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Abstract

In this work, a novel neural implicit representation tomography algorithm based on Neu-

ral Radiance Fields is developed and demonstrated for 3D flow diagnostics. Neural Radiance

Fields (NeRF) originate from the computer vision community that uses a machine learning

approach to approximate a scene of interest as a continuous function using a neural network.

The NeRF machine learning concept provides some advantages over traditional tomography

methods, including i) a continuous approximation of the volume that removes the inherent

limitation on volume resolution that is present in discretized representations, ii) a reduction

in memory requirements for the volume prediction, and iii) an adaptable tomography frame-

work that can include additional inputs, outputs, imaging models, and constraints. The method

developed in this work, FluidNeRF, predicts the intensity per unit volume as a continuous

function of 3D spatial (static) or 4D spatial-temporal (time-resolved) coordinates. FluidNeRF

trains similarly to other algebraic reconstruction techniques, where the volume approximation

is updated by comparing predicted and captured images of the volume. The image rendering

technique of FluidNeRF employs an emission-based imaging model. Static and time-resolved

FluidNeRF was evaluated using both i) a DNS-generated turbulent mixing jet and ii) an exper-

imental dataset of a low-speed, smoke-entrained jet flow. The synthetic datasets systematically

investigated the hyperparameters, camera configuration, and image noise regarding reconstruc-

tion quality. Static FluidNeRF was also compared to a traditional ART-based tomography

model. The results show that i) FluidNeRF is a viable technique for tomography of flow diag-

nostics, ii) FluidNeRF produces comparable or superior reconstruction accuracy and is more

robust to noise than traditional tomography methods, and iii) the method can scale to larger

problems. Additionally, the results proved the FluidNeRF can be expanded to time-resolved

reconstructions, which further compresses the volume representation and implicitly constrains

the problem in time.
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Chapter 1

Introduction

Three-dimensional (3D) flow diagnostics have received increasing attention and interest due

to the spatial complexity in many real-world applications. 3D tomography is a technique

that reconstructs a 3D scene from a series of projections acquired by a distribution of 2D

sensors surrounding a flow field. Image-based 3D flow diagnostic techniques that use to-

mography include fluorescence (LIF) [21], optical pyrometry [22], tomographic absorption

spectroscopy (TAS) [23], particle image velocimetry (PIV) [24, 25], tomographic emission

spectroscopy [26, 27], background oriented Schlieren (BOS) [28], and many more. The to-

mographic reconstruction method is generally an ill-posed and under-defined inverse problem,

making it difficult to solve. In turn, larger or higher resolution volumes are required to experi-

mentally capture the extensive range of space and time scales that can occur in complex flows,

making the problem more challenging to solve due to the under-defined problem. Therefore,

improvements to the tomographic approach are still needed.

Several reconstruction techniques have been developed over the past decades to solve the

tomography problem including filtered back projection (FBP), deconvolution [29], iterative

reconstruction (IR) techniques including algebraic reconstruction technique (ART) [30, 31, 32,

33, 34, 25, 35], and genetic algorithms (GA) [36, 37, 38]. FBP was the original standard for

computed tomography (CT) in the medical field. However, it requires a large number of evenly

spaced images that surround the object of interest. Iterative reconstruction (IR) techniques

have been implemented for computed tomography (CT), where many variations of the method

have emerged [39]. ART and its variants have been implemented for many flow diagnostic

techniques such as PIV, BOS, and LIF due to the ability to reconstruct with a limited range
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of views [25, 40, 41]. Chetih and Messali [42] showed the advantages of ART over FBP for

medical imaging. Grauer et. al. [1] has presented an extensive review article on volumetric

emission tomography methods for combustion measurements. ART techniques require the

volume to be discretized, which can lead to numerical artifacts, aliasing, or numerical instability

during reconstruction. In addition, voxel-based approaches like ART require large memory

(1+ GB) and computational costs that scale with the number of voxels used to represent the

volume. Ultimately, this limits the ability to scale voxel-based reconstruction methods to very

high resolutions, which could be achieved with modern improvements to imaging systems.

Most recently, machine learning techniques have rapidly expanded into tomographic re-

construction techniques, including flow diagnostics. Willemink and Noël [39] explain the re-

cent advances in machine learning for tomographic reconstruction, where most work has fo-

cused on enhancing reconstruction quality in the medical field. For flow diagnostics, a machine

learning technique was developed to reconstruct particle size and location via a U-net con-

volutional neural network architecture for digital holography [43, 44]. The U-net architecture

increased extraction rates of particles at four times the concentrations and higher accuracy com-

pared to traditional methods. Another technique reconstructs temperature and species concen-

trations in a flame using a neural network approach described by Ren et al [4]. Additionally,

tomographic reconstruction has been attempted using convolutional neural networks [3, 45];

however, CNN methods require volume discretization and is limited to relatively small vol-

umes. Unfortunately, these machine learning techniques require supervision/training data typ-

ically synthetically generated from CFD models. This approach makes it challenging to apply

these techniques to new situations where training data is unavailable or the method has reduced

generality. Determining the uncertainty when using these techniques for a new problem is

problematic due to being trained with different datasets.

The computer vision community introduces a machine learning framework that approxi-

mates a volume as a continuous spatial and temporal function. The inspiration for this work

originates from the neural radiance fields (NeRF) [6] method. NeRF represents a volume as

a continuous function of 3D spatial coordinates and 2D view angles. The continuous func-

tion is generated by a feed-forward neural network that trains on the difference between the
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imaged perspectives and the rendered images of the approximated volume, similar to the tra-

ditional tomography methods. NeRF removes the inherent spatial resolution limitation of the

discretized methods, compresses memory required for storage by orders of magnitude, and pro-

vides an easily adaptable framework for incorporating ray models, image rendering techniques,

adjusting inputs, and physics-based learning models. Gao et al. [46] covers the advances of

the NeRF technique with over 200 references in three years since the introduction of NeRF.

A NeRF framework has been utilized for 3D tomography of flow fields for an instantaneous

set of images [8, 47, 7]. Several techniques incorporate temporal information into the NeRF

model [48, 49], but each possesses different training methods and network structures for incor-

porating time.

Tangential to the computer vision community, Physics-informed neural networks (PINNs)

have been introduced to model complex flow fields [50], where feed-forward neural networks

relate relevant flow parameters in space and time. Using automatic differentiation, PINNs can

provide partial derivatives of the output variables (u, v, w, ρ). These partial derivatives are cru-

cial for enforcing physics-based equations (e.g., Navier-Stokes, advection-diffusion, etc.) as

loss functions for updating the model. PINNs have been shown to effectively solve inverse

problems in fluid and solid mechanics [51, 52, 53, 54]. Raissi et al. [52] demonstrates that

PINNs can calculate flow field measurements using flow visualization techniques. However,

the measurements were limited to 2D (images), or the 3D scalar field output of the PINN was

trained using volumetric intensities generated from traditional tomography methods. Molnar

and Grauer [9] demonstrated that PINNs can be utilized for flow tomography of 2D flow fields

by adding a “data loss” similarly used by NeRF methods. Furthermore, PINNs have also been

proven for reconstructing 3D velocity and pressure fields using particle tracks [55] and BOS

measurements [56]. Flow field measurements using a NeRF framework have been demon-

strated in concurrent work by Chu et al. [7], where a velocity field was estimated from smoke

visualization. PINNs and NeRF are two active areas of research where the developments are

mainly application-agnostic. Therefore, deep learning-based tomography stands to benefit from

the rapid advances occurring in both fields.
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The previous paragraph illustrated some potential advantages that the NeRF technique

brought to the computer vision community; however, NeRF-based techniques have been mainly

applied to opaque natural scenes with limited investigation of flow tomography. To the best of

the author’s knowledge, there has yet to be a systematic study of the NeRF technique for 3D

flow diagnostics, including hyperparameters of the network, camera configuration, and the in-

troduction of time into the model. This work seeks to demonstrate a new machine learning

architecture for flow tomography that can lead to a data assimilation model and characterize

the framework to understand the method’s limitations. This study performs a preliminary in-

vestigation to establish NeRF as a viable reconstruction technique for 3D flow diagnostics,

termed FluidNeRF. The objectives of this work are as follows:

1. Design a viable NeRF-based 3D flow field reconstruction technique with consideration

given to both the configuration of the multi-camera imaging system and the correspond-

ing selection of NeRF hyperparameters.

2. Characterize the performance of NeRF for 3D flow field reconstruction by benchmarking

it against an ART-based method for scalar field reconstructions.

3. Demonstrate the viability of incorporating temporal information into the reconstruction

methodology that will be called time-resolved FluidNeRF (TR-FluidNeRF) using both

synthetic and experimental volumes.

The objectives are achieved using synthetically generating images of a CFD-generated turbu-

lent free jet volume and an experimental smoke-filled jet flow representative of typical mea-

surements acquired for flow diagnostics. The synthetic CFD dataset provides a ground truth

with several regions of varying complexities to evaluate the limits of the proposed reconstruc-

tion technique. The turbulent jet also resembles typical flow diagnostic volumes. An in-house

image rendering code generates the perspective images to provide flexibility on camera param-

eters, layout, and noise levels. An experiment was designed to evaluate and demonstrate the

reconstruction for real-world datasets, with the experiment using smoke as a passive scalar in

the flow.
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This dissertation focuses on supplying an initial understanding of a neural implicit repre-

sentation method for flow tomography, including the influential hyperparameters on the recon-

struction quality, computational efficiency, and limitations compared to a traditional tomog-

raphy method. The first chapters will provide the necessary background information for the

reader to understand the developed tomography method. Chapter 2 presents the conventional

tomography techniques developed over the past decades, with most being applied to flow di-

agnostics. Chapter 3 introduces the fundamental concepts of the machine learning techniques

that are utilized by this work. The chapter also illustrates the past developments for 3D tomog-

raphy in computer vision and flow diagnostic communities. Chapter 4 finishes the background

information by discussing typical scalar field measurements utilized for combustion and flow

diagnostics. In this chapter, we emphasize the tomography algorithms and optical systems

that have been applied to past work to show the current state of scalar field measurements.

Chapter 5 introduces our formulation of the FluidNeRF technique, with a detailed description

of each component of the NeRF-based architecture. Chapter 6 discusses the synthetic CFD

dataset, the image rendering technique, and the ART-based technique employed to evaluate

the FluidNeRF method. Chapter 7 presents the systematic results from the synthetic test cases,

emphasizing the evaluation of the reconstruction quality for changing hyperparameters, camera

layout, noise, and adding time to the model. Chapter 8 discusses the design, setup, and pro-

cedures of the smoke-filled jet experiment. During this work, a miniature camera system was

developed to help reduce the overall costs and size of tomography systems, which this chapter

also introduces. Chapter 9 presents the reconstructions and analysis of the smoke-entrained jet

flow. Finally, Chapter 10 finishes the dissertation with this work’s general conclusions while

providing insight into the future work required for improving the method.
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Chapter 2

Classical Tomography

Early developments of volumetric imaging for fluid diagnostics include planar or multi-planar

methods that capture 3D information by stitching the planes together. These techniques consist

of capturing various plane locations across different experimental runs, or the more popular

method that comprises scanning the plane through the volume during the experiment. Com-

bining the slices generates the 3D view. One of the first time-resolved 3D measurements of

a gas jet was conducted using a scanning mirror to relocate the laser plane [57]. Since then,

several 3D scanning methods have been conducted using PLIF and other measurements [58].

One advantage of scanning methods is the high spatial resolutions that can be acquired for a

single slice of the volume. However, scanning techniques have lower resolution in the scanning

direction as the number of planes is a trade-off between depth spatial resolution, temporal reso-

lution, and number of planes. State-of-the-art MHz-rate cameras and lasers still lack the ability

to capture the smallest structures and temporal resolution for turbulent flows. Additionally, the

laser sheet has a finite thickness, and stitching slices together can create artifacts [1].

An alternative volumetric imaging technique is tomography. Tomography uses simultane-

ous line-of-sight (LoS) integrated projections of a volume to determine the original source of

the projections as demonstrated in Figure 2.1. The LoS measurements have essential features

of the volume convolved into a single image, where features could overlap one another. The

convolution of features makes it difficult to separate these features. Therefore, multiple LoS

measurements are needed to solve the problem. For flow diagnostics, multiple imaging sen-

sors are distributed in a wide arc to capture 2D LoS projections of the volume. An alternative

method is to rotate a single camera around the volume. To use the single camera method, the
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volume must be relatively static during the imaging process due to the temporal aspect of the

capturing process. The sensors capture LoS projections of the volume, where each pixel is a

single projection. These projections are inputs into a tomographic method, also called a recon-

struction algorithm, to infer a source field. The source field could be subsets of the light field

or features that alter the light-field, including absorption and density gradients. The term light

field defines the dense array of light rays that fills space [59], where light rays are vectors that

vary in space and time, with corresponding intensities that are functions of wavelength. The

volume measurements can then be used to deduce additional quantities like concentrations and

temperature. Reconstruction techniques require a camera model to approximate the imaging

process. Ultimately, tomography attempts to deduce the inverse imaging model to determine

the source field.

The process of determining a 3D source field from lower-order projections is a challenging

problem. Tomography solves an inverse problem, where the only way to solve the source light-

field exactly is with an infinite number of projections around the volume. The ambiguity of the

under-determined inverse problem causes an endless number of reconstructions that produce

the input projections. Additionally, the problem is typically ill-posed due to noise, model errors,

and other uncertainties with the volume projections. Increasing the number of projections better

constrains the inverse problem; however, the current cost of high-resolution imaging devices

and the complexity of the experimental setup of several large cameras can limit the number of

practical projections. Even with these challenges, diagnostics that have employed tomography

have shown impressive results. The following sections provide an overview of the various

methods developed to solve the inverse problem, where the methods can be broken into two

categories: analytical and algebraic [1]. The rest of this chapter provides the reader with a

general background on the classical tomography methods to provide an understanding on the

development our new tomography method of this work. There have been several review articles

for tomography [39, 60, 34, 1], where the author follows the definitions and terminology that

was formulated in the review article by Grauer et. al. [1].
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Figure 2.1: Schematic of the tomography process with cameras positioned around a volume of
interest to capture 2D LoS projections of a volume of interest. The LoS projections are used
to generate a predicted volume through a tomography algorithm. This figure is taken from the
review article by Grauer et. al. [1].

2.1 Modeling 2D imaging

Let us start with understanding the 2D imaging process of volumetric imaging, as tomogra-

phy must conduct the inverse to solve for the 3D scene/volume. Volumetric imaging acquires

knowledge of the quantity of interest (QoI) in a 3D field from 2D images (perspectives), which

is typically conducted with cameras. Images are captured simultaneously, averaged, or phase-

averaged using one or more cameras or sensors. Taking the inverse of the imaging model to

deduce a 3D field is called the reconstruction. Therefore, knowing the imaging model perfectly

is essential to produce the best reconstructions. The rest of this section covers imaging models

that have been developed.

The volumetric QoI, denoted as g(x), represents the quantity of interest for 3D spatial

locations within the volume of interest, where x is the 3D spatial coordinates. The images

captured of the QoI are discrete measurements of intensity, with 2D discrete coordinates of

pixels. The 2D unit vector (u = [u, v]) of the sensor is an integer value that corresponds to the

centroid of the pixels. A projection function (Ψ) is the relationship between g(x) and u through

u = Ψ(g(x)) (2.1)

The projection function accounts for the optical system that captures light rays from the field

of view, composed of lenses, mirrors, prisms, and filters. In addition to the optical system,

the projection function resolves refraction and other phenomenon that changes the direction
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of light from the volume. For an ideal system, distortions and aberrations within the optical

system are ignored when using a pinhole camera model. A pinhole camera model replaces

the optics system with a single infinitesimal aperture that the sensor imagines, simplifying the

imaging system. In a real optical system, decreasing the aperture size would increase diffrac-

tion effects. However, for most flow diagnostics, finite lenses, and apertures are employed to

capture adequate accumulation of light on the sensor for short integration times. With a finite

aperture, distortions should not be ignored. Therefore, assuming perfect thin lenses can lead to

uncertainty about the location of light on the sensor. Grauer et al. [1] covers several imaging

models that can account for these effects.

The projection function governs the location a ray will intersect with the image plane from

a point in space. However, originating from a pixel going in the inverse direction corresponds

to a continuous set of world coordinates along the LoS of that pixel. The path of the LoS from

a pixel can be determined through the back-projection denoted as,

Ψ−1(u, l) = x (2.2)

where l is the distance the ray travels relative to the aperture. For a perfect system, the back-

projection function can be determined by taking the inverse of the projection function. How-

ever, a real optical system with a finite aperture will produce a point spread function on the

sensor. The point spread function relates a point source in space to the image shape of the

point source as a function of the distance of the source relative to the focal plane of the optical

system. The point spread function indicates that there is not a unique solution for the inverse

of Ψ. Therefore, the central ray that passes through the center of the aperture is taken as the

primary ray. Real optical systems’ projection and back-projection functions are calculated via

camera calibration methods [1].

The radiative transfer equation (RTE) describes the production, transmission, and atten-

uation for a single wavelength of light (λ) as described by Modest [61]. The RTE can be

simplified by assuming a dark background, negligible absorption, and the light is not scattered

by other molecules or objects in the volume. Using these simplifications, the spectral intensity
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that reaches the sensor is calculated via

Iλ(u) ∝
∫ ∞

0

I ′λ[Ψ
−1(u, l)]dl, (2.3)

where I ′λ is the volumetric, monochromatic intensity source term. The field of interest can be

found by spectrally integrating I ′λ for the QoI. Eqn. 2.3 becomes increasingly more complex

when the optically thin assumption breaks down, which means absorption and out-scattering

are not negligible and must be included in the equation. Absorption and out-scattering are

known as extinction.

Using the assumption from Eqn. 2.3 and the field of interest is contained within the depth

of field of the camera, the signal captured at each pixel (Si) can be found using

Si =

∫∫
Xi

∫ ∞

0

ηλτλ,f

∫ ∞

0

I ′λ[Ψ
−1(u, l)]

Ωi(l)

4π
.dldλdudv (2.4)

Not only is Si a function of the transmittance of light, but it is also a function of the sensor’s

response to light. Xi is the sensitive area of a pixel for the ith pixel. ηλ is the quantum effi-

ciency of the sensor that is a function of wavelength and can vary with u. The transmittance of

light (τλ,f ) is the net amount of light that passes through all the optics and filters. Finally, Ωi

quantifies the amount of solid angular space subtended by a region as seen from a distance, l.

The solid angle for volumetric imaging is the aperture area over l2, which can be approximated

using the f-number of the optical system
(
Ω ≃ f−2

#

)
.

One simple model that has been used widely for emission-based measurements is the

emission-only rendering model, which assumes that i) absorption, scattering, and refraction are

negligible inside the field of interest, ii) the only sources of light originate from the QoI, and

iii) the field of interest is within the depth-of-field of the camera. The emission-only model is

provided as

pi =

∫ ∞

0

ηλτf,λdλ
Ω

4π

∫ lout

lin

g
[
Ψ−1(ui, l)

]
dl, (2.5)

where pi the projection along the LoS of g at the ith pixel, and lin and lout are the ray lengths

originating from the lens to the entrance and exit of the volume, respectively. The integral
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begins at the aperture (l = 0) and proceeds to the beginning of the volume (l = lin) before

passing through the volume at l = lout. Anything outside the volume g is assumed to be zero;

therefore, the light generated is contained between lin and lout. The emission-only model is

one of the simplest rendering techniques. A more realistic imaging model can be employed to

account for finite, real optics,

pi =

∫ ∞

0

ηλτf,λdλ
∫∫

Xi

∫ lout

lin

g
[
Ψ−1(ui, l)

] Ωi(l)

4π
dldu. (2.6)

Eqn. 2.6 brings the solid angle inside the inner integral since the solid angle changes with

the distance to the camera. The following sections cover methods that attempt to invert the

measurements to determine g (reconstruct the volume).

2.2 Analytical methods

Analytical models provide an explicit function to solve the tomography problem, where the

equation relates projections (p) to the reconstruction (g). Two of the most common analytical

models are the Fourier- and Radon-transform-based methods. These methods assume that the

Fourier transform of the projection data corresponds to 1D lines in the Fourier space of the 2D

or 3D field g. The Fourier slice theorem techniques are covered in the next section. In addition

to this transform-based algorithm, the inverse Abel transform provides an analytical method for

reconstruction. Abel’s transform assumes a radially symmetric source field to derive an explicit

formula for the inversion process.

2.2.1 Transform-based algorithms

Transform-based algorithms are derived from the Fourier Slice Theorem as explained by Kak

et. al. [62]. Figure 2.2 shows the main components of the transform using a simple 2D example

of the Fourier-based algorithm using a parallel projection of the volume (g(x, y)). The filtered

back projection (FBP) algorithm is the most common closed-form solution to the inversion

problem in tomography for real measurements. The Fourier slice theorem relates the Fourier

transform of the projections to the Fourier transform of the volume. The algorithm was first
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Figure 2.2: 2D schematic of the Fourier Slice theorem. The 1D projection of the volume using
parallel LoS measurement through the QoI and transformed to the frequency domain using a
1D Fourier transform, also known as the Radon transform.

demonstrated for 2D tomography from 1D projections; however, the method has also been

extended to 3D tomography with 2D projections.

To start the Fourier Slice Theorem, let’s consider the 2D Fourier transform of the 2D object

function (Figure 2.2) g(x, y),

G(u, v) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)e−j2π(ux+vy)dxdy (2.7)

u = ω cos θ, v = ω sin θ (2.8)

where j is the square root of -1 and u and v are the x- and y-direction wavenumbers of G. The

wavenumbers can be calculated using Eqn. 2.8. The 1D Fourier transform of the projection

(Pθ(s)) of g(x, y) use sinogram coordinates (s, θ), where θ is the angular position of the ray.

The cartesian coordinates (x, y) are related to the projection coordinates using the following

transformation,

s = x cos θ + y sin θ, (2.9)

l = −x sin θ + y cos θ. (2.10)
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The projection of g using sinogram coordinates is found by integrating along the LoS of the

rays in the l-direction as shown in Eqn. 2.11,

Pθ(s) =

∫ ∞

−∞
g(s, l)dl (2.11)

which is referred to as the Radon transform [63]. This formulation assumes infinitesimally

thin and parallel rays. The 1D Fourier transform of the projection function Pθ(s) assuming

continuous data along s is

Sθ(ω) =

∫ ∞

−∞
Pθ(s)e

(−j2πωs)ds. (2.12)

The projection Pθ(s) can be replaced with the Radon transform (Eqn. 2.11),

Sθ(ω) =

∫ ∞

−∞

[∫ ∞

−∞
g(s, l)dl

]
e(−j2πωs)ds. (2.13)

Converting the sinogram coordinates to cartesian coordinates,

Sθ(ω) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)e−j2πω(x cos θ+y sin θ)dxdy. (2.14)

The 2D Fourier transform of g is on the right-hand side, where Eqn. 2.8 relates the cartesian

coordinates and θ to the wavenumbers. The result indicates that the 1D Fourier transform

of the projections equals the 2D Fourier transform of the object function G(u, v). Assuming

an infinite number of evenly-spaced projections were captured, then G(u, v) would be known

exactly. This formulation allows the original object g(x, y) to be determined through the inverse

Fourier transform of G, Eqn. 2.15, thus proving the Fourier slice theorem.

g(x, y) =

∫ ∞

−∞

∫ ∞

−∞
G(u, v)ej2π(ux+vy)dudv (2.15)

The equation can be converted to polar coordinates using Eqn. 2.8, which yields

g(x, y) =

∫ ∞

−∞

∫ ∞

−∞
Sθ(ω)|ω|ej2πω(x cos θ+y sin θ)dωdθ (2.16)
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While the Fourier slice theorem provides a way to analytically solve for an object from its

projections, in practice, only a finite number of projections can be recorded. A finite number

of projections leads to only resolving a limited number of radial lines (θ) in the frequency

domain, as shown in Figure 2.2. Additionally, there are only a discrete number of samples in

the frequency domain along the radial line corresponding to the pixel size. Since the radial lines

will have finite angular separation, sampling points become increasingly sparse with frequency.

Thus, the Fourier slice theorem poorly resolves the high-frequency content in a volume, which

leads to increased error in the high-frequency components of g during back-projection. A filter

can be applied to the back-projection equation, replacing |ω|, to reduce the effects of the high-

frequency error. This technique is referred to as “filtered back-projection” (FBP).

A wide range of filters have been developed for FBP, where the most common filter is the

Shepp-Logan filter [64]. FBP was the first well-accepted method for CT scanners in the medical

community. Even with filtering out the high-frequency, FBP requires a large number of evenly

spaced projections (100+); otherwise, the reconstruction accuracy reduces significantly. FBP

can quicly reconstruct volumes with high reconstruction quality but only when there are an

adequate number of projections. Due to these requirements, FBP is only viable for limited

flow applications due to the size and cost of modern high-speed cameras [1]. A more in-depth

derivation and overview of FBP algorithms is found in the third chapter of the book by Kak and

Slaney [62].

2.2.2 Abel Transform

The Abel transform technique assumes that the QoI in the imaged volume is radially symmet-

ric, which forces a constraint on the reconstruction. In flow diagnostics, several steady flows,

including jets, shocks, and laminar flames, can be assumed to be axisymmetric. The symmetry

assumption reduces the complexity of the problem because axisymmetric objects/volumes will

produce the same projection independent of θ, provided the projection is captured perpendicu-

lar to the axis of symmetry. A 2D example of this is demonstrated in Figure 2.3 [65]. The LoS

projection of g is a function of the radial distribution given by,

14



p(y, z) = 2

∫ ∞

y

g(r, z)
r√

r2 − y2
dr (2.17)

where r is the distance to the central axis. The inversion of the projection equation to solve for

g is termed Abel Transform (Eqn. 2.18)

g(r, z) = − 1

π

∫ ∞

y

p′(y, z)√
y2 − r2

dy, (2.18)

where p′ = ∂p/∂y. As explained by Dasch [65], the Abel transform is less common due to (i)

the need for p′ and (ii) the divergence of the solution at r. The finite difference approximation of

p′ using high-resolution images is sensitive to noise due to the solution requiring the derivative

of the projection. Lower-order approximations can be made, but this decreases the resolution

of g. Grauer et. al. [1] covers several numerical methods that were developed to stabilize the

Abel transform, where the most popular was devised by Dasch [65] that uses a three-point Abel

inversion technique. The disadvantage of the Abel transform is the limiting assumption that the

projections are captured along thin, parallel rays, which is inconsistent with real optics. Thus

leading to noticeable reconstruction errors. Abel’s theorem should only be employed if the

imaging model from Eqn. 2.17 is an accurate approximation and the volume can be assumed

axisymmetric.

2.3 Algebraic methods

Alternative to analytical methods, algebraic techniques set up a series of equations relating

the unknown volume to the projections. Algebraic techniques solve for the volume using a

finite set of algebraic equations. Thus, the projections and volume must have a finite number

of elements to form this finite set of equations, where the volume has to be discretized into n

elements. The most popular method for volume discretization is partitioning the volume into

evenly spaced and sized smaller volume elements. These are generally referred to as voxels.

Voxels have a constant value throughout and do not affect the volume outside its area, similar

to pixels of an image [1] given the name. The unknown volume/field g is represented by a finite

set of equations called basis functions, φj . If voxels are used, the basis functions take the same
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Figure 2.3: Demonstration of the forward Abel transform of a 2D axisymmetric object (circle)
to form the projection using thin, parallel rays.

piece-wise shape for each, unity inside the voxel and zero outside. g can be approximated using

n coefficients, gj , multiplied by each basis function as provided by

g(x) =
n∑
j

gjφj(x) (2.19)

Similar to the back-projection methods described in the previous section, a more general

model can be used to relate the unknown field g to the projections by using Eqn. 2.5. The

projection function (Eqn. 2.5) can be discretized following the idea of voxels to produce a

linear system of equations called ray-sums

Ag = p, (2.20)

where A is a weight matrix that relates voxel coefficients gj to the projection pi via a matrix-

vector multiplication. The projection and volume coefficients are arranged in column vectors

with lengths m and n, respectively. A is a sensitivity matrix with a size of m × n, where each

value is a weight of the ith LoS measurement to the jth voxel coefficient. A more physical

description is that A is an approximate imaging model to form p from g. The inversion of A
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will provide a solution for g. The next section covers algebraic methods to solve the inversion

problem.

2.3.1 Algebraic reconstruction technique

Figure 2.4: (a) A simple illustration of an iteration of an ART algorithm on a simple, defined,
and well-posed 2 × 2 volume. (b) A larger volume grid showing the complexity of ART-based
methods with a weighting function that relates voxels to pixels.

The combustion and flow diagnostic communities have widely adopted ART-based meth-

ods due to their performance using a small assortment of camera projections. ART models

projections using ray-sums along the LoS through the volume (Eqn. 2.20), where the volume

is discretized into cubic voxels. The scales that occur in many real-world flows can be very

small, requiring dense volume discretization to capture those small structures [1]. Recent im-

plementations have used voxel densities on the order of 106 to 108, requiring large amounts of

memory storage. Couple the high voxel densities with modern scientific cameras with pixel

densities reaching tens of megapixels, iterative algebraic reconstruction techniques have been

introduced to solve for x of Eqn. 2.20 since A cannot be typically held in memory.

A simple example of the ART algorithm with parallel rays aligned with voxels is presented

in Figure 2.4(a). The method assumes that ray projections are line integrals captured by a

camera’s pixels that can be represented as discrete linear ray-sums. The problem evolves to

a system of linear equations for each projection and ray as first explained for tomography by

Gordon et al. [66, 30]. However, the ART algorithm originates from the Kaczmarz method
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of projections [67] that is derived from linear algebra. The ART algorithm is updated via

Eqn. 2.21 [30],

g(k+1) = g(k) + µ ·

(
wij∑
j w

2
ij

[
pi −

∑
j

wijg
(k)
j

])
(2.21)

where wij is the weighting matrix between pixel i and voxel j that corresponds to A from

Eqn. 2.20, and µ is a relaxation factor (generally, 0 < µ ≤ 2) that can ensure numerical

stability. Each ART iterates through each LoS measurement i to update g. The weight matrix

wij represents the fractional area of the pixel size of each voxel. The relationship between pixel

LoS and voxels can be approximated using a function w since the pixels and voxels do not

align, unlike as presented in Figure 2.21(b). Several weight functions have been implemented

for ART-based methods, where the selection depends upon computational cost and required

accuracy. The weight matrix leads to a large computational overhead since each pixel has a

corresponding weight for each voxel. Due to the increasing size of sensors and volumes, the

weights typically cannot be stored in memory and have to be calculated as needed during each

iteration. In addition to these steps, real-world volumes cannot have negative voxel values.

Thus, a non-negativity constraint should be employed (gj = max(gj, 0)).

The ART algorithm comprises two main parts: i) back-projection and ii) forward-projection

(or the update step). The demonstration shown in Figure 2.4(a) has four projections with a

well-defined system of only four unknowns. Like the original ART algorithm, the volume is

initialized to all zeros due to its simplicity. The next step is to back-project along the LoS of the

measured projections. For this case, the values of A are one along the LoS and zeros elsewhere,

thus simply summing along the LoS since the projections align perfectly. The demonstration

shows that the two projections are calculated simultaneously, but ART calculates them indepen-

dently. Once the back-projection is calculated, the residual between the measured projection

and the projection from the back-projection step are calculated (e = pi−Ai∗g). The difference

from the projections is distributed across the volume for the forward projection step along the

LoS. For this case, with a relaxation of unity and unity of Ai, it evenly distributes the error

across the LoS. This will be done for each of the projections.
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Once all projections are considered, ART will continue until an appropriate convergence

criterion is satisfied. For the consistent case, where a subsequent g solves Aig = p, the solution

will converge to the solution closest to the initial guess g(0). However, most applications use

ART to solve ill-posed problems, where projections include measurement noise or image model

errors. For these cases, each iteration of g has a unique minimum (known as the limit cycle) [68,

1]. To eliminate the issue of the limit cycle, the system of equations is squared to obtain the

least-square solution.

g = arg min||AT (Ag − p)||22 (2.22)

As discussed by Grauer et. al. [1], this does not guarantee the best solution due to the lim-

ited number of projections. The least-squares solution has no direct physical relationship for

volumes found within flow diagnostics like flames.

