ V to their neighboring crack-tips within a zone of

influence, as well as edges connecting each crack-tip vs ∈ V to the remaining non-connecting

crack-tips outside the zone of influence. In essence, s : {1, 2, . . . , 2C} for all positive integers,

where C defines the total number of microcracks in the system) We show the defined graph

representation in Figures 3.2a - 3.2b.

For a sequence of previous time-steps T̂ := {T − 3, T − 2, T − 1, T}, we define the

crack-tip vertices using their positions, P̂s, their nearest-neighbors N̂s, and their orientation at

the initial time-step, Ôs (i.e., {θs} = 0o, 60o, or 120o).

P̂s = {(xs, ys)}T
t=T −3 {s ∈ V},

N̂s = {Ns}T
t=T −3 {s ∈ V},

Ôs = {θs}T
t=T −3 {s ∈ V},

{vs}T̂ =
(
P̂s, N̂s, Ôs

)
{s ∈ V}. (3.1)
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(a) Initial Configuration (b) Crack-9 Neighbors (c) Vertex-1 Neighbors (d) Vertex-2 Neighbors

Figure 3.2: Diagram illustrating the connections between the current crack tip (vertex) and its
neighboring crack tips (edges) for a single crack.

Here, (xs, ys) are the Cartesian coordinate positions, and θs the orientations (in radians) for

node s ∈ V. At each discrete time-step, we define the edges in the system as (s, r, bsr) ∈ E,

where s denotes the index of the “sender” node, r denotes the index of the “receiver” node

(i.e., r : {1, 2, . . . , 2C} for all positive integers), and (b ∈ {0, 1}) denotes a binary number to

inform the graph whether the “sender” node and the “receiver” node belong to the same pairwise

neighbors. We emphasize that bsr = 1 for “sender” and “receiver” nodes where s = r. We use

this graph representation and define a sequence of neighbors for each microcrack in the time

sequence T̂ as

et
sr =

(
vt

s, v
t
r, b

t
sr

)
{t ∈ T̂} ; {(s, r, bsr) ∈ E}. (3.2)

In equation (3.2), vt
s denotes the “sender” crack-tip for time t, vt

r defines the neighboring ‘or

‘receiver” crack-tip for time t, and bt
sr denotes the binary value defining if vt

s and vt
r belong to

the same neighborhood for time t.

3.2.3 Formulation of Nearest-neighbors

As shown in Figures 3.2c and 3.2d, we define the zone of influence using radius, rc = 750 mm,

and obtain all microcracks existing within the zone of influence (i.e., shown as white-dashed

lines). We note that if a “receiver” crack-tip exists within the zone of influence of a “sender”

crack-tip (i.e., esr = (vs, vr, bsr = 1)), the remaining crack-tip of the “receiver” node is auto-

matically included as a neighboring node of the “sender” crack tip (i.e., esr = (vs, vr, bsr = 1)).
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We show this special scenario using red-dashed lines in Figures 3.2c and 3.2dd. Similarly, for

crack-tips which have coalesced we share their neighbors with the connecting crack-tips.

3.2.4 Spatial Message-Passing

A key component of GNN models is the introduction of message-passing graph convolutions

[167]. Spatial message-passing networks help the GNN model to learn the nodes, edges,

and node-edge interactions in the latent space by transferring information between the edges

within the local neighborhoods [168]. We implemented three message-passing processes in the

Microcrack-GNN framework in order to learn the nodes, edges, and node-edge interactions

dynamically.

For the first message-passing process, we update the node interactions defined in equation

(3.1) using an MLP encoder. We denote the node MLP encoder as “v-MLP” in Figure 3.3, and

µv in equation (3.3a). The output from equation (3.3a) denotes the encoded node embedding in

the latent space, {v′
s}T̂ . Next, the second message-passing process aims at learning the edge

interactions through a second MLP encoder defined as ‘e-MLP” in Figure 3.3 and µe in equation

(3.3b). The output from equation (3.3b) denotes the encoded edge embedding in the latent space,

{e′
sr}T̂ .

{v′

s}T̂ ←− µv

(
P̂s, N̂s, Ôs

)
{s ∈ V}

{e′

sr}T̂ ←− µe

(
{vs}T̂ , {vr}T̂ , {bsr}T̂

)
{(s, r) ∈ E} (3.3)

Lastly, the third message passing process aims to learn the node-edge-node interactions

using the generated latent space embeddings of the nodes and edges. The third message passing

process is denoted by “G-MLP” in Figure 3.3 and µG in equation (3.4). The inputs to “G-MLP”

are defined by concatenating the latent space node embeddings and edge embeddings from

equations (3.3a) and (3.3b), respectively. The one-hot encoded feature vector describing the
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Figure 3.3: Spatial Message-Passing Process: The graph network representation is established
and leveraged with two initial encoder MLPs, namely ”v-MLP” and ”e-MLP”, to produce
embeddings for the vertices and edges in the latent space. During the message-passing phase, the
latent space embeddings of vertices and edges are combined and fed into the message-passing
MLP network ”G-MLP” to propagate interactions between nodes and edges through a series
of update steps, denoted by M. The resulting output is a one-hot encoded feature vector that
describes the interaction of the node-edge-node system in the latent space.

resulting latent space node-edge-node interactions, {ps}T̂ , is obtained as

{ps}T̂ ←− µG

{v′

s}T̂ ,
∑
r∈Es

{e′

rs}T̂

 {s ∈ E}. (3.4)

Where µG defines the third message-passing MLP, E defines the nearest-neighbors of all microc-

racks in the system, and Es defines the nearest-neighbors of microcrack vs (i.e., at bsr = 1). We

note that a number of message-passing steps, M , are then implemented in order to transfer infor-

mation across the graph’s nodes and edges. The number of message-passing steps required for

each problem varies depending its complexity, and the depth and size of its local neighborhoods.

We follow the same definition from [169, 170, 171] and use M = 4 for the initial development

of Microcrack-GNN. However, we optimize the model using cross validation in Section 3.5 and

obtain the optimal number of message-passing steps as M = 6.
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3.3 Configuration and set-up of simulations

3.3.1 Training, validation, and testing datasets

We made use of the high-fidelity XFEM mode described in Section 3.2.1 to gather the training,

validation, and testing datasets. Following a similar approach as in [88], we defined the domain

using 2000 mm by 3000 mm dimension and considered simulations involving up to 19 initial

microcracks The material was perfectly brittle, homogeneous and isotropic with E = 22.6 GPa

for the Young’s Modulus, ν = 0.242 for the Poisson’s ratio, and Kcrt = 1.08 MPa ·
√
m

for the material toughness. We restrict the problem to quasi-static loading in order to avoid

simultaneous propagation of multiple crack-tips as well as crack-tip bifurcation.

The boundary conditions include (i) a fixed amplitude tensile load of 0.01 m (i.e., positive

y-direction) at the top edge of the domain, and (ii) fixed bottom edge. We then used the XFEM-

based model and developed a function, GenCrack Rand, for generating unique microcrack

configurations involving (i) varying number of microcracks (i.e., defined by the user as 5 ≤ C ≤

19), (ii) randomly generated initial positions, and (iii) randomly generated orientations of 0o, 60o,

and 120o without overlapping microcracks. Using the function, GenCrack Rand, we generate

a total of 64 unique configurations for each number of cracks considered, C : 5 ≤ C ≤ 19, and

simulate their fracture. The final generated datasets involved a total of Nsim = 64× 15 = 960

unique microcrack simulations. Each simulation included a total of up to Nsteps = 46 time-steps

until failure. From [172, 170, 173, 174], we obtained the sequence of previous time-steps as

Nseq = 4 (i.e., T̂ := {T − 3, T − 2, T − 1, T})

The purpose of this approach, was to ensure that the framework used the previous four

configurations to predict the future time-step. For instance, a single training iteration involved

Nseq + 1 time-steps randomly chosen across each all simulations. The input for each training

iteration involved 1, . . . , Nseq time-steps, in order to predict the future time-step atNseq +1. This

approach ensures that the GNN operates on a random time sequence from a random simulation

during each training simulation. Thus, learning to predict future time-step configurations given

any instance in time for any simulation. However, we did not use random time sequences for
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testing the framework. The testing procedure used the initial Nseq from the XFEM simulations

and then predicted the future time-steps.

Next, we separated the training and validation datasets using 90%, and 10% of the total

generated dataset involving Nsim = 960 simulations, respectively. In essence, the training

dataset involved 864 simulations, and the validation dataset involved 96 simulations. Taking

into account that each simulation included Nsteps = 46 time-steps, the total number of inputs

were calculated using Ninput = Nsim × (Nsteps −Nseq). This resulted in a training dataset of

36, 288 input sequences, and validation dataset of 4032 sequences. We used batch size of 32 for

training, and 1 for validation

To generate a testing dataset, we followed the same approach described here and generated

15 simulations for each number of microcracks (i.e., 5 ≤ C ≤ 19). Therefore, the testing dataset

was comprised of 225 simulations with 50-100 number of time-steps to failure, resulting in up

to 22,500 input sequences.

3.3.2 Varying the number of initial microcracks

We emphasize a key feature of the developed framework to simulate microcrack propagation in

systems with varying number of microcracks (i.e., 5 ≤ C ≤ 19). To design the GNNs capable

of predicting varying input-to-output size, we restricted the prediction output to the maximum

number of allowed cracks, Cmax = 19, for all cases. This approach involved an extra function

which first counted the number of microcracks from the given initial input, and then set the

remaining inputs to zero values for cases where C < Cmax (i.e., padding the output arrays). We

emphasize that the GNNs can be easily trained for lower or higher number of initial microcracks

in future work.

3.4 Framework architecture

The architecture of the Microcrack-GNN framework involved three initial GNNs: (i)KI-GNN to

predict the Mode-I stress intensity factors, (ii) KII-GNN to predict the Mode-II stress intensity

factors, and (iii) Class-GNN to predict the propagating and non-propagating crack-tips. The

framework then uses the predictions from the initial GNNs in order to predict the future crack-tip
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positions (i.e. predict crack propagation) using the final GNN, CProp-GNN. We show the

architecture of the Microcrack-GNN framework in Figure 3.1 and describe each GNN model in

the following sections.

3.4.1 KI - GNN

The KI-GNN model was used predict the Mode-I stress intensity factors for each crack-tip in

the domain at the future time-step. As shown in Figure 3.1, the first step of the framework was

to generate the graph representation input defined in Sections 3.2.2, 3.2.3, and the resulting

one-hot encoded feature embedding for the node-edge-node interactions defined in Section 3.2.4.

The one-hot encoded feature vector was then input to the KI-GNN model. This operation for

KI-GNN model is defined as

(K̂I)T +1 ←− ψKI
(P̂ , N̂ , Ô, K̂I),

(K̂I)T +1
s ←− ψKI

[
{ps}T

t=T −3|N̂s, Ôs, {(K̂I)s}T
t=T −4

]
{s ∈ V}. (3.5)

The first input sets for KI-GNN denote the one-hot encoded node-edge-node feature embedding

defined in equation (3.4) and its nearest-neighbors in the time sequence T̂. KI-GNN also

includes the initial orientations of the microcracks, Ô, as well as the Mode-I stress intensity

factors of the crack-tips, K̂I , for the four previous time-steps (i.e., for time sequence T̂). ψKI

defines the MLP network used for training KI-GNN. The trained KI-GNN model then predicted

the Mode-I stress intensity factors for each crack-tip at future time-steps (i.e., (K̂I)T +1
s ).

We note that the predicted stress intensity factors, K̂I)T +1
s , were used to generate the stress

distribution in the system from Linear Elastic Fracture Mechanics (LEFM) [175]. To compute

the stresses, we developed a mesh of 201x201 points throughout the domain and used the

principle of superposition from LEFM to obtain the von Mises stress with the predicted Mode-I

stress intensity factors. We compare the von Mises stress from the XFEM model versus the von

Mises stress from the KI-GNN model for a simulation from the test dataset in Figure 3.4a.
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(a) Predictions of σV M from KI -GNN (b) Predictions of σV M from KII -GNN

Figure 3.4: von Mises stress distributions comparing a) Predicted Mode-I stress intensity factors
from the KI-GNN model and b) Predicted Mode-II stress intensity factors from the KII-GNN
model.

3.4.2 KII - GNN

Following a similar approach as KI-GNN, we define the KII-GNN mode as

(K̂II)T +1 ←− ψKII
(P̂ , N̂ , Ô, K̂II)

(K̂II)T +1
s ←− ψKII

[
{ps}T

t=T −3|N̂s, Ôs, {(K̂II)s}T
t=T −4

]
{s ∈ V} (3.6)

Here, ψKII
denotes the MLP network for training the framework on Mode-II stress intensity

factors (i.e., (K̂II)T +1
s ). In Figure 3.4b, we show the resulting von Mises stress comparison for

the predicted Mode-II stress intensity factors versus the XFEM model.

3.4.3 Classifier - GNN

We note an important assumption of the XFEM model where a single crack-tip is allowed to

propagate at each time-step. Therefore, the next GNN model integrated in the framework was

Class-GNN for predicting a binary array, Q̂ ∈ {0, 1}, classifying the propagating crack-tips

as Q̂s = 1, and non-propagating crack-tips as Q̂s = 0. By predicting propagating and non-

propagating crack-tips the Microcrack-GNN framework aims to capture the quasi-static nature

of this problem. Additionally, Class-GNN further simplifies the future time-step predictions

for crack propagation by restricting the predictions to a single crack-tip during each time-step.
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The first inputs to the Class-GNN model consisted of the binary array of non-propagating and

propagating crack-tips during the previous time-steps (Q̂)T . Additionally, another key feature

of Class-GNN, was that the predicted Mode-I and Mode-II stress intensity factors ((K̂I)T +1
s

and (K̂II)T +1
s ) were used as part of its inputs. In essence, the predicted stress intensity factors

allow the model to predict the non-propagating and propagating crack-tips by introducing future

information of the stress evolution in the material such as the energy release rate. We define the

Class-GNN model as

(Q̂)T +1 ←− ψCLASS

[
(P̂ , N̂ , Ô), Q̂T , (K̂I , K̂II)T +1

]
,

(Q̂)T +1
s ←− ψCLASS

[
{ps}T

t=T −3|N̂s, Ôs, {Q̂s}T , {(K̂I)s, (K̂II)s}T +1
]

{s ∈ V}. (3.7)

Where ψCLASS denotes the MLP network used for training the Class-GNN. We note that Class-

GNN was integrated in this framework due its quasi-static assumption of the XFEM model.

Recently, other works have also developed GNNs to predict of dynamic simulations where

all the nodes in the system are allowed to move (i.e., change their position) at each time-step

[172, 169, 176, 171][172, 169, 176, 171]. However, this is not the case for quasi-static problems.

We emphasize that the Class-GNN model may not be used for cases where multiple crack-tips

are allowed to propagate simultaneously at a given time-step. The Class-GNN model may also

be extended towards multi-class or multi-label classification [177] for these cases to predict

more than one propagating crack-tip

3.4.4 Propagator - GNN

Lastly, the Microcrack-GNN frameworks includes an additional model, CProp-GNN, for pre-

dicting the future crack-tip positions. CProp-GNN uses the predicted Mode-I and Mode-II stress

intensity factors, and the non-propagating and propagating crack-tips from the previous models

as part of its input as shown in equation (3.8).

(P̂ )T +1 ←− ψCP rop

[
(P̂ , N̂ , Ô), (K̂I , K̂II , Q̂)T +1

]
(P̂ )T +1

s ←− ψCP rop

[
{ps}T

t=T −3|N̂s, Ôs, {(K̂I)s, (K̂II)s, Q̂s, }T +1
]

{s ∈ V} (3.8)
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(a) Learning rates (b) Message-passing steps (c) Zone of influence radii

Figure 3.5: Cross-validation results for: a) Learning rates 5× 10−5, 1× 10−4, 5× 10−4, and
5 × 10−3 are shown in gray, with our model’s learning rate 1 × 10−3 highlighted in red. b)
Message-passing steps of 4, 5, 7, 8, 9, and 10 are shown in gray, with our model’s message-
passing steps of 6 highlighted in red. c) Zone of influence radii 500mm, 1000mm, and 1500mm
are shown in gray, with our model’s zone of influence radius of 750mm highlighted in red.

3.5 Cross-Validation of Microcrack-GNN

We implemented cross-validation [178] to the Microcrack-GNN framework for additional

tuning. We tuned the framework in terms of the learning rate, message-passing steps, and

zone of influence size. Following the k-fold cross-validation methodology, for each training

parameter, we trained the framework for 5 epochs. We randomly selected 12 cases from the

validation dataset for each training sequence (i.e., every 5 epochs). After training was completed,

we computed the average of the maximum percent errors for the predicted length of the cracks.

Figure 3.5 shows the obtained errors for the learning rates, message-passing steps, and zones of

influence.

For the learning rates, as shown in Figure 3.5a we evaluated values of 5× 10−5, 1× 10−4,

5× 10−4, 1× 10−3, and 5× 10−3. While the smallest learning rate of 1× 10−4 resulted in error

of 3.50 ± 0.85%, the lowest error was obtained for 1 × 10−3 (shown in red) of 3.09 ± 0.72%

Therefore, for further training of the Microcrack-GNN framework we used 1 × 10−3 for the

learning rate.

The errors for the message-passing steps are shown in Figure 3.5b. We evaluated message-

passing values of 4-10. We recall from Section 3.2.4 that for initial training of the Microcrack-

GNN framework a value of M = 4 was used. However, Figure 3.5b shows that the lowest error

was obtained for M = 6 (shown in red) of 2.31± 0.55% compared to M = 4 of 2.76± 0.66%.

Therefore, we used M = 6 for further training of the Microcrack-GNN framework. We note
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from [174, 179] that higher number of message-passing steps increases training time, simulation

time, and GPU requirements. We also note that the difference in errors for M = 4 and M = 6

was not significant.

Lastly, as shown in Figure 3.5c we evaluated the zone of influence radii of 500mm, 1000mm,

750mm, and 1500mm. While one may think that increasing the size of local neighborhoods

provides additional information for the node and edge interactions to increase its accuracy, this

is not the case for this problem. For instance, the highest error in the zones of influence was

obtained for radius of 1500mm at 4.57± 1.16%. Here, larger connectivity radii may result in

unnecessary connections (i.e., long edges) between crack-tips which far-away from each other.

These interactions between far-away crack-tips may cause oversampling in high-resolution

regions of the domain, where the nearest neighbors have higher influence in propagating

microcracks compared to far-away neighbors [180]. From Figure 3.5c, the optimal zone of

influence was obtained for radius of 750mm at 1.91± 0.46% compared to the smallest zone of

influence of 500mm with 2.17± 0.51% error. Therefore, we chose 750mm to further optmize

training of the framework.

3.6 Results

The testing dataset for Microcrack-GNN (described in Section 3.3.1) involved 225 simulations

consisting of 15 simulations for each number of varying initial microcracks. We use the

test dataset to evaluate the prediction accuracy of Microcrack-GNN to simulate microcrack

propagation and coalescence. For each testing simulation, we then compute the errors for (i)

the predicted microcracks length as a function of time, (ii) the final predicted cracks path, (iii)

the resulting effective stress intensity factors, Keff , and (iv) the generated von Mises stresses.

We then compare the performance of Microcrack-GNN against two additional baseline models.

Lastly, we compare the computational costs of Microcrack-GNN versus XFEM using their

required simulation time.
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Figure 3.6: XFEM simulations compared to GNN predictions of crack propagation and coales-
cence for cases involving: a) 5 b) 8 c) 10 d) 12 e) 15, and (f) 19 microcracks. The crack paths
are colored based on t/tf , where tf represents the final simulation time for a given case.

3.6.1 Prediction of microcracks propagation and coalescence

For this analysis, we randomly selected 6 cases from the test dataset for varying number of initial

microcracks of C = 5, 8, 10, 12, 15, and 19. We then generated the crack evolution for each case

using Microcrack-GNN and compare the predicted microcracks paths versus the XFEM model

as shown in Figure 3.6. From Figure 3.6a, (C = 5) it can be seen that the predicted fracture

path of a single microcrack was nearly indistinguishable from the XFEM model. Figure 3.6d

and Figure 3.6e depict the resulting microcracks paths for C = 12 and C = 15, respectively.

For both cases, two microcracks can be seen to propagate and coalesce around 60% of final

material failure. Similar to 3.6a, for C = 12 and C = 15 the predicted microcracks paths are

nearly identical to the XFEM predictions. These cases show that framework was able to predict

crack propagation for higher-complexity cases involving 12-15 microcracks with good accuracy.

Two marginally more complex crack paths were obtained for C = 8 and C = 10 shown in

Figures 3.6b and 3.6c, respectively. For both cases, three microcracks propagated and coalesced

in order to reach complete material failure. The case involving C = 8 showed high prediction

accuracy (i.e., qualitatively) for the crack paths compared to XFEM. However, forC = 10 shown

in Figure 3.6c we can see some prediction error for the microcracks paths. Here, two cracks
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Figure 3.7: a) Evolution of crack length versus time for high-fidelity simulations and Microcrack-
GNN for cracks A,B, . . . , F labeled in Figure 3.6. b) Crack lengths relative error between
Microcrack-GNN and XFEM.

(i.e., left-most microcrack and middle microcrack) connected close to 40% of total material

failure. At this time-step (i.e., t = 0.4tf ), a switch in the propagating crack-tip can be observed.

This switch of propagating crack-tips caused the new propagating crack-tip to move towards the

opposite direction from the actual path, thus, resulting in an overlapping microcrack.

Additionally, Figure 3.6f presents a more interesting fracture scenario for C = 19 Here,

four microcracks propagated in the material to reach complete fracture. We denote the right-most

microcrack (i.e., first microcrack to propagate) as “F” in Figure 3.6f. The simulation then follows

a sequential propagation from microcrack “F” in the left direction. Although this case involves

the highest amount of initial microcracks (i.e., higher complexity), the predicted fracture paths

are relatively close to the XFEM simulation with few small deviations. For instance, a slight kink

in the predicted path can be seen when the microcrack “F” connects with the second propagating

crack (around t = 0.4tf ). A similar kink is also observed for the second microcrack during

coalescence with the third propagating microcrack (around 0.9tf ). While these kinks caused

roughness in fracture path at these time-steps, the final predicted path of the Microcrack-GNN

framework is virtually indistinguishable to the XFEM simulation. Considering these small

errors, the framework was capable of simulating microcrack propagation and coalescence with

good prediction accuracy for cases involving varying number of initial microcracks.
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3.6.2 Microcrack length growth

Subsequently, we analyze the evolution of crack lengths over time to further validate the

Microcrack-GNN’s capability to accurately predict microcrack propagation and coalescence.

The analysis involves calculating the growth of microcrack lengths with respect to time, as

illustrated in Figure 3.7. In each simulation scenario, we utilize a propagating microcrack to

monitor length variations, as indicated in Figure 3.6 by labels A, B, C, D, E, and F. For instance,

microcrack A exhibits a linear increase in length, starting at the initial length of 300mm and

extending to approximately 1900mm. Comparing the predicted microcracks paths and lengths

obtained from XFEM and Microcrack-GNN (as depicted in Figures 3.6 and 3.7), we observe

close alignment with the ground truth. Moreover, in cases involving C = 8 and C = 10

with three microcracks coalescing, the length prediction maintains high accuracy with slight

intermediate errors during the coalescence events. Figure 3.7 further illustrates the predicted

lengths of microcracks B and C to overlap for both XFEM and Microcrack-GNN, throughout

the entire simulation duration.

For the case of C = 12 involving crack D, the crack length remains fixed at the initial

measurement of 300 mm for the majority of the simulation, until around time-step 43. As

crack D intersects with the already propagating right-most microcrack during this time-step,

we observe a linear increase in length over time, coupled with a sudden spike of around 1.5%

in relative error. To analyze the origin of this relative error spike, we provide a close-up

view of the time frame when Crack D (shown in Figure 3.7b) converges with the pre-existing

propagating microcrack for both the XFEM and GNN models. Although the XFEM model

smoothly connects both cracks, the GNN model shows a downward jump upon coalescence,

resulting in an additional spike in error for crack D. Comparing the predicted crack length by

Microcrack-GNN to XFEM, we observe that Microcrack-GNN predicts a slightly longer final

crack length than XFEM. The relative error for the predicted crack length is approximately

0.55% at t = tf ). Similarly, for the C = 15 case of crack E, the length increases linearly

until reaching approximately 1200 mm by time-step 38. Like crack D, the Microcrack-GNN’s

predicted a slightly longer final length for crack E compared to XFEM (showing relative error
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of 0.9% at t = tf ). These findings obtained for cases of C = 12 and C = 15 suggest that

Microcrack-GNN may predict slightly faster crack growth, i.e., faster simulation, compared to

XFEM.

Next, analyzing the more intricate scenario of C = 19 in in Figure 3.7, the right-most crack

(F) is seen to propagate first. Figure 3.7 demonstrates a linear progression in crack length for

crack F. Throughout this phase, the Microcrack-GNN’s crack length closely mirrors XFEM,

maintaining near-identical values until approximately time-step 13. During this time-step, a

slight deviation is observed between the predicted crack length and the XFEM crack length. As

previously noted, upon comparing the length increase of crack F with the crack paths depicted

in Figure 3.6f, it becomes evident that the minor variance in predicted length is associated with

deviations in crack paths at the junctures of crack coalescence. These results imply that the

framework’s accuracy for predicting crack paths and lengths may not be contingent upon the

initial quantity of microcracks within the system. Consequently, suggesting that discrepancies

in the predictions and the resulting small errors could be influenced by the initial configuration

of the system instead (e.g., the initial positions and orientations of the cracks).

3.6.3 Errors in final crack path

We recall from Section 3.6.2 the time deviance error analysis performed for the predicted crack

lengths. From this analysis shown in Figure 3.6, although the Microcrack-GNN framework may

predict either faster or slower crack propagation in certain instances, the final cracks path were

almost identical to XFEM. Nonetheless, . Within this section, we additionally conduct a spatial

deviation analysis to characterize the errors in the final predicted crack paths. For this analysis,

the maximum percent error in distance between the XFEM and Microcrack-GNN crack paths

was computed.

In this section, to evaluate the errors in the final predicted crack paths, we conduct a spatial

deviation analysis. For this purpose, we calculate the maximum percent error in distance between

the crack paths from the Microcrack-GNN and XFEM models. In Figure 3.8, we illustrate the

computed errors for crack path from the entire test dataset consisting of 225 cases. It is worth

noting that in comparison to the time-wise errors of crack length errors (shown in Figure 3.9),
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Figure 3.8: The maximum percentage errors for crack path predictions across all test cases (225
test cases).

the errors for the final predicted fracture paths are notably lower. The maximum error of 2.53%

was observed for 12 microcracks, whereas the minimum error of 0.004% was obtained for 19

microcracks. Consequently, although the time deviation errors for the predicted crack lengths

exhibited higher errors, Figure 3.8 demonstrates that the framework was capable of predicting

crack paths with accuracies lower than 2.53%.

3.6.4 Crack length errors of entire test dataset

For every test simulation, across each C value, and at every time-step, we determined the

maximum percent error of the predicted crack lengths. Subsequently, we calculated the average

error across time for each test simulation to gather 15 error points pertaining to each C value

The resulting average errors are shown in Figure 3.9. Notably, we observe the highest error in

predicted length registering at approximately 5.85% for test case 11 involving 8 microcracks.

We examine Figures 3.10 and 3.11 in order to investigate the root cause of this error. In

Figure 3.10 we provide a qualitative comparison for the predicted propagation of cracks A and B

during time-steps 1 and 22. Additionally, we show the XFEM and Microcrack-GNN generated
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Figure 3.9: The averaged maximum percentage errors of crack length predictions across all test
cases (225 test cases).

