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Abstract

Next-generation communications (Next-G), such as 6G, are expected to support emerg-

ing networked intelligent systems, including autonomous driving, factory automation, digital

twin technology, unmanned aerial vehicle (UAV) navigation, and extended reality. Timely

inference is crucial for these networked intelligent systems. In this dissertation, we investi-

gate a remote inference system, where a trained neural network is used to infer time-varying

targets (e.g., the locations of vehicles and pedestrians) based on features (e.g., video frames)

observed at a sensing node (e.g., a camera). The inference error is determined by (i) the

timeliness and (ii) the sequence length of the features, where we use the Age of Information

(AoI) as a metric for timeliness.

In the first part of the dissertation, we discuss how to evaluate the importance of timely

information in remote inference and the monotonicity of information aging. One might

expect that the performance of a remote inference system degrades monotonically as the

feature becomes stale. Using a new information-theoretic analysis, we show that this is true

if the feature and target data sequence can be closely approximated as a Markov chain; it is

not true if the data sequence is far from Markovian. Hence, the inference error is a function

of the AoI, where the function could be non-monotonic. In addition, a longer feature can

typically provide better inference performance, but it often requires more channel resources

for sending the feature.

In the second part of the dissertation, we study the transmission scheduling problem

that optimizes timeliness and feature sequence length to minimize inference error. We intro-

duce a new “selection-from-buffer” medium access model for status updating and minimize

inference errors for both Markovian and non-Markovian data. For single-source and single-

channel remote inference networks, we obtain optimal scheduling policies for both the cases of

time-invariant and time-variant feature lengths. In multi-sources and multi-channel remote

inference networks, the selection-from-buffer scheduling problem is a multi-action restless

multi-arm bandit problem. For this setting, we design new scheduling policies by utilizing

the Whittle index and duality-based gain index. The new scheduling policies are proven to be
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asymptotically optimal. Data-driven evaluations show that our policies can reduce inference

errors by up to 10,000 times.
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Chapter 1

Introduction

Next-generation communications (Next-G), such as 6G, are expected to support a wide range

of emerging networked intelligent systems, including autonomous driving, factory automa-

tion, digital twins, UAV navigation, extended reality, and more [3–8]. Timely inference or

estimation is crucial for these systems. For instance, an autonomous vehicle infers the tra-

jectories of nearby vehicles and the intentions of pedestrians based on features collected from

lidars and cameras installed on the vehicle. In remote surgery, the movement of a surgical

robot is predicted in real-time. In this dissertation, we study a remote inference system as

illustrated in Fig. 1.1, where a trained neural network infers a time-varying target (e.g.,

the location of a vehicle) based on features (e.g., video frames) sent from a sensing node

(e.g., camera). Due to communication delay and transmission errors, the features delivered

to the neural network may not be fresh. Information freshness, in this context, refers to the

time elapsed between feature generation and its use in inference. While not a concern in

traditional offline inference, the impact of information freshness on time-sensitive inference

systems remains an under-explored area of research. It is crucial to understand how this

freshness affects inference performance.

Predicted car 
position	 "𝑌! 

Camera

Network t��(t)� 1
<latexit sha1_base64="aNTnbiDxJ8Na4Ka/cqF2RfCxwyo=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoMQDwm7EtBjQA8eI5gHJEuYnfQmQ2YfzvQGwpLv8OJBEa9+jDf/xkmyB00saCiquunu8mIpNNr2t5Xb2Nza3snvFvb2Dw6PiscnLR0likOTRzJSHY9pkCKEJgqU0IkVsMCT0PbGt3O/PQGlRRQ+4jQGN2DDUPiCMzSSi5XeHUhkZbysOP1iya7aC9B14mSkRDI0+sWv3iDiSQAhcsm07jp2jG7KFAouYVboJRpixsdsCF1DQxaAdtPF0TN6YZQB9SNlKkS6UH9PpCzQehp4pjNgONKr3lz8z+sm6N+4qQjjBCHky0V+IilGdJ4AHQgFHOXUEMaVMLdSPmKKcTQ5FUwIzurL66R1VXXsqvNQK9VrWRx5ckbOSZk45JrUyT1pkCbh5Ik8k1fyZk2sF+vd+li25qxs5pT8gfX5AyGGkPg=</latexit><latexit sha1_base64="aNTnbiDxJ8Na4Ka/cqF2RfCxwyo=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoMQDwm7EtBjQA8eI5gHJEuYnfQmQ2YfzvQGwpLv8OJBEa9+jDf/xkmyB00saCiquunu8mIpNNr2t5Xb2Nza3snvFvb2Dw6PiscnLR0likOTRzJSHY9pkCKEJgqU0IkVsMCT0PbGt3O/PQGlRRQ+4jQGN2DDUPiCMzSSi5XeHUhkZbysOP1iya7aC9B14mSkRDI0+sWv3iDiSQAhcsm07jp2jG7KFAouYVboJRpixsdsCF1DQxaAdtPF0TN6YZQB9SNlKkS6UH9PpCzQehp4pjNgONKr3lz8z+sm6N+4qQjjBCHky0V+IilGdJ4AHQgFHOXUEMaVMLdSPmKKcTQ5FUwIzurL66R1VXXsqvNQK9VrWRx5ckbOSZk45JrUyT1pkCbh5Ik8k1fyZk2sF+vd+li25qxs5pT8gfX5AyGGkPg=</latexit><latexit sha1_base64="aNTnbiDxJ8Na4Ka/cqF2RfCxwyo=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoMQDwm7EtBjQA8eI5gHJEuYnfQmQ2YfzvQGwpLv8OJBEa9+jDf/xkmyB00saCiquunu8mIpNNr2t5Xb2Nza3snvFvb2Dw6PiscnLR0likOTRzJSHY9pkCKEJgqU0IkVsMCT0PbGt3O/PQGlRRQ+4jQGN2DDUPiCMzSSi5XeHUhkZbysOP1iya7aC9B14mSkRDI0+sWv3iDiSQAhcsm07jp2jG7KFAouYVboJRpixsdsCF1DQxaAdtPF0TN6YZQB9SNlKkS6UH9PpCzQehp4pjNgONKr3lz8z+sm6N+4qQjjBCHky0V+IilGdJ4AHQgFHOXUEMaVMLdSPmKKcTQ5FUwIzurL66R1VXXsqvNQK9VrWRx5ckbOSZk45JrUyT1pkCbh5Ik8k1fyZk2sF+vd+li25qxs5pT8gfX5AyGGkPg=</latexit><latexit sha1_base64="aNTnbiDxJ8Na4Ka/cqF2RfCxwyo=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoMQDwm7EtBjQA8eI5gHJEuYnfQmQ2YfzvQGwpLv8OJBEa9+jDf/xkmyB00saCiquunu8mIpNNr2t5Xb2Nza3snvFvb2Dw6PiscnLR0likOTRzJSHY9pkCKEJgqU0IkVsMCT0PbGt3O/PQGlRRQ+4jQGN2DDUPiCMzSSi5XeHUhkZbysOP1iya7aC9B14mSkRDI0+sWv3iDiSQAhcsm07jp2jG7KFAouYVboJRpixsdsCF1DQxaAdtPF0TN6YZQB9SNlKkS6UH9PpCzQehp4pjNgONKr3lz8z+sm6N+4qQjjBCHky0V+IilGdJ4AHQgFHOXUEMaVMLdSPmKKcTQ5FUwIzurL66R1VXXsqvNQK9VrWRx5ckbOSZk45JrUyT1pkCbh5Ik8k1fyZk2sF+vd+li25qxs5pT8gfX5AyGGkPg=</latexit>

…

…

Neural network

Age of Information Δ(𝑡)

Received feature 𝑋!"#(!)
Feature 𝑋!

Figure 1.1: A remote inference system, where a trained neural network infers the location of a
vehicle based on video frames sent from a camera.

In a communication system, understanding the freshness of information at the receiver

is crucial. Imagine trying to make decisions about a drone flight using outdated location

1



t

∆(t)

S0 D0 S1 D1 Si Di

Figure 1.2: Evolution of the AoI ∆(t) in discrete-time.

data. The concept of Age of Information (AoI) was introduced to measure the information

freshness of the receiver side of a communication system [9,10]. Formally, consider a sequence

of status updates sent from a source to a receiver. Let U(t) be the generation time of the

freshest packet delivered by time t. The AoI, ∆(t), is the difference between the current time

t and U(t):

∆(t) := t− U(t). (1.1)

To understand more about the evolution of AoI in a time-slotted system, see Fig. 1.2, where

Si and Di are the generation time and delivered time of the i-th packet, respectively, such

that Si < Si+1 < Di+1. Then, U(t) = max{Si : Di ≤ t} is the generation time of the freshest

packet that has been delivered to the receiver by time t. Then, from (1.1), we get

∆(t) = t− U(t) = t−max{Si : Di ≤ t}. (1.2)

A smaller AoI indicates the presence of more recent information at the receiver.

The freshness of information is tightly related to its significance for the application.

“Freshness” is an example of the “semantic” properties of the information. By semantics,

we mean properties that relate to the “purpose” of information, which, in our case, is to

improve the performance of remote inference systems using fresh information. In semantic-

aware communications, the design goal is no longer sending as much as possible (i.e., increase

2



throughput), or as fast as possible (i.e., reduce delay), without regard what is the intended use

of information. Instead, the transmitter should choose the right piece of information that is

important for the system operating at the receiving end, and try to deliver the information to

the receiver while it is still useful. However, little is known on how to measure the importance

of information in a broad range of real-time systems and applications. Towards this end,

in this dissertation, we answer two questions: (i) How to evaluate the importance of fresh

information in a remote inference/estimation system? (ii) How to improve the performance

of a remote inference/estimation system?

1.1 Outline and Main Contributions

In Chapter 2, we answer the first question: How to evaluate the importance of fresh

information in a remote inference/estimation system?. This chapter is based on work pre-

sented first in papers [11–14]. One might assume that inference errors degrade monotonically

as the data becomes stale. However, the remote inference experiments illustrated in Chapter

2 show that this assumption holds true in some scenarios (e.g., video prediction) and not

in others (e.g., temperature prediction and reaction prediction). For example, in predicting

next hour temperature, temperature recorded at 24 hours ago is more relevant than tempera-

ture recorded at 12 hours ago due to daily weather patterns. Moreover, consider an example

of reaction prediction: If a vehicle initiates braking, nearby vehicles don’t react instantly

due to the response delay of the drivers or the braking systems. Therefore, slightly outdated

actions can be more relevant for predicting reactions than the most current action. These

observations highlight that fresher data is not always better. To accurately assess the value

of fresh information, we need a robust analytical framework. In this chapter, we present a

new information-theoretic analysis with two analytical models to reveal when fresher data

is always better and when it is not.

Next, we focus on the design of communication systems to improve the performance of

a remote inference system. Due to the vast amount of data generated by today’s sensing

nodes (e.g. cameras and lidars installed on vehicles or roadside units) and the constraints of

limited communication resources, relying solely on maximizing data transmission for ensuring

timely and accurate performance is inadequate. The unprecedented data volume necessitates
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a paradigm shift in communication strategies—from maximizing data transmission rates to

extracting and transmitting the right piece of information (often referred to as semantic

information) to accomplish specific tasks such as accurate inference (e.g., the location of a

vehicle) [15–19]. This communication paradigm is known as semantic communication.

In Chapter 3, we investigate how to design a semantic communication system by con-

sidering “Freshness” as a “semantic” property of the information. This chapter builds upon

the work presented in [12, 14]. Specifically, we study single-source single-channel scheduling

problems to reduce inference error. As found in Chapter 2, inference error can be expressed

a function of AoI, but not necessarily a monotonic function of AoI. Most existing studies

in AoI literature [20–32] have focused on designing transmission scheduling strategies to

minimize monotonic functions of AoI. However, the design of efficient scheduling policies

for optimizing general, potentially non-monotonic functions of AoI remains unexplored. We

design transmission scheduling policies for single-source and single channel system to min-

imize the inference error and general functions of AoI, regardless of whether the functions

are monotonic or non-monotonic.

In many networked intelligent systems, a receiver (e.g., an autonomous vehicle) requires

information from multiple sources (e.g., onboard cameras, roadside units, and nearby vehi-

cles). Due to limited communication resources, it is impractical to obtain information from

all sources simultaneously. A scheduler decides which sources to select and what information

from sources to send to accomplish a task. Hence, a follow-up question is how to design a

scheduler for multi-source multi-channel remote inference systems?

Based on the work in [12, 14], we design a scheduler for multi-source multi-channel

remote inference systems in Chapter 4. When there are multiple source-predictor pairs and

multiple channels, the scheduling problem is a restless multi-armed bandit (RMAB) problem

with multiple actions. Whittle index policy is a well-known asymptotically optimal policy for

RMAB problems with binary actions [33]. However, Whittle index policy is not sufficient for

problems with multiple actions. We propose a multi-source, multi-action scheduling policy

that uses a Whittle index algorithm to determine which sources to schedule and employs

a duality-based action selection algorithm to decide which information to send from the

selected sources.
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Additionally, the performance of remote inference depends on the sequence length of

features. Longer feature sequences can carry more information about the target, resulting

in the reduction of inference errors. Though a longer feature can provide better training

and inference performance, it often requires more communication resources. For example,

a longer feature may require a longer transmission time and may end up being stale when

delivered, thus resulting in worse inference performance. Hence, it is necessary to study a

learning and communications co-design problem that jointly controls the timeliness and the

length of the feature sequences.

Based on the work in [34], we study a learning and communication co-design problem

that jointly optimizes feature length selection and transmission scheduling to minimize the

time-averaged inference error in Chapter 5. When there is a single source-predictor pair

and a single channel, we develop low-complexity optimal co-designs for both the cases of

time-invariant and time-variant feature length. When there are multiple source-predictor

pairs and multiple channels, the co-design problem becomes a RMAB problem with multiple

actions. For this setting, we can not use Whittle index because it is difficult to establish

Whittle indexability for time-varying feature length. To solve the problem, we design a low-

complexity scheduling algorithm that does not require to satisfy any indexability condition.

Numerical results in this dissertation demonstrate that potential of our scheduling al-

gorithms to reduce inference error by up to 10000 times.
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Chapter 2

Interpretation of Information Freshness in Remote Inference

2.1 Introduction

In this chapter, we first examine the importance of information freshness on remote

inference. While one might assume that inference errors degrade monotonically as the data

becomes stale, the remote inference experiments illustrated in this chapter show that this

assumption holds true in some scenarios (e.g., video prediction) and not in others (e.g.,

temperature prediction and reaction prediction). By using an information-theoretic analysis,

we reveal that inference errors are functions of the AoI, whereas the function is not necessarily

monotonic.

The contributions of this chapter are summarized as follows:

• We conduct five experiments to examine the impact of data freshness on remote infer-

ence (see Section 2.3). These experiments include (i) video prediction, (ii) robot state

prediction in a leader-follower robotic system, (iii) actuator state prediction under me-

chanical response delay, (iv) temperature prediction, and (v) wireless channel state

information (CSI) prediction. One might assume that the inference error degrades

monotonically as the data becomes stale. Our experimental results show that this

assumption is not always true. In some scenarios, even the fresh data with ∆(t) = 0

may generate a larger inference error than stale data with ∆(t) > 0 (see Figs 2.2-2.3).

• We develop an information-theoretical method to interpret these counter-intuitive ex-

perimental results (see Section 2.5). By introducing a new local information geomet-

ric tool, we show that the assumption “fresh data is better than stale data” is true

when the time-sequence data used for remote inference can be closely approximated

as a Markov chain; but it is not true when the data sequence is far from Markovian

(Theorems 2.1-2.3). Specifically, we proposed a new tool called ϵ-Markov chain. By

using ϵ-Markov chain, we can evaluate the divergence of a target process from being

a Markov chain. When the divergence ϵ is large, the inference error can be far from a
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non-decreasing function of AoI. Conversely, for small divergence ϵ, the estimation error

is close to a non-decreasing AoI function. Hence, the inference error is a function of

the AoI, whereas the function is not necessarily monotonic. This analysis provides an

information-theoretic interpretation of information freshness.

• Moreover, we construct two analytical models to analyze and explain when fresh data

is better than stale data and when it is not (see Section 2.6). We derive closed-form

expressions for the remote estimation error of Gaussian autoregressive AR(p) processes

and study how the monotonicity of information aging is affected by the parameters of

the AR(p) process.

2.1.1 Related Works

The concept of Age of Information (AoI) has attracted significant research interest; see,

e.g., [10, 20–32, 35–42] and a recent survey [43]. Initially, research efforts were centered on

analyzing and optimizing average AoI and peak AoI in communication networks [10, 20, 21,

29,35]. Recent research endeavors on AoI have shifted towards optimizing the performance of

real-time applications, such as remote estimation, remote inference, and control systems, by

leveraging AoI as a tool. In [23, 24, 36, 38], information-theoretic metrics such as Shannon’s

mutual information (or Shannon’s conditional entropy) has been used to quantify the amount

of information carried by the received data about the current source value (or the amount of

uncertainty regarding the current source value) as the data ages. In addition, a Shannon’s

conditional entropy term HShannon(Yt|Xt−∆(t) = x,∆(t) = δ) was used in [37] to quantify

information uncertainty given the most recent observation Xt−∆(t) = x and AoI ∆(t) = δ.

The information-theoretic metrics in these prior studies [23, 24, 36–38] cannot be directly

used to evaluate system performance. To bridge the gap, we use an L-conditional entropy

HL(Yt|Xt−∆(t),∆(t)), to approximate and analyze the inference error in remote inference,

as well as the estimation error in remote estimation [11, 12, 14, 34]. For example, when the

loss function L(y, ŷ) is chosen as a quadratic function ||y − ŷ||22, the L-conditional entropy
HL(Yt|Xt−∆(t),∆(t)) = E[(Yt − E[Yt|Xt−∆(t),∆(t)])2] is exactly the minimum mean squared

estimation error in signal-agnostic remote estimation. This approach takes a significant step
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to bridge the gap between AoI metrics and real-world applications, by directly mapping the

AoI to the application performance metrics.

This study is also related to the field of signal-agnostic remote estimation. The prior

studies [23, 25, 27, 39, 40, 44, 45] in signal-agnostic remote estimation focused on Gaussian

and Markovian processes. The results presented in the current paper are applicable to more

general processes.

2.2 System Model

In this section, we introduce a remote inference system and illustrate the impact of

information freshness on the inference performance.

Remote Inference Model

Consider the remote inference system illustrated in Fig. 2.1(a). In this system, a time-

varying target Yt ∈ Y (e.g., the position of the car in front) is predicted at time t, using a

feature Xt−∆(t) ∈ X (e.g., a video clip) that was generated ∆(t) seconds ago at a sensor (e.g.,

a camera). The time difference ∆(t) between Xt−∆(t) and Yt is the AoI defined in (1.1). Each

feature Xt = (Vt, Vt−1, . . . , Vt−u+1) is a time series of length u, extracted from the sensor’s

output signal Vt. For example, if Vt is the video frame at time t, then Xt represents a video

clip consisting of u consecutive video frames.

We focus on a class of popular supervised learning algorithms known as Empirical Risk

Minimization (ERM) [46]. In freshness-aware ERM supervised learning algorithms, a neural

network is trained to generate an action a = ϕ(Xt−∆(t),∆(t)) ∈ A, where ϕ : X × Z+ 7→ A
is a function that maps a feature Xt−∆(t) ∈ X and its AoI ∆(t) ∈ Z+ to an action a ∈ A.
The performance of learning is evaluated using a loss function L : Y ×A 7→ R, where L(y, a)

represents the loss incurred if action a is selected when Yt = y.