The original ART algorithm was adopted because of quick convergence with regard to

the sum of squared errors. However, ART also results in pronounced salt-and-pepper noise

distributed through the reconstruction [69, 70]. Convergence of ART depends on the order of

the update sequence since ART updates g in a row-by-row basis. One way to overcome this

is to randomly shuffle the order of the projections, which consistently outperforms sequential

ordering in both accuracy and convergence speed [71]. The relaxation factor, µ, is a hyper-

parameter that can increase convergence at higher values; however, µ increases sensitivity to

noise or model error.

ART also suffers from semi-convergence [72, 73]. Semi-convergence is when g first ap-

proaches the best (error-free) solution but asymptotes to the least-squares solution. The closest

approach to the best solution depends on the problem and the relaxation factor, thus making it

difficult to determine the best stopping point. A simple stopping method is to halt the iterations

after the difference between the projections hits a user-defined minimum error (δp) [74].

2.3.2 Multiplicative algebraic reconstruction technique

Another version of the ART algorithm is the multiplicative algebraic reconstruction technique

(MART). As given by the name, MART consists of a set of linear equations given by Eqn. 2.20
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like ART; however, the update step is a multiplicative factor rather than additive. A criti-

cal characteristic of the multiplicative step is that once voxels are zero, they remain at zero.

The multiplicative factor improves convergence and reduces the number of updated voxels

each iteration [1]. The MART algorithm was developed concurrently with ART by Godron et.

al. [66]. In flow diagnostics, MART was first adopted for reconstructing PIV particle volumes

as described by Elsinga [25]. The algorithm tends towards high entropy solutions that make it

suitable for PIV. MART minimized line-of-sight artifacts that were found in ART and reduced

the number of iterations required for convergence. MART is relevant for PIV due to the sparse

nature of the volumes, where MART can generate satisfactory reconstructions with only four

cameras. This is important for flow diagnostics due to the limited optical access and temporal

requirements of different flows.

There are three main update step formulations for MART as evaluated by Verhoeven [60]

and Mishra et. al. [35]:

g
(k+1)
j = g

(k)
j

[
1− µ

(
1− pi

Aig
(k)
j

)]
(2.23)

g
(k+1)
j = g

(k)
j

[
1− µ

Ai,j

Ai,max

(
1− pi

Aig
(k)
j

)]
(2.24)

g
(k+1)
j = g

(k)
j

(
pi

Aig
(k)
j

)µ
Ai,j

Ai,max

(2.25)

The last two formulations incorporate a weight normalization Ai,max to help stabilize re-

constructions to noise and discretization errors. The relaxation parameter should be confined to

(0, 1] because values greater than one can cause the solution to diverge due to the multiplicative

property. Similar difficulties arise with MART, as was found in ART, where randomly ordering

projections per iteration improves performance.

As presented in Eqn. 2.23, 2.24, 2.25, MART updates the volume using the ratio between

the measured projection and the model back-projection instead of the difference between them

like ART. This formulation inherently restricts the voxel values to [0,∞). The amount of update

is proportional only to µ and the ratio of projections. MART’s final solution and computational

costs highly depend on the initial guess of g. Verhoeven et. al. [60] demonstrated that Eqn. 2.25
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is the most robust MART formulation; therefore, it has been well accepted as the method of

PIV [25].

Unlike ART, MART cannot be initialized to zero because the volume would remain zero

due to the multiplicative update step. Hence, the most straightforward initial guess is to set all

voxel values to one. Additionally, voxels that are not observed by any projections will not get

updated and, thus, should be set to zero. While this initialization scheme is simple, initializing

the volume to unity requires the algorithm to update every voxel until each voxel converges to

zero. However, this can take many iterations, and the values will only approach zero. There-

fore, other initialization techniques have been developed to improve MART’s accuracy and

computational time, where most techniques originated from PIV literature due to the sparse

volumes. The three main procedures include multiplicative first guess (MFG) [75], multiplied

LoS (MLoS) [40], and motion-tracking enhanced (MTE) MART [76]. While these have been

demonstrated to improve performance for tomographic PIV, the effects will be less noticeable

for a continuous emission or absorption light-field.

2.3.3 Simultaneous iterative reconstruction techniques

Thus far, the ART and MART methods update g going row-by-row through the projections, and

conducting these algorithms this way is computationally expensive. Alternatively, the simulta-

neous iterative reconstruction techniques (SIRT) update gj using all projections simultaneously

rather than for each i projection. Like ART, several SIRT algorithms were first developed

in the linear-algebra field before being implemented for volumetric imaging like Cimmino’s

method [77] and Landweber iteration [78]. A general form of a SIRT iteration, shown by

Eqn. 2.26 was reported by Hansen and Jøgenson [73],

g(k+1) = g(k) + µkTATM(p− Ag(k)) (2.26)

where the T is a n×n diagonal matrix that weights the back-projection for each basis function,

and M is a m×m diagonal matrix that weights the residuals along the LoS of each projection.

SIRT can be initialized in the same way as ART methods and iteratively updates the volume.
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This section will be focus on SART, MART, and ASART. A detailed review of other SIRT

algorithms is presented by Grauer et. al. [1].

Simultaneous ART

One of the more popular reconstruction algorithms for continuous scalar field flow field diag-

nostics is simultaneous ART (SART), first reported by Anderson and Kak [32]. SART com-

bines the advantages of SIRT and ART without suffering the cost of SIRT. The SART algorithm

is designed to produce smooth image back-projections after consideration of a ray-sum of a par-

ticular imaging direction, whereas SIRT does this after each full iteration. This allows SART

to converge quickly like ART while reducing the salt and pepper noise [32]. SART weights the

residuals using the length of each ray in the basis function [1]. The update step for SART is

presented in Eqn. 2.27,

g
(k+1)
j = g

(k)
j +

µ∑
i wij

∑
i

(
wij∑
j wij

[
p−

∑
wijg

(k)
j

])
(2.27)

The difference between ART and SART is that SART updates g(k) after the residuals from all

projections are accumulated. Comparing Eqn. 2.21 to Eqn. 2.27, the big difference is the
∑

i

outside of the parenthesis that sums the residuals and is normalized by the column-sum of the

weight matrix (
∑

i wij).

Simultaneous MART

Similar to SART, simultaneous MART (SMART) was developed to use a simultaneous iterative

approach to reduce the effects of noise generated by th original MART algorithm. Mishra et.

al. [35] devised the first SMART algorithm. Eqn. 2.28 presents the update step of SMART as

g
(k+1)
j = g

(k)
j

∏
i∈Υj

(
pi

Aig
(k)
j

) µ
Nj

Ai,j
Ai,max

(2.28)

where Υj is the set of LoS projections that interact with the jth voxel (Aij > 0) and Nj is the

number of projections in Υj . Thus, SMART accumulates the product average of the ratio of
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measured projection to the back-projection. The average correction for SMART is less sensitive

to projection noise than that of MART, making SMART more robust. The noise robustness,

combined with MART algorithms yielding a maximum entropy solution, has made it a popular

choice for tomographic PIV applications [40].

Adaptive SART

Another iteration of the SART algorithm called adaptive SART (ASART) was developed by

Wan et. al. [70]. ASART aims to remove computational costs from SART while also weighting

the residuals, not only with the length of the ray-sum, but also with the intensities of g along the

ray-sum. ASART has been shown to decrease the computational time and improve performance

with less projections compared to SART and FBP [70, 69]. The initial and updating steps of

the reconstruction is given by Eqn. 2.29 and Eqn. 2.30,

g
(0)
j =

∑
iwijpi∑
i wij

(2.29)

g
(k+1)
j = g

(k)
j +

µ

4

∑
i

(
wijg

(k)
j∑

j wijg
(k)
j

[
Pi −

∑
j

wijg
(k)
j

])
(2.30)

where E
(k)
j is the intensity of a volume element (voxel) j at iteration k, wij is the weighting

between pixel i and voxel j, Pi is the intensity on the image for pixel i, S is the number of pixels

per projection, and µ is a relaxation factor (generally, 0 < µ ≤ 2) that can enforce numerical

stability. The weighting function wij is an approximation of the complex relationship between

voxels and pixels, and wij is calculated each instance of the iterations due to the memory

requirement. ASART has been shown to improve accuracy and convergence rate for scalar

field measurements compared to the family of ART algorithms [70, 69].

ASART algorithm incorporates a modified multilevel access scheme to arrange the order

of projection data, adaptively correct the relaxation parameters to correct discrepancy between

actual and computed projections, and a column-sum substitution to reduce memory and compu-

tation requirements compared to SART [70]. The column-sum substitution reduces memory by

replacing an array of column sums with a scalar, which is important because it has shown that
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the column sums do not change during reconstruction and have no effect on the final solution

from SART. SART and ASART have a view-by-view strategy, where the volume is updated

simultaneously by all projections of each view direction. Overall, ASART improves recon-

struction quality and has improved robustness to measurement noise and incomplete data [70].

2.3.4 Maximum likelihood expectation maximization

Another way of compensating for noise in the projections is to use an expectation maximization

algorithm. These methods approach the tomographic problem statistically to determine the

prediction of g that is more and less likely with respect to the measured projections. This

algorithm allows for errors in the imaging model, such as noise. The projection model is

presented in Eqn. 2.31

p = Ag + e (2.31)

where e is the error vector. Expectation maximization algorithms are designed to calculate g to

generate a resumed error distribution across the projections.

The maximum likelihood expectation maximization (MLEM) method attempts to maxi-

mize the probability of p given g, also known as the likelihood function (P(p|g)). Since most

image sensors capture the number of photons that interact with each pixel, the variation in this

process (noise) can be modeled using a Poisson distribution [79]. The likelihood function can

be formulated using the Poisson distribution as shown in Eqn.2.32 [1],

P(p|g) =
m∏
i

(Aig)
(pi)

pi!
exp (−Aig) (2.32)

where pi is the photon count at the ith pixel of a sensor. Shepp et. al. [80] developed the first

MLEM method. An updated version was reported by Lange and Carson [81], with the update

step as provided in Eqn.2.33

g
(k+1)
j =

g
(k)
j∑
i wij

∑
i

(
wij

pi∑
j wijg

(k)
j

)
. (2.33)

24



MLEM uses the same ratio of the measured and reconstructed projection as MART. However,

instead of using that ratio to update the volume directly, MLEM weights the ratio with wij .

Then MLEM calculates the sum across all projections and normalizes it by the column sum

of wij . This provides a way of incorporating a physics model of noise into the reconstruc-

tion model. Unfortunately, Poisson-based MLEM is substantially costlier than ART while still

producing similar results [82]. Therefore, MLEM is a less preferred tomography technique.

2.4 Regularization methods

As previously stated, the tomography is an ill-posed inverse problem for most flow diagnostics

experiments. An ill-posed problem does not have a guaranteed unique solution, and the solution

is sensitive to the initial volume prediction. One way to improve the robustness of the solution is

to incorporate a priori information into the reconstruction algorithm. Incorporating physically

motivated information into the algorithm is typically done using regularization schemes. Many

classical regularization schemes have been applied to volumetric problems [83]. This section

will be focused on Tikhonov, total variation (TV), and Bayesian regularization schemes as

these are the most popular in the flow diagnostic community [1]. Of these, Tikhonov and TV

regularization schemes favor smooth solutions.

Errors with the image model and noise can affect the measured projections, as demon-

strated in Eqn. 2.31. The ART-based methods attempt to solve the inverse problem with a least

squares solution, where errors and noise can cause large amplitudes of high spatial frequencies

of the reconstructed volume [84]. The least squares minimization criteria include a regulariza-

tion penalty term to avoid the noise problem. A general mathematical formulation with the new

minimization problem is shown in Eqn. 2.34

J (g) = ||p− Ag||22 + γR(g), 0 < γ < ∞ (2.34)

where the first term is the least squares criteria and the second term is the regularization criteria.

The regularization criteria are composed of a regularization coefficient (γ) and a regularization

function (R) to enforce a priori information.
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2.4.1 Tikhonov Regularization

Andrey Tikhonov developed Tikhonov regularization in 1963 [85]. This regularization method

has R as the L2-norm as a function of the spatial intensities as shown in Eqn. 2.35 [1], where

LTik is the Tikhonov matrix that operates on g to get a desired regularization. Tikhonov regu-

larization can also be employed in matrix form using Eqn. 2.36, where 0 is an n x 1 vector of

zeros.

gTik = argmin
g

(
||p− Ag||22 + γ||LTikg||22

)
(2.35)

gTik = argmin
g


∥∥∥∥∥∥∥
 A

γLTik

 g −

p

0


∥∥∥∥∥∥∥
2

2

 (2.36)

There are two main versions used for flow diagnostics of Tikhonov regularization where

the difference between them is LTik. Zeroth-order Tikhonov regularization attempts to reduce

the effects of noise by penalizing large magnitudes in the reconstruction. The zeroth-order

Tikhonov regularization is employed by setting LTik as an identity matrix, which restricts the

values of g. The restriction suppresses noise amplification. This technique is not advantageous

for most scalar field measurements in flow diagnostics due to the limited number of projections

used for most experiments [1] due to A being rank deficient.

Another Tikhonov regularization is the second-order method, where LTik is a discrete

Laplacian operator (∇2). Several finite difference schemes can be employed to approximate

the Laplacian operator. In general, LTikg will be large when multiple high-magnitude gradients

are present in g. Therefore, second-order Tikhonov will force g to a smoother solution as this

will minimize LTikg. The smoother approximation is useful prior information when the solution

should follow the advection-diffusion equation that supports smooth scalar fields.

The regularization coefficient (λ) is critical for balancing the minimization of the measure-

ment residual and Tikhonov regularization term. Several methods for selecting λ are presented

by Idier [84], but a popular method is the L-curve first suggested by Lawson and Hansen [86]

and further developed by Hansen [87]. The measurement residual and the regularization term
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are a function of λ, where ||LTikg||22 versus ||p− Ag||22 are plotted at different λ forming the L-

shaped curve. The curve is composed of two sections around an inflection point: i) the residual

norm is relatively constant as the regularization term changes, and ii) the residual quickly rises

from the inflection point with the regularization term remaining relatively unchanged [1]. The

optimal λ occurs at the inflection point between these two regions of the curve.

2.4.2 Total Variation

Total variation regularization was first demonstrated by Rudin et. al. [88] for denoising of im-

ages and has been demonstrated for tomography [89, 90, 91, 26]. Total variation converges to a

smooth solution while preserving sharp gradients in g. Eqn. 2.37 presents the TV regularization

term (R(g) = ||g||TV) for a continuous function g, while the discrete version is Eqn. 2.38. ∇

is the 3D gradient operator, and ∇x, ∇y, ∇z are the finite difference operator in the x, y, and z

directions.

||g||TV =

∫∫∫
V

|∇g|dV (2.37)

||g||TV =
√

(∇xg)2i + (∇yg)2j + (∇zg)2k (2.38)

TV has two main variations that utilize either the L1-norm (||∇g||1) or the L2-norm

(||∇g||2). The L1-norm produces a piece-wise smooth function, allowing steep gradients to

preserve boundaries. Alternatively, the L2-norm penalizes the high-magnitude gradients. Thus,

fewer sharp gradients will be present in the solution. Unlike the Euclidean norm of Tikhonov,

the L1-norm is not squared and thus does not penalize the larger gradients as harshly. There-

fore, both TV variations are more accommodating to sharp edges or discontinuities in g. As

explained by Grauer et. al. [1], the TV-norm minimization can be solved by nonlinear meth-

ods, allowing for Eqn. 2.34 to be nonlinear. Some examples include using a Gauss-Newton

method [92], simulated annealing [26], and SIRT [89]. Grauer [89] showed that the SIRT

algorithm can solve the minimization problem efficiently.
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2.4.3 Bayesian formulation

Similar to Tikhonov and TV methods, Bayesian methods incorporate prior information to in-

verse tomography problems that are ill-posed and have limited projection information [93].

The Bayesian formulation incorporates a posterior that accounts for measurement and prior

information. In contrast, MLEM attempted to use only a statistical model for the measure-

ment model to account for imaging error. The Bayesian model parameters are taken as random

variables that are characterized by a probability density function (PDF) [89]. The distribution

of the PDF provides a measure of the confidence of the parameter value. The Bayes’ equa-

tion, Eqn. 2.39, computes the posterior PDF (P(g|p)) as a function of the likelihood and prior

PDFs [1],

P(g|p) = P(p|g)Ppr(g)

P(p)
∝ P(p|g)Pp(g) (2.39)

where P(p|g) is the likelihood of the measurements given g, and Ppr(g) is the prior PDF of

g. P(p) is a constant normalizing factor to conserve total probability. One difficulty with this

formulation occurs due to the high dimensionality of the posterior PDF, where each element of

g is a dimension. The final solution of g is the maximum posterior (MAP) estimate of P(g|p).

The MAP can be calculated using only the likelihood and prior PDFs. A SIRT algorithm is

typically used to solve these problems.

An accurate model of the measurement errors and a priori information is required to cal-

culate the likelihood and prior probability. A similar approach to Eqn. 2.31 is generally used for

the measurement error model. The Poisson model is a good approximation of a noise model,

especially in low-light situations that require an intensified camera. However, with adequate

signal levels, the Poisson distribution approaches a Gaussian shape. Thus, noise errors can be

approximated using a centered Gaussian error vector [83]. Grauer et. al. [1] argues that the

prior PDF is the most critical portion for the Bayesian reconstruction. For flames, a practical

starting point for the prior function is a multivariate Gaussian prior as demonstrated by Kaipio

et. al. [94].
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That statistical formulation of the inversion problem provides a comprehensive solution

since the posterior carries all information about g. The Bayesian formulation can give an un-

certainty quantification of the solution that can be used to optimize the experimental system.

Another advantage of this framework is that it can be formulated with other tomographic meth-

ods to provide an uncertainty quantification of the solution [9]. Cai [23] has proven that the

Bayesian formulation is a tool to incorporate the a priori and posterior information effectively.

A more detailed description of the Bayesian formulation for the tomography problem can be

found in [89, 1].

2.5 Nonlinear Optimization

Tomography measurements become a nonconvex optimization problem when the field of inter-

est has considerable in-scattering and self-absorption since the effects result in a highly non-

linear model. Even though Eqn. 2.20 is a system of linear equations that can be solved using

the previous effectively with the previously described iterative methods, using nonlinear reg-

ularization functions like TV or a Bayesian prior produces nonlinear equations [1]. However,

the iterative reconstruction methods described earlier cannot minimize the problem. Therefore,

nonlinear or global optimization methods must be employed.

One of the simplest approaches to solving these convex problems is through an iterative

gradient-based solver. These methods take iterative steps to approach a minimum using a gen-

eral equation,

g(k+1) = gk + αk ∗ sk (2.40)

For this equation, αk and sk is the size and direction of the step, respectively at iteration k.

The step size controls the convergence rate and stability of the gradient-based solver. Where

larger step sizes can approach the minimum quicker but can also cause the solution to diverge

depending on the nonconvex function.
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One method for determining the step direction is through the gradient of the nonconvex

function. This technique is called steepest descent, where the step is calculated using

sk = −∇F (gk) (2.41)

This step direction might be the simplest but generally leads to slow convergence and unsta-

ble solutions [1]. Neweton’s method provides an alternative way to determine step direction

by additionally incorporating the local curvature of F . The step direction can be generated

through,

sk = [∆F (g
k)]−1∇F (gk) (2.42)

where the ∆F is the Hessian matrix of F evaluated at gk. For Newton’s method, the step size

is generally set at unity. The quadratic fit of Newton’s method stabilizes the performance but

is only valid near the minimum. The Levenberg-Marquardt algorithm is a nonlinear optimiza-

tion algorithm that combines the Newton method with gradient descent to provide a stable and

robust minimization technique for nonlinear least square problems [95, 96]. This method ini-

tially begins with using the steepest descent method before transitioning to Newton’s method to

stabilize the approach to the minimum. Other nonlinear optimization methods, including con-

jugate gradient and Quasi-Newton methods, have been developed to solve the issues of steepest

descent algorithms as described by Nocedal and Write [97].

Steepest descent and Newton’s method-based algorithms have been developed for recon-

structions [98, 99]. Unfortunately, these methods require matrix manipulation and inversion

that can drastically increase computational time as the matrices (volume discretization) be-

come significantly large. Therefore, the steepest descent or Newton’s method, must use matrix

inversion algorithms for each iteration. Press et al. [100] provides a comprehensive book on

the different nonlinear optimization algorithms.

2.5.1 Genetic Algorithms

The main idea of genetic algorithms is to mimic natural selection or survival of the fittest

process as a metaheuristic technique. The main components of a genetic algorithm are the
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individual coefficients (gj), known as chromosomes, that make up the individual genotype (g).

The fitness of the genotype F(g) determines if the genotype will survive. These algorithms can

be broken down into six main parts:

1. Initialization: To begin the algorithm, a population of individuals need to be generated,

which is usually done with a random kernel. Initializing from a random kernel allows the

algorithm to not get trapped in local minimum of the arbitrary function of interest.

2. Evaluation: Each chromosome is evaluated using F to determine a fitness score that is

related to the suitability of the individual as a solution to the problem.

3. Selection: A subset of the previous generation is selected to progress to the next genera-

tion based on the fitness score. Individuals with the highest fitness are more likely to be

selected.

4. Reproduction: The selected chromosome from the previous step are combined to produce

a new set of individuals, where random changes are involved.

5. Replacement: The new individuals are then evaluated using F and replace genotypes

from the current population to ensure evolution over time.

6. Termination: Reproduction and replacement are continued until termination conditions

are met, which are typically based on F .

Ultimately, the solution will have yielded the lowest value of F(g). Overall, Genetic Algo-

rithms are a random search strategy to determine the global minima to an arbitrary function.

The previous description of a genetic algorithm has a limited description of the most crit-

ical part of the technique’s performance: reproduction. After selecting the genotypes that will

survive, the surviving individuals reproduce the new generation. The most common methods

for reproduction are also influenced by natural processes that include mutation, crossover, and

direct inheritance of chromosomes. First, mutation is the random perturbation of the chromo-

somes, where each chromosome has a chance to be mutated. Generally, the user specifies the

number of mutations to use. The algorithm can modify mutations to fall within a range of val-

ues and base them on surrounding coefficients to impose certain qualities. Second, crossover
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involves mating two individuals from a mating pool of selected genotypes to produce offspring

for the new generation. Mating is typically completed by randomly selecting an integer value

k, where every chromosome (gj) up to k is taken from one parent, and everything after is taken

from the second, producing the offspring. Lastly, direct inheritance takes the exact genotype of

the fittest individual from the previous generation. Genetic algorithms have many parameters

that the user can adjust. Therefore, it can be challenging to optimize the selection of all the

parameters as they affect the robustness and efficiency of the program [1]. For a more detailed

description of a genetic algorithm, the authors highlight the work by Kramer et. al. [101].

Genetic Algorithms were first developed for tomography by Kihm et al. [36, 102]. Yang

et al. [37] developed a hybrid method that combined an ART-based method with an evolution-

ary algorithm for flame reconstructions. Recently, a new genetic algorithm, the Evolutionary

Reconstruction Technique (ERT), has been applied to several 3D combustion diagnostic mea-

surements [38]. In this method, the individual chromosomes are an array of voxels representing

the 3D scalar field. The fitness function used to qualify genotypes (3D scalar fields) uses the

projection of the field and compares it to the measured 2D projections. Initially, ERT uses

a pin-hole camera model to trace rays through the volume to render projections, while other

camera models are expected in the future.

2.5.2 Simulated Annealing

Another integral metaheuristic approach applied to tomography is simulated annealing. Kirk-

patric et. al. [103] developed the first simulated annealing algorithm for minimization of dis-

crete problems. Simulated annealing algorithms are based on how materials are heated to a

high temperature and then cooled slowly to produce a low-energy crystalline structure [104].

The structure might not reach the minimum energy state if the material is rapidly cooled. In

this analogy, the material structure is the prediction of the volume, g. The free energy of g

is calculated using F . A heuristic parameter called temperature (T ) is introduced to simulate

the cooling process. There is no standard for initializing g, but a user could utilize a random

perturbation method to calculate a candidate g′. Simulated annealing is a probabilistic method,
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where the candidate g′ probability is calculated using

P(g′|gk) = 1−min

{
1, exp

[
F(gk)−F(g′)

Tk

]}
. (2.43)

Tk is the temperature at iteration k, that decreases with more iterations. To determine the next

iteration structure g, the probability is compared to a random number t ∼ U [0, 1]

g(k+1) =

 g′, t ≤ P(g′|gk)

gk, t > P(g′|gk)
(2.44)

Using this method, g′ will always be accepted if F(g′) ¡ F(gk). Thus, selecting g′ if it has the

lower energy. However, g′ still has a chance to be used for the next iteration, where the solution

can have the energy increase after an iteration. The probability of g′ being used depends on

the free energy relative to gk. This helps the solution escape shallow local minima. Generally,

the initial iterations of simulated annealing are erratic, leading it to explore the solution space

before transitioning to a monotonic progression towards a minimum as the system “cools”.

Past literature has proven that metaheuristic algorithms can solve the tomography prob-

lem better than other derivative-free random search algorithms [104]. However, gradient-based

solvers are more computationally efficient. Additionally, simulated annealing and genetic algo-

rithms are highly sensitive to user-specific heuristics. Therefore, Grauer et. al. [1] recommends

that users employ metaheuristic algorithms for problems with known nonlinearity.

2.6 Chapter Summary

This chapter covers the assortment of traditional tomographic reconstruction methods applied

across combustion and flow diagnostics literature. The chapter summarizes the analytical meth-

ods, including FBP and Abel Transform. The basis of FBP is the Fourier slice theorem that

proves that projections of g correspond to lines through the Fourier transform of g. Since real

measurements can only capture a finite number of discrete projections, filters must be applied

to remove non-physical noise during the inversion process. FBP is favorable for reconstruc-

tions of datasets that are composed of a large number of evenly spaced measurements. Abel
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transform method assumes that the flow field is radially symmetric about the primary flow axis.

The inversion process is unstable and not commonly utilized. Iterative reconstruction meth-

ods like ART are the most common methods for 3D flow tomography as they are proven for

limited projection data. Several ART-based techniques have been developed to improve the

reconstruction accuracy and convergence rate. The simultaneous iterative methods are moti-

vated by volumetric imaging, in which the reconstructions are simultaneously updated instead

of updated row-by-row like other iterative methods. These iterative methods must filter out

high-frequency artifacts that occur during the reconstruction. Regularization techniques are

employed to remove artifacts from the reconstruction process; however, most of regularization

methods drastically increase computational time and produce overly-smooth reconstructions.

The common goal of these methods is to use measured projections to determine the vol-

ume that produced those projections. These traditional tomography techniques require volume

discretization, which is commonly implemented with uniform volume elements called voxels.

Discretization leads to an inherent limitation on the spatial resolution of the reconstruction.

Additionally, the computational cost of these methods scales with the number of volume el-

ements. Therefore, traditional tomography methods have limitations on volume size or res-

olution caused by the current computational hardware. The following chapter presents deep

learning-based methods for tomography, as this will provide the background and motivation

behind the tomography method developed in this work.
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Chapter 3

Deep Learning Algorithms

The fluid mechanics field has had many advances in analytical and CFD methods for numer-

ical models of flows in the past century. These methods and the experimental data used for

validation have produced immense amounts of data. The large datasets lead to the fluid me-

chanics field being a prime application for machine learning, which was first proposed by

Kolmogorov [105]. Since then, there have been many advances in machine learning techniques

that have increased the excitement for the technology, including the perceptron [106], neural

networks (NN) with backpropogation [107], and convolutional neural networks (CNN) [108].

Although, until recently, many challenges have plagued these machine-learning methods, lim-

iting their uses in fluid mechanics [109].

With the recent advances in hardware and algorithm development in the machine learn-

ing community, deep learning algorithms are becoming viable options for solving forward and

inverse problems. Deep learning is a subset of machine learning that focuses on training arti-

ficial neural networks to learn and extract representations from data [110] automatically. One

machine learning model is designed to mimic how the human brain processes information by

utilizing neural networks composed of multiple layers. These neural networks, often referred

to as deep neural networks (DNNs), consist of interconnected nodes, or “neurons,” arranged in

many hidden layers. DNNs have been widely accepted for image classification, image segmen-

tation, computational photography, and language modeling. In the flow diagnostic community,

deep learning has generally been used for 2D PIV [111], super-resolution of PIV generated ve-

locity fields [112], and dynamic masking using autoencoders [113]. Machine learning methods

allow for a framework that can provide modular and flexible algorithms to address problems
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from CFD to diagnostics. These DNN methods have shown exceptional results and thus pro-

vide an appealing framework for tomography. The following sections of this chapter will cover

i) a brief introduction to DNNs, ii) supervised tomography methods, iii) neural volume repre-

sentations, iv) neural radiance fields, and v) physics-informed neural networks. These sections

cover the current methods employed in the flow-solving and diagnostic communities while also

providing the background for the current method developed for this work.

3.1 Machine Learning Background

Understanding the basic principles of machine learning is critical to comprehending deep learn-

ing methods. This section will focus on neural networks, a small piece of machine learning

methods. For more comprehensive coverage of machine learning fundamentals, the author rec-

ommends books by Murphy [114] and Goodfellow et. al. [110]. Machine learning is a form of

statistics that attempts to estimate complex functions using computers. Machine learning can

be broken down into three main categories: i) supervised, ii) semi-supervised, and iii) unsu-

pervised. The main difference between these methods is the way the models are trained and

the data that is used to train the algorithm. Brunton [109] provides an overview of each and

how they are applied in fluid mechanics. DNNs fall in the supervised category as they require a

training data set to compare to the predicted output of the neural network that is used to update

the network parameters.

3.1.1 Neural Networks

Neural networks are the quintessential deep learning supervised algorithm. Figure 3.1 shows

the general structure of two of the most common neural networks, the original multi-layer

perceptron (MLP) and the convolutional neural networks. Neural networks are fundamentally

nonlinear function approximators as long as the network is sufficiently large. This originates

from the Universal Approximation Theorem proposed by Hornik et al. [115] that states that

any Borel measurable function can be approximated by a neural network of with at least one

hidden layer, given the network has enough hidden units. The following section covers the

description of these components, but the author recommends the book by Goodfellow [110] for
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Figure 3.1: A simple schematic of a (a) two-layer, fully connected neural network with 4 nodes
per layer and a (b) convolutional neural network with an arbitrary shape. Each method has a
default m number of inputs and n number of outputs. The activation function for the neural
network is indicated by f . (b) was adapted from [2].

a compressive explanation. The most common MLP is the feedforward algorithm, where the

information flows from the input through the intermediate hidden layers before generating the

output (Figure 3.1(a)).

Neural networks are called ’networks’ because they are composed of a string of connected

smaller functions that attempt to approximate an overall function, as shown in Figure 3.1(a).

The most common structure is for functions (f1, f2, andf3) to be arranged in a chain, such that

f = f1(f2(f3(x))). Each function corresponds to a neural network layer, with f1 as the first

hidden layer, f2 as the second, and f3 as the third. The number of hidden layers determines the

’depth’ of an MLP. Depth refers to the number of layers in a neural network. Deeper networks

improve the ability to fit a function, but they also increase the number of computations required

for a prediction and can lead to issues like vanishing gradients.

The underlying unit of the neural network is called the perceptron, where an example

schematic is displayed in Figure 3.2. The perceptron was developed to resemble the neurons of

the brain, where a neuron takes in one or more inputs, processes them, and produces an output

given the input [106]. The networks bear a resemblance to the neurons of the brain, hence the

origin of the term “neural” for the network. Each node of Figure 3.1 is a perceptron linked with

other perceptrons, constructing a fully connected network. The perceptron is a binary logistic
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Figure 3.2: A schematic of a perceptron with m number of inputs and an activation function f
imposed on the perceptron. w is the weights of the perceptron that is multiplied by the inputs
x, and b is the bias term.

model that accepts an input vector and manipulates it to a scalar “activation” value through

y =
∑
k

(wkxk) + b, (3.1)

where w is the weighting vector that is the linear operator on the input, and b is the bias. These

are both unknowns that are “learned” from training data such that the perceptron learns to

separate data for binary classification. The output of the perceptron is an “activation” value,

but an activation function f can be added to a neuron to produce the ability to approximate

nonlinear functions. The perceptron can only learn linearly separable functions since it is a

linear array of weights with no activation function. For neural networks, the input into the

MLP is the input layer, while the latter layers have input from the previous layers. The number

of perceptrons per layer is the number of “hidden units” and is described as the height of the

neural network. The weights and basis of hidden units are the trained parameters that allow

the method to learn. The hyperparameters are the parameters chosen by the user, including the

activation function, network size, and others.