(a) Time-step 1 of 8 cracks (b) Time-step 22 of 8 cracks

Figure 3.10: Crack propagation for test case 11 involving 8 microcracks, during a) Time-step =
1, and b) Time-step = 22
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(a) Microcrack Length growth (b) Microcrack Length Error

Figure 3.11: a) Evolution of crack length versus time for the high-fidelity XFEM model and
Microcrack-GNN, for test case 11 involving 8 microcracks. b) Crack lengths relative error
between the high-fidelity XFEM model and Microcrack-GNN, for test case 11 involving 8
microcracks

crack lengths for cracks A and B as a function of time, along with their errors in Figures 3.11a

and 3.11b. Upon inspection of 3.11a, we observe an initial error spike of approximately 2.1% at

time-step 1. From Figure 3.10a, this substantial error surge stems from the slightly divergent

propagation direction of predicted crack A towards the negative y-direction, situated to the right

of the domain. However, the propagation of crack A for the XFEM model is directed to the

right following a straight path. Consequently, as also illustrated in Figure 3.11a, this results in a

slightly larger predicted crack length than the XFEM crack length.

Furthermore, as illustrated in Figures 3.11a and 3.10, crack B shows the most significant

error spike of approximately 10.8% during time-step 22. Examining Figures 3.10b and 3.11a,

it is apparent that by time-step 22, crack A has already undergone propagation in previous

time-steps. During this time frame, the right tip of crack B propagates in the right direction,

eventually reaching the material’s right. Observing Figure 3.10b, it’s evident that at time-step

22, Microcrack-GNN predicts crack propagation in the negative x-direction (left) while the

XFEM crack propagation direction aligns towards the positive x-direction (right) This erroneous

predicted crack path leads to the highest percent error of 5.85% observed in the test dataset due

to a larger predicted crack size in the subsequent time-steps.
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Figure 3.12: Averaged maximum percentage errors for the effective stress intensity factors for
cases involving 5, 8, 10, 12, 15, and 19 microcracks over time.

3.6.5 Effective stress intensity factor errors

We examine six cases with varying numbers of initial microcracks (i.e., C = 5, 8, 10, 12, and

19), in order to quantify the predicted stress intensity factors errors. The first step was to use the

XFEM and Microcrack-GNN generated Mode-I and Mode-II stress intensity factors to compute

the effective stress intensity factors as

Keff =
√

(KI)2 + (KII)2. (3.9)

To compute the errors, we focus on crack tips whereKeff ≥ Kcrt, as this criteria determines

the cracks which are most likely to propagate for any given time-step. For each time-step of

each simulation in the test dataset, we then compute the effective stress intensity factors error as

Keff %error = max
s∈Nt

crt


∣∣∣Keff

t
P red −Keff

t
T rue

∣∣∣
Keff

t
T rue


s

× 100 {t = 1, 2, . . . , Tf}, (3.10)
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Here,N t
crt denotes the number of cracks-tips whereKeff ≥ Kcrt,Keff

t
P red denotes the predicted

Keff at time t using Microcrack-GNN, and Keff
t
T rue denotes the true Keff at time t generated

by XFEM.

We show the resulting average of Keff %error with respect to time for cases with C =

5, 8, 10, 12, 15, and 19 in Figure 3.12. From this figure, it is evident that the highest errors across

all cases considered were observed for 15 microcracks. For the case involving 15 microcracks,

we see the maximum percent error peaking at approximately 4.80%. In contrast, we observe

the lowest error of approximately 0.20% for the case with 19 microcracks. Interestingly, the

resulting errors did not show an increasing trend with the number of initial microcracks. For

example, in configurations with 5, 8, 10, 12, and 15 initial microcracks, the percent errors were

higher than the errors obtained for the 19 microcracks case. These outcomes imply that the

initial positions and orientations of the neighboring microcracks in the system have a higher

influence on the resulting errors compared to the number of initial microcracks.

3.6.6 Errors of effective stress intensity factor for entire test dataset

Continuing with the methodology outlined in Section 3.6.5, we calculated the average of the

maximum percent errors on effective stress intensity factors across time, for each simulation in

the test dataset. In Figure 3.13, we show the resulting average errors for each simulation (i.e.,

10 error points for each C value) As shown in this figure, the highest error in effective stress

intensity factors across all simulations of approximately 3.48% was obtained for the scenario

involving 6 microcracks.

We examine Figures 3.14 and 3.15 in order to identify the source the error in stress intensity

factor in the configuration involving of 6 microcracks. First, in Figure 3.14 we depict the

evolution of the stress intensity factor error for Case No.1 in the dataset of 6 microcracks.

Initially, the errors remain under 2% during the initial time-steps in the simulation. However, we

see an increasing trend in error around time-step 15, peaking at approximately 6.75% at t = 26.

In order to further understand this error increase we generate the von Mises stress distributions

from the XFEM model and Microcrack-GNN framework for t = 26 of this simulation. The

resulting XFEM versus Microcrack-GNN von Mises stresses are shown in Figure 3.15. We
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Figure 3.13: Averaged maximum percentage errors of effective stress intensity factors across all
test cases (225 in total).

Figure 3.14: Maximum percentage error in effective stress intensity factor plotted against time
for test case 1 involving 6 microcracks.
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Figure 3.15: Comparison of von Mises stress distribution between XFEM (left) and Microcrack-
GNN (right) for test case 1 involving 6 microcracks at time-step 26.

emphasize that although the maximum stress intensity factor error of 6.75% is seen at this time

frame, the Microcrack-GNN displays a stress distribution highly resembling that of the XFEM

model.

3.6.7 von Mises Stress distribution error

A key feature of Microcrack-GNN is its capability to simulate the stress evolution over time. The

predicted Mode-I and Mode-II from KI-GNN and KII-GNN can be directly used to to compute

the stress distribution within the domain. We employed the following approach to illustrate the

resulting errors in the von Mises stress prediction for the test dataset. Firstly, we obtained the

absolute errors (in MPa) at every point in the domain for each time-step as |σV MP red
− σV MT rue

|.

Subsequently, as depicted in equation (3.11), we utilized the maximum von Mises stress as a

reference value for error percentage (i.e., σV MMax
).

σV M %error = max
(i,j)∈R2

(
|σV M P red − σV M T rue|

σV M Max

)
× 100 (3.11)
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Figure 3.16: Maximum percentage errors of von Mises stresses for all 225 test cases.

We employ this method and derive the maximum von Mises stress error at every time-step

of each simulation within the test dataset. For each test simulation, we extract the resulting

maximum error across time as shown in Figure 3.16.

Figure 3.16 indicates that in cases involving 10, 12, 14, 15, 16, and 17 initial microcracks,

the framework yielded errors exceeding 8%. It can be seen that Case No. 6 exhibited the highest

percent error for von Mises stress (10.29%) across the entire dataset. In Figure 3.17, we examine

showcase the maximum von Mises stress percentage error as a function of time for Case No. 6

of 16 microcracks, in order to understand the root causes of these high errors.

Initially, it is evident that the error remained below 3% throughout the simulation. However,

the error sharply escalated around time-step 47, peaking at 10.29% during time-step 49. At

this time-step, we compare the XFEM and Microcrack-GNN von Mises stress distribution in

Figure 3.18, and present the resulting absolute error between the two. The origin of error can

be attributed to the stress intensity factors of the coalescing cracks. Consequently, a limitation

of Microcrack-GNN framework is the high error observed when multiple cracks coalesce. As

the von Mises stresses are calculated based on the superimposition of the Mode-I and Mode-II

stress intensity factors predictions, the error accumulates. A possible avenue for future work to

mitigate this challenge is to directly predict the von Mises stress throughout the mesh.
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Figure 3.17: Maximum percentage error of von Mises stress versus time for test case 6 involving
16 microcracks.

Figure 3.18: Comparison of von Mises stress distributions for test case 6 involving 16 micro-
cracks: XFEM prediction (left), Microcrack-GNN prediction (center), and resulting absolute
error (MPa) (right).
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3.6.8 Additional Baselines

In this section, we devised two additional ML models in order to compare their performance

against the developed Microcrack-GNN framework The training process involved 5 epochs. We

utilized two distinct loss functions: Mean Squared Error (MSE) and Mean Absolute Error (L1

loss).

1. RCNN: The initial baseline model entailed a Recurrent Convolutional Neural Network

(RCNN) comprising two identity convolution layers, two batch normalization layers,

followed by the ReLU activation function, and output of Linear layer. The input used

for RCNN involved a (4 × 38 × 6) matrix, where (i) 4 denotes the number channels

representing the time sequence T̂, (ii) 38 represents the number of nodes (i.e., crack-tips),

and (iii) 6 signifies the number of features, including crack orientation, x and y positions,

propagating vs non-propagating crack-tips, and KI and KII stress intensity factors, for

the time sequence T̂.

2. REDNN: The second ML was a Recurrent Encoder-Decoder Neural Network (REDNN)

featuring four convolution layers, one feed-forward layer, and four transpose convolutions,

with the ReLU activation function applied to each layer. The input format for the REDNN

remained consistent with that of the RCNN, utilizing a (4× 38× 6) matrix.

We then evaluated the performance of each baseline model against the Microcrack-GNN.

As illustrated in Figure 3.7, we computed the error in the predicted effective stress intensity

factor, Keff , and the predicted crack length for the scenario involving 12 microcracks. Table 1

shows the resulting errors. It is evident that the RCNN model surpassed the REDNN model in

predicting Mode-I and Mode-II stress intensity factors. Notably, the RCNN with the L1 loss

function yielded a lower error of 12.71% compared the RCNN with the MSE loss function,

which reached error of 13.71%. Conversely, the REDNN models exhibited superior performance

over the RCNN models in predicting crack length. The REDNN model with the MSE loss

function achieved the lowest error of 16.03%, compared to 17.09% for the REDNN model with

the L1 loss function. However, Microcrack-GNN significantly outperformed both RCNN and
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REDNN across both prediction cases (i.e., Keff and crack length), with the lowest percent errors

of 1.85% and 0.32%, respectively. These findings highlight the efficacy of the developed GNN

compared to other prevalent ML baselines.

Table 1: Performance comparison of baseline models versus Microcrack-GNN

Models Keff%Error Length % Error

RCNN (L1) 12.71% 62.47%

RCNN (MSE) 13.71% 41.74%

REDNN (L1) 39.66% 17.09%

REDNN (MSE) 35.94% 16.03%

Microcrack-GNN 1.85 % 0.32 %

3.6.9 Simulation time versus number of initial microcracks

In the subsequent analysis, we evaluate the simulation time of the Microcrack-GNN framework

in comparison to XFEM for varying numbers of initial microcracks. As shown in Figure

3.19a, we assess the average CPU time per time-step across different values of C, to gauge

the framework’s potential for accelerating simulation time against XFEM. We used an Intel(R)

Core(TM) i3-10100 CPU @ 3.60GHz with 16GB RAM. For each varying number of microcracks

from the test-set, a total of 10 simulations were performed. Upon examining Figure 3.19a, it

becomes evident that the high-fidelity XFEM model demanded considerably longer simulation

times than Microcrack-GNN. Specifically, the development of the GNN framework resulted in a

speed-up ranging from 6x to 25x compared to XFEM.

Additionally, the simulation time of both XFEM and Microcrack-GNN increases for higher

number of initial microcracks. This increase in computational time for higher number of

microcracks may be due to the expanding size of the relation matrix. The relation matrix size,

also known as adjacency matrix, is a binary tensor defined by the number of edges in the graph.

Thus, for higher number of initial microcracks the number of edges increases, resulting in a

larger relation matrix. This relation is illustrated for Microcrack-GNN in Figure 3.19b, which

shows the required simulation time (in min:sec) versus size of the relation matrix.
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(a) Required CPU-time (b) Relation matrix size versus CPU-time

Figure 3.19: Average CPU time (min:sec) per simulation time frame compared across different
scenarios: a) Varying number of initial microcracks (5 to 19). b) Different sizes of the relation
matrix.

Lastly, Figure 3.19a highlights a significant simulation time improvement for the Microcrack-

GNN framework (i.e., up to 25x faster) to simulate higher-complexity fracture problems. As a

potential avenue for future work, the Microcrack-GNN framework could be extended to simulate

a broader range of initial microcracks while maintaining similar time performance to the cases

depicted in Figure 3.19a.

3.7 Conclusion

In conclusion, the integration of neural networks and graph theory for the development GNN

simulators presents a promising avenue for enhancing the computational efficiency of existing

high-fidelity fracture mechanics models. Specifically, the development of such models for

simulating the evolution of stresses and crack propagation in brittle materials involving varying

number of microcracks presents a novel contribution in the field. In this chapter, we devised four

GNNs (shown in Figure 3.1) tailored to model the underlying physics governing these complex

problems.

We established a dynamic framework capable of accurately predicting future crack-tip

positions and microcrack coalescence events, as well as stress intensity factors and stress distri-

butions in the domain as a function of time. The KI-GNN and KII-GNN models demonstrated

high accuracy in predicting Keff , with a maximum relative error of 4.80%. The framework
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also exhibited good accuracy in predicting crack lengths with maximum errors of 1.01% and

4.29%. Notably, the Microcrack-GNN framework offers the flexibility to simulate fracture for

varying numbers of microcracks ranging from 5 to 19 without additional modifications to the

GNN models.

While this versatility underscores the adaptability and robustness of the proposed approach

in addressing diverse fracture mechanics scenarios, it is important to acknowledge several

limitations in the Microcrack-GNN framework. One significant limitation is the computation of

von Mises stresses throughout the domain. The von Mises stresses are derived using the LEFM

superposition principle on the predicted Mode-I and Mode-II stress intensity factors. This ap-

proach can lead to high errors exceeding 8% in certain cases. Additionally, the framework is not

currently optimized, resulting in lengthy training times of approximately 5.18 hours using four

NVidia T4 GPUs. This extended training duration can hinder productivity and scalability. We

also implemented our own in-house GNN using PyTorch instead of leveraging existing libraries

such as [181, 182]. Optimization of the GNN back-end libraries could include enhancements

in performance through flexible GPU resource allocation, improved spatial message-passing

techniques, and more efficient parameterizations. Furthermore, there is potential for optimizing

the overall network architecture to reduce the required training time and preserve prediction

accuracy [2, 36, 183, 56]. These optimizations could significantly enhance the efficiency of the

framework. We also emphasize that the high-fidelity XFEM model utilized in this study was not

parallelized to work using multiple CPUs. Exploring parallel computing strategies for XFEM

could lead to performance improvements in future iterations. Addressing these limitations and

implementing optimizations are crucial aspects of future work to enhance the overall efficiency

and effectiveness of the Microcrack-GNN framework to become a fast and accurate simulator

capable of handling large numbers of cracks. Ultimately, by leveraging dynamic graphs in future

works there the framework’s applicability can be extended towards ductile materials to capture

crack nucleation phenomena, thereby enhancing its versatility and utility in various engineering

applications.
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Chapter 4

Transfer learning and graph neural networks towards generalized machine learning framework
to simulate brittle crack problems

4.1 Introduction and motivation

Although ML methods like Microcrack-GNN hold promise to simulate complex dynamic

problems, their accuracy may suffer when dealing with new problem-specific inputs (such

as domain size or loading type) which are unknown to the training dataset. This limitation

necessitates generating new, extensive training datasets and subsequent retraining for each new

problem-specific input, which results in a computationally expensive approach. A potential

solution to mitigate the challenges posed by large datasets is the implementation of Transfer

Learning (TL) methods [184]. TL methods enable the transfer of learned information about

the underlying physics and patterns of the problem across new problem-specific inputs. One

common approach to transfer the learned information involves leveraging pre-trained weights

from an initial ML model [185, 186]. TL has proven effective in various domains, with one

notable example being object detection/recognition tasks using Convolutional Neural Networks

(CNNs) [187, 188, 189, 190, 191, 192]. In such tasks, initial layers typically capture basic

shapes like round edges, and vertical and horizontal lines, while deeper layers capture more

problem-specific characteristics. For example, researchers have utilized TL strategies in the

past to object detection models for identifying defects in various materials such as CFRP [193],

composite structures [194], and graphene [195]. These approaches demonstrate the effectiveness

of transfer learning in leveraging previously learned knowledge to enhance model performance

in new problem domains.
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TL has also demonstrated favorable results for predicting material properties from molecu-

lar dynamic simulations [196], predicting structure-property relationships from reconstructed

microstructures [197], capturing hierarchical microstructure representations [198], and material

design [199]. Additionally, TL techniques have been used for GNNs. For GNNs, the embeddings

from the initial stages learn the global characteristics (or physics), while the embeddings in the

final stages capture more problem-specific characteristics [200, 201]. For instance, Lee et al.

[202] implemented TL using the pre-trained weights from the Crystal Graph Convolutional Neu-

ral Network (CGCNN) (ie., introduced in [203]) to predict properties in new crystal structures

with limited training datasets. A similar approach was also employed in [204] using TL of the

pre-trained CGCNN model to forecast methane adsorption in metal-organic frameworks.

In this study, we apply TL techniques to enhance the prediction capabilities of crack

propagation, coalescence, and stress evolution in brittle materials. In Chapter 3, we intro-

duced Microcrack-GNN, a framework capable of simulating these phenomena using GNNs

under tensile loading conditions. Although Microcrack-GNN demonstrated high accuracy and

significant speedup compared to an XFEM model, it also exhibited certain limitations [205].

Specifically, the framework was trained with 864 simulations tailored to cases involving only

tensile loads, neglecting shear-loading scenarios. Moreover, it considered fixed domain sizes

(2000mm× 3000mm), constant crack length (300mm), and three crack orientations (0o, 60o,

120o). The framework’s accuracy was not validated for shear loading or different domain sizes,

and the graph representation lacked information to accommodate varying loading types or

domain sizes.

By leveraging TL, we introduce a versatile GNN framework termed ACCelerated Universal

fRAcTure Emulator (ACCURATE), depicted in Figure 4.1. ACCURATE is designed to predict

crack propagation and stress evolution across a range of fracture mechanics scenarios. Our

approach involves a series of 5 TL update steps incorporating novel problem-specific inputs.

During each update step, weights from the preceding TL steps are loaded and retrained. This

iterative process aims to adapt the model to new problem parameters while retaining previously

learned features.
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Figure 4.1: Flowchart depicting the structure of the ACCURATE framework: a) The initial
setup of the problem involves formulating the nearest-neighbor approach and embedding the
resulting topological graph (TL graph). b) Architecture of the GNN models, including the K-
intensity-factor-GNN (K-GNN), Classifier-GNN (C-GNN), and Propagator-GNN (P-GNN). c)
Sequence of TL applications, including: (i) arbitrary crack length, (ii) arbitrary crack angle, (iii)
new domain dimensions (square and horizontal), and (iv) shear loading effects. d) Illustration of
the iterative rollout process for unseen problem configurations.

As shown in Figure 4.1c, the TL update steps incorporate new problem-specific inputs

including: (i) arbitrary crack length, (ii) arbitrary crack orientation, (iii) additional domain

effects (square and horizontal), and (iv) shear loading effects. We show the effectiveness of TL

methods of requiring significantly smaller training datasets to retain high prediction accuracy,

thereby reducing training time. The final trained ACCURATE framework is proficient in

predicting unseen cases with high accuracy involving new arbitrary crack angles, crack lengths,

and boundary dimensions under shear or tensile loads, avoiding the need for additional TL. The

new framework’s generalized graph representation offers a flexible approach that can be easily

adapted for addressing new problem-specific inputs in future endeavors. Lastly, ACCURATE

demonstrates significantly accelerated simulation times, providing a 200x speedup compared to

the high-fidelity XFEM surrogate model.
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4.2 Methods

4.2.1 XFEM-based surrogate model and TL simulation set-up

We utilize the XFEM model outlined in Section 3.2.1 to create new datasets for training,

validation, and testing, facilitating the incorporation of TL. This XFEM model adeptly simulates

the two-dimensional fracture of brittle materials with multiple microcracks defined by arbitrary

positions and orientations under tensile and shear loads. To explore the potential of TL, we craft

six fresh case studies and progressively apply TL update steps as follows.

• Case 1: Vertical domain (2000mm× 3000mm) with fixed crack lengths (300mm) and

crack orientations (0o, 60o, and 120o) in Mode-I loading.

• Case 2: Vertical domain (2000mm× 3000mm) with arbitrary crack lengths (from 50mm

to 500mm), and fixed crack orientations (0o, 60o, and 120o) in Mode-I loading.

• Case 3: Vertical domain (2000mm× 3000mm) with fixed crack lengths (300mm), and

arbitrary crack orientations (from −90o to +90o) in Mode-I loading.

• Case 4: Square domain of 2500mm× 2500mm with fixed crack lengths (300mm) and

crack orientations (0o, 60o, and 120o) in Mode-I loading.

• Case 5: Horizontal domain of 3000mm × 2000mm with fixed crack lengths (300mm)

and crack orientations (0o, 60o, and 120o) in Mode-I loading.

• Case 6: Shear loading case in a vertical domain (2000mm× 3000mm) with fixed crack

lengths (300mm) and crack orientations (0o, 60o, and 120o), with the fixed bottom edge

and constant displacement of 0.01 m at the top edge towards the positive x-direction

(shear load).

Using this methodology, we compiled a dataset consisting of 35 simulations, each ex-

tending up to 101 time-steps, for every case study from Case 1 to Case 6 above. We note

that some simulations terminated before reaching the maximum of 101 time-steps due to the

rapid propagation and coalescence of cracks within the domain. Despite this variability, we
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recall that the Microcrack-GNN exhibited good prediction accuracy in predicting fracture events

across different scenarios with varying numbers of cracks ranging from 5 to 19. However, it’s

important to acknowledge a noticeable trend: as the number of initial microcracks increased, so

did the computational demands on the model, resulting in longer simulation times. To ensure a

comprehensive coverage, we generated our training, validation, and test datasets for the most

computationally intensive scenarios involving 19 microcracks. For each case study (i.e., Case

1 to Case 6), we allocated 20 simulations for training, 5 simulations for validation, and 10

simulations for testing purposes.

In line with the approach adopted for Microcrack-GNN, each training data point in our

TL framework comprises a sequence spanning Nseq + 1 time-steps, selected randomly from all

training simulations. Here, the first 1, . . . , Nseq time-steps serve as inputs, while the prediction

at (Nseq + 1)th time-step forms the output. Consistent with Microcrack-GNN, we employ a

sequence length of Nseq = 4, denoted as T̂ := {T − 3, T − 2, T − 1, T} . For each dataset, we

calculate the total number of inputs asNinput = Nsim×(Nsteps−Nseq), yielding 1,940, 485, and

970 inputs for the training, validation, and test datasets, respectively. It’s worth highlighting that

the Microcrack-GNN framework utilized a significantly larger dataset for training, comprising a

total of 36,288 inputs, which is approximately 20 times larger than the datasets employed for TL

in ACCURATE.

4.2.2 Graph representation and spatial message-passing

The first step to develop the ACCURATE framework was to define a new novel graph represen-

tation incorporating information regarding the boundary dimensions and load types. We show

the graph representation for ACCURATE in Figure 4.1a. The graph representation, ⟨V,E⟩, is

similar to that of the Microcrack-GNN, with key modifications and additions for the node and

edge features. We define the node as ξs, and include four new node features to describing: (i)

load type F̂s = (uxs , uys) where tension is represented by {ux = 0.0, uy = 0.01m} and shear by

{ux = 0.01m,uy = 0.0}), and (ii) the effects on domain height and width, specifically the hori-

zontal and vertical distances to the right and top edges of the domain denoted as B̂s = (dWs , dHs).

For the edges, represented by Esr, additional spatial features and physics-informed features have
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been introduced. The spatial features comprise (i) the vertical distance ∆Ŷsr = (yr − ys), (ii) the

horizontal distance ∆X̂sr = (xr − xs), (iii) the equivalent distance L̂sr =
√

∆X̂ 2
sr + ∆Ŷ2

sr, and

(iv) the relative crack orientation ∆Ôsr = (θr − θs) between the crack-tips. Furthermore, the

physics-informed features ∆Π̂sr, encompass (i) the difference of Mode-I stress intensity factors

∆K̂Isr , (ii) the difference of Mode-II stress intensity factors ∆K̂IIsr , and (iii) the difference of

effective stress intensity factors ∆K̂effsr =
(√

∆K̂2
Isr

+ ∆K̂2
IIsr

)
for each edge in the system.

We formulate the graph representation for the node and edge features as

ξt
s =

(
P̂ t

s , N̂
t
s, Ô

t
s, K̂

t
Is
, K̂t

IIs
, F̂s

t
, B̂t

s

)
{t ∈ T̂} ; {s ∈ V},

E t
sr =

(
∆X̂ t

sr,∆Ŷ t
sr,∆L̂t

sr,∆Ôt
sr,∆Π̂t

sr

)
{t ∈ T̂} ; {(s, r, bsr) ∈ E}. (4.1)

As depicted in Figure 4.1a, to realize the message-passing mechanism within the AC-

CURATE framework we employ the Graph Isomorphism Network with Edges (GINE) model

featuring aggregated weights. The GINE model operates by taking inputs consisting of the node

features, edge connectivity arrays, and edge features, subsequently producing a new one-hot

encoded feature vector characterizing the latent space interactions [206]. We represent the

message-passing model, GINE, as

{qs}T̂ ←− GINE
(
{ξs}T̂ , {esr}T̂ , {Esr}T̂

)
{s ∈ V}. (4.2)

To implement TL to ACCURATE, we leverage the pre-trained one-hot encoded feature em-

bedding from Microcrack-GNN (previously defined as ps in equation (3.4)). By transferring

the pre-trained weights from µG in equation (3.4), we implement TL to the one-hot encoded

feature from the ACCURATE framework (outlined in equation (4.2)). This strategy establishes

a generalized GNN structure, enabling the incorporation of new node features and edge features

across different scenarios.
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4.2.3 K-GNN, C-GNN, and P-GNN

To develop the GNNs for predicting stress intensity factors and crack propagation, we used an

initial MLP for predicting two outputs, followed by a second MLP with a sole prediction output.

We illustrate both MLPs in Figure 4.1b. We define the initial MLP as K-intensity-factor-GNN

(K-GNN) in Figure 4.1b. K-GNN served as a regression MLP to predict the crack-tips Mode-I

and Mode-II stress intensity factors at the next time-step. From Figure 4.1b, we represent the

second MLP as Classifier-GNN (C-GNN). C-GNN operated as a classifier MLP to predict the

propagating and non-propagating crack-tips, Q̂s, at the next time-step. As described in Section

4.2.2, we implemented TL by transferring the pre-trained weights of µG from equation (3.4)

to both K-GNN and C-GNN models. In other words, we used the one-hot encoded feature

embedding from Microcrack-GNN (equation (3.4) in Section 3.2.4) as the first input, and the

one-hot encoded feature embedding from ACCURATE (equation (4.2) in Section 4.2.2) as the

second input to the K-GNN and C-GNN models. The resulting initial input graphs are described

in equation (4.3) as

(
{K̂Is}, {K̂IIs}

)T +1
←− K-GNN

[
{ps, qs}T

t=T −3|N̂s

]
,

{Q̂s}T +1 ←− C-GNN
[
{ps, qs}T

t=T −3|N̂s

]
{s ∈ V}. (4.3)

Additionally, the outputs from K-GNN and C-GNN serve as inputs to the final MLP network

shown in Figure 4.1c. We define this MLP in Figure 4.1c as Propagate-GNN (P -GNN). P -GNN

functions as a regression MLP with a single prediction output consisting of the future x- and

y-coordinate crack-tip positions. As part of the input to P -GNN, we include the outputs from

K-GNN (i.e., stress intensity factors, K̂IT +1 and K̂IIT +1), and the output from C-GNN (i.e.,

propagating and non-propagating crack-tips, Q̂T +1). Given that crack propagation in quasi-static

fracture is driven by crack-tips above the critical stress intensity factor, the outputs from K-

GNN and C-GNN assist the final MLP to predict crack propagation in subsequent time-steps.