The loss function L is determined by the goal of the remote inference system. For

example, in neural network-based minimum mean-squared estimation, the loss function is

L2(y, ŷ) = ∥y − ŷ∥22, where the action a = ŷ is an estimate of the target Yt = y and ∥y∥22
is the Euclidean norm of the vector y. In softmax regression (i.e., neural network-based
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Figure 2.1: Performance of video prediction experiment. The experimental results in (b) and (c)
are regenerated from [1]. The training and inference errors are non-decreasing functions of the AoI.

maximum likelihood classification), the action a = QY is a distribution of Yt and the loss

function Llog(y,QY ) = −log QY (y) is the negative log-likelihood of the target value Yt = y.

Offline Training and Online Inference

A supervised learning algorithm consists of two phases: offline training and online

inference. In the offline training phase, a neural network based predictor is trained using

one of the following two approaches.

In the first approach, multiple neural networks are trained independently, using distinct

training datasets with different AoI values. The neural network associated with an AoI value

δ is trained by solving the following ERM problem:

errtraining,1(δ) = min
ϕ∈Λ

EY,X∼PỸ0,X̃−δ
[L(Y, ϕ(X, δ))], (2.1)
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Figure 2.2: Robot state prediction in a leader-follower robotic system. The leader robot uses
a neural network to predict the follower robot’s state Yt by using the leader robot’s state Xt−δ

generated δ time slots ago (u = 1). The training and inference errors decrease in the AoI ≤ 25 and
increase when AoI ≥ 25.

where PỸ0,X̃−δ
is the empirical distribution of the label Ỹ0 and the feature X̃−δ in the training

dataset, the AoI value δ is the time difference between Ỹ0 and X̃−δ, and Λ is the set of

functions that can be constructed by the neural network.

In the second approach, a single neural network is trained using a larger dataset that

encompasses a variety of AoI values. The ERM training problem for this approach is formu-

lated as

errtraining,2 = min
ϕ∈Λ

EY,X,Θ∼PỸ0,X̃−Θ,Θ
[L(Y, ϕ(X,Θ))], (2.2)

where PỸ0,X̃−Θ,Θ is the empirical distribution of the label Ỹ0, the feature X̃−Θ, and the AoI

Θ within the training dataset, and the AoI Θ is the time difference between Ỹ0 and X̃−Θ.
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In the online inference phase, the trained neural predictor is used to predict the target

Yt in real-time. We assume that the process {(Yt, Xt), t = 0, 1, 2, . . .} is stationary and is

independent of the AoI process {∆(t), t = 0, 1, 2, . . .}. Under these assumptions, if ∆(t) = δ,

the inference error at time t can be expressed as a function of the AoI value δ, i.e.,

errinference(δ)=EY,X∼PYt,Xt−δ
[L(Y,ϕ∗(X, δ))] , (2.3)

where PYt,Xt−δ
is the distribution of the target Yt and the feature Xt−δ, and ϕ

∗ is the trained

neural network. The proof of (2.3) is provided in Appendix 2.D. In Sections 3-4, to mini-

mize inference error, we will develop signal-agnostic transmission scheduling policies in which

scheduling decisions are determined without using the knowledge of the signal value of the ob-

served process. If the transmission schedule is signal-agnostic, then {(Yt, Xt), t = 0, 1, 2, . . .}
is independent of the AoI process {∆(t), t = 0, 1, 2, . . .}. In Sections 3-4, to minimize infer-

ence error, we will develop signal-agnostic transmission scheduling policies in which schedul-

ing decisions are determined without using the knowledge of the signal value of the observed

process. If the transmission schedule is signal-agnostic, then {(Yt, Xt), t = 0, 1, 2, . . .} is

independent of the AoI process {∆(t), t = 0, 1, 2, . . .}.

2.3 Experimental Results on Information Freshness

We conduct five remote inference experiments to examine how the training error and

the inference error vary as the AoI increases. These experiments include (i) video prediction,

(ii) robot state prediction in a leader-follower robotic system, (iii) actuator state predic-

tion under mechanical response delay, (iv) temperature prediction, and (v) wireless channel

state information prediction. In these experiments, we consider the quadratic loss function

L(y, ŷ) = ∥y − ŷ∥22. Detailed settings of these experiments can be found in Appendix 2.A.

We present the experimental results of the first training method in Figs. 2.1-2.5. Related

codes and datasets are accessible in our GitHub repository.1 To illustrate the training error

of the second training method as a function of the AoI δ, one can simply assess the training

1https://github.com/Kamran0153/Impact-of-Data-Freshness-in-Learning
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error using the training data samples with the AoI value δ. As the results of the two training

methods are similar, the experimental results of the second training method are omitted.

Fig. 2.1 presents the training error and inference error of a video prediction experiment,

where a video frame Vt at time t is predicted using a feature Xt−δ = (Vt−δ, Vt−δ−1) that is

composed of two consecutive video frames. One can observe from Fig. 2.1(b)-(c) that both

the training error and the inference error increase as the AoI δ increases.

Fig. 2.2 plots the performance of robot state prediction in a leader-follower robotic

system, where a leader robot uses a neural network to predict the follower robot’s state Yt

by using the leader robot’s state Xt−δ generated δ time slots ago. As depicted in Fig. 2.2,

the training and the inference errors decrease in AoI, when AoI ≤ 25 and increase in AoI

when AoI ≥ 25. In this case, even a fresh feature with AoI=0 is not good for prediction.

The performance of actuator state prediction under mechanical response delay is de-

picted in Fig. 2.3. We consider the OpenAI CartPole-v1 task [2], where the objective is

to control the force on a cart and prevent the pole attached to the cart from falling over.

The pole angle ψt at time t is predicted based on a feature Xt−δ = (vt−δ, . . . , vt−δ−u+1) that

consists of a consecutive sequence of cart velocity with length u generated δ milliseconds

(ms) ago. As shown in Fig. 2.3, both the training error and the inference error exhibit

non-monotonic variations as the AoI δ increases.

In Fig. 2.4 and Fig. 2.5, we plot the results of temperature prediction and wireless

channel state information (CSI) prediction experiments, respectively. In both experiments,

we observe non-monotonic trends in training error and inference error with respect to AoI,

particularly when the length of the feature sequence u is small.

In the AoI literature, it has been generally assumed that the performance of real-time

systems degrades monotonically as the data becomes stale. However, Figs. 2.1-2.5 reveal that

this assumption is true in some scenarios, and not true in some other scenarios. Furthermore,

Figs. 2.2-2.3 show that even the fresh data with AoI = 0 may generate a larger inference

error than stale data with AoI > 0. These counter-intuitive experimental results motivated

us to seek theoretical interpretations of information freshness in subsequent sections.
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Figure 2.3: Performance of actuator state prediction under mechanical response delay. In the Ope-
nAI CartPole-v1 task [2], the pole angle ψt is predicted by usingXt−δ = (vt−δ, vt−δ−1, . . . , vt−δ−u−1),
where vt is the cart velocity at time t and u is the number of past samples or feature sequence
length. The training error and inference error are non-monotonic in the AoI.
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2.4 Information-theoretic Measures for Remote Inference

In this section, we present information-theoretic measures for evaluating remote infer-

ence system.

Because the set of functions Λ constructed by the neural network is complicated, it

is difficult to directly analyze the training and inference errors by using (2.1)-(2.3). To

overcome this challenge, we introduce information-theoretic metrics for the training and

inference errors.

Training Error of the First Training Approach

Let Φ = {f : X ×Z+ 7→ A} be the set of all functions mapping from X ×Z+ to A. Any
action ϕ(x, δ) constructed by the neural network belongs to Φ, whereas the neural network

cannot produce some functions in Φ. Hence, Λ ⊂ Φ. By relaxing the set Λ in (2.1) as Φ, we

obtain the following lower bound of errtraining,1(δ):

min
ϕ∈Φ

EY,X∼PỸ0,X̃−δ
[L(Y, ϕ(X, δ))] = HL(Ỹ0|X̃−δ), (2.4)

where HL(Ỹ0|X̃−δ) is a generalized conditional entropy of Ỹ0 given X̃−δ [47–49].

Compared to errtraining,1(δ), its information-theoretic lower bound HL(Ỹ0|X̃−δ) is math-

ematically more convenient to analyze. The gap between errtraining,1(δ) and HL(Ỹ0|X̃−δ) was

studied recently in [50], where the gap is small if Λ and Φ are close to each other, e.g., when

the neural network is sufficiently wide and deep [46].

For notational convenience, we refer to HL(Ỹ0|X̃−δ) as an L-conditional entropy, because

it is associated with a loss function L. The L-entropy of a random variable Y is defined

as [47,49]

HL(Y ) = min
a∈A

EY∼PY
[L(Y, a)]. (2.5)

The L-conditional entropy of Y given X = x is

HL(Y |X = x) = min
a∈A

EY∼PY |X=x
[L(Y, a)]. (2.6)
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Using (2.4), one can get [47,49]

HL(Y |X) =
∑
x∈X

PX(x)min
a∈A

EY∼PY |X=x
[L(Y, a)]

=
∑
x∈X

PX(x)HL(Y |X = x). (2.7)

Training Error of the Second Training Approach

A lower bound of the training error errtraining,2 in (2.2) is

HL(Ỹ0|X̃−Θ,Θ) = min
ϕ∈Φ

EY,X,Θ∼PỸ0,X̃−Θ,Θ
[L(Y,ϕ(X,Θ))], (2.8)

where HL(Ỹ0|X̃−Θ,Θ) is a L-conditional entropy of Ỹ0 given (X̃−Θ,Θ). Using (2.7), we get

HL(Ỹ0|X̃−Θ,Θ) =
∑

x∈X ,δ∈Z+

PX̃−Θ,Θ(x, δ)HL(Ỹ0|X̃−δ = x,Θ = δ). (2.9)

We assume that the label and feature (Ỹ0, X̃−k) in the training dataset are independent

of the training AoI Θ for every k ≥ 0. Under this assumption, (2.9) can be simplified as

HL(Ỹ0|X̃−Θ,Θ)=
∑
δ∈Z+

PΘ(δ) HL(Ỹ0|X̃−δ), (2.10)

which is proven in Appendix 2.E.

Inference Error

Let aPY
be an optimal solution to (2.5), called a Bayes action [47]. If the neural predictor

in (2.3) is replaced by the Bayes action aPỸ0|X̃−δ=x
, then errinference(δ) becomes the following

L-conditional cross entropy

HL

(
PYt|Xt−δ

;PỸ0|X̃−δ
|PXt−δ

)
=
∑
x∈X

PXt−δ
(x)EY∼PYt|Xt−δ=x

[
L
(
Y, aPỸ0|X̃−δ=x

)]
, (2.11)
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where the L-cross entropy is defined as

HL(PY ;PỸ ) = EY∼PY

[
L
(
Y, aPỸ

)]
, (2.12)

and the L-conditional cross entropy is defined as

HL(PY ;PỸ |PX) =
∑
x∈X

PX(x)EY∼PY |X=x

[
L
(
Y, aPỸ |X̃=x

)]
. (2.13)

If the function spaces Λ and Φ are close to each other, the difference between errinference(δ)

and the L-conditional cross entropy HL

(
PYt|Xt−δ

;PỸ0|X̃−δ
|PXt−δ

)
is small.

Examples of loss function L, L-entropy, and L-cross entropy are provided in Appendix

2.B. Additionally, the definitions of L-divergenceDL(PY ||QY ), L-mutual information IL(Y ;X),

and L-conditional mutual information IL(Y ;X|Z) are discussed below.

The L-divergence DL(PY ||PỸ ) of PY from PỸ can be expressed as [47,49]

DL(PY ||PỸ ) =EY∼PY
[L (Y, aPY

)]− EY∼PY

[
L
(
Y, aPỸ

)]
. (2.14)

Because aPY
is an optimal to (2.5), from (2.41), we have

DL(PY ||PỸ ) ≥ 0. (2.15)

The L-mutual information IL(Y ;X) is defined as [47,49]

IL(Y ;X) = EX∼PX

[
DL

(
PY |X ||PY

)]
= HL(Y )−HL(Y |X) ≥ 0, (2.16)

which measures the performance gain in predicting Y by observing X. In general, IL(Y ;X)

̸= IL(X;Y ). The L-conditional mutual information IL(Y ;X|Z) is given by

IL(Y ;X|Z) = EX,Z∼PX,Z

[
DL

(
PY |X,Z ||PY |Z

)]
= HL(Y |Z)−HL(Y |X,Z) ≥ 0. (2.17)
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Figure 2.4: Performance of temperature Prediction. The training error and inference error are
non-monotonic in AoI. As the feature sequence length u increases, the errors tend closer to non-
decreasing functions of the AoI.
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Figure 2.5: Performance of channel state information (CSI) prediction. The training error and
inference error are non-monotonic in AoI. As the feature sequence length u increases, the errors
tend closer to non-decreasing functions of the AoI.

In general, IL(X;Y ) ̸= IL(Y ;X), which is different from f -mutual information. The

relationship among L-divergence, Bregman divergence [51], and f -divergence [52] is discussed

in Appendix 2.C.

2.5 An Information-theoretic Interpretation

Training Error vs. Training AoI

We first analyze the monotonocity of L-conditional entropy HL(Ỹ0|X̃−δ) as δ increases.

If Ỹ0 ↔ X̃−µ ↔ X̃−µ−ν is a Markov chain for all µ, ν ≥ 0, by the data processing inequality

17



for L-conditional entropy [48, Lemma 12.1], HL(Ỹ0|X̃−δ) is a non-decreasing function of δ.

Nevertheless, the experimental results in Figs. 2.1-2.5 show that the training error is a

growing function of the AoI δ in some systems (see Fig. 2.1), whereas it is a non-monotonic

function of δ in other systems (see Figs. 2.2-2.5). As we will explain below, a fundamental

reason behind these phenomena is that practical time-series data for remote inference could

be either Markovian or non-Markovian. For non-Markovian (Ỹ0, X̃−µ, X̃−µ−ν), HL(Ỹ0|X̃−δ)

is not necessarily monotonic in δ.

We propose a new relaxation of the data processing inequality to analyze information

freshness for both Markovian and non-Markovian time-series data. To that end, the following

relaxation of the standard Markov chain model is needed, which is motivated by the ϵ-

dependence concept used in [53].

Definition 2.1 (ϵ-Markov Chain) Given ϵ ≥ 0, a sequence of three random variables

Z,X, and Y is said to be an ϵ-Markov chain, denoted as Z
ϵ→ X

ϵ→ Y , if

Ilog(Y ;Z|X)= Dlog

(
PY,X,Z ||PY |XPZ|XPX

)
≤ ϵ2, (2.18)

where2

Dlog(PY ||QY ) =
∑
y∈Y

PY (y)log
PY (y)

QY (y)
(2.19)

is KL-divergence and Ilog(Y ;Z|X) is Shannon conditional mutual information.

Notice that the KL-divergence in (2.18) can be also equivalently expressed as

Dlog(PY,X,Z ||PY |XPZ|XPX) = EX [Dlog(PY,Z|X ||PY |XPZ|X)]

= EX,Z [Dlog(PY |X,Z ||PY |X)], (2.20)

A Markov chain is an ϵ-Markov chain with ϵ = 0. If Z → X → Y is a Markov chain,

then Y → X → Z is also a Markov chain [55, p. 34]. A similar property holds for the

ϵ-Markov chain.
2In (2.18), if PY |X=x(y) = 0, then PY |X=x,Z=z(y) = 0 which leads to a term 0log 0

0 in the KL-divergence

Dlog(PY |X=x,Z=z||PY |X=x). We adopt the convention in information theory [54] to define 0log 0
0 = 0.
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Lemma 2.1 If Z
ϵ→ X

ϵ→ Y , then Y
ϵ→ X

ϵ→ Z.

Proof 2.1 See Appendix 2.F.

By Lemma 2.1, the ϵ-Markov chain can be denoted as Y
ϵ↔ X

ϵ↔ Z. In the following

lemma, we provide a relaxation of the data processing inequality, which is called an ϵ-data

processing inequality.

Lemma 2.2 (ϵ-data processing inequality) The following assertions are true:

(a) If Y
ϵ↔ X

ϵ↔ Z is an ϵ-Markov chain, then

HL(Y |X) ≤ HL(Y |Z) +O(ϵ). (2.21)

(b) If, in addition, HL(Y ) is twice differentiable in PY , then

HL(Y |X) ≤ HL(Y |Z) +O(ϵ2). (2.22)

Proof 2.2 Lemma 2.2 is proven by using a local information geometric analysis. See Ap-

pendix 2.G for the details.

Now, we are ready to characterize how HL(Ỹ0|X̃−δ) varies with the AoI δ.

Theorem 2.1 The L-conditional entropy

HL(Ỹ0|X̃−δ) = g1(δ)− g2(δ) (2.23)

is a function of δ, where g1(δ) and g2(δ) are two non-decreasing functions of δ, given by

g1(δ) =HL(Ỹ0|X̃0) +
δ−1∑
k=0

IL(Ỹ0; X̃−k|X̃−k−1),

g2(δ) =
δ−1∑
k=0

IL(Ỹ0; X̃−k−1|X̃−k), (2.24)
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where the L-conditional mutual information IL(Y ;X|Z) between two random variables Y

and X given Z is defined in (2.44). If Ỹ0
ϵ↔ X̃−µ

ϵ↔ X̃−µ−ν is an ϵ-Markov chain for every

µ, ν ≥ 0, then g2(δ) = O(ϵ) and

HL(Ỹ0|X̃−δ) = g1(δ) +O(ϵ). (2.25)

Proof 2.3 See Appendix 2.H.

According to Theorem 2.1, the monotonicity of HL(Ỹ0|X̃−δ) in δ is characterized by the

parameter ϵ ≥ 0 in the ϵ-Markov chain model. If ϵ is small, then Ỹ0
ϵ↔ X̃−µ

ϵ↔ X̃−µ−ν is

close to a Markov chain, and HL(Ỹ0|X̃−δ) is nearly non-decreasing in δ. If ϵ is large, then

Ỹ0
ϵ↔ X̃−µ

ϵ↔ X̃−µ−ν is far from a Markov chain, and HL(Ỹ0|X̃−δ) could be non-monotonic

in δ. Theorem 2.1 can be readily extended to the training error with random AoI Θ by using

stochastic orders [56].

Definition 2.2 (Univariate Stochastic Ordering) [56] A random variable X is said to

be stochastically smaller than another random variable Z, denoted as X ≤st Z, if

P (X > x) ≤ P (Z > x), ∀x ∈ R. (2.26)

Theorem 2.2 If Ỹ0
ϵ↔ X̃−µ

ϵ↔ X̃−µ−ν is an ϵ-Markov chain for all µ, ν ≥ 0, and the training

AoIs in two experiments 1 and 2 satisfy Θ1 ≤st Θ2, then

HL(Ỹ0|X̃−Θ1 ,Θ1) ≤ HL(Ỹ0|X̃−Θ2 ,Θ2) +O(ϵ). (2.27)

Proof 2.4 See Appendix 2.I.

According to Theorem 2.2, if Θ1 is stochastically smaller than Θ2, then the training error

in Experiment 1 is approximately smaller than that in Experiment 2. If, in addition to the

conditions in Theorems 2.1 and 2.2, HL(Ỹ0) is twice differentiable in PỸ0
, then the last term

O(ϵ) in (2.25) and (2.27) becomes O(ϵ2).

Inference Error vs. Inference AoI
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Using (2.6), (2.7), and (2.13), it is easy to show that the L-conditional cross entropy

HL(PYt|Xt−δ
;PỸ0|X̃−δ

|PXt−δ
) is lower bounded by the L-conditional entropy HL(Yt|Xt−δ). In

addition, HL(PYt|Xt−δ
;PỸ0|X̃−δ

|PXt−δ
) is close to its lower bound HL(Yt|Xt−δ), if the condi-

tional distributions PYt|Xt−δ
and PỸ0|X̃−δ

are close to each other, as stated in Lemma 2.3.