The nonlinearity provided by the activation function applied to each hidden layer, as shown

in Figure 3.2, allows the network to learn complex functions. Jarrett et. al. [116] emphasized

that “using a rectifying nonlinearity is the single most important factor in improving the per-

formance of a recognition system,” among other hyperparameters of a neural network design.
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Figure 3.3 presents five of the most common activation functions utilized for neural networks.

The equations for each are provided below:

1. ReLU:

f(x) = max(0, x) (3.2)

2. Leaky ReLU:

f(x) =


a(x) x < 0

x x ≥ 0

(3.3)

3. Sigmoid:

f(x) =
1

1 + e−x
(3.4)

4. Hyperbolic Tangent

f(x) =
ex − e−x

ex + e−x
(3.5)

5. Swish

f(x) =
x

1 + e−x
(3.6)

ReLU and Swish functions are unbounded in the positive x direction, while Leaky ReLU is also

unbounded in the negative direction. Hyperbolic Tangent and Sigmoid bound the solutions,

which can help normalize the output from those layers. Each of these activation functions

provides different levels of complexity and advantages. Initially, activation functions that have

discontinuous derivatives (ReLU and Leaky ReLU) were avoided due to the backpropagation

method. However, they have been found to be useful [116] and are readily used in current

computer vision methods. Activation functions have different pitfalls that are faced in deep

learning methods, including sparse representation and vanishing gradients.

The most common way for MLPs to initialize the weights and biases is by assigning ran-

dom values. The weights are randomized because the networks are trained in a gradient-based

optimization strategy. The non-linearity of the neural networks produces a non-convex loss

function. Stochastic gradient descent applied to non-convex functions is sensitive to the initial
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Figure 3.3: Visualization of common activation functions for neural networks.

parameters, and there is no convergence guarantee. Thus, small random values produce the best

probability of convergence. For feedforward neural networks, training consists of providing an

input with a known output. The predicted value from the network y is then compared to the

known output ŷ through the loss function

L = floss(y, ŷ). (3.7)

There are several loss function options, each impacting the method’s performance. This method

is supervised learning because a known output is supplied to update the network. The most

common way of optimizing the network is through the back-propagation method [107]. The

back-propagation algorithm is a stochastic gradient descent algorithm that uses the loss func-

tion to update the weights and biases after each iteration or epoch of the algorithm. Since

feedforward neural networks are functions chained together as explained above, the gradients

relative to L can be found and used to update the weights and basis of each layer and node.

The training is repeated until the loss function converges to a minimum value or reaches the

maximum number of iterations.

3.1.2 Convolutional Neural Networks

Convolutional neural networks are a subset of neural networks where each node uses convo-

lution instead of linear vector multiplication, as developed by LeCun et al. [108]. CNNs are
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known for processing a grid-like topology, typical for many convolutional methods in flow di-

agnostics like PIV. CNNs are most common for processing 2D images or a 1D time series.

CNNS, unlike traditional MLPs, typically have sparse interactions due to the convolutional

kernel being smaller than the input (i.e., image). Sparse interactions allow the network to store

fewer parameters and improve statistical efficiency [110]. Another advantage of CNNs is the

ability to share parameters, which refers to the fact that a single set of parameters (kernel) is

learned for each layer since the kernel is used at every input position. A standard MLP requires

a different parameter set (w) for every input.

The convolution equation used for machine learning does not directly correspond to that

used in other fields, such as engineering and mathematics. For CNNs, the general convolutional

step for a 1D input can be calculated using

s(t) =

∫
x(a)w(t− a)da = (x ∗ w)(t), (3.8)

where w is the kernel of the CNN that is learned, and s is the output, also referred to as the

feature map. The kernel of the CNN must be a probability density function to ensure the output

is the weighted average of x. As discussed, one of the most practical use cases for CNNs is

with 2D images. Therefore, a 2D discrete convolution equation must be employed as presented

in Eqn. 3.9.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (3.9)

where I is the 2D image with a size of m × nand K is the 2D kernel. While this has been

implemented in CNNs, it is popular for many libraries to employ the cross-correlation method

without using the commutative property to flip the kernel in the convolution.

After the convolution layer of the CNN, the output goes through a nonlinear function

similar to neural networks. Finally, the last step is the pooling layer/function, also called the

detector stage. The last step is a crucial step that sets CNNs apart from other models. The pool-

ing layer produces invariance to small perturbations of the input (i.e., small shifts of a subject in

an image). It divides the input feature map into non-overlapping regions, often called pooling

regions or pooling windows, and computes a single output value for each region. By reducing
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the spatial dimensions, the pooling layer allows the network to focus on the most salient fea-

tures and extract them regardless of their precise location. This is a key feature that enables

the CNN to detect features that are globally present in the input. Some of the most popular

pooling techniques are max pooling, L2-norm, and weighted average [110]. Therefore, as the

information is passed through the CNN, the input dimension into the next layer is reduced. An

excellent review article for solving inverse problems using CNNs was presented by McCann et

al. [117].

Many readily available libraries have been developed for all of the general DNNs covered

above, including Tensorflow and PyTorch. These methods provide easy access to many of these

features, empowering machine learning practitioners and researchers to create customizable

networks without coding the underlying network structure and updating steps. These libraries

enable the machine learning community to develop complex algorithms with just a couple

hundred lines of code rather than thousands.

3.2 Deep Learning in Volumetric Imaging

Most of the deep learning for volumetric imaging consisted of DNNs with m input nodes

corresponding to the pixels of a single image and n output nodes for each voxel of g, which is

depicted by a simple schematic in Figure 3.1. This strategy requires the network to be trained

using a synthetic data set with a known ground truth that is used to generate perspectives. For

training, the perspectives are input into the DNN, and the predicted g is evaluated with the

ground truth ĝ that was used to generate the perspectives. Simple imaging models generate the

training perspectives from the ground truth. The following will cover the DNN-based methods

that have been developed for volumetric imaging.

One of the first demonstrations of tomography using DNNs was by Huang et al. [2] for

tomographic absorption spectroscopy (TAS). In their work, a CNN was trained with input from

the spectral perspective information. The output was a predicted 2D phantom g that was dis-

cretized into 60x60 voxels. Each output node was a different voxel. The CNN was trained with

a known truth volume and perspectives, where the loss function was a normalized L1-norm.

The CNN was composed of two convolutional layers and one pooling layer. The activation
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function was Leaky ReLU. After the second convolutional layer, the 252 feature vector was

fully connected to a single output vector with a length of 3600 that corresponded to the 60x60

voxel volume. The work was compared to a simulated annealing algorithm, where the CNN

was proven to be more robust to noise and quicker to train with increasing input data. However,

the CNN was trained on phantoms with similar characteristics, and the same imaging model

was used to produce input perspectives.

Jin et al [45] developed a similar model for three-dimensional tomography. Again, the

DNNs had the projections as the input for this work, and the predicted volume was the out-

put. Instead of training with a known phantom, the CNN was paired with ART, where ART

would be considered the ground truth for training the network. Training the network with ART

reconstructions allowed the network to generate similar results as ART but be able to do it in

fractions of the time. This method was demonstrated using a phantom and experimental chemi-

luminescence. The challenge with training with ART reconstructions is that CNN will learn the

same issues that plague ART and will be limited to the imaging model used for ART.

After the work on Jin, Huang et al. [3] expanded to a 3D tomography method for com-

bustion diagnostics called VT-Net. The CNN was similar to Jin’s work; however, this work

implemented a residual network. The residual network includes a skip connection that links

the input to the output of the CNN as shown in Figure 3.4. The skip connection helps reduce

the effect of the vanishing gradients problem to allow deeper networks (tens of layers deep).

The residual network did not indicate accuracy improvement over the regular CNN but helps

stabilize training. This work compared a residual network to a typical CNN and ART. At a low

number of projections, both the CNN and the residual network outperformed ART; however,

ART surpassed the DNNs after the number of projections was greater than nine.

With the progress of CNNs in the volumetric imaging field, several techniques continued

with similar CNN structures [118, 119, 120, 4]. All of these methods require a training set

before they can be applied to tomography problems. Thus far, the methods for generating the

training set has been:

1. phantoms generated from CFD simulations,
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Figure 3.4: Schematic of a residual network with a skip connection. Adapted from [3].

2. generating phantoms from random Gaussian blobs,

3. using traditional tomographic methods (e.g. ART) to produce volumes as the ground

truth.

Supervised DNN tomography methods, once trained, demonstrate impressive computational

times for producing reconstructions, outperforming traditional tomography methods with times

in the millisecond range. However, the effectiveness of these DNN tomography methods hinges

significantly on the network’s hyperparameters and the thoroughness of the training set. As one

might anticipate, the network’s structure, activation functions, and loss function all contribute to

the DNN’s ability to solve the inverse problem. Moreover, DNNs are recognized for their poor

extrapolation capabilities. Consequently, it’s crucial that supervised DNN methods accurately

represent the physics of the volumetric imaging problem, which restricts the use of supervised

DNN methods for volumetric imaging.

3.3 Neural Representations

Neural Representations have been critical in the past few years for shape representation, depth

estimation, novel view synthesis, and other problems investigated by the computer vision com-

munity. All of these problems are related to tomography. This next section covers some neural

representation methods for solving the above problems, including explicit and implicit repre-

sentations.
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Figure 3.5: Schematic of a neural explicit representation that relates measurement data to QoI
for each volume element. This figure was taken from the work by Ren et. al. [4].

3.3.1 Neural explicit representations

Neural explicit representations use DNNs to represent volumes for explicit size and discretiza-

tion, including point cloud, meshes, or voxels. Figure 3.5 illustrates an explicit representation

model that relates measurement data to voxel quantities. Most deep learning methods discussed

in the previous section fall under explicit neural representations. Yifan et al [121] describes

a differentiable surface splatting technique (DSS) that incorporates neural representations to

conduct inverse techniques to produce multiple color views and depth maps of a scene. The

splattering technique utilizes a point cloud-based representation, representing each point as a

disk or ellipse. The DNN solves the inverse rendering problem, leading to better results than

traditional DSS techniques.

Another neural explicit representation technique developed for novel view synthesis is

Deep Voxels [122]. Deep Voxels aims to generate a 3D representation of a scene by learning

to predict the occupancy or presence of objects within a voxel grid. Each voxel in the grid

can either be empty (not occupied by an object) or occupied (part of an object). Thus, the

3D feature representation is based on occupancy for each voxel and predicted using a set of

DNNs. The network takes a set of 2D views captured from different viewpoints and processes

this input through several convolutional layers to extract meaningful features for each voxel.

The technique indicates improved results compared to other methods but is limited to smaller

images and volumes.

Neural Volumes [123] is another well-known method for view synthesis and shape rep-

resentation using an explicit model. Neural volumes is similar to Deep Voxels, where images
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Figure 3.6: Schematic of a neural implicit representation that relates points in space to QoI.
Figure is taken from Tretschk [5].

are input into an encoder-decoder DNN structure to output feature mapping to a 3D volume

discretization. This method has two main parts: i) an encoder-decoder network that solves the

inverse problem to produce a 3D volume, and ii) a differentiable image rendering step given

a set of camera parameters. The output of the ray marching step produces an RGB image, an

alpha mask over the subject, and a background image.

All of these methods showed impressive results for novel view synthesis. However, since

the output of these methods is discretized, they suffer from resolution limitations. These meth-

ods are similar to those developed for flow diagnostics discussed in the previous section. Addi-

tionally, these techniques struggle to expand to higher resolutions of volumes and images due

to computational time and memory requirements [6].

3.3.2 Neural implicit representations

The computer vision community has recently developed implicit volume representation meth-

ods to overcome the limitations found for neural explicit reconstructions. Figure 3.6 depicts an

implicit model that relates coordinates of the volume to a QoI. One of the first implicit methods,

DeepSDF [124], models 3D geometries as a continuous function approximated by a neural net-

work using a signed distance function (SDF). An SDF is a function that outputs a distance from

a spatial location in the volume to the closest surface. DeepSDF employed an encoder-decoder

network structure to handle an arbitrary number of shapes in a volume to provide a distance.
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The DeepSDF method proved to smooth out surfaces drastically. Chabra et al. [125] expanded

the technique by taking patches of the images rather than the whole pictures.

Additionally, Chibane [126] developed a similar technique that uses unsigned distance

functions. Alternative to SDFs, occupancy fields have been used to represent 3D shapes/surfaces [127].

For these methods, the network approximates the occupancy field as a continuous function,

where the network’s output is the probability of occupancy ϵ {0, 1}. While these techniques

have improved shape representations, they are limited by the need for ground truth 3D geome-

tries for training. This leads to similar issues explained for supervised tomography.

Niemeyer et al. [128] and Sitzmann et al. [129] developed two techniques that overcome

the supervised limitation. Niemeyer [128] introduced Differentiable Volumetric Rendering

(DVR). DVR uses an implicit representation of the 3D occupancy field, where a numerical

ray marching algorithm is employed to determine the location where the ray corresponds to a

pixel of an image intersects the object. Once the ray intersection spatial point is chosen, the

spatial point is input into another network that models a 3D texture field to predict a color. The

predicted color is then used to update both networks. Sitzmann [129] demonstrated a method

called Scene Representation Networks (SRNs) that outputs a feature vector and an RGB color

for a 3D coordinate. This method uses a similar ray marching technique with a recurrent

neural network structure to determine the location of the surface. These last two methods

would be characterized as semi-supervised since the 3D field is learned from projections of the

scene [109], where a ground truth 3D field is not known.

These implicit representation methods lead to the development of Neural Radiance Fields

(NeRF) [6], where this method is a semi-supervised implicit representation approach. This

method overcomes many of the challenges of both 3D shape representation and novel view

synthesis problems. NeRF is the foundation of the FluidNeRF method developed for this work;

therefore, we will describe Neural Radiance Fields in detail in the following section.
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3.4 Neural Radiance Fields

The underlying novel concept of Neural Radiance Fields is that the light-field of a scene/volume

can be represented as a continuous function approximated by a MLP as described by Milden-

hall et. al. [6]. Most of the tomographic reconstruction techniques presented in the previous

chapter used a voxel-based volume discretization method that inherently limits the topology of

the reconstruction. NeRF provides a compact way to represent a volume without the same lim-

itation as discretization methods while also not being limited by requiring ground truth volume

information for training. The technique trains similarly to traditional algebraic tomography

methods like ART, where the volume (neural network) is updated with the error between the

measured and predicted projections.

Figure 3.7: Neural Radiance field schematic showing (a) the input 5D sampling coordinates,
(b) output from the neural radiance field from those samples, (c) rendering technique along that
ray, and (d) the loss function used to update the neural radiance field using the ground truth
observed images. This figure was taken from Mildenhall et. al. [6].

A Neural Radiance Field is a machine learning technique using a 9-layer fully connected

neural network to represent a volume. Mildenhall et. al. [6] developed the method for novel

view synthesis of complex scenes. The continuous volume/scene is characterized by a 5D

vector-valued function with the inputs of i) a 3D location in the volume (x, y, z) and ii) a

viewing direction (d = θ,ϕ) as shown in Figure 3.7. The NeRF deep network used in this work

outputs RGB color (c = <r, g, b>) and volume density (σ). The volume density can be referred

to as the differential probability that a ray terminates at a 3D coordinate. The neural network

can be thought of as a continuous function that represents the imaged volume,
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[c, σ] = FΘ (x, y, z, θ, ϕ) (3.10)

where FΘ is the continuous function defined by the neural network.

The neural network limits the prediction of volume density as only a function of location,

while the color, c, depends on the whole 5D input vector. Adding viewing direction helps the

representation be multi-view consistent [6], where it can help with reflections and other lighting

changes. The first eight fully connected layers process the input of 3D coordinates to output

both σ and a 256-dimensional feature vector. Each layer comprises 256 hidden units with the

ReLU activation function. The feature vector and viewing direction d are concatenated and

passed into the last fully connected layer (ReLU activation and 128 channels) that outputs the

view-dependent RGB color (intensity for monochromatic).

While this paper is focused on volume reconstruction and not view synthesis, view syn-

thesis is a crucial step for updating the neural network via the loss function, as shown in Fig-

ure 3.7. View synthesis is the same as the projection step of ART-based methods, where ART

projections are rendered using a complex weighting scheme accumulated through the volume.

However, for NeRF, the images are rendered using rays that are propagated through the scene

using classical volume rendering techniques as first described by Kajiya and Herzen [130]. The

color or intensity of a ray through the volume is determined by

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt (3.11)

where C(r) is the expected color for ray r(t) = o + td, where the near and far bounds of the ray

are tn and tf , respectively. The function T (t) is the “line-of-sight” accumulation that occurs

along the ray, where T(t) is given by

T (t) = exp

(
−
∫ tf

tn

σ(r(s))ds

)
(3.12)

This function describes the probability that a ray will not terminate between tn and tf . The

integral can be approximated using the numerical quadrature method. Instead of rendering on
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a discretized voxel grid, the NeRF method uses a stratified method not to limit the resolution

of the neural network. The stratified sampling approach generates random ray samples from

N evenly-spaced bins between tn and tf , where one random sample is selected from each bin.

Compared to the ART-based methods in which the samples are fixed, this stratified approach

can help get sub-samples inside a bin/voxel.

At this point, we have a deep network that provides intensity and volume density as a

function of 3D coordinates and viewing direction. While this can represent a scene (volume),

additional improvements can be incorporated to allow the neural network to capture the high

spatial frequency and complexities of scenes. Neural networks are notorious for being biased

towards a lower-frequency function as described by Rahaman et. al. [131]. One way to over-

come this bias includes mapping the 5D input coordinates to higher dimensional space to allow

the network to improve the approximation of the higher-frequency information [6]. This is re-

ferred to as positional encoding, where a Gaussian Fourier feature mapping function is utilized

to take the input coordinates from R to R2L as introduced by [6]

γ(p) = (sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp)) (3.13)

where γ is applied separately to 3D position coordinate (x, y, z) and d. L is 10 for x, y, z and

L = 4 for d.

One crucial step in rendering images is to use efficient discrete samples throughout the vol-

ume. NeRF introduces a hierarchical volume sampling method that generates informed sample

locations in the volume by using a lower resolved set of stratified samples. For their method,

new samples are generated from the accumulated transmittance. Hierarchical sampling can re-

move samples that do not contribute to a particular ray due to occlusion and increase samples

in regions of higher intensity/optical density. For the NeRF method, hierarchical sampling is

accomplished by simultaneously optimizing two networks that use “coarse” and “fine” sam-

pling methods. The first set of course samples is generated using stratified locations along a

ray. Stratified sampling splits a ray into Nc evenly spaced bins between a near and far field,

where a random sample is generated inside each bin. This yields Nc course samples. The Nc
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course coordinates are used to calculate the color and optical density along the ray for each

sample. The color of the course ray is generated by weighting the color for each sample point,

ci, as computed using

Ĉc(r) =
Nc∑
i=1

wici (3.14)

where wi = Ti(1 − exp(−σiδi)). After stratified sampling, a more informed sampling can be

made from σ of the coarse network. The fine samples are found by normalizing the weights

to produce a probability density function for the additional Nf samples. The fine network

rendering uses all Nc +Nf samples. The advantage of this technique is that more samples are

allocated to regions with more visible content/features. Overall, the NeRF technique attempts

to minimize the difference between the captured projections and the reprojections from the

reconstructed volume, which is the same concept that is conducted by ART-based methods.

NeRF advancements have been pivotal in the realm of computer vision. A plethora of

literature has been proposed to enhance the method, with techniques developed for various

aspects such as view synthesis [132, 133, 134, 135], rendering speed [136, 137, 138, 139],

generative image synthesis [140, 141], few-view novel view synthesis [138, 142], and dynamic

scenes [143, 48, 144, 5]. Gao et al. [46] provides a comprehensive review of these develop-

ments. Notably, most techniques do not primarily focus on the accuracy of resembling the

radiance field (g), but improvements to novel view synthesis can inherently enhance the vol-

ume approximation. A significant breakthrough in NeRF for 3D reconstructions using a single

x-ray view, termed MedNeRF, was introduced by Corona-Figueroa et al. [145]. This technique

utilizes the generative radiance field method, demonstrating impressive reconstructions with as

minimal as a single x-ray view. Many of the methods require other networks that are trained for

image classification or segmentation, which can require those other networks to be trained with

alternative data. Using trained networks can lead to issues when applying to unknown prob-

lems. However, most of the developments in the NeRF community are application agnostic,

allowing these improvements to be integrated into our model.
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Figure 3.8: Schematic of the NN models and supervision that was employed by Chu et al. [7].
The method utilizes supervision from measurements, physics equations, and a pre-trained fluid
network to calculate the radiance field and the velocity of the dynamic fluid.

3.4.1 Neural Implicit Representations in Flow Diagnostics

A few techniques for flow diagnostic techniques have been developed using a neural implicit

volume representation [7, 146, 8]. Chu et al. [7] was the first to demonstrate the use of a NeRF-

based technique for flow field measurements called physics-informed neural radiance fields

(PI-NeRF). Their innovative hybrid method employs a two-network approach, with a static

and a dynamic network, to allow each network to model the static and dynamic portions of

the scene independently. The hybrid representation showed impressive results in automatically

distinguishing the scene’s dynamic fluid and static components. Like NeRF, their networks

are functions of 3D spatial location (x, y, z) and time (t) for the dynamic network that outputs

color and optical density. A third network is used to calculate the velocity of the fluid being

imaged, called the hidden network. This network learns from physical priors (i.e., Navier-

Stokes equations), which was inspired by Physics-Informed Neural networks, which will be

described in more detail in Section 3.5.

The network structure was integrated similarly to NeRF, with the most significant changes

being activation and loss functions. For the neural network that models the dynamic scene, Chu

et al. [7] adopted a SIREN activation function that was proposed by Sitzmann et. al. [147].

The periodic function captures the continuous derivatives of the scene, which is essential for

physics-informed loss. For their loss function, the PI-NeRF model adopts the same projection

loss utilized by NeRF, which compares the measured and predicted projections. In addition to

52



MSE, a VGG-based image-based loss function was employed to improve the perceptual quality

of the reconstructed image by capturing more of the high-frequency detail [148]. The VGG loss

functions is given by

L =
∑

ΦϵVGG layers

(
1− Φ(Î) ∗ Φ(I)

||Φ(Î)|| ∗ ||Φ(I)||

)
. (3.15)

The VGG uses the cosine similar loss (Eqn. 3.15), where it operates on small 40x40 patches

between the measured and rendered images.

In addition to the image-based losses, the method includes two different loss functions to

enforce physic priors on the flow field predictions, including the mass transport theorem and

the Navier-Stokes equation. The first loss is the substantial derivative of the optical density, and

the second is the simplified Navier-Stokes equations,

LDσ
Dt

=

(
∂σ

∂t
+ u · ∇σ

)2

(3.16)

LNSE =

∥∥∥∥∂u∂t + u · ∇u

∥∥∥∥2
2

+ wdiv ∥∇ · u∥22 . (3.17)

The substantial derivative of optical density is analogous to optical flow, which preserves the

scalar (optical density) in the volume. This loss helps relate the NeRF network to the flow

network. The Navier-Stokes equations include the momentum and continuity equations. Chu’s

work assumed that the right-hand side of the Navier-Stokes equations can be dropped off (as-

sumed negligible), which can be limiting. In addition to these loss equations, the ray modeling

was modified to account for the dynamic scene. The rays were morphed with time to ensure

temporal consistency similar to Non-Rigid NeRF [5]. This warping is only done for the optical

density since color is not a transported scalar [7]. The velocity field from the hidden network

determines the location of the ray with time. Thus, the NeRF network does not include time as

an input.

Chu initially found that vorticity was undetermined for their method due to the optimiza-

tion of Eqn. 3.16 with a blurry signal of σ. Therefore, the vorticity approximation is improved

by comparing the vorticity from a pre-trained flow network to the velocity prediction from Fhid
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using an MSE loss function. The pre-trained network enhanced their vorticity approximation;

however, it requires a pre-trained model. The pre-trained model can reduce the generality of

the PI-NeRF method. In addition to the vorticity problem, NeRF has a well-known issue with

producing non-physical optical densities when applied to datasets with limited projections (<

20). They solve this problem by incorporating another loss function (Lghost) that uses regular-

ization to penalize the “ghost” densities. With all these corrections, physics-informed neural

fields demonstrated impressive results in distinguishing the flow field from static objects in the

scene. However, there were a lot of additions that caused the method to be bulky and lack

generality.

An additional method, conducted concurrently with the work of this dissertation, is the

Neural Volume Reconstruction Technique (NVRT) demonstrated by Zhang et al. [8]. The

NVRT technique was demonstrated for computed tomography of chemiluminescence (CTC),

although it can be adapted for other emission-based flow diagnostics. The reconstruction

method was inspired by NeRF as indicated by Figure 3.9. Similar to NeRF, NVRT encodes

the 3D spatial coordinates using positional encoding before being passed into a fully connected

network. The network consists of eight layers with 256 hidden units per layer that utilize leaky

ReLU activation connected to four downsampling layers that decrease the height from 128

hidden units to one output node. The last down-sampling layer uses the soft-plus activation

to predict a non-negative intensity output. Unlike NeRF, NVRT was developed for emission-

based tomography. The model’s output is the emitted intensity at the given 3D coordinate. The

perspective p is rendered using an integrated line-of-sight emission model shown in Eqn. 3.18.

p =
∑
i

wici (3.18)

where wi is the weight for each intensity ci of the chemiluminescence at the ith ray sample. The

weight is calculated as the normalized length of each ith segment
(
wi =

li∑
i li

)
.

The network is updated using the MSE between the rendered and measured projections.

For this simplified NeRF model, Zhang utilizes a single network approach, unlike NeRF [6, 7].

NVRT removed the hierarchical sampling method, where global sampling was conducted using

54



the semi-random sampling method. Semi-random sampling is the same as the first step of the

NeRF method, where one random sample is generated for each bin along the ray. Similar to

Chu [7], NVRT assumes diffuse emissions with no scattering that allows the model to drop

the view direction dependence. Overall, NVRT was demonstrated to outperform ART using

both synthetic and experimental datasets, and NVRT was more robust in terms of noise due

to the neural implicit volume representation. The demonstration did not include hierarchical

sampling and did not investigate hyperparameters.

Figure 3.9: Schematic of the Neural Volume Reconstruction Technique. Taken from [8].

3.5 Physics-Informed Neural Networks

Physics-informed neural networks (PINNs) are a subclass of neural implicit representation

methods where the volume is approximated by a neural network that outputs state variables

of the flow. Physics-based priors using the governing flow equations help enforce physical

representations as demonstrated by [149, 51]. While PINNs can solve many different dynamic

systems, PINNs have proven to be a viable tool for solving inverse problems for flows by em-

ploying the Navier-Stokes equations. It should be noted that traditional CFD solvers have diffi-

culty solving these inverse problems [53]. PINNs, like neural implicit representation methods,

have an input of spatial-temporal coordinates (x, y, z, t) that are used to compute the relevant

flow field variables (e.g. velocity u, pressure p, density ρ, etc). Therefore, the neural network

of the PINN approximates the flow field as a continuous function. The governing equations

are a function of partial derivatives of the flow parameters. The partial derivatives of the input

are calculated using automatic differentiation [150], which calculates the true derivate rather
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Figure 3.10: A diagram of a physics-informed neural network. For this figure û denotes the
multi-physics solution [u,v,p,ϕ]. AD stands for auto-differentiation, which solves for the partial
derivatives indicated by the subscripts x and t.

than a numerical approximation. Therefore, the network can be constrained through losses

that include the physics-based equations (LPDE), boundary conditions (LBC), initial conditions

(LIC), and measurements (LData). The general form of the loss functions for PINNs are given

through [53]

LPDE = f(û, ût, ûx, . . . , ûxx) (3.19)

LBC = (ûn|BC − gn|BC) + (û|BC − g|BC) (3.20)

LIC = (û|t0 − g|t0) (3.21)

where û is the flow field variables, g is the known values of flow field variables for both bound-

ary and initial conditions, and the subscripts of x and t denote the partial derivative of x and

t, respectively. A general schematic of PINNs for flow predictions is shown in Figure 3.10.

For fluid mechanics problems, different approximations of the Navier-Stokes equations can be

used for the PDEs depending on the flow assumptions. Cai et al. [53] indicates λ as a learned

parameter of the PDE, which is useful if properties of the flown are not known like kinematic

viscosity. Data loss can also be included if other data points are measured or known, such as

pressure measurements. The total loss utilized to update the neural network is the weighted
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sum of the individual losses. The weights help bias the solution towards the more important

loss function. An introduction to the machine learning fundamentals and PINNs is provided by

Kollmannsberger et al. [151].

e1 = ct + (u · ∇)c− Pe−1(∇2c) (3.22)

e2 = ut + (u · ∇)u +∇p− Re−1(∇2u) (3.23)

e3 = ∇ · u, (3.24)

where Pe is the Péclet number, and Re is the Reynolds number. These are the non-dimensionalized

forms of the Navier-Stokes equations, although the dimensionalized equations can be utilized

as others have demonstrated [55, 152, 153].

Cuomo et al. [154] has written a comprehensive review article on PINNs, focusing on

the latest improvements, current unknowns, potential future directions, and the current pit-

falls of PINNs. While PINNs are known well for fluid applications, they have been employed

for various other applications due to their ability to solve forward and inverse problems with

the same structure. Some examples are integro-differential equations [155], fractional equa-

tions [155], surface PDEs [156], heat transfer problems [157], point-source PDE [158], and

stochastic differential equations [159]. One important advancement made for PINNs is the

ability to calculate the prediction uncertainty [160, 153], where the Bayesian framework has

been applied (B-PINNs) [161]. As was reviewed by Cai [53] and Cuomo [154], there has been

recent improvements to the MLP architecture multi-fidelity framework [162, 54], activation

functions [152, 163], dynamic weighting of the loss functions [164], PDEs enforced as hard

constraints [165], and CNN-based network design [166]. Changes in the network architec-

ture affect the accuracy of the approximation, convergence speed, and stability of the solution.

Additionally, Wang et al has conducted theoretical investigations to explain when and why

PINNs fail [167] and the eigenvector bias caused by Fourier feature networks [168]. Mishra et
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al. [169] investigates the generalization error of PINNs for inverse problems. Most of these im-

provements and results are application agnostic and, therefore, can be incorporated into other

PINN implementations to improve their model.

3.5.1 Projection-based data assimilation with PINNs

One recent advancement in combining flow measurements and physics priors with PINNs was

conducted by Molnar et al. [9], where a B-PINN approach was used to solve for the concentra-

tions of a synthetic passive scalar and the flow field simultaneously using only the concentration

measurements. Figure 3.11 shows the architecture of the B-PINN. Molnar’s approach extends

the method first proposed by Raissi et al. [52], where this work utilized the data loss function as

shown in Figure 3.11. For 2D images with an infinitely thin volume, the concentration estimate

is captured by the pixels of the image. However, extending to 3D fields requires traditional

tomography methods to calculate an estimate. Using traditional methods can incorporate errors

from reconstruction algorithms that can corrupt the flow field prediction. Molnar et al. [170]

improves this by utilizing a projection loss that approximates the imaging model for LoS data,

similar to what is employed in the NeRF community. Their method utilized a neural network

with ten hidden layers containing 50 neurons per layer, with each node using the swish acti-

vation function. A comparison between the two data loss functions was investigated [9]. A

three-phase training model was identified, which was composed of i) measurement-dominated,

ii) hybrid, and iii) fully-coupled regimes. The measurement-dominated regime is the first phase

of training, where concentrations are updated to match the LoS projections, but the velocity

field loss increases. The hybrid section is the location where the physics loss levels and starts

to diminish. Finally, the fully-coupled regime has both loss terms approach one another and

continue to diminish. Molnar [9] showed the importance of a hyperparameter in balancing the

physics and measurement loss functions. Noisy data produced semi-convergence; however, a

stopping criterion was developed to locate the bottom of the semi-convergence accurately.