Therefore, we define the P -GNN model as:

{P̂s}T +1 ←− P-GNN
[
{ps, qs}T

t=T −3|N̂s, {K̂Is , K̂IIs , Q̂s}T +1
]

{s ∈ V}. (4.4)
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4.2.4 Order of transfer learning application

We illustrate the TL sequence in Figure 4.1c. Here, we first extracted the pre-trained embeddings

(ps and qs) for the initial case study. The initial case studied involved scenarios with tensile

loading in a fixed size vertical domain with cracks of constant length and orientation. We

then transferred these pre-trained embeddings across the remaining case studies described in

Section 4.2.1. We started by utilizing the graph embeddings for cases with arbitrary crack

lengths. Subsequently, we transferred the new trained graph embeddings to address cases

involving arbitrary crack orientations. We further followed this systematic approach and adapted

ACCURATE towards new domain sizes, including square and horizontal domains, respectively.

As depicted in Figure 4.1c, we considered new loading scenarios, such as shear loading for the

final TL implementation. Ultimately, the final graph embeddings successfully simulated fracture

in new domain configurations with arbitrary crack lengths and orientations under tension and

shear loads In the following sections, we provide a comprehensive error analysis for each case

study.

4.3 Results

In the subsequent sections, we conduct a thorough analysis of the errors encountered in each case

study outlined in Section 4.2.1. We begin by assessing the framework’s accuracy concerning the

number of training samples utilized for TL. Following this, we delve into evaluating ACCU-

RATE’s performance in emulating crack propagation and stress evolution across each case study

involved in the TL steps. We provide in-depth error analyses regarding the predictions of crack

paths and effective stress intensity factors. Furthermore, we showcase ACCURATE’s proficiency

in simulating the evolution of crack propagation and stresses for unseen scenarios. For the

unseen scenarios, we consider new domain sizes with arbitrary crack lengths and orientations,

under both tension and shear loads. Lastly, we compare the computational times required for

XFEM versus ACCURATE simulations.
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Figure 4.2: Graph showing the relationship between the number of TL training samples and the
error in stress intensity factor for shear loading simulations involving 5, 10, 15, 20, 30, 40, and
50 training instances.

4.3.1 Framework’s error versus number of TL training samples

In this study, we utilized 20 training samples for each TL update step. We note that Microcrack-

GNN required significantly larger training dataset, approximately 50× larger, in order to achieve

good accuracy. To investigate the impact of the number of TL training samples on the model’s

accuracy, we conducted a detailed analysis. Initially, we generated a total of 50 training samples

for the shear load case study. Subsequently, we divided these samples into 7 random groups

with 5, 10, 15, 20, 30, 40, and 50 TL training samples, respectively. Each group underwent

TL over 10 training epochs. Following the training process, we assessed the performance of

each model using 5 simulations from the test dataset, ensuring consistency in the error analysis.

The choice of shear loading for this analysis stemmed from its higher transfer space complexity

compared to the remaining case studies (e.g., tensile load, square domain, horizontal domain,

arbitrary crack orientation, and arbitrary crack length).

Figure 4.2 illustrates the percent errors in the stress intensity factor obtained for each group.

These errors were first computed with respect to time, followed by calculating the average and

standard deviation across time. As anticipated, the highest error was observed when employing

only 5 TL simulations at 20.10 ± 3.33%, whereas the lowest error of 5.27 ± 1.78% occurred

for 50 TL simulations. The graph clearly depicts a decreasing trend in error with the increasing

number of TL simulations. Consequently, further augmenting the number of TL samples is
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likely to yield a minor reduction in error. We also note that larger training datasets entail longer

training times and increased computational costs. Therefore, we utilized 20 simulations for each

TL update step to obtain satisfactory prediction accuracy while minimizing computational costs

and training time. Lastly, as described in Section 4.2.1, we recall that a simulation can include

up to 101 time steps, resulting in a TL dataset of up to discrete 1,940 inputs.

4.3.2 Mode-I and Mode-II stress intensity factors prediction

We conduct a qualitative analysis to assess the framework’s capability in emulating stress

evolution using TL. Stress computation is facilitated through the LEFM equations and the stress

intensity factors (Mode-I and Mode-II). Figure 4.3 displays the evolution of the von Mises

stress spanning from t = 1% to t = 90% for two loading scenarios: (i) vertical domain under

tension as shown by Figures 4.3a-4.3c, and (ii) shear loading shown by Figures 4.3d-4.3f). In

case (i) involving tension, the Mode-I stress intensity factors become pivotal to determine the

propagating crack-tips and their propagation direction. Conversely, for case (ii) involving shear,

the Mode-II stress intensity factors have a greater influence on the propagation of crack-tips and

their crack path direction. This distinction is evident in Figure 4.3, where cracks under tension

tend to propagate horizontally, while those under shear exhibit a diagonal propagation tendency.

Additionally, cracks initially oriented at 0o exhibit a higher propensity for propagation

for case (i) subjected to tension. In contrast, for case (ii) subjected to shear the crack-tips

with diagonal orientations induce greater stress interactions among neighboring the cracks. A

qualitative comparison between the XFEM model and ACCURATE reveals nearly identical

time evolutions for both models. Consequently, ACCURATE demonstrates capability to predict

stress evolution accurately for both cases (i) - (ii).

Applying a similar methodology as with the varied load cases, we evaluated the per-

formance of ACCURATE across different domain sizes. We recall from Section 4.2.1 that

two distinct domain configurations were considered involving (i) square domains measuring

2500mm× 2500mm, and (ii) horizontal domains measuring 3000mm× 2000mm. For these

configurations, we maintained a consistent crack length of 300mm and as well as fixed crack

orientations including 0o, 60o, and 120o. By incorporating TL to accommodate diverse domain
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(a) Tensile load: t=1% (b) Tensile load: t=45% (c) Tensile load: t=90%

(d) Shear load: t=1% (e) Shear load: t=45% (f) Shear load: t=90%

Figure 4.3: Evolution of von Mises stress (MPa) from t = 1% to t = 90% for (a-c) test cases
under tensile loading, and (d-f) test cases under shear loading.

(a) Square domain: t=1% (b) Square domain: t=45% (c) Square domain: t=90%

(d) Horizontal domain: t=1% (e) Horizontal domain: t=45% (f) Horizontal domain: t=90%

Figure 4.4: Evolution of von Mises stress (MPa) from t = 1% to t = 90% for (a-c) test cases
with square domain, and (d-f) test cases with horizontal domain.

geometries—vertical, square, or horizontal—ACCURATE demonstrates versatility in simulating

fracture occurrences across new domains.

Figure 4.4 illustrates the temporal evolution of von Mises stress from t = 1% to t = 90%,

where % represents a percentage of the total number of time-steps (101) until failure, for both

the square domain and the horizontal domain cases. In the square domain scenario, ACCURATE

consistently produces stress distributions virtually identical to those generated by XFEM from

t = 1% to t = 90%. Likewise, in the case of the horizontal domain, ACCURATE’s stress

evolution closely mirrors that of the XFEM model. We present comprehensive quantitative

analyses for these scenarios in the next section.
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(a) Arbitrary length: t=1% (b) Arbitrary length: t=45% (c) Arbitrary length: t=90%

(d) Arbitrary angle: t=1% (e) Arbitrary angle: t=45% (f) Arbitrary angle: t=90%

Figure 4.5: Evolution of von Mises stress (MPa) from t = 1% to t = 90% for (a-c) test cases
with arbitrary crack length, and (d-f) test cases with arbitrary crack orientation.

Finally, we assessed the framework’s performance in predicting stress evolution for scenar-

ios involving cracks of arbitrary lengths and orientations. For these case studies, we maintained

a fixed domain size of 2000mm× 3000mm. We present the stress evolution results for arbitrary

crack lengths in Figures 4.5a-4.5c, and arbitrary crack orientations in Figures 4.5d-4.5f.

For scenarios with arbitrary crack lengths, ACCURATE demonstrates excellent agreement

with XFEM stress predictions across all depicted time steps. These outcomes suggest that the

framework, initially trained for vertical domains under tension, effectively transfers knowledge

to scenarios with arbitrary crack lengths. However, while Figures 4.5d-4.5f display generally

accurate stress distributions, slight discrepancies appear in regions of high stress interactions

in cases involving arbitrary angles. For example, at t = 1% the highest stress interaction

occurs at approximately x = 1600mm, y = 1200mm near the right-most crack. Here, the

predicted stress distribution by ACCURATE appears slightly higher compared to the XFEM

simulation, indicating a minor discrepancy. This discrepancy may arise from the propagation

of the right-most crack (at approximately x = 1700mm, y = 2300mm) with orientation close

to 90o.. Despite this error, ACCURATE effectively identifies crack-tips with the highest stress

distributions for all depicted time steps.
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(a) Tensile load - Crack path (b) Shear load - Crack path

Figure 4.6: Evolution of crack path for: a) Test case subjected to Tensile load. b) Test case
subjected to Shear loading.

4.3.3 Prediction of microcrack propagation and coalescence

Next, we perform a similar qualitative analysis for the predicted crack paths (using P-GNN)

of each simulation shown in Section 4.3.2. Figures 4.6a and 4.6b show the evolution of crack

growth for the case studies involving a vertical domain subjected to tension and shear loads,

respectively. From Figure 4.6a, the predicted evolution of crack growth for the vertical domain

subjected to tension is qualitatively indistinguishable from that generated by the XFEM model.

This is consistent with the Microcrack-GNN which performed predictions of crack growth for a

vertical domain with high accuracy. Similarly, for the vertical domain subjected to shear load

shown in Figure 4.6b the predicted crack path evolution by ACCURATE is also qualitatively

identical to the XFEM-based simulator. In Section 4.3.2, we showed the GNN framework’s

ability to predict stress evolution for cases involving shear loads. Because ACCURATE is able

to predict the stress intensity factors at future time steps prior to predicting the future crack-tip

positions, as shown in equation (4.4), we take advantage of these prior predictions in the P-GNN

model by including the predicted K̂T +1
I and K̂T +1

II as part of P-GNN’s input. Therefore, the high

accuracy achieved when predicting the stress evolution aids P-GNN to achieve high accuracy

for the case study involving shear loading.

Figures 4.7a - 4.7b show the evolution of crack growth of the square domain and horizontal

domain cases, respectively, for the XFEM simulator versus ACCURATE. Similar to the predicted

stress evolution of the square domain case, the predicted crack growth evolution is qualitatively

identical to the XFEM crack path evolution. For the horizontal domain case study, we obtained
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(a) Square domain - Crack path
(b) Horizontal domain - Crack path

Figure 4.7: Evolution of crack path for: a) Test case with Square domain. b) Test case with
Horizontal domain.

good crack path predictions compared to XFEM. A detailed error analysis is described in Section

4.3.4.

Lastly, Figures 4.8a - 4.8b show the XFEM versus predicted crack growth evolution for

the case studies involving arbitrary length and arbitrary angles, respectively. Similarly to the

accuracy of the predicted stresses in the arbitrary length case, the predicted crack growth for

this case shows good agreement with the XFEM simulator. This result shows the ACCURATE

framework is capable of emulating both the stress and crack growth of cases with arbitrary

crack lengths. Additionally, the simulation with arbitrary crack angles qualitatively shows good

prediction accuracy. We emphasize that while the simulation showing the most observable

difference in predicted stress versus XFEM was for the case of arbitrary angle during the initial

time-step (t = 1%), the K-GNN model still captured the regions with the highest stress between

interacting crack-tips, as well as the crack-tips with the highest stress intensity factors across the

remaining time-steps. These overall good predictions by ACCURATE may facilitate P-GNN to

predict future crack-tip positions with good accuracy compared to the XFEM model as shown

in Figure 4.8b. Therefore, Figures 4.6 - 4.8 show a qualitative result for the capability of the

ACCURATE framework to predict crack growth evolution of cases with variable configurations

using TL on very small datasets.

4.3.4 Errors on effective stress intensity factor and crack path

we conduct an in-depth analysis of errors in crack paths and effective stress intensity factors over

time for each simulation detailed in Sections 4.3.2 and 4.3.3. Following the approach described

for MicroCrack-GNN, we assess the error in predicted KI and KII factors, by computing the
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(a) Arbitrary crack length - Crack path (b) Arbitrary crack angle - Crack path

Figure 4.8: Evolution of crack path for: a) Test case with Arbitrary crack length. b) Test case
with Arbitrary crack orientation.

error in effective stress intensity factors, Keff . Figures 4.3 - 4.5 highlight that the greatest errors

in stress occur at propagating crack-tips and their nearest neighboring crack-tips. In quasi-static

fracture, the propagation of crack-tips is dictated by those where the effective stress intensity

factor equals or exceeds the critical stress intensity factor, denoted as Keff ≥ Kc. Consequently,

Figure 4.9a illustrates the progression of maximum percent error in Keff derived from predicted

KI and KII for the simulations outlined in Section 4.3.2.

We compute the error in Keff using equation (4.5).

Keff %error = max
s∈Nt

crt


∣∣∣Keff

t
P red −Keff

t
T rue

∣∣∣
Keff

t
T rue


s

× 100 {t = 1, 2, . . . , Tf}, (4.5)

Here, N t
crt represents the number of crack-tips where the effective stress intensity factor Keff

is greater than or equal to the critical stress intensity factor Kcrt at a specific time t. Keff
t
P red

denotes the predicted Keff at time t generated by ACCURATE, while Keff
t
T rue represents the

actual Keff at time t computed by the XFEM fracture model. The fluctuations observed in

Figure 4.9a indicate variations in the errors of Keff over time. On average, across all time

steps, the errors for the vertical domain, shear load, square domain, horizontal domain, arbitrary

length, and arbitrary angle cases are 1.13± 0.36%, 0.46± 0.27%, 1.55± 0.49%, 1.89± 0.61%,

1.20± 0.34%, and 1.64± 0.62%, respectively. The highest error jumps of approximately 3.2%

and 3.0% occur for the horizontal domain and arbitrary crack angle simulations, respectively.

Conversely, the lowest error in Keff is observed in the simulation involving shear loading.
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(a) Maximum error in Keff vs. time for each case
study

(b) Maximum error in crack path vs. time for each
case study

Figure 4.9: The maximum percentage errors in effective stress intensity factor and crack path
over time for the simulations outlined in Sections 4.3.2 through 4.3.3.

Furthermore, In Figure 4.9b, we show the maximum percentage errors for the predicted

crack paths. Unlike the errors ofKeff which showed a fluctuating trend, the crack path maximum

error remains relatively constant over time until it reaches a new maximum error. We compute

the maximum crack path error using the maximum of the difference between the crack growth

predicted by the XFEM model and the crack growth predicted by ACCURATE. The highest

errors in crack growth over time are observed for the cases involving arbitrary crack length

and arbitrary crack orientation, both reaching approximately 1.35%. In contrast, the lowest

error of approximately 0.5% is observed for the standard vertical domain case of constant crack

lengths and orientations. In summary, from Figure 4.9b, the average errors across time are (i)

0.31± 0.08% for the vertical domain, (ii) 1.04± 0.12% for shear load, (iii) 0.51± 0.26% for

the square domain, (iv) 0.89± 0.29% for the horizontal domain, (v) 0.85± 0.44% for arbitrary

crack lengths, and (vi) 0.82± 0.42% for arbitrary crack orientations.

We then show the highest maximum errors in crack paths and Keff for each case study

in Figures 4.10b and 4.10a, respectively. To generate Figures 4.10b and 4.10a, we start by

computing the timewise maximum error for each test simulations. Then, we identify the

simulation with the highest error across all time steps for each case study. The case resulting in

the highest error in Keff of 4.34± 0.28% was the horizontal domain, and the lowest error in

Keff of 1.94± 0.26% was obtained for the arbitrary length case.
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(a) Maximum error in predicted Keff for each case
study

(b) Maximum error in predicted crack path for each
case study

Figure 4.10: The maximum percentage error in the predicted stress intensity factor and crack
path across all test simulations for each case study.

For crack paths shown in Figure 4.10b, the maximum errors demonstrate high prediction

accuracy across each case study, with all test cases showing maximum errors below than 4%.

The highest error in crack paths of 3.32± 0.57% was obtained for shear load , while the lowest

error of 1.92± 0.45% was obtained for the vertical domain case. We observe good prediction

accuracy by the ACCURATE framework across all simulations in the test dataset of (i) 95.5%

for crack growth, and (ii) 96.5% for stress intensity factors predictions. By integrating TL, the

ACCURATE framework only required 20 simulations consisting of new arbitrary initial crack

configurations, boundary dimensions, and shear loading scenarios to achieve high prediction

accuracy.

4.3.5 Unseen Cases

In this section, we highlight a significant aspect of the proposed ACCURATE framework:

its capability to predict stresses and crack growth for entirely new, unseen scenarios without

requiring additional TL implementations. We emphasize from Figure 4.1c, that ACCURATE was

only exposed to cases involving arbitrary crack lengths and orientations in vertical domains under

tension during the initial TL update steps. However, during TL for square domains, horizontal

domains, and shear loading, arbitrary crack lengths and orientations were not considered.

Additionally, TL of square and horizontal domains did not consider shear loads. Therefore,
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(a) Tension - 2500×2000: t=1% (b) Tension - 2500×2000: t=45% (c) Tension - 2500×2000: t=90%

(d) Shear - 2500×2000: t=1% (e) Shear - 2500×2000: t=45% (f) Shear - 2500×2000: t=90%

Figure 4.11: The von Mises stress evolution (MPa) from t = 1% to t = 90% for: (a-c) An
unseen case of a 2500mm× 2000mm domain with arbitrary crack lengths and crack orientations
subjected to tensile load. (d-f) An unseen case of a 2500mm × 2000mm domain with arbitrary
crack lengths and crack orientations subjected to shear load.

in this section we demonstrate the framework’s capability to to predict new unseen cases

without implementing additional TL steps. For this analysis, we introduce four new unseen case

studies involving (i)-(ii) a domain of size 2500mm× 2000mm with arbitrary crack lengths and

orientations under tension and shear loads, and (iii)-(iv) a domain of size 2500mm× 3000mm

with arbitrary crack lengths and orientations under to tension and shear. This approach showcases

the framework’s ability to handle scenarios involving arbitrary crack orientations and lengths

without necessitating retraining or the generation of new time-consuming and computationally

demanding simulations.

In Figures 4.11a-4.11f, and Figures 4.12a-4.11f, we illustrate the evolution of von Mises

stresses for both XFEM and ACCURATE from t = 1% to t = 90% for the new, unseen sce-

narios (i)-(ii), respectively. Despite these configurations—featuring boundary dimensions of

2500mm× 2000mm and 2500mm× 3000mm, along with arbitrary crack lengths and orien-

tations—being absent during the ACCURATE framework’s training, it adeptly predicts stress

distributions comparable to XFEM results. This high prediction accuracy for unseen cases is

evident in both tension and shear loading scenarios.

We also perform a similar qualitative assessment for the predictions of crack growth by the

P-GNN model for the new unseen cases. The evolution of crack growth for cases (i) and (ii) is

illustrated in Figures 4.13a and 4.13b, respectively. Likewise, in Figures 4.14a and 4.14b we
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(a) Tension - 2500×3000: t=1% (b) Tension - 2500×3000: t=45% (c) Tension - 2500×3000: t=90%

(d) Shear - 2500×3000: t=1% (e) Shear - 2500×3000: t=45% (f) Shear - 2500×3000: t=90%

Figure 4.12: The von Mises stress evolution (MPa) from t = 1% to t = 90% for: (a-c) An
unseen case of a 2500mm× 3000mm domain with arbitrary crack lengths and crack orientations
subjected to tensile load. (d-f) An unseen case of a 2500mm × 3000mm domain with arbitrary
crack lengths and crack orientations subjected to shear load.

depict the crack growth evolution for cases (iii) and (iv), respectively. Across all these unseen

scenarios, the predicted crack paths exhibit visually similar crack patterns to those generated by

the XFEM model.

Next, in Figures 4.15a and 4.15b we present the maximum errors in both Keff and crack

path over time for the unseen cases. Among the errors in Keff , the highest error peak of

4.15% occurred in the unseen case featuring a 2500mm × 2000mm domain under to shear

loading. For unseen cases (i) through (iv), the average of the maximum errors across time

were 2.31 ± 0.75, 1.2 ± 0.74, 1.92 ± 0.55, and 0.89 ± 0.38, respectively, for Keff . These

findings underscore ACCURATE’s capability to replicate stress evolution accurately in novel

domain dimensions with cracks of arbitrary lengths and orientations under tension or shear. The

framework demonstrates high prediction accuracy for Keff (approximately 96%) compared to

XFEM.

Applying the same approach to the errors in crack path, the highest error peak of approx-

imately 2.9% was observed for the 2500mm × 2000mm domain under tension. The average

errors in crack path across time for unseen cases (i) through (iv) were 0.58± 0.27, 1.59± 0.67,

1.77 ± 0.58, and 0.97 ± 0.08, respectively. The observed errors in crack path, coupled with
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(a) Tension: 2500×2000 (b) Shear: 2500×2000

Figure 4.13: Evolution of crack path for: a) An unseen case of a 2500mm × 2000mm domain
with arbitrary crack lengths and crack orientations subjected to tensile load. b) An unseen case
of a 2500mm × 2000mm domain with arbitrary crack lengths and crack orientations subjected
to shear load.

Figure 4.15b, demonstrate ACCURATE’s capability to predict crack growth with remarkable

accuracy for the unseen cases (approximately 97%). One potential explanation for ACCU-

RATE’s adeptness in handling new arbitrary crack lengths and angles without necessitating TL

for achieving high accuracy could be attributed to both the normalization and randomization

approaches implemented. For instance, for a given time-step in a simulation involving a vertical

domain under tension, two or more microcracks may have already merged, thus, forming a single

larger crack with arbitrary length and orientation. This characteristic is effectively captured by

the normalization and randomization processes inherent in the dataset, aiding ACCURATE in

its accurate predictions. The normalization criteria for the crack-tip positions used was obtained

from [207, 208]. Specifically, the x-coordinate positions were normalized by the domain’s width

(e.g., 2000mm for vertical and 3000mm for horizontal), while the y-coordinate positions were

normalized by the domain’s height (i.e., 3000mm for vertical and 2000mm for horizontal).

Hence, these findings underscore that while TL was applied for case study independently, the se-

quential implementation of TL enabled the framework to generalize across various combinations

of problem-specific inputs without necessitating additional TL.

4.3.6 Analysis time VS. number of microcracks

To assess the computational efficiency of the ACCURATE framework, we measured the total

simulation time required by both the XFEM model and ACCURATE framework to generate

10 test simulations in the vertical domain study. In Figure 4.16a, we compare the average

simulation time of the high-fidelity XFEM model (depicted in green) versus the ACCURATE
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(a) Tension: 2500×3000 (b) Shear: 2500×3000

Figure 4.14: Evolution of crack path evolution for: a) An unseen case of a 2500mm × 3000mm
domain with arbitrary crack lengths and crack orientations subjected to tensile load. b) An
unseen case of a 2500mm× 3000mm domain with arbitrary crack lengths and crack orientations
subjected to shear load.

(a) Maximum error in Keff vs. time for unseen
cases

(b) Maximum error in crack path vs. time for unseen
cases

Figure 4.15: The maximum percentage errors with respect to time in effective stress intensity
factor and crack path for each unseen case study.
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(a) Simulation time of all test cases (b) Average simulation time across test cases

Figure 4.16: a) Comparison of simulation time (seconds per time-step) between XFEM surrogate
model and ACCURATE for all simulations in the test dataset. b) Average simulation time
(seconds per time-step) comparison between XFEM surrogate model and ACCURATE across
all test simulations.

framework (depicted in red) for each simulation. Additionally, in Figure 4.16b we show the

average across all 10 simulations shown in Figure 4.16a, in order to compare the XFEM model

(shown in light blue) versus the ACCURATE framework (shown in light orange). For the

XFEM model, we obtained each simulation using a personal laptop equipped with an Intel Core

i9-12900H CPU operating at 2.50GHz and 16.0GB of RAM. For ACCURATE, each simulation

was gathered using the same personal computer involving a laptop-grade GPU NVIDIA GeForce

RTX 3070 Ti. ACCURATE’s simulation time was computed from the generation of the initial

graph representation at t0 to the prior GNNs predictions, K-GNN and C-GNN, followed by the

final GNN prediction, P-GNN.

To develop ACCURATE, we leveraged the open-source and optimized PyTorch Geometric

(PyG) library for the development of ACCURATE. The optimized PyG library resulted in a

significant time improvement of up to 2 orders of magnitude faster (200x) compared to the

XFEM model. We show the simulation speedup in Figure 4.16. While the XFEM fracture model

demands over 10 seconds for each time-step in the simulation, ACCURATE completes each

time-step in approximately 0.1 seconds. Consequently, the XFEM model would necessitate

roughly 28 hours to generate a total of 100 simulations, whereas the ACCURATE framework

achieves this task in approximately 17 minutes. It’s important to note that the XFEM model was

not parallelized, which constrains our performance comparison.
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4.4 Conclusion

In conclusion, this work presents ACCURATE, an accelerated and versatile fracture mechanics

framework capable of accurately simulating fracture phenomena induced by multiple cracks’

interactions, propagation, and coalescence in brittle materials across diverse problem configura-

tions. ACCURATE achieves this by predicting Mode-I and Mode-II stress intensity factors for

each crack-tip and simulates crack growth by predicting the future positions of all crack-tips.

Through the application of TL to the pretrained MicroCrack-GNN model, we conducted stud-

ies on new problem-specific configurations while significantly reducing the required training

simulations to just 20 (compared to 960 for MicroCrack-GNN). By implementing 5 sequential

TL update steps covering cases with arbitrary crack lengths, orientations, square and horizontal

domains, and shear loading, ACCURATE acquired generalized knowledge of fracture mechanics.

This was demonstrated by ACCURATE’s ability to accurately simulate stress evolution and

crack propagation for new unseen cases involving different domain dimensions along with

arbitrary crack lengths and orientations under both tension and shear loads. These capabilities

highlight ACCURATE’s potential for exploring a wide range of problem configurations beyond

those examined in this study.

Another noteworthy aspect of the ACCURATE framework is its remarkable improvement in

simulation speed. ACCURATE exhibited a speedup of 2 orders of magnitude (i.e., approximately

200 times faster) compared to the high-fidelity XFEM model. This significant acceleration

suggests that an ideally parallelized XFEM model would require around 200 CPU cores in order

to achieve comparable performance. Moreover, the development of ACCURATE highlights

the advantages of utilizing ML techniques such as TL and GNNs to develop reduced-order

and accelerated computational models to simulate fracture mechanics. These models can be

trained effectively even with very small datasets, leading to reduced computational costs. In

future research, ACCURATE could be extended to incorporate dynamic effects such as crack

bifurcation, and ductile material properties. By further enhancing its capabilities, the framework

has the potential to address a wider range of fracture mechanics problems, making it even more

versatile and applicable in various engineering contexts.
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Chapter 5

Dynamic and adaptive mesh-based graph neural network framework for multiphysics problems

5.1 Introduction

As described in previous chapters, the development of computationally efficient and dependable

modeling techniques remains a continuous endeavor in the fields of solid mechanics and material

science. In various engineering disciplines, high-fidelity mesh-based computational models

serve as indispensable tools for simulating complex physical phenomena, thereby circumventing

the need for costly experiments. Typically, these models involve solving coupled systems of

partial differential equations (PDEs) that govern the underlying physics of the problem at hand.