Lemma 2.3 Given β ≥ 0, if for all δ ∈ Z+

∑
x∈X

PXt−δ
(x)
∑
y∈Y

(PYt|Xt−δ=x(y)−PỸ0|X̃−δ=x(y))
2 ≤β2, (2.28)

then for all δ ∈ Z+

HL(PYt|Xt−δ
;PỸ0|X̃−δ

|PXt−δ
)=HL(Yt|Xt−δ)+O(β). (2.29)

Proof 2.5 See Appendix 2.J.

Combining Theorem 2.1 and Lemma 2.3, the monotonicity of HL(PYt|Xt−δ
;PỸ0|X̃−δ

|PXt−δ
)

versus δ is characterized in the next theorem.

Theorem 2.3 If Yt
ϵ↔ Xt−µ

ϵ↔ Xt−µ−ν is an ϵ-Markov chain for all µ, ν ≥ 0 and (2.28)

holds for all δ ∈ Z+, then for all 0 ≤ δ1 ≤ δ2

HL(PYt|Xt−δ1
;PỸ0|X̃−δ1

|PXt−δ1
) ≤ HL(PYt|Xt−δ2

;PỸ0|X̃−δ2
|PXt−δ2

) +O
(
max{ϵ, β}

)
. (2.30)

Proof 2.6 See Appendix 2.K.

According to Theorem 2.3, HL(PYt|Xt−δ
;PỸ0|X̃−δ

|PXt−δ
) is a function of the AoI δ. If ϵ and

β are close to zero, HL(PYt|Xt−δ
;PỸ0|X̃−δ

|PXt−δ
) is nearly a non-decreasing function of δ;

otherwise, HL(PYt|Xt−δ
;PỸ0|X̃−δ

|PXt−δ
) can be far from a monotonic function of δ.

Interpretation of the Experimental Results

We use Theorems 2.1-2.3 to interpret the experimental results in Figs. 2.1-2.5. In Fig.

2.1, the training and inference errors for video prediction are increasing functions of the AoI.

This observation suggests that the target and feature time-series data (Yt, Xt−µ, Xt−µ−ν) for
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video prediction is close to a Markov chain. In the robot state prediction experiment depicted

in Fig. 2.2, the state of the follower robot depends on the state of the leader robot received

through a channel. Due to the communication delay from the leader robot to the follower

robot, the target and feature data sequence (Yt, Xt−µ, Xt−µ−ν) can be far from a Markov

chain. In the experiment of actuator state prediction under mechanical response delay, pole

angle at time t is strongly correlated with the cart velocity generated 25 ms ago, as observed

from data traces in Fig. 2.3(b). Moreover, temperature and CSI signals have long-range

dependence. For example, temperature at time t depends on the temperature of 24 hours

ago. These observations imply that the target and feature data sequence (Yt, Xt−µ, Xt−µ−ν)

for all µ, ν ≥ 0 may not be close to a Markov chain in the experimental results depicted in

Figs. 2.2-2.5. Because the target and feature time-series data involved is non-Markovian,

Theorems 2.1-2.3 suggest that the training error and inference error could be non-monotonic

with respect to AoI, as observed in Figs. 2.2-2.5.

Recall that u is the sequence length of the feature Xt = (Vt, Vt−1, . . . , Vt−u+1). In Figs.

2.3-2.5, the training and inference errors tends to become non-decreasing functions of the AoI

δ as the feature length u grows. This phenomenon can be interpreted by Theorems 2.1-2.3:

According to Shannon’s Markovian representation of discrete-time sources in his seminal

work [57], the larger u, the closer (Yt, Xt−µ, Xt−µ−ν) tends to a Markov chain. According to

Theorems 2.1-2.3, as u increases, the training and inference errors tends to be non-decreasing

with respect to the AoI δ, which agrees with Figs. 2.3-2.5. One disadvantage of large feature

length u is that it increases the channel resources needed for transmitting the features. The

optimal choice of the feature length u is studied in [34].

2.6 A Model-based Interpretation

We construct two models to analyze the non-monotonocity of the L-conditional entropy

HL(Yt|Xt−δ) with respect to the AoI δ and interpret the reasons.
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2.6.1 Reaction Prediction with Delay

To facilitate understanding of the counter-intuitive experimental results illustrated in

Figs. 2.2-2.3, we present the following analytical example for reaction prediction.

Example 2.1 (Reaction Prediction) Consider a causal system represented by Yt = f(Xt−d),

where Xt and Yt are the input and output of the system, respectively, d ≥ 0 is the delay in-

troduced by the system, and f(·) is a function.

Lemma 2.4 If Xt is a Markov chain and Yt = f(Xt−d), then HL(Yt|Xt−δ) decreases with δ

when 0 ≤ δ ≤ d and increases with δ when δ ≥ d. In addition, for any random variable Z,

HL(Yt|Xt−d) = HL(Yt|Yt) ≤ HL(Yt|Z). (2.31)

Proof 2.7 See Appendix 2.M.

Lemma 2.4 implies that the feature Xt−d achieves the minimum expected loss in predicting

Yt. Therefore, for predicting Yt, Xt−d is the optimal choice, not the freshest feature Xt.

Hence, fresh data is not always the best.

The robotic state prediction and the actuator state prediction experiments in Figs. 2.2-

2.3 are also instances of reaction prediction. Similar to Example 2.1, the freshest feature

with AoI=0 is not the best choice for predicting the reaction in Figs. 2.2-2.3. However, the

relationship between the leader and follower robots’ states in the robotic state prediction

experiment and the relationship between cart velocity and pole angle in the actuator state

prediction experiment are much more complicated than the input-output relationship in

Example 2.1.

2.6.2 Autoregressive Model

We consider that the target Yt evolves as

Yt = Vt +Nt, (2.32)
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where Vt ∈ R follows a discrete-time p-th order autoregressive (AR(p)) linear time-invariant

system:

Vt = a1Vt−1 + a2Vt−2 + . . .+ apVt−p +Wt, (2.33)

Nt ∈ R and Wt ∈ R are i.i.d. Gaussian noises over time with zero mean, and ak ∈ R for all

k = 1, 2, . . . , p. Let σ2
Yt

and σ2
Vt

be the variances of Yt and Vt, respectively. Our goal is to

predict Yt based on Xt−δ = (Vt−δ, Vt−δ−1, . . . , Vt−δ−u+1), where u is the feature length. For

the simplicity of analysis, we use vector Vu
t instead of Xt in this section, where

Xt = Vu
t = (Vt, Vt−1, . . . , Vt−u+1) (2.34)

and

Xt−δ = Vu
t−δ = (Vt−δ, Vt−δ−1, . . . , Vt−δ−u+1). (2.35)

We will evaluate the L-conditional entropy associated with two loss functions: (i) Log-

arithmic Loss (log loss) and (ii) Quadratic loss.

Logarithmic Loss (log loss)

For log loss Llog(y,QYt) = − logQYt(y), the L-entropy of a continuous random variable

Y is the differential entropy [54,55], defined as

Hlog(Yt) = −
∫
y∈R

pYt(y) log pYt(y) d y, (2.36)

where pYt is the density function of the distribution PYt of Yt. Because Yt is a Gaussian

random variable with zero mean, one can obtain [54]

Hlog(Yt) =
1

2
log
(
2πe E[Y 2

t ]
)
. (2.37)
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The L-entropy for a discrete random variable associated with log loss is the well known

Shannon entropy [12, 14, 49]. The Shannon entropy is always non-negative. However, the

differential entropy can be negative, positive, or zero [54].

Proposition 2.1 The L-conditional entropy Hlog(Yt|Vu
t−δ) is given by

Hlog(Yt|Vu
t−δ) =

1

2
log

(
det(R[Yt,Vu

t−δ]
)

det(RVu
t
)

)
+

1

2
log2πe, (2.38)

where det(A) denotes the determinant of a square matrix A,

RVu
t
= E[(Vu

t )
TVu

t ] (2.39)

is an u× u dimensional auto-correlation matrix of a random vector Vu
t , and

R[Yt,Vu
t−δ]

= E
[
[Yt,V

u
t−δ]

T [Yt,V
u
t−δ]
]

(2.40)

is an (u+ 1)× (u+ 1) dimensional auto-correlation matrix of a random vector [Yt,V
u
t−δ] =

[Yt, Vt−δ, . . . , Vt−δ−u+1].

Proof 2.8 We begin with the definitions of L-divergence and L-mutual information. The

L-divergence DL(PY ||QY ) of PY from QY can be expressed as [12,47,49]

DL(PY ||QY ) =EY∼PY
[L (Y, aPY

)]− EY∼PY
[L (Y, aQY

)] , (2.41)

where aPY
is the optimal solution to

min
a∈A

EY∼PY
[L(Y, a)]. (2.42)

The L-mutual information IL(Y ;X) is defined as [12,47,49]

IL(Y ;X) =EX∼PX

[
DL

(
PY |X ||PY

)]
=HL(Y )−HL(Y |X) ≥ 0, (2.43)
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which measures the performance gain in estimating Y by observing X. The L-conditional

mutual information IL(Y ;X|Z) is given by

IL(Y ;X|Z) =EX,Z∼PX,Z

[
DL

(
PY |X,Z ||PY |Z

)]
=HL(Y |Z)−HL(Y |X,Z) ≥ 0. (2.44)

Using (2.43), the L-conditional entropy Hlog(Yt|Vu
t−δ) associated with log loss can be

expressed as

Hlog(Yt|Vu
t−δ) = Hlog(Yt)− Ilog(Yt;Vu

t−δ). (2.45)

For jointly Gaussian random vectors Y ∈ Rm and X ∈ Rn, we can obtain [54]

Ilog(Y;X) =
1

2
log

det(ΣX)det(ΣY)

det(Σ[X,Y])
, (2.46)

where ΣX := E[(X− E[X])]TE[(X− E[X])] denotes the covariance matrix of the row vector

X. If E[X] = 0, then ΣX = RX. By using E[Yt] = 0, E[Vu
t−δ] = 0, (2.37), (2.45), and (2.46),

we obtain (2.38). This completes the proof. ■

In the special case of feature length u = 1, from (2.38), it can be shown that

Hlog(Yt|Vt−δ) =
1

2

(
log
(
E[Y 2

t ]−
E[VtVt−δ]

2

E[V 2
t ]

)
+ log2πe

)
. (2.47)

Quadratic Loss

For quadratic loss function L2(y, ŷ) = (y− ŷ)2, the L-entropy of Yt is the variance of Yt,

given by

H2(Yt) = σ2
Yt
. (2.48)

Because E[Yt] = 0, we have

H2(Yt) = E[Y 2
t ]. (2.49)
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Proposition 2.2 The L-conditional entropy H2(Yt|Vu
t−δ) is given by

H2(Yt|Vu
t−δ) = E[(Yt − E[Yt|Vu

t−δ])
2]

= E[Y 2
t ]−E[XtV

u
t−δ](RVu

t
)−1E[XtV

u
t−δ]

T , (2.50)

where E[VtVu
t−δ] =

[
E[VtVt−δ], . . . ,E[VtVt−δ−u+1]

]
is a 1 × u dimensional vector and RVu

t
is

an u× u dimensional auto-correlation matrix of Vu
t defined in (2.39).

Proof 2.9 The conditional expectation of Yt given Vu
t−δ = vu, i.e., E[Yt|Vu

t−δ = vu] is the

optimal estimator of

min
ϕ(vu,δ)∈R

EY∼PYt|vut−δ
=vu

[
(Y, ϕ(vu, δ))2

]
. (2.51)

By substituting L(y, ϕ(vu, δ)) = (y − ϕ(vu, δ))2 and ϕ(vu, δ) = E[Yt|Vu
t−δ = vu] into (??),

we obtain

H2(Yt|Vu
t−δ) = E[(Yt − E[Yt|Vu

t−δ])
2]. (2.52)

Since Yt and Vu
t−δ are jointly Gaussian with E[Yt] = 0, E[Vu

t−δ] = 0, and

E[YtVt−k] = E[VtVt−k] + E[NtVt−k] = E[VtVt−k], (2.53)

we get [58, Chapter 7.3]

E[Yt|Vu
t−δ = vu] = A(vu)T , (2.54)

where

A = E[VtVu
t−δ](RVu

t
)−1. (2.55)
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Figure 2.6: L-conditional entropy vs. AoI with (a) quadratic loss function and (b) log loss function
(base 2). The L-conditional entropy is not always a monotonic function of AoI. An AR(4) model
as defined in (2.67)-(2.68) is considered for this simulation.

By using orthogonality principle [58, Chapter 7.3], we get

E[(Yt −A(Vu
t−δ)

T )Vu
t−δ] = 0 (2.56)

Now, using (2.54) and (2.56), we obtain from (2.52) that

H2(Yt|Vu
t−δ) = E[(Yt − E[Yt|Vu

t−δ])
2]

= E[(Yt −A(Vu
t−δ)

T )Yt]

= E[Y 2
t ]−A(E[YtVu

t−δ])
T

= E[Y 2
t ]−A(E[VtVu

t−δ])
T . (2.57)

By substituting (2.55) into (2.57), we obtain (2.50). This completes the proof. ■

In the special case of feature length u = 1, from (2.50), it can be shown that

H2(Yt|Xt−δ) = E[Y 2
t ]−

E[XtXu
t−δ]

2

E[X2
t ]

. (2.58)

By utilizing Propositions 2.1-2.2, one can evaluate the L-conditional entropy of a data

sequence that is generated using a Gaussian AR(p) system.
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Characterizing the Parameter ϵ of An ϵ-Markov Chain

In this section, we show how to evaluate the value of the parameter ϵ from an AR(p)

process. We also analyzed the impact of feature length u on the parameter ϵ.

The parameter ϵ in Yt
ϵ↔ Vu

t−µ
ϵ↔ Vu

t−µ−ν depends on µ, ν, and u. We denote ϵµ,ν(u)

as the minimum value of ϵ for which Yt
ϵ↔ Vu

t−µ
ϵ↔ Vu

t−µ−ν is an ϵ-Markov chain. By using

Definition 2.1, we have

ϵµ,ν(u) =
√
Ilog(Yt;Vu

t−µ−ν |Vu
t−µ). (2.59)

We also denote ϵ(u) as the minimum value of ϵ for which Yt
ϵ↔ Vu

t−µ
ϵ↔ Vu

t−µ−ν is an

ϵ-Markov chain for all µ, ν ≥ 0. Then, we can write

ϵ(u) = max
µ,ν≥0

ϵµ,ν(u). (2.60)

Proposition 2.3 The following assertions are true for the Gaussian AR(p) model defined

in (2.32)-(2.33).

(a) The minimum value of ϵ for which the data sequence (Yt,V
u
t−µ,V

u
t−µ−ν) satisfies an

ϵ-Markov chain property, i.e., Yt
ϵ↔ Vu

t−µ
ϵ↔ Vu

t−µ−ν, for all µ, ν ≥ 0 is given by

ϵ(u) = max
µ,ν≥0

ϵµ,ν(u), (2.61)

where ϵµ,ν(u) is determined by

ϵµ,ν(u) =

√√√√1

2
log

(
det(R[Vu

t−µ−ν ,V
u
t−µ]

)det(R[Yt,Vu
t−µ]

)

det(RVu
t−µ

)det(R[Yt,Vu
t−µ−ν ,V

u
t−µ]

)

)
, (2.62)

det(A) denotes the determinant of a square matrix A, and RX = E[XTX] is the auto-

correlation matrix of a random vector X.

(b) If u ≥ p, then

ϵ(u) = 0. (2.63)
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Proof 2.10 Part(a): The Shannon’s conditional mutual information Ilog(Yt;V
u
t−µ−ν |Vu

t−µ)

can be derived as follows:

Ilog(Yt;V
u
t−µ−ν |Vu

t−µ)
(a)
=Hlog(Yt|Vu

t−µ)−Hlog(Yt|Vu
t−µ,V

u
t−µ−ν)

=Hlog(Yt)−Hlog(Yt|Vu
t−µ,V

u
t−µ−ν)

−Hlog(Yt) +Hlog(Yt|Vu
t−µ)

(b)
=Ilog(Yt;V

u
t−µ−ν ,V

u
t−µ)− Ilog(Yt;Vu

t−µ)

(c)
=
1

2
log

(
det(Σ[Vu

t−µ−ν ,V
u
t−µ]

)det(ΣYt)

det(Σ[Yt,Vu
t−µ−ν ,V

u
t−µ)

]

)

− 1

2
log

(
det(ΣVu

t−µ
)det(ΣYt)

det(Σ[Yt,Vu
t−µ]

)

)

=
1

2
log

(
det(Σ[Vu

t−µ−ν ,V
u
t−µ]

)det(Σ[Yt,Vu
t−µ]

)

det(ΣVu
t−µ

)det(Σ[Yt,Vu
t−µ−ν ,V

u
t−µ]

)

)
(d)
=
1

2
log

(
det(R[Vu

t−µ−ν ,V
u
t−µ]

)det(R[Yt,Vu
t−µ]

)

det(RVu
t−µ

)det(R[Yt,Vu
t−µ−ν ,V

u
t−µ]

)

)
, (2.64)

where (a), (b), and (c) hold due to (2.44), (2.43), and (2.46), respectively and (d) holds

because of E[Yt] = 0 and E[Vt−k] = 0 for all k.

Now, by substituting (2.64) into (2.59), we get (2.62).

Part (b): If l ≥ p, by using (2.33), we can express Vu
t−µ as a function of Vu

t−µ−ν for

any µ, ν ≥ 0. Hence, if l ≥ p, then

HL(Yt|Vu
t−µ,V

u
t−µ−ν) = HL(Yt|Vu

t−µ). (2.65)

By using (2.44) and (2.65), we get that if l ≥ p, then

IL(Yt;V
u
t−µ−ν |Vu

t−µ) = 0. (2.66)

From (2.62) and (2.66), we obtain that if l ≥ p, then ϵµ,ν(l) = 0 for all µ, ν ≥ 0. Thus,

ϵ(l) = 0. This concludes the proof. ■
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In Proposition 2.3(a), we present a closed-form expression for computing the parameter

ϵ(u). Utilizing Proposition 2.3(a), one can derive ϵ(u) from the auto-correlation function

of a data sequence generated from the AR(p) model. Proposition 2.3(b) implies that if

the feature length u is greater than or equal to the order p of the AR(p) model, then

ϵ(u) equals 0. By integrating Proposition 2.3(b) with Theorem 2.1, we can conclude that

if the feature length u is greater than or equal to the order p, the L-conditional entropy

becomes a non-decreasing function of AoI. However, transmitting longer features demands

more communication resources [34].

We evaluate the L-conditional entropy using the following autoregressive linear system

model.

Example 2.2 (Autoregressive Model) We utilize Proposition 2.1-2.3 to compute the L-

conditional entropy and the parameter ϵ(u) for the following AR(4) process:

Vt = 0.1Vt−1 + 0.8Vt−p +Wt, (2.67)

Yt = Vt +Nt, (2.68)

where Wt ∈ R and Nt ∈ R are i.i.d. Gaussian noises over time with zero mean and variances

0.01 and 0.001, respectively. The goal is to estimate Yt using a feature sequence Vu
t−δ =

[Vt−δ, Vt−δ−1, . . . , Vt−δ−u+1].

We compute the L-conditional entropy of Yt given Vu
t−δ for two different loss functions: (a)

quadratic loss and (b) log loss, using (2.50) and (2.38), respectively. In Fig. 2.6, we illustrate

the L-conditional entropy H2(Yt|Vu
t−δ) associated with quadratic loss and the L-conditional

entropy Hlog(Yt|Vu
t−δ) associated with log loss (base 2). Both H2(Yt|Vu

t−δ) and Hlog(Yt|Vu
t−δ)

exhibit similar behavior with respect to AoI δ and feature length l, but they are measured

in different scale and are used in different applications.