Recently, Molnar et al. has extended the projection loss-based PINNs to background-

oriented Schlieren (BOS) measurements of supersonic-flows [170, 56]. Instead of predicting

the concentration of a passive scalar in the flow field, density is added as an output, which is
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Figure 3.11: PINN architecture used for 2D flow field tomography as employed by Molnar et
al. [9]. The data loss can be evaluated using two ways i) comparing the PINN output to an
estimated concentration that is calculated through traditional tomography methods or ii) a pro-
jection based data loss similar to the update step of tomography methods. Figure adapted
from [9].

used to calculate a predicted BOS measurement. Thus far, this method has been implemented

for a single LoS projection of BOS measurement. Therefore, to generate a predicted BOS mea-

surement from the density field, Abel inversion is utilized to solve the path integrals for the

deflections. A unified BOS operator [28] is utilized to compare the predicted and measured

projections. The work and equations shown thus far have utilized the incompressible Navier-

Stokes equations. However, with this work, the compressible, steady, 2D Euler equations are

utilized to account for density being spatially dependent. The 2D Euler equations also include

the energy equation. Therefore, the total energy is another output. The network approximates

F (x, r) = (ρ, u, v,E), where F is the continuous function approximated by the neural network.

Pressure is calculated from the polytropic equation of state to close the Euler equations. They

added the inlet conditions to stabilize the training. Boundary conditions can help provide ad-

ditional information on the flow to improve the PINN prediction, where inlet conditions are

typically known for experimental data sets [56]. Other useful boundary conditions could be

pressure taps or free stream conditions. The total loss is calculated using

Ltotal = ωmeasLmeas + ωphysLphys + ωinLin (3.25)
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where ω is the weighting parameter for each loss. The optimal weights were found as ωmeas/ωphys =

10 and ωin/ωphys = 100. For this work, Molnar employed a PINN with 5 hidden layers com-

posed of 50 neurons with swish activation. He proved that with the inclusion of physics priors,

PINNs yielded more accurate density approximations compared to conventional BOS algo-

rithms [170].

3.5.2 PTV Data Assimilation with PINNs

Another essential implementation of PINNs for flow measurements is in the particle tracking

velocimetry (PTV) field. PTV algorithms determine the velocities of tracer particles that seed

the flow using tracking algorithms. For 3D PTV algorithms, the general framework starts with

imaging particles in a flow that is illuminated by a laser with at least two different simultaneous

views. Once the images are captured, a triangulation algorithm is employed to locate where

each particle is in 3D space for each time step. Then, particles are tracked between frames

using a tracking algorithm to determine velocities [171]. Since uncertainty accumulates during

each step, regularization techniques are required to produce realistic flow fields.

One of the first to demonstrate PINNs for data assimilation of PTV measurements by

introducing physics priors was Di Carlo et al. [172]. This method was developed for sparse

2D data. The data loss is the MSE between the measured and predicted velocities at particle

locations. The physics loss was simplified by only utilizing the divergence of the velocity field,

which assumes divergence-free, isotropic, and homogeneous flow. In addition to this, the sub-

grid self-similarity constraint was an added physics prior. This constraint enforces the scales

below the elementary scale of the energy cascade to be driven by the power law (S2(l) = γl2).

Fourier features were employed in this work before connecting the inputs to the neural network

with L = 1. The MLP consisted of 5 hidden layers with 256 nodes each, with hyperbolic

tangent as the activation function.

Di Leoni et al. [55] in concurrent work employed a similar method for post-processing

3D PTV measurements. Leoni applied the same MSE loss for the data loss as Carlo; however,

a more traditional physics loss is utilized using the incompressible continuity and momentum
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Navier-Stokes equations similar to Raissi [52] discussed earlier. Unlike most of the PINNs dis-

cussed thus far, the authors apply normalization layers before and after the MLP as introduced

by LeCun [108]. These normalization layers balance the magnitudes of both inputs and outputs.

This helps keep the outputs of the MLP to be between (-1, 1) for efficient back-propagation.

The input is normalized through a min-max function,

x = 2
x− xmin

xmax − xmin
− 1 (3.26)

where xmax and xmin are the maximum and minimum values of the volume domain of interest.

The velocity and pressure are normalized with a z-score function

û = σûû + µû (3.27)

where µû and σû are the mean and standard deviation of each flow field variable. The MLP for

this work had eight hidden layers with 200 nodes, each with an activation function of hyperbolic

tangent. For a case with a large number of time steps, multiple neural networks were trained for

nonoverlapping subsets of the data. Increasing the number of time steps requires the complexity

of the flow field approximation for unsteady flows, therefore requiring either a larger MLP or

multiple smaller MLPs.

Finally, a technique for post-processing PTV data allowing for non-ideal tracer particles is

stochastic particle advection velocity (SPAV), where Zhuo et al. [171] employed PINNs for the

flow field predictions. Like other methods developed by Grauer’s group, the technique learned

through data, physics, and boundary condition losses. A deeper network was implemented,

where the MLP was composed of 15 layers with 250 nodes each. As found by Cuomo [154],

most methods discussed in this section utilize an Adam optimizer method for training the net-

works.
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3.6 Chapter Summary

The goal of this chapter was to first discuss the basics of deep learning neural networks before

covering deep learning methods utilized for tomography and computer vision. Deep neural

networks are a subset of machine learning that consists of a network of neurons. Deep neural

networks are considered a universal function approximator. They have shown remarkable abil-

ity in data processing, detection, classification, and production of probabilistic models. Most of

the current demonstrated DNN methods for tomography use MLPs to relate input projections

to an output reconstruction, where the method trains with a ground truth volume. Most meth-

ods use realistic models generated from CFD to train the model to resemble the experimental

configuration that the model will apply. Most of the work for tomography thus far has used

CNNs, where the output is the QoI for each volume element. The explicit representation leads

to discretization errors, as found earlier for conventional tomography algorithms, and limits the

applicability of the trained network.

In contrast to neural explicit representation, implicit representations have been recently

implemented in the computer vision community. Neural implicit representations have been

the most successful DNN framework for novel view synthesis, where the volume is approxi-

mated as a continuous function of spatial coordinates. One method that emerged from the im-

plicit methods is neural radiance fields (NeRF). NeRF relates spatial and angular information

to color and optical density within the volume to generate exceptional image rendering qual-

ity. NeRF integrated Fourier feature mapping, called positional encoding, that helps capture

the high-frequency content of the light-field. The NeRF idea was implemented in two recent

flow diagnostic techniques called Physics-Informed NeRF and Neural Volume Reconstruction

Technique.

Another active area of research is physics-informed neural networks (PINNs). PINNs are

a subclass of neural implicit volume representation that uses physics-based PDE equations to

enforce physics priors on the solution. A PINN is a functional representation of the salient
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flow field variables. One of the most promising applications of PINNs is combining flow vol-

umetric imaging measurements and physics priors, where PINNs can solve inverse flow prob-

lems. Recent work by Grauer’s group [9, 56, 170] has attempted to combine tomography and

PINNs to allow LoS projection data to assist data assimilation using both 2D passive scalars

and BOS measurements. The advancements found in PINNs are generally application-agnostic

and should be considered for tomography.
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Chapter 4

Scalar Field Reconstructions

One of the most well-known 3D flow diagnostic techniques is PIV, where the volume of interest

is composed of tiny particles entrained in the flow, which scatter light from a laser or other light

sources. The points of light are reconstructed in 3D space, typically with MART, and used to

determine the velocity of the flow. The point sources provide different challenges compared to

the focus of this next chapter, scalar fields. Scalar fields are a continuous distribution of a QoI

in space-time. In flow diagnostics, scalar fields include flow/fluid properties like temperature,

velocity, pressure, density, and mass concentrations. One research area that is interested in

measuring scalar fields is combustion. Various techniques have been developed to investigate

the processes and products that occur during combustion. An established and frequently used

method for gathering flow measurements involves employing a probe or rake system to acquire

individual or multiple data points within the flow. However, these systems disturb the flow

patterns and would have to withstand the harsh environments of combustion or high-speed

flows.

The emergence of optical diagnostic techniques, including high-energy lasers and high-

resolution cameras, overcomes many of the challenges of probes and intrusive measurements.

Lasers and optical sensors can provide 1D, 2D, and 3D measurements of the QoI. Coherent

anti-Stokes Raman scattering (CARS) [173] and laser-induced grating spectroscopy [174] pro-

vide 0D and 1D measurements of the temperature and concentration fields. Laser absorption

spectroscopy can provide LoS measurements to acquire measurements of temperature, pres-

sure, and species concentrations [23], where the LoS measurements can be used to get 2D and

3D measurements. As pulsed lasers become available, laser-based diagnostics have advanced
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to enable 2D [175] and 3D [1] measurements at increased temporal resolutions, particularly for

turbulence analysis. Some measurements include planar laser-induced fluorescence and planar

laser-induced incandescence, which provide multiple 2D scalar field measurements.

While lasers can make measurements through scattering, absorption, or fluorescence, com-

bustion and flames have other emission modalities to provide self-illumination for optical sen-

sors to capture. These self-emissions can provide information on the reactions, temperatures,

species concentration, and more. An example of self-emission in combustion can be observed

in a hydrocarbon flame, initially manifesting in the form of the color as a blue base transition-

ing into bright yellow/red regions as the flame advances and disperses away from the reaction

zone. As elaborated in the tomography section, optical sensors can capture projections from

various angles, either simultaneously or through scanning, enabling the generation of 3D mea-

surements of these emissions. This chapter will cover four main scalar field measurements: i)

chemiluminescence, ii) incandescence, iii) laser-induced incandescence, and iv) laser-induced

fluorescence.

4.0.1 Emission modalities

To understand how these measurements are conducted, one must also understand the underly-

ing physics of the emission process. Light emissions from flames and reaction zones of gases

occur due to molecules releasing photons as they go from a higher energy level to a lower level,

where the energy of the photon (wavelength) equals the change in energy levels. The energy

levels of molecules have quantized states that include vibrational, rotational, and electronic.

Since the energy levels are quantized, there are only a discrete number of wavelengths that

can be emitted from a flame, each corresponding to a different transition. The emitted photons

from the flame can be classified by the mechanism that caused the molecule to enter an excited

state. Optical methods can single out a mechanism of interest through optical filters to isolate

a particular portion of the spectrum corresponding to the specific mechanism that produced it.

One mechanism of the transition of energy states is through random collisions, where higher

energy molecules can pass energy to lower energy molecules. If the collisions are caused by

the thermal motion of molecules, the mechanism is called thermal radiation or incandescence.
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The incandescence of gas molecules is rarely used for combustion measurements. Another

source of incandescence is solid-phase radiation through soot, one of the more common mea-

surements. Solid-phase incandescence is emitted across a broad spectrum approximated by

Planck’s distribution [176]. If non-thermal mechanisms cause the radiation, it is referred to as

luminescence. The most common luminescence for combustion diagnostics is chemilumines-

cence, where radiation is emitted by molecules from chemical reactions in the flame, where the

molecules are generated at higher, non-stable energy states. The molecules or atoms in these

states emit photons to transition to a more stable state. Finally, the last radiation type discussed

here is fluorescence, where the molecules reach a higher energy state through absorption of

other photons [1]. The molecules then transition to the same or alternative lower energy states,

emitting photons.

4.0.2 Chapter road map

The following sections of this chapter provide an overview of four of the most common scalar

field measurements for emission diagnostics, including chemiluminescence, incandescence,

laser-induced incandescence, and laser-induced fluorescence. Emission diagnostics is a vast

area of research, as indicated by the review article by Grauer et al. [1]; therefore, this chapter

will focus on a small portion of the literature. This section will focus on past and present work

that conducts mainly 3D scalar field emission measurements with emphasis on the tomography

method and number of cameras utilized. Discussion on potential challenges for each tech-

nique will be covered, motivating the current work. The chapter will summarize the present

techniques and discuss the motivation for this work as we shift to describing methodology

and synthetic/experimental investigations. This review of scalar field measurement follows the

descriptions and vocabulary that was presented by Grauer [1].

4.1 Chemiluminescence

During combustion, chemiluminescence involves intermediate reactions where molecules are

initially formed in an excited state, which then relaxes, releasing photons. Chemiluminescence

is typically located in narrow spectral bands corresponding to discrete energy state transitions.
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Since these molecules are intermediate chemical reaction products, they provide information

on the reaction zone. Optical chemiluminescence measurements are LoS integrated through the

flame. The most common radicals are the OH* and CH*, where the asterisks (*) indicate the

molecule is at a higher energy state. Tomography chemiluminescence measurements are gen-

erally called computed tomography chemiluminescence (CTC), where Hertz and Faris [177]

first demonstrated CTC with 2D tomography. The implementation of 3D CTC methods has

accelerated with the emergence of lower-cost optical sensors and improvements to computing

power. Obertacke et al. [178] introduced a volumetric CTC method that captured different

radicals (OH*, NH*, CN*, CH*, and C2*). Grauer et al. [1] provides a detailed description of

chemiluminescence, covering the spectral structure and reaction pathways to produce radiation.

Floyd and colleagues [179, 12] were among the first groups to systematically study 3D

CTC. These first studies employed a relaxed ART method. Using the ART method, Floyd and

Kempf [179] studied the resolution effects and number of views for CTC. A matrix burner of

21 laminar flames was constructed to evaluate the reconstruction quality of the flames using

ten views from five cameras. They captured images of the burner with the matrix in different

orientations to the cameras. They obtained ten views from five cameras using mirrors to split the

sensor in half. In addition to the matrix burner, synthetic phantoms were used to investigate the

effect of noise, where a signal-to-noise ratio of 20dB was the limit. Floyd et al. [12] explores the

limits on spatial resolution using cosine phantoms. The results showed the complex relationship

of 3D spatial resolution for tomography on image parameters and orientation relative to the flow

features.

Mohri et al. [10] conducted an empirical experiment with highly turbulent swirl flame

using CH4 as fuel to understand the influence of the number of cameras and camera spac-

ing on reconstruction quality. An array of 24 CCD cameras, shown in Figure 4.1(a), were

arranged around the swirl burner to provide the ability to take subsets of cameras for compar-

isons and baselines. For the tomography algorithm, Mohri [10] employed ART to generate 3D

reconstructions. Slices of the 3D reconstruction utilizing different numbers of projections are

presented in Figure 4.2a. Reducing the number of views causes reduced reconstruction fidelity

with artifacts appearing in the slices. Since there was no ground truth baseline, the baseline
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Figure 4.1: Various optical systems for capturing multiple simultaneous projections for CTC:
(a) using multiple cameras [10], (b) fiber-optic bundles that relay images to a single cam-
era [11], (c) mirror and prisms to redirect a projection to a portion of the sensor [12], and (d)
plenoptic cameras [13].

(a) (b)

Figure 4.2: (a) Slices through the center of the 3D reconstructed chemiluminescence corre-
sponding to reconstructions with varying number of cameras, and (b) correlation coefficient of
the 3D reconstructions for different number of projections compared to 24 projections. Taken
from [10].
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volume was a reconstruction using the maximum number of cameras. Figure 4.2b shows an

appreciable difference between the 24-camera and 12-camera reconstructions (∼ 85% correla-

tion). Mohri [10] attempted reconstructions with as little as three cameras, where only a 60%

correlation was found compared to the 24-camera reconstruction. The results discussed thus

far used evenly-spaced views; however, Mohri extended the investigation to unequal spacing.

It was found that unequal spacing had little effect on the reconstruction quality compared to the

same number of evenly spaced cameras.

Thus far, all CTC papers presented have used ART. However, many algorithms have been

demonstrated for CTC. Liu et al. [180] explored four different tomographic algorithms for

CTC reconstructions, including ART, Landweber, Tikhonov Regularization, and Truncated

Singular Value Decomposition algorithms using synthetic DNS-generated data. The projec-

tion data were specifically developed to test limited angular view configurations. Jin et al [181]

demonstrated a hybrid ART algorithm with TV regularization for CTC and compared the re-

construction quality to ART, showing TV helped smooth reconstruction while preserving sharp

gradients. In an earlier paper, Ishino and Ohiwa [182] employed an MLEM algorithm for re-

construction using as many as 40 cameras. Recently, Unterberger [38] introduced a genetic

algorithm method (ERT) for CTC with results compared to ART. Another iteration of ART

was developed for CTC by Zhang et al. [27]. Zhang [27] imposes non-negativity constraints

on the ART equations termed the non-negative algebraic reconstruction technique (NNART).

In addition to these methods, SMART has been employed for CTC using two plenoptic cam-

eras [13]. Finally, deep learning methods have been developed by Jin et al. [45] and Zhang [8]

that used an explicit and implicit neural representation, respectively. These examples show the

vast number of tomography methods utilized for CTC. In general, ART-based methods were

the most common.

With the magnitude of different tomography methods, there are different instrumentation

configurations for CTC, as some examples are shown in Figure 4.1. One of the most common

methods is distributing multiple cameras with lenses and filters oriented around a semicircle,

as shown in Figure 4.1(a) [10]. However, a 24-camera array system of scientific-grade cameras

can be very costly and lead to triggering complexities. Therefore, other methods have been
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developed to decrease the number of sensors for tomography. One method utilized by Liu [11]

splits a single sensor into multiple projections through fiber optic cables with front lenses. As

discussed earlier, Floyd [12] employed mirrors and prisms to generate two perspectives on a

single sensor. The last example is the plenoptic camera by George [13], where a plenoptic

camera captures angular information of light (perspectives) using a microlens array that is

placed between the primary lens and the sensor. For plenoptic 1.0, the microlens array captures

images of the primary lens such that the pixels behind each microlens correspond to a point

on the primary lens. A more detailed description of instrumentation is discussed by Grauer et.

al. [1].

4.2 Incandescence

Incandescence is radiation that is emitted from atoms/molecules caused by thermal energy

stored in molecules as vibrational and rotational motion. In general, incandescence is a broad-

band radiation for opaque and translucent materials. Therefore, incandescence is typically

generated from particle-laden flows for combustion and high-temperature applications. The

radiation from soot can account for a significant amount of heat transfer in combustion de-

vices, especially for large chambers [1]. As explained by Modest [61], the perceived color

of incandescence from an object or particle-laden flow is dependent on the temperature. The

relationship between the spectral intensity (Eb,λ) and temperature is specified through Planck’s

blackbody equation

Eb,λ(T ) =
2hc2

λ5

[
exp

(
hc

λkBT

)
− 1

]−1

(4.1)

where h is Planck’s constant, c is the speed of light, and kB is Boltzmann’s constant. Since the

spectrum depends on temperature, incandescence can produce pyrometry measurements. An

approximation of Eqn. 4.1 that allows for the inversion of the equation for easier calculation of

temperature is the Wien Distribution

Eb,λ(T ) ≃
2hc2

λ5

[
exp

(
− hc

λkBT

)]
, (4.2)
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where the assumption best approximates Planck’s equation for λT ≤ 2898µm K [183]. This

approximation holds for wavelengths that are shorter than the spectral intensity peak at a given

temperature. Real materials are non-ideal emitters and absorbers of radiation. Therefore, the

absorption coefficient (κλ) or emissivity (ελ) is multiplied by the blackbody equation to account

for the difference between the actual material response relative to the blackbody response. The

coefficient depends on the molecular structure and other properties, and emissivity is a function

of λ. If ελ is constant across λ of a material, the material is considered a graybody.

In addition to temperature, soot-volume-fraction can be calculated from incandescence [184].

Soot is a common byproduct of hydrocarbon combustion and, therefore, provides a passive

source of incandescence measurements. 3D incandescence measurements are a crucial way

of understanding the generation, agglomeration, and burning of hydrocarbon fuels, indicating

the efficiency and stability of the combustion [1]. Hence, incandescence measurements are

common in the combustion community, especially for hydrocarbons.

The chemiluminescence signal is located in a thin region in the reaction zone, as indicated

in the previous section. Therefore, Chemiluminescence measurements can assume negligible

absorption. Absorption can become an issue for most incandescence measurements, where the

LoS through soot or other emitters is much longer. Incandescence measurements are mainly af-

fected by self-absorption and out-scattering. Due to these effects, the imaging model (Eqn. 2.3)

cannot assume negligible light loss. The imaging model is

Iλ ∝
∫ ∞

0

I ′λ|Ψ−1(l)| × exp

[
−
∫ ∞

l∗
βλ|Ψ−1(l∗)|dl∗

]
dl. (4.3)

Eqn. 4.3 accounts for the extinction through a coefficient (βλ) that is a function of absorption

and scattering coefficients (κλ and σλ), where βλ = κλ + σλ. κλ and σλ are proportional to the

soot-volume-fraction and inversely proportional to wavelength. Several methods have investi-

gated the influence of both on incandescence measurements. The review article by Grauer [1]

discusses both κλ and σλ in more detail.
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(a) (b)

Figure 4.3: Schematic of different experimental apparatuses utilized for incandescence mea-
surements by (a) Yu [14] and (b) Hossain [15].

One of the most common techniques for determining the temperature of soot is dual-

wavelength (two-color) pyrometry [176]. One demonstration of 3D reconstruction of temper-

ature distribution of soot using two-color pyrometry was conducted by Yu et al. [14]. Yu uti-

lized a fiber optic camera system surrounding a laboratory flame with nine fiber optic cables, as

shown in Figure 4.3a. The fiber optic cables feed different projections to a beam splitter, where

two camera sensors capture the light from each fiber optic. The cameras are outfitted with a

narrow band filter to sample unique segments of the spectra, with one capturing 425 nm and the

other 600 nm. Similar to chemiluminescence, ART-based tomography methods are common

for 3D reconstruction, and Yu employed ART to reconstruct the flame at each wavelength. The

temperature is then calculated using the ratio between the intensity for each voxel [176].

It is best to capture monochromatic emission measurements since chromatic nonlinearities

arise due to absorption, scattering, and optical parameters like quantum efficiency. However,

many works have used a standard color camera that utilizes a Bayer-style filter to capture three

broadband signals corresponding to red (R), blue (B), and green (G) channels. For more infor-

mation on spectral imaging techniques, the author suggests the review article by Hagen [185].

The broader spectral channels of these cameras encompass more significant uncertainty due

to the spectral and temperature dependence of the imaging model. Some limitations can be

removed if the radiation can be assumed to be gray, although this is not the case for most

applications.
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Hossain et al. [15] demonstrated the use of eight fiber optic bundles, where they are di-

vided and captured by two RGB color CCD as depicted in Figure 4.3b. Each spectral channel

is reconstructed independently using the SART algorithm, where the reconstructions for each

channel are used to calculate temperature and emissivity at each voxel. Zhuo et al. [186] im-

plemented an eight-view optical system using eight RGB detectors surrounding a pulverized

coal flame in a boiler furnace. Zhuo employs a modified Tikhonov regularization method to

reconstruct temperature directly from the images, where the temperature can be related to the

image intensities through a linear matrix equation (I = AIT ). Huang et al. [187] employed

a color light field camera that captured RGB images of a particle-laden flame. They intro-

duced a new reconstruction method, which is a hybrid least-square QR decomposition with a

conjugate gradient algorithm to reconstruct the flame’s temperature, absorption, and scattering

coefficients. Additionally, thermometry was conducted of a sooting flame by Hall et al. [188],

where they employed the Fourier transform tomography method for capturing temperature dis-

tributions. As demonstrated with chemiluminescence, a wide variety of tomography methods

are employed for volumetric incandescence measurements. A deep learning approach was em-

ployed by Ren et. al. [189, 4] to capture 2D and 3D temperature and molecular mole fractions.

The machine learning method used a supervised approach by training an MLP with the spectral

emission from each pixel as the input relating to temperature and concentrations to each voxel.

The main contributor of incandescence from flames is generated through soot. The con-

centration of soot affects the amount of radiance emitted while also being coupled to the amount

of self-absorption and scattering that occurs. Soot measurement can be captured to understand

the flame’s temperature distribution and volume concentrations throughout the flame as shown

by Eqn 4.3. Soot measurements provide knowledge of the soot production mechanisms so that

soot can be controlled [1]. Early work in soot-volume-fraction measurements was demonstrated

for 2D distributions [184, 190].

Those early works had to make some limiting assumptions, including optically thin and

negligible absorption and scattering. Later developments were demonstrated to account for

self-absorption for the reconstruction algorithm [191, 192, 193]. Some of the earlier correction

techniques were developed by Freeman and Katz [194] and Hall and Bonczyk [188]. Liu [193]
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found that self-absorption was negligible for temperature estimates of sooting flames up to 10

mm in diameter and that scattering was insignificant in all cases. One recent development is

hyperspectral imaging techniques, which can spectrally resolve the absorption and emission

incandescence to simultaneously assess temperature, emissivity, and soot-volume fraction as

demonstrated by Liu [195].

4.3 Laser-induced Incandescence

Thus far, the discussion has focused on naturally occurring incandescence due to the tempera-

ture of solid aggregates in flames. Heating particles with a characterized laser pulse can provide

additional information through incandescence. After being heated, the particles will cool to

thermal equilibrium. Cameras can capture the radiation during the cooling process, where this

process is known as laser-induced incandescence (LII). Michelsen et al. [196] provides a very

detailed review article of LII. Similar to incandescence measurements, particle temperature,

volume fraction, size, and distribution can be captured from LII. Unlike natural incandescence,

the particles and surroundings do not have to be at higher temperatures to image the particles

since the laser heats the particles of interest. LII can provide quantitative measurements of the

formation, distribution, and oxidation of particles in several different environments, including

flames, exhaust, atmosphere, and liquids [1]. Measurements are similar to incandescence, with

thermal radiation dominating the emission spectrum as described by Eqn. 4.1 and Eqn. 4.2.

LII was first demonstrated as a point measurement, which was followed by planar and linear

measurements [197] and recently volumetric [16, 17, 18]. Volumetric LII (VLII) has emerged

recently due to the development of high-power, high-repetition-rate lasers. LII measures the

cooling rate of the heated particles, which requires known heat transfer properties to get accu-

rate quantities from the particles. The governing heat transfer equations are covered in detail

by the two detailed review articles [1, 196], where readers are encouraged to review the basics

of LII. This section will focus on the volumetric measurements that have been conducted.

The first demonstration of VLII was introduced by Meyer et al. [16]. The focus of the work

by Meyer was to capture time-resolved soot distributions in an unsteady, turbulent ethylene/air

flame. Due to the steep costs of high-speed cameras and intensifiers, VLII measurements were
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(a)

(b)

Figure 4.4: Schematic of different experimental apparatuses utilized for VLII measurements
by (a) Meyer [16] and (b) Bauer [17]. Adapted from [16, 17].

captured using seven stereoscopic high-speed CMOS cameras to produce 14 views as shown in

Figure 4.4a. The soot was illuminated and heated with a burst-mode Nd:YAG laser with pulse

widths of about 10 nanoseconds. The excitation wavelength was the fundamental output of a

Nd:YAG laser at 1024 nm. The laser pulse energy density was approximately 0.1 J/cm2. The

volumetric reconstruction was conducted using SMART. For the demonstration, only 8 of the

14 views were used for reconstruction, which is a limitation of the LaVision DaVis software

that was utilized for this work. A critical assumption for the tomographic reconstruction was

that extinction was negligible, which is not generally valid for sooting flames [1]. Extinction

results from the volume becoming optically thick due to soot volume fraction. In addition to

extinction, the method does not account for beam steering effects produced by the thermo-

chemical gradients present in flames. Reconstructions were generated using different sets of
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the 14 views. Figure 4.5a shows the evolution of the soot reconstructions with time. The mea-

surements by Meyer were qualitative, where work is required to account for LoS extinction,

scattering, and beam profilometry to calculate quantitative measurements [16].

Quantitative time-resolved VLII diagnostics of a turbulent flame was first conducted by

Hall et al. [18], where models were used to calculate soot particle sizes from volumetric in-

tensities and cooling rates. Volumetric imaging was conducted with three HPV-X2 cameras

that were configured with stereoscopes (similar to Meyer [16]), providing six views. The vol-

ume was illuminated using a pulse-burst Nd:YAG laser (1064 nm) with a pulse duration of 12

ns. The volume was 10 mm deep by 48 mm tall. Images were captured at a rate of 10 MHz.

A 50 nm wide band-pass filter centered at 600 nm eliminated contaminating spectra from the

surroundings. Again, LaVision Davis was used to reconstruct the volume using SMART. The

particle diameter of the soot was calculated using the method by Cenker et al. [198], which

relates particle size to the cooling rate. An average diameter of soot is calculated for each voxel

location as shown in Figure 4.5b. Like Meyer, Hall neglected laser beam attenuation, LoS ex-

tinction, and scattering, which can significantly affect the reconstructions. Future works should

study these effects, or the reconstruction method should account for them.

The most recent VLII study was conducted by Bauer et al. [17], where VLII measure-

ments were conducted of a laminar diffusion flame using nine views. The volumetric imaging

was captured using nine fiber bundles, each with a primary lens at different locations. Each

fiber bundle produces an image on a single SCMOS sensor, as displayed in Figure 4.4b. With

the use of a lower-speed laser (10Hz), quasi-time-resolved measurements were conducted by

conducting several runs, where each experimental run had a different delay between the laser

pulse and the camera trigger. The quasi-time-resolved technique is applicable because the

flame is steady. The volumetric measurements were reconstructed using the ART algorithm.

Bauer [17] explained that ART is more suitable for continuous scalar fields as compared to

MART. Since the flame is steady, monochromatic measurements were conducted during sep-

arate runs. Bauer [17] calculated soot particle size distributions using the same technique as

Hall [18]. Tomographic two-color pyrometry (incandescence measurements) was used to esti-

mate the flame temperature. In addition, beam proliferation was conducted to account for beam
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(a) (b)

Figure 4.5: (a) Isocontours of the VLII reconstructions at time steps of 0.5 ms [16], and (b)
Isocontours and slices of the soot particle diameter calculated by Hall [18]. Figures were
adapted from [16, 17].

steering through the volume. Extinction was also calculated using LoS measurements through

the flame with a broadband light source and a spectrometer.

4.4 Laser-induced Fluorescence

Fluorescence is the emission of a photon (energy) from an excited molecule that transitions to a

lower energy state. The molecule enters the excited state through the absorption of an external

photon. Laser-induced fluorescence (LIF), as the name indicates, generates the external photon

by a laser, causing the molecule to enter an excited state. In fluorescence measurements, the

wavelength of light is different from the laser light, meaning the molecule/atom returns to a

different ground state than its initial state. Fluorescence has the same energetic structure and

emission transitions as chemiluminescence. The population density is typically unknown for

chemiluminescence, and the signal of interest overlaps with broadband emissions from other

molecules. Laser excitation provides the ability to target specific species. However, laser ex-

citation has challenges, including collisional quenching, predissociation, and photoionization,

which requires LIF measurements to be accompanied by spectroscopic models to account for

multiple energy levels and transfer mechanisms [1]. Phosphorescence operates similarly to
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fluorescence, the difference being that fluorescence emission occurs rapidly compared to phos-

phorescence. Phosphorescence requires a change in spin before emitting photons, whereas flu-

orescence has a constant spin. Several books discuss the physics behind LIF, where the author

recommends the texts by Herzberg [199] and Hanson et al. [200] for detailed descriptions.

LIF has emerged as a powerful tool for flow visualization and quantitative measurements.

In the field of combustion, LIF has been proven to determine species concentrations [201],

temperature [202], and mixture fraction [203]. The diagnostic has been proven for quasi-

point [204], 1D, planar [205], and volumetric [206]. Quasi-3D measurements were conducted

using planar LIF (PLIF) measurements using scanning methods [207]. However, these mea-

surements limit temporal resolution due to the scanning time. The signal generated by LII

results from thermal radiation, where higher temperatures increase signal intensities. Alterna-

tively, the LIF signal is a function of the local thermochemical state in combination with laser

power and wavelength. The local thermochemical state is ultimately the energy state popula-

tion distribution of the target species [1]. Since current lasers can tune a narrow wavelength,

they can be used to target the particular absorption spectra of molecules in combustion, includ-

ing OH [205] and CH [208] or flow tracers like acetone [209], rhodamine dye [210], or nitric

oxide [211]. The speed and sensitivity of fluorescence have made it an appealing flow diagnos-

tic for combustion and other flows. The rest of this section will focus on the recent literature

on volumetric LIF (VLIF), which was first demonstrated in 2015 by Wu et al. [206].