Traditionally, a widely adopted strategy to tackle such PDEs and advance the physics over time

has been through discretization of the problem domain into a mesh. Subsequently, numerical

approximations of the PDE solutions are obtained within this mesh framework. Although this

approach has demonstrated its efficacy by yielding accurate and dependable results in numerous

applications, its computational cost escalates rapidly as the complexity of the problem increases.

Fracture mechanics is a fundamental area of study in materials engineering, as it pertains

to the understanding and prediction of material failure. Traditionally, physics-based models

have been employed extensively in this field, offering insights into the behavior of cracks and

their propagation. Computational models for material failure can generally be categorized into

two methodologies: sharp interface methods and diffused interface methods. In sharp interface

methods, cracks are treated as discontinuities in the displacement field, while in diffused interface

methods, the discontinuity is smoothed out over a length scale using a continuous surrogate field.

In [209], and references therein, a thorough review and comparative study of these methods can
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be found. One of the most prominent diffused interface methods is the multiphysics phase field

(PF) technique [81, 81, 82, 210, 211, 212, 213, 214]. This approach involves formulating an

energy functional, denoted as Π, which regularizes the crack over a characteristic length scale ϵ

using a smooth scalar damage field, ϕ, typically taking values between 0 and 1. The evolution

of the scalar damage field, ϕ, is formulated by minimizing the energy functional, leading to the

propagation and evolution of cracks. PF fracture models have gained widespread adoption due to

their scalability and ease of implementation [80, 86, 215]. They have been successfully applied

in various scenarios, involving crack propagation, nucleation, and branching across diverse

material ranging from brittle and ductile materials to composite materials with anisotropy, as

well as biological systems [216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226].

While diffused interface methods like the PF technique offer a promising approach to

simulating crack propagation, they come with computational challenges. For instance, the

characteristic length scale of material damage is often much smaller than the overall domain size,

necessitating high mesh resolution in the vicinity of cracks. To mitigate the computational cost

associated with this high mesh resolution, PF methods are commonly combined with Adaptive

Mesh Refinement (AMR) techniques. AMR allows for the use of different mesh resolutions,

employing coarser meshes in regions where minimal changes occur in the problem’s physics

and finer meshes where significant changes are present. This adaptive approach helps optimize

computational resources while accurately capturing crack propagation dynamics. Several studies

have highlighted the pivotal role of AMR in enhancing the efficiency of phase field models

[227, 228, 229, 230, 231]. Efforts to improve the computational efficiency and robustness of

PF fracture methods have also led to the development of various solver techniques, including

staggered, monolithic, and fast Fourier transform-based solvers. Each of these approaches has

its advantages and drawbacks, reflecting the ongoing pursuit of optimization in PF modeling.

Despite these advancements, PF models still entail solving complex systems of coupled PDEs,

resulting in computational costs that escalate with problem complexity. For example, PF methods

necessitate computing an additional (pseudo) time-dependent PDE in order to propagate the

scalar damage field, further adding to computational expenses. These computational demands

limit the widespread application of PF fracture techniques in large-scale scenarios such as
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simulating fracture in glaciers, bridges, and subsurface fracture network evolution. Addressing

these challenges remains an active area of research, with ongoing efforts focused on enhancing

the efficiency and scalability of PF models for broader practical use.

Reduced-order modeling techniques, particularly Machine Learning (ML), offer a promis-

ing solution to address the challenges associated with mesh-based models. Several studies

have demonstrated the efficacy of ML in various fields of solid mechanics and material science.

These include applications in structural health monitoring [232], smart materials [233], fracture

mechanics [234, 235, 236], structural analysis [237], and applied mechanics [238, 239]. Other

recent works have explored deep learning architectures for predicting stress-strain responses

[240, 241], fracture behavior [242], hierarchical material structures [243], and material property

estimation [244, 245]. ML techniques have also demonstrated significant advancements in PF

models, offering accelerated and accurate predictions in material science and solid mechanics

applications [246, 247, 248, 249, 130, 250]. In a notable study by Montes et al. [251], Long

Short-Term Memory (LSTM) and Recurrent Neural Networks (RNNs) were integrated with

PF models to simulate the evolution of two-phase mixtures, particularly spinodal decomposi-

tion. This ML-PF hybrid approach provided remarkable speedups compared to high-fidelity

PF models, achieving orders of magnitude reduction in computational time while maintaining

accuracy.

Furthermore, as shown in Chapters 3 and 4, GNN techniques have showcased remarkable

success in dynamic simulation problems due to their accelerated performance [156, 155, 160, 3].

The graph representation approach utilized by GNNs aligns well with mesh-based problems,

where the simulation mesh can directly serve as the model’s graph representation. In a recent

study [174], researchers developed MeshGraphNet, a mesh-based graph neural network tai-

lored for simulating finite element simulations. This model demonstrated high accuracy when

compared against FEM simulations, showcasing its efficacy in simulating various engineer-

ing phenomena such as flag dynamics, plate bending, and flow over rigid bodies. Notably,

MeshGraphNet provided simulation speeds ranging from one to two orders of magnitude faster

than traditional FEM approaches. Mesh-based GNNs have found applications in diverse en-

gineering problems, including simulating crack propagation in PF models with AMR [5], FE
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displacements and stresses [252, 253, 254], and flow over airfoils and cylinders [255, 256].

Although mesh-based GNNs have shown promise, adapting this approach for PF simulations

with AMR has remained unexplored. An mesh-based GNN framework with AMR would need to

dynamically incorporate new nodes and edges, representing the refined mesh at each time-step,

presenting a unique and challenging problem.

In this chapter, we introduce a novel dynamic and adaptive mesh-based Graph Neural

Network (ADAPT-GNN) designed to replicate PF models of single-edge crack propagation

while achieving a remarkable simulation speed-up of up to 36x. Leveraging the second-order PF

model with AMR as outlined in [211], we construct the training, validation, and test datasets

by varying the initial crack position, lengths, and orientations. The ADAPT-GNN architecture

is adept at generating new graph structures at each time-step by dynamically incorporating

or removing nodes and edges through the AMR strategy. This unique methodology enables

us to harness the benefits of operating with smaller mesh sizes, characterized by fewer cells,

nodes, and edges, while also leveraging the computational efficiency offered by dynamic GNNs.

Utilizing this framework, we predict displacements (u, ν) and the scalar damage field (ϕ) at

each time-step for every point within the adaptive mesh. Subsequently, we utilize the predicted

displacements and scalar damage field to compute the stress evolution across the domain. We

anticipate that this novel approach will open avenues for significantly accelerated mesh-based

simulations across other mechanics and material science problems. Although our current

investigation focuses on PF fracture models, we believe that this methodology can be readily

extended to address other materials and mechanics problems formulated similarly to PF models.

5.2 Methods

5.2.1 Phase field fracture model with adaptive mesh refinement

We employ the open-source PF fracture model with AMR outlined in [211] to simulate a range

of fracture mechanics scenarios. As illustrated in Figure 5.2a, we consider problems involving

brittle materials featuring single-edge notched cracks subjected to tension.
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Figure 5.1: Structure of the phase-field AMR-based GNN framework: a) The graph repre-
sentation including nodes and edges for the refined mesh. b) The prediction step involving
XDisp-GNN and YDisp-GNN for predicting displacements at t+1, and cPhi-GNN for predicting
the scalar damage field at t+ 1 using the predicted displacements as input. c) The AMR update
step illustrates the process of adaptive mesh refinement for the time step t+ 1. d) Illustration of
future predictions for T + 1, T + 2, ..., Tf .

The second-order PF model tailored for fracture problems formulates the energy functional,

F , as:

F =
∫

Ω

[
W (ε(u), ϕ) + Gc

2ϵ
(
ϕ2 + ϵ2|∇ϕ|2

)]
dΩ. (5.1)

Here, Gc denotes the fracture energy, ϕ denotes the scalar damage field, u denotes the dis-

placement field,W denotes the strain energy density, the strain energy density is a function of

the strain ε, and Ω denotes the material domain. The PF model from [211] is implemented in

MATLAB. The model utilizes the isogeometric analysis (IGA) numerical tool. For local refine-

ment, this framework leverages polynomial splines over hierarchical T-meshes (PHT-splines).

To dynamically adjust mesh resolution in areas of high gradients and singularities, an adaptive

h-refinement scheme is integrated with PHT-splines. Furthermore, the hybrid-staggered algo-

rithm is employed to refine mesh resolution iteratively until a convergence threshold is reached.

This iterative refinement process ensures the accurate capture of changes in local zones at each
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(a) Geometrical configuration
(b) Vertex No.16 Neighbors (c) Vertex No.34,080 Neighbors

Figure 5.2: a) Illustration of the problem geometry and the configuration of input parameters CL,
CP , and Cθ. b-c) Visualization of active nodes and active edges connected to their neighboring
mesh vertices.

time-step while effectively reducing computational costs. Utilizing the second-order phase

field fracture model, we generate a substantial dataset of two-dimensional fracture simulations

featuring single-edge notched cracks.

5.2.2 Graph representation

A pivotal aspect of the developed GNN is its capability to dynamically adapt the architecture

of the graph to correspond with the refined mesh at every time-step. This feature ensures that

the GNN can effectively harness the computational efficiency afforded by the AMR technique.

We recall from [211] that the h-refinement defined the two-dimensional representation of the

mesh,M, using U i = {ξi
1, ξ

i
2, . . . , ξ

i
ni+1}. Here, U i includes the set of active vertices, ξ denotes

the number of active elements, and ni the parametric direction where i ∈ {1, 2} in a two-

dimensional case. For the graph representation of the mesh-based GNNs, we adapt this notation

and define the instantaneous refined graphs asMref : ⟨U,E⟩. Here, U and E denote the active

vertices and edges in Mref , respectively. As shown in Figures 5.2b - 5.2c, we note that E

includes edges connecting each active node, ξs ∈ U, to the adjacent active nodes. We also note

that s : {1, 2, . . . , N} for any positive integer, where N denotes the total number active vertices

inMref .

At each time-step, the vertices are characterized by their spatial positions P̂s, their neigh-

boring active mesh nodes (adjacent nodes) Âs, their displacement values D̂s (comprising x-
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and y-displacement fields, us and νs), and their energy- and physics-informed parameters Π̂s .

Essentially, Π̂s comprises scalar damage field variable values, ϕs, von Mises stress values, σs,

binary indicators of active/inactive nodes, Is ∈ {0, 1} (where 0 indicates inactive mesh nodes

and 1 denotes active mesh nodes), the Laplacian of the scalar damage field, ∆ϕs, and the applied

displacement loading u0s .

P̂s = {(xs, ys)} {s ∈ U}; {U ∈Mref},

Âs = {As} {s ∈ U}; {U ∈Mref},

D̂s = {(us, νs)} {s ∈ U}; {U ∈Mref},

Π̂s = {(ϕs, σs, Is,∆ϕs, u0s)} {s ∈ U}; {U ∈Mref},

{ξs} = {(P̂s, Âs, D̂s, Π̂s)} {s ∈ U}; {U ∈Mref}. (5.2)

Moreover, each edge in Mref is associated with a binary value indicating if the current

“sender” node ξs, and all other active “receiver” nodes ξr in E, belong to the same neighboring

array Âs. This binary value is represented using (s, r, bsr) ∈ E, where s and r define the

“sender” and “receiver” nodes, respectively (i.e., for any positive integer s : {1, 2, . . . ,U} and

r : {1, 2, . . . ,U}), and b ∈ {0, 1}. When s = r, we set bsr = 1. Figure 5.2 illustrates an

example of the graph representation, depicting active nodes (shown as green nodes) and their

corresponding edges (shown as orange lines) in Figures 5.2b - 5.2c for node 16 and node 34,080,

respectively. As shown in equation (5.3), this graph representation allows us to denote the

indices of neighbors associated with each active mesh node.

β̂sr = {(ξs, ξr, bsr)} {(s, r, bsr) ∈ E}; {E ∈Mref}. (5.3)

When bsr = 1, we then define the first five edge features as shown in equation (5.4). These

include (i) the distances in the x- and y-directions between the sender and receiver nodes,

δXsr = (xr − xs) and δYsr = (yr − ys), (ii) the magnitude of the distance between the sender

and receiver nodes, Lsr =
(√

δX 2
sr + δY2

sr

)
, (iii) the difference in the scalar damage field

between the sender and receiver nodes, δϕsr = (ϕr − ϕs), and (iv) the difference in the stress
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field between the sender and receiver nodes, δσsr = (σr − σs).

δP̂sr =
{

(δXsr, δYsr,Lsr)
}

{(s, r, bsr) ∈ E}; {E ∈Mref},

δΠ̂sr =
{

(δϕsr, δσsr)
}

{(s, r, bsr) ∈ E}; {E ∈Mref}. (5.4)

We then leverage the energy functional from equation (5.1) in order to incorporate physics-

based information into the ADAPT-GNN framework. The physics-based features include

gradients of ϕ, and a term accounting for displacement and stress effects on the strain energy

density. The three gradient edge features include (i) the gradient of the damage field, ∇ϕ̂sr,

(ii) the gradient of x- and y-displacements, ∇D̂sr, and (iii) the gradient of stress, ∇σ̂sr. The

resulting edge features become

∇ϕ̂sr =


(
δϕsr

δX
+ δϕsr

δY

) {(s, r, bsr) ∈ E}; {E ∈Mref}

∇D̂sr =


(
δusr

δX
+ δνsr

δX

)
,

(
δusr

δY
+ δνsr

δY

) {(s, r, bsr) ∈ E}; {E ∈Mref}

∇σ̂sr =


(
δσsr

δX
+ δσsr

δY

) {(s, r, bsr) ∈ E}; {E ∈Mref}

{esr} =
{(

β̂sr, δP̂sr, δΠ̂sr,∇ϕ̂sr,∇D̂sr,∇σ̂sr

)}
{(s, r, bsr) ∈ E}; {E ∈Mref}.(5.5)

5.2.3 Spatial Message-Passing Process

For each GNN, The ADAPT-GNN framework utilizes the Graph Isomorphism Network with

Edge Features (GINE) from [206] as the message-passing model. The GINE message-passing

network comprises operations aim to map the input nodes and edge features to the latent space.

The resulting latent space embedding is then fed into an MLP with Rectified Linear Unit (ReLU)

activation function. As defined in equations (5.2) - (5.5), the input to the message-passing

network consists of the node and edge features, for the current time-step.

The message-passing outputs are represented as ξ′
s, e

′
sr, capturing the transformed vertex

and edge attributes in the latent space for the current time-step t, respectively. It’s essential to
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note that for each GNN module within the framework (e.g., XDisp-GNN, YDisp-GNN, and cPhi-

GNN), meticulous adjustments to the message-passing network are imperative to maintain high

accuracy and preserve the relational information within the graphs [176, 257, 258]. Consequently,

we fine-tuned the message-passing network of each GNN by varying parameters such as the

number of message-passing steps (i.e., iterations for vertices and edges through the encoder

networks) and the hidden layer dimensions. The detailed procedures for optimizing the GINE

encoders and the resulting enhancements are presented in Section 5.4.

5.2.4 Training-set and Validation-set

In accordance with Section 5.2.1, the dataset utilized for training, validation, and testing was

generated through the implementation of the second-order phase field fracture model as detailed

in [211]. It is notable that the fourth-order phase field model, also provided in [211], could

potentially yield more precise outcomes. However, we opted for the second-order approach

to balance computational efficiency and proof of concept. The configuration consisted of a

domain measuring 0.5 m by 0.5 m, featuring a maximum of 193 by 193 mesh nodes. The

domain encompassed a single edge crack subjected to tensile displacement loading. Material

properties were simulated under isotropic and homogeneous conditions, with specified values:

Young’s Modulus, E = 210 N/mm2, Poisson’s ratio, ν = 0.3, critical energy release rate,

G1c = 2.7, and length scale parameter, l0 = 0.0125 m. We note that dynamic effects, such as

crack-tip bifurcation, were not considered in our analysis. Analogous to the scenario delineated

in [211], we fixed the lower boundary of the domain and applied incremental displacement

loads, perpendicular to the top edge in the positive y-direction (representing tensile loading).

Specifically, the load configuration was ∆u = 1×10−4 mm for the initial 45 displacement steps,

transitioning to ∆u = 1× 10−6 mm for subsequent steps to mitigate dynamic effects.

We generated a comprehensive dataset comprising 1245 distinct simulations, achieved

by varying the initial crack length, edge position, and crack angle. Specifically, the crack

lengths (CL), edge positions (CP ), and crack angles (Cθ) were systematically altered across

ranges: CL : 0.05, 0.10, . . . , 0.45 m, CP : 0.1, 0.15, . . . , 0.4 m, and Cθ : −65o,−60o, . . . , 65o,

respectively. For visualization purposes, refer to Figure 5.2a, illustrating the problem setup
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along with the varied configurations of CL, CP , and Cθ. Additionally, to ensure consistency,

cases resulting in crack-tip locations extending beyond the domain’s boundaries were excluded.

Notably, each simulation encompasses a range of 100 to 450 time-steps, with each input to the

GNN framework representing a single time frame. Consequently, the dataset’s size spans from

124, 500 to 560, 250 instances. Additionally, we removed cases resulting in crack-tip locations

beyond the domain’s bounds. We note that each simulation contains 100 to 450 time-steps, and

each input to the GNN framework involved a single time frame, thus, resulting in a dataset size

of 124, 500 to 560, 250.

To conduct a rigorous error analysis on the test set, we employed a systematic approach.

We first randomly curated a subset of 30 simulations for the test set, ensuring an equitable

distribution of cases with positive (Cθ ≥ 0o) versus negative (Cθ < 0o) crack angles, top

(CP ≥ 0.5 m) versus bottom (CP < 0.5 m) initial edge positions, and large (CL ≥ 0.25 m)

versus small (CL < 0.25 m) initial crack lengths. The remaining simulations were then allocated

with 1100 for the training set and 115 for the validation set. We organized the training set into

shuffled batches sized 32, while maintaining the validation set in a sequential order with a batch

size of 1. Lastly, each model (XDisp-GNN, YDisp-GNN, and cPhi-GNN) underwent training

for a total of 20 epochs to ensure robust learning and convergence.

5.3 Adaptive Mesh-based Graph Neural Network

As illustrated in Figure 5.1, the ADAPT-GNN framework encompasses three primary GNNs: (i)

XDisp-GNN, (ii) YDisp-GNN, and (iii) cPhi-GNN. ADAPT-GNN starts by utilizing the node

and edge features (from equations (5.2) - (5.5)) at the current time-step t, in order to predict the

displacement fields at future time-step t+ 1. Subsequently, it uses the node and edge features at

time t (from equations (5.2) - (5.5)) alongside the predicted displacements fields at t+1 to predict

the scalar damage field ϕ at time t+ 1. A distinctive aspect of ADAPT-GNN is its integration of

AMR. This feature enables the framework to dynamically expand the graph’s size at each time-

step by utilizing the instantaneous refined mesh as the graph representation itself. Additionally,

it harnesses both the GPU-usage and order reduction offered by ML techniques, as well as

the computational efficiency provided by the AMR approach. Thus, reducing computational
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demands while enhancing simulation speed. The next sections will present the implementation

of the ”Prediction Step” (XDisp-GNN, YDisp-GNN, and cPhi-GNN), and the ”AMR Update”

depicted in Figure 5.1 in greater detail.

5.3.1 XDisp-GNN and YDisp-GNN

We developed the XDisp-GNN and YDisp-GNN modules to predict the displacements in the x

and y directions, respectively, for each node within the refined mesh. Initially, we constructed the

input graph representation based on the methodology outlined in Section 5.2.2. Following the

detailed process in Section 5.2.3, both XDisp-GNN and YDisp-GNN employ a GINE message-

passing model to encode the node and edge information into latent space embeddings. To

predict displacements at future time-steps, we utilized the latent space representations generated

by the message-passing networks of XDisp-GNN and YDisp-GNN as inputs to two distinct

Attention Temporal Graph Convolutional Networks (ATGCN) [259]. The ATGCN architecture is

tailored to learn both local and global spatiotemporal patterns in state evolution. It begins with a

Temporal Graph Convolutional Network (T-GCN) [260], which integrates Graph Convolutional

Networks (GCNs) and Gated Recurrent Units (GRUs) in a sequential manner to capture local

trends. Furthermore, the ATGCN introduces a tanh activation function (attention mechanism)

to dynamically adjust the influence of historical states, enabling the capture of global variation

trends.

We opted for the ATGCN model because of its unique combination of gated recurrent

units within graph convolutional networks, facilitating the learning of temporal changes while

preserving spatial relations within the graphs. Additionally, its integration of an attention

mechanism enables the capture of both local and global spatiotemporal variations. The input

graph at a specific time-step, t, and the corresponding predicted displacements at the subsequent

time-step, t+ 1, generated by the ATGCNs can be described as follows:

(ûs, ν̂s)t+1 ←− ATGCN
[
{ξ′

s, e
′

sr}t
]

{s ∈ V}; {(s, r, bsr) ∈ E}. (5.6)
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(a) PF versus XDisp-GNN (b) PF vs. YDisp-GNN

Figure 5.3: a) Comparison between the PF fracture model and the XDisp-GNN prediction for
a simulation from the test set featuring a small crack (CL = 0.1 m) with a negative angle and
positioned at CP = 0.1 m. b) Comparison between the PF fracture model and the YDisp-GNN
prediction for the same simulation scenario described above.

Equation (5.6) shows a single ATGCN utilized for both XDisp-GNN and YDisp-GNN

for the sake of simplicity. We note that each GNN incorporates a GINE message-passing

network followed by an ATGCN model. Furthermore, to train XDisp-GNN, we employed the

SmoothL1Loss function since ∆u values exhibit variations from negative to positive, while for

YDisp-GNN, we utilized the MSELoss function as ∆v values are non-negative. For both GNNs,

we employed the Adam optimizer from [261]. Essentially, the ATGCNs use the current time-step

(t) features of vertices and edges in the latent space, for predicting the x- and y-displacements

at the future time-step, t+ 1. Figure 5.3 presents a comparison between the PF model and the

predicted x- and y-displacements.

5.3.2 cPhi-GNN

Following the prediction of x- and y-displacements, we concatenated them and utilized the

combined output as input to cPhi-GNN. As previously discussed, the primary objective of

cPhi-GNN is to forecast the crack field, ϕs, at future time-steps. Similar to the XDisp-GNN and

YDisp-GNN models, cPhi-GNN utilizes the features of vertices and edges in the latent space as
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(a) PF vs. cPhi-GNN (b) PF vs. σ-GNN

Figure 5.4: a) Comparison between the PF fracture model and the cPhi-GNN prediction for the
same test case scenario depicted in Figure 5.3, which involves a small crack (CL = 0.1 m) with
a negative angle located at CP = 0.1 m. b) Comparison between the PF fracture model and the
σV M prediction for the identical test case scenario described above.

the first portion of its input. We further augment this input by concatenating the predicted x- and

y-displacements at future time-steps. Consequently, we modified the ATGCN used for predicting

ϕ and incorporated two additional vertex and edge features representing the previously predicted

displacements. Like XDisp-GNN and YDisp-GNN, cPhi-GNN underwent training using the

Adam optimizer [261]. We define the architecture of cPhi-GNN as:

(
ϕ̂s

)t+1
←− ATGCN

[
{ξ′

s, e
′

sr}t, (ûs, ν̂s)t+1
]

{s ∈ V}; {(s, r, bsr) ∈ E}. (5.7)

One notable feature of the ADAPT-GNN framework, is its ability to forecast the evolution

of stress, utilizing the predicted x- and y-displacements, along with ϕ. Derived from the second-

order PF fracture model in [211], the stress tensor is defined as σ = (1− ϕ)2
[
λtr(ε)I + 2µε

]
.

Where ε denotes the strain tensor, and λ and µ represent the Lam’e constants. Utilizing this

formulation alongside the predictions from the GNN framework, we calculate the stress evolution.
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We compare the PF fracture model and the predicted ϕ, alongside the predicted von Mises stress

σV M in Figure 5.4.

5.3.3 AMR Update

The ”AMR Update” step stands as the cornerstone within the ADAPT-GNN framework, pivotal

for its efficacy. It’s imperative to underscore the indispensable role of AMR in augmenting the

performance of ADAPT-GNN. The conventional approach of employing a static fine mesh as the

graph representation invariably leads to a large number of edge connections. This large number

of edges stems from the dependence of a point’s solution on distant points. Such an arrangement

inevitably results in large graphs leading to increased computational costs. However, a potential

avenue for mitigation of large graphs lies in increasing the number of message-passing steps

to align with the required hop distance. A study by Hamilton et al. [262] demonstrates that to

facilitate information transfer between two nodes separated by ”x” hops, the GNN necessitates

”x” message-passing blocks. Yet, the exigencies of achieving finer mesh resolution in our context

demand an exceedingly large number of hops, rendering the conventional approach untenable

due to its impracticality in handling an overwhelming number of message-passing steps.

To harness the combined capabilities of AMR and GNNs, post the completion of the

Prediction Step depicted in Figure 5.1 involving XDisp-GNN, YDisp-GNN, and cPhi-GNN, we

implement mesh refinement. This entails the addition of new nodes in regions exhibiting a scalar

damage field (ϕ) surpassing a predefined threshold value (set at 0.5, following [211]). Moreover,

we then develop a new graph representation for the next time-step by introducing new vertices

and edges for the resulting new refined mesh.

Throughout the training process, we employ a Boolean mask array to explicitly train the

active nodes while disregarding the inactive ones. As illustrated in Figure 5.2, this methodology

ensures the dynamism of the graph, where edges are exclusively established between adjacent

active nodes. Consequently, training computations are confined solely to the active nodes.

Finally, upon the generation of the new refined graph representation for the subsequent time-step,

we iteratively execute this procedure until failure propagation permeates the entire domain.
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5.4 Cross-validation

To optimize the framework further, we conducted cross-validation on XDisp-GNN, YDisp-GNN,

and cPhi-GNN using the 10-fold (k-fold) cross-validation methodology [263]. This approach

involved examining various training parameters such as learning rates, the number of message-

passing steps, and the number of nodes in the hidden layers of the MLP network. Initially, we

partitioned the original training dataset (comprising 1100 simulations) into 10 distinct groups

and shuffled them. Next, one group was designated as the ’new validation dataset,’ while

training was conducted on the remaining 9 groups, serving as the ’new training dataset’. This

training process was executed for 5 epochs before selecting another combination of validation

and training groups. This procedure was repeated for each GNN model and for each investigated

training parameter. Evaluation of performance was based on the averaged maximum percentage

errors in the predicted x-displacements, y-displacements, and ϕ field. It’s essential to note

that cross-validation was exclusively applied to the message-passing GINE models associated

with each GNN (XDisp-GNN, YDisp-GNN, and cPhi-GNN). As for the ATGCN models of

each GNN, the only trainable parameter was the filter size (or number of nodes). Therefore,

cross-validation was not implemented for the ATGCN models in this study. The filter size for

each ATGCN was selected to align with the optimal number of hidden layer nodes derived from

the cross-validation of the GINE message-passing models.