Moreover, we determine ϵ(u) through the following steps: Firstly, we calculate ϵµ,ν(u)

using (2.62) given µ, ν, and u. Subsequently, we compute ϵ(u) by maximizing ϵµ,ν(u) over all

µ, ν ≥ 0. However, this needs to compute ϵµ,ν(u) for an infinite number of µ and ν, which

is not possible. We find that when µ or ν exceed a large value, ϵµ,ν(u) becomes either 0 or

close to 0 for all l. Therefore, we can choose an upper bound denoted as M and compute
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ϵ(u) by maximizing ϵµ,ν(u) over all 0 ≤ µ, ν ≤ M . In our simulation, we set M = 50. The

outcomes of ϵ(l) for feature length l = 1, 2, 3, 4, 5 are 1.55, 1.49, 1.39, 0, and 0, respectively.

Fig. 2.6 and the value of ϵ(u) illustrate that as the feature length u increases, the

parameter ϵ(u) tends to zero, and the L-conditional entropy becomes a monotonic function

of AoI δ. Specifically, when the feature length u reaches the order p of the AR(p) process,

the parameter ϵ(u) equals zero and hence, the L-conditional entropy becomes a monotonic

function of AoI. Moreover, as the feature length u increases, the L-conditional entropy re-

duces. However, beyond the order p, further increases in feature length do not result in the

reduction of the L-conditional entropy. It is evident from Fig. 2.6 that the L-conditional

entropy for u = 4 and u = 5 remains the same for the AR(4) model.

2.7 Conclusions

In this chapter, we explored the impact of data freshness on the performance of remote

inference systems. We conducted experimental studies and provided information-theoretical

analysis to reveal that the inference error in a remote inference system is a function of AoI,

but not necessarily a monotonic function of AoI. If the target and feature data sequence

satisfy a Markov chain, then the inference error is a monotonic function of AoI. Otherwise,

if the target and feature data sequence is far from a Markov chain, then the inference error

can be a non-monotonic function of AoI. We also verified our results by constructing two

analytical models.
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2.A Experimental Setup for ML Experiments in Chapter 2.3

In all five experiments, we employed the first training method described in Section 2.2.

This approach involves training multiple neural networks independently and in parallel, each

using a distinct dataset with a different AoI value. In contrast, the second approach trains a

single neural network on a larger, combined dataset encompassing various AoI values. Due to

the smaller dataset sizes for each network, the first approach can potentially have a shorter

training time than the second approach. The experimental settings of the five experiments

are provided below:

Video Prediction: In video prediction experiment, a pre-trained neural network model

called “SAVP” [1] is used to evaluate on 256 samples of “BAIR” dataset [59], which contains

video frames of a randomly moving robotic arm. The pre-trained neural network model can

be downloaded from the GitHub repository of [1].

Robot State Prediction: In this experiment, we consider a leader-follower robotic system

illustrated in a YouTube video 3, where we used two Kinova JACO robotic arms with 7

degrees of freedom and 3 fingers to accomplish a pick and place task. The leader robot

sends its state (7 joint angles and positions of 3 fingers) Xt to the follower robot through a

channel. One packet for updating the leader robot’s state is sent periodically to the follower

robot every 20 time-slots. The transmission time of each updating packet is 20 time-slots.

The follower robot moves towards the leader’s most recent state and locally controls its

robotic fingers to grab an object. We constructed a robot simulation environment using

the Robotics System Toolbox in MATLAB. In each episode, a can is randomly generated

on a table in front of the follower robot. The leader robot observes the position of the can

and illustrates to the follower robot how to grab the can and place it on another table,

without colliding with other objects in the environment. The rapidly-exploring random tree

(RRT) algorithm is used to control the leader robot [60]. For the local control of the follower

robot, an interpolation method is used to generate a trajectory between two points sent from

the leader robot while also avoiding collisions with other obstacles. The leader robot uses

a neural network to predict the follower robot’s state Yt. The neural network consists of

3https://youtu.be/_z4FHuu3-ag
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one input layer, one hidden layer with 256 ReLU activation nodes, and one fully connected

(dense) output layer. The dataset contains the leader and follower robots’ states in 300

episodes of continue operation. The first 80% of the dataset is used for the training and the

other 20% of the dataset is used for the inference.

Actuator State Prediction: We consider the OpenAI CartPole-v1 task [2], where a DQN

reinforcement learning algorithm [61] is used to control the force on a cart and keep the

pole attached to the cart from falling over. By simulating 104 episodes of the OpenAI

CartPole-v1 environment, a time-series dataset is collected that contains the pole angle ψt

and the velocity vt of the cart. The pole angle ψt at time t is predicted based on a feature

Xt−δ = (vt−δ, . . . , vt−δ−u+1), i.e., a vector of cart velocity with length u, where vt is the cart

velocity at time t and ∆(t) = δ is the AoI. The predictor in this experiment is an LSTM

neural network that consists of one input layer, one hidden layer with 64 LSTM cells, and

a fully connected output layer. First 72% of the dataset is used for training and the rest of

the dataset is used for inference.

Temperature prediction: The temperature Yt at time t is predicted based on a feature

Xt−δ = {st−δ, . . . , st−δ−u+1}, where st is a 7-dimensional vector consisting of temperature,

pressure, saturation vapor pressure, vapor pressure deficit, specific humidity, airtightness,

and wind speed at time t. We used the Jena climate dataset recorded by the Max Planck

Institute for Biogeochemistry [62]. The dataset comprises 14 features, including tempera-

ture, pressure, humidity, etc., recorded once every 10 minutes from 10 January 2009 to 31

December 2016. The first 75% of the dataset is used for training and the later 25% is used

for inference. Temperature is predicted every hour using an LSTM neural network composed

of one input layer, one hidden layer with 32 LSTM units, and one output layer.

CSI Prediction: The CSI ht at time t is predicted based on a featureXt−δ = {ht−δ, . . . , ht−δ−u+1}.
The dataset for CSI is generated by using Jakes model [63].

2.B Examples of Loss function L, L-entropy, and L-cross entropy

Several examples of loss function L, L-entropy, and L-cross entropy are listed below.

Additional examples can be found in [47–49].
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Logarithmic Loss (log-loss)

The log-loss function is given by Llog(y,QY ) = − logQY (y), where the action a = QY is

a distribution in PY . The corresponding L-entropy is the well-known Shannon’s entropy [55],

defined as

Hlog(Y ) =−
∑
y∈Y

PY (y) log PY (y), (2.69)

where PY is the distribution of Y . The corresponding L-cross entropy is given by

Hlog(Y ; Ỹ ) =−
∑
y∈Y

PY (y) log PỸ (y). (2.70)

The L-mutual information and L-divergence associated with the log-loss are Shannon’s mu-

tual information and the K-L divergence defined in (2.19), respectively.

Brier Loss

The Brier loss function is defined as LB(y,QY ) =
∑

y′∈Y QY (y
′)2 − 2 QY (y) + 1 [47].

The associated L-entropy is given by

HB(Y ) =1−
∑
y∈Y

PY (y)
2, (2.71)

and the associated L-cross entropy is

HB(Y ; Ỹ ) =
∑
y∈Y

PỸ (y)
2 − 2

∑
y∈Y

PỸ (y)PY (y) + 1. (2.72)
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0-1 Loss

The 0-1 loss function is given by L0-1(y, ŷ) = 1(y ̸= ŷ), where 1(A) is the indicator

function of event A. For this case, we have

H0-1(Y ) = 1−max
y∈Y

PY (y), (2.73)

H0-1(Y ; Ỹ ) = 1− PY

(
argmax

y∈Y
PỸ (y)

)
. (2.74)

α-Loss

The α-loss function is defined by Lα(y,QY ) =
α

α−1

[
1−QY (y)

α−1
α

]
for α > 0 and α ̸= 1

[64, Eq. 14]. It becomes the log-loss function in the limit α → 1 and the 0-1 loss function

in the limit α→∞. The L-entropy and L-cross entropy associated with the α-loss function

are given by

Hα-loss(Y ) =
α

α− 1

1−(∑
y∈Y

PY (y)
α

) 1
α

 , (2.75)

Hα-loss(Y ; Ỹ ) =
α

α− 1

1−(∑
y∈Y

PỸ (y)
α

) 1
α

λ

 , (2.76)

where

λ =

∑
y∈Y

PY (y)
PỸ (y)

PỸ (y)
α∑

y∈Y PỸ (y)
α

. (2.77)

Quadratic Loss

The quadratic loss function is L2(y, ŷ) = (y − ŷ)2. The L-entropy function associated

with the quadratic loss is the variance of Y , given by

H2(Y ) = E[Y 2]− E[Y ]2. (2.78)
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The corresponding L-cross entropy is

H2(Y ; Ỹ ) = E[Y 2]− 2E[Ỹ ]E[Y ] + E[Ỹ ]2. (2.79)

2.C Relationship among L-divergence, Bregman divergence, and f-divergence

We explain the relationship among the L-divergence defined in (2.41), the Bregman

divergence [65], and the f -divergence [52]. All these three classes of divergence have been

widely used in the machine learning literature. Their differences are explained below.

Let PY denote the set of all probability distributions on the discrete set Y . Define

Z ⊂ R|Y| as the set of all probability vectors z = (z1, . . . , z|Y|)
T that satisfy

∑|Y|
i=1 zi = 1 and

zi ≥ 0 for all i = 1, 2, . . . , |Y|. Any distribution PY ∈ PY can be represented by a probability

vector pY = (PY (y1), . . . , PY (y|Y|))
T ∈ Z.

Definition 2.3 [65] Let F : Z 7→ R be a continuously differentiable and strictly convex

function defined on the convex set Z. The Bregman divergence associated with F between

two distributions PY , QY ∈ PY is defined as

BF (PY ||QY )=F (pY )− F (qY )−∇F (qY )
T(pY − qY ), (2.80)

where pY ∈ Z and qY ∈ Z are two probability vectors associated with the distributions PY

and QY , respectively, and ∇F =
(

∂F
∂z1
, . . . , ∂F

∂z|Y|

)T
.

We establish the following lemma:

Lemma 2.5 For any continuously differentiable and strictly convex function F : Z 7→ R,

the Bregman divergence BF (PY ||QY ) associated with F is an LF -divergence DLF
(PY ||QY )

associated with the loss function

LF (y,QY ) = −F (qY )−
∂F (qY )

∂zy
+∇F (qY )

TqY . (2.81)
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Proof 2.11 According to (2.5), the LF -entropy associated with the loss function LF (y,QY )

in (2.81) is defined as

HLF
(Y ) = min

QY ∈PY
EY∼PY

[LF (Y,QY )] , (2.82)

where PY is the distribution of Y . Using (2.81), we can get

EY∼PY
[LF (Y,QY )] = −

∑
y∈Y

PY (y)F (qY )−
∑
y∈Y

PY (y)
∂F (qY )

∂zy

+
∑
y∈Y

PY (y)∇F (qY )
TqY

= −F (qY )−∇F (qY )
T (pY − qY ), (2.83)

where the last equality holds because F (qY ) and ∇F (qY )
TqY are constants that remain un-

changed regardless of the variable y. Because the function F is continuously differentiable

and strictly convex on the convex set Z, we have for all pY ,qY ∈ Z

−F (qY )−∇F (qY )
T (pY − qY ) ≥ −F (pY ). (2.84)

Equality holds in (2.84) if and only if qY = pY . From (2.82), (2.83), and (2.84), we obtain

HLF
(Y ) = min

qY ∈Z
−F (qY )−∇F (qY )

T (pY − qY )

= −F (pY ). (2.85)

Substituting (2.83) and (2.85) into (2.80), yields

BF (PY ||QY ) = F (pY )− F (qY )−∇F (qY )
T (pY − qY )

= EY∼PY
[LF (Y,QY )]−HLF

(Y )

= DLF
(PY ||QY ). (2.86)

This completes the proof.
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Let us rewrite the L-entropy HL(Y ) as HL(pY ) to emphasize that it is a function of the

probability vector pY . If HL(pY ) is continuously differentiable and strictly concave in pY ,

then the L-divergence DL(PY ||QY ) can be expressed as [47, Section 3.5.4]

DL(PY ||QY ) = HL(qY ) +∇HL(qY )
T (pY − qY )−HL(pY )

= B−HL
(PY ||QY ), (2.87)

which is the Bregman divergence B−HL
(PY ||QY ) associated with the continuously differen-

tiable and strictly convex −HL. However, if HL(pY ) is not continuously differentiable or not

strictly concave in pY , DL(PY ||QY ) is not necessarily a Bregman divergence.

Definition 2.4 [52] Let f : (0,∞) 7→ R be a convex function with f(1) = 0. The f -

divergence between two probability distributions PY , QY ∈ PY is defined as

Df (PY ||QY ) =
∑
y∈Y

QY (y)f

(
PY (y)

QY (y)

)
. (2.88)

An f -divergence may not be L-divergence, and vice versa. In fact, the KL divergence

Dlog(PY ||QY ) defined in (2.19) and its dual Dlog(QY ||PY ) are the unique divergences belong-

ing to both the classes of f -divergence and Bregman divergence [66]. Because KL divergence

is also an L-divergence, Dlog(PY ||QY ) and Dlog(QY ||PY ) are the only divergences belonging

to all the three classes of divergences.

The f -mutual information can be expressed using the f -divergence as

If (Y ;X) = EX∼PX
[Df (PY |X ||PY )]. (2.89)
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The f -mutual information is symmetric, i.e., If (Y ;X) = If (X;Y ), which can be shown as

follows:

If (Y ;X) =
∑
x∈X

PX(x)
∑
y∈Y

PY (y)f

(
PY |X(y|x)
PY (y)

)
=
∑
x∈X
y∈Y

PX(x)PY (y)f

(
PY |X(y|x)PX(x)

PY (y)PX(x)

)

=
∑
x∈X
y∈Y

PX(x)PY (y)f

(
PX|Y (x|y)PY (y)

PY (y)PX(x)

)

=
∑
y∈Y

PY (y)
∑
x∈X

PX(x)f

(
PX|Y (x|y)
PX(x)

)
=If (X;Y ). (2.90)

On the other hand, the L-mutual information is generally non-symmetric, i.e., IL(Y ;X) ̸=
IL(X;Y ), except for some special cases. For example, Shannon’s mutual information is

defined by

Ilog(Y ;X) = EX∼PX
[Dlog(PY |X ||PY )], (2.91)

which is both an L-mutual information and a f -mutual information. It is well-known that

Ilog(Y ;X) = Ilog(X;Y ).

2.D Proof of Equation (2.3)

Because we assume that Yt and Xt−δ are independent of ∆(t), for all y ∈ Y , x ∈ X , and
δ ∈ Z+, we have

PYt,Xt−δ|∆(t)=δ(y, x) = PYt,Xt−δ
(y, x). (2.92)

By using ϕ∗ on the inference dataset, the inference error given ∆(t) = δ is determined by

p(δ) = EY,X∼PYt,Xt−∆(t)|∆(t)=δ
[L (Y, ϕ∗(X, δ))] , (2.93)
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where PYt,Xt−∆(t)|∆(t)=δ is the distribution of target Yt and feature Xt−∆(t) given ∆(t) = δ.

By substituting (2.92) into (2.93), we obtain

p(δ) = EY,X∼PYt,Xt−∆(t)|∆(t)=δ
[L (Y, ϕ∗(X, δ))]

= EY,X∼PYt,Xt−δ |∆(t)=δ
[L (Y, ϕ∗(X, δ))]

= EY,X∼PYt,Xt−δ
[L (Y, ϕ∗(X, δ))]

= EY,X∼PYδ,X0
[L (Y, ϕ∗(X, δ))] . (2.94)

The last equality holds due to the stationarity of {(Yt, Xt), t = 0, 1, 2, . . .}. This completes

the proof.

2.E Proof of Equation (2.10)

Let D = {δ : PΘ(δ) > 0} be support set of PΘ. From (2.9), we have

HL(Ỹ0|X̃−Θ,Θ) =
∑

x∈X ,δ∈D

PX̃−Θ,Θ(x, δ)HL(Ỹ0|X̃−Θ = x,Θ = δ)

=
∑
δ∈D

PΘ(δ)
∑
x∈X

PX̃−Θ|Θ=δ(x)HL(Ỹ0|X̃−Θ = x,Θ = δ)

=
∑
δ∈D

PΘ(δ)
∑
x∈X

PX̃−δ|Θ=δ(x)HL(Ỹ0|X̃−Θ = x,Θ = δ). (2.95)

Next, from (2.6), we obtain that for all x ∈ X and δ ∈ D,

HL(Ỹ0|X̃−Θ = x,Θ = δ) = min
a∈A

EY∼PỸ0|X̃−Θ=x,Θ=δ
[L(Y, a)]

= min
a∈A

EY∼PỸ0|X̃−δ=x,Θ=δ
[L(Y, a)]. (2.96)

Because we assume that Ỹ0 and X̃−k are independent of Θ for every k ≥ 0, for all x ∈ X , y ∈ Y
and δ ∈ D

PỸ0|X̃−δ=x,Θ=δ(y) = PỸ0|X̃−δ=x(y), (2.97)

PX̃−δ|Θ=δ(x) = PX̃−δ
(x). (2.98)
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Substituting (2.97) into (2.96), we get

HL(Ỹ0|X̃−Θ = x,Θ = δ) = min
a∈A

EY∼PỸ0|X̃−δ=x
[L(Y, a)]

= HL(Ỹ0|X̃−δ = x). (2.99)

Substituting (2.99) and (2.98) into (2.95), we observe that

HL(Ỹ0|X̃−Θ,Θ) =
∑
δ∈D

PΘ(δ)
∑
x∈X

PX̃−δ
(x)HL(Ỹ0|X̃−δ = x)

=
∑
δ∈Z+

PΘ(δ) HL(Ỹ0|X̃−δ). (2.100)

This completes the proof.

2.F Proof of Lemma 2.1

This is due to the following symmetry property:

Ilog(Y ;Z|X) = Ilog(Z;Y |X). (2.101)

2.G Proof of Lemma 2.2

By using the definition of L-conditional mutual information in (2.44), we obtain

HL(Y |X,Z) =HL(Y |X)− IL(Y ;Z|X)

=HL(Y |Z)− IL(Y ;X|Z). (2.102)

From (2.44) and (2.102), we get

HL(Y |X) =HL(Y |Z) + IL(Y ;Z|X)− IL(Y ;X|Z)

≤HL(Y |Z) + IL(Y ;Z|X), (2.103)
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where the last inequality is due to IL(Y ;X|Z) ≥ 0. Now, we need to show that if Y
ϵ↔ X

ϵ↔
Z, then

IL(Y ;Z|X) = O(ϵ). (2.104)

and in addition, if HL(Y ) is twice differentiable, then

IL(Y ;Z|X) = O(ϵ2). (2.105)

From (2.44), we see that

IL(Y ;Z|X) = EX,Z [DL(PY |X,Z ||PY |X)]. (2.106)

We know from Pinsker’s inequality [55, Lemma 11.6.1] that

∑
y∈Y

(PY (y)−QY (y))
2 ≤ 2ln2 Dlog(PY ||QY ). (2.107)

If Y
ϵ↔ X

ϵ↔ Z is an ϵ-Markov chain, then Definition 2.1 yields:

∑
(x,z)∈X×Z

PX,Z(x, z)Dlog(PY |X=x,Z=z||PY |X=x) ≤ ϵ2. (2.108)

Let X ′×Z ′ = {(x, z) : PX,Z(x, z) > 0} be the support set of PX,Z . Then, (2.109) reduces to

∑
(x,z)∈X ′×Z′

PX,Z(x, z)Dlog(PY |X=x,Z=z||PY |X=x) ≤ ϵ2. (2.109)

Because the left side of the above inequality is the summation of non-negative terms, the

following holds:

PX,Z(x, z)Dlog(PY |X=x,Z=z||PY |X=x) ≤ ϵ2, (2.110)
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for all (x, z) ∈ X ′ × Z ′. Because PX,Z(x, z) > 0 for all (x, z) ∈ X ′ × Z ′, from (2.107) and

(2.110), we can write

∑
y∈Y

(PY |X=x,Z=z(y)− PY |X=x(y))
2 ≤ 2ln2ϵ2

PX,Z(x, z)
, (2.111)

for all (x, z) ∈ X ′ ×Z ′. Next, we need the following lemma.