Similar to LII, the emergence of VLIF in 2015 parallels the improvements of pulse-burst

lasers, where high-powered lasers are necessary for adequate energy densities. Wu et al. [206]

demonstrated VLIF for a non-reacting turbulent jet seeded with an iodine tracer. The LIF signal

was generated by a Nd:YAG laser at a wavelength of 532 nm that excited iodine vapor. The

signal generated from LIF was captured by five CMOS cameras distributed in a circular plane

perpendicular to the flow direction. Each camera attenuated the laser wavelength using a notch

filter. Wu utilized a hybrid ART method with TV regularization as described by Cai [26].

They accounted for absorption using a multi-step reconstruction, where species concentration

is reconstructed in layers. During the process, the absorption of the signal from the previous
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Figure 4.6: (a) Reconstruction of the conical flame, (b) central slice through the VLIF volume,
and (c) side-by-side comparison of the PLIF and VLIF measurement. Adapted from [19].

layer is determined iteratively. The method starts with the layers closest to the camera, which

will have little to no absorption.

Ma’s group then applied the same setup as Wu for combustion measurements of CH VLIF

in a conical flame [19]. Ma compared the VLIF measurements directly to PLIF measure-

ments, showing close correspondence between the PLIF measurement and a slice of the LIF

volume. Note that the PLIF laser pulse was 45 ns behind the VLIF laser. A comparison of the

VLIF result and the PLIF results is shown in Figure 4.6. Ma further applied the measurement

and comparison to a turbulent jet generating similar results from the conical flame [212, 208].

These techniques implemented the same hybrid ART tomographic reconstruction technique

from [26]. Ma [19] discussed that the reconstruction method uses a screening process, sim-

ilar to masking, that sets all voxels to zero along the LoS of a pixel that is zero. The au-

thors would like to note that the PLIF measurements were made span-wise with the laser vol-

ume [206, 212, 19]; therefore, it has not been verified that VLIF provides additional resolution

in the normal direction [1].

While most of the early work for VLIF was conducted by Ma’s group, other groups quickly

adopted the technique, including Meyer [21, 20] and Dreizler [213]. Additionally, the work by

Li et al. [213] evaluated the effect of optical configuration (number of cameras and angular

orientation) on reconstruction accuracy. Li employed a stereoscopic camera configuration with
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(a)

(b)

Figure 4.7: (a) Two-color quadscope for VLIF measurements by Halls [20], and (b) reconstruc-
tions of Q1(5), Q1(14), and temperature distribution from VLIF. Figures adapted from [20].

four intensified cameras capturing eight views. The reconstruction was conducted with SMART

using LaVision DaVis. The laser volume was systematically changed the volume depths to 2,

4, 10, and 30 mm. It was concluded that constricting the reconstruction volume decreases

the complexity of the unknown intensity field, producing higher-quality reconstructions. The

larger laser volume produced a blurring effect on the edge of the sharp OH intensity boundary

captured by the PLIF.

In a paper by Yu et al. [214], an investigation of the empirical resolution of 3D emission

tomography methods was conducted with a glass container filled with fluorescent dye. The

glass container produces a sharp, circular boundary for the fluorescent dye. The boundary is

a top hat style intensity distribution at the boundary. Reconstructions were generated using

eight camera views, which we captured by moving a single camera to different angles around a

semi-circle since the QoI is static. Yu [214] applied the ART tomography algorithm. A spatial

resolution limit can be calculated from the blurred edge of the reconstruction compared to the

expected top hat function. Calibration issues caused by the diffraction at the boundary of the

glass produced several reconstruction artifacts.

In addition to qualitative concentration measurements, Halls et al. [20] captured temper-

ature measurements of a laminar and turbulent H2/air flame using OH VLIF. To conduct the

quantitative measurement, Halls employed two quadscopes that captured two wavelengths us-

ing a beamsplitter and two sensors per quadscope, as shown in Figure 4.7a. Therefore, eight
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views were captured for each spectral band. Halls employed DaVis’s SMART algorithm to re-

construct the two wavelengths. Temperature was calculated from the two wavelengths, where

each wavelength corresponds to the two OH transitions (Q1(5) and Q1(14)). The reconstruc-

tions of each OH transition and the resulting temperature distribution are presented in Fig-

ure 4.7b.

In addition to these snap-shot techniques, high-repetition-rate lasers and high-speed cam-

eras have allowed the demonstration of time-resolved VLIF [215, 21, 216]. There are several

methods for capturing multiple time-resolved views, including using seven high-speed cam-

eras [215], four quad scopes generating 16 views [21], and a single camera with nine fiber-

bundles [216]. All of these papers employed ART [215, 216] or SMART [21, 217] for volume

reconstruction. Most reconstructions for LIF, as with SMART used by Halls, assume negligible

beam steering, in-scattering, and absorption. In work by Halls [21], they were able to track the

evolution of coherent structures within a turbulent flame using intermediates of formaldehyde

(CHO) and hydrocarbon (PAH). Not only have the time-resolved VLIF measurements been

demonstrated for combustion and gases, but Gomez demonstrated VLIF for reconstructing the

shape of liquid droplets [217]. VLIF is a rapidly expanding flow diagnostic technique because

of its versatility for combustion and other fluid dynamics analysis.

4.5 Chapter Summary

This chapter highlights some of the most widely used volumetric scalar field measurements in

flow diagnostics, with active developments are still underway. The four measurements cov-

ered are chemiluminescence, incandescence, laser-induced incandescence, and laser-induced

fluorescence. While these four measurements were chosen to demonstrate the applicability

and execution of tomography methods for scalar field measurements, the author would like to

emphasize that there are several other 3D scalar field measurements used in fluid dynamics

analysis. These measurements are generally conducted for combustion diagnostics for quan-

tities that include emission mechanisms, flame structure, reaction rates, mass concentrations,

soot-volume-fraction, temperature, and turbulence. These methods have produced impressive
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results for combustion and flow diagnostics. However, extending measurements to 3D can pro-

vide some challenges, including quenching, self-absorption, scattering, and beam steering that

occur along the LoS. It was shown that most 3D measurements have employed an ART-based

method that assumes an optically thin volume. These lead to limitations for the current to-

mography methods, where accounting for these processes caused a redesign of the tomography

algorithms.

Past work applied a wide range of image sensors and optical systems to capture a col-

lection of 2D projections from different angles, where differences in the number and angle

between projections were noted. The 3D measurements also utilized a wide array of volume

sizes and resolutions. All of these factors can increase complexity and have an effect on the

reconstruction quality, which some of the traditional tomography methods have characterized.

This work proposes an implicit neural network approach to tomography that has only had lim-

ited concurrent work demonstrating CTC capabilities. Therefore, the literature should include

an in-depth investigation of imaging configuration and network hyperparameters on the recon-

struction quality for 3D flow diagnostics. The following sections cover a detailed description

of the NeRF-based tomography method developed during this work and investigations using

synthetic and experimental datasets.
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Chapter 5

FluidNeRF Implementation

The following chapter will provide a detailed explanation of the neural implicit presentation

tomography method based on NeRF, which was developed for flow diagnostics and is called

FluidNeRF. FluidNeRF is a tomography method capable of handling spatial (instantaneous) or

spatial-temporal coordinates (time-resolved). First, the instantaneous or static version will be

described, followed by the time-resolved version. The static FluidNeRF section will describe

the components of the reconstruction algorithm, and the time-resolved FluidNeRF section will

include the differences that were added to handle the time input. While the current method

was developed for flow diagnostics, the technique could be applied to other emission-based

tomography problems.

5.1 Static FluidNeRF

Figure 5.1: Schematic of the static FluidNeRF algorithm that uses a neural network to represent
the volume.

The FluidNeRF reconstruction model is shown in Figure 5.1. First, a light ray is traced

through the volume corresponding to an image pixel of the measurements, where a user-defined
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number of query points are taken along the ray. Each point has a corresponding 3D object space

coordinate (xj , yj , zj) passed through positional encoding (γ) to increase the dimensionality

before connecting to the MLP. The activation function of the MLP nodes is indicated by σ. The

MLP outputs the approximated volume luminance (Ej) at the queried 3D coordinate. Once all

query points along the ray are interrogated, a pixel value is rendered by integrating the volume

luminance along the ray. The measurement loss (L) that is used to update the MLP, where L is

the mean-square-error between the rendered pixel value (Ii) and the measured pixel value (Îi).

The measurement loss is accumulated for a batch of rays before being used to update the MLP.

5.1.1 Discrete ray tracing

The volume sampling method is crucial in rendering images of the reconstructed volume, thus

impacting the updated reconstruction quality. A multi-resolution technique is used to improve

the sampling. First, FluidNeRF produces a semi-random set of samples along rays cast through

the volume. Then, a second set of samples is calculated using information from the intensity

values from the first set of samples. This two-stage sampling method is referred to as Hier-

archical sampling [6]. This method helps increase samples in areas of interest while limiting

samples to locations with constant or no intensity. Hierarchical sampling can be necessary in

reducing the total number of samples required to capture the important features of a volume

when rendering the projection, compared to a uniform or stratified sampling method.

This work uses a simple pinhole camera model to trace rays through the volume. Each ray

has an origin (ro), corresponding to the pinhole location in space relative to the volume, and

a direction (rd) given by a unit vector. Discrete samples along the ray can be generated using

ro + srd, where s is the distance of the sample point to the camera pinhole. The algorithm

begins by dividing the ray into Nc evenly spaced regions between the user-defined near-field

and far-field positions on the ray (snear, sfar) to produce an initial set of sample regions. Then,

a query point is randomly selected in each region as defined by Eqn. 5.1 [6]

si ∼ U [snear +
i− 1

Nc

(sfar − snear), snear +
i

Nc

(sfar − snear)]. (5.1)
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This sampling technique produces semi-uniform sampling along the ray since a single sample

is taken in each evenly-spaced region.

After the first set of semi-random locations have been interrogated, the intensity values for

each location are used to produce another set of samples. This technique uses the spatial gra-

dient of intensity along the ray. The gradient is found numerically using dE =
Ej+1−Ej

sj+1−sj
. While

this method calculates an approximate gradient, it can include automatic differentiation to find

the exact gradient at each point. This should be invested in the future. The feature sampling

should be based on the amplitude of the gradient to position samples near boundaries or other

features. Thus, the new samples are based on the absolute value of the gradient. The amplitude

of the gradients is then normalized along the ray
(
d̂Ej =

dEj∑Nc−1
j dEj

)
, producing a piece-wise

constant probability density function (PDF). Then, Nf feature samples are determined using

the PDF. Thus, the final image will be rendered using all (Ntot = Nc +Nf ) samples.

5.1.2 Positional encoding

With the sampling along the ray completed, the 3D spatial coordinates are individually encoded

to a higher dimension using Fourier feature mapping, as demonstrated by Tancik et al. [218].

Neural networks are notorious for converging to lower-order solutions, leading to poor perfor-

mance in representing the high-frequency content in a volume. Thus, positional encoding uses

a variant of Fourier feature mapping as shown in Eqn. 5.2

γ(τ) = [τ, sin(20πτ), cos(20πτ), . . . , sin(2L−1πτ), cos(2L−1πτ)], (5.2)

where L is an integer value that determines the dimensionality of the encoding. A higher value

of L produces more values and increases the dimension of the input array. Not only does it

improve the performance in capturing high-frequency information, but it has also been shown

to improve training speed. Thus, positional encoding is incorporated into FluidNeRF.
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5.1.3 Image rendering

Another critical step for an accurate reconstruction is the image rendering, as the imaging

model should approximate the measurements. In flow diagnostics, the volumes of interest can

be approximated as optically thin, therefore an emission-based imaging model can be applied.

FluidNeRF incorporates a modified emission-based image rendering, where the standard model

is described by [219]. For this model, the light only originates from the volume bounded by

snear and sfar for a particular ray. The light that reaches a pixel is calculated using Eqn. 5.3

Ii =

∫ sfar

snear

Ω(s)A(s)E(s)ds, (5.3)

where Ii is the intensity of the ith pixel, Ω is the solid angle as a function of s, and A is the area

of the ith pixel in object space as a function s. Ω is a measure of the spatial angle subtended by

the lens or aperture of the camera, typically expressed in steradians (sr). Eqn. 5.3 needs to be

estimated using the samples described previously. A simple schematic of the ray tracing and

rendering is shown in Figure 5.2. In our method, this integral is calculated using the midpoint

quadrature method as presented in Eqn. 5.4.

Ii =
N−1∑
j=1

Ω(s̄j)A(s̄j)∆s̄j
(Ej+1 + Ej)

2
(5.4)

where s̄j is the midpoint between the j and j + 1 sample, and ∆s̄j is the distance between

midpoints (s̄j+1 − s̄j). The area of a pixel can be found using the local magnification
(

pi
−Mj

)
.

For the quadrature method, Ω is the normalized solid angle relative to the focal plane that is

calculated via (so/sj)2, where so is the object distance of the main lens. Note that the emission-

based rendering model is only valid for optically thin volumes; however, the model allows for

other imaging techniques to be incorporated easily.

5.1.4 Updating the network

The previous section conducts the back-projection step to render image pixels corresponding to

the measurement images. The MLP that approximates the volume can be updated using a loss
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Figure 5.2: Schematic of the ray tracing and image rendering method. The solid rays cor-
respond to rays cast from pixels and the dashed lines correspond to boundaries between the
pixels. The query points are indicated by the points along the ray.

function that quantifies the difference between the predicted projection (Ii) and the measured

projection (Îi). In this work, the mean square error (MSE) loss function is used as shown in

Eqn. 5.5

L =
1

Npix

||Ii − Îi||22, (5.5)

where Npix is the number of pixels used per iteration. MSE is a standard loss equation that

has been used for other NeRF variants [6, 8]. However, including other loss functions has been

demonstrated to improve performance [7].

5.1.5 Implementation

FluidNeRF used for this work is implemented in Python utilizing the Tensorflow 2.9 library.

The default hyperparameters of the method for the synthetic experiments are presented in Ta-

ble 5.1 and used throughout this work unless otherwise indicated. The network size is a user-

defined hyperparameter that is set at run-time. The neural network’s activation function (σ) is

the rectified linear unit (ReLU), which can also be set during run-time. An iteration of Flu-

idNeRF is completed once all images have been considered, where a random batch of pixels

from each image is queried. For this work, a user-specified 1024 pixels from each image are

selected during each iteration for training. Once an iteration is finished, the network is updated

using the Adam optimizer with an initial learning rate of 5× 10−4 that decays exponentially to

5 × 10−5 after 25000 iterations. The Adam optimizer hyperparameters are kept as default as
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previously reported by [6]. A convergence criterion is used to stop training when the L varies

less than 2% across a 2000-iteration stretch with a 200-iteration running average, similar to the

implementation by Molnar et al. [170]. FluidNeRF is computed on a single NVIDIA Tesla T4

GPU from the Auburn University Easley Cluster.

Table 5.1: Default hyperparameters of static FluidNeRF unless specified otherwise.

Parameter Value Parameter Value Parameter Value
Depth 8 Nc 128 Optimizer Adam
Height 256 Nf 128 Initial learning rate 0.0005

L 8 Npix/img 1024 Decay Exponential
# of cameras 15 Activation ReLU

5.2 Time-Resolved FluidNeRF

The NeRF concept allows the tomography method to be adaptable to alternative inputs and out-

puts since neural networks are universal function approximators. Currently, the instantaneous

FluidNeRF method can reconstruct a volume under the assumption that the projections are not

time-dependent. This assumption holds when the images are captured simultaneously or depict

a static volume. This assumption is the same as traditional tomography methods described in

Chapter 2, where the reconstructions are only a function of spatial coordinates. However, cam-

eras can capture multiple snapshots across time of a dynamic scene, where the scene changes

smoothly and continuously with time. Therefore, time can be included as an input to Fluid-

NeRF, allowing the reconstruction technique to account for temporal information, similar to

PINNs. The addition of time to the FluidNeRF model will be called time-resolved FluidNeRF

(TR-FluidNeRF).

A schematic of the TR-FluidNeRF is displayed in Figure 5.1. The main idea behind TR-

FluidNeRF is that a neural network is trained to approximate the volume of interest using

captured images of the scene from different viewpoints, where the difference between the cap-

tured and predicted perspective updates the neural network. Therefore, the algorithm starts by

attempting to render a volume projection from the same viewpoint as a captured projection.

Rendering is conducted by tracing rays through the volume that corresponds to pixels of the

88



Figure 5.3: Schematic of the time-resolved FluidNeRF algorithm that uses a neural network to
approximate the volume in space and time.

captured images for one of the measured time points. A semi-random set of spatial-temporal

coordinates is generated along a ray to approximate a ray through space. The spatial and tem-

poral points are first encoded using γx and γt, respectively. Similar to positional encoding

discussed by Mildenhall [6], temporal encoding can improve the performance of capturing the

higher-order components of the reconstruction with time. Once through encoding, the input

array is passed into a feed-forward neural network that calculates the intensity density (Ej) for

each spatial-temporal point along the ray. Like static FluidNeRF, the ray is rendered for one

instance in time using a discrete emission-based image rendering technique. Once the pixel

is rendered, the loss (Lmeas) is calculated by comparing the rendered and captured pixels. A

backpropagation algorithm is utilized to update the weights of the neural network, equivalent

to updating the volume approximation. An iteration accounts for all images at a specific time

step.

A vital step for TR-FluidNeRF was adding a normalization step to the temporal coordi-

nate before going through temporal encoding (Eqn. 5.2). With the smaller time step size of

high-speed, time-resolved measurements, the temporal encoding function collapses the inputs

since Fourier Feature mapping has a constant period of 2π. The collapsing of the temporal

coordinate caused the neural network to have difficulty training and converging to an averaged

volume across time steps. Therefore, the normalization creates a more general network, where

L of Eqn. 5.2 should be the only thing required to change between different datasets or time

step sizes. For our method, the normalized time coordinate is calculated by t′ = t/∆t. An alter-

native method for countering this effect is adjusting the period of the sinusoidal function using
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a variable as discussed by Tancik et. al. [218], although this requires an additional hyperparam-

eter that will need to be adjusted between spatial and temporal coordinates and for each dataset.

Therefore, the normalization of the time coordinate reduces the number of hyperparameters.

Figure 5.4 presents an example of a fully connected neural network model that is employed

for TR-FluidNeRF. We use a residual connection for the TR-FluidNeRF network structure that

combines the inputs with the output of the middle layer. Each layer has a constant height (H)

throughout the network. While the example model has eight layers, we will change the depth

and height in the following results section. TR-FluidNeRF can utilize any of the activation

functions as demonstrated in Section 3.1.1. Table 5.2 provides the default hyperparameters for

TR-FluidNeRF reconstruction that will be used for the results unless specified otherwise. Lx

and Lt are the encoding hyperparameters for spatial and temporal coordinates, respectively.

The current version of TR-FluidNeRF is implemented using TensorFlow 2.9 in Python 3.9.

TR-FluidNeRF employs the Adam optimizer built into Tensorflow to train the neural network.

A convergence criterion is used to stop training when the L varies less than 2% across a 2000-

iteration window with a 200-iteration running average. For the results, TR-FluidNeRF was

conducted on a single NVIDIA Tesla T4. The current algorithm design provides the ability to

reconstruct with and without temporal information, which is determined at run-time through

user input. Where TR-FluidNeRF will be compared to the instantaneous FluidNeRF method.

For the instantaneous FluidNeRF implementation, the network had eight layers with 256 nodes

each, and all other parameters were kept constant.

Table 5.2: Default hyperparameters of TR-FluidNeRF.

Parameter Value Parameter Value Parameter Value
Depth 10 Nc 64 Optimizer Adam
Height 200 Nf 64 Initial learning rate 0.0005
Lx 8 BatchSize(Npix/img) 1024 Decay Exponential
Lt 0 # of cameras 15 Activation Swish
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Figure 5.4: An example of the FluidNeRF network structure with 8 layers with a residual
connection after four layers.

5.3 Chapter Summary

This chapter covers the NeRF-based technique that was developed during this work, named

FluidNeRF. FluidNeRF is based on the idea of neural implicit representation, where a neural

network approximates a continuous intensity field as a function of spatial coordinates. Two

versions were developed during this work: i) instantaneous FluidNeRF without temporal de-

pendence and ii) time-resolved FluidNeRF, including the time component of the measurements.

An iteration of FluidNeRF commences by tracing rays through the volume of interest corre-

sponding to pixels of the captured images of the volume. A semi-random sampling coordinates

along each ray is generated for input into the neural network. Positional encoding is conducted

to increase the dimensionality of the input coordinate vector and improve the performance of

FluidNeRF. Time-resolved FluidNeRF also has an input of time, which goes through a separate

encoding function. Those vectors are passed through the neural network to generate a volumet-

ric intensity of each input coordinate. Another set of samples are generated using the intensity

distribution along the ray. This method is referred to as hierarchical sampling. The new sam-

ples are passed through the neural network for additional volumetric intensity points along the

ray. A predicted intensity captured by the pixel is generated through an emission-based image

rendering technique, which is compared to the captured pixel value through a loss function.

The loss between the predicted and captured pixel values is used to update the network. The
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update step of FluidNeRF is similar to that of traditional tomography methods, although Flu-

idNeRF has the flexibility to include additional constraints. The following chapters cover the

synthetic and experimental evaluations of FluidNeRF.
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Chapter 6

Synthetic Experimental Design

After developing the FluidNeRF algorithm, it’s essential to initially test it with synthetic data

to establish its limitations before its application to experimental datasets. Synthetic data offers

a reference point for assessing the accuracy of the method. For this purpose, synthetic data

mimicking typical combustion and flow diagnostics scenarios was selected, ensuring the re-

sults obtained from simulation studies serve as a reliable benchmark for the flow diagnostics

community. This section will first present the synthetic data, followed by a discussion on the

image rendering algorithm that generates 2D perspectives of the synthetic volumes. Finally, we

will introduce volumetric metrics designed to quantify the accuracy of the reconstruction.

6.1 Instantaneous CFD volume

The ground truth volume that is used for validation was generated from a direct numerical

simulation (DNS) of a high-pressure, turbulent mixing jet as shown in Figure 6.1a. The jet flow

field is represented as a scalar field with a value of 1.0 for pure fluid originating from the nozzle

and 0.0 for the surrounding fluid. Scalar values of 0 and 1 indicate the mixture between the jet

and the surrounding fluid. The jet originates from a circular nozzle with an exit diameter of 2.36

mm with a Reynolds number of 5000, as described by Sharan and Bellan [220]. The data is

analogous to flow diagnostic techniques, including laser-induced fluorescence in combustion or

passive scalar flow visualizations such as that achieved with dye or smoke injection. The current

data set has several features of practical interest, including i) laminar region with a top hat

cross-section, ii) transition region with large-scale asymmetric flow structures forming around
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(a)
(b)

Figure 6.1: (a) A central x-y slice of the non-dimensional passive scalar volume originating
from the nozzle and an isosurface of the scalar at a contour value of 0.2. The orange arrow
indicates the flow direction (positive x-direction). (b) A line-of-sight integrated perspective
image generated from the non-dimensional scalar value of the DNS volume.

the periphery, and iii) turbulent region consisting of low and high spatial frequency content.

These characteristics offer a practical volume for assessing the impact of hyperparameters on

the spatial frequency of FluidNeRF’s reconstruction.

6.2 Time-Resolved CFD volume

The time-resolved validation data set was generated using the same DNS method of an atmo-

spheric free jet. For this preliminary evaluation, the validation data set is composed of three

time-steps of the initial start-up vortex as shown in Figure 6.1a. The DNS algorithm used for

the simulation is described by Sharan and Bellan [220]. The free jet has an exit Mach number of

0.05 and a Reynolds number of 5000. The nozzle exit diameter is 2.36 mm. The time-resolved

simulation had normalized time steps defined by Eqn. 6.1,

t∗ = t/(D/U) (6.1)

where D is the exit diameter, U is the exit velocity, and t is the iteration time. The iteration starts

with t = 0, where no flow has exited the nozzle. The three time steps for the validation data set

are t∗ = 14, 15, and 16. The DNS model simulates a passive scalar using the compressible mass
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transport equation [220] with values of 1.0 for pure fluid originating from the nozzle and 0.0 for

fluid originating from the surroundings. Values between the extremes correspond to a mixture

of the two fluids caused by advection and diffusion. The simulated volume is analogous to

different flow diagnostic techniques, including laser-induced fluorescence or flow seeded with

dye or smoke. The time-resolved jet provides a smooth laminar region that develops more

complex structures due to the shear layer and leading vortex. Although, these time steps are less

spatially complex as compared to the flow from the static case. The camera field of view and

layout that were used for the time-resolved perspective view generation are shown in Figure 7.7.

The images were rendered using the method described in Section 6.3.

Figure 6.2: (a-c) Isosurface of a DNS solution of a free jet for t∗ = (a) 14, (b) 15, and (c) 16.
(d-f) A corresponding simulated image from the same perspective for all three time steps..
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Figure 6.3: Schematic showing (a) camera field of view relative to the nozzle exit, and (b) the
camera layout for maximum angular spacing within the plane.

6.3 Synthetic image generation

The synthetic perspectives of the DNS jet volume were generated using the Advanced Flow

Diagnostics Laboratory’s (AFDL) in-house tomography software [221, 222] as shown in Fig-

ure 6.1b. Before the CFD values could be used in the AFDL software, the values were interpo-

lated from a variable-sized mesh grid onto a constant-sized voxel grid using a linear interpola-

tion scheme. The jet volume used for rendering the images was discretized into 801×801×801

volume elements with a voxel size of 0.05 mm. The AFDL software assumes that the optics can

be approximated with the thin lens equation and that the volume is optically thin, although the

primary lens has a finite diameter. The synthetic images are formed by iteratively casting rays

(Nrays) from each voxel position to the sensor using ray transfer matrices. Casting a discrete

number of rays produces a type of shot noise that is typically found in imaging. This section

discusses the method for simulating perspective images.

The synthetic imaging technique assumes a traditional camera configuration with an ob-

jective lens that focuses light onto the sensor plane. Figure 6.4 presents a simple 2D schematic

of the ray tracing technique while showing variables within the software. For this schematic,

the z-axis of the volume is aligned with the optical axis of the objective lens. All parameters

of the simulation are measured relative to the optical axis. The volume is positioned such that

the origin of the volume is located at the nominal focal plane of the objective lens, as indicated

by the object distance (lo). For this simulation, the main lens is modeled as a thin lens with a
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Figure 6.4: 2D schematic of the ray-tracing process used for generating images of the DNS
volumes.

focal length, f , and an aperture diameter of da. The center of the sensor is aligned with the

optical axis and is located at the image distance, li, from the primary lens. Each pixel of the

sensor has a finite pitch, pp, and the image resolution determines the size of the sensor. With

the assumption of a thin lens, the object and image distance is related to f through the thin lens

equation (Eqn. 6.2) and the magnification with Eqn. 6.3,

1

li
+

1

lo
=

1

f
(6.2)

M =
li
lo

= −hi

ho

(6.3)

where hi and ho is the height of a subject at li and lo, respectively. The height in image space hi

is measured relative to the optical center as denoted by sx and ho relative to x from Figure 6.4.

Note that modern camera lenses are composed of several optical elements; however, they can

generally be modeled as thin lenses by measuring li and lo relative to the principal plane of the

compound lens. For a given lens, li and lo can be determined through Eqn. 6.2 and Eqn. 6.3 if

the focal length and magnification are known or measured.
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Figure 6.4 presents a simple schematic of the ray tracing simulation. For a traditional

camera, there are three main segments of ray tracing: i) emission from a point and traversing

through object space to the primary lens, ii) interaction with the lens, and iii) projection of the

focused image onto the sensor, where it is captured by individual pixels. We will discuss each

segment of the rendering technique independently.

The first step of ray tracing is to convert the local volume coordinate system to the camera

coordinate system, where the ground truth volume is generated such that the origin of the

volume is located in the center of the volume. The conversion is completed by rotating the local

volume coordinates to the camera coordinate frame to the orientation as shown in Figure 6.4.

Since we are simulating 2D images of a 3D volume, the camera will be rotated around the

x-axis (ϑx) and the y-axis (ϑy). The conversion between the local volume coordinates and the

camera coordinates is calculated using


x

y

z


cam

=


cosϑy 0 sinϑy

sinϑx sinϑy cosϑx − sinϑx cosϑy

− cosϑx sinϑy sinϑx cosϑx cosϑy



x

y

z


vol

(6.4)

For our scalar field synthetic volume, the coordinates, (x, y, z)vol, correspond to the center of

each voxel since each voxel has a constant value throughout. For the voxel location, θu and θd

are calculated to determine the maximum angle a ray to be captured by the primary lens using

Eqn. 6.5 - 6.6.

θu = tan−1

(
(da/2)− x

lo + z

)
(6.5)

θd = tan−1

(
−(da/2)− x

lo + z

)
(6.6)

Each voxel is approximated as a sphere to simulate a voxel with finite size, with the sphere’s

diameter equal to the square voxel’s side length. The origin of a ray that is traced from a voxel

is randomly generated on the surface of the sphere. The number of rays generated for voxels

located at the nominal focal plane (lo) is Nrays. To account for the solid angle (Ω) of Eqn. 2.5,

the number of rays cast from a voxel is determined from the ratio between the collection angle
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Figure 6.5: Schematic of a circular aperture utilized for the synthetic image generation.

of that voxel and the collection angle at the nominal focal plane (θcol) as shown in Eqn. 6.7.

Nrays,vox = Nrays

(
θu − θd
θcol

)2

(6.7)

Once a ray has a randomly generated origin on the sphere, the ray is given an initial,

randomly generated propagation angle, θ, that falls between θu and θd, as shown in Figure 6.4.

For a 2D thin-lens, a second angle in the y-direction (into or out of the page) is determined for

propagating the ray in 3D space, where the angle is also randomly selected so that it is captured

by the lens (Figure 6.4. For a circular aperture, the maximum angles (ϕu and ϕd) are calculated

after randomly generating θ for the x-direction. Depending on θ, the size of the aperture in the

y-direction ∆ya changes as presented in Figure 6.5. The x-location (xa) on the aperture must be

determined using Eqn. 6.8 to calculate ϕu and ϕd. ∆ya can be calculated using the equation of a

circle (Eqn. 6.9), which calculates the y-coordinate on the edge of the circle. The y-coordinate

corresponds to the edge of the circular aperture. Once the size of the aperture in the y-direction

is determined for a given propagation angle, θ, ϕu, and ϕd are determined through Eqn. 6.10 -

6.11.

xa = x+ (z + lo) tan θ. (6.8)
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∆ya =

√(
da
2

)2

− x2
a (6.9)

ϕu = tan−1

(
∆ya − y

lo + z

)
(6.10)

ϕd = tan−1

(
−∆ya − y

lo + z

)
(6.11)

Similar to θ, an initial randomly generated propagation angle (ϕ) is given to each ray of a voxel.

Once a ray is given θ and ϕ for an origin point on the surface of the sphere of a voxel, the

ray is propagated to the primary lens as indicated in segment 1 in Figure 6.4. The propagation

of the ray is calculated using trigonometric relations given by

xa = xa = x+ (z + lo) tan θ (6.12)

ya = xa = y + (z + lo) tanϕ. (6.13)

The second segment for ray tracing is the deflection of a ray caused by the lens. The deflection

assumes the thin lens approximation, where the ray instantaneously changes angles. The new

ray propagation angles after the lens are given by

θ2 = tan−1

(
xa − x

z + lo
− xa

f

)
(6.14)

ϕ2 = tan−1

(
ya − y

z + lo
− ya

f

)
(6.15)

Finally, the third segment propagates the ray from the lens to the sensor. The propagation in

image space uses trigonometric relations as given by

x3 = xa + li tan θ2 (6.16)

y3 = ya + li tanϕ2 (6.17)

Once x3 and y3 are calculated, the pixel that the ray interacts with must be determined given

the size of each pixel (pp). The signal of the ray is accumulated on the sensor, with the intensity
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of each ray corresponding to the originating voxel value. The image rendering settings for

this work are presented in Table 6.1. These settings produced a maximum intensity that would

represent a 16-bit image.