5.4.1 XDisp-GNN cross-validation

The averaged percent errors for x-displacement predictions are depicted in Figure 5.5. In Figure

5.5a, learning rates of 5× 10−4, 5× 10−3, 1× 10−2, and 5× 10−2 (light blue) resulted in higher

errors for XDisp-GNN compared to the learning rate of 1× 10−3 (yellow). Notably, the highest

error of 3.42± 0.35% occurred for the learning rate of 1× 10−2, contrasting with the smaller

learning rate of 1× 10−3 showing an error of 0.28± 0.15%. Consequently, for the XDisp-GNN

model we selected the optimal learning rate of 1× 10−3.

108



(a) Learning rates: u (b) Message-passing steps: u (c) Hidden layer nodes: u

Figure 5.5: a) Cross-validation results for the XDisp-GNN model: Different learning rates were
tested, including 5 ×10−4, 5 ×10−3, 1 ×10−2, and 5 ×10−2, represented in light blue, while
our model’s learning rate of 1 ×10−3 is highlighted in yellow. b) Cross-validation results for
the XDisp-GNN model: Various message-passing steps were evaluated, ranging from 2 to 6,
indicated in light blue, with our model’s message-passing steps set to 1, highlighted in yellow.
c) Cross-validation results for the XDisp-GNN model: Different numbers of hidden layer nodes
were tested, including 8, 32, 64, 128, and 256, represented in light blue, while our model’s
hidden layer nodes were set to 16 and highlighted in yellow.

Next, Figure 5.5b displays the averaged percent errors for message-passing steps ranging

from 1 to 6. Notably, the model achieved the lowest percent error of 0.28±0.09% with message-

passing steps of M = 1, compared to an error of 1.27 ± 0.21% for the highest number of

message-passing steps of M = 6. Thus, we opted for the optimal parameter of M = 1 step

to enhance the XDisp-GNN model. We note that for less message-passing steps the required

training time and simulation is decreased.

Lastly, as illustrated in Figure 5.5c, we evaluated the number of nodes in the hidden layers

of the MLP network. Remarkably, employing 16 nodes yielded the least error at 0.31± 0.11%,

compared to the highest error of 0.53± 0.09% with 128 nodes for XDisp-GNN. It’s also worth

noting that higher node counts entail increased computational requirements. Consequently, we

selected a filter size of 16 for the ATGCN model in XDisp-GNN, aligning with the optimal

hidden layer nodes count obtained for XDisp-GNN.
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5.4.2 Cross-validation for YDisp-GNN

As illustrated in Figure 5.6, The process of cross-validation for YDisp-GNN involved evaluating

the averaged percent errors for y-displacement predictions across various learning rates, message-

passing steps, and numbers of nodes. In Figure 5.6a, the learning rate of 5 × 10−4 (yellow)

yielded lower error compared to the learning rates of 1×10−3, 5×10−3, 1×10−2, and 5×10−2

(light blue). For the learning rate of 5 × 10−4 the error was 1.99 ± 1.26%, while the highest

error of 10.47± 3.18% was obtained for learning rate of 1× 10−2. Additionally, Figure 5.6b

illustrates that the model achieved the lowest percent error with a single message-passing step

(M = 1) at 2.08± 1.17%, while the highest number of message-passing steps (M = 6) resulted

in the highest error at 4.30 ± 2.20%. Lastly, the cross-validation for the number of nodes is

shown in Figure 5.6c. Using 64 nodes, YDisp-GNN resulted in the lowest error of 2.08± 1.38%,

while the highest error of 2.95± 1.90% was obtained for the case of 128 nodes. We emphasize

that selecting the appropriate learning rate proved critical for achieving higher accuracy in

both XDisp-GNN and YDisp-GNN compared to the number of message-passing steps and

number of hidden layer nodes. Therefore, we opted for a filter size of 64 for the ATGCN model

in YDisp-GNN, aligning with the optimal number of hidden layer nodes for YDisp-GNN’s

message-passing GINE model.

5.4.3 Cross-validation for cPhi-GNN

As depicted in Figure 5.7, the final stage of the cross-validation process involved the cPhi-GNN

model. Similar to YDisp-GNN, the lowest error of 0.33 ± 0.12% was found for the optimal

learning rate of 5 × 10−4 (depicted in yellow). The highest error of 6.86 ± 0.81% occurred

with a learning rate of 5× 10−2. Regarding the number of message-passing steps, Figure 5.7b

indicates that M = 6 resulted in the highest error at 0.54± 0.10%, whereas the lowest error was

observed for M = 4 at 0.33± 0.04%. Moreover, considering the number of hidden layer nodes,

the configuration with 32 nodes exhibited the lowest percent error of 0.36± 0.06%, while 16

nodes yielded the highest percent error of 0.53± 0.08%. Consequently, similar to XDisp- and

110



(a) Learning rates: ν (b) Message-passing steps: ν (c) Hidden layer nodes: ν

Figure 5.6: a) Cross-validation results for the YDisp-GNN model: Various learning rates were
tested, including 1 ×10−4, 5 ×10−3, 1 ×10−2, and 5 ×10−2, represented in light blue, while our
model’s learning rate of 5 ×10−4 is highlighted in yellow. b) Cross-validation results for the
YDisp-GNN model: Different numbers of message-passing steps were evaluated, ranging from
2 to 6, indicated in light blue, with our model’s message-passing steps set to 1 and highlighted
in yellow. c) Cross-validation results for the YDisp-GNN model: Various numbers of hidden
layer nodes were tested, including 8, 16, 32, 128, and 256, represented in light blue, while our
model’s hidden layer nodes were set to 64 and highlighted in yellow.

YDisp-GNN, we opted for a filter size of 32 for the ATGCN model in cPhi-GNN, aligning with

the optimal number of hidden layer nodes for cPhi-GNN’s message-passing GINE model.

5.5 Results

5.5.1 ADAPT-GNN prediction of displacements, crack field and stresses

First, we showcase the framework’s proficiency in forecasting the evolution of the scalar damage

field ϕ, x-displacements ∆u, y-displacements ∆ν, and von Mises stress σV M for a crack

configuration from the test dataset characterized by a positive crack angle with a large crack

length and positioned at the bottom edge. Figure 5.8 provides a comparative analysis between

PF and ADAPT-GNN regarding the evolution of ϕ. We underscore that the results depicted

in Figures 5.8 and 5.12 involve both the time evolution along with the resulting errors for the

scalar damage field and displacement fields. These were acquired by cascading ADAPT-GNN

from t0 to Tf , implying that predictions from prior time-steps serve as inputs for subsequent

ones. We also highlight that during t1 to t33, the kinking of the predicted crack path was not as

sharp as in the PF model. Furthermore, we acknowledge the oscillations within the crack field

of the PF model, attributable to nuances in the second-order model and implementation errors.
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(a) Learning rates: ϕ (b) Message-passing steps: ϕ (c) Hidden layer nodes: ϕ

Figure 5.7: a) For the cPhi-GNN model, cross-validation was performed with various learning
rates: 1×10−4, 5×10−3, 1×10−2, and 5×10−2, represented in light blue. Our model’s learning
rate was determined to be 5 ×10−4 and is highlighted in yellow. b) The cross-validation results
also involved testing different numbers of message-passing steps, ranging from 1 to 6, shown in
light blue. Our model’s message-passing steps were set to 4 and are highlighted in yellow. c)
Additionally, the cross-validation process considered various numbers of hidden layer nodes: 8,
16, 64, 128, and 256, depicted in light blue. Our model’s hidden layer nodes were determined to
be 32 and are highlighted in yellow.

These discrepancies might transfer to ADAPT-GNN’s predictions. Despite these intricacies, our

results demonstrate a strikingly similar overall prediction of the crack path compared to the PF

fracture model throughout the simulation. In summary, these qualitative findings underscore

the efficacy of the developed GNN in accurately predicting the scalar damage field’s evolution,

thereby attesting to its robustness and reliability in fracture modeling scenarios.

Based on the same test case scenario illustrated in Figure 5.8, Figure 5.9 presents a

comparative analysis between PF and ADAPT-GNN for predictions of x- and y-displacements,

as well as von Mises stresses during t50. Upon inspection of the x-displacements, it’s evident

that the predicted field closely mirrors that of the PF fracture model, showcasing a remarkable

similarity. However, a discernible deviation emerges when scrutinizing the y-displacements.

Here, a notable prediction error becomes apparent within the sharp interface of positive to

negative y-displacements within the crack region. It’s important to note that in PF fracture

models, the y-displacement exhibits a sharp transition within the crack, from negative to positive

values. Therefore, errors within the crack region are less consequential in PF fracture models.

Furthermore, the plots in Figure 5.9 were generated utilizing the ”tricontourf ” function, which

interpolates between active mesh points using the y-displacement values. Consequently, the
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Figure 5.8: PF fracture model compared with ADAPT-GNN regarding the evolution of the scalar
damage field, ϕ, for a crack configuration from the test dataset. This configuration features a
positive crack angle with a large crack size (CL = 0.25 m) and bottom edge position (CP = 0.15
m).

highest y-displacement errors originating within the crack are interpolated to regions outside the

crack. Hence, Figure 5.9 underscores the framework’s adeptness in predicting y-displacements

with good accuracy in regions outside the crack.

Finally, Figure 5.5.2 highlights a pivotal aspect of the developed ADAPT-GNN framework:

its capacity to also simulate the stress evolution. The predicted displacement fields, and scalar

damage field can be leveraged to compute the resulting von Mises stresses in the material.

Notably, there exists a strong qualitative agreement between the von Mises stresses derived from

the PF model, and those obtained using ADAPT-GNN predictions. As a result, Figures 5.8 and

5.9 highlight the framework’s efficacy in simulating displacements, scalar damage field, and von

Mises stress with good accuracy. Additionally, as supplementary material, animations of seven

test cases have been included in [5], offering further insight into the framework’s predictive

capabilities.
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Figure 5.9: Comparison between the PF fracture model and ADAPT-GNN for predicting x-
displacements, ∆u, y-displacements, ∆ν, scalar damage field, ϕ, and computed von Mises
stress, σV M for the same test case scenario depicted in Figure 5.8. This scenario involves a
positive crack angle with a large crack size (CL = 0.25 m) and bottom edge position (CP = 0.15
m).

5.5.2 Prediction errors

Here, we comnputed the maximum % errors in order to gather the errors generated by the

XDisp-GNN, YDisp-GNN, and cPhi-GNN models using

%error = max

[
ΣM

i=1
1
M

(
|ϕpred(t, i)− ϕtrue(t, i)|

ϕtrue(t, i)

)
× 100

]
. . . {t ∈ Tf}. (5.8)

ϕtrue and ϕpred denote the true, and the predicted scalar damage fields, respectively, and Tf

denotes the final time for complete fracture. We note that while equation (5.8) is utilized to

quantify errors in ϕ, it is also applicable for computing errors in the displacement fields. The

maximum percent errors of XDisp-GNN, YDisp-GNN, and cPhi-GNN are visually represented

in Figures 5.10a, 5.10b, and 5.10c, respectively. The outcomes presented in Figure 5.10 illustrate

the maximum percent error derived such that the predictions from the previous time-steps are

employed as input to the subsequent time-step. As described in Section 5.5 and shown in

Figure 5.8, the PF simulator adopted in this study is susceptible to instability errors due to

oscillations in the scalar damage field within the crack region. Since these errors are located in

the active nodes of the refined mesh within the crack, the computation of errors at these nodes

may exhibit inconsistencies compared to the remaining nodes outside the crack. Moreover,

because ADAPT-GNN provides predictions for all mesh points inM, for each time-step in the
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(a) Percent Errors in u (b) Percent Errors in ν (c) Percent Errors in ϕ

Figure 5.10: Maximum percentage errors across time for each simulation in the test set (Case 1 -
Case 30) for: a) Predicted u. b) Predicted ν. c) Predicted ϕ.

simulations, we initially obtain the average percent error for all mesh points. As demonstrated in

equation (5.8), we then select the maximum percent error across time for each simulation. This

meticulous error analysis procedure ensures that the generated errors are effectively captured

across all nodes inM. As depicted in Figure 5.10a, we identify the test case exhibiting the

highest % error in the predicted x-displacement field, u, as 1.98± 0.27% error for Case 11. In

contrast, the lowest % error is attributed to Case 9, with a value of 0.24± 0.33%. Examining

Figure 5.10b, for y-displacements, Case 22 exhibits the highest % error at 2.74± 0.26%, while

the most accurate prediction is observed in Case 8, achieving 1.32± 0.05% error. Similarly, in

terms of the scalar damage field, ϕ, the maximum prediction error is encountered in Case 13,

standing at 0.19± 0.13%, while lowest error is seen in Case 3 of 0.01± 0.06%. These findings

underscore the efficacy of ADAPT-GNN in accurately forecasting displacements and crack

propagation. Despite YDisp-GNN exhibiting the highest error among the three implemented

GNNs, a maximum % error of 2.74±0.26% translates to micrometers in a 0.5m×0.5m domain,

underscoring its significant accuracy.

5.5.3 Parametric error analysis of initial crack length and crack orientation

To investigate the influence of initial crack lengths and orientations on the prediction errors, we

partitioned the test dataset into four categories: (i) θc < 0o; Lc < 0.25 m for small crack length

+ negative crack orientation, (ii) θc > 0o; Lc < 0.25 m for small crack length + positive crack

orientation, (iii) θc < 0o; Lc ≥ 0.25 m for large crack length + negative crack orientation, and

(iv) θc > 0o; Lc ≥ 0.25 m for large crack length + positive crack orientation. Subsequently,
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we calculated the mean and standard deviation of the maximum percent errors of each group.

For each of these parametric groups, the resultant x-displacement, y-displacement, and scalar

damage field errors are shown in Figure 5.11a, Figure 5.11b, and Figure 5.11c, respectively.

First, from Figure 5.11a we show that XDisp-GNN exhibits a noticeable distinction in the

errors concerning small versus large crack lengths. For cracks of smaller length, the initial

crack orientation does not exert a significant influence on the percent error. For example, the

errors for small initial crack lengths involving positive and negative initial orientations are

0.55± 0.09% and 0.56± 0.07%, respectively, differing only by approximately 0.01%. However,

as the crack length increases beyond 0.24 m, the errors escalate. Moreover, for cases involving

large crack lengths, the initial crack orientation does impact XDisp-GNN’s prediction accuracy.

The highest error was obtained for the group with negative orientations and large crack lengths

at 1.00 ± 0.18% occurs. In contrast, for large crack lengths with positive crack orientations,

the error diminished to 0.78± 0.13%. Section 5.5.2 describes a plausible justification for why

the groups involving smaller crack lengths yield lower errors. The highest mesh-wise errors

for x-displacements were observed during the first time-steps. At the initial time-steps, the

applied displacement load steadily increases until the crack smoothly propagates. As the crack

begins to propagate smoothly, the errors then diminish throughout the remaining time-steps.

Consequently, a smaller crack necessitates more time-steps for complete propagation across the

domain. Essentially, smaller cracks entail more time-steps where crack propagation is smooth,

resulting in lower errors compared to larger cracks. Therefore, regardless of the initial crack

orientation, XDisp-GNN excels in configurations with smaller crack lengths, whereas for larger

cracks, it achieves greater accuracy for configurations involving positive orientations.

Next, in Figure 5.11b we present the resulting parametric analysis regarding the effects

of initial crack length and crack orientation for YDisp-GNN. Unlike XDisp-GNN, the highest

error for YDisp-GNN was obtained for cases involving smaller crack lengths and positive crack

orientations. These cases resulted in errors of 1.83 ± 0.38%. In contrast, the lowest error for

YDisp-GNN of 1.41 ± 0.18%, was obtained for cases with larger crack lengths and negative

crack orientation. Notably, both groups with positive crack orientations exhibited similar errors.

For instance, the error difference between cases involving larger cracks + positive orientations,
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(a) Percent Errors in u (b) Percent Errors in ν (c) Percent Errors in ϕ

Figure 5.11: Parametric error analysis was conducted to assess the contribution of initial crack
angles and crack lengths on: a) Predicted u. b) Predicted ν. c) Predicted ϕ.

and smaller cracks + positive orientations was approximately 0.02%. However, for the groups

with negative crack orientations, the optimal performance was observed when for larger cracks.

Lastly, as depicted in Figure 5.11c for cPhi-GNN, we note that the group with the highest

error corresponded to smaller crack lengths with negative crack orientations, yielding 0.21±

0.11%. The lowest error for cPhi-GNN was observed as 0.06± 0.04% for cases featuring larger

crack lengths with negative crack orientations.

5.5.4 Parametric error analysis of initial edge position and crack orientation

To examine the impact of varying initial edge positions and crack orientations on prediction

errors, we employ a similar approach as detailed in Section 5.5.3. We divide the test dataset

into four distinct groups: (i) θc < 0o; Pc < 0.25 m for bottom edge position + negative crack

orientation, (ii) θc > 0o; Pc < 0.25 m for bottom edge position + positive crack orientation, (iii)

θc < 0o; Pc ≥ 0.25 m for top edge position + negative crack orientation, and (iv) θc > 0o; Pc ≥

0.25 m for top edge position + positive crack orientation. The prediction errors corresponding to

each parametric group for x-displacement, y-displacement, and scalar damage field are shown in

Figure 5.12a, Figure 5.12b, and Figure 5.12c, respectively.

The results for XDisp-GNN presented in Figure 5.11a reveal the lowest errors for cases

featuring cracks with Pc < 0.25 m (i.e., a bottom edge position). For example, cases with a

bottom edge position + negative crack orientation exhibited errors of 0.69± 0.09%, and cases

with a bottom edge position + positive crack orientation yielded errors of 0.59±0.09%. Moreover,

for XDisp-GNN the highest error of 0.84±0.15% occurred for cases involving top edge positions
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+ negative crack orientations. We recall from Section 5.5.3, that for cases involving large cracks

the highest error (1.00± 0.18%) was obtained for negative crack orientations. In contrast, the

error then decreased for positive crack orientations (0.78 ± 0.13%). Combining the insights

from Figure 5.12a and Figure 5.11a discussed in Section 5.5.3, we note that the XDisp-GNN

model achieved better accuracy for initial conditions with small crack length, positive crack

orientation, and bottom edge position.

Unlike XDisp-GNN, the lowest errors for YDisp-GNN were obtained for cases top edge

position. For instance, the prediction errors were obtained as 1.37 ± 0.2% and 1.61 ± 0.3%

for θc < 0o; Pc ≥ 0.25 m and θc > 0o; Pc ≥ 0.25 m, respectively. Additionally, the highest

error was obtained as 1.98± 0.38% for the group with bottom edge position + positive crack

orientations. To discern why YDisp-GNN yielded lower prediction errors for cases with cracks

situated at the upper edge position, it’s essential to consider the load distribution. In this study,

a uniform tensile displacement load was applied in the positive y-direction along the upper

edge of the boundary. Therefore, cracks initially positioned near the top edge of the domain

(i.e., where the tensile load is concentrated) may offer more information towards enhancing

YDisp-GNN’s predictive accuracy. Drawing insights from the analysis presented in Figure 5.11b

within Section 5.5.3, along with Figure 5.12b, it becomes evident that YDisp-GNN excelled

particularly in scenarios featuring large crack length, negative crack orientation, and top edge

position.

Finally, as depicted in Figure 5.12c, the error analysis for cPhi-GNN reveals a pattern

consistent with the observations made in Sections 5.5.3 through 5.5.4. Previously, we noted that

predictions of ϕ were minimally influenced by crack orientations, while crack lengths played

a more significant role in model accuracy. In line with this, the lowest error of 0.11 ± 0.07%

was observed for the configuration involving a top edge position and negative crack orientation.

Conversely, the highest error of 0.17± 0.10% was recorded for the scenario with a bottom edge

position and positive crack orientation. Ultimately, the data in Figure 5.12c and the discussion

in Section 5.5.3, we can conclude that cPhi-GNN performed most effectively in scenarios

characterized by larger crack length, negative crack orientation, and top edge position.
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(a) Percent Errors in u (b) Percent Errors in ν (c) Percent Errors in ϕ

Figure 5.12: Parametric error analysis was conducted to assess the contribution of initial crack
angles and initial edge positions on: a) Predicted u. b) Predicted ν. c) Predicted ϕ.

5.5.5 Simulation time analysis

We conducted a comparative analysis of simulation times between ADAPT-GNN and the

PF fracture model, to evaluate the computational efficiency of the ADAPT-GNN framework.

Using an Nvidia GeForce RTX 3070 ti GPU on a personal computer system, we measured

the simulation time for ADAPT-GNN across the entire test dataset. The simulation time for

ADAPT-GNN was initialized prior to loading each model, and finalized at the last time-step. A

similar procedure was followed for the PF fracture model. Figure 5.13 presents the mean and

standard deviation of the simulation time per time-step for the PF fracture model compared to

ADAPT-GNN. Notably, ADAPT-GNN showcased superior performance, achieving simulation

times 15x to 36x faster than the PF fracture model. Moreover, significant enhancements in

ADAPT-GNN’s performance can be achieved by leveraging more advanced GPU units. It’s

important to acknowledge that while ADAPT-GNN exhibited superior performance in this

instance, the PF model utilized in this study lacked CPU parallelization. A PF model with

optimal parallel scaling may outperform ADAPT-GNN when employing more than 16 or 32

processors. Additionally, the extensive training times required for each model within the

ADAPT-GNN framework should be considered. For instance, training each model for a total of

20 required 9 hours and 22 minutes for each XDisp-GNN and YDisp-GNN model, and 10 hours

and 57 minutes for cPhi-GNN. This translates to a cumulative training time of 29 hours and 41

minutes for the framework. In scenarios where training the models from scratch is necessary,

ADAPT-GNN would begin to outperform the PF model for 34+ simulations of 100 time-steps
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Figure 5.13: Simulation time analysis comparing the PF fracture model to the GNN framework
revealed a 36x speed-up achieved by the ADAPT-GNN model.

each. Additionally, a significant drawback of data-driven ML methods is the substantial time

required for dataset collection. For example, approximately 30 days were needed to generate

1245 simulations by simultaneously running 3-4 PF models. This underscores the importance of

conventional fracture models, such as PF models, in facilitating the development of new ML

frameworks aimed at accelerating computational times in the future. It’s crucial to emphasize

that this study does not aim to replace conventional PF fracture models but rather to demonstrate

the potential of ML in expediting computational times.

5.6 Conclusion

In conclusion, the emergence of mesh-based GNN models represents a promising avenue for

simulating complex fracture phenomena with notable computational efficiency gains compared

to traditional high-fidelity computational models. However, the integration of this approach

into PF simulations with AMR remains largely unexplored in prior studies. Addressing this

gap, our work introduces an adaptive mesh-based GNN framework (ADAPT-GNN) designed to

emulate PF fracture models for scenarios involving single-edge notched cracks under tensile
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loading conditions. From Figure 5.1, the ADAPT-GNN framework predicts the x- and y-

displacement fields first, followed by the prediction of the scalar damage field at subsequent

time-steps. These predicted displacement fields as well as the scalar damage field values are

then leveraged to compute the stress distribution within the material. A distinguishing feature

of the developed framework is its ability to harness the computational efficiencies offered by

both ML techniques and AMR. This is accomplished by formulating each instantaneous graph

using the instantaneous refined mesh itself. When utilizing an NVIDIA GeForce RTX 3070 Ti

GPU on a personal computer, this dynamic graph representation results in significant simulation

speed-ups, achieving up to 36 times faster computation times compared to the PF fracture model.

The framework also demonstrates commendable prediction accuracies across the test dataset,

with maximum errors of 1.98± 0.27%, 2.74± 0.26%, and 0.19± 0.13% for x-displacements,

y-displacements, and scalar damage field values, respectively.

However, it is essential to acknowledge several limitations inherent to the ADAPT-GNN

framework. Notably, the PF model utilized in this study lacked parallel CPU capabilities,

potentially impacting comparative performance metrics in scenarios with extensive processor

utilization. For instance, using 16 or 32 processors in a PF model with parallel CPU capabilities

may result in faster simulation time than the ADAPT-GNN framework. Additionally, the

necessity for re-training each model in the framework may limit the framework’s superior

simulation time over the PF model for generating less than 34 simulations (each comprising 100

time-steps). Furthermore, ADAPT-GNN currently lacks the capability to predict cases involving

center cracks, shear loading, and cracks located at the right edge of the domain, underscoring

the importance of conventional fracture models in advancing ML algorithms.

Looking ahead, future endeavors may explore transfer learning (TL) approaches, such

as those proposed by Perera et al. [4], to enhance the framework’s predictive capabilities for

unseen scenarios. Extending the ADAPT-GNN framework to encompass a broader range of PF

models beyond fracture models is a promising direction for research. As novel GNN techniques

continue to evolve, innovative methodologies like subgraphs may be investigated to further

enhance computational efficiency and accuracy in fracture simulations.
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5.7 Data availability

The trained models with examples can be found in the following GitHub repository https:

//github.com/rperera12/Phase-Field-ADAPT-GNN. Supplementary data con-

taining animations have been included along with the manuscript.
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Chapter 6

Multiscale graph neural networks with adaptive mesh refinement for accelerating mesh-based
simulations

6.1 Introduction and motivation

Recently, mesh-based GNNs have garnered attention across various engineering domains [252,

253, 254, 5, 255, 256]. However, mesh-based GNNs face challenges when dealing with problems

characterized by very fine meshes. The inherent message-passing (MP) blocks [176] utilized

in these frameworks for information transfer and relation learning between nodes and edges

[169, 258] introduce a significant challenge. For fine meshes, GNN-based approaches often

necessitate numerous MP blocks to effectively capture relationships between nodes located

far apart, a requirement that is unfavorable for many mesh-based problems where information

exchange between distant nodes is crucial for achieving high accuracies. Moreover, increasing

the number of MP blocks can lead to over-smoothing [264, 265, 266].

To address these challenges, Multiscale GNNs have emerged [267], mimicking traditional

iterative multigrid schemes. These models undergo multiple graph coarsening operations,

generating smaller meshes at each level, which are subsequently processed through MP blocks

[268, 269, 270]. The downscaled mesh levels establish new connections between distant

nodes, facilitating information transfer beyond previous local neighborhoods and mitigating

the need for an excessive number of MP steps. This technique has demonstrated superior

accuracy compared to conventional mesh-based GNNs across dynamic problems such as PF

crack propagation [6], flow field predictions [271], fluid dynamics over varying-shaped rigid

bodies [272, 273], and time-independent PDEs on unstructured meshes and sparse linear systems

[274, 275, 276]. Despite their efficacy to avoid over-smoothing, these studies were formulated
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using fixed initial graphs and employed different graph-pooling techniques for downsampling

steps [277, 272, 278, 279], which can potentially increase computational costs and have yet to

be tailored for problems involving AMR.

In this study, we propose a novel multiscale GNN coupled with block-structured AMR

(BSAMR) to simulate time-evolving mesh-based problems featuring near-singular operators. An

example of a highly complex mesh-based time-evolving problem featuring near-singular is PF

fracture. Our framework introduces a straightforward and computationally efficient downsam-

pling/upscaling strategy for mesh-based AMR scenarios by leveraging multiple mesh resolution

levels. Specifically, as depicted in Figure 6.1 our downsampling/upscaling approach iteratively

reduces the mesh size by eliminating the highest mesh refinement level during each coarsening

operation. We evaluate the framework’s performance on PF fracture problems employing five

AMR levels and compare the accuracy and computational time of three coarsening approaches:

(i) four coarsening/downscale operations, (ii) two coarsening/downscale operations, and (iii)

one coarsening/downscale operation, progressing from the finest to the coarsest mesh resolution.