Lemma 2.6 The following assertions are true:

(a) If two distributions QY ∈ PY and PY ∈ PY satisfy

∑
y∈Y

(PY (y)−QY (y))
2 ≤ β2, (2.112)

then

DL(PY ||QY ) = O(β). (2.113)

(b) If, in addition, HL(Y ) is twice differentiable in PY , then

DL(PY ||QY ) = O(β2). (2.114)

Proof 2.12 See in Appendix 2.L.

Using (2.111) and Lemma 2.6(a) in (2.106), we obtain

IL(Y ;Z|X) =
∑

(x,z)∈X×Z

PX,Z(x, z) DL(PY |X=x,Z=z||PY |X=x)

=
∑

(x,z)∈X ′×Z′

PX,Z(x, z) DL(PY |X=x,Z=z||PY |X=x)

=
∑

(x,z)∈X ′×Z′

PX,Z(x, z) O

( √
2ln2ϵ√

PX,Z(x, z)

)

= O(ϵ). (2.115)
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Similarly, when HL(Y ) is differentiable in PY , by using Lemma 2.6(b) we obtain

IL(Y ;Z|X) = O(ϵ2). (2.116)

This completes the proof of Lemma 2.2.

2.H Proof of Theorem 2.1

By using the definition of L-conditional mutual information in (2.44), we can show that

HL(Ỹ0|X̃−k, X̃−k−1) = HL(Ỹ0|X̃−k−1)− IL(Ỹ0; X̃−k|X̃−k−1)

= HL(Ỹ0|X̃−k)− IL(Ỹ0; X̃−k−1|X̃−k). (2.117)

Expanding HL(Ỹ0|X̃−k), we have

HL(Ỹ0|X̃−k) =HL(Ỹ0|X̃−k−1) + IL(Ỹ0; X̃−k−1|X̃−k)− IL(Ỹ0; X̃−k|X̃−k−1). (2.118)

Since the above equation is valid for all values of k ≥ 0, taking the summation of HL(Ỹ0|X̃−k)

from k = 0 to δ − 1 yields:

HL(Ỹ0|X̃−δ) =HL(Ỹ0|X̃0) +
δ−1∑
k=0

IL(Ỹ0; X̃−k|X̃−k−1)−
δ−1∑
k=0

IL(Ỹ0; X̃−k−1|X̃−k). (2.119)

Thus, we can express HL(Ỹ0|X̃−δ) as a function of δ as in (2.23) and (2.24). Moreover, the

functions g1(δ) and g2(δ) defined in (2.24) are non-decreasing in δ as IL(Ỹ0; X̃−k|X̃−k−1) ≥ 0

and IL(Ỹ0; X̃−k−1|X̃−k) ≥ 0 for all values of k.

To prove the next part, we use Lemma 2.2. Because for every µ, ν ≥ 0, Ỹ0
ϵ↔ X̃−µ

ϵ↔
X̃−µ−ν is an ϵ-Markov chain, we can write

IL(Ỹ0; X̃−k−1|X̃−k) = O(ϵ). (2.120)
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This implies

g2(δ) =
δ−1∑
k=0

O(ϵ) = O(ϵ). (2.121)

The last equality follows from the summation property of big-O-notation. This completes

the proof.

2.I Proof of Theorem 2.2

Using (2.10) and Theorem 2.1, we obtain

HL(Ỹ0|X̃−Θ,Θ) =
∑
δ∈Z+

PΘ(δ)
(
HL(Ỹ0|X̃0) +ĝ1(δ)− g2(δ)

)
= HL(Ỹ0|X̃0)+ EΘ∼PΘ

[ĝ1(Θ)]− EΘ∼PΘ
[g2(Θ)], (2.122)

where

ĝ1(δ) = g1(δ)−HL(Ỹ0|X̃0)

=
δ−1∑
k=0

IL(Ỹ0; X̃−k|X̃−k−1). (2.123)

Because mutual information IL(Ỹ0; X̃−k|X̃−k−1) is non-negative, we have

ĝ1(δ) =
δ−1∑
k=0

IL(Ỹ0; X̃−k|X̃−k−1) ≥ 0. (2.124)

Because ĝ1(δ) is non-negative for all δ, the function ĝ1(·) is Lebesgue integrable with re-

spect to all probability measure PΘ [67]. Hence, the expectation EΘ∼PΘ
[ĝ1(Θ)] exists. Note

that EΘ∼PΘ
[ĝ1(Θ)] can be infinite (+∞). By using the same argument, we obtain that

EΘ∼PΘ
[g2(Θ)] exists but can also be infinite. Moreover, the functions ĝ1(δ) and g2(δ) are

non-decreasing in δ.
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Because (i) the function ĝ1(δ) is non-decreasing in δ, (ii) the expectation EΘ∼PΘ
[ĝ1(Θ)]

exists, and (iii) Θ1 ≤st Θ2, we have [56]

EΘ∼PΘ1
[ĝ1(Θ)] ≤ EΘ∼PΘ2

[ĝ1(Θ)]. (2.125)

Next, we obtain:

HL(Ỹ0|X̃−Θ1 ,Θ1)
(a)
= HL(Ỹ0|X̃0) + EΘ∼PΘ1

[ĝ1(Θ)]− EΘ∼PΘ1
[g2(Θ)]

(b)

≤ HL(Ỹ0|X̃0) + EΘ∼PΘ2
[ĝ1(Θ)]− EΘ∼PΘ1

[g2(Θ)]

(c)
= HL(Ỹ0|X̃−Θ2 ,Θ2)

+ EΘ∼PΘ2
[g2(Θ)]− EΘ∼PΘ1

[g2(Θ)]

(d)
= HL(Ỹ0|X̃−Θ2 ,Θ2) +O(ϵ), (2.126)

where (a) and (c) hold due to (2.122), (b) is obtained using (2.125), and (d) follows from the

fact that Ỹ0
ϵ↔ X̃−µ

ϵ↔ X̃−µ−ν is an ϵ-Markov chain for all µ, ν ≥ 0 (see Theorem 2.1(b)).

This completes the proof.

2.J Proof of Lemma 2.3

By using condition (2.28) and Lemma 2.6(a), we obtain for all x ∈ X :

DL

(
PYt|Xt−δ=x||PỸ0|X̃−δ=x

)
= O(β). (2.127)

Next, by using (2.11) and (2.127), we have

HL(PYt|Xt−δ
;PỸ0|X−δ

|PXt−δ
) = HL(Yt|Xt−δ)

+
∑
x∈X

PXt−δ
(x) DL

(
PYt|Xt−δ=x||PỸ0|X̃−δ=x

)
= HL(Yt|Xt−δ) +O(β). (2.128)

This completes the proof.
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2.K Proof of Theorem 2.3

Part (a): By the definition of L-conditional cross entropy (2.11), we get

HL(PYt|Xt−δ
;PỸ0|X−δ

|PXt−δ
) =

∑
x∈X

PXt−δ
(x)EY∼PYt|Xt−δ=x

[
L
(
Y, aỸ0|X̃−δ=x

)]
, (2.129)

where the Bayes predictor aỸ0|X̃−δ=x is fixed in the inference phase for every time slot t.

Because {(Yt, Xt), t = 0, 1, 2, . . .} is a stationary process, (2.129) is a function of the AoI δ.

Part (b): We can apply Lemma 2.3 since (2.28) holds for all x ∈ X and δ ∈ Z+. This

gives us:

HL(PYt|Xt−δ1
;PỸ0|X−δ1

|PXt−δ1
)

=HL(Yt|Xt−δ1) +O(β)

≤HL(Yt|Xt−δ2) +O(ϵ) +O(β)

=HL(PYt|Xt−δ2
;PỸ0|X−δ2

|PXt−δ2
) +O(β) +O(ϵ) +O(β)

=HL(PYt|Xt−δ2
;PỸ0|X−δ2

|PXt−δ2
) +O(max{ϵ, β}), (2.130)

where we use Lemma 2.3 to obtain the first and the third equality, and the second inequality

holds due to the assumption that Yt
ϵ↔ Xt−µ

ϵ↔ Xt−µ−ν is an ϵ-Markov chain for all µ, ν ≥ 0

(see Theorem 2.1). This completes the proof.

2.L Proof of Lemma 2.6

To prove Lemma 2.6, we will use the sub-gradient mean value theorem [68]. When

HL(Y ) is twice differentiable in PY , we can use a second order Taylor series expansion.

If (2.112) holds, we can obtain

∑
y∈Y

(PY (y)−QY (y))
2 ≤ β2, (2.131)
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∑
y∈Y

|PY (y)−QY (y)| ≤ β, (2.132)

and

max
y∈Y
|PY (y)−QY (y)| ≤ β. (2.133)

Let us define a convex function g : R|Y| 7→ R as

g(z) =

|Y|∑
i=1

zi L(yi, aQY
)−min

a∈A

|Y|∑
i=1

zi L(yi, a), (2.134)

where aQY
is a Bayes action associated with the distribution QY , i.e., aQY

is the minimizer

of

aQY
= argmin

a∈A
EY∼QY

[L(Y, a]]. (2.135)

Because g(z) is a convex function and the set of sub-gradients of g(z) is bounded [68,

Proposition 4.2.3], we can apply the sub-gradient mean value theorem [68] along with (2.41),

and (2.132) to obatin

g(pY ) =DL(PY ||QY )

=g(qY ) +O

(∑
y∈Y

|PY (y)−QY (y)|
)

=DL(QY ||QY ) +O

(∑
y∈Y

|PY (y)−QY (y)|
)

=O(β). (2.136)
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Now, let us consider the case where HL(Y ) is assumed to be twice differentiable in PY .

The function g(pY ) can also be expressed in terms of HL(Y ) as:

g(pY ) =

|Y|∑
i=1

PY (yi) L(yi, aQY
)−min

a∈A

|Y|∑
i=1

PY (yi) L(yi, a)

=

|Y|∑
i=1

PY (yi) L(yi, aQY
)−HL(Y ). (2.137)

Because HL(Y ) is assumed to be twice differentiable in PY , from (2.137), we can conclude

that g(pY ) is twice differentiable with respect to pY . Furthermore, we have

g(pY ) ≥ 0, ∀pY ∈ R|Y| (2.138)

and

g(qY ) = DL(QY ||QY ) = 0. (2.139)

Using the first-order necessary condition for optimality, we find that the gradient of g(pY )

at point pY = qY is zero, i.e.,

∇g(qY ) = 0. (2.140)
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Next, based on (2.139) and (2.140), we can perform a second-order Taylor series expansion

of g(pY ) at pY = qY :

g(pY ) =g(qY ) + (pY − qY )
T∇g(qY )

+
1

2
(pY − qY )

TH(qY )(pY − qY )

+ o

(∑
y∈Y

(PY (y)−QY (y))
2

)

=
1

2
(pY − qY )

TH(qY )(pY − qY )

+ o

(∑
y∈Y

(PY (y)−QY (y))
2

)
, (2.141)

where H(qY ) is the Hessian matrix of g(pY ) at point pY = qY .

Because g(pY ) is a convex function, we have

(pY − qY )
TH(qY )(pY − qY ) ≥ 0.

Moreover, we can express

1

2
(pY − qY )

TH(qY )(pY − qY )

=
1

2

∑
y,y′

(PY (y)−QY (y))H(qY )y,y′(PY (y
′)−QY (y

′))

= O

(∑
y,y′

(PY (y)−QY (y))(PY (y
′)−QY (y

′))

)
. (2.142)

Now, by substituting (2.142) into (2.141), we obtain

g(pY ) =O

(∑
y,y′

(PY (y)−QY (y))(PY (y
′)−QY (y

′))

)

+ o

(∑
y∈Y

(PY (y)−QY (y))
2

)
. (2.143)
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Using (2.131) and (2.133), we obtain from (2.143) that

g(pY ) = DL(PY ||QY ) = O(β2) + o(β2) = O(β2). (2.144)

This completes the proof.

2.M Proof of Lemma 2.4

Because Yt = f(Xt−d) and Xt is a Markov chain, Yt ↔ Xt−δ ↔ Xt−(δ−1) is a Markov

chain for all 0 ≤ δ ≤ d. By the data processing inequality for L-conditional entropy [48,

Lemma 12.1], one can show that for all 0 ≤ δ ≤ d,

HL(Yt|Xt−δ) ≤ HL(Yt|Xt−(δ−1)). (2.145)

Moreover, since Yt = f(Xt−d) and Xt is a Markov chain, Yt ↔ Xt−δ ↔ Xt−(δ+1) is a

Markov chain for all δ ≥ d. By the data processing inequality [48, Lemma 12.1], one can

show that for all δ ≥ d,

HL(Yt|Xt−δ) ≤ HL(Yt|Xt−(δ+1)). (2.146)

Because Yt = f(Xt−d) and f(·) is a function, we have PYt|Xt−d
= PYt|f(Xt−d) = PYt|Yt . Hence,

HL(Yt|Xt−d) = HL(Yt|Yt) ≤ HL(Yt|Z). (2.147)
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Chapter 3

Timely Inference in Single-Source and Single-Channel Networks

3.1 Introduction

In this chapter, we will introduce a new medium access model and develop a novel trans-

mission scheduling policy for single-source remote inference systems. This scheduling policy

can effectively minimize general functions of the AoI, regardless of whether the function is

monotonic or not. The contributions of this paper are summarized as follows:

• We design transmission scheduling policies for minimizing the inference error. Because

fresher data is not always better, we propose a new medium access model called the

“selection-from-buffer” model, where B most recent features are stored in the source’s

buffer and the source can choose to send any of the B most recent features. This model

is more general than the “generate-at-will” model used in earlier studies, e.g., [20–25,

28]. If the inference error is an non-decreasing function of the AoI, the “selection-

from-buffer” model achieves the same performance as the “generate-at-will” model; if

the AoI function is non-monotonic, the “selection-from-buffer” model can potentially

achieve better performance.

• When there is a single source-predictor pair and a single channel, an optimal scheduling

policy is devised to determine (i) when to submit features to the channel and (ii)

which feature in the buffer to submit. This scheduling policy is capable of minimizing

general functions of the AoI, regardless of whether the function is monotonic or not.

By leveraging a new index function γ(∆(t)), the optimal scheduling policy can be

expressed an index-based threshold policy, where a new packet is sent out whenever

γ(∆(t)) exceeds a pre-determined threshold (Theorems 3.1-3.2). The threshold can be

computed by using low complexity algorithms, e.g., bisection search. We note that the

function γ(·) is not necessarily monotonic and hence its inverse function may not exist.

Consequently, this index-based threshold policy cannot be equivalently expressed as

an AoI-based threshold policy, i.e., a new packet is sent out whenever the AoI ∆(t)
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exceeds a pre-determined threshold. This is a key difference from prior studies on

minimizing non-decreasing AoI functions [20–32], where the optimal scheduling policy

is an AoI-based threshold policy.

• The above results hold (i) for minimizing general AoI functions (monotonic or non-

monotonic) and (ii) for random delay channels. Data-driven evaluations show that the

optimal scheduler achieves up to 3 times smaller inference error compared to “generate-

at-will” with optimal scheduling strategy and 8 times smaller inference error compared

to periodic feature updating (see Fig. 3.2).

• When the training and inference data have the same probabilistic distribution, remote

inference reduces to signal-agnostic remote estimation. Hence, the results of the present

work above also apply to signal-agnostic remote estimation.

3.1.1 Related Works

In the earlier AoI studies [20–32], it was usually assumed that the observed data sequence

is Markovian and the performance degradation caused by information aging was modeled as

a monotonic AoI function. Hence, the earlier studies [20–25, 28] adopted “generate-at-will”

status updating model, where the transmitter can only select the most recently generated

signal. However, practical data sequence may not be Markovian [23]. In the present paper,

we propose a new local geometric approach to analyze both Markovian and non-Markovian

time-series data. For non-Markovian time-series data, fresh data is not always better. To

that end, we propose a new status updating model called the “selection-from-buffer” model,

where the transmitter has the option to send any of the B most recent features stored in the

source buffer.

3.2 Selection-from-Buffer: A New Status Updating Model

Consider the remote inference system depicted in Fig. 3.1, where a source progressively

generates features and sends them through a channel to a receiver. The system operates in

discrete time-slots. In each time slot t, a pre-trained neural network at the receiver employs

the freshest received feature Xt−∆(t) to infer the current label Yt.

55



ACK 

Xt

Receiver

Predictor

Transmitter

∆(t)
Ŷt
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Figure 3.1: A remote inference system with “selection-from-buffer.” At each time slot t, the
transmitter generates a feature Xt and keeps it in a buffer that stores B most recent features
(Xt, Xt−1, . . . , Xt−B+1). The scheduler decides (i) when to submit features to the channel and (ii)
which feature in the buffer to submit.

As discussed in Section 2.2-2.4, the inference error errinference(∆(t)) is a function of

the AoI ∆(t), whereas the function is not necessarily monotonically increasing. In certain

scenarios, a stale feature with ∆(t) > 0 can outperform a freshly generated feature with

∆(t) = 0. Inspired by these observations, we introduce a novel medium access model for

status updating, which is termed the “selection-from-buffer” model. In this model, the

source maintains a buffer that stores the B most recent features (Xt, Xt−1, . . . , Xt−B+1) in

each time slot t. Specifically, at the beginning of time slot t, the source appends a newly

generated feature Xt to the buffer, while concurrently evicting the oldest feature Xt−B. If

the channel is available at time slot t, the transmitter can send one of the B most recent

features or remain silent, where the transmission may last for one or multiple time-slots.

Notably, the “selection-from-buffer” model generalizes the “generate-at-will” model [20,22],

with the latter is a special case of the former with B = 1.1

The system starts to operate at time slot t = 0. We assume that the buffer is initially

populated with B features (X0, X−1, . . . , X−B+1) at time slot t = 0. By this, the buffer is

kept full at all time slot t ≥ 0. The channel is modeled as a non-preemptive server with

feature transmission times Ti ≥ 1, which can be random due to factors like time-varying

1In comparison to the “generate-at-will” model, our “selection-from-buffer” model presents a critical
advantage: it enables the systematic investigation of optimal feature design for remote inference. As an
evidence, our subsequent study [34] demonstrates that substantial performance improvements can be attained
through the joint optimization of transmission scheduling and the feature sequence length u.
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channel conditions, collisions, random packet sizes, etc. We assume that the Ti’s are i.i.d.

with 1 ≤ E[Ti] <∞. The i-th feature is generated in time slot Gi, submitted to the channel

in time slot Si, and delivered to the receiver in time slot Di = Si + Ti, where Gi ≤ Si < Di,

and Di ≤ Si+1 < Di+1. Once a feature is delivered, an acknowledgment (ACK) is fed back

to the transmitter in the same time slot. Thus, the idle/busy state of the channel is known

at the transmitter.

Scheduling Policies and Problem Formulation

A transmission scheduler determines (i) when to submit features to the channel and

(ii) which feature in the buffer to submit. In time slot Si, let XGi
= XSi−bi be the feature

submitted to the channel, which is the (bi + 1)-th freshest feature in the buffer, with bi ∈
{0, 1, . . . , B − 1}. By this, Gi = Si − bi. A scheduling policy is denoted by a 2-tuple (f, g),

where g = (S1, S2, . . .) determines when to submit the features and f = (b1, b2, . . .) specifies

which feature in the buffer to submit.