Table 6.1: Camera settings for the free jet synthetic experiments.

Magnification Pixel pitch Focal length f/# Resolution Nrays

-0.2 0.01 mm 60 mm 3.5 800 × 800 500

6.3.1 Camera layout

As shown in Figure 6.6a, a planar camera distribution and a spherical camera distribution are

used to evaluate the impact of camera layout on reconstruction quality for the instantaneous

data set. Alternatively, the time-resolved case will evenly distribute 60 cameras in a circular

plane. The planar layout consists of up to 120 evenly-spaced perspectives, with the focal plane

at the center of the volume. The camera plane is perpendicular to the flow direction. Subsets

of the 120 cameras are generated to evaluate the effect of the number of cameras. Note that

a few perspectives of the 120 cameras had distinct aliasing artifacts due to the near-perfect

alignment of the voxel grid axes with the image sensor coordinates, a common issue with

discretized schemes. Figure 6.7 shows an example of one such image, where the aliasing is

present in the form of horizontal bands in the higher-intensity regions. Future work should

try to eliminate the synthetic aliasing, but the images are retained here, where we note that

both FluidNeRF and ASART used an identical set of images for reconstruction. The camera

locations for the spherical data set were calculated using a Fibonacci lattice to distribute camera

locations around a sphere (Figure 6.6b). After rendering the projections, the images were post-

processed to apply varying levels of Gaussian image noise. The images’ signal-to-noise (SNR)

ratio was determined relative to the maximum intensity in the image, with levels of 1%, 2.5%,

5%, and 10%. The latter is an extreme case but will be a good test for experimental images.
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(a) (b)

Figure 6.6: ((a) Planar camera layout with the jet marked in blue with the mean velocity coming
into or out of the page, and (b) spherical camera positions calculated using Fibonacci lattice
with the free jet volume indicated by the red box.

Figure 6.7: A line-of-sight integrated perspective image of the DNS free jet data. A small
amount of aliasing, in the form of horizontal streaks, caused by the synthetic image rendering
method is highlighted.

6.4 Numerical metrics

In addition to visual inspection of the reconstructed volumes, two different performance metrics

are used to quantify the accuracy of the reconstructions. Volume metrics compare the volume

reconstruction to a ground truth, which is possible due to the synthetic data set. One of the

quantitative metrics is the normalized root-mean-square-error (NRMSE), given by

ε2(E, Ê) =

√√√√∑Nvox

j (Ej − Êj)2∑Nvox

j (Êj)2
. (6.18)
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E is the predicted volume value, Ê is the ground truth, and Nvox is the number of voxels

or query points used. NRMSE is one of the most common accuracy metrics in volumetric

imaging [1]. NRMSE is an averaged error quantification across the volume. While not as

common in volumetric imaging, structural similarity index metric (SSIM) has been popular for

comparing images in the computer vision community [6] but has been employed recently for

tomography [8]. SSIM investigates the luminance, contrast, and structure the QoI to evaluate

the overall structure and intensity of the image/volume as shown in Eqn. 6.19.

SSIM =
(2µEµÊ + c1)(2σEÊ + c2)

(µ2
E + µ2

Ê
+ c1)(σ2

E + σ2
Ê
+ c2)

(6.19)

µ is the mean value across sample points, σE and σÊ is the variance of the intensity values for

predicted and truth volumes, σEÊ is the covariance, and c1 and c2 are constant variables that

stabilize SSIM. Luminance is compared to the ground truth using µ. The second parenthesis in

the denominator of Eqn. 6.19 captures the contrast compared to the ground truth using σx and

σy. The structural comparison is employed through σxy.

6.4.1 Grid-based reconstruction method

FluidNeRF is compared to a modern ART-based method called the adaptive, simultaneous al-

gebraic reconstruction technique (ASART). As noted before, ART-based methods have been

the most popular iterative tomography methods for combustion and flow diagnostics. Simulta-

neous ART-based (SART) methods improve the original ART method’s performance by updat-

ing the predicted volume across all projections rather than a projection-by-projection update.

The simultaneous methods increase computational efficiency and are motivated by volumetric

imaging [1]. ASART incorporates a modified multilevel access scheme to arrange the order of

projection data, adaptively correct the relaxation parameters that correct discrepancy between

actual and computed projections, and a column-sum substitution [70]. The volume initializa-

tion and update equations for ASART are presented in Eqn. 2.29 and Eqn. 2.30.

Our ASART implementation uses a bilinear interpolation scheme to relate voxels to pixels

(wij), where each voxel contributes intensity to a 2x2 grid of pixels for each camera. This work
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uses µ = 0.5 to ensure numerical stability while providing an adequate convergence rate. The

volume was reconstructed at a resolution of 4003 voxels, unless indicated otherwise. When

making direct comparisons, FluidNeRF is interrogated at the exact spatial location as the cen-

ter of each voxel. The ASART implementation allows for a maximum of 250 iterations of

the technique before stopping; however, a convergence criterion was used for early stopping

since ART-based methods are semi-convergent [1]. For the convergence criterion, the error is

accumulated for each iteration (Pi −
∑N

j wijE
(k)
j ). The tomography algorithm stops the re-

constructions when the iteration error varies less than 2% over the last 20 iterations using a

sliding mean with a window of 4. We chose the convergence criterion to be similar to what

is used by FluidNeRF. Our ASART method is implemented in C/C++ and parallelized using

OpenMP. ASART was processed on Intel Xeon Gold 6248R processors provided by the Auburn

University Easley Cluster.

6.5 Chapter Summary

This chapter outlines the synthetic data generation used to evaluate FluidNeRF and ASART

with a ground truth. A DNS-generated CFD solution, provided by Sharan and Bellan [220],

was utilized for the ground truth because the solution included a passive scalar for investigat-

ing mixing. The CFD volume provides regions of varying spatial complexity as the volume

captures the transition from laminar to turbulent flow. Two datasets were generated for testing

the static and time-resolved FluidNeRF methods: an instantaneous volume that captures the

flow in a fully developed state and a time-resolved dataset that includes three-time steps dur-

ing the transient of the leading vortex structure. After discussing the ground truth volume, the

synthetic imaging rendering method that was utilized to generate perspectives of the volume

was discussed. The image generation method assumed an optically thin volume but accounts

for finite-sized optics. One point of interest is the effect of different camera layouts on recon-

struction quality; therefore, planar and spherical camera layouts are introduced. The results

will utilize the NRMSE and SSIM accuracy metrics for quantitative analysis of the reconstruc-

tions. Finally, a discussion on the grid-based traditional tomography method that is employed

to provide a basis of comparison to the FluidNeRF method is provided.
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Chapter 7

Synthetic Results and Discussion

The following chapter covers the initial investigation of the FluidNeRF tomography method us-

ing the synthetic dataset discussed in the previous chapter. The results generated in this section

provide an error measurement relative to a ground truth. The chapter is split into two major

sections that investigate the static FluidNeRF and TR-FluidNeRF methods, respectively. Each

one of these sections begins by studying the effects of the hyperparameters on reconstruction

accuracy, providing rationale for the selected default hyperparameters used in the remainder

of the results. Both methods examine the result of the camera layout on the reconstruction.

Static FluidNeRF includes the reconstruction accuracy as a function of image noise added to

the projections. Static FluidNeRF results are compared to the ASART tomography method.

Once this is established, TR-FluidNeRF is compared to the static FluidNeRF method. These

studies should supply an initial understanding of the capabilities of the FluidNeRF method.

7.1 Static FluidNeRF

A preliminary comparison between FluidNeRF and ASART is made by visualizing a central

slice along the jet axis as presented in Figure 7.1. The overall structure of the jet is clearly

reconstructed using both methods, with the differences being most apparent in the error plots

shown in (d) and (e). Both methods capture the laminar jet core, the transition region near the

end of the jet core, and the diffuse, turbulent flow region downstream. The most significant

difference between the two reconstructions is found in the laminar region, where ASART has

difficulty capturing the sharp transition between the jet core and ambient fluid. Due to the
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Figure 7.1: A central x-y slice of (a) the ground truth free jet, (b) FluidNeRF reconstruction,
and (c) ASART reconstruction using 15 cameras in the planar configuration. The difference
between the ground truth and (d) FluidNeRF and (e) ASART reconstructions.

necessary volume discretization, ASART has difficulty modeling the sharp gradient at the jet’s

edge and compensates by underpredicting the intensity in the core. This is also magnified by

reconstruction artifacts that occur at the boundaries of the volume. FluidNeRF also appears

to slightly outperform ASART in the transition region where sharp features are still prevalent;

however, the differences between the two methods begin to diminish in the turbulent flow region

where finer scale dominates the flow. In this region, both methods still reconstruct the larger

scales and general distribution of the jet fluid throughout the volume but struggle to capture the

finest details, thus indicating the limit of the spatial resolution.

In the remainder of this section, a closer look at the performance of FluidNeRF is offered,

beginning with the influence of the various hyperparameters. Once the hyperparameters have

been selected, the impact of camera layout and image noise are investigated.
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7.1.1 Hyperparameters

The choice of hyperparameters in the FluidNeRF reconstruction, such as network depth and

height, can significantly impact the reconstruction quality, similar to voxel resolution in ART-

based methods, as well as the computational time. The hyperparameter results presented here

use the 15 evenly-spaced planar camera layout. This first investigation is the MLP network size.

The other hyperparameters were held constant for this comparison, as shown in Table 5.1. The

ability of the network to approximate the radiance field is affected by network size. Figure 7.2

illustrates the reconstruction accuracy as a function of network depth at two different network

heights. In general, a deeper network improves the approximation of the volume. For a height

of 256 nodes, the reconstruction had diminishing returns or leveled after approximately eight

layers. Reducing the network height by half does decrease the accuracy for a given depth, but

the accuracy of the shorter network converges to the taller network with increasing depth. SSIM

is equal for both heights with a depth of ten layers. Therefore, height has less of an impact on

the accuracy of the representation.

In addition to approximating the volume, the network depth also directly impacts com-

putational efficiency, as the number of operations is directly proportional to the network size.

For the case with ten layers, the taller network has 256*10 nodes compared to 128*10 nodes

of the shorter network. Fewer operations lead to improved computational efficiency in recon-

struction, as depicted by the convergence time for each network size in Figure 7.2(c). In almost

every case, the computational time was < 50% with a height reduction of 50%. These results

show that quicker reconstructions can be achieved with a measured trade-off in reconstruction

accuracy. For the rest of this work, a network size of eight layers with 256 nodes each is chosen

to maintain the focus on higher fidelity reconstructions.

The next hyperparameter investigated is positional encoding. As discussed, increasing

L increases the dimensionality of the inputs, thus allowing the MLP to better reconstruct the

higher frequency content in the volume. The free jet volume is composed of different regions

(laminar, transition, and turbulent) that have varying levels of spatial frequencies, as shown in

Figure 7.3(a). The reconstruction NRMSE for each positional encoding for the three regions
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Figure 7.2: Reconstruction accuracy as a function of network depth at different heights (128 &
256) using (a) NRMSE and (b) SSIM. (c) Convergence time for each combination of network
height and depth.

is presented in Figure 7.3(b). The turbulent and transition regions are characterized by higher

spatial frequency content, and they are much more challenging to reconstruct, as was also

shown in Figure 7.1. Thus, this region had higher NRMSE errors. The laminar region has

much lower NRMSE, with L having little influence on the accuracy. While increasing L is

not needed, it is also demonstrated that increasing L does not negatively affect the NRMSE of

the reconstruction. The transition and turbulent regions show similar trends where increasing

L causes an improvement in performance (reduced NRMSE) until L = 8, after which further

increases in accuracy are not observed. Therefore, L = 8 is considered as the optimal encoding

for this flow.

Another advantage of positional encoding is the convergence rate, as illustrated in Fig-

ure 7.3(c-e). The termination point of each line indicates the convergence rate as a function of

L, where increasing L reduces the number of iterations for convergence. Note that FluidNeRF

reconstructed the entire volume; hence, the termination point is the same across all regions.

The laminar region converged quickly for all L. There is little difference between the trends

of each encoding. The transition and turbulent regions show similar results as laminar, but the

convergence rate is more apparent with increasing L. In these regions, the NRMSE exhibits a

negative initial slope that progressively becomes steeper with increasing L until approximately

L = 8. After L = 8, the NRMSE lines coalesce to the same trend. Increasing L causes < 5% in-

creases in computational time per iteration between L = 0 and L = 8. However, approximately

30% fewer iterations are required for convergence. Thus, increasing L improves the ability to
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Figure 7.3: (a) x-y central slice of the ground truth volume with red boxes indicating the lam-
inar, transition, and turbulent regions (left to right) utilized for the comparison. (b) NRMSE
as a function of positional encoding for the three different regions. NRMSE as a function of
reconstruction iterations for the (c) laminar, (b) transition, and (c) turbulent regions.

capture the volume accurately and reduces the training time. The authors would like to note

that the optimal value for L depends on the spatial complexity of the flow field of interest;

however, L values greater than the optimal do not cause a reduction in accuracy.

The final hyperparameter that is considered is the number of spatial samples along each

ray used for rendering the perspective pixel. Figure 7.4 shows NRMSE and SSIM of the Flu-

idNeRF reconstruction utilizing semi-random sampling (Nc = Ntot) and multi-resolution sam-

pling (Nc = Ntot/2, Nf = Ntot/2) methods. The reconstruction accuracy quickly improves

when Ntot equals or exceeds 64. With Ntot samples greater than this limit, the reconstruction

quality appears to be limited by the MLP approximation of the volume rather than the discrete

ray tracing method, as indicated by a constant accuracy for Ntot > 64. Figure 7.4(b) also il-

lustrates that clustering sample points around the peak gradients in the volume only slightly

improves the quality of the reconstruction, with the difference most notable at Ntot of 32 and

64. Alternatively, SSIM indicates a much more pronounced difference for Ntot ≤ 32, with
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Figure 7.4: (a) NRMSE and (b) SSIM as a function of Ntot samples using 15 cameras with and
without hierarchical sampling.

the coarse sampling outperforming the multi-resolution sampling. The information provided

by Nc with low sample densities does not seem to provide sufficient information to adequately

determine where the fine samples should be located. Using these results, Ntot should be equal

to or greater than 128 to maximize the reconstruction quality. Note that this is lower than

traditional discretized methods require along the LoS. Therefore, the optimal settings for max-

imizing reconstruction accuracy and reducing computational time are Nc = 64 and Nf = 64,

where increasing sampling past this will increase the computational time without improving

accuracy.

Figure 7.5 presents the reconstruction accuracy of FluidNeRF using ReLU and Swish ac-

tivation functions. The activation function is a critical component for the non-linearity of the

function approximation of the neural network. The swish network exceeds the accuracy values

of the ReLU network, indicated by both SSIM and NRMSE. However, the difference between

the two is minimal. The swish activation function is more complex and has a smooth differential

compared to the ReLU function, which will help the swish network achieve a higher accuracy

value. Due to the increased computational complexity, the swish activation function increases

the computational time of an iteration by approximately 50% while slightly increasing accu-

racy. It was determined that the increased complexity was not required for this demonstration.

Therefore, the following results for static FluidNeRF will employ ReLU.
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(a) (b)

Figure 7.5: (a) NRMSE and (b) SSIM as a function of iteration for FluidNeRF utilizing ReLU
and Swish activation functions for the 12-camera case.

A generalized network structure utilized for the results sections has a residual connection

(Figure 5.4), taken from previous NeRF implementations. However, this connection has not

been verified in the past literature. Therefore, we cover results comparing the convergence

rate and final accuracy using a network with and without the residual connection. Figure 7.6

shows the quantitative metrics as a function of the iteration of both networks. The residual con-

nection network trains similarly to the network without the connection. The residual network

does converge to a negligibly higher value, where the final value is nominally the same. The

convergence rate is also practically the identical. Therefore, both networks are adequate for

the FluidNeRF problem. However, the residual neural network was developed to counter the

issues of deep networks, including vanishing gradients. Thus, the results show that the residual

connection does not impede in the training process and marginally improves accuracy. With

these results, FluidNeRF will use the residual connection framework for the rest of the paper.

The benefits will only become apparent as the depth of the network increases.

7.1.2 Camera layout

The next reconstruction variable that will be studied is camera layout. The volume was re-

constructed with FluidNeRF using two camera configurations: a) a 360-degree evenly-spaced,

planar layout representative of what might be expected in experiments and b) a more chal-

lenging spherical layout with the same number of cameras that provides better coverage of the
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(a) (b)

Figure 7.6: (a) NRMSE and (b) SSIM as a function of iteration for FluidNeRF’s neural network
with and without a residual connection. The reconstructions were conducted with 15 cameras
with the same hyperparameters.

(a) (b)

Figure 7.7: Reconstruction (a) NRMSE and (b) SSIM of FluidNeRF in the spherical and planar
configurations with different number of perspectives.

whole angular space. Figure 7.7 shows the accuracy difference between the two layouts, where

both have a similar trend, but the planar layout outperforms spherical for both metrics, NRMSE

and SSIM. Planar outperforming spherical is perhaps counter-intuitive, as the increased angular

separation of the spherical layout should improve the accuracy due to perspectives being more

dissimilar, as discussed by [1]. This is the case for general tomography problems; however, the

jet flow field utilized here is characterized by an axis of symmetry about which flow features are

expected to be organized. Thus, the perspectives perpendicular to the jet axis best distinguish

the flow features. Additionally, the spherical layout leads to perspective views with a relatively
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longer LoS through the jet, leading to less efficient use of image sensor resolution and dynamic

range. Both configurations produce adequate reconstructions, but the planar configuration is

superior for our case. Therefore, the rest of this work uses the planar configuration.

Figure 7.8 compares a full, 360◦-planar layout to a 180◦-planar layout (semi-circle) with

various numbers of cameras. The semi-circle results suggest that minimal accuracy is lost when

angular information is reduced. SSIM for the semi-circle was slightly higher than the full circle,

but the difference is minor and could originate from convergence variation. The semi-circle

layout is better suited for most flow diagnostics due to limited optical access, and this layout

provides the ability to place blackout curtains or plates on the opposite side of the cameras to

minimize background light. Therefore, FluidNeRF is expected to produce comparable results

with the reduced angular information. Further limiting the total viewing angles would decrease

reconstruction accuracy. A future systematic study should be conducted to understand the

accuracy reduction for limiting view angles.

The following investigation compared the effect of the number of cameras on recon-

struction accuracy with the planar layout to ASART, which is presented in Figure 7.9. For

a practical camera layout with four cameras, typical for PIV/PTV, ASART and FluidNeRF

performed about the same, with ASART performing slightly better as indicated by SSIM. In-

creasing the number of cameras to 8 and 12, common for camera configurations of scalar

field reconstructions [1], drastically increases the accuracy of both methods. For these cases,

FluidNeRF outperforms ASART. As expected, increasing the number of perspectives improves

reconstruction quality for both cases but shows diminishing returns after approximately 20 cam-

eras for ASART and 30-40 cameras for FluidNeRF. More importantly, FluidNeRF outperforms

ASART for all cases, with 8-12 perspectives of FluidNeRF producing equal or better quality

than ASART with the maximum number of viewpoints considered. We also note that the trends

for ASART are not always monotonic. The authors believe this is most likely associated with

aliasing issues related to the discrete nature of the ASART method, where the perfectly uni-

form distribution of cameras relative to the voxel grid can lead to numerical artifacts. Still, it is

necessary to recognize that the same set of perspectives were used for FluidNeRF and ASART.

Regularization techniques could be included in ASART at significant additional computational
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(a) (b)

Figure 7.8: Reconstruction (a) NRMSE and (b) SSIM of FluidNeRF for full circle (360◦) and
semi-circle (180◦) camera layout using different number of perspectives.

(a) (b)

Figure 7.9: (a) NRMSE and (b) SSIM for reconstructions using ASART and FluidNeRF using
different numbers of cameras in the planar configuration.

expense to reduce the influence of these artifacts on the reconstruction. The lack of a discrete

grid and random sampling through the volume enables FluidNeRF to avoid the same aliasing

artifacts naturally.

7.1.3 Computational Efficiency

Given the disparity in programming languages and computational hardware utilized in the cur-

rent implementations of ASART and FluidNeRF, a direct comparison of computational time

is not appropriate. However, it is helpful to compare the trends of computational time for

each algorithm as the overall scale (i.e., number of cameras, volume resolution) of the problem
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(a) (b)

Figure 7.10: Convergence time for (a) ASART as a function of Npix ∗Nvox and (b) FluidNeRF
as a function of Npix ∗Ntot.

increases. The computational time associated with an iteration of each method is primarily ex-

pected to scale with O(Npix∗Nvox) and O(Npix∗Ntot) for ASART and FluidNeRF, respectively.

However, the rate at which a method converges to a final solution may not scale according to

these metrics. Both methods were run using 4, 8, 12, 20, 40, and 60 cameras, thus varying

the amount of image data (i.e., Npix) to compare trends in the overall reconstruction times.

For each of the Npix cases, ASART was reconstructed with different volume resolutions of

2003, 4003, 5003, and 8003 to represent a typical choice required by a user when using vol-

ume discretized techniques. An equivalent choice is unnecessary when using FluidNeRF as it

is a gridless technique. However, one could reduce the size of the MLP or Ntot to achieve a

similar effect. Figure 7.10 displays the convergence time for both FluidNeRF and ASART for

various combinations. Note that the convergence time is provided for reference, but only the

trends are compared here in the context of the scalability of each method to larger domains.

For ASART, Npix = 4 ∗Ncams as we employ bilinear interpolation to relate image data to each

voxel. As expected, the ASART convergence time scales linearly with Npix ∗ Nvox due to the

discrete relationship between voxels and pixels. FluidNeRF, conversely, is characterized by a

convergence time that only modestly increases as the number of cameras or ray sampling rate

is increased. The minimal increase in time indicates that FluidNeRF can effectively utilize the

increased number of projections (Npix), where the convergence time only slightly increased

relative to the gain in accuracy with increasing Npix (Figure 7.9).
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The relationship between the density of the voxel grid and true spatial resolution in ASART

is more complex, and a complete analysis is beyond the scope of this work. Nonetheless, a

denser voxel grid will intrinsically reduce the limitation on spatial resolution. However, this in-

crease in grid density can also lead to the tomography problem becoming more under-defined,

meaning that multiple possible solutions could fit the data equally well. This under-defined

nature can induce numerical instabilities, making the reconstruction process more challenging.

Therefore, increasing resolution does not necessarily increase reconstruction quality. As a rel-

evant aside, this was investigated by comparing the reconstruction accuracy for 4003 and 8003

volume resolution cases. ASART reconstruction accuracy stays relatively constant between the

two resolutions. For example, the ASART reconstruction NRMSE using 15 cameras at 4003

and 8003 volume resolutions is 0.225 and 0.215, respectively. Therefore, increasing volume

resolution slightly improved the reconstruction, but it did not reach the reconstruction accuracy

of FluidNeRF (NRMSE = 0.165 using 15 cameras). Therefore, FluidNeRF has the ability to

expand to higher-resolution cases while maximizing accuracy compared to discretized meth-

ods.

Another important distinction between ASART and FluidNeRF is the memory and storage

requirements for each reconstruction. With ASART, the memory requirements for the solution

scale with Nvox. For the 8003 volume resolution case, each volume requires 2 GB of memory.

This means that for larger volume resolutions, the memory requirements can quickly become

significant, potentially limiting the applicability of ASART to high-resolution problems. Com-

paratively, FluidNeRF requires 1.9 MB to store the weights of the neural network for the default

hyperparameters. This is significantly less than the memory requirements of ASART, making

FluidNeRF a more memory-efficient option. It needs to be clarified if a deeper network would

be needed to represent other flow fields; nonetheless, FluidNeRF holds distinct advantages for

investigating problems with increasing volume size or resolution requirements.

7.1.4 Image Noise

This subsection evaluates the impact of image noise on reconstruction quality. Figure 7.11a

shows the reconstruction quality at different levels of image noise for a varying number of
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(a) (b)

Figure 7.11: (a) Reconstruction accuracy of FluidNeRF at different image noise levels as a
function of number of cameras (color version required), and (b) comparison of NRMSE for
FluidNeRF and ASART with 0% noise and 5% image noise using various numbers of cameras.

cameras. For FluidNeRF, the reconstruction quality slightly deteriorates for noise levels up to

5%, after which the impact of noise is more pronounced. Even at 10% noise, FluidNeRF can

acquire adequate reconstructions. However, higher noise flattens the NRMSE curve, indicating

that the noise reduces the effectiveness of increasing the number of perspectives.

Figure 7.11b compares ASART and FluidNeRF with and without 5% Gaussian noise

applied to the perspectives. It is immediately apparent that FluidNeRF continues to outper-

form ASART even in the presence of noise, with ASART maintaining a lower NRMSE value

throughout. Literature has shown that ASART is more robust to noise than most ART-based

methods; however, it is still quite susceptible compared to FluidNeRF. As expected, noise has

a much higher impact for cases with fewer cameras. Increasing the number of cameras allows

ASART to overcome some of the noise-related challenges, but to the same degree as Fluid-

NeRF, which is shown here to be more robust. Overall, FluidNeRF is more applicable for

experiments since image noise is unavoidable.

The effect of noise on the ASART and FluidNeRF reconstructions is qualitatively illus-

trated in Figure 7.12 and Figure 7.13, which show 2D cross-sectional slices of the jet in the

turbulent transition region at different noise levels for various number of cameras. For Fluid-

NeRF, the differences in reconstructions are relatively subtle, with sharper features observed

for low-noise, high-camera cases. The ASART reconstructions, on the other hand, show more
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Figure 7.12: 2D slice of FluidNeRF reconstructions at x = 14.5mm downstream of the nozzle
for noise levels of 1%, 2.5%, and 5% using 8, 20, and 60 cameras.

pronounced differences with reconstruction artifacts typically associated with discrete volume

representations and aliasing effects. The artifacts are most notable for the lowest number of

cameras where salt and pepper-type noise is prevalent.

7.2 TR-FluidNeRF

The preliminary results presented in this section focus on reconstructing the time-resolved free

jet over three-time steps, as shown in Figure 6.2. Currently, the minimal time steps were

chosen to provide the best-case scenario for TR-FluidNeRF by reducing the complexity of

the temporal information to be fit. Additionally, it is the best-case scenario for employing

physics models with only a limited subset of the flow dynamics required to be solved for future

investigations. The smaller data set also allows for quicker debugging during the algorithm

development. However, the model can be extended to include a large amount of time-resolved

frames, where a future investigation is critical in understanding the limits on the quantity of time

steps. This section covers an investigation of TR-FluidNeRF hyperparameters and compares
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Figure 7.13: 2D slice of ASART reconstructions at x = 14.5mm downstream of the nozzle for
noise levels of 1%, 2.5%, and 5% using 8, 20, and 60 cameras.

the TR-FluidNeRF to the FluidNeRF trained on individual time steps. The TR-FluidNeRF

reconstruction of the free jet for each time step using 15 cameras is displayed in Figure 7.14.

TR-FluidNeRF is able to capture the movement of the leading vortex and the overall structure

of the jet for all three-time steps. The laminar region of the jet has a smooth top hat profile

that matches the ground truth. The reconstruction also captured the small vortex structures

forming at the shear layer of the flow as the jet transitions to turbulence. Overall, the FluidNeRF

reconstruction is able to adequately capture the spatial and temporal information of the jet flow

at the three times used for the training/reconstruction.

7.2.1 Hyperparameter Investigation

The first hyperparameter of interest is the activation function. While ReLU was determined

to be adequate for static FluidNeRF, the added complexity of time could benefit from using

the more complex swish activation function. Figure 7.15 shows the quantitative comparison

between TR-FluidNeRF using swish and ReLU activation functions. For both cases, the only

difference between the reconstruction was the activation function. The added complexity of the
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Figure 7.14: (a-c) Isocontour of the TR-FluidNeRF reconstruction at three different time steps.
Central z-slice of the (d-f) reconstruction volume and (g-i) ground truth.

swish activation produces an increase in accuracy for TR-FluidNeRF compared to the results

from Section 7.1.1. Additionally, the swish activation demonstrates a consistently balanced ac-

curacy response across all time steps, implying an equal approximation across the three frames.

Overall, the swish activation improves the neural implicit approximation for spatial-temporal

coordinates.

Figure 7.16 displays the qualitative comparison between ReLU and swish. Both methods

capture the general shape and vortex structures of the jet flow; however, ReLU has some blur-

ring across the flow structures, causing the reconstruction to lose some details. The edges of

the jet have higher errors for ReLU than swish, as best indicated in the difference between the

truth slice and the truth slice. The accumulative errors in the swish activation function are lower

than those found for ReLU. Therefore, the spatial-temporal representations of the flow should

use swish activation for the increased complexity it adds to the NN. The following results for

the TR-FluidNeRF method employ the swish activation function.
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(a) (b)

Figure 7.15: (a) NRMSE and (b) SSIM of the TR-FluidNeRF reconstructions employing swish
and ReLU activation functions for three time steps.

Figure 7.16: A Central z-slice of (a) the ground truth free jet and FluidNeRF reconstruction
using the (b) ReLU and (c) swish activation function. The difference between the ground truth
slice and the FluidNeRF reconstruction using (d) ReLU and (e) swish is provided.

Positional encoding was another crucial hyperparameter for the static FluidNeRF method,

as demonstrated in Section 7.1.1. Figure 7.17 presents the accuracy metrics of the reconstruc-

tions using four different positional encoding values of Lp = 0, 2, 4, and 6. The results show that

positional encoding has minimal influence on the reconstruction quality of the time-resolved

passive scalar, as the accuracy of each reconstruction is essentially the same. This result could

be a consequence of several factors, including the activation function and the spatial complex-

ity of the flow for the current flow field of interest. The swish activation function, as shown

in the previous result, does improve the approximation of the volume as compared to ReLU
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(a) (b)

Figure 7.17: Averaged (a) NRMSE and (b) SSIM of the TR-FluidNeRF reconstructions over
three time-steps using Lp = 0, 2, 4, and 6.

because of the added complexity of the function. Therefore, positional encoding might have

less impact on the method. Additionally, the flow field has less spatial complexity than the fully

developed flow that was used for the static FluidNeRF synthetic experiments, which has three

distinct regions and covers more of the field of view. Combining both effects could reduce the

need for positional encoding for this synthetic dataset. However, future synthetic studies are

vital in understanding the relationship between the complexity of different flows and positional

encoding.

Next, we will consider temporal encoding. For the current three-time increments, tem-

poral encoding is expected to have a more negligible effect since the temporal complexity is

relatively limited. Figure 7.18 presents the NRMSE and SSIM of the TR-FluidNeRF recon-

structions using Lt = 0, 1, and 2 averaged across the three-time steps. Similar to the results

of positional encoding, Lt had limited effect on the reconstruction quality. The reconstruction

accuracy improved slightly between Lt = 0 and Lt = 1, then leveled for Lt = 2. The minimal

improvements of Lt were expected due to the limited temporal information for the three-time

increments. The current work focuses on demonstrating the time-resolved FluidNeRF method,

where a future study is required to understand the effect of temporal encoding for different

time-resolved datasets. The rest of the results use Lt = 1 due to the slight increase in accuracy.

Network shape plays a crucial role in the performance and computation time of the time-

resolved method. NRMSE and SSIM for three different heights and four different depths are
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(a) (b)

Figure 7.18: (a) NRMSE and (b) SSIM of the TR-FluidNeRF reconstructions using Lt = 0, 1,
and 3.

displayed in Figure 7.19. The depth of the network appears to have the most influence on

the accuracy of the reconstruction. Height also improves the approximation of the volume,

especially for shallower networks. However, as the depth is increased, the height has a reduced

effect on the accuracy. The reconstruction accuracy had diminishing returns with increasing

depth for every height case. Increasing depth also had diminishing returns, where each case

started to level after ten layers. The propagation method better trains with deeper, thinner

networks than shallower, taller ones.