Initially focusing on Mode-I fracture problems featuring a single crack on the left domain edge,

we then implement TL [280, 4] to extend the framework’s applicability across other configura-

tions of initial conditions. For instance, cases involving (i) center cracks, (ii) right-edge cracks,

and (iii) shear loading. Subsequently, we conduct a comprehensive accuracy analysis for each

problem configuration and compare the computational efficiency of our developed multiscale

and adaptive GNN framework against high-fidelity PF models.

6.2 Methods

6.2.1 Physics based PF fracture model

In this study, we present a multiscale mesh-based GNN framework coupled with BSAMR

tailored for PF fracture problems. PF fracture simulations pose significant computational

challenges due to two main factors: (i) the presence of near-singular operators arising from

the near-zero modulus within the crack field, and (ii) the necessity of high mesh resolution in

the vicinity of the crack tip to accurately capture the crack propagation behavior. Towards the
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Figure 6.1: The architecture of the multiscale GNN framework for the Four-Stage Refinement
architecture is as follows: The model initially utilizes MLP networks to encode the input graph
representation. The feature embedding then undergoes processing through MP GNN blocks
followed by mesh coarsening operations denoted by GNND1 and GNND2. An additional MP
GNN block, GNNn, operates on the coarsest mesh. Subsequently, the resulting coarsened
embedding is reconstructed through MP GNN blocks followed by mesh upscaling operations
denoted by GNNU3 and GNNU4. The dashed green lines defines skip connectors. Finally, the
reconstructed embedding is passed through a decoder MLP network to predict the crack field
and displacement fields at future times.

PF formulation of fracture mechanics, the sharp crack is regularized using the smooth scalar

field ϕ(x), which varies continuously between 0 and 1. This scalar damage field is utilized to

construct an energy functional Π, which is subsequently minimized to derive a set of coupled

PDEs governing elastic equilibrium and crack propagation. For a detailed review of the PF

fracture formulation, readers are directed to the extensive literature on the subject [281].

In our work, we adopt a second-order energy functional as described in Section 5.2.1 of

Chapter 5. Following the methodology outlined in [5], we consider a linear elastic isotropic

brittle material with dimensions 0.5m× 0.5m, characterized by a Young’s modulus of E = 210

GPa, a Poisson’s ratio of ν = 0.3, and a fracture energy density of Gc = 2.7 N/m2, with a

characteristic length scale d = 0.0125m. In our simulations, we fix the bottom edge of the

material and apply displacement along the top edge, with loading direction corresponding

to the desired loading condition (tensile or shear). We systematically vary the initial crack

length CL, edge position CP , and crack angle Cθ to generate datasets encompassing diverse

initial conditions, enabling comprehensive analysis and evaluation of our proposed framework’s

performance.
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(a) Initial refined graph:Mref
4 (b) Second downscale graph:
Mref

2

(c) Fourth downscale graph:
Mref

0

Figure 6.2: The representation of the instantaneous refined mesh graphs includes: a) Refinement
levels 0-4. b) Refinement levels 0-2. c) Refinement level 0 (i.e., coarsest mesh).

6.2.2 Graph Neural Network

To define the graph representation for the multiscale and adaptive GNN framework with BSAMR

capabilities, we modified the approach used in the ADAPT-GNN, as described in Section 5.2.2

of Chapter 5. As depicted in Figure 6.2, similar to the ADAPT-GNN model, we constructed

the graph representation utilizing the instantaneous refined mesh Mref : ⟨U,E⟩, where U

encompasses the mesh vertices and E comprises the resulting mesh edges. Node features ξs

incorporate the mesh vertex positions P̂ s, their corresponding x- and y-displacement values D̂s,

and their scalar damage field values ϕs. In addition to these existing features, we introduced two

new node features to represent the applied displacement loading along the x- and y-directions,

denoted as u0s, v0s, respectively.

P̂s = {(xs, ys)} {s ∈ U}, {U ∈Mref},

D̂s = {(us, vs)} {s ∈ U}, {U ∈Mref},

{ξs} = {P̂s, D̂s, ϕs, u0s , v0s} {s ∈ U}, {U ∈Mref}. (6.1)

These applied displacement loading features enable the framework to distinguish between cases

subjected to tensile loading and those experiencing shear loading. Edge features esr are defined

based on the binary connectivity array with values of bsr ∈ 0, 1, where s and r denote the

”sender” and ”receiver” nodes, respectively. Specifically, bsr = 1 for nodes sharing an edge, as
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well as for cases where s = r.

{esr} = {ξs, ξr, bsr} {(s, r, bsr) ∈ E}, {E ∈Mref}. (6.2)

Moreover, as shown in Figure 6.2a, we construct the initial graph for each time-step in

a given simulation using the instantaneous refined mesh comprising all five mesh resolution

levels, denoted asMref . The framework then iteratively removes each refinement level until

reaching the coarsest mesh at level 0 resolution, as illustrated in Figure 6.1. We define the

resulting graphs as follows: (i)Mref4 representing the initial instantaneous refined mesh with

mesh resolution levels 0-4, (ii)Mref3 denoting the first downscaled mesh with mesh resolution

levels 0-3, (iii)Mref2 denoting the second downscaled mesh with mesh resolution levels 0-2,

(iv)Mref1 representing the third downscaled mesh with mesh resolution levels 0-1, and (v)

Mref
0 representing the coarsest downscaled mesh with mesh resolution level 0 only.

6.2.3 Multiscale GNN framework

The presented multiscale and adaptive GNN framework seamlessly integrates AMR into a

multigrid approach. The initial mesh refinement graph undergoes coarsening by removing

the finest mesh level at each coarsening operation step. This coarsening process enhances

connectivity between distant nodes, enabling the transfer of information beyond previous local

neighborhoods. The approach reduces the number of MP steps required, thereby mitigating over-

smoothing and substantially decreasing computational costs while preserving high prediction

accuracy.

In Figure 6.1, we show the architecture of the multiscale GNN framework. As depicted in

Figure 6.2a and defined in Section 6.2.2, the initial step of the framework involves feeding the

graph representation for a given time “t”, into an encoder network. Here, we employ an MLP

model denoted as MLPin to serve as the encoder network.

{ξ′

s} ←MLPin{ξt
s, e

t
sr} {s ∈ U}, {(s, r, bsr) ∈ E}, {(U,E) ∈Mref}. (6.3)
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To capture relationships within local neighborhoods, the resulting latent-space embedding,

denoted as ξ′
s, is then fed into an MP block, labeled as GNN1. In this framework, we utilize

Graph Transformers [282] for the MP networks. Originally introduced for sequence modeling

and language translation tasks [283], Graph Transformers have been extended for graph-based

applications by incorporating multi-head and self-attention mechanisms to process vertex and

edge features of neighboring vertices, thereby generating additional attention embeddings [282].

The architecture of all Transformer MP networks our framework consist of four attention

heads and 128 hidden nodes. The block labeled as “GNND1” in Figure 6.1 encompasses the

first MP network, GNN1, along with the first downscale operator, Down1. Each downscale

operator removes the current finest mesh refinement level. For example, Down1 from Figure

6.1 eliminates refinement level 4 from the graphMref
4 shown in Figure 6.2a. The resulting new

graph from the Down1 operator is graphMref
3 .

{ξ4
s} ← GNN1{ξ

′

s, e
t
sr} {s ∈ U}, {(s, r, bsr) ∈ E}, {(U,E) ∈Mref},

{ξ3
s} ← Down1{ξ4

s , e
t
sr, e

3
sr} {s ∈ U3}, {(s, r, bsr) ∈ E3}, {(U3,E3) ∈Mref

3 }. (6.4)

Where ξ4
s represents the resulting node embedding obtained from the MP block GNN1 in

the refined meshMref . Additionally, e3
sr denotes the edge feature vector for the downscaled

meshMref
3 , and ξ3

s denotes the resulting downscaled node embedding transitioning fromMref

toMref
3 . Similarly, the block labeled as “GNND2” in Figure 6.1 encompasses another MP

network, GNN2, along with the second downscale operator, Down2. As depicted in Figure

6.2b, Down2 results in graphMref
2 by eliminating refinement level 3 from the graphMref

3 .

{ξ3
s} ← GNN2{ξ3

s , e
3
sr} {s ∈ U∋}, {(s, r, bsr) ∈ E∋}, {(U3,E3) ∈Mref

3 },

{ξ2
s} ← Down2{ξ3

s , e
3
sr, e

2
sr} {s ∈ U2}, {(s, r, bsr) ∈ E2}, {(U2,E2) ∈Mref

2 }, (6.5)

where e2
sr represents the edge feature vector for the downscaled meshMref

2 , and ξ2
s denotes

the resulting downscaled node embedding transitioning fromMref
3 toMref

2 . This process is

repeated using two additional MP blocks, each followed by their respective coarsening operations.
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As illustrated in Figure 6.2c, these operations result in the downscaled node embedding for the

coarsest mesh ξ0
s , fromMref

1 toMref
0 . The framework then incorporates an additional MP

network, labeled as “GNNn” in Figure 6.1, for operating on ξ0
s .

{ξ0′

s } ← Agg
[
ξ0

s , GNNn{ξ0
s , e

0
sr}
]

{s ∈ U0}, {(s, r, bsr) ∈ E0}, {(U0,E0) ∈Mref
0 }.(6.6)

Where, e0
sr denotes the edge feature vector for the downscaled mesh Mref

0 as depicted in

Figure 6.2c. The operation Agg refers to an aggregation operation for the skip connectors,

which are illustrated as dashed green lines in Figure 6.1. Finally, ξ0′

s denotes the resulting node

embedding for meshMref
0 obtained by aggregating the outputs from MP block GNNn and the

skip connector.

In this step, ”GNNU1” incorporates the first Upscale operation, denoted as Up1, to recon-

struct mesh level 1 (Mref
1 ). This includes the skip connector from the node embedding ξ1

s to the

MP GNN, represented as GNN4.

{ξ1′

s } ← Up1{ξ0′

s , e
0
sr, e

1
sr} {s ∈ U1}, {(s, r, bsr) ∈ E1}, {(U1,E1) ∈Mref

1 },

{ξ1′′

s } ← Agg
[
ξ1

s , GNN4{ξ1′

s , e
1
sr}
]

{s ∈ U1}, {(s, r, bsr) ∈ E1}, {(U1,E1) ∈Mref
1 }.(6.7)

ξ1′

s represents the reconstructed node embedding from Up1, which involves transitioning from

Mref
0 toMref

1 . ξ1′′

s then represents the resulting node embedding for meshMref
1 , derived from

aggregating the output of the MP block GNN4 and the skip connector originating from ξ1
s . As

depicted in Figure 6.2b, ”GNNU2” employs the second Upscale operation, Up2, to reconstruct

meshMref
2 . This operation is followed by the skip connector from ξ2

s to GNN3.

{ξ2′

s } ← Up2{ξ1′

s , e
1
sr, e

2
sr} {s ∈ U2}, {(s, r, bsr) ∈ E2}, {(U2,E2) ∈Mref

2 },

{ξ2′′

s } ← Agg
[
ξ2

s , GNN3{ξ2′

s , e
2
sr}
]

{s ∈ U2}, {(s, r, bsr) ∈ E2}, {(U2,E2) ∈Mref
2 },(6.8)

In this equation, ξ2′

s represents the resulting reconstructed node embedding from the upscale

operation, Up2, involving the transition fromMref
1 toMref

2 . ξ2′′

s represents the resulting node

embedding for mesh Mref
2 , which is derived from aggregating the output of the MP block
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GNN3 and the skip connector originating from ξ2
s . As shown Figure 6.1, this process is repeated

using two additional upscale blocks (GNNU3 and GNNU4) until the initial refined meshMref

with mesh levels 0-4 is reconstructed, yielding the resulting aggregated node embedding ξ4′′

s .

The final generated reconstructed embedding, ξ4′′
s , serves as input to a Decoder MLP

network, MLPout, which transfers the embedding from the latent-space to the real-space for

predicting the displacements and scalar damage field values at the future time-step, denoted as

“t+ 1”.

{ξt+1
s } ←MLPout{ξ4′′

s , et
sr} {s ∈ U}, {(s, r, bsr) ∈ E}, {(U,E) ∈Mref}. (6.9)

6.2.4 Single-Stage, Two-Stage, and Four-Stage Refinement GNNs

Although increasing the number of downscale/upscale operations and MP GNNs typically

enhances the framework’s ability to capture intricate features and relationships within the data,

potentially leading to higher prediction accuracy, this comes at the expense of computational

resources, including increased memory usage and longer training and inference times. Therefore,

we evaluated three different architectures to balance prediction accuracy with computational

cost following the methods described in Section 6.2.3. For each new architecture, we reduced

the number of upscale/downscale operations, and MP blocks. These architectures are as follows.

1. Four-Stage Refinement (FSR) GNN: This framework involves four downscale and four

upscale operations, resulting in multiple MP GNNs and intermediate mesh resolution

levels. Detailed in Section 6.2.3.

2. Two-Stage Refinement (TSR) GNN: The TSR framework consists of two downscale

and two upscale operations. Each operation accounts for two mesh resolution levels,

effectively reducing the number of MP blocks and intermediate steps. For example, the

first downscale operation, GNND1, removes mesh resolution levels 4 and 3, resulting in a

downscaled node embedding ξ2
s for the graphMref

2 . Expected to be faster than FSR due

to the reduced complexity.
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(a) Left-edge crack in ten-
sion

(b) Center crack in ten-
sion

(c) Left-edge crack in
shear

(d) Right-edge crack in
tension

Figure 6.3: The setup for the problem geometry and input parameters CP , Cθ, CL is as follows:
a) Initial case involving left-edge cracks under tension. b) Center cracks under tension. c)
Left-edge cracks under shear. c) Right-edge cracks under tension.

3. Single-Stage GNN (SSR): SSR involves only one downscale and upscale operation,

significantly simplifying the architecture compared to FSR and TSR by removing three

downscale/upscale operations, and six MP blocks. For example, the single downscale

operation GNND1 removes mesh resolution levels 1-4 directly from the initial node

embedding ξ4
s , resulting in the coarsest mesh level depicted in Figure 6.2c. SSR is the

least computationally expensive as it eliminates the need for intermediate mesh resolution

levels and additional MP Transformer GNNs.

These frameworks offer a trade-off between prediction accuracy and computational cost,

with SSR being the most computationally efficient but potentially sacrificing some accuracy

compared to FSR and TSR.

6.2.5 Transfer learning

To train the adaptive multiscale GNN framework across different case studies, we collected

a dataset comprising 1100 PF fracture simulations for single-edge notched systems subjected

to tension (shown in Figure 6.3a) from previous research [5]. Each simulation represented a

unique crack configuration with variations in initial crack orientation Cθ, crack length CL, and

edge position CP . Next, we trained the multiscale GNN framework using the gathered dataset.

During training, the model learned to predict displacement and damage fields based on input

graph representations derived from the simulation data. To adapt the pretrained multiscale GNN

to new case studies, we then employed TL. This involved transferring the weights of the encoder
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MLP MLPin, and the first MP model GNND1, from the pretrained framework for left-edge

crack systems, into a new framework defined using similar architecture.

We then performed a sequence of TL update steps, transferring the pretrained weights to

each new case study. This iterative process allowed the model to fine-tune its parameters and

adapt to the specific characteristics of each case. Thus, ensuring that the adaptive multiscale

GNN framework effectively leveraged knowledge learned from the initial training phase and

adapted to new cases with varying crack configurations and loading conditions. Four case studies

were considered for TL using this approach.

• Case 1: Left-edge cracks subjected to Mode I loading as shown in Figure 6.3a.

• Case 2: Center cracks subjected to Mode I loading as shown in Figure 6.3b.

• Case 3: Left-edge cracks subjected to Mode II loading as shown in Figure 6.3c.

• Case 4: Right-edge cracks subjected to Mode I loading as shown in Figure 6.3d.

In Case 1, left-edge cracks propagate exclusively towards the right. In contrast, Case 2

involves center cracks that can propagate in both left and right directions, thereby enhancing

the framework’s adaptability. To address Cases 2 and 3, which entail center cracks and shear

loading scenarios, we utilized the PF model introduced in [211] to generate new datasets. Each

case comprised 30 simulations, divided equally as 15 simulations for training and 15 simulations

for testing purposes. In Case 4, we capitalized on the symmetry observed in the left-edge

crack scenario (Case 1) by mirroring 30 randomly selected simulations from the training data

developed for Case 1. It’s noteworthy that the adoption of TL led to a substantial reduction in the

number of simulations required for the training data, shrinking from 1100 simulations in Case 1

to just 15 simulations per case in Cases 2-4. This reduction, approximately 70 times smaller,

underscores the efficiency gains enabled by TL. The integration of TL not only facilitates

the extension of the multiscale GNN framework to diverse crack problems but also enhances

simulation efficiency and reduces computational costs significantly.
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(a) Crack field, ϕ.

(b) X-displacement fields, u

(c) Y-displacement fields, v

Figure 6.4: Comparing the FSR, TSR, and SSR frameworks with the high-fidelity PF model in
left-edge crack cases subjected to tension for predicting: a) The crack field, ϕ. b) X-displacement
fields. c) Y-displacement fields.

6.3 Results and discussion

6.3.1 Prediction and error analysis for FSR, TSR and SSR

Here, we present a comparison of the performance of the FSR, TSR, and SSR architectures

within the multiscale GNN framework. We obtained predictions for the crack variable ϕ, x-

displacement, and y-displacement for left-edge crack cases. Figures 6.4a - 6.4c illustrate the

predicted ϕ values and displacements for a randomly selected simulation from the test dataset of

Case 1. The chosen simulation features a crack positioned near the top of the domain’s left edge,

with a positive angle, gradually approaching the right edge, indicating complete material failure.

All three architectures exhibit nearly identical predictions for ϕ compared to PF (left-most case
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shown from Figure 6.4a). Similarly, Figures 6.4b - 6.4c show that the FSR, TSR, and SSR

architectures qualitatively predict displacements with remarkable accuracy. This qualitative

analysis indicates that despite the reduced number of downsampling/upsampling steps, the TSR

and SSR architectures are capable of maintaining prediction accuracy.

Next, we computed errors for each simulation in the test dataset. For each time-step of

each simulation, we calculated the average percent error across all mesh points inMref . For

each simulation, we then averaged these percent errors across all time-steps. For instance, the

error for the crack field was computed as:

ϕerror = 1
Tf

Tf∑
t

[
1
M

M∑
s

|ϕpred
s − ϕtrue

s |
ϕtrue

s

× 100
]

t

. (6.10)

Here, ϕtrue
s defines the PF scalar damage field, ϕpred

s denotes the predicted scalar damage field,

M defines the total number of mesh points inMref , t represents the first predicted time-step,

and Tf the final predicted time-step. We used equation (6.10) and compiled the errors in ϕ and

displacements for each test simulation across the FSR, TSR, and SSR models. Figures 6.5a -

6.5c illustrate the errors in ϕ and displacements obtained for the FSR model. The errors in ϕ

and displacements for the TSR model are shown in Figures 6.5d - 6.5f. Similarly, for the SSR

model, Figure 6.5g - 6.5i depict the resulting errors for ϕ and displacements.

Comparing errors in ϕ (left-most), we observe that all architectures exhibited average errors

below 0.3%. Similarly, errors in x-displacement and y-displacement remained under 0.35%

for the FSR, TSR, and SSR models. Despite the reduced number downsampling/upsampling

steps, these results demonstrate that the TSR and SSR architectures maintained high prediction

accuracy, confirming the earlier results from the qualitative analysis.

Subsequently, for each architecture we computed the resulting average percent errors of the

testing simulations. As shown in Figure 6.6a, although the FSR architecture exhibited the highest

accuracy in predicting ϕ, SSR displayed lower errors compared to TSR. For predictions of x-

displacement, the FSR and SSR models demonstrated close errors at around 0.08%. However,

the TSR model yielded the lowest error x-displacement. For predictions of y-displacement, the

FSR and TSR models showcased low errors of similar magnitude (roughly 0.08%). The SSR
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model recorded the highest y-displacement error nearing 0.12%. Ultimately, the figure illustrates

that for TSR and SSR, reducing the number of refinement steps did not notably escalate errors

in predictions. We note that even the highest obtained error when predicting y-displacement

using SSR remains considerably low at 0.12% compared to previous research [5].

6.3.2 Simulation time analysis for FSR, TSR, and SSR

We conducted a computational cost comparison among the FSR, TSR, and SSR architectures

by assessing the time needed to generate 30 simulations. In Section 6.3.1, we demonstrated

that despite fewer downscaling and upscaling operations in the TSR and SSR architectures,

prediction errors did not notably increase. However, each downscale/upscale operation adds to

computational costs, necessitating storage of resulting mesh configurations and node embeddings,

along with additional MP GNNs.

In Figure 6.6b we show the total simulation time (hours) required for each framework to

generate the 30 randomly selected simulations. Notably, the FSR GNN architecture exhibited the

longest simulation time, consuming 6.13 hours. Following the FSR model, the TSR architecture

demanded 4.75 hours for the same task. As expected, the SSR architecture proved to be the most

efficient in terms of computational costs, completing the task in just 3.91 hours. Comparatively,

it’s worth noting from [5] that the high-fidelity PF model took approximately 43.5 hours to

generate the same 30 cases. Therefore, we opted for the SSR architecture for subsequent TL

steps, given its lower simulation time coupled with high prediction accuracy.

6.3.3 Center crack cases

In Sections 6.3.1 through 6.3.2, we established that the SSR architecture offered high prediction

accuracy at notably lower computational costs. Leveraging this architecture, we applied TL

to extend the multiscale GNN framework to cases with center cracks, as depicted in Figure

6.3b. We evaluated the performance of the extended SSR framework in predicting crack and

displacement fields for a randomly selected simulation from the test dataset.

First, we compared the PF versus predicted crack field (Figure 6.7a), the x-displacement

field (Figure 6.7c), and the y-displacement field (Figure 6.7e) at the initial time-step t0. Then, we
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(a) FSR % error: crack field, ϕ (b) FSR % error: x-displacement,
u

(c) FSR % error: y-displacement,
v

(d) TSR % error: crack field, ϕ (e) TSR % error: x-displacement,
u

(f) TSR % error: y-displacement,
v

(g) SSR % error: crack field, ϕ (h) SSR % error: x-displacement,
u

(i) SSR % error: y-displacement,
v

Figure 6.5: Comparing the average % errors for left-edge crack cases under tension for a)
FSR GNN crack-field predictions. b) FSR GNN x-displacement predictions. c) FSR GNN
y-displacement predictions. d) TSR GNN crack-field predictions. e) TSR GNN x-displacement
predictions. f) TSR GNN y-displacement predictions. g) SSR GNN crack-field predictions. h)
SSR GNN x-displacement predictions. i) SSR GNN y-displacement predictions.
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(a) Average % errors for FSR, TSR, and SSR. (b) Simulation time (hrs) for FSR, TSR, and SSR.

Figure 6.6: a) Analysis of errors in the FSR, TSR, and SSR frameworks based on the average
percentage error across all testing simulations. b) Evaluation of simulation time (in hours)
required for the FSR, TSR, and SSR frameworks to generate 30 simulations.

(a) ϕ at time t0 (b) ϕ at time tf

(c) u: time t0 (d) u: time tf

(e) v: time t0 (f) v: time tf

Figure 6.7: Comparison between the PF model and the SSR framework regarding the predicted
evolution of the crack field, ϕ (a-b), x-displacement field, u (c-d), and y-displacement field, v
(e-f), for a center crack test simulation at the initial time-step, t0, and the final time-step, tf .
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(a) crack field, ϕ (b) X-displacement, u (c) Y-displacement, v

Figure 6.8: Average percentage errors across all simulation in the test dataset involving center
crack cases subjected to tension for: a) Crack-field predictions, ϕ. b) X-displacement predictions,
u. c) Y-displacement predictions, v.

propagated the simulation forward in time to near-complete material failure (tf ). We illustrate

the resulting PF versus predicted crack field, x-displacement, and y-displacement at tf in Figures

6.7b, 6.7d, and 6.7f, respectively. These results exhibit accuracy comparable to the left-edge

crack cases, with predictions closely resembling those of the high-fidelity PF model at time-steps

t0 and tf .

Furthermore, we conducted a quantitative analysis to corroborate these qualitative findings.

For this, we obtained the average percent errors using equation (6.10) for each test simulation

pertaining to center crack cases as shown in Figure 6.8. Across all test cases, the extended SSR

model preserved high prediction accuracy, with crack field errors consistently below 0.125%,

x-displacement errors below 0.25%, and y-displacement errors below 0.20%. These results

underscore the SSR framework’s high prediction accuracy achieved through TL, even with

significantly reduced training datasets. Moreover, extending the SSR framework from left-edge

cracks to center cracks enhances its predictive capabilities, particularly for cases where cracks

propagate in both directions (i.e., left and right).

6.3.4 Shear load cases

In this next phase, we further implemented TL update steps to the extended SSR-based model

acquired in Section 6.3.3. As detailed in Section 6.2.2, the integration of node features u0, v0

enables the framework to discern between tensile and shear loading scenarios. This entails

setting u0 = ∆u and v0 = 0 for tensile loading, and u0 = 0 and v0 = ∆v for shear loading.

Following a methodology similar to that for center cracks, we analyzed the extended SSR-based
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(a) ϕ at time t0 (b) ϕ at time tf

(c) u: time t0 (d) u: time tf

(e) v: time t0 (f) v: time tf

Figure 6.9: Comparison between the PF model and the SSR framework regarding the predicted
evolution of the crack field, ϕ (a-b), x-displacement field, u (c-d), and y-displacement field, v
(e-f), for a shear load test simulation at the initial time-step, t0, and final time-step, tf .
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(a) crack field, ϕ (b) X-displacement, u (c) Y-displacement, v

Figure 6.10: Average percentage errors across all simulations in the test dataset involving shear
load cases for: a) Crack-field predictions, ϕ. b) X-displacement predictions, u. c) Y-displacement
predictions, v.

model for shear load cases. This analysis involved predictions of crack field and displacement

fields at both an initial time-step, t0, and a future time-step near complete material failure, tf .

For the initial time-step t0, we compare the PF versus SSR predictions for crack field, x-

displacement, and y-displacement fields in Figures 6.9a, 6.9c, and 6.9e, respectively. Similarly,

for the final time-step tf , Figures 6.9b, 6.9d, and 6.9f depict the PF versus SSR predictions

for the crack field, x-displacement, and y-displacement fields, respectively. These visual

representations demonstrate that the new extended SSR model adeptly captures shear load cases,

yielding accurate predictions for both t0 and tf , virtually identical to the PF model. Additionally,

we then followed the methodology outlined in Section 6.3.1 and computed the average errors

for each test simulation to obtain a quantitative evaluation of the shear load cases. The resulting

average errors are presented in Figure 6.10. The SSR framework also accurately predicts shear

cases, with average percent errors for ϕ, x-displacement, and y-displacement under 0.25%,

1.20%, and 0.25%, respectively.

6.3.5 Right-edge crack cases

Finally, we trained the SSR framework towards right-edge crack cases subjected to tension. As

outlined in Section 6.2.5 we generated the training and testing datasets for right-edge cracks by

mirroring the cases involving left-edge cracks . We initially tested the trained SSR framework

for right-edge cracks by simulating a randomly selected case from the test dataset. We show the

predicted evolution of crack field from t0 to tf in Figures 6.11a. The predicted evolution of ϕ

closely mirrors that of the PF predictions, indicating high qualitative prediction fidelity by SSR
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(a) ϕ at time t0 (b) ϕ at time tf

(c) u: time t0 (d) u: time tf

(e) v: time t0 (f) v: time tf

Figure 6.11: Comparison between the PF model and the SSR framework regarding the predicted
evolution of the crack field, ϕ (a-b), x-displacement field, u (c-d), and y-displacement field, v
(e-f), for a right-edge crack test simulation at the initial time-step, t0, and final time-step, tf .

for right-edge cracks. This observation is further supported by Figure 6.12a, where the average

percent error in ϕ remains consistently below 0.10% for all test simulations.