Let U(t) = maxi{Gi : Di ≤ t} represent the generation time of the freshest feature

delivered to the receiver up to time slot t. Because Gi = Si−bi, U(t) = maxi{Si−bi : Di ≤ t}.
The age of information (AoI) at time t is [10]

∆(t) = t− U(t) = t−max
i
{Si − bi : Di ≤ t}. (3.1)

Because Di < Di+1, ∆(t) can be re-written as

∆(t) = t− Si + bi, if Di ≤ t < Di+1. (3.2)

The initial state of the system is assumed to be S0 = 0, D0 = T0, and ∆(0) is a finite

constant.

We focus on the class of signal-agnostic scheduling policies in which each decision

is determined without using the knowledge of the signal value of the observed process.

A scheduling policy (f, g) is said to be signal-agnostic, if the policy is independent of

{(Yt, Xt), t = 0, 1, 2, . . .}. Let Π represent the set of all causal and signal-agnostic scheduling

policies that satisfy three conditions: (i) the transmission time schedule Si and the buffer
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position bi are determined based on the current and the historical information available

at the scheduler; (ii) the scheduler does not have access to the realization of the process

{(Yt, Xt), t = 0, 1, 2, . . .}; and (iii) the scheduler can access the inference error function

errinference(·) and the distribution of Ti.

Our goal is to find an optimal scheduling policy that minimizes the time-average ex-

pected inference error among all causal scheduling policies in Π:

p̄opt = inf
(f,g)∈Π

lim sup
T→∞

1

T
E(f,g)

[
T−1∑
t=0

p(∆(t))

]
. (3.3)

where we use a simpler notation p(∆(t)) = errinference(∆(t)) to represent the inference error in

time-slot t, and p̄opt is the optimum value of (3.3). Because p(·) is not necessarily monotonic

and the scheduler needs to determine which feature in the buffer to send, (3.3) is more

challenging than the scheduling problems for minimizing non-decreasing age functions in

[20–32]. Note that p(∆(t)) = errinference(∆(t)) is the inference error in time-slot t, instead of

its information-theoretic approximations.

3.3 An Optimal Scheduling Solution

To elucidate the optimal solution to the scheduling problem (3.3), we first fix the buffer

position at bi = b for each feature i submitted to the channel and focus on the optimization

of the transmission time schedule g = (S1, S2, . . .). This simplified transmission scheduling

problem is expressed as

p̄b,opt = inf
(fb,g)∈Π

lim sup
T→∞

1

T
E(fb,g)

[
T−1∑
t=0

p(∆(t))

]
, (3.4)

where fb = (b, b, . . .) represents an invariant buffer position assignment policy and p̄b,opt is

the optimal objective value in (3.4). The insights gained from solving this simplified problem

(3.4) will subsequently guide us in deriving the optimal solution to the original scheduling

problem (3.3).
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Theorem 3.1 If |p(δ)| ≤ M for all δ and the Ti’s are i.i.d. with 1 ≤ E[Ti] < ∞, then

g = (S1(βb), S2(βb), . . .) is an optimal solution to (3.4), where

Si+1(βb) = min
t∈Z

{
t ≥ Di(βb) : γ(∆(t)) ≥ βb

}
, (3.5)

Di(βb) = Si(βb) + Ti is the delivery time of the i-th feature submitted to the channel, ∆(t) =

t− Si(βb) + b is the AoI at time t, γ(δ) is an index function, defined by

γ(δ) = inf
τ∈{1,2,...}

1

τ

τ−1∑
k=0

E [p(δ + k + T1)] , (3.6)

and the threshold βb is the unique root of

E

Di+1(βb)−1∑
t=Di(βb)

p
(
∆(t)

)− βb E [Di+1(βb)−Di(βb)] = 0. (3.7)

The optimal objective value to (3.4) is given by

p̄b,opt =
E
[∑Di+1(βb)−1

t=Di(βb)
p
(
∆(t)

)]
E [Di+1(βb)−Di(βb)]

. (3.8)

Furthermore, βb is equal to the optimal objective value to (3.4), i.e., βb = p̄b,opt.

Proof 3.1 (Proof sketch) The scheduling problem (3.4) is an infinite-horizon average-cost

semi-Markov decision process (SMDP) [69, Chapter 5.6]. Define τ = Si+1 − Di as the

waiting time for sending the (i+1)-th feature after the i-th feature is delivered. The Bellman

optimality equation of the SMDP (3.4) is

hb(δ) = inf
τ∈{0,1,2,...}

E

[
τ+Ti−1∑
k=0

(p(δ + k)− p̄b,opt)
]

+ E[hb(Ti + b)], δ = 1, 2, . . . , (3.9)

where hb(·) is the relative value function of the SMDP (3.4). Theorem 3.1 is proven by

directly solving (3.9). The details are provided in Appendix 3.A.
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In supervised learning algorithms, features are shifted, rescaled, and clipped during

data pre-processing. Because of these pre-processing techniques, the inference error p(δ) is

bounded. Therefore, the assumption |p(δ)| ≤ M for all δ in Theorem 3.1 is not restrictive

in practice.

The optimal scheduling policy in Theorem 3.1 is a threshold policy described by the

index function γ(δ): According to (3.5), a feature is transmitted in time-slot t if and only if

two conditions are satisfied: (i) The channel is available for scheduling in time-slot t and (ii)

the index γ(∆(t)) exceeds a threshold βb, which is precisely equal to the optimal objective

value p̄b,opt of (3.4). The expression of γ(δ) in (3.6) is obtained by solving the Bellman

optimality equation (3.9), as explained in Appendix 3.A. The threshold βb is calculated

by solving the unique root of (3.7). Three low-complexity algorithms for this purpose were

given by [25, Algorithms 1-3].

It is crucial to note that a non-monotonic AoI function p(δ) often leads to a non-

monotonic index function γ(δ). Consequently, the inverse function of γ(δ) may not exist and

the inequality γ(∆(t)) ≥ βb in the threshold policy (3.5) cannot be equivalently rewritten

as an inequality of the form ∆(t) ≥ α. This distinction represents a significant departure

from previous studies for minimizing either the AoI ∆(t) or its non-decreasing functions,

e.g., [20–32]. In these earlier works, the solutions were usually expressed as threshold policies

in the form ∆(t) ≥ α. Our pursuit of a simple threshold policy for minimizing general and

potentially non-monotonic AoI functions was inspired by the restart-in-state formulation of

the Gittins index [70, Chapter 2.6.4], [71].

Now we present an optimal solution to (3.3).

Theorem 3.2 If the conditions of Theorem 3.1 hold, then an optimal solution (f ∗, g∗) to

(3.3) is determined by

(a) f ∗ = (b∗, b∗, . . .), where

b∗ = arg min
b∈{0,1,...,B−1}

p̄b,opt, (3.10)

and p̄b,opt is the optimal objective value to (3.4).
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(b) g∗ = (S∗
1 , S

∗
2 , . . .) , where

S∗
i+1 = min

t∈Z

{
t ≥ D∗

i : γ(∆(t)) ≥ p̄opt
}
, (3.11)

D∗
i = S∗

i + Ti, γ(δ) is defined in (3.6), and p̄opt is the optimal objective value of (3.3),

given by

p̄opt = min
b∈{0,1,...,B−1}

p̄b,opt. (3.12)

Proof 3.2 See Appendix 3.A.

Theorem 3.2 suggests that, in the optimal solution to (3.3), one should select features

from a fixed buffer position bi = b∗. In addition, a feature is transmitted in time-slot t if and

only if two conditions are satisfied: (i) The channel is available for transmission in time-slot

t, (ii) the index γ(∆(t)) exceeds a threshold p̄opt (i.e., γ(∆(t)) ≥ p̄opt), where the threshold

p̄opt is exactly the optimal objective value of (3.3).

In the special case of a non-decreasing AoI function p(δ), it can be shown that the index

function γ(δ) = E[p(δ + T1)] is non-decreasing and b∗ = 0 is the optimal buffer position in

(3.10). The optimal strategy in such cases is to consistently select the freshest feature from

the buffer such that bi = 0. Hence, both the “generate-at-will” and “selection-from-buffer”

models achieve the same minimum inference error. Furthermore, Theorem 3 in [23] can be

directly derived from Theorem 3.2.

3.4 Data Driven Evaluations

In this section, we illustrate the performance of our scheduling policies, where we plug

in the inference error versus AoI cost functions from the data driven experiments in Section

2.3. Then, we simulate the performance of different scheduling policies.

1. Generate-at-will, zero wait: The (i+1)-th feature sending time Si+1 is given by Si+1 =

Di = Si + Ti and the feature selection policy is f = (0, 0, . . .), i.e., bi = 0 for all i.
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Figure 3.2: Time average inference error vs. the scale parameter σ of discretized i.i.d. log-normal
transmission time distribution for single-source scheduling (in robot state prediction task).
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Figure 3.3: Time-average inference error vs. constant transmission time (T) (in robot state predic-
tion task).

2. Generate-at-will, optimal scheduling: The policy is given by Theorem 3.1 with bi = 0

for all i.

3. Selection-from-buffer, optimal scheduling: The policy is given by Theorem 3.2.

4. Periodic feature updating: Features are generated periodically with a period Tp and

appended to a queue with buffer size B. When the buffer is full, no new feature is

admitted to the buffer. Features in the buffer are sent over the channel in a first-come,

first-served order.
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Figs. 3.2-3.3 compare the time-averaged inference error of the four single-source schedul-

ing policies defined earlier. These policies are evaluated using the inference error function,

p(δ), obtained from the robot state prediction experiment of the leader-follower robotic sys-

tem presented in Section 2.3 and illustrated in Fig. 2.2(c). The feature sequence length for

this experiment is u = 1.

Fig. 3.2 illustrates the time-average inference error achieved by the four single-source

scheduling policies defined above. The inference error function p(δ) used in this evaluation

is illustrated in Fig. 2.2(c), which is generated by using the leader-follower robotic dataset

and the trained neural network as explained in Chapter 2.3. The i-th feature transmission

time Ti is assumed to follow a discretized i.i.d. log-normal distribution. In particular, Ti

can be expressed as Ti = ⌈αeσZi/E[eσZi ]⌉, where Zi’s are i.i.d. Gaussian random variables

with zero mean and unit variance. In Fig. 3.2, we plot the time average inference error

versus the scale parameter σ of discretized i.i.d. log-normal distribution, where α = 1.2, the

buffer size is B = 30, and the period of uniform sampling is Tp = 3. The randomness of

the transmission time increases with the growth of σ. Data-driven evaluations in Fig. 3.2

show that “selection-from-buffer” with optimal scheduler achieves 3 times performance gain

compared to “generate-at-will,” and 8 times performance gain compared to periodic feature

updating.

Fig. 3.3 illustrates the performance of the four scheduling policies versus constant

transmission time T . Similar to Fig. 3.2, the inference error function p(δ) is measured

from leader-follower robotic dataset. This figure also shows that “selection-from-buffer”

with optimal scheduler can achieve 8 time performance gain compared to periodic feature

updating.

3.5 Conclusions

In this chapter, we design transmission scheduling policies for minimizing the inference

error. Because fresher data is not always better, we propose a new “selection-from-buffer”

status updating model. If the inference error is a non-decreasing function of the AoI, then

the “selection-from-buffer” model achieves the same performance as the “generate-at-will”
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model; if the AoI function is non-monotonic, the “selection-from-buffer” model can poten-

tially achieve better performance. We devised an optimal “Selection-from-buffer” scheduling

policy. The optimal scheduling policy can be expressed an index-based threshold policy, where

a new packet is sent out whenever the index γ(∆(t)) exceeds a pre-determined threshold.

The threshold can be computed by using low complexity algorithms. The results in this

chapter hold (i) for minimizing general AoI functions (monotonic or non-monotonic) and (ii)

for random delay channels. Data-driven evaluations show that the optimal scheduler has

the potential to achieve up to 3 times smaller inference error compared to “generate-at-will”

with optimal scheduling strategy and 8 times smaller inference error compared to periodic

feature updating.
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3.A Proof of Theorem 3.2

In this section, we prove Theorem 3.1 and Theorem 3.2. These theorems provide optimal

solutions for the scheduling problems (3.3) and (3.4). We begin by deriving the optimal

solution for (3.3). Subsequently, the optimal solutions for (3.4), follow directly, as these

problem is a special case of (3.3).

We rewrite the problem (3.3) as follows:

p̄opt= inf
π∈Π

lim sup
T→∞

E

[
1

T

T−1∑
t=0

p(∆(t))

]
, (3.13)

where p(∆(t)) is the penalty at time t, ∆(t) ∈ Z+ is the AoI, π = ((S1, b1), (S2, b2), . . .) is a

scheduling policy, Π is the set of all causal and signal-agnostic scheduling policies, and p̄opt

is the optimal objective value to (3.3).

The scheduling problem (3.3) is an infinite-horizon average-cost semi-Markov decision

process (SMDP) [69, Chapter 5.6]. We provide a detailed description of the components of

this problem:

• Decision Time: Each i-th feature delivery time Di = Si+Ti is a decision time of the

problem (3.13), where Si is the scheduling time of the i-th feature and the i-th feature

takes Ti ≥ 1 time slots to be delivered.

• State: At time slot Di, the state of the system is represented by AoI ∆(Di).

• Action: Let τi+1 = Si+1 − Di represent the waiting time for sending the (i + 1)-th

feature after the i-th feature is delivered. As we consider S0 = 0 and Si =
∑i

j=1(Tj−1+

τj) for each i = 1, 2, . . .. Given (T0, T1, . . .), the sequence (S1, S2, . . .) is uniquely

determined by (τ1, τ2, . . .). Hence, one can also use (τ1, τ2, . . .) to represent a sequence

of actions instead of (S1, S2, . . .).

At time Di, the scheduler decides the waiting time τi+1 and the buffer position bi+1.
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• State Transitions: The AoI process ∆(t) evolves as

∆(t) =

Ti + bi, if t = Di, i = 0, 1, . . . ,

∆(t− 1) + 1, otherwise.

(3.14)

• Expected Transition Time: The expected time difference between two decision

times, Di and Di+1, is given by

E[Di+1 −Di] = E[Si+1 + Ti+1 − (Si + Ti)]

= E[Si + Ti + τi+1 + Ti+1 − Si − Ti]

= E[τi+1 + Ti+1]. (3.15)

• Expected Transition Cost: The expected cumulative cost incurred during the in-

terval between two decision times, Di and Di+1, can be calculated as

E

[
Di+1−1∑
t=Di

(
p(∆(t)) + λc(t)

)]
= E

[
τi+1+Ti+1−1∑

k=0

p(∆(Di + k))

]
. (3.16)

The infinite-horizon average-cost SMDP (3.3) can be solved by using dynamic programming

[69, 72]. Let h : Z+ 7→ R be the relative value function associated with the average-cost

SMDP (3.3). At time t = Di, the optimal action (τi+1, bi+1) can be determined by solving

the following Bellman optimality equation [69, P. 275]:

h(∆(Di)) = inf
τi+1∈{0,1,...}

bi+1∈{0,...,B−1}

E

[
τi+1+Ti+1−1∑

k=0

p(∆(Di + k))

]
− p̄optE[τi+1 + Ti+1] + E[h(∆(Di+1)]

= inf
τi+1∈{0,1,...}

bi+1∈{0,...,B−1}

E

[
τi+1+Ti+1−1∑

k=0

(
p(∆(Di + k))−p̄opt

)]
+ E[h(∆(Di+1)]

= inf
τi+1∈{0,1,...}

bi+1∈{0,...,B−1}

E

[
τi+1+Ti+1−1∑

k=0

(
p(∆(Di + k))−p̄opt

)]
+ E[h(Ti+1 + bi+1)], (3.17)

where the last equality holds because ∆(Di+1) = Ti+1 + bi+1.
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From (3.17), it is observed that the buffer position bi+1 only depends on the term

E[h(Ti+1 + bi+1)], while the waiting time τi+1 has no impact on E[h(Ti+1 + bi+1)]. Hence, the

optimal buffer position b∗i+1 is determined by

b∗i+1 =arg min
bi+1∈{0,1,...,B−1}

E[h(Ti+1 + bi+1)]. (3.18)

Since Ti’s are i.i.d., E[h(Ti+1 + b)] = E[h(Ti + b)] = · · · = E[h(T1 + b)] for all i and b. Hence,

from (3.18), it is evident that there exists a b∗ ∈ {0, 1, . . . , B − 1} such that b∗1 = b∗2 = · · · =
b∗i+1 = b∗ that satisfies

b∗ =arg min
b∈{0,1,...,B−1}

E[h(T1 + b)]. (3.19)

Because the optimal buffer position is time-invariant, the problem (3.13) can be expressed

as

p̄opt = min
b∈{0,1,...,B−1}

p̄b,opt, (3.20)

where p̄b,opt is given by

p̄b,opt = inf
πb∈Πb

lim sup
T→∞

1

T
Eπb

[
T−1∑
t=0

p(∆(t))

]
, (3.21)

πb = ((S1, b), (S2, b), . . .), Πb is the set of all causal and signal-agnostic scheduling policies πb

with fixed buffer position b, and p̄b,opt is the optimal objective value to (3.21).

At every i-th decision time Di of the average-cost SMDP (3.21), the scheduler decides

the waiting time τi+1. The average-cost SMDP (3.21) can be solved by using dynamic

programming [69,72]. Given AoI value δ at decision timeDi, the Bellman optimality equation

of (3.21) is obtained by substituting ∆(Di) = δ, bi+1 = b, and p̄opt = p̄b,opt into (3.17), given
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by

hb(δ) = inf
τ∈{0,1,2,...}

E

[
τ+Ti+1−1∑

k=0

(p(δ + k)− p̄b,opt)
]
+ E[hb(Ti+1 + b)], δ = 1, 2, . . .

= inf
τ∈{0,1,2,...}

E

[
τ+T1−1∑
k=0

(p(δ + k)− p̄b,opt)
]
+ E[hb(T1 + b)], δ = 1, 2, . . . , (3.22)

where the last equality holds because Ti’s are identically distributed. Let τ(δ, p̄b,opt) be an

optimal solution to (3.22). If ∆(Di) = δ, then an optimal waiting time τi+1 of (3.21) for

sending the (i+ 1)-th feature is τ(δ, p̄b,opt).

From (3.22), we can show that τ(δ, p̄b,opt) = 0 if

inf
τ∈{1,2,...}

E

[
τ+T1−1∑
k=0

(p(δ + k)− p̄b,opt)
]
≥ E

[
T1−1∑
k=0

(p(δ + k)− p̄b,opt)
]
. (3.23)

After some rearrangement, the inequality (3.23) can also be expressed as

inf
τ∈{1,2,...}

E

[
τ−1∑
k=0

(p(δ + k + T1)− p̄b,opt)
]
≥ 0. (3.24)

Next, similar to [25, Lemma 7], the following lemma holds.