Computation time is a crucial factor to consider alongside reconstruction accuracy, as

the computational time is significantly influenced by the height of the network. Doubling the

height of the network approximately doubled the iteration time, causing the convergence time

to increase proportionally. This is due to the computational time of a fully-connected neural

network being proportional to O(D*H). Let us consider two cases with the same number of

hidden units in the neural network, a depth of 6 with a height of 400 and a depth of 12 with

a height of 200. Both networks had similar iteration times, with the network with a depth of

12 having an iteration time roughly 10% quicker than the network with a depth of 6. Even

with having the same number of hidden units, the network converges to a higher accuracy

for the deeper network while taking comparable or slightly less time per iteration. Therefore,

it is recommended to use a deeper, thinner network. The rest of the results use a depth of
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(a) (b)

Figure 7.19: (a) NRMSE and (b) SSIM of the TR-FluidNeRF reconstructions at four different
depths and three different heights. The NRMSE and SSIM values are averaged over three time
steps.

10 and a height of 200, where static FluidNeRF has a similar number of hidden units with a

recommended height and depth of 256 and 8, respectively.

7.2.2 Camera Configuration

The subsequent evaluation is the effect of the number of cameras used for the reconstruction

on the solution accuracy. Figure 7.20 shows the averaged metrics across the three-time steps

for different subsets of cameras. For each case, the camera separation angles were optimized.

As expected, the four-camera case performed the worst. Increasing the number of cameras

does improve the accuracy in general, but the accuracy quickly approaches a constant value.

The convergence to an accuracy with increasing number of cameras is contrary to the results

that were shown in Section 7.1.1, where the accuracy was still noticeably increasing after 30

cameras. The TR-FluidNeRF has an additional time constraint on the reconstruction compared

to static FluidNeRF, which only constrains the problem with an increased number of projec-

tions. The addition of time helps the available projections be related in time to improve the

accuracy. Therefore, depending on the complexity of the flow, TR-FluidNeRF could require

fewer cameras to produce reconstruction quality similar to static FluidNeRF. It should be noted

that differences in flow complexity can affect these results.
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Figure 7.20: Averaged (a) NRMSE and (b) SSIM of TR-FluidNeRF reconstructions over three
different time steps utilizing five different subsets of cameras.

7.2.3 Static vs Time-Resolved FluidNeRF

Adding time to the reconstruction approximation increases the complexity of the implicit repre-

sentation; however, time information can also constrain the problem implicitly since the neural

network is approximating volume as a function of time. Since static FluidNeRF produces

equivalent or superior reconstruction accuracy as an ART-based method, we will analyze TR-

FluidNeRF compared to static FluidNeRF. Figure 7.21 presents a qualitative comparison of

TR-FluidNeRF reconstruction to static FluidNeRF. The two methods produced similar quality

of the major flow features, including vortex structures. The most notable differences between

the two methods are illustrated in the plot, showing the disparity to the ground truth. TR-

FluidNeRF struggles in the same areas as static FluidNeRF; however, the errors appear less

for TR-FluidNeRF. The region with the highest error is the region of small vortex structures

forming at the shear layer in the transition region.

The quantitative analysis between static and time-resolved FluidNeRF is illustrated in Fig-

ure 7.22. The findings from the qualitative analysis are confirmed as the time-resolved recon-

struction has higher accuracy for all time steps than the static reconstructions. The reconstruc-

tion accuracy of TR-FluidNeRF exhibits uniformity throughout the time series, whereas the

static case had lower accuracy for the middle reconstruction. This uniformity indicates that

the time information improves the reconstruction by further constraining the inverse problem.

125



Figure 7.21: (a-c) A central z-slice of the TR-FluidNeRF reconstructions at three time steps,
and (d-f) the difference between the TR-FluidNeRF reconstruction and the ground truth. (g-i)
A central z-slice of the static FluidNeRF reconstructions at the three time steps, and (j-l) the
difference between the static FluidNeRF reconstruction and the ground truth.

Further investigations are needed to understand the extent to which time can constrain the prob-

lem for different flow complexities. However, the current results suggest that TR-FluidNeRF

produces higher accuracy than static FluidNeRF for time-resolved reconstructions.

7.3 Chapter Summary

In conclusion, a neural implicit representation tomography technique called FluidNeRF was

introduced and compared to standard ART-based reconstruction methods. FluidNeRF’s per-

formance was demonstrated and characterized using synthetic images generated from a DNS

volume of a turbulent jet, where it was found to perform comparably or better than ASART.
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Figure 7.22: (a) NRMSE and (b) SSIM of the TR-FluidNeRF compared to the instantaneous
version of FluidNeRF for each time step.

FluidNeRF is similar to ART-based methods in that a volume is reconstructed iteratively by

comparing reconstructed projects with measured projections; however, FluidNeRF is distinct

in that it approximates the reconstructed volume as a continuous function using a neural net-

work and that reconstruction is performed using standard machine learning training algorithms

and volume rendering. Overall, the FluidNeRF technique has significant potential for 3D flow

visualization, with this work being an essential first demonstration.

This work found that network size can impact reconstruction quality but also have an as-

sociated impact on computational time. Deep learning techniques have enabled the growth

of network sizes to provide volume approximation fidelity that surpasses discretized methods.

For the flow field investigated here, a deeper, thin network size has a negligible effect on re-

construction quality. A network with half the height and two layers deeper produced similar

results while cutting computational time in half due to the reduction of computations per input

and network unknowns. Positional encoding improved the ability of the network to capture

high-frequency content in the volume. Increasing positional encoding maximizes reconstruc-

tion quality in regions with high-frequency content and preserves the quality in low-frequency

areas, where an optimal encoding of L = 8 was found. Another critical step is the spatial

sampling along a camera ray to maximize the image projection. A multi-resolution sampling

technique enhances reconstruction accuracy for a given Ntot, although only slightly for the pa-

rameters considered here. In terms of camera layout, a planar configuration that is oriented
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perpendicular to the mean flow path outperformed the spherical configuration, emphasizing the

importance of considering a priori knowledge of the flow during experimental set-up. Lastly,

FluidNeRF proved more robust to noise than ASART, indicating that FluidNeRF could be bet-

ter suited for experimental datasets.

Another version of FluidNeRF that represents the volume with spatial-temporal coordi-

nates, TR-FluidNeRF, was evaluated with a DNS-generated time-resolved dataset. TR-FluidNeRF

produced accurate reconstructions of a time-resolved scalar field across three-time increments.

To the best of the author’s knowledge, this method is the first to include time in the recon-

struction model to help further constrain the problem. The time-resolved reconstruction was

made possible due to the continuous spatial-temporal approximation of the volume through a

neural network. The addition of time information further constrains the inverse tomography

problem, where TR-FluidNeRF had comparable or increased accuracy and uniformity com-

pared to static FluidNeRF. The authors would like to note that this is a limited study, requiring

further investigations to understand the time constraint fully. In addition to these findings, the

swish activation function improved the prediction accuracy for TR-FluidNeRF more than was

found for the static FluidNeRF. Overall, TR-FluidNeRF is a viable option for reconstructing

time-resolved tomography.
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Chapter 8

Experimental Design

The set of experiments that are described in this chapter are developed to have a simple problem

that represents typical flow diagnostic measurements based on the scalar field flow visualiza-

tion. For the experiments, flow visualization is conducted on a free jet using smoke that is

seeded in the flow and illuminated with a laser. The flow is composed of different-sized flow

structures to examine the ability of FluidNeRF to capture experimental quantities of interest.

The flow speeds of the jet were determined to ensure the images are time-resolved; therefore,

this dataset can be used to test static and time-resolved FluidNeRF. The experiment can be

modeled as a viscous, incompressible flow, where the incompressible Navier-Stokes and mass-

transport equations can be utilized for physics constraints on TR-FluidNeRF.

The following sections present the experimental apparatus and methods. The first section

describes the facility used to generate the jet flow. The second section discusses the miniature

camera system developed to capture perspective views of the passive scalar in the flow. Then,

we cover the flow visualization steps utilized for the jet experiments, including the volume

calibration method used to determine the camera imaging model and 3D position around the

volume. Finally, the last section covers the various experimental parameters and data process-

ing steps used for the reconstruction.

8.1 Experimental Apparatus

The facility was originally designed to provide an open-air experiment with ample optical ac-

cess. The experimental apparatus was composed of a tank filled with smoke, a nozzle, and a fan
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Figure 8.1: Schematic of the smoke chamber with the nozzle, honeycomb and fan locations
indicated. The laser path is shown in green with each optical element labeled.

that increased pressure in the tank to push flow out the nozzle. A schematic of the low-speed

jet facility is presented in Figure 8.1. The tank has a volume of approximately one cubic foot,

with all tank walls composed of acrylic plates. An aluminum honeycomb plate is located ap-

proximately one inch from the top of the chamber to help straighten the flow before exhausting

out a nozzle. The honeycomb structure has a thickness of half an inch with cell sizes of half

an inch. Two conical nozzles were designed with an entrance diameter of 4.5 inches and an

exit diameter of 1.5 inches and 1 inch, respectively. The nozzle was 3D printed using PLA.

Air is forced through the system by a 40 mm Noctua computer fan with a maximum flow rate

of 8.9 m3/h. A PWM manual controller (NA-FC1) controls the speed of the fan. Smoke was

generated using incense sticks that were located at the bottom of the tank, and the tank was

filled with smoke between runs.

The jet flow is initiated and stopped using the PWM manual controller in an ad hoc man-

ner. Therefore, the duration and timing of the fan operation has limited precision. For the

experiments, the nozzle exit velocity was targeted to be approximately 0.25 m/s, which is a
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Reynolds number of 620 for an exit diameter of 1.5 inches. This was calculated through mass

conservation, which assumed a linear relationship between flow rate and PWM setting. To pro-

vide a more detailed understanding, the exit velocity was chosen to provide approximately 15

frames for flow to enter and exit the field of view. One set of images was taken to capture the

passage of the leading vortex structure through the field of view. Another set of time-resolved

images was taken when the flow has become fully-developed.

8.2 Flow Visualization: Smoke

Flow visualization was conducted by seeding the flow exiting the nozzle with smoke generated

by incense sticks. The smoke was chosen as a passive scalar in the flow, which is typically

used to understand mixing, mass transport, and visualization of flow features. The smoke was

illuminated with a frequency-doubled Nd:YLF laser, where the smoke particulate scattered the

light. The concentration of the smoke is important to the method, where high concentrations

can make the jet optically thick, and low concentrations cause reduced SNR of the images. The

concentration of the smoke was generated in an ad-hoc manner by blocking the openings in the

tank and allowing the smoke smoke from the incense stick to diffuse in the chamber. When the

density of the smoke was deemed qualitatively appropriate the entrances were uncovered and

the experiment was initiated.

The multi-mode Nd:YLF laser that was utilized for this work was manufactured by Pho-

tonics Industries (Model No.: DM30-527DH). The laser produces a wavelength of 527 nm at

a maximum pulse energy of 60 mJ. The laser has a pulse duration of 170 ns, which ensures a

relatively instantaneous set of images. Figure 8.1 shows a 2D schematic of the laser path and

optics used to illuminate the volume in the tank. The laser first passes through a pinhole to

crop the elliptical shape into a circular shape, producing an approximate top-hat illumination

distribution. Then, the laser is directed through a series of mirrors to have the laser aligned with

the central axis of the flow from above. A circular laser volume is expanded using a convex

spherical lens with a focal length of -75 mm. The lens produced a circular cross-section of

approximately 3.5 inches in diameter at the exit of the nozzle. The author found that the laser
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Figure 8.2: Miniature camera system layout around the nozzle that were secured using t-mount
rail.

needed minimal pulse energies for adequate image SNR, which ensures the SNR of the images

was not limited by laser energies.

8.3 Imaging System

Along with the development of FluidNeRF, the Advanced Flow Diagnostic Laboratory at Auburn

University has been developing miniature camera systems that use commercially available

board-mounted sensors to reduce the size and cost of multi-camera systems. The cameras were

distributed around a plane perpendicular to the central nozzle axis, as revealed in Figure 8.2.

For this work, the Vision Components OV9281 board-mounted image sensor was implemented,

with the specifications of the sensor reported in Table 8.1. The OV9281 is a monochromatic

CMOS sensor with a wavelength sensitivity range of 400 - 700 nm. When externally triggering

the OV9281, the frame rate is limited to 60 fps. A critical feature of this sensor is the global

shutter, which means all pixels are exposed simultaneously for the entire sensor integration

time. The global shutter is important for flow diagnostics due to the flow’s motion and the

laser’s pulse duration, where a rolling shutter could cause artifacts.
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Figure 8.3: Image of a miniature camera system developed by AFDL with labeled components.

Table 8.1: Specifications of the Vision Components OV9281.

Parameter Value Parameter Value
Sensor Type CMOS Sensor Size 1/4”
Resolution 1280×800 Pixel Size 3.00 µm

Shutter Type Global ADC Resolution 8 or 10 bit
Max FPS 120 fps (60 fps in trigger mode) SNR 38 dB

Figure 8.3 presents an assembled camera system utilized for the experiments with labeled

components. Each camera sensor is powered and operated through a Raspberry Pi 4B. A Vision

Components repeater board is connected between the camera sensor and the Raspberry Pi 4B to

provide the ability to hardware trigger the sensor externally. The camera was held in a custom

3D printed mount that held both the camera module and the Raspberry Pi. The camera mount

provided three screw/spring actuators for fine adjustments of the viewing angle. To minimize

the amount of cables required to power and control the Raspberry Pi, a Power over Ethernet

(POE) HAT was included to allow communication and power through the Ethernet port. Not

including the objective lens and other optical components, the camera system costs less than

$300 per camera. The reduced cost and size of the imaging system allow for large-scale multi-

camera systems, unlike earlier work that use beamsplitters and fiber bundles to minimize the

number of camera sensors.

The Vision Components OV9281 board has the ability to use c-mount and s-mount lenses.

The c-mount lenses have more flexibility, including focus and aperture; however, that flexibility

comes at a cost. C-mount lenses are also larger in size, increasing the footprint of the system.
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Therefore, s-mount lenses were utilized for our cameras. When determining the lenses, there

are several considerations, including working distance, magnification (FOV), distortion, depth-

of-field, and wavelength range. Most of these optical design parameters are correlated, as

shown by Eqn. 6.2 and Eqn. 6.3.

For the jet experiment, the imaging lens for each camera was the Arducam (M1812ZH03S)

12 mm focal length M12 lens with a f/# of 2.8. The lens was selected to deliver a working

distance between 300 mm and 400 mm, a horizontal FOV greater than 75 mm, and a depth-

of-field (DOF) greater than 40 mm. Figure 8.4 presents the horizontal FOV and DOF for the

12 mm focal length Arducam lens for working distances of 300 - 400 mm. This result shows

that the lens provides adequate FOV; however, it should be noted that too large FOV should

be avoided because it reduces the spatial resolution of the QoI in the images. The DOF is not

a hard limitation but rather a measure of the gradual blurring with distance. The DOF can be

calculated using

DOF =
da · so
da − co

− da · so
da + co

, (8.1)

where co is the circle-of-confusion or the pixel size in object space, da is the aperture diameter,

and so is the object distance. For the DOF in Figure 8.4b, co was approximated as 3 pixels. This

assumption allows for up to 3 pixels worth of blur. Reducing da can increase the DOF but also

reduce the light throughput. It should be noted that the current system has reduced resolutions

due to blurring for regions away from the focal plane. However, these regions are different for

each camera.

The signal for the cameras and laser is generated in LabVIEW with the frame rate being set

by the frequency of the pulses. Figure 8.5 shows the communication connections for the camera

and laser. The LabVIEW signal is sent to a signal generator as the external trigger source. One

channel of the signal generator is then sent to the laser, while the other three are used to trigger

the cameras as indicated by the red connections. The delay between the laser and the cameras

is set through the signal generator to ensure the laser is illuminated during the exposure time

of each camera. The cameras are synchronized by sending the signal to the header pins of each
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(a) (b)

Figure 8.4: (a) Horizontal field of view and (b) depth-of-field for various working distances
with the 12 mm focal length lens paired with the OV9281 sensor.

repeater board (Figure 8.3). Since only three ports are available for the cameras, the signal

is split into six paths per signal generator port before connecting to each repeater board. A

secondary cable was needed to adapt the BNC cable to header pins of the repeater board. The

appropriate delay between the cameras and the laser signals was determined by filling the FOV

with smoke and systematically changing the delay until the laser illumination was captured

in the camera images. The cameras were controlled by a master computer through a network

switch. The network switch provides PoE and connection to all the cameras as indicated by

the black connection in Figure 8.5. The management of all the cameras is conducted through a

custom MATLAB graphical user interface on the master computer.

8.4 Volume Calibration Method

A critical step of tomographic reconstruction is accurately mapping the object volume domain

(3D) to the image space domain (2D). This mapping provides a projection function for the

imaging model of FluidNeRF, which is required for the inverse problem. The reconstruction

accuracy is closely coupled with the accuracy of the camera calibration method. There are sev-

eral camera calibration techniques and models that are employed in computer vision applica-

tions, where an extensive overview is covered by Hartley and Zisserman [223]. The complexity
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Figure 8.5: Schematic of the connections required for controlling the cameras and laser system.
The system is composed of a network switch, master computer, and signal generator. The black
wires indicate the Ethernet connections and red is 3.3V signal sent via BNC cables and header
pins. LabVIEW dictated the timing of the images and laser

of the models varies widely, with the more complex models being able to account for distor-

tions and other experimental aberrations that can occur. The most common imaging model is

the pinhole camera with a nonlinear distortion correction that accounts for non-optimal lenses

and mounting fixtures. Another adopted imaging model for tomography is the non-physical

polynomial function that directly relates object space points to image points, which is useful

when there are complex lens systems like for Plenoptic cameras [224]. Both of these methods

have similar performance with traditional cameras and lens configuration, when the cameras

can capture many features/points across both image and object space [1].

For our method, we employed a pinhole camera model with distortion because of the

ability to directly trace rays from image space pixels to object space. The pinhole model is one

of the simpler models, where the camera lens is represented as an infinitesimally small opening.

Since light can only pass through the pinhole hole, the light captured by the sensor originates

from the same location (pinhole). Thus, a ray tracing scheme can be generated with the rays

originating from the same point corresponding to the pinhole. The camera parameters are split

into two regions: i) “intrinsic” parameters that describe the image side of the pinhole and sensor

and ii) “extrinsic” parameters that specify the pose of the camera (i.e., the camera location and
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orientation in world coordinates). The intrinsic parameters are composed of the camera focal

length (fu, fv), the optical center (u0, v0), and the skew parameter (s). The focal length is the

distance from the pinhole to the sensor. The optical center describes the location where the

central axis of the pinhole aligns with the sensor and the skew parameter accounts for non-

perpendicular image axes. The intrinsic parameters are generally defined in pixel dimensions.

The extrinsic parameters are composed of a 3 × 3 rotation matrix (R) and a 3 × 1 translation

vector (t). The extrinsic parameters translate and rotate world coordinates into the camera

frame of reference. The intrinsic parameters can also be formed into a matrix (K) that translates

the relative world coordinates to the sensor. The intrinsic matrix is defined as

K =


fu s u0

0 fv v0

0 0 1

 (8.2)

The intrinsic and extrinsic matrices can be combined to form an overall camera matrix (P) as

shown in Eqn. 8.3

P = K[Rt]. (8.3)

The pinhole model does not consider a finite aperture or finite-sized optics, where these

lenses and adapters can distort the image. The most common approach for addressing distor-

tions is using a polynomial distortion model that incorporates radial and tangential distortions,

as proposed by Brown [225]. The polynomials are non-physical models that relate undistorted

pixel locations (u, v) to normalized image coordinates (udist, vist) for each distortion indepen-

dently. The radially distorted pixel locations are determined using

udist = u

(
1 +

3∑
d=1

kdr
2k

)
(8.4)

vdist = v

(
1 +

3∑
d=1

kdr
2k

)
, (8.5)

where kd are the radial distortion parameters and r2 = u2 + v2. The radial distortion for this

work is represented as a third-order polynomial but can be expanded as required. The tangential
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distortion is calculated from

udist = u+ [2 ∗ p1 ∗ u ∗ v + p2 ∗ (r2 + 2 ∗ u2)] (8.6)

vdist = v + [2 ∗ p1 ∗ u ∗ v + p2 ∗ (r2 + 2 ∗ v2)], (8.7)

where p1 and p2 are the tangential distortion coefficients.

The camera calibration process consists of solving for the unknown parameters of the

intrinsic and extrinsic matrices and the distortion coefficients using a set of known real-world

locations (X̃) that correspond to sensor positions (Ũ). The world points, X̃, can either be

absolute locations or relative to a calibration target. The feature locations of the calibration

target are determined in the images using dot or edge-finding algorithms. The target must

have well-characterized features/points that can be identified in an image. The method that is

used will determine the most appropriate target, including if every camera needs to view the

same target points. Solving Ũ = PX̃ with matrix manipulation is not possible due to each

pair of world and sensor points having an unknown and potentially unique scaling coefficient.

Therefore, several nonlinear optimization techniques have been employed to solve the unknown

parameters. For our method, we employ a two-step process using Zhang’s method [226] and

the Perspective-n-point (PnP) algorithm [227]. The two-step process helps relax the need for all

cameras to image the same points, which is essential for our configuration, where the camera

system is distributed around a wide arc.

For the first calibration step, we conduct Zhang’s method, which supplies the intrinsic

parameters of each camera. The technique calculates intrinsic parameters by capturing images

of a planar calibration plate at random orientations and positions. The calibration is based on a

target-specific coordinate system, where the z-component is assumed to be zero since the target

is planar. The x and y coordinate system is determined by the size and spacing of features on the

target plate. A homography matrix is formed to relate the planar target coordinates to the planar

image coordinates using points on the plate. The homography matrix is a simplified version

of the projection function (Eqn. 8.3, where z is assumed zero. A homography matrix must be

formed for each image captured of the calibration target. Each homography matrix provides
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a unique rotation matrix and translation vector. Since the intrinsic matrix does not change

between each image, the unknowns of the intrinsic matrix can be found for each homography

matrix. Distortion parameters can also be calculated from the different equations that can be

formed from each unique extrinsic matrix. An adequate number of images and target features

are required to achieve a good approximation of intrinsic and extrinsic properties. A more

in-depth review of Zhang’s method can be found in [1].

Since the extrinsic matrices are only relative to the target frame of reference, our method

acquires the intrinsic matrix and distortion parameters through Zhang’s method. Fortunately,

Zhang’s method has been widely used in the computer vision and tomography communities [1];

therefore, it is a widely available code through the OpenCV library. Our implementation uses

the camera calibration app through MATLAB. Before the experiments were conducted, we

captured 30-40 images of a checkerboard calibration plate independently of each camera. Our

checkerboard has a check size of 5 mm. Even with partial checkerboard detection built into

MATLAB, it is recommended to keep the checkerboard within the field of view of each camera

for the best results.

Now that we have the intrinsic parameters of each camera, the cameras must be deter-

mined in terms of global world coordinates. One way to determine each camera’s global pose

is to select a reference camera and then relate the other cameras to the camera using the pla-

nar calibration from Zhang’s method. However, doing this can cause increasing uncertainty,

primarily when some views cannot be directly related to the reference camera. Additionally,

cameras that capture the plate at harsh angles have higher uncertainty in determining feature

positions in the image. Therefore, we employ a cylindrical calibration target so that each view

can capture the target simultaneously, and each image will have features that are approximately

perpendicular to the camera. The unique global points on the calibration cylinder are specified

using a ChArUco pattern affixed to the cylinder as first demonstrated by Zhang [27]. ChArUco

combines a chessboard and an ArUco pattern, which is similar to a QR code. The ArUco pat-

tern provides the ability to uniquely identify each code and, thus, each check location. The

ChArUco check locations on the images are calculated using the Python implementation of
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Figure 8.6: The cylindrical ChArUco calibration target that was utilized to determine the ex-
trinsic calibration parameters with respect to the nozzle.

OpenCV. Once each camera captures the global points on the cylinder, the extrinsic param-

eters are independently approximated using the Perspective-N-Point (PNP) algorithm [227].

This algorithm is again readily available through OpenCV, where we utilized the MATLAB

implementation.

The cylindrical ChArUco calibration target placed over the nozzle is shown in Figure 8.6.

The cylinder had a diameter of 2.5 inches. Figure 8.7 presents the pattern that was wrapped

around the cylinder. The ChAruCo calibration target had a check size of 5 mm, a marker size

of 3 mm, and an ArUco dictionary of 5x5. For specifying the world coordinates, the top left

checkerboard point corresponded to x = 0 and y = 0, with the y-axis aligned with the center

of the cylinder. The x-z coordinates on the surface of the cylinder can be found using the

circumference of the cylinder. Our method averages 10 images of the calibration cylinder to
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Figure 8.7: The ChArUco target that was wrapped around the cylinder for calibration. The pat-
tern was generated using the website calib.io with the specified parameters below the ChArUco
pattern.

minimize the effects of noise. The central axis of the cylinder was roughly colocated with the

central axis of the nozzle.

8.5 Experimental procedures

Table 8.2 presents the combinations of nozzle diameter and fan settings that were used for dif-

ferent experimental runs. For each of these configurations, the system acquired 40 frames at

a frame rate of 60 Hz. This frame rate provides time-resolved images for the designed flow

speeds. The flow rates for the 1.5-inch nozzle with PWM settings of 45% and 60% produced

exit velocities (Reynolds numbers) of approximately 0.98 m/s (2427) and 1.3 m/s (3220), re-

spectively. The 1-inch nozzle with the PWM power set to 45% and 30%, produced exit veloci-

ties of roughly 2.2 m/s and 1.5 m/s, respectively. The Reynolds numbers for the 2.2 m/s and 1.5

m/s cases are 3630 and 2477, respectively. These were calculated assuming a linear response

to flow rate with PWM relative to the maximum flow rate provided by the fan manufacturer.

While these are higher than the targeted 0.25 m/s, the cameras were positioned such that the

bottom of the FOV was approximately 30 mm above the nozzle. Therefore, the bottom h/D

for the 1.5-inch and 1-inch diameter nozzles were roughly 0.79 and 1.18, respectively. Thus,
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the mean flow speeds decrease as the flow moves downstream of the nozzle. The FOV was

positioned to view the development of vortex structures in the shear layer of the jet. The mag-

nification at the focal plane of the cameras was approximately 0.033, producing a vertical FOV

of 73 mm. Thus, the cameras viewed up to an h/D of roughly 4.1 and 2.7 for the 1-inch and

1.5-inch nozzles, respectively. The FOV varies slightly with the position of each camera.

Nozzle Diameter Fan PWM Laser Current Frame Rate
1.5 inch 45% 20 A 60 Hz
1.5 inch 45% 19 A 60 Hz
1.5 inch 60% 19 A 60 Hz
1 inch 45% 19 A 60 Hz
1 inch 30% 19 A 60 Hz
1 inch 45% 20 A 60 Hz

Table 8.2: Experimental parameters used for smoke visualization of a free jet.

FluidNeRF was used to reconstruct the volumes, as provided in the next chapter, using

the experimental images captured of the jet. The default hyperparameters used for static Flu-

idNeRF reconstructions are shown in Table 8.3, unless noted otherwise. Each experimental

image undergoes background subtraction to remove dark current from the images. Then, the

images are undistorted, given the distortion parameters found during camera calibration. Dur-

ing the experiments, there was an angular intensity and polarization dependence on the laser

illumination. Therefore, the image intensities were balanced to have the same total intensity

for each image. Note that this could be accounted for by including view direction into the

FluidNeRF model similar to NeRF [6]. For the time-resolved FluidNeRF reconstructions, the

default hyperparameters are shown in Table 8.4. Only a few cases from the test matrix shown

in Table 8.2 are presented in the next chapter.

Table 8.3: Default hyperparameters of static FluidNeRF for processing the smoke experiments.

Parameter Value Parameter Value
Depth 8 Nc 64
Height 256 Nf 64
Lp 2 Npix/img 1024

Activation Swish
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Table 8.4: Default hyperparameters of TR-FluidNeRF for processing the smoke experiments.

Parameter Value Parameter Value
Depth 10 Nc 64
Height 256 Nf 64
Lp 2 Npix/img 1024
Lt 1 Activation Swish

8.6 Chapter Summary

This chapter covers the design and procedures used to conduct 3D flow visualization of a sub-

sonic flow from two different-sized nozzles. The flow was imaged using 18 different cameras,

where smoke was entrained in the flow and illuminated by a Nd:YLF laser. These experiments

were designed to demonstrate the capabilities of FluidNeRF for experimental datasets where

image noise and imperfect camera calibrations are present. These experiments represent volu-

metric flow measurements performed using passive scalars, such as laser-induced fluorescence.

The chapter started with covering the design of the experimental apparatus, flow visualization

technique, and imaging system. The laser that was used to illuminate the smoke was hardware

synced with the cameras to have the laser fired during the exposure time of all the cameras. The

camera system was developed in-house using board-mounted cameras paired with Raspberry

Pi 4Bs to control the camera. After covering the experimental setup, the volumetric calibration

techniques were introduced. The calibration technique utilized a two-step process. The first

step calculates the intrinsic parameters of each camera independently using Zhang’s method,

and then the extrinsic world pose is calculated for each camera using the Perspective-n-Point

method. To have global coordinates for the extrinsic world pose, a cylinder with a ChArUco

calibration pattern was employed to ensure each camera could view unique features in world

coordinates. Finally, we discuss the experimental procedures conducted. The following chapter

covers the volumetric reconstruction results of the experiments laid out in this chapter.
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Chapter 9

Experimental Results and Discussion

Multiple line-of-sight images of a smoke-filled free jet were captured as discussed in Chapter 8.

While the synthetic results revealed the advantages of FluidNeRF, it is vital to demonstrate the

method with real-world experimental images. Real projections encompass noise and camera

calibration uncertainty that are hard to fully model with synthetic generation. Therefore, it is

necessary to evaluate the method for experimental datasets. One way to examine the quality

of the reconstruction is to compare rendered to captured views that were not included during

reconstruction, which is referred to as the validation set in the machine learning community.

The captured images provide a ground truth for the volumetric reconstructions. However, it

should be noted that several solutions can produce the same LoS image due to the ill-posed

nature of the problem.

This chapter explores the reconstruction quality of static and time-resolved FluidNeRF

for flow visualization of a passive scalar field in a free jet. First, the reconstructions will be

qualitatively analyzed for the two different nozzle sizes for the static FluidNeRF method. Then,

the effect of hyperparameters on reconstruction quality will be evaluated by using images that

were not included in the reconstruction as the ground truth. We will also compare the TR-

FluidNeRF method with the static FluidNeRF method, where we will additionally assess how

the number of cameras affects reconstruction quality in each approach. Finally, the number of

time steps included in thet time-resolved reconstruction will be evaluated. These results should

provide a baseline using static and TR-FluidNeRF for experimental datasets.
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(a)
(b)

Figure 9.1: (a) Experimental image of the jet filled with smoke originating from the 1-inch
diameter nozzle. The static FluidNeRF reconstruction is demonstrated by the (b) central x-y
slice. The reconstruction values were normalized by the maximum intensity in the volume.
Note that the captured image was flipped to match the axis of the x-y slice.

(a)
(b)

Figure 9.2: (a) Experimental image of the smoke filled jet originating from the 1.5-inch di-
ameter. The static FluidNeRF reconstruction is presented by the (b) central x-y slice. The
reconstruction values were normalized by the maximum intensity in the volume. Note that the
captured image was flipped to match the axis of the x-y slice.

9.1 Static FluidNeRF

An example of an experimental image of the smoke-filled flow from a 1-inch and 1.5-inch di-

ameter nozzle is presented in Figure 9.1a and Figure 9.2a, respectively. The images effectively

capture the region of the jet flow where vortex roll-up occurs due to the shear layer. Within

the vortical structures, layers of smoke swirls are discernible, each separated by lower-density

regions of only a few pixels. Particularly noticeable are the higher density and thin lines of
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(a) (b)

(c)

Figure 9.3: (a-b) Isosurface of the smoke-filled 1-inch diameter jet at two different views with
a contour value of 0.2, and (c) x-z slices at different depths along the central nozzle axis. The
reconstructed values were normalized by the maximum intensity in the volume.

smoke in the core, which contribute to high-intensity vertical streaks in the jet, which might

pose challenges in reconstruction. The slice through the volume Given the complexities of the

flow at this snapshot, depicted in Figure 9.1a for the 1-inch diameter case, this frame will serve

as a focal point for evaluating the hyperparameters of static FluidNeRF.