For predictions related to x-displacement and y-displacement, we present a qualitative

comparison for PF versus SSR in Figures 6.11c through 6.11f, respectively. Throughout the

simulation, the SSR framework consistently demonstrates a high degree of prediction accuracy

for the displacements. We show the resulting average percent errors in x-displacement in Figure

6.12b Examining the errors in x-displacement across all testing samples, we note that these errors

remain comfortably under 0.25%. Similarly, in the case of y-displacement errors illustrated in

Figure 6.12c, average percent errors consistently remain under 0.30%. These findings underscore

the success of the SSR-based framework in simulating diverse problem configurations with

remarkable accuracy through a series of sequential TL update steps.
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(a) crack field, ϕ (b) X-displacement, u (c) Y-displacement, v

Figure 6.12: Average percentage errors across all simulation in the test dataset involving right-
edge crack cases for: a) Crack-field predictions, ϕ. b) X-displacement predictions, u. c)
Y-displacement predictions, v.

6.4 Conclusion

In summary, modeling complex multiphysics phenomena often necessitate computationally

intensive methods, typically involving the solution of coupled multiphysics equations on intricate

meshes. Recent advancements in ML, particularly mesh-based GNNs, offer a promising avenue

to simulate such phenomena at a reduced computational cost. However, traditional mesh-

based GNNs encounter challenges such as over-smoothing, particularly when dealing with fine

meshes due to the high number of MP steps required. This study introduces a novel mesh-

based multiscale GNN framework integrated with AMR to model multiphysics mesh-based

problems with high accuracy, reduced number of MP steps, and accelerated simulation times.

By systematically implementing sequential coarsening/upscaling operations which remove/add

the highest level of mesh refinement at each step, the framework reduces the number of MP

steps while maintaining high prediction accuracy and accelerating computational performance.

Additionally, the framework incorporates state-of-the-art Graph Transformer MP networks along

with skip-connectors linking coarsening and upscaling operations to prevent information loss.

This technique provides new graphs with fewer resolution levels, facilitating the establishment

of new distant connections and information transfer through broader local neighborhoods.

Given the high complexity and computational demands of multiphysics PF models, this

study tests the multiscale GNN on PF fracture problems with near-singular operators and coupled

equations. Initially focusing on single-edge notched systems (left-edge cracks) under tensile

loading, the study develops and compares three coarsening/upscaling architectures (FSR, TSR,
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and SSR). The SSR model, with the fewest operations, demonstrates the fastest simulation times

while maintaining high accuracy.

Subsequently, TL is employed to extend the SSR framework for simulating various PF

crack propagation problems, including center cracks, left-edge cracks under shear, and right-

edge cracks, using only a fraction of the original training data. The developed SSR framework

accurately predicts crack and displacement field evolution, with high accuracy above 98%,

across different problem configurations. These results showcase the effectiveness of TL in

leveraging smaller training datasets.

In conclusion, this work presents a novel mesh-based multiscale formulation that harnesses

the computational efficiencies of AMR, algebraic multigrid scheme, and TL approaches. The

resulting framework offers a powerful tool for simulating a variety of complex mesh-based

multiphysics and engineering problems with integrated AMR, with high accuracy and accelerated

simulation times.

6.5 Supplementary information

Additional information for (i) maximum % error analysis for the entire test datasets of left-edge

crack, center crack, shear load, and right-edge crack cases, and (ii) generated sample simulations

for each case can be found in https://github.com/rperera12/Adaptive-mesh-based-Multiscale-

Graph-Neural-Network.
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Chapter 7

Predicting critical impact velocity in heterogeneous explosives using Machine Learning
techniques

7.1 Introduction and motivation

Heterogeneous Energetic Materials (HEMs) exhibit a complex array of microscale and macroscale

defects, including pores, particles, voids, cracks, and grain interfaces, which give rise to localized

temperature spikes known as hot spots [284, 285, 286]. These defects significantly influence

the material’s shock response and initiation behavior. For example, heterogeneous explosives

involving elongated pores positioned parallel to the direction of the incoming shock result in

higher sensitivity compared to circular pores[287]. Studies have also shown that the sensitivity

of HEMs containing voids is directly dependent on the number of voids, their orientation, and

their size distribution [288, 289].

Computational models have become indispensable tools for simulating impact and deto-

nation in HEMs, providing insights into sensitivity properties that are challenging to obtain

through experiments alone [290, 291, 292, 293, 294, 295, 296]. These models enable researchers

to extend their understanding of the underlying physics and capture intricate material behav-

iors in regions and length scales where experimental techniques such as embedded gauge

tests and large-scale gap tests [297, 298] are impractical. Recent advancements, such as the

microstructure-explicit and void-explicit computational techniques introduced by Miller and

Wei et al. [299, 300], have enabled the computation of probability equations for shock initi-

ation thresholds in heterogeneous HEMs with varying grain size distributions. Despite their

success, the computational costs and time associated with considering all possible heterogeneous
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configurations remain prohibitively high for such models. For example, simulating the two-

dimensional collapse of elongated voids in heterogeneous HMX involving pores required tens

of thousands of processor hours on supercomputers [299]. Therefore, there is a pressing need

for the development of novel computational techniques capable of rapidly predicting initiation

in HEMs with diverse microstructural features. Such techniques would not only help reduce

computational costs but also facilitate in-depth analyses to better understand the interactions

between macro-scale pores in various configurations and their impact on initiation behavior.

Data-driven methods such as Machine Learning (ML) present a promising avenue to tackle

these challenges. ML methods can provide high prediction accuracy comparable to traditional

methods, while offering significant advantages in data processing efficiency and computational

time [301]. Recent studies have extensively explored ML approaches for predicting chemical

properties of energetic materials based on molecular configurations and properties [302, 303, 304,

305, 306, 307]. At the microscale and mesoscale, however, HEMs are typically characterized

using techniques such as X-ray computed micro-tomography (x-ray µCT) or scanning electron

microscopy (SEM), which result in image-based representations of the their heterogeneous

material structure. To address this challenge through the use of ML methods, one common

approach is to derive statistical descriptors of the microstructural features from these image-

based representations [308]. Another prevalent image-based ML method involves regression

Convolutional Neural Networks (CNNs). Unlike classification CNNs which focus on predicting

binary or discreet numbers, regression CNNs are designed for predicting continuous numbers.

Regression CNNs have been successfully applied in various domains, including detecting facial

landmarks, estimating head or human pose landmarks, and predicting stock market trends [46,

47, 45]. In the context of ML methods for HEMs, CNNs have been utilized to predict properties

such as the compressive strength of organic 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) [309]

and the peak stress in TATB materials with crystal microstructures [310]. Regression CNNs

have also been recently employed by Casey et al. [311] to investigate the effects of microscale

pore shape in HMX on the resulting critical impact velocity.

A more recent ML approach that has demonstrated strong performance in predicting various

material properties in energetic materials is Graph Neural Networks (GNNs). The methodology
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(a) Cartesian grid configuration (b) Rotated configuration

Figure 7.1: Pore configurations comprising nine pores in a) Cartesian grid arrangement, and b)
rotated grid for a PBX-9501 explosive subjected to impact by an impedance matched inert flyer
plate.

of GNNs is described in detail in Chapters 3 - 6. Notably, in [312, 313], the skeletal molecular

formula of energetic crystals was used to formulate graphs involving nodes and edges. Using the

graph representations, the message-passing GNN D-MPNN was then employed for predicting

properties such as detonation velocity, detonation pressure, density, and heat of formation.

These works highlight the advantages of incorporating ML methods into HEM applications

across different length scales, offering a means to mitigate the computational expenses linked

with traditional approaches. However, although both mesoscale and microscale heterogeneities

in HEMs have received considerable attention in previous ML-based research, the impacts

of macroscale configurations (e.g., macroscale pores) have yet to be investigated using ML

techniques.

Towards this objective, this study investigates the impact of multiple macroscale pores in

heterogeneous PBX-9501 on their resulting critical impact velocity. Macroscale features in this

context are defined within the range of 0.01 cm to 1.0 cm. Employing this approach, a total

of 2556 distinct arrangements comprising 9 macroscale pores with varying sizes and positions

were devised. Two types of configurations were devised: (i) utilizing a Cartesian grid where the

radius of each pore, the vertical spacing between pore rows, and the horizontal spacing between

pore columns were varied (see Figure 7.1a), and (ii) employing a rotated grid around a randomly

determined angle, θ (see in Figure 7.1b). Simulations for each distinct pore configuration were
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generated using the CTH hydrocode, with a bisection algorithm utilized to obtain the impact

velocity resulting in bulk initiation, defined here as the critical impact velocity. Subsequently,

two ML models were developed, each utilizing a different input representation for the pore

configurations, in order to assess the most suitable ML approach for this problem. The first input

representation employed a pixel-based binary image describing the bulk PBX-9501 material

using black pixels, while the pore locations were represented using white pixels. Following a

methodology similar to [311], the resulting pixel-based input was fed into a regression CNN

model to predict the critical impact velocity. For the second input representation, a graph

representation was developed, where nodes corresponded to the macroscale pore locations and

edges connected the pores to all the remaining neighboring pores. The graph-based input method

is especially suitable for GNNs, providing a more physical and spatial input of heterogeneous

materials. To determine the best input representation for PBX-9501 explosives with different

pore arrangements, the CNN and GNN models were evaluated on both Cartesian and rotated

grid datasets. This study lays the groundwork for ML-driven models geared towards rapid

predictions concerning the influence of various macroscale pore structures on shock sensitivity

in HEMs.

7.2 Methods

7.2.1 Hydrocode simulations

The initial phase of this study involved creating an extensive dataset of two-dimensional

macroscale simulations focusing on shock-induced detonation in heterogeneous HMX. PBX-

9501 (comprising 95% HMX by weight) was selected as the explosive material, while the flyer

plate was modeled using inert PBX-9501. Although typical flyer plate materials include steel or

copper, PBX-9501 sufficed for this investigation to mitigate complex shock transition effects

arising from impedance mismatch.

The hydrocode utilized a History Variable Reactive Burn (HVRB) model for PBX-9501, a

Mie Grüneisen equation of state (EOS) for the flyer plate, and a SESAME EOS for air within

the pores. It’s worth noting that while the HVRB model is commonly calibrated via wedge
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tests on pristine explosive samples, its application with pore-inclusive geometries may yield

unrealistic shock behaviors. Future iterations of this work could fine-tune the ML models to

incorporate more suitable reactive burn models and practical flyer plate materials.

The HVRB model is typically calibrated by performing wedge tests of pristine explosive

samples which could lead to unrealistic shock behaviors when pores are added to the material

geometry. The ML models developed in this work can be tuned in future work to more practical

flyer plate materials and appropriate reactive burn models. As depicted in Figure 7.1, each

simulation was defined by a distinct initial material structure featuring nine pores arranged

in a Cartesian grid. From these CTH simulations, essential parameters such as temperature,

pressure, particle velocity, and reaction progress variable λ were recorded over time along the

explosive coordinates. To capture these variables, a 32 by 32 matrix of Eulerian tracers was

employed along the explosive’s coordinates, resulting in a training dataset comprising 2556

unique simulations. Notably, using CTH, approximately 250 compute-hours were required to

run each simulation. Therefore, to generate the critical impact velocity of each distinct pore

configuration (i.e., ≈ 10 simulations) a total of 2500 compute hours were required.

7.2.2 Problem geometry

The depicted sample simulation configuration in Figure 7.1 illustrates the macroscale spatial

domain of PBX-9501, modeled using dimensions of 1.5′′×1.5′′, while dimensions of 1/8′′×1.5′′

were used to define the flyer plate. To vary the pore structure, adjustments were made to both the

size of each pore and the spatial distribution between columns and rows of pores. Specifically,

pore diameters (di) were chosen from 0.1, 0.2, 0.3, 0.4, 0.5 cm, while horizontal and vertical

spacing between columns and rows (a1, a2, b1, b2) were selected from 0.95, 1.90, 2.85 cm.

Two distinct arrangements of pores were explored: (i) a Cartesian grid, as depicted in

Figure 7.1a, and (ii) a rotated grid, obtained by randomly generating a rotation angle, θ, as

illustrated in Figure 7.1b. In both arrangements, the radii of pores within a single column were

maintained identical to minimize parameter complexity. For configuration (ii), the rotation

angle (θ) ranged randomly from 0 to 2π. Using this approach, the range of impact velocity was

considered spanning 500 to 1500 m/s.
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(a)

(b)

Figure 7.2: a) Distributions of reaction progress variable in a sample exposed to impact velocities
of 655m/s and 660m/s at time t = 9.2µs. b) Rate of change of reaction progress variable
over time in a sample under impact velocities of 655m/s and 660m/s, spanning from t = 0 to
t = 9.2µs.

While real-world HEMs exhibit random variations in pore quantity, shape, and position

throughout the explosive, this study opted for simplified two-dimensional configurations featur-

ing nine perfectly circular pores. Two-dimensional simulations may overlook rarefaction waves

and shock interactions in the out-of-plane direction (i.e., result in higher pressures compared to

three-dimensional analyses). However, this study is geared towards developing the methodology

of a predictive ML framework. Thus, using two-dimensional domains involving 9 perfectly

circular pores is sufficient to achieve this methodology. This framework lays the groundwork

for extending to more intricate and realistic scenarios in the future.
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7.2.3 Initiation criteria

As detailed in Section 7.2.1, every CTH simulation was conducted with 32 by 32 Eulerian tracers

distributed throughout the explosive, facilitating the capture of the reaction progress variable,

temperature, pressure, and particle velocity data for each time-step. The reaction progress

variable, denoted as λ, spans the interval [0, 1] and is defined at each cell i in the mesh as:

λi =
{
mU

mR

}
i

i ∈ {D}. (7.1)

Here, mU represents the unreacted mass, mR represents the reacted mass, and D denotes the

cells of the mesh. The critical impact velocity, Vc, was determined by computing the rate of

change of the reaction progress variable with respect to time (dλ
dt

) for each time-step in the

simulation. Using this, the initiation criteria was defined as

∑
i

{
dλ

dt

}
i

≥ 1 i ∈ {D}. (7.2)

The threshold value of 1 was selected following an analysis of the rate of change of λ across

various cases. An illustrative example of this analysis is depicted in Figure 7.2. Here, the same

pore configuration depicted in the left-most image of Figure 7.2a, was subjected to impacts

at velocities of 655m/s (middle image) and 660m/s (right-most image). The distribution of

the reaction progress variable across the explosive at time t = 9.2µs (i.e., when initiation

occurred for the case of 660m/s impact velocity) is presented in Figure 7.2a. We note that for

the 655m/s impact velocity case, the reaction progress failed to reach λ = 1 in any mesh cell

within the explosive, indicating that initiation did not occur throughout the simulation. However,

as illustrated in the right-most image of Figure 7.2a, for the 660m/s impact velocity case, the

reaction progress variable reached values of 1 in multiple mesh cells of the PBX-9501 at this

specific time-step (t = 9.2µs).

Furthermore, for both impact velocity cases of 655m/s and 660m/s, we present the corre-

sponding dλ
dt

in Figure 7.2b. To obtain a unit-less dλ
dt

, we initially normalized
∑(λ) by dividing

by the total number of tracers used (i.e., 1024), resulting in
∑(λ) ∈ {0, 1}. Subsequently, we
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made dλ
dt

unit-less by multiplying dλ
dt

times the total number of time-steps, tf = 15µs, used for

each simulation. For the case with 655m/s impact velocity, the magnitude of
∑(dλ

dt
) peaked at

approximately 0.055. However, upon increasing the impact velocity to 660m/s (i.e., only 5m/s

higher),
∑(dλ

dt
) notably surged to values exceeding 6.

Due to this considerable rise in
∑(dλ

dt
) during initiation, we chose

∑(dλ
dt

) ≥ 1 as the

threshold criterion to determine the critical impact velocity of each porous PBX-9501 sample.

Notably, we conducted this analysis across 20 additional porous samples. Across all 20 samples,

the porous PBX-9501 samples with the lowest and highest
∑(dλ

dt
) where initiation did not occur,

resulted in
∑(dλ

dt
) ∈ {0.03, 0.09}. Additionally, the porous PBX-9501 samples where initiation

occurred resulted in lowest and highest values of
∑(dλ

dt
) ∈ {6, 15}. Thus, demonstrating that

the threshold value of
∑(dλ

dt
) ≥ 1 is sufficient to define the initiation criteria for this problem.

Lastly, we emphasize that due to limitations in the selected chemical reaction models,

unrealistic shock reflections were seen after the shock reached the right edge of the PBX-9501

samples. As a result, we used an additional constraint by obtaining the threshold criteria prior to

the shock reaching the right edge of the domain.

7.2.4 Threshold velocity determination

Utilizing the criterion outlined in Section 7.2.3, we then developed a bisection algorithm for

estimating the critical velocity of distinct porous sample. For each pore configuration, the

bisection algorithm initially conducts CTH for the minimum and maximum impact velocities

(defined as Vmin = 500m/s, Vmax = 1500m/s). The updated impact velocity is then calculated

as:

Vnew = Vmax + Vmin

2 . (7.3)

If Vnew results in the initiation of the explosive before the shock reaches the right edge of the

sample, then we set Vmax to Vnew, and update Vnew using Equation (7.3). Conversely, if Vnew

does not lead to initiation before the shock reaches the right edge of the domain, then we set

Vmin to Vnew, and use Equation (7.3) to update Vnew. This iterative process continues until Vnew
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is within ±5m/s of the final Vmin and Vmax values, where we choose the critical velocity as

Vmax.

Lastly, for both pore configurations (i.e., Cartesian grid and rotated configurations) we

employed this bisection algorithm to construct the training, validation, and test datasets. The

resulting training, validation, and test dataset involved 1000, 140, and 138 cases, respectively,

totaling 1278 cases for each grid type (Cartesian grid and rotated configurations).

7.2.5 Regression Convolutional Neural Networks

To build upon previous research, which utilized 2D CNNs to forecast the critical threshold

velocity necessary for triggering reactions in HMX crystals with a single embedded pore of

varying shape [311], this study endeavors to broaden the scope by examining the impact of

multiple macroscale pores. Here, we developed a 2D CNN to analyze how multiple pores,

characterized by diverse sizes and spatial distributions, influence the resulting critical threshold

velocity. In this pursuit, the critical threshold velocity obtained from each CTH simulation

served as the target variable for training the regression CNN model. The input representation

for the CNN comprised a pixel-based binary image, where black-colored pixels denoted the

locations of the pores, while white-colored pixels represented the bulk PBX-9501 material. To

standardize the inputs, we normalized and converted each image into a single binary channel,

sized at 256 by 256 pixels.

The architecture of the regression CNN model comprised two 2D convolution layers. Each

2D convolution layer was followed using activation functions of Rectified Linear Unit (ReLU),

and 2D maximum pooling operations. Subsequently, to flatten the output tensors from the 2D

convolutions and generate a one-hot encoded feature vector, we employed a linear layer followed

by a ReLU activation function. Finally, to make the final prediction we used an output linear

layer.

For the first convolutional layer, we used 12 channels, 3 kernels, and a stride and padding

of size 1. We then used 2 kernels and a stride of size 4 for the first maximum pooling layer.

Similarly, for the second convolutional layer we utilized 24 channels, 5 kernels, and a stride and

padding of size 1, followed by the second maximum pooling layer with equal configuration as
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Figure 7.3: Flowchart illustrating the GNN framework: A) Initial configurations of three sample
input pores. B) Generated graph representation for each sample, with nodes positioned at each
pore and edges connecting all pores. C) Architecture of the developed Transformer GNN-based
model.

the previous layer. Ultimately, leveraging this pixel-based (i.e., image-based) input configuration,

the regression CNN model facilitated rapid predictions for the critical impact velocity.

7.2.6 Graph Neural Network

The next ML model established in this chapter involved a GNN to predict critical velocities

of the porous PBX-9501 samples. In Figure 7.3, we present a flowchart for the developed

GNN framework. First, we defined the graphs of the pore configurations as ⟨V,E⟩. Here,

V encompassed all nine pores in the domains as nodes (or vertices), and E encompassed

all the connecting edges in the graphs. This methodology presented a spatial graph-based

representation of the pore configurations to the GNN model. For instance, we depict three

distinct pore arrangements in Figure 7.3A, and show their resulting unique graph representations

in Figure 7.3B. For each node in the domain, we defined the nodal features based on several

factors, including their positions denoted as P̂s, their radii represented by R̂s , and their vertical
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and horizontal distances to the boundaries of the PBX-9501 acceptor denoted as L̂s.

P̂s = {(xs, ys)} {s ∈ V},

R̂s = {rs} {s ∈ V},

L̂s = {(dls , drs , dbs , dts)} {s ∈ V},

{vs} =
(
P̂s, R̂s, L̂s

)
{s ∈ V}. (7.4)

Here, we defined the x- and y-positions of each sender node as (xs, ys), the pore radius of the

sender node as rs, and the distances from the the sender node to the left edge, right edge, bottom

edge, and top edge of the acceptor using (dls , drs , dbs , and dts), respectively. Furthermore, as

depicted in Figure 7.3B, to define the edges within the domain (E), given the small scale of each

graph comprising only 9 pores, we linked all sender nodes (vs ∈ V) to all other receiver nodes

(i.e., neighboring pores defined as vr ∈ V).

We then defined the connections between edges by (vs, vr, bsr) ∈ E. Here, bsr ∈ 0, 1 was a

binary value indicating whether the sender node, vs, and the receiver node, vr, shared an edge

connection. In this study, given that all sender nodes were linked to all neighboring nodes within

the domain, bsr was set to 1 for all pore samples. Furthermore, to supply the GNN model with

additional spatial context, we introduced seven features for each edge in the domain. For the

first edge feature, we included the effective angle from the sender to the receiver node with

respect to the horizontal axis, denoted as θsr. We also included the vertical, horizontal, and the

equivalent distances from the centroid of the sender node to the centroid of the receiver node,

represented as δYsr = yr − ys, δX sr = xr − xs, and δDsr =
√
δX 2 + δY2, respectively.

Lastly, to incorporate the influence of pore size in each pair-wise connection, we included

the vertical, horizontal, and equivalent distances from the closest edge of the sender node to

the closest edge of the receiver node, expressed as δY ′
sr = yr − ys, δX ′

sr = xr − xs, and

δD′
sr =

√
δX 2 + δY2, respectively. We defined the resulting edge feature vector as:

{esr} =
(
bsr, θsr, δXsr, δYsr, δDsr, δX

′

sr, δY
′

sr, δD
′

sr

)
{s ∈ V} ; {(s, r, bsr) ∈ E}.(7.5)
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Upon generating the graph representation, we utilized it as the input to the GNN to predict the

critical impact velocity. In Figure 7.3C, we show the architecture of the presented GNN model.

We developed the message-passing graph blocks by utilizing the Graph Transformer network

from [282]. We describe the Graph Transformers network in detail in Section 6.2.3 of Chapter 6.

As illustrated in Figure 7.3C, we made use of two Transformer message-passing GNN

layers for the GNN architecture. Following each Transformer GNN layer, we update the graph

weights by implementing a LayerNorm operation and a ReLU activation function. We designed

these Transformer GNNs using 16 attention heads, each having a hidden dimension of size 32.

To prevent over-smoothing during backward propagation, we also incorporated Gated Residual

(aggregation skip connectors) to each message-passing network. Subsequently, we used a

global average pooling layer to yield a graph-level output from the output from the Transformer

message-passing networks. The global average pooling layer achieves this through averaging

of the node features across all node dimensions. We then followed the global average pooling

layer with a Linear operator and a ReLU activation function. Here, the Linear operator involved

dimension of 32 hidden nodes. Finally, as shown in Figure 7.3C, the output layer consisted of a

linear operator responsible for generating predictions of critical impact velocities.

7.3 Results and discussion

To illustrate the impact of multiple macroscale pores with diverse size and spatial distributions

on the material’s sensitivity, we conducted an analysis of the distribution of critical impact

velocities (Vc) within the generated datasets. This analysis concentrated on understanding the

range of Vc values across both the dataset comprising 1278 Cartesian grid configurations and the

dataset comprising 1278 rotated configurations. Subsequently, we evaluated the performance

of both the CNN and GNN developed models in predicting Vc for four randomly selected

Cartesian grid arrangements from the test dataset. We assessed the resulting errors for each

model on these simulations, and present the mean and standard distribution of errors across

the entire test dataset to provide an overview of model performance. Furthermore, we repeated

the aforementioned model error analyses on four randomly selected rotated pore arrangements.

Lastly, we also obtained the CNN and GNN errors for the entire test dataset on the rotated
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arrangements, offering insights into the predictive capabilities of the models across different

configurations.

7.3.1 Distribution of critical impact velocities

The first step in our analysis involved examining the distribution of critical impact velocities

(Vc) across the entire datasets of (i) Cartesian grid arrangements and (ii) rotated arrangements.

This analysis aimed to determine the range of sensitivities exhibited by varying pore radius and

spatial distributions, thereby highlighting the significant role played by different macroscale

pore configurations in the material’s sensitivity. In Figure 7.4, we illustrate two histograms for

the distributions of Vc of both the Cartesian grid samples, and the rotated samples obtained from

CTH simulations and the calculation of initiation using the criteria defined in Sections 7.2.3

and 7.2.4. We show the distributions of Vc for the 1278 Cartesian grid samples in Figure 7.4a,

and the 1278 rotated pore samples in Figure 7.4b. These histograms provide insights into the

variability of critical impact velocities across different pore configurations and orientations.

The analysis of critical impact velocities for Cartesian grid arrangements reveals a range

from approximately 600m/s to 775m/s, underscoring the significant sensitivity dependence on the

material’s initial pore structure. Notably, the distribution illustrates varying occurrences across

different Vc values, with 50 to 100 cases seen with values from 625m/s to 725m/s. Additionally,

we observe the highest distribution of 160 and 210 cases with Vc values peaking at 650m/s and

690m/s, respectively, indicating distinct sensitivity patterns influenced by pore configurations.

This highlights the necessity of developing efficient ML models capable of capturing these

underlying patterns and relationships without relying on computationally demanding simulations.

For instance, we note from Section 7.2.1 that each CTH simulation demanded approximately

250 compute-hours, thus, obtaining the critical velocity for each configuration required around

2500 compute-hours.

Furthermore, from Figure 7.4b the distribution of critical impact velocities for the rotated

arrangements presents a distinct behavior compared to the Cartesian grid configurations. With

Vc ranging from approximately 605m/s to 790m/s, the rotated cases exhibit a broader sensitivity

range. However, the distribution appears skewed, with fewer instances observed at lower and
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(a) Cartesian grid distribution (b) Rotated distribution

Figure 7.4: Histograms displaying the distributions of critical impact velocities obtained from
CTH for: a) 1278 samples of Cartesian grid pore arrangements. b) 1278 samples of rotated pore
arrangements.

higher Vc values. Specifically, there are fewer than 5 cases for each Vc value between 605m/s and

615m/s, and less than 25 cases for Vc values between 705m/s and 790m/s. This skew in the Vc

distribution of rotated pore arrangements may be attributed to the rotation angles used to rotate

each original Cartesian grid configuration. From Section 7.2.1, we defined the rotation angles (θ)

by randomly generating values of θ ∈ [0, 2π]. Unlike the Cartesian grid which consistently had

nine pores, this rotation angle generated cases where a subset of pores lie outside the PBX-9501

acceptor, thus, resulting in samples with fewer than nine pores. Consequently, in simulations

with fewer than nine pores, the critical impact velocities may cluster around the higher end

of the range, between 625m/s to 660m/s. We note that for a homogeneous acceptor (pristine

PBX-9501), the critical velocity was determined as 646m/s, falling within this high-spike range.