Lemma 3.1 The inequality (3.24) holds if and only if

inf
τ∈{1,2,...}

1

τ
E

[
τ−1∑
k=0

p(δ + k + T1)

]
≥ p̄b,opt. (3.25)

According to (3.6), the left-hand side of (3.25) is equal to γ(δ). Similarly, τ(δ, p̄b,opt) = 1, if

τ(δ, p̄b,opt) ̸= 0 and

inf
τ∈{2,3,...}

E

[
τ−1∑
k=0

(p(δ + k + T1)− p̄b,opt
]
≥ 0 (3.26)

By using Lemma 3.1 and (3.6), we can show that the inequality (3.26) can be rewritten as

γ(δ + 1) ≥ p̄b,opt. (3.27)
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By repeating this process, we get τ(δ, p̄b,opt) = k is optimal, if τ(δ, p̄b,opt) ̸= 0, 1, . . . , k−1 and

γ(δ + k) ≥ p̄b,opt. (3.28)

Hence, the optimal waiting time τi+1 = τ(δ, p̄b,opt) is determined by

τ(δ, p̄b,opt) = min
k∈Z
{k ≥ 0 : γ(δ + k) ≥ p̄b,opt}. (3.29)

Now, we are ready to compute the optimal objective value p̄b,opt. Using (3.22), we can

determine the value of E[hb(T1 + b)], which is given by

E[hb(T1 + b)] = E

τ(T1+b,p̄b,opt)+T1−1∑
k=0

(p(T1 + b+ k)− p̄b,opt)

+ E[hb(T1 + b)], (3.30)

which yields

E

τ(T1+b,p̄b,opt)+T1−1∑
k=0

(
p(T1 + b+ k)− p̄b,opt

) = 0. (3.31)

Rearranging (3.31), we get

p̄b,opt =
E
[∑τ(T1+b,p̄b,opt)+T1−1

k=0 p(T1 + b+ k)
]

E[τ(T1 + b, p̄b,opt) + T1]

=
E
[∑Di+1(p̄b,opt)−1

t=Di(p̄b,opt)
p
(
∆(t)

)]
E [Di+1(p̄b,opt)−Di(p̄b,opt)]

, (3.32)

where Di+1(p̄b,opt) = Si+1(p̄b,opt) + Ti+1 and

Si+1(p̄b,opt) = min
t≥0
{t ≥ Di(p̄b,opt) : γ(∆(t)) ≥ p̄b,opt}, (3.33)

and the last equality holds due to (3.15) and (3.16).

Now, by combining (3.20), (3.29), and (3.32), we obtain optimal solution to (3.4) and

(3.3).
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Finally, we need to prove that

E

Di+1(β)−1∑
t=Di(β)

p
(
∆(t)

)− βE [Di+1(β)−Di(β)] = 0. (3.34)

has a unique root. We define

J(β) = E

Di+1(β)−1∑
t=Di(β)

p
(
∆(t)

)− βE [Di+1(β)−Di(β)] . (3.35)

Lemma 3.2 The function J(β) has the following properties:

(i) The function J(β) is concave, continuous, and strictly decreasing in β.

(ii) limβ→∞ j(β) = −∞ and limβ→−∞ j(β) =∞.

Proof 3.3 See Appendix 3.B

Lemma 3.2 proves the uniqueness of (3.37). Also, the uniqueness of the root of (3.7)

follows immediately from Lemma 3.2.

3.B Proof of Lemma 3.2

We denote Di+1(β) = Si+1(β) + Ti+1, Si+1(β) = τ(∆(Di), β) + Di(β), where τ(δ, β) is

defined as the optimal solution of

inf
τ∈{0,1,2,...}

E

[
τ+T1−1∑
k=0

(p(δ + k)− β)
]
. (3.36)
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Because Ti’s are i.i.d., and ∆(Di) = Ti + b, we can express (3.35) as

J(β) = E

Di+1(β)−1∑
t=Di(β)

p
(
∆(t)

)− βE [Di+1(β)−Di(β)]

= E

τ(T1+b,β)+T1−1∑
k=0

(p(T1 + b+ k)− β)


= inf

τ∈{0,1,...
E

[
τ+T1−1∑
k=0

(wp(T1 + b+ k)− β)
]
. (3.37)

Since the right-hand side of (3.37) is the pointwise infimum of the linear decreasing functions

of β, J(β) is concave, continuous, and strictly decreasing in β. This completes the proof of

part (i) of Lemma 3.2.

Part (ii) of Lemma 3.2 holds because for any τ ≥ 0

lim
β→∞

E

[
τ+T1−1∑
k=0

(p(T1 + b+ k)− β)
]
= −∞ (3.38)

and

lim
β→−∞

E

[
τ+T1−1∑
k=0

(p(T1 + b+ k)− β)
]
=∞. (3.39)

This completes the proof.
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Chapter 4

Timely Inference in Multi-Source and Multi-Channel Networks

4.1 Introduction

In many networked intelligent systems, a receiver (e.g., an autonomous vehicle) requires

information from multiple sources (e.g., onboard cameras, roadside units, and nearby vehi-

cles). Due to limited communication resources, it is impractical to obtain information from

all sources simultaneously. A scheduler decides which sources to select and what informa-

tion from sources to send to accomplish a task. Due to resource constraints, the efficient

design of multi-source scheduling policy is pivotal to guarantee low-latency and reliable per-

formance of networked intelligent systems. Towards that end, in this chapter, we develop a

novel transmission scheduling policy to minimize the weighted summation inference error in

multi-source, multi-channel remote inference systems. The contributions of this chapter are

summarized as follows

• When there are multiple source-predictor pairs and multiple channels, the scheduling

problem is a restless multi-armed bandit (RMAB) problem with multiple actions. We

propose a multi-source, multi-action scheduling policy that uses a Whittle index algo-

rithm to determine which sources to schedule and employs a duality-based selection-

from-buffer algorithm to decide which features to schedule from the buffers of these

sources. By utilizing linear programming (LP)-based priority conditions [73, 74], we

establish the asymptotic optimality of this scheduling policy as the numbers of sources

and channels tend to infinity, maintaining a constant ratio (see Theorem 4.6).

• The above results hold (i) for minimizing general AoI functions (monotonic or non-

monotonic) and (ii) for random delay channels. Numerical results validate the asymp-

totic optimality of the proposed scheduling policy (see Figs. 4.2-4.3).
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• When the training and inference data have the same probabilistic distribution, multi-

source multi-channel remote inference reduces to signal-agnostic multi-source multi-

channel remote estimation. Hence, the results of the present work above also apply to

signal-agnostic multi-source multi-channel remote estimation.

4.1.1 Related Works

The optimization of linear and non-linear functions of AoI for multi-source scheduling

is a restless multi-armed bandit (RMAB) problem. The multi-source problems in previous

AoI studies [26,29–32,39] focused only on source selection, which is an RMAB problem with

binary actions determining whether to select a source or not. Moreover, the previous AoI

studies considered monotonic AoI functions. Whittle index policy [33] was used to solve the

RMAB problems with binary actions and monotonic AoI penalty functions [26, 29–32, 39].

Our multi-source problem is an RMAB with multiple actions and possibly a non-monotonic

AoI penalty function. Because of the multiple-action setup, the Whittle index alone can

not be utilized to solve our problem. Consequently, we design a new asymptotically optimal

policy for multi-action RMAB with general AoI functions (monotonic or non-monotonic).

This paper is also related to the field of signal-agnostic remote estimation. The prior

studies [23, 25, 27, 39, 40, 44, 45] in signal-agnostic remote estimation focused on Gaussian

and Markovian processes. The results presented in the current paper are applicable to more

general processes.

4.2 Multi-Source, Multi-Channel Status Updating Model

Consider the remote inference system depicted in Fig. 4.1, which consists of M source-

predictor pairs and N channels. Each source adopts a “selection-from-buffer” model: At the

beginning of time slot t, each source m generates a feature Xm,t and adds it into the buffer

that stores Bm most recent features (Xm,t, . . . , Xm,t−Bm+1), meanwhile the oldest feature

Xm,t−Bm is removed from the buffer. At each time slot t, a central scheduler decides: (i)

which sources to select and (ii) which features from the buffer of selected sources to send.

Each feature transmission lasts for one or multiple time slots. We consider non-preemptive
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Figure 4.1: A multi-source, multi-channel remote inference system.

transmissions, i.e., once a channel starts to send a feature, the channel must finish serving

that feature before switching to serve another feature. At any given time slot, each source

can be served by no more than one channel. We use an indicator variable cm(t) ∈ {0, 1} to
represent whether a feature from source m occupies a channel at time slot t, where cm(t) = 1

if source m is being served by a channel at time slot t; otherwise, cm(t) = 0. Once a feature

is delivered, an acknowledgment is fed back to the scheduler within the same time-slot. By

this, the channel occupation status cm(t) is known to the scheduler at every time slot t. Due

to limited channel resources, the system must satisfy the constraint
∑M

m=1 cm(t) ≤ N for all

time slot t = 0, 1, . . ..

The system starts to operate at time slot t = 0. The i-th feature sent by source m

is generated in time slot Gm,i, submitted to a channel in time slot Sm,i, and delivered to

the receiver in time slot Dm,i = Sm,i + Tm,i, where Gm,i ≤ Sm,i < Dm,i, Dm,i ≤ Sm,i+1 <

Dm,i+1, and Tm,i ≥ 1 is the feature transmission time of the i-th feature sent from source

m. We assume that the Tm,i’s are independent across the sources and are i.i.d. for features

originating from the same source with 1 ≤ E[Tm,i] <∞.

Scheduling Policies and Problem Formulation
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In time slot Sm,i, let XGm,i
= XSm,i−bm,i

be the feature submitted to a channel from

source m, which is the (bm,i + 1)-th freshest feature in source m’s buffer, with bm,i ∈
{0, 1, . . . , Bm − 1}. By this, a scheduling policy for source m is denoted by (fm, gm), where

gm = (Sm,1, Sm,2, . . .) determines when to schedule source m, and fm = (bm,1, bm,2, . . .) spec-

ifies which feature to send from source m’s buffer.

Let Um(t) = maxi{Gm,i : Dm,i ≤ t} represent the generation time of the freshest feature

delivered from source m to the receiver up to time slot t. Because Gm,i = Sm,i − bm,i,

Um(t) = maxi{Sm,i− bm,i : Dm,i ≤ t}. The age of information (AoI) of source m at time slot

t is

∆m(t)= t−Um(t) = t−max
i
{Sm,i − bm,i : Dm,i ≤ t}. (4.1)

The initial state of the system is assumed to be Sm,0 = 0, Dm,0 = Tm,0, and ∆m(0) is a finite

constant.

Let Πm denote the set of all causal and signal-agnostic scheduling policies (fm, gm)

that satisfy the following conditions: (i) the transmission time schedule Sm,i and the buffer

position bm,i are determined based on the current and the historical information available

at the scheduler; (ii) source m can be served by at most one channel at a time and feature

transmissions are non-preemptive; (iii) the scheduler does not have access to the realization

of the feature and the target processes; and (iv) the scheduler can access the inference error

function errinference,m(∆m(t)) and the distribution of Tm,i for source m. We define Π as the

set of all causal and signal-agnostic scheduling policies π = (fm, gm)
M
m=1.

Our goal is to find a scheduling policy that minimizes the weighted summation of the

time-averaged expected inference errors of the M sources:

inf
π∈Π

lim sup
T→∞

M∑
m=1

wm E

[
1

T

T−1∑
t=0

pm(∆m(t))

]
, (4.2)

s.t.
M∑

m=1

cm(t) ≤ N, t = 0, 1, . . . , (4.3)

cm(t) ∈ {0, 1},m = 1, 2, . . . ,M, t = 0, 1, . . . , (4.4)
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where pm(∆m(t)) = errinference,m(∆m(t)) is the inference error of source m at time slot t and

wm > 0 is the weight of source m.

Let dm(t) ∈ {0, 1, . . .} denote the amount of time that has been spent to send the current

feature of source m by time slot t. Hence, dm(t) = 0 if no feature of source m is in service

at time slot t, and dm(t) > 0 if a feature of source m is currently in service at time slot

t. Problem (4.2)-(4.4) is a multi-action Restless Multi-armed Bandit (RMAB) problem, in

which (∆m(t), dm(t)) is the state of the m-th bandit. At time slot t, if a feature from source

m is submitted to a channel, bandit m is said to be active; otherwise, if source m is not

under service or if one feature of source m is under service whereas the service started before

time slot t, then bandit m is said to be passive. The bandits are “restless” because the state

(∆m(t), dm(t)) undergoes changes even when the m-th bandit is passive [26, 33]. When a

bandit m is activated, the scheduler can select any of the Bm features from the buffer of

source m. Thus, this problem is a multi-action RMAB.

4.3 An Asymptotically Optimal Scheduling Solution

It is well-known that RMAB with binary actions is PSPACE-hard [75]. RMABs with

multiple actions, like (4.2)-(4.4), would be even more challenging to solve. In the sequence,

we will generalize the conventional Whittle index theoretical framework [33] for binary-

action RMABs, by developing a new index-based scheduling policy and proving this policy

is asymptotically optimal for solving the multi-action RMAB problem (4.2)-(4.4). This

new theoretical framework contains four steps: (a) We first reformulate (4.2)-(4.4) as an

equivalent multi-action RMAB problem with an equality constraint by using dummy bandits

[39,73]. The usage of dummy bandits is necessary for establishing the asymptotic optimality

result in subsequent steps. (b) We relax the per-time-slot channel constraint as a time-

average expected channel constraint, solve the relaxed problem by using Lagrangian dual

optimization, and compute the optimal dual variable λ∗. (c) Problem (4.2)-(4.4) requires to

determine (i) which source to schedule and (ii) which feature from the buffer of the scheduled

source to send. In the proposed scheduling policy, the former is decided by a Whittle index

policy, for which we establish indexability and derive an analytical expression of the Whittle

index. The latter is determined by a λ∗-based selection-from-buffer policy. (d) Finally, we
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employ LP priority-based sufficient condition [73, 74] to prove that the proposed policy is

asymptotically optimal as the numbers of users and channels increase to infinite with a fixed

ratio.

Dummy Bandits and Constraint Relaxation

Besides the original M bandits, we introduce N additional dummy bandits (the number

of dummy bandits needs to be equal to the number of channels) that satisfy two conditions:

(i) each dummy bandit has a zero age penalty function p0(∆0(t)) = 0; (ii) when activated,

each dummy bandit occupies a channel for one time slot. Let c0(t) ∈ {0, 1, . . . , N} be the

number of dummy bandits that are activated in time slot t. Let π0 = {c0(t), t = 0, 1, . . .} be
a scheduling policy for the dummy bandits and Π0 be the set of all policies π0. Using these

dummy bandits, (4.2)-(4.4) is reformulated as an RMAB with equality constraints (4.6), i.e.,

inf
π∈Π,π0∈Π0

lim sup
T→∞

M∑
m=1

wm E

[
1

T

T−1∑
t=0

pm(∆m(t))

]
, (4.5)

s.t.
M∑

m=0

cm(t) = N, t = 0, 1, . . . , (4.6)

c0(t) ∈ {0, 1, . . . , N}, t = 0, 1, . . . , (4.7)

cm(t) ∈ {0, 1},m = 1, 2, . . . ,M, t = 0, 1, . . . . (4.8)

Because the number of dummy bandit is equal to the number of channels and when activated,

each dummy bandit occupies a channel for one time slot, we always can have the equality

constraint (4.6). Moreover, dummy bandits do not incur additional cost, the scheduling

policy that optimizes (4.2)-(4.4) also optimizes (4.5)-(4.8).
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Now, we replace the per-slot channel constraints (4.6) by a time-average expected chan-

nel constraint (4.10), which produces the following relaxed problem:

inf
π∈Π,π0∈Π0

lim sup
T→∞

M∑
m=1

wm E

[
T−1∑
t=0

pm(∆m(t))

]
, (4.9)

s.t. lim sup
T→∞

M∑
m=0

E

[
1

T

T−1∑
t=0

cm(t)

]
= N, (4.10)

c0(t) ∈ {0, 1, . . . , N}, t = 0, 1, . . . , (4.11)

cm(t) ∈ {0, 1},m = 1, 2, . . . ,M, t = 0, 1, . . . . (4.12)

The optimal objective value of (4.9)-(4.12) provides a lower bound of the optimal objective

value of (4.2)-(4.4).

Lagrangian Dual Optimization for Solving (4.9)-(4.12)

We solve the relaxed problem (4.9)-(4.12) by Lagrangian dual optimization [33,76]. To

that end, we associate a Lagrangian multiplier λ ∈ R to the constraint (4.10) and get the

following dual function

q(λ) = inf
π∈Π,π0∈Π0

lim sup
T→∞

E
[
1

T

T−1∑
t=0

( M∑
m=1

wmpm(∆m(t))

+ λ

( M∑
m=0

cm(t)−N
))]

, (4.13)

where λ ∈ R is also referred to as the transmission cost. The dual optimization problem is

given by

λ∗ = argmax
λ∈R

q(λ), (4.14)

where λ∗ is the optimal dual solution.
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Solution to (4.13)

The problem (4.13) can be decomposed into (M + 1) sub-problems. For m = 0, the

sub-problem associated to the dummy bandits is given by

inf
π0∈Π0

lim sup
T→∞

Eπ0

[
1

T

T−1∑
t=0

λc0(t)

]
. (4.15)

Theorem 4.1 If λ > 0, the optimal solution to (4.15) is c∗0(t) = 0 for all t; if λ ≤ 0, the

optimal solution to (4.15) is c∗0(t) = N for all t.

For each m = 1, 2, . . . ,M , the sub-problem associated with bandit m is given by

p̄m,opt(λ) = inf
(fm,gm)∈Πm

lim sup
T→∞

E

[
1

T

T−1∑
t=0

wmpm(∆m(t))+λcm(t)

]
, (4.16)

where p̄m,opt(λ) is the optimal objective value to (4.16).

To explain the optimal solution to (4.16), we first fix the buffer position at bm,i = b

for all i and optimize the transmission time schedule gm = (Sm,1, Sm,2, . . .). This simplified

problem is formulated as

p̄m,b,opt(λ) = inf
(fm,b,gm)∈Πm

lim sup
T→∞

E

[
1

T

T−1∑
t=0

wmpm(∆m(t))+λcm(t)

]
, (4.17)

where fm,b = (b, b, . . .) and p̄m,b,opt(λ) is the optimal objective value in (4.17).

Theorem 4.2 If Tm,i’s are i.i.d. with 1 ≤ E[Tm,i] <∞, then there exists an optimal solution

gm(λ) = (Sm,1(βm,b(λ)), Sm,2(βm,b(λ)), . . .) to (4.17), where

Sm,i+1(βm,b(λ)) = min
t∈Z

{
t ≥ Dm,i(βm,b(λ)) : γm(∆m(t)) ≥ βm,b(λ)

}
, (4.18)

Dm,i(βm,b(λ)) = Sm,i(βm,b(λ)) + Tm,i is the delivery time of the i-th feature submitted to the

channel, ∆m(t) = t − Sm,i(βm,b(λ)) + b is the AoI at time t, γm(δ) is an index function,
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defined by

γm(δ) = inf
τ∈{1,2,...}

1

τ

τ−1∑
k=0

E [wmpm(δ + k + Tm,1)] , (4.19)

and the threshold βm,b(λ) is the unique root of

E

Dm,i+1(βm,b(λ))−1∑
t=Dm,i(βm,b(λ))

wmpm
(
∆m(t)

)+ λ E[Tm,i]

− βm,b(λ) E [Dm,i+1(βm,b(λ))−Dm,i(βm,b(λ))] = 0. (4.20)

Furthermore, βm,b(λ) is equal to the optimal objective value to (4.17), i.e., βm,b(λ) = p̄m,b,opt(λ).

Proof 4.1 See Appendix 4.A.

Now we present an optimal solution to (4.16).

Theorem 4.3 If the conditions of Theorem 4.2 hold, then an optimal solution (f ∗
m(λ), g

∗
m(λ))

to (4.16) is determined by

(a) f ∗
m(λ) = (b∗m(λ), b

∗
m(λ), . . .), where

b∗m(λ) = arg min
b∈{0,1,...,Bm−1}

p̄m,b,opt(λ), (4.21)

and p̄m,b,opt(λ) is the optimal objective value to (4.17).