The central x-y slice and isosurface of the 1-inch diameter nozzle volume reconstructed

by static FluidNeRF with an activation function of ReLU and Lp = 0 are displayed in Fig-

ure 9.1. The overall structure of the reconstructed volume matches the perspective image, with

multiple vortices forming at the shear layer. Note that the features depicted in the projection

are accumulated along the LoS; therefore, comparing small details between the projection and
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(a)
(b)

(c)

Figure 9.4: (a-b) Isosurface of the smoke-filled 1.5-inch diameter jet at two different views with
a contour value of 0.2, and (c) x-z slices at different depths along the central nozzle axis. The
reconstructed values were normalized by the maximum intensity in the volume.

a slice through the volume is not practical. A slice through the volume that aligns with the pro-

jection indicates that the general shape and features are present. Figure 9.2 presents a central

x-y slice of the reconstructed volume from the 1.5-inch diameter. The general structure of the

jet matches the perspective.

Figure 9.3 and 9.4 presents the views of an isosurface and x-z slices of the volume for

the 1-inch and 1.5-inch nozzles, respectively. The diameter of the isosurface and x-y slice at

the base of the 1-inch nozzle reconstruction was slightly smaller than the exit diameter of the

nozzle, where the jet is circular at the bottom and expands in the x-direction more than the

z-direction. Alternatively, the x-y slice of 1.5-inch jet volume has a slightly wider diameter

than the nozzle exit. The x-z slices of the 1.5-inch diameter jet in Figure 9.4c show a similar
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deformation of the circular jet structure as the flow moves away from the nozzle as was noted

for the 1-inch diameter nozzle. The experimental images of the 1.5-inch diameter nozzle were

closer to fully developed flow as compared to the 1-inch diameter nozzle, where the initial

vortex is transitioning the FOV.

The higher intensity vertical streaks in the jet are captured in the reconstruction, as labeled

in Figure 9.1a. The higher intensity features are best presented in the x-z slices for both nozzle

sizes (Figure 9.3c & Figure 9.4c). These features do not appear as narrow as presented in

the perspective images, where some features in the projection are a couple of pixels in width.

Although, some of the high-intensity streaks could be generated by overlapping features along

the LoS. Static FluidNeRF lacks resolution in the high-intensity swirl of the vortical structures

formed in the shear layer for the 1-inch diameter nozzle as displayed in Figure 9.1b. Overall,

static FluidNeRF shows impressive results; however, the vortices and other structures appear

to be smoothed out compared to the perspective image.

As provided from Chapter 7, the hyperparameters of the network are critical to the recon-

struction quality of FluidNeRF. The following subsection covers the investigation of hyperpa-

rameters on the reconstruction quality, where noise and camera model uncertainty could cause

instabilities. Our investigation will cover positional encoding and activation functions.

9.1.1 Hyperparameters: Positional Encoding and Activation

In both reconstructions shown above (Figure 9.1 and Figure 9.2), the static FluidNeRF with

an activation function of ReLU and Lp = 0 appear to have an overly smooth reconstruction,

which is expected given the results from Chapter 7. Increasing Lp should improve the high-

frequency content in the reconstructed volume. For the sake of consistency, the following

results of this subsection will utilize the 1-inch diameter images for the instant in time as shown

by Figure 9.1a. The hyperparameters of interest are position encoding (Lp) and the activation

function of the network. Both of these parameters can help increase the complexity of the

neural network volume approximation. The synthetic experiments proved that FluidNeRF is

more robust to noise than an ART tomography method. However, the projections from the

smoke-filled jet also have camera model uncertainty coupled with measurement noise. Thus,
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(a) (b)

Figure 9.5: (a) NRMSE and (b) SSIM of a rendered perspective relative a captured perspective
for the 1 inch diameter nozzle experiments as a function of iteration using different Lp. The
activation function was ReLU. The perspective utilized for this comparison was not included
in the reconstruction set, therefore, only 17 cameras were utilized for these results.

the optimal parameters found in the synthetic section might be suboptimal for different flow

regimes and experimental data.

Figure 9.5 presents the accuracy in terms of NRMSE and SSIM of a projection as a func-

tion of iteration, where the projection was not included in the set used for reconstruction. The

reconstruction process employed five distinct positional encoding values (Lp = 0, 2, 4, 6, 8),

ReLU activation, and 17 camera perspectives. Note that Lp = 8 was found to be the opti-

mal value for the synthetic results. In each case, the accuracy follows a similar trend during

training, converging to similar values. NRMSE converged much quicker to the final value than

SSIM. The increased convergence is caused by FluidNeRF employing MSE as the loss func-

tion; therefore, the method is trained to minimize MSE. Alternatively, SSIM is still increasing,

indicating it was not fully converged when the reconstruction was terminated. Positional en-

coding does reduce the fluctuations that occur during training, as the higher fluctuations are

present for Lp = 0. The fluctuations in loss caused the case with Lp = 0 to require more it-

erations before converging compared to the reconstructions with positional encoding. Overall,

there is little difference between the positional encoding values and the projection accuracy.

Both accuracy metrics are evaluated on a LoS projection of the volume. While these met-

rics provide valuable quantitative insights, they do not fully capture the influence of positional
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encoding on the volumetric reconstruction. Hence, a qualitative analysis is necessary to pro-

vide a more comprehensive understanding. This analysis involves a cross-sectional view of the

reconstruction volume for Lp = 0, Lp = 4, and Lp = 8, as depicted in Figure 9.6. With-

out positional encoding, FluidNeRF produced a qualitatively smoother solution with minimal

artifacts. However, it loses the finer details of the jet, including in the swirl of the vortices.

Increasing positional encoding does improve the ability of FluidNeRF to capture the more de-

tailed features in the volume, but high-frequency artifacts become apparent. The uncertainty

of a ray projection from each image model is the most likely cause of the artifacts. In the case

with Lp = 0, the impact of uncertainty and noise is smoothed out. Increasing positional en-

coding causes artifacts to appear, where positional encoding is added to help capture the higher

frequency information in the volume. Note that these artifacts could arise due to the perspec-

tives capturing the particulate nature of the smoke in the flow (Figure 9.1a), where FluidNeRF

is trying to resolve this feature. In experimental data, a balance arises between minimizing

reconstruction artifacts and accurately capturing the higher spatial frequency details.

Figure 9.6 shows a qualitative comparison between ReLU and Swish at three different Lp

(0, 4, and 8). With Lp = 0, The swish activation appears to better resolve the features in the

flow, including the vortex structures, with the edges being more defined. The higher-density

smoke streams in the jet’s core are also better resolved with the swish network. Like ReLU, the

swish network produces a smoother solution without positional encoding, but the finer details

seen in Figure 9.1a are smoothed out. As Lp is increased, both methods have high-frequency

artifacts that start to appear and worsen with higher positional encoding. The swish activation

network notably enhances the qualitative performance compared to ReLU.

Figure 9.7 shows the quantitative analysis between ReLU and swish for the different lev-

els of Lp. The results from NRMSE do not show a clear separation between the two activation

functions. From NRMSE, ReLU and swish have an optimal Lp of 4 and 2, respectively. How-

ever, the variation in NRMSE for both cases suggests that both methods converge to similar

reprojection accuracy but different volumes (Figure 9.6). SSIM has a more definitive conclu-

sion, with swish outperforming ReLU for every Lp. SSIM indicates that the best reprojection

of the volume is swish without positional encoding. This conclusion is most likely due to SSIM
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Figure 9.6: A x-y slice at z = 0 of the 1 inch diameter nozzle volume reconstructed using static
FluidNeRF with an activation function of ReLU (left column) and Swish (right column) at three
different Lp. Note the reconstructions were performed with the same 17 camera views.

151



(a) (b)

Figure 9.7: (a) NRMSE and (b) SSIM of a rendered perspective relative a captured perspective
for the 1 inch diameter nozzle experiments as a function of positional encoding. Each line
corresponds to a different activation function, ReLU or Swish.

being a function of variation (Eqn.6.19), where positional encoding generates high-frequency

artifacts not present in the captured images. Similar to other tomography methods, regular-

ization can be added to limit the non-physical artifacts. Regularization can be included in

FluidNeRF through the loss function. One potential option is SSIM, as it penalizes variation

differences between the captured and rendered images. Swish with Lp = 2 was selected to

process the following results because the swish function outperforms ReLU. The authors de-

cided that a low value of positional encoding was desired to capture the smaller details without

causing excessive high-frequency artifacts.

9.1.2 Number of cameras

The quantity of projections used for reconstruction is also essential for experimental setups,

where large camera arrays can be costly or impractical due to limited optical access. Therefore,

this section evaluates the reconstruction quality using various numbers of cameras. Figure 9.8

shows the convergence rate of a projection that was not included in the reconstruction sets.

The projection subsets were selected to evenly distribute the camera without including the

same projection for comparison. Although, Mohri et. al. [10] found that unequal spacing

had a limited effect on the reconstruction quality. Since each iteration considers rays from all

cameras, the cases with a higher number of cameras had increased convergence, as indicated
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(a) (b)

Figure 9.8: (a) NRMSE and (b) SSIM of a rendered perspective relative a captured perspective
for the 1 inch diameter nozzle experiments as a function of iteration for different subsets of
cameras. The perspective utilized for this comparison was not included in the reconstruction
projection set.

(a) (b)

Figure 9.9: (a) NRMSE and (b) SSIM of a rendered perspective relative a captured perspective
for the 1 inch diameter nozzle experiments for different subsets of cameras using ReLU and
Swish activation functions. Swish and ReLU used Lp = 2 and Lp = 0, respectively. The
perspective utilized for this comparison was not included in the reconstruction projection sets.

by the length of each trace. With four cameras, the iterations approached a minimum with

NRMSE before slowly diverging to higher values. SSIM quickly approached the final value

and then leveled but still slightly increased. SSIM increasing indicates the solution was still

approaching an optimal SSIM for the four-camera case. The 8, 12, and 17 camera solutions

followed a similar trend to each other and approached a comparable NRMSE value. SSIM

offers a slightly different trend, with the 8-camera case converging to a slightly lower value
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Figure 9.10: A x-y slice at z = 0 of the 1 inch diameter nozzle volume reconstructed using static
FluidNeRF using for four subsets of cameras.

than 12 and 17. Overall, increasing the number of cameras improves the solution but is limited

compared to the synthetic case.

The final solution accuracy metrics as a function of numbers of cameras is displayed in

Figure 9.9b. The reconstructions were conducted with both ReLU and swish to examine if there

is any difference between the two activation functions, where both functions exhibit improved

NRMSE values up to 12 cameras, followed by an increase for the 17 cameras case, contrary to

expectations. One possible explanation for the NRMSE increase could be caused by including

a camera that has a higher imaging model uncertainty. Unlike NRMSE, SSIM has a monotonic

increase when cameras are added to the reconstruction set with diminishing returns. These

are similar trends as found in Section 7; however, the synthetic results showed the accuracy

flattening after 20-30 cameras. The trend for the experimental image set shows diminishing
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returns at lower quantities of projections due to the addition of image model uncertainty. Future

synthetic results should examine the imaging models as a source of uncertainty.

Figure 9.10 displays an x-y cross-section of the volume reconstructed by FluidNeRF using

4, 8, 12, and 17 cameras. While the four-camera case captures the jet’s general shape, the

flow’s features could still be further resolved. Additionally, the higher intensity regions are not

defined compared to the other camera counts. The 8-camera reconstruction has more defined

vortex structures than the 4-camera case, and the higher-intensity regions are becoming more

defined. Increasing the number of cameras further improves the reconstruction. The 17-camera

case has the most defined vortex structures, and the vertical streaks in the core flow are more

defined. Qualitatively, the improvements decrease with the added number of cameras, with

the best solution being the 17-camera case. These qualitative results match the SSIM metric.

Therefore, SSIM is a viable metric when comparing reprojection to capture images to examine

tomography methods.

9.2 Time-Resolved FluidNeRF

The following section covers the results of TR-FluidNeRF for the experimental visualization of

the jet flow. Figure 9.11 presents a LoS perspective for five consecutive time steps of the smoke-

filled jet for the 1-inch diameter nozzle. The FOV of the jet flow captures vortex roll-up in the

shear layer of the flow as the jet transitions to turbulence. The authors would like to point out the

collision of two vortices in the shear layer in the central frame, which leads to the destruction of

the two vortices in later frames. The slices from the volumes generated from static FluidNeRF

and TR-FluidNeRF are provided next to the representative perspective in Figure 9.11. Lp is

consistent between both cases, while TR-FluidNeRF employs Lt = 1. Similar to the results

discussed in Section 9.1, the static FluidNeRF method captures the general shape and the vortex

structures in the shear layer; however, some artifacts are present. TR-FluidNeRF’s results are

very similar to the static reconstruction, with the vortices’ general structure and finer details

preserved. Additionally, the artifacts in static FluidNeRF reconstructions are reduced for TR-

FluidNeRF. Both methods captured the collision of the vortex pair and later the combining

of the vortex pair. Overall, the qualitative analysis shows that TR-FluidNeRF has improved
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Figure 9.11: Five consecutive perspectives in time (left) that were used to reconstructed using
static FluidNeRF (middle) and TR-FluidNeRF (right). Both reconstructions were conducted
with 17 cameras.
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(a) (b)

Figure 9.12: (a) NRMSE and (b) SSIM of a rendered perspective relative a captured perspective
for both static and time-resolved FluidNeRF. Both methods used 17 cameras for each frame.

performance over static FluidNeRF regarding the non-physical artifacts caused by the imaging

model uncertainty. The added time dimension of the model helps constrain the reconstruction.

A quantifiable comparison between static and time-resolved FluidNeRF is offered in Fig-

ure 9.15. The accuracy metrics are calculated for each rendered perspective from static and

TR-FluidNeRF for the images shown in Figure 9.11. For both metrics, there are minor differ-

ences between the static and TR-FluidNeRF, with static showing slightly improved NRMSE

and SSIM for the last two frames. Both methods converged to similar projection accuracy, but

the reconstructed volumes had some differences (Figure 9.11). According to these results, the

included time information does not reduce the method’s performance.

TR-FluidNeRF helps compress the reconstructions further since the reconstructions for

the five-time steps are integrated into the neural network-trained parameters. TR-FluidNeRF

requires roughly double the time to converge for the five-time step data set as compared to

static FluidNeRF for a single frame; however, TR-FluidNeRF converges much faster than static

FluidNeRF given reconstruction time for each time step. Additionally, the network size is

approximately the same, requiring the equivalent storage cost of five frames compared to a

single frame for static FluidNeRF. Therefore, TR-FluidNeRF demands less computational time

and storage costs than static FluidNeRF while producing similar projection accuracy.

Figure 9.13 presents the accuracy metrics of rendered perspectives from TR-FluidNeRF

and static FluidNeRF as a function of the number of projections. TR-FluidNeRF outperformed
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(a) (b)

Figure 9.13: (a) NRMSE and (b) SSIM of a rendered perspective relative to a captured per-
spective of the central frame for the 1 inch diameter nozzle experiments for different number
of cameras using TR-FluidNeRF and static FluidNeRF.

static FluidNeRF for each subset of perspectives. Both have the expected trend of a mono-

tonic increase in accuracy with diminishing returns. The improved performance for all cases

indicates that the addition of time in TR-FluidNeRF helps constrain the tomography problem,

leading to fewer artifacts from the measurement uncertainty.

A qualitative comparison between the number of camera cases is illustrated in Figure 9.14.

The qualitative analysis of the x-y slices follows the similar trend captured by Figure 9.13. The

four camera case has the general shape of the jet, but the vortex structures are degraded and

the higher intensity streaks in the core are lost. The higher intensity streaks in the core do

not appear until the 12 cameras case. Adding more cameras enhances the apparent resolution

and sharpens the details of the thin features close to the central core, which stem from the top

vortex structure. Overall, the quality of the reconstructions improves with increasing numbers

of cameras but with diminishing returns. This effect was also discovered in the synthetic results

and static experimental results.

The TR-FluidNeRF can incorporate many time steps into the time-resolved reconstruction

method. However, extending the duration over which the neural network must adapt raises

the complexity of the continuous function approximation. Therefore, there will be a limit on

the number of time steps that TR-FluidNeRF can consider before the reconstruction quality
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Figure 9.14: A central x-y slice of the TR-FluidNeRF reconstructed volume using (a) 4 cam-
eras, (b) 8 cameras, (c) 12 cameras, and (d) 17 cameras.

diminishes for a given network structure. Figure 9.15 displays the projection metrics for ren-

dered perspectives for TR-FluidNeRF that was trained using 3-, 5-, and 7-time steps of the

time-resolved experimental images. Each set of frames was centered around the same frame

(frame 17). For the three variations, there are limited differences, as indicated by NRMSE,

with a general trend to lower accuracy values with an increasing number of steps. SSIM shows

a similar trend with a more significant jump to a less accurate solution for the 7-time step case.

Although, the variation is still minimal. Overall, for the limited investigation provided, the

number of time steps has a negligible effect on the reprojection quality for the utilized network

structure and the complexity of the flow. A more robust examination expanding to datasets with

many more time steps will help understand this limitation. However, this will depend on the

measurement uncertainty, flow properties, and NN framework.
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(a) (b)

Figure 9.15: (a) NRMSE and (b) SSIM of a rendered perspective relative a captured perspective
of the central time step as a function of number of time steps included in the TR-FluidNeRF
reconstruction. Each reconstruction had the same central frame.

9.3 Chapter Summary

The previous chapter covers the results of the 3D reconstructions of the experimental jet vi-

sualization using FluidNeRF. Overall, FluidNeRF demonstrated impressive reconstructions of

the scalar field measurements, where the method was able to distinguish the general shape,

structure, and some minor details of the jet flow. This demonstration is a crucial verification of

FluidNeRF for experimental measurements, as the previous results utilized synthetic datasets.

The results comprised qualitative and quantitative analyses, with the quantitative analysis us-

ing a projection not included in the reconstruction image set. The first portion of this chapter

investigated the effect of positional encoding, activation function, and number of cameras on

the static FluidNeRF reconstruction. General conclusions from these results are provided in the

following list:

1. Positional encoding had a minimal effect on the accuracy of volume reprojections com-

pared to the captured projections. However, the qualitative analysis showed that the

reconstructions using various Lp produced different volumes. There was a trade-off be-

tween non-physical reconstruction artifacts and resolving the finer details of the volume,

where lower values of Lp produced smoother volumes but lacked the finer attributes of

the jet.
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2. The neural network’s activation function proved important to the reconstruction quality.

We investigated the swish and ReLU activation functions of the network. Qualitatively,

swish produced more distinct edges of the jet structure and slightly reduced the artifacts

caused by increasing Lp. Swish yielded higher values of SSIM than ReLU. Therefore,

swish was chosen as the default function for the rest of the experimental results.

3. The static FluidNeRF quality was improved by increasing the number of cameras em-

ployed for reconstruction. However, increasing the number of cameras produced di-

minishing returns, where the quantitative analysis demonstrated the accuracy plateauing

around 17 cameras for our dataset. This was slightly lower than what was determined for

the synthetic results.

In addition to evaluating static FluidNeRF, a study of TR-FluidNeRF was conducted. The

synthetic results demonstrated that the added time component increases the complexity of the

approximated volume but also provides a continuous approximation in spatial and temporal

coordinates that allows the method to relate perspectives in time. TR-Fluid was qualitatively

and quantitatively compared to static FluidNeRF for a given network structure. Additionally,

TR-FluidNeRF was utilized to reconstruct the experimental data with 3, 5, and 7-time steps.

The following list includes the general conclusions from these results:

1. Adding time to the reconstruction through TR-FluidNeRF helped dampen the effect of

artifacts that were found in the static FluidNeRF volume. TR-FluidNeRF yielded similar

quantitative results compared to static while improving the appearance of the reconstruc-

tion while minimizing the artifacts. The time component helped implicitly constrain the

tomography problem.

2. The number of time steps included in the reconstruction had minimal effect on the ren-

dered perspective when moving from three-time steps to seven. However, TR-FluidNeRF

is expected to get diminishing results as time-steps are increased for a given network ar-

chitecture.
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Chapter 10

Conclusions & Future Work

10.1 Conclusions

This work introduces a novel machine learning tomography technique to the flow diagnostic

community, building upon the NeRF concept. The underlying idea of neural implicit repre-

sentations is the representation of a volume with a continuous function of spatial and temporal

coordinates using a neural network. The tomography method developed in this work, Fluid-

NeRF, operates similarly to traditional tomography methods. The volume approximation is

updated using the loss between captured and predicted projections, where the predicted projec-

tion is rendered using an emission-based image model. The novelty of FluidNeRF lies in its

use of a neural implicit representation, a concept that is new in the 3D flow diagnostic com-

munity. This work evaluates FluidNeRF against a traditional ART-based tomography method,

analyzing the effect of hyperparameters and optical layout on its reconstruction quality using

both synthetic and real experimental volumes. The major conclusions from this work are:

1. A neural implicit representation is a viable technique to solve the inverse tomography

problem for flow diagnostics.

2. FluidNeRF exhibits comparable or superior accuracy compared to traditional tomogra-

phy methods.

3. FluidNeRF had increased resiliency to image noise as compared to traditional techniques.
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4. Our investigation illustrates the scalability advantage of FluidNeRF over traditional to-

mography methods due to the gridless volume approximation, where the neural volume

approximation improves data compression.

5. Our investigation illustrates that TR-FluidNeRF can reconstruct multiple time-resolved

frames with a single network, reducing the computational expense and producing similar

accuracy as compared to static FluidNeRF.

6. TR-FluidNeRF minimizes measurement uncertainty and noise for experimental data by

constraining the problem with time.

The following will discuss the conclusions from this work and provide insight into the future

avenues needed for improving the method.

Before the initiation of this work, the neural implicit representation of a volume was a

relatively new concept employed by the PINN and computer vision communities. However,

more investigations are needed to understand the limitations of neural implicit representations

for flow field tomography problems. This work provides significant insight into the potential

of machine learning to solve tomography problems for emission-based flow diagnostics using

a neural implicit representation and represents an important demonstration of this capability.

The tomography problem is ill-posed, so the best way to demonstrate its accuracy was by

comparing the reconstruction to a ground truth with a synthetic dataset. It is important to

note that FluidNeRF can be employed with different camera configurations and quantities,

making it a viable technique for flow tomography in various applications with different optical

access. This work concludes that machine learning techniques, similar to FluidNeRF, hold

great potential for tomographic flow measurements.

Another crucial aspect of this research was comparing the machine learning method to a

traditional tomographic technique adapted to flow diagnostics. As demonstrated in the litera-

ture review, ART-based methods are the most commonly used techniques for flow diagnostics.

FluidNeRF produced reconstruction quality similar to or superior to ASART, where both meth-

ods used the same projections. This comparison is essential as it reassures the audience about
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the validity and reliability of the method. Even with other advantages of neural implicit repre-

sentation tomography methods, a new tomography method must produce comparable accuracy

to current methods to be considered a viable solution for flow tomography. A qualitative and

quantitative comparison was conducted between FluidNeRF and ASART, where FluidNeRF

captured the edges of the laminar flow region better than ASART and produced similar results

in regions with high spatial frequencies. FluidNeRF had significant improvements in accuracy

as the number of cameras increased compared to ASART. The accuracy improvement could be

related to the continuous function approximation, which does not inherently limit the topology

of the reconstruction in contrast to the discretized nature of traditional techniques. Therefore,

the volume approximation can improve with an increased number of projections without ne-

cessitating a more dense grid.

In addition to the increase in accuracy, this work evaluated the effect of image noise on

the reconstruction accuracy for both FluidNeRF and ASART. FluidNeRF was more robust to

image noise than the ART-based technique. The accuracy of FluidNeRF using noisy images

was greater than ASART using noiseless images. This is an important conclusion because flow

measurements will have sources of noise; therefore, having higher resiliency to noise makes

the method more applicable to real flow measurements.

The neural implicit representation of FluidNeRF provides a framework to extend to larger

volumes of interest. Image sensors are rapidly improving to increase the resolution of projec-

tions, allowing the ability to increase the volume resolution and size. FluidNeRF will scale

better than traditional voxel-based methods because those methods have an inherent expan-

sion in memory and storage requirements as the number of voxels increases. Neural implicit

representations do not have the same scaling since the storage requirements are related to the

weights and basis of the neural network, which require approximately three orders of mag-

nitude less memory costs. Therefore, FluidNeRF provides a more computationally memory-

efficient method to scale to more substantial problems. Essentially, FluidNeRF reconstructs

to the highest possible resolution that can be supported for the given camera layout, imag-

ing model, perspectives resolution, and network parameters. The current feed-forward neural

network design using back-propagation has some practical limitations, including vanishing or

164



exploding gradients, inactive nodes, hardware limitations, and training time. Deeper networks

require more sophisticated optimization algorithms to achieve good performance. Addition-

ally, batch sizes must be sufficient to capture the general trends in the volume, where larger

problems will require larger batch sizes. The current affordable GPU hardware has memory

limitations that limit the batch size. However, these neural network approaches stand to benefit

from the rapid advances in GPU technology. Further investigation is needed to understand the

relationship between the scale of the flow diagnostic problem and the network framework and

batch size.

The machine learning-based method was extended to show that the technique can produce

a spatial-temporal approximation of the volume using time-resolved projections. Traditional to-

mography methods do not utilize temporal information for reconstruction. While adding time

increases our method’s complexity, time information can also constrain the problem, similar

to increasing the number of cameras. For the perfect imaging model of the synthetic experi-

ments, time-resolved FluidNeRF produced higher reconstruction quality of static FluidNeRF,

where the limitation was the neural network approximation. TR-FluidNeRF had further im-

provements by using the swish activation function, where the network sizes between static and

time-resolved where approximately the same. Adding time to the model further reduces the

memory costs as multiple reconstructions in time are stored by one network. TR-FluidNeRF is

a valid technique for creating a spatial-temporal approximation for flow tomography measure-

ments.

Adding time to the neural implicit representation tomography algorithm creates an addi-

tional constraint to improve the reconstruction quality, especially for real experiments. While

TR-FluidNeRF does not explicitly impose a new constraint, the method approximates a contin-

uous spatial-temporal function of the volume that requires the measurements to be consistent in

time. Therefore, non-physical artifacts or noise that are developed in a reconstruction at a given

time will be minimized across all time steps since a continuous function must approximate the

volume. The reduction in artifacts due to the addition in time was demonstrated in the com-

parison between static and TR-FluidNeRF for the smoke-filled flow experiments. Therefore,

TR-FluidNeRF is recommended for time-resolved experiments.
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10.2 Future Work

This work has demonstrated FluidNeRF for tomography and provided an initial investigation

of the neural implicit flow representation method for flow diagnostics. Additional studies of

neural implicit representation methods are still required to understand the limitations of this

model. Additionally, there are areas for improving the current FluidNeRF technique. This

section will cover the suggestions for future work.

The neural implicit representation does not have the inherent limitation on volume resolu-

tion like discretized methods. However, the volume approximation still possesses limitations.

The volume approximation is also a function of the spatial frequencies present in the volume,

which will depend on the flow of interest. An analysis of a neural network’s expressivity of a

volume does not have to include the inverse tomography problem but rather direct training us-

ing a known volume. This investigation should consider encoding, network size, and network

structure in terms of the accuracy of the representation. Pan et. al [54] conducted a similar

analysis for PINNs of flow, showing that the network structure and shape are essential to the

volume approximation. While these explore the expressivity of a neural network for direct

training, the tomography problem will only be able to approach the accuracy of what is capable

with direct training.

Other network-related parameters could improve the method. One of these parameters is

the network architecture, where the current method uses a simple feed-forward network. In

the PINN field, the neural implicit flow architecture demonstrated improved results [54] using

a shape and parameter network structure to approximate the flow field. The recurrent neural

network is another network style that has been used for temporal data. Other than network

structure, activation and loss functions are other parameters that can improve the ability of the

network to resolve the volume. For the work conducted in this dissertation, only two com-

mon activation functions were investigated; however, there are other functions that have been

demonstrated to improve results in recent literature. The loss function is the metric that is used

to train the network; therefore, other loss functions should be analyzed to determine the most
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Figure 10.1: Schematic of a conceptual physics-informed FluidNeRF algorithm for scalar-field
flow diagnostics.

appropriate functions to improve the machine learning methods’ ability to learn from the pro-

jections. Chu et. al. [7] demonstrated that additional loss functions can improve the training

rate and accuracy.

The results showed the nature of the ill-posed, inverse problem, where infinite solutions

exist for a given set of projections. Therefore, “prior” information must be enforced during

the reconstruction to constrain the problem further to produce more realistic reconstructions.

The imaging model is one portion of the algorithm that can be incorporated to make it more

realistic. The current method utilized a pinhole ray model with infinitesimally thin rays, which

was chosen due to its simplicity. However, infinitesimally thin rays are unrealistic as pixels

and imaging optics have a finite size that are best approximated using point spread functions.

One approach of interest would be the work by [132, 133] that improved the imaging model

by accounting for a ray’s finite size, where the ray is represented as a conical frustum in object

space.

167



Additionally, the method can incorporate physics-based constraints through governing

equations as demonstrated in Figure 10.1. This physics-informed framework reconstructs the

scalar field emissions, similar to this dissertation, but it also implicitly predicts flow parame-

ters, including velocity and pressure. Therefore, scalar field LoS measurements can directly i)

calculate the velocity field in contrast to particles employed in PIV and ii) estimate the pressure

gradients in the flow. The a prior information that links the flow parameters to the passive

scalar reconstruction is the optical flow or advection-diffusion equation, where the Navier-

Stokes equations constrain the flow parameters as demonstrated in previous PINN work [9, 52].

The inclusions of physics-based constraints do not limit the predictions to velocity and pres-

sure but can also provide other estimates, including density, spectral intensities, temperature,

and absorption in the volume. These flow parameters would require governing equations that

relate those parameters to LoS measurements or additional measurements to be included in the

method. The physics-informed model provides a unified framework to link multiple measure-

ments together using governing equations. Overall, the current technique is adaptable and al-

lows these new constraints and models to be incorporated, where the physics-informed method

is poised to profit from the rapid advances of the PINN community.

168



References

[1] S. J. Grauer, K. Mohri, T. Yu, H. Liu, and W. Cai, “Volumetric emission tomography for

combustion processes,” Progress in Energy and Combustion Science, vol. 94, p. 101024,

2023.

[2] J. Huang, H. Liu, J. Dai, and W. Cai, “Reconstruction for limited-data nonlinear to-

mographic absorption spectroscopy via deep learning,” Journal of Quantitative Spec-

troscopy and Radiative Transfer, vol. 218, p. 187–193, 2018.

[3] J. Huang, H. Liu, Q. Wang, and W. Cai, “Limited-projection volumetric tomography for

time-resolved turbulent combustion diagnostics via deep learning,” Aerospace Science

and Technology, vol. 106, p. 106123, 2020.

[4] T. Ren, H. Li, M. F. Modest, and C. Zhao, “Machine learning applied to the retrieval

of three-dimensional scalar fields of laminar flames from hyperspectral measurements,”

Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 279, p. 108047, 2022.

[5] E. Tretschk, A. Tewari, V. Golyanik, M. Zollhofer, C. Lassner, and C. Theobalt, “Non-

rigid neural radiance fields: Reconstruction and novel view synthesis of a dynamic scene

from monocular video,” 2021 IEEE/CVF International Conference on Computer Vision

(ICCV), 2021.

[6] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng,

“Nerf: Representing scenes as neural radiance fields for view synthesis,” Computer Vi-

sion – ECCV 2020, p. 405–421, 2020.

169



[7] M. Chu, L. Liu, Q. Zheng, E. Franz, H.-P. Seidel, C. Theobalt, and R. Zayer, “Physics

informed neural fields for smoke reconstruction with sparse data,” ACM Transactions on

Graphics, vol. 41, no. 4, p. 1–14, 2022.

[8] F. Zhang, W. Zhang, Q. Lei, X. Li, Y. Li, and M. Xu, “Voxel-free neural volume re-

construction technique for volumetric flame reconstructions,” Aerospace Science and

Technology, vol. 133, p. 108107, 2023.

[9] J. P. Molnar and S. J. Grauer, “Flow field tomography with uncertainty quantification

using a bayesian physics-informed neural network,” Measurement Science and Technol-

ogy, vol. 33, no. 6, p. 065305, 2022.
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