This suggests a direct relationship between the number (or density) of pores within the acceptor

and the critical impact velocity, indicating a tendency towards homogeneous behavior when the

number of pores within the acceptor is low. We also emphasize that although the rotated grid

cases results in lower number of pores in some cases, these may serve as additional stress test

for the ML models towards cases with varying number of initial pores.

A comprehensive analysis focusing on the impact of macroscale pore arrangements and

critical impact velocity, considering factors such as pore density and spatial distribution, would

be a valuable avenue for future research. By delving deeper into these relationships, a more
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Figure 7.5: Comparison of critical impact velocities predicted by CTH and ML models for four
pore configurations from the Cartesian grid test dataset.

nuanced understanding of how different pore characteristics influence material sensitivity can be

gained. However, despite the variations introduced by the rotated pore configurations, in the

context of developing accelerated predictive ML models for sensitivity of explosives, the key

aspiration of this study is that the CNN and GNN models will effectively learn the underlying

relations of these problems. By leveraging these ML models, it is hoped that the complex

relationships between the number of pores, their varying radii, and spatial distribution can be

accurately modeled and predicted, facilitating faster and more efficient assessments of material

sensitivity.

7.3.2 Predictions on Cartesian grid configurations

We note from Section 7.2.3 that the test dataset for Cartesian grid configurations consisted of

138 unique samples. In Figure 7.5, we compare the critical impact velocities obtained from

CTH versus the critical impact velocities predicted by the CNN and GNN ML models for four

randomly chosen cases from the test set. Notably, despite not being trained on these specific

simulations, the CNN and GNN models closely approximate the CTH velocities, with predicted

Vc values falling within a range of ±6m/s of CTH. The largest deviation between CTH and the
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predicted Vc value by the CNN model occurs in Case 4. Here, we observe that the hydrocode

estimates Vc = 651m/s, and the CNN model predicts Vc = 645m/s.

In addition to the CNN model, we also assess the prediction accuracy of the Transformer

GNN model for the same four Cartesian grid cases. Remarkably, similar to the CNN model, the

Transformer GNN model demonstrated high accuracy in predicting the critical impact velocity

of Cartesian grid configurations. As illustrated in Figure 7.5, the largest deviation occurred in

Case 3, with only a ±5m/s difference. We note that this error falls within the chosen threshold

for the bisection algorithm of ±5m/s. Consequently, the GNN model surpassed the CNN model

in accuracy for these four randomly selected samples of Cartesian grid pore configurations.

We then compare the performance of the CNN model versus the Transformer GNN model

by computing their errors on the entire test dataset (138 simulations). As depicted in Figure 7.6,

we represent the errors for the CNN model using orange dots, and represent the errors for the

GNN model as light blue. From the plot (Figure 7.6), it is evident that the Transformer GNN

model consistently outperforms the CNN model for Cartesian grid pores, as it exhibits lower

error rates across the entire test dataset. Specifically, the GNN model demonstrates an average

error of 0.678 ± 0.621%, while the CNN model shows an average error of 0.902 ± 0.799%.

We note that the highest error for the GNN model is obtained for Simulation No. 44, with

approximately 2.9% error, while for the CNN model, it occurs for Simulation No. 96, with

approximately 5.1% error. Although the GNN model generally exhibits better accuracy overall,

it’s essential to acknowledge that the CNN model can yield lower errors compared to the

GNN model in certain scenarios, as observed in Case 2 from Figure 7.5. Ultimately, both

models demonstrate robust performance to predict the critical impact velocities in Cartesian grid

arrangements, with a superior overall performance achieved by the GNN model.

7.3.3 Predictions on rotated configurations

The subsequent analysis focused on evaluating the accuracy and errors of the CNN and GNN

models for the rotated arrangements, considering the uneven distribution of Vc values observed

in this arrangement, as discussed in Section 7.3.1. Similar to the evaluation conducted for

Cartesian grid configurations, the initial step involved randomly selecting four samples from the
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Figure 7.6: Percent error comparison between CNN (red) and GNN (blue) models across the
entire test dataset of Cartesian grid comprising 138 simulations.

test set to obtain the critical impact velocities using CTH, CNN, and GNN models. In Figure

7.7, we illustrate the resulting critical impact velocities for these four random configurations. An

intriguing observation is noted in Cases 2 and 4, where due to the rotation angle θ, configurations

were formed with a column or row of pores positioned outside of the acceptor. The CNN model

demonstrated high prediction accuracy for Cases 1, 3, and 4, achieving accuracies from 99.7%

to 99.9%. However, the accuracy dropped for Case 2, reaching 96.8% due to the particular

configuration resulting from the rotation. On the other hand, the GNN model exhibited lower

accuracy for some of these four random cases compared to the CNN. We obtained the highest

accuracies for the GNN for Cases 2, 3, and 4 ranging from 98.2% to 99.8%. Notably, the GNN

model displayed lower accuracy for Case 1 at 93.58%, resulting in a difference of 45m/s from

the CTH Vc. This analysis underscores the challenges posed by the rotated arrangements and

highlights the varying performance of the CNN and GNN models in accurately predicting critical

impact velocities for such configurations.

We further compare and analyze the performance of both ML models by computing and

visualizing the overall percentage error across the entire test dataset. We show the resulting error

for both the CNN and GNN on the entire test dataset of rotated pores in Figure 7.8. Contrary to

the observations in Figure 7.6, where the CNN model exhibited higher error for the test dataset

of Cartesian grid pores, the analysis of the entire test dataset of rotated grid revealed that the

CNN model outperformed the GNN model. We obtained an average error for the GNN model
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Figure 7.7: Comparison between critical impact velocities predicted by CTH and ML models
for four pore configurations from the rotated pores test dataset.

over the entire test dataset of rotated pores of 0.967%± 1.09%, while for the CNN model we

obtained a slightly lower average error of 0.782%± 1.107%. These results suggest that the CNN

model may possess better adaptability in capturing the uneven distribution of Vc values observed

in the rotated cases with greater accuracy compared to the GNN model. Despite the CNN’s

superior performance for the rotated arrangements, we note that both ML models maintained

an overall error below 1%, indicating their efficacy in predicting critical impact velocities for

various pore configurations.

7.4 Conclusions

To conclude, extensive research has focused on predicting how microscale and mesoscale pores

affect material sensitivity using machine learning (ML) techniques. However, the impact of

multiple macroscale pores remains largely unexplored. In this study, we highlight the pivotal role

played by configurations comprising nine macroscale pores, each varying in size and position,

in determining material sensitivity. To quantify material sensitivity, we devise a methodology to

derive critical impact velocities. Employing a bisection algorithm alongside the CTH hydrocode,

we generate a substantial dataset of critical impact velocities for diverse porous configurations.
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Figure 7.8: Percent error comparison between CNN (red) and GNN (blue) models across the
entire test dataset of rotated grid comprising 138 simulations

Two distinct pore configurations were delineated: one employing a Cartesian grid of nine pores,

and the other a rotated grid featuring nine or fewer pores. The radii of these pores and the

inter-column and inter-row distances were systematically varied across each configuration.

We then developed two ML models to forecast the critical impact velocity based on

the initial configuration. The initial model, a CNN, utilized a pixel-based binary image as

input. This image represented the pore locations using black-colored pixels and the bulk

material using white-colored pixels. Meanwhile, the second model adopted a Transformer

GNN, which employed a graph-based input representation. This graph representation included

nodes/vertices positioned at the pore locations and edges linking each pore to its neighboring

pores. Subsequently, we assessed the average accuracy of both models across both Cartesian

grid and rotated configurations of pores. Notably, in the case of Cartesian grid arrangements,

the GNN model demonstrated superior performance over the CNN model, boasting an average

percent error overall of 0.678± 0.621% compared to 0.902± 0.799% for the CNN. The GNN

model also exhibited a maximum error of approximately 2.9%, while the CNN model showed a

slightly higher maximum error of approximately 5.1%. Conversely, for rotated arrangements,

the CNN model displayed higher accuracy than the GNN, with an average error overall of

0.782 ± 1.107% for the CNN and 0.967 ± 1.09% for the GNN. Interestingly, both models

showcased similar maximum errors, with the CNN at approximately 6.0% and the GNN at 6.4%.
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In conclusion, despite the higher errors observed in the rotated cases, both ML models

achieved an average error below 1%, indicating overall strong performance. These findings

underscore the significance of leveraging ML models for rapid material sensitivity predictions,

eliminating the need for costly hydrocode simulations. Employing the CTH hydrocode to obtain

critical impact velocities for each macroscale pore configuration is computationally intensive, de-

manding approximately 2500 compute-hours per pore configuration when utilizing the bisection

algorithm iteratively. This study lays the groundwork for ML-driven approaches to expedite the

understanding of how diverse macroscale pore structures influence shock sensitivity in HEMs.

Future endeavors could enhance this methodology and the ML models by expanding the training

dataset, refining model architectures, considering pore shape effects, and incorporating validated

equations and reactive burn models into hydrocodes for more precise characterization of shock

response in HEMs with several macroscale pores.
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Chapter 8

Conclusions and Future Work

In this concluding chapter, we first present a summary for the entirety of the research detailed

in this dissertation. We then describe some of the current limitations of each work. Lastly, we

propose promising avenues for future research and extensions of the current ML methods.

8.1 Summary

8.1.1 Microstructure Characterization Framework

In the initial segment of this dissertation, our focus was on enhancing aerospace structures

and materials, as well as preparing for future space exploration endeavors where emerging

manufacturing technologies like 3D printing play a crucial role. With the inherent heterogeneity

of microstructures in AM materials, it becomes imperative for 3D printing technologies to

predict resulting material properties rapidly, based on the heterogeneous configurations. These

capabilities enable the customization of material properties by controlling the initial defect

arrangements. Hence, our first objective revolved around the development of an autonomous and

optimized ML framework for expedited detection and extraction of microstructural defects in

3D printed materials, including particles, pores, grains, and GBs. The framework incorporated

various ML models: a Classifier CNN for defect classification, a binary CEDN for particle or

pore segmentation, an RGB CEDN for grain and GB segmentation, an object detection YOLOv5

network for predicting particle/pore size and location, and two Regression CNNs for grain

size distribution histograms. A notable aspect of this work was the utilization of the Neural

Architecture Search (NAS) algorithm, specifically DENSE, to optimize existing state-of-the-art
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CEDN models while preserving high prediction accuracy. Through DENSE, we managed to

reduce the GPU usage of the models by approximately 716 MB, roughly four times lower than

state-of-the-art U-Net, thereby making our framework less CPU-intensive and easily portable.

Ultimately, the developed ML framework yielded a remarkable fivefold acceleration in analysis

time compared to conventional image-processing tools for microstructure characterization.

8.1.2 Microcrack-GNN

From Chapter 3 to Chapter 6, our focus shifted towards the development of novel ML frame-

works utilizing GNNs to simulate the failure response of heterogeneous materials, offering faster

turnaround times compared to conventional high-fidelity models. These endeavors were built

upon the initial ML framework developed for microstructure characterization of 3D printed

materials, where the extracted defects and features could be directly utilized to estimate the

resulting material properties. Subsequently, these estimated properties could serve as inputs to

computational models for simulating material failure behavior and defect propagation under vari-

ous loads. Moreover, the integration of neural networks and graph theory in dynamic ML models

like GNNs presents a promising avenue for enhancing the computational efficiency of existing

high-fidelity computational models. The first dynamic GNN framework developed, Microcrack-

GNN, was tailored to model the structural failure of a satellite panel featuring multiple initial

microcracks. To achieve this, we addressed problems involving a brittle domain with varying

numbers of initial microcracks ranging from 5 to 19. Introducing a novel graph representation

for the initial system, we placed nodes at each crack-tip and established edges connecting each

crack-tip to its nearest neighbors. The Microcrack-GNN framework demonstrated high accuracy

in simulating stresses, with a maximum relative error of 4.80%, and exhibited good accuracy

in simulating crack propagation, with maximum errors of 1.01% and 4.29%. Furthermore, a

significant contribution of Microcrack-GNN was its remarkable computational speed-up in

simulation time, achieving up to 20 times faster performance compared to a high-fidelity XFEM

model. This work showed that integrating graph theory along with GNNs shows a promising

approach for speeding-up existing high-fidelity fracture mechanics models in materials with

initial defects.
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8.1.3 ACCURATE

We then proceeded to enhance and broaden the capabilities of Microcrack-GNN to accommodate

new problem-specific inputs. This endeavor involved implementing a sequence of five TL update

steps to the pre-trained Microcrack-GNN model, considering scenarios with arbitrary domain

sizes, crack lengths, orientations, and shear loads. Notably, each TL update step substantially

reduced the required size of training data to merely 20 simulations, a stark contrast to the 960

simulations needed for Microcrack-GNN. The resulting GNN framework, named ACCURATE,

acquired generalized knowledge of fracture mechanics pertinent to the problem, enabling

accurate simulation of stress evolution and crack propagation for previously unseen cases

featuring distinct domain dimensions, crack lengths, and orientations, under both tensile and

shear loading conditions. Furthermore, an impressive feature of the ACCURATE framework was

its significant improvement in simulation speed, achieving a remarkable speed-up of 2 orders of

magnitude, approximately 200 times faster than the high-fidelity XFEM model. Ultimately, this

development showcased the efficacy of leveraging ML techniques like GNNs and TL in crafting

rapid reduced-order computational models, trainable with minimal datasets, and adaptable to

unseen scenarios with new initial conditions.

8.1.4 ADAPT-GNN

Next, we delved into mesh-based GNNs, a different breed of dynamic GNNs where the mesh

configuration itself serves as the graph representation for the model. Modeling complex mul-

tiphysics phenomena often entails employing computationally intensive methods that require

solving coupled multiphysics equations on a mesh. While Microcrack-GNN and ACCURATE

showcased accelerated emulation times and high accuracies compared to XFEM, their predic-

tions were confined to nodes in the graph, specifically crack-tips. In contrast, mesh-based GNNs

offer predictions across the entire domain akin to conventional computational models. Thus,

we embarked on crafting an adaptive mesh-based GNN framework, ADAPT-GNN, adept at

emulating nultiphysics problems such as phase field fracture models for single-edge notched

cracks under tensile loading conditions. A standout characteristic of ADAPT-GNN was its fusion
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of AMR with ML, harnessing the computational efficiencies of both techniques. This innovative

framework facilitated simulation of x- and y-displacement fields, followed by the scalar damage

field and stress field at subsequent time-steps. Leveraging this dynamic mesh-based graph

implementation resulted in significant simulation speed-ups, up to 36 times faster compared to a

traditional phase field fracture model, while maintaining high prediction accuracies of approxi-

mately 98%. Ultimately, phase field fracture models, particularly for crack propagation, pose

formidable computational challenges. Through this endeavor, we showcased the development of

an adaptive mesh-based GNN approach capable of accurately predicting phase field fracture

models of crack propagation, while achieving noteworthy computational speed-ups.

8.1.5 Multiscale GNN framework

Furthermore, while ADAPT-GNN showed promise in simulating multiphysics problems at a

reduced computational cost, it encountered challenges with over-smoothing, especially when

dealing with fine meshes requiring a high number of required message-passing steps. To

address these challenges, the subsequent project introduced a mesh-based multiscale GNN

framework with adaptive mesh refinement (AMR) for simulating multiphysics problems with

improved efficiency, accuracy, and performance. Drawing inspiration from recent studies

integrating algebraic multigrid schemes with GNNs, this novel approach utilized a multigrid

formulation involving sequential coarsening and upscaling operations. By dynamically adding

or removing the highest mesh refinement resolution level at each step, the framework generated

new graphs with fewer mesh resolution levels, fostering increased connectivity and larger

local neighborhoods. The effectiveness of the multiscale GNN framework was demonstrated

through simulations of phase field crack problems featuring near-singular operators and coupled

equations. Various problem-specific inputs and initial conditions, such as left-edge crack systems,

center crack systems, and right-edge crack systems under tension, and left-edge crack systems

under shear, were explored, with TL employed to reduce the required training data size to

only 15 samples per new input. Results showcased significant acceleration in simulation time

compared to both the phase field model and ADAPT-GNN, while maintaining high prediction

accuracies exceeding 98% for displacement fields and crack fields across all cases. Ultimately,
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this work introduced a versatile mesh-based multiscale formulation leveraging AMR, mirroring

conventional iterative multigrid schemes, and integrating TL, paving the way for efficient

simulation of a wide range of complex mesh-based engineering and multiphysics problems with

exceptional accuracy and performance.

8.1.6 Predicting sensitivity of HEMs

Finally, another critical aerospace challenge, particularly in military applications exploring

additive manufacturing, lies in the 3D printing of novel explosives. The resulting structures

often contain defects like macroscale pores, significantly influencing their sensitivity and shock

response. While past research has delved into predicting material sensitivity due to microscale

and mesoscale pores using ML techniques, the impact of multiple macroscale pores had remained

unexplored. Thus, the subsequent study in this dissertation focused on investigating the effects

of macroscale pores on shock sensitivity. We generated various distinct material configurations

featuring nine macroscale pores of different sizes and positions and determined their critical

impact velocities using the CTH hydrocode. Subsequently, we developed two ML models

to predict these critical impact velocities: (i) a CNN utilizing pixel-based binary images as

inputs, and (ii) a Transformer GNN framework employing a graph-based representation of nodes

and edges for the pores. While the GNN model exhibited higher overall prediction accuracy

compared to the CNN model, both models maintained an average accuracy exceeding 99%.

These findings underscore the significance of ML models in swiftly and accurately predicting

material sensitivity without relying on computationally expensive hydrocodes. Leveraging

the CTH hydrocode for obtaining critical impact velocities for each potential macroscale pore

configuration necessitated approximately 2500 compute-hours per configuration, whereas the

GNN and CNN models required less than 1 second per configuration. Ultimately, this work lays

the foundation for ML-guided models facilitating accelerated comprehension of how diverse

heterogeneous structures influence shock sensitivity in HEMs.
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8.2 Limitations

While this dissertation introduced novel ML techniques for rapid microstructure characterization

of AM materials and accelerated emulation of dynamic fracture in materials with defects, several

limitations merit consideration, beyond those already discussed in each chapter. A general

limitation across all works involves threats to validity. Each ML framework presented was

empirically compared with conventional computational tools based on their required wall time.

For example, the microstructure characterization framework exhibited analysis times approxi-

mately five times faster than the standard image processing tool. Additionally, Microcrack-GNN

and ACCURATE reduced simulation times significantly compared to XFEM-based models, as

did mesh-based ADAPT-GNN and Multiscale GNN compared to serial execution of the phase

field model. While empirical measures of wall time sufficed for this dissertation, future work

should include a more comprehensive analysis of the algorithms’ computational complexity.

Potential approaches may include employing Big O notation, Big-omega notation, or Big-theta

notation for algorithm analysis. Furthermore, the empirical comparisons of wall time assumed

that the ML models were fully trained prior to usage. It’s worth noting that if these models

require training from scratch, conventional tools may outperform the developed ML models

significantly. Such considerations should be addressed in future research to provide a more

comprehensive understanding of the relative performance of ML-based approaches compared to

traditional methods.

Another general limitation of these works is the inherent nature of supervised ML tech-

niques, which necessitate pre-labelled data for training the models. While this thesis endeavors

to reduce the computational costs of existing conventional computational tools, it is noteworthy

that extensive use of these tools was required to gather the training datasets for each ML frame-

work. Thus, the development of new conventional tools remains crucial, and this dissertation

does not seek to supplant them, but rather to complement and expedite their applications.

Next, a key limitation of the microstructure characterization framework discussed in Chapter

2 pertains to the scope of materials, types of defects, and length scales on which the framework

was trained. Specifically, the framework focused solely on AM metallic materials and addressed
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defects such as pores, particles, and GBs at the microscale level. This limitation raises pertinent

questions such as whether the framework can identify defects in transparent materials and if it

can be adapted for different tasks like detecting craters and flood plains from satellite images.

Future work should involve extensive testing of the framework across new non-metallic materials,

varied size regimes, and different types of problems to address these inquiries effectively.

For Microcrack-GNN and ACCURATE, an important limitation of both frameworks is

their reliance on a graph representation where nodes are situated solely at each crack-tip. This

representation constrains the frameworks to predict crack propagation and stresses exclusively at

these crack-tips, unlike XFEM which offers insights throughout the entire domain. Furthermore,

the models are tailored solely for 2D brittle materials, disregarding 3D scenarios where crack

bifurcation might occur in ductile materials, necessitating the representation of two or more

nodes to capture the formation of two crack-tips in three-dimensional spaces. As a result, the

current graph representation in these frameworks is limited to 2D brittle materials and crack-

related problems, highlighting the need for a different graph formulation in future endeavors to

accommodate diverse defect types and three-dimensional materials, particularly those exhibiting

ductile behavior.

Ultimately, moving to mesh-based GNNs, these models showed to provide accurate pre-

dictions for multiphysics problems such as phase field fracture models. However, it’s worth

noting that the developed frameworks, although formulated based on the phase field energy

functional, still do not provide a physics-based interpretation of the results, unlike conventional

computational models. This is a key limitation in supervised ML models where interpreting

their predictions remains a ”black box”. Additionally, the developed mesh-based GNNs did

not include any information regarding boundary conditions. These limitations can be addressed

in future work using multiple types of nodes for the boundary and material region, and by

investigating into physics-informed neural networks and interpretable models.

Ultimately, while mesh-based GNNs have demonstrated accurate predictions for multi-

physics problems like phase field fracture models, it’s essential to acknowledge their limitations.

Unlike conventional computational models, the developed frameworks lack a physics-based

interpretation of results, characteristic of supervised ML models where predictions remain a
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”black box.” Additionally, these GNNs are restricted to two-dimensional domains and do not

incorporate information on boundary conditions, which could affect their applicability in more

complex and realistic scenarios. Addressing these limitations in future work could involve

incorporating three-dimensional realistic mesh-based domains, various node types for boundary

and material regions, and exploring physics-informed neural networks and interpretable models

to enhance the interpretability of results.

8.3 Future Work

The ML microstructure characterization framework presented in this dissertation opens up

several avenues for future research to further enhance its applicability in aerospace and beyond.

First, the framework can be expanded to detect and characterize new types of materials beyond

AM metals, encompassing various length scales and material compositions. Additionally,

extending the framework to predict multiple defects within the same image, using techniques

like the object detection YOLOv5 network, could enhance its versatility. Moreover, integrating

additional ML models to predict material properties based on the extracted features would

provide a more comprehensive understanding of material behavior. This generalized structure-

property extraction capability could then be utilized as input for computational models to

simulate material failure responses accurately. Ultimately, while the framework was initially

developed for defect characterization, its techniques hold potential for applications beyond

structural mechanics, such as crater extraction in satellite imagery, which could be explored in

future studies.

Next, the GNN frameworks developed to accelerate simulation time also open up numerous

avenues for future projects, and I will discuss just a handful of them here. The Microcrack-GNN

and ACCURATE frameworks offered a simplified graph representation tailored towards XFEM

problems which only considered cracks in two-dimensional brittle materials. These frameworks

can be extended in future work towards more complex and realistic three-dimensional domains

involving ductile materials. A possible approach to account for dynamic effects from ductile

fracture such as crack bifurcation, is to develop a dynamic graph representation where in the

event of crack bifurcation, an additional node and edge is added to the graph to account for
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the newly formed crack-tip. Additionally, a similar methodology can be applied to extend the

framework for different types of defects such as voids. Lastly, the ML optimization algorithm,

DENSE, can be implemented to these models iteratively at each training time-step. The DENSE

algorithm can be used for optimizing the models’ architecture, training parameters, number of

simulations required for TL, and number of initial layers to be used for TL.

For future projects involving mesh-based GNNs, a crucial area of exploration is the devel-

opment of interpretable models to elucidate the predictions made by these frameworks, thereby

transcending the ”black box” nature of current models. One avenue to achieve this is through

the integration of physical laws and constraints into the model architecture, allowing for the

extraction of physics knowledge from predictions. One approach could involve formulating

a physics-informed loss function based on the energy functional of the phase field fracture

model [314]. The developed mesh-based GNNs predict quantities directly included in the phase

field energy functional such as scalar damage field, x-displacement field, and y-displacement

field. With these predictions, we can then directly informing the loss function based on the

residual from the predicted energy functional and the actual energy functional. Another approach

involves introducing inductive bias into the model architecture, embedding governing physics

and constraints directly into the structure of the ML model [315]. The graph representation used

in the developed mesh-based GNNs provides an ideal platform for incorporating this inductive

bias formulation where even the gradients of the crack and displacement fields are included as

edge features, enabling enforcement of governing differential equations and constraints for each

node and edge feature in the mesh. Ultimately, an interpretable mesh-based GNN approach

would facilitate the identification of significant node and edge features and their impact on the

resulting physics of the problem, offering deeper insights into material behavior and failure

mechanisms.

Moreover, in future investigations, a critical aspect to address for all dynamic GNNs

discussed in this dissertation is their scalability concerning domain size, defect quantity, and

mesh resolution. The ability to train models on smaller domains and then apply them to

larger-scale systems with more defects and finer meshes would significantly enhance their

computational efficiency. Multiscale GNNs may prove pivotal in this regard, as their approach
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facilitates the learning of underlying physics or patterns across large graphs from individual

smaller subgraphs. These proposed future endeavors aim to establish a generalized, scalable,

and interpretable ML framework for accelerating simulation time across various engineering and

physics mesh-based problems. The mesh-based GNNs developed in this dissertation provide a

versatile methodology that can be readily extended to address other multiphysics challenges,

such as simulating detonation or shock response, fluid dynamics, deflagration, and material

fragmentation. Furthermore, this methodology can be expanded to encompass three-dimensional

problems, incorporating multiple types of initial defects akin to those found in AM materials, as

well as diverse node types to accommodate various boundary conditions.

Ultimately, each study in this thesis delved into the realm of structure-property relations,

spanning from the creation of an ML microstructure characterization framework for defect

extraction and material property estimation to ML mesh-based GNNs for expediting fracture

simulation in materials with initial defects. Another crucial frontier for future exploration lies in

reversing this process to achieve optimal material design: starting with desired material properties

and dynamic failure behavior, then predicting the corresponding initial defect arrangement

needed to attain such behavior. This approach would ultimately revolutionize the development

of space structures and military materials by tailoring material defects on-the-fly to withstand

specific anticipated loads. Generative ML models like Generative Adversarial Networks (GANs)

and Reinforcement Learning (RL) models may offer promising avenues for tackling this task in

future research endeavors.
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[223] S. Brach, E. Tanné, B. Bourdin, and K. Bhattacharya, “Phase-field study of crack nucle-

ation and propagation in elastic–perfectly plastic bodies,” Computer Methods in Applied

Mechanics and Engineering, vol. 353, pp. 44–65, 2019.

[224] O. Gültekin, H. Dal, and G. A. Holzapfel, “Numerical aspects of anisotropic failure in

soft biological tissues favor energy-based criteria: A rate-dependent anisotropic crack

phase-field model,” Computer methods in applied mechanics and engineering, vol. 331,

pp. 23–52, 2018.
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