(b) g∗m(λ) = (S∗
m,1(λ), S

∗
m,2(λ), . . .), where

S∗
m,i+1(λ) = min

t∈Z

{
t ≥ D∗

m,i : γm(∆m(t)) ≥ p̄m,opt(λ)
}
, (4.22)

D∗
m,i(λ) = S∗

m,i(λ) + Tm,i, γm(δ) is defined in (4.19), and p̄m,opt(λ) is the optimal

objective value of (4.16), given by

p̄m,opt(λ) = min
b∈{0,1,...,Bm−1}

p̄m,b,opt(λ). (4.23)

Proof 4.2 See Appendix 4.A.
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Solution to (4.14)

Next, we solve the dual problem (4.14). Let c∗0,λ(t) ∈ {0, 1, . . . , N} be the number of

dummy bandits activated in time slot t in the optimal solution to (4.15) and let c∗m,λ(t) ∈
{0, 1} denote whether source m is under service in time slot t in the optimal solution to

(4.16). The dual problem (4.14) is solved by the following stochastic sub-gradient algorithm:

λk+1 = λk +
α

k

{
1

T

M∑
m=0

T−1∑
t=0

c∗m,λk
(t)−N

}
, (4.24)

where α/k > 0 is the step size and T > 1 is a sufficient large integer. In the k-th iteration,

let λ = λk and run the optimal solution to (4.13) for T time slots, then execute the dual

update (4.24).

A Scheduling Policy for the Original Problem (4.2)-(4.4)

Now, we develop a scheduling policy for the original multi-action RMAB problem (4.2)-

(4.4). The proposed policy contains two parts: (i) a Whittle index policy is used to determine

which sources to schedule, and (ii) a λ∗-based selection-from-buffer policy is employed to

determine which features to choose from the buffers of the scheduled sources.

Whittle Index-based Source Scheduling Policy

The Whittle index theory only applies to RMAB problems that are indexable [33].

Hence, we first establish the indexability of problem (4.5)-(4.8). Recall that (∆m(t), dm(t))

is the state of the m-th bandit, where ∆m(t) is the AoI and dm(t) is the amount of time that

has been spent to send the current feature of source m. Define Ωm(λ) as the set of all states

(δ, d) such that if ∆m(t) = δ and dm(t) = d, then the optimal solution for (4.16) is to take

the passive action at time t.

Definition 4.1 (Indexability) [73] Bandit m is said to be indexable if, as the cost λ

increases from −∞ to ∞, the set Ωm(λ) increases monotonically, i.e., λ1 ≤ λ2 implies

Ωm(λ1) ⊆ Ωm(λ2). The RMAB problem (4.5)-(4.8) is said to be indexable if all (M + 1)

bandits are indexable.

82



Theorem 4.4 The RMAB problem (4.5)-(4.8) is indexable.

Proof 4.3 See Appendix 4.C.

Definition 4.2 (Whittle index) [73] Given indexability, the Whittle index Wm(δ, d) of

bandit m at state (δ, d) is

Wm(δ, d) = inf{λ ∈ R : (δ, d) ∈ Ωm(λ)}. (4.25)

Lemma 4.1 The Whittle index of the dummy bandits is 0, i.e., W0(δ, 0) = 0 for any δ.

Theorem 4.5 The following assertions are true for the Whittle index Wm(δ, d) of bandit m

for m = 1, 2, . . . ,M :

(a) If d = 0, then for m = 1, . . . ,M ,

Wm(δ, 0) = max
b∈Z:0≤b≤Bm−1

Wm,b(δ, 0), (4.26)

where

Wm,b(δ, 0) =
1

E[Tl,1]
E
[
Dm,i+1(γm(δ))−Dm,i(γm(δ))

]
γm(δ)

− 1

E[Tl,1]
E

Dm,i+1(γm(δ))−1∑
t=Dm,i(γm(δ))

wmpm(∆m(t))

 , (4.27)

∆m(t) = t−Sm,i(γm(δ))+b, γm(δ) is defined in (4.19), Dm,i+1(γm(δ)) = Sm,i+1(γm(δ))+Tm,i,

and Sm,i+1(γm(δ)) is given by

Sm,i+1(γm(δ)) = min
t∈Z

{
t ≥ Dm,i(γm(δ)) : γm(∆m(t)) ≥ γm(δ)

}
. (4.28)

(b) If d > 0, then Wm(δ, d) = −∞ for m = 1, . . . ,M .

Proof 4.4 See Appendix 4.D.

Theorem 4.5 presents an analytical expression of the Whittle index of bandit m for

m = 1, 2, . . . ,M . If no feature of source m is being served by a channel at time slot t such
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Algorithm 1 Scheduling Policy for Multi-source, Multi-channel Inference Error Minimiza-
tion (4.2)-(4.4)

1: Initialize t = 0
2: Input the optimal dual variable λ∗ of the problem (4.14).
3: for t = 0, 1, . . . do
4: Update ∆m(t) and dm(t) for all m.
5: Wm ← Wm(∆m(t), dm(t)) for all m.
6: for all channel n = 1, 2, . . . , N do
7: if channel n is idle and maxlWl > 0 then
8: Schedule source m = argmaxlWl.
9: Send the feature from the position b∗m(λ

∗) in
10: source m’s buffer.
11: Wm ← −∞.
12: end if
13: end for
14: t← t+ 1.
15: end for

that dm(t) = 0, then the Whittle index of bandit m at time slot t is determined by (4.26).

Otherwise, if source m is being served by a channel at time slot t such that dm(t) > 0, then

the Whittle index of bandit m at time t is −∞.

In the special case that (i) the AoI function pm(·) is non-decreasing and (ii) Tm,i = 1, it

holds that γm(δ) = wmpm(δ + 1) and for δ = 1, 2, . . . ,

Wm(δ, 0) = wm

[
δ pm(δ + 1)−

δ∑
k=1

pm(k)

]
. (4.29)

By this, the Whittle index in Section IV of [26, Equation (7)] is recovered from Theorem

4.5.

Let A(t) denote the number of available channel at the beginning of time slot t, where

A(t) ≤ N . Then, A(t) bandits with the highest Whittle index are activated at any time slot

t. As stated in Lemma 4.1, all N dummy bandits have Whittle index ofW0(∆0(t), d0(t)) = 0.

Consequently, if a bandit m (for m = 1, 2, ...,M) possesses a negative Whittle index, denoted

as Wm(∆m(t), dm(t)) < 0, it will remain inactive.
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Now, we return to the original RMAB (4.2)-(4.4) with no dummy bandits. As illustrated

in Algorithm 1, if channel n is idle, then source m with highest non-negative Whittle index

is activated.

λ∗-based Selection-from-Buffer Policy

When the m-th bandit is activated, our policy in Algorithm 1 sends the feature from

the buffer position b∗m(λ
∗), determined by

b∗m(λ
∗) = arg min

b∈{0,1,...,Bm−1}
p̄m,b,opt(λ

∗), (4.30)

where λ∗ is the optimal solution to (4.14) and p̄m,b,opt(λ) is the optimal objective value of

(4.17).

Asymptotic Optimality of the Proposed Scheduling Policy

Let πour denote the scheduling policy outlined in Algorithm 1. Now, we demonstrate

that πour is asymptotically optimal.

Definition 4.3 (Asymptotically optimal) [73, 74] Initially, we have N channels and

M sources. Let p̄rπ represent the expected long-term average inference error under policy π,

where both the number of channels rN and the number of bandits rM are scaled by r. The

policy πour will be asymptotically optimal if p̄rπour
≤ p̄rπ for all π ∈ Π as r approaches ∞, while

maintaining a constant ratio α = rM
rN

.

In (4.9)-(4.12), we have M +N bandits with M sources and N dummy bandits, and N

channels. Two bandits are considered to be in the same class if they share identical penalty

functions, weights, and transition probabilities. The dummy bandits belong to the same

class. However, among the remainingM sources, no two sources share the same combination

of penalty function, weight, and transition probabilities. Therefore, we start with M + 1

distinct classes of bandits. Then, we increase the number of sources rM , number of dummy

bandits rN , and number of channels rN with scaling factor r, while maintaining the ratio

rM
rN

.
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The state of a class m bandit is represented by two tuple (∆m(t), dm(t)), where ∆m(t)

represents the AoI and dm(t) is the amount of time spent to send the current feature from

a class m bandit. Let µm(t) ∈ {0, 1, . . . , Bm} be the action taken for a class m bandit. If

µm(t) = 0, no feature is selected for transmission; otherwise, if µm(t) = b, a feature from

buffer position (b − 1) ∈ {0, 1, . . . , Bm − 1} is selected for transmission. Given state (δ, d)

and action µ of a class m bandit, we denote by Pm,µ
(δ′,d′),(δ,d) the transition probability to a

state (δ′, d′).

Because we assume that the transmission times Tm,i are bounded for all m and i, we

can find a dbound ∈ N such that 0 < Tm,i ≤ dbound for all m and i. Then, the amount of

time dm(t) that has been spent to send the current feature of source m by time slot t is

also bounded and dm(t) ∈ {0, 1, . . . , dbound}. Also, we observe from Figs. 2.1-2.5 that the

inference error function pm(δ) converges after a large AoI value. We can find an AoI δbound

such that pm(δ) = pm(δbound) for all δ ≥ δbound and for all m.

We denote by V m
δ,d(t) the fraction of class m bandits with ∆m(t) = δ and dm(t) = d.

Let Um
δ,d,µ(t) be the fraction of class m bandits with ∆m(t) = δ, dm(t) = d, and µm(t) = µ.

We denote by Ṽ m
d (t) the fraction of class m bandits with dm(t) = d and ∆m(t) > δbound.

Moreover, let Ũm
d,µ(t) be the fraction of class m bandits with dm(t) = d, ∆m(t) > δbound, and

µ(t) = µ. We define variables vmδ,d, u
m
δ,d,µ, ṽ

m
d , and ũ

m
d,µ for all δ, d, µ, and m as follows:

vmδ,d := lim sup
T→∞

T−1∑
t=0

1

T
E[V m

δ,d(t)], (4.31)

umδ,d,µ := lim sup
T→∞

T−1∑
t=0

1

T
E[Um

δ,d,µ(t)], (4.32)

ṽmd := lim sup
T→∞

T−1∑
t=0

1

T
E[Ṽ m

d (t)], (4.33)

ũmd,µ := lim sup
T→∞

T−1∑
t=0

1

T
E[Ũm

d,µ(t)]. (4.34)
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A channel is occupied by a bandit, if either d > 0 or µ > 0. Then, the time-averaged

expected fraction of class m-bandits occupied a channel is given by

cm =
∑

δ<δbound,d>0
µ=0

umδ,d,µ +
∑

δ<δbound,d=0
µ>0

umδ,d,µ

+
∑

d>0,µ=0

ũmd,µ +
∑

d=0,µ>0

ũmd,µ. (4.35)

By using cm, the time-average channel constraint (4.12) can be expressed as

M∑
m=0

cm = N. (4.36)

We define the vectorsVm(t),Um(t), vm, and um to contain (V m
δ,d(t), Ṽ

m
d (t)), (Um

δ,d,µ(t), Ũ
m
d,µ(t)),

(vmδ,d, ṽ
m
d ), and (umδ,d,µ, ũ

m
d,µ), respectively, for all δ = 1, 2, . . . , δbound, d = 0, 1, . . . , dbound, and

µ = 0, 1, . . . , Bm.

Now, we provide a uniform global attractor condition. For a policy π, we can have a

mapping Ψπ of the state transitions, given by

Ψπ((v
m)Mm=1) :=

Eπ[(V
m(t))Mm=1(t+ 1)|(Vm(t))Mm=1(t) = (vm)Mm=1]. (4.37)

We define the t-th iteration of the maps Ψπ,t≥0(·) as Ψπ,0((v
m)Mm=1) = (vm)Mm=1 and Ψπ,t+1((v

m)Mm=1) =

Ψπ(Ψπ,t((v
m)Mm=1)).

Definition 4.4 [74] Uniform Global attractor. An equilibrium point (vm∗)Mm=1 associ-

ated with the optimal solution of (4.9)-(4.12) is a uniform global attractor of Ψπ,t≥0(·), i.e.,
for all ϵ > 0, there exists T (ϵ) > 0 such that for all t ≥ T (ϵ) and for all (vm)Mm=1, one has

∥Ψπ,t((v
m)Mm=1)− (vm∗)Mm=1)∥1 ≤ ϵ.

Theorem 4.6 Under the uniform global attractor condition provided in Definition 4.4, πour

is asymptotically optimal.
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Proof 4.5 (Proof sketch) We first establish that if m-th source is selected, then there

exists an optimal feature selection policy that always selects features from the buffer position

b∗m(λ
∗). Hence, the multiple action RMAB problem (4.2)-(4.4) reduces to a binary action

RMAB problem. Then, we use [74, Theorem 13] to prove Theorem 4.6. See Appendix 4.E

for details.

4.4 Data Driven Evaluations

In this section, we illustrate the performance of our scheduling policies, where the infer-

ence error function p(δ) is collected from the data driven experiments in Chapter 2.3. Now,

we evaluate the following three multiple-source scheduling policies:

1. Maximum age first (MAF), Generate-at-will: At time slot t, if a channel is free, this

policy schedules the freshest generated feature from source argmaxl∈A(t) ∆l(t), where

A(t) is the set of available sources in time slot t.

2. Whittle index, Generate-at-will: Denote

l∗0 = argmax
l∈A(t)

Wl,0(∆l(t)). (4.38)

If a channel is free and maxl∈A(t)Wl,0(∆l(t)) ≥ 0, the freshest feature from the source

l∗0 is scheduled; otherwise, no source is scheduled.

3. Proposed Policy: The policy is described in Algorithm 1.

4. Lower bound: Given the optimal dual variable λ = λ∗, the lower bound is obtained by

implementing policy (f ∗
m(λ

∗), g∗m(λ
∗))Mm=0, which is defined in Theorem 4.3.

5. Upper bound: The upper bound is obtained if none of the sources is scheduled at every

time slot t.

In Figs. 4.2-4.3, we present a comparative analysis of our proposed policy alongside

other policies. The plots depict the performance evaluation in a scenario where the number

of sources is set to m = 500. The inference error for half of the sources is illustrated in Fig.
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Figure 4.2: Time-average weighted inference error vs. number of channels (N).
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Figure 4.3: Time-average weighted inference error vs. buffer size (B).

2.3(c) and this corresponds to a weight of w1 = 1; the inference error for the remaining half

is depicted in Fig. 2.2(c), with a weight of w2 = 5. In this section, the transmission time for

all features from both classes of sources is set to 1 time slot.

In Fig. 4.2, we plot the weighted time-average inference error versus the number of

channels, where the buffer size of all sources is set to 40 (i.e., Bl = B = 40 for all l).

From Fig. 4.2, it is evident that our proposed policy outperforms the “Whittle index,

Generate-at-will” and “MAF, Generate-at-will” policies. Specifically, our policy achieves a

weighted average inference error that is twice as low as that of the “MAF, Generate-at-

will” policy. Furthermore, as shown in Fig. 4.2, the performance of our policy matches
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the lower bound of the multi-source, multi-action scheduling problem, thereby validating its

asymptotic optimality.

Fig. 4.3 illustrates the weighted time-average inference error versus the buffer size B,

with the number of channels set to N = 50. The results presented in Fig. 4.3 underscore

the effectiveness of the “selection-from-buffer” model. The weighted time-average inference

error achieved by our policy decreases as the buffer size B increases, eventually reaching a

plateau at a buffer size of 20.
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4.A Proof of Theorem 4.3

In this section, we prove Theorem 4.2, and Theorem 4.3. These theorems provide

optimal solutions for the scheduling problems (4.16) and (4.17). We begin by deriving the

optimal solution for (4.16). Subsequently, the optimal solutions for (4.17) follows directly,

as this problem is a special cases of (4.16).

Since the problem (4.16) focuses solely on a single source, we simplify the notation by

omitting the source index m and rewrite the problem (4.16) as follows:

p̄opt(λ)= inf
π∈Π

lim sup
T→∞

E

[
1

T

T−1∑
t=0

w p(∆(t)) + λc(t)

]
, (4.39)

where p(∆(t)) is the penalty at time t, ∆(t) ∈ Z+ is the AoI, c(t) ∈ {0, 1} is the channel

occupation status at time t, π = ((S1, b1), (S2, b2), . . .) is a scheduling policy, Π is the set

of all causal and signal-agnostic scheduling policies, w > 0 is a weight, and p̄opt(λ) is the

optimal objective value to (4.39).

The scheduling problem (4.39) is an infinite-horizon average-cost semi-Markov decision

process (SMDP) [69, Chapter 5.6]. We provide a detailed description of the components of

this problem:

• Decision Time: Each i-th feature delivery time Di = Si+Ti is a decision time of the

problem (4.39), where Si is the scheduling time of the i-th feature and the i-th feature

takes Ti ≥ 1 time slots to be delivered.

• State: At time slot Di, the state of the system is represented by AoI ∆(Di).

• Action: Let τi+1 = Si+1 − Di represent the waiting time for sending the (i + 1)-th

feature after the i-th feature is delivered. As we consider S0 = 0 and Si =
∑i

j=1(Tj−1+

τj) for each i = 1, 2, . . .. Given (T0, T1, . . .), the sequence (S1, S2, . . .) is uniquely

determined by (τ1, τ2, . . .). Hence, one can also use (τ1, τ2, . . .) to represent a sequence

of actions instead of (S1, S2, . . .).

At time Di, the scheduler decides the waiting time τi+1 and the buffer position bi+1.
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• State Transitions: The AoI process ∆(t) evolves as

∆(t) =

Ti + bi, if t = Di, i = 0, 1, . . . ,

∆(t− 1) + 1, otherwise.

(4.40)

• Expected Transition Time: The expected time difference between two decision

times, Di and Di+1, is given by

E[Di+1 −Di] = E[Si+1 + Ti+1 − (Si + Ti)]

= E[Si + Ti + τi+1 + Ti+1 − Si − Ti]

= E[τi+1 + Ti+1]. (4.41)

• Expected Transition Cost: The expected cumulative cost incurred during the in-

terval between two decision times, Di and Di+1, can be calculated as

E

[
Di+1−1∑
t=Di

(
w p(∆(t)) + λc(t)

)]

=E

[
τi+1+Ti+1−1∑

k=0

w p(∆(Di + k))

]
+λE[Ti+1]. (4.42)

The infinite-horizon average-cost SMDP (4.39) can be solved by using dynamic programming

[69, 72]. Let h : Z+ 7→ R be the relative value function associated with the average-cost

SMDP (4.39). At time t = Di, the optimal action (τi+1, bi+1) can be determined by solving
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the following Bellman optimality equation [69, P. 275]:

h(∆(Di)) = inf
τi+1∈{0,1,...}

bi+1∈{0,...,B−1}

E

[
τi+1+Ti+1−1∑

k=0

wp(∆(Di + k))

]
+ λE[Ti+1]

− p̄opt(λ)E[τi+1 + Ti+1] + E[h(∆(Di+1)]

= inf
τi+1∈{0,1,...}

bi+1∈{0,...,B−1}

E

[
τi+1+Ti+1−1∑

k=0

(
wp(∆(Di + k))−p̄opt(λ)

)]

+ λE[Ti+1] + E[h(∆(Di+1)]

= inf
τi+1∈{0,1,...}

bi+1∈{0,...,B−1}

E

[
τi+1+Ti+1−1∑

k=0

(
wp(∆(Di + k))−p̄opt(λ)

)]

+ λE[Ti+1] + E[h(Ti+1 + bi+1)], (4.43)

where the last equality holds because ∆(Di+1) = Ti+1 + bi+1.

From (4.43), it is observed that the buffer position bi+1 only depends on the term

E[h(Ti+1 + bi+1)], while the waiting time τi+1 has no impact on E[h(Ti+1 + bi+1)]. Hence, the

optimal buffer position b∗i+1 is determined by

b∗i+1 =arg min
bi+1∈{0,1,...,B−1}

E[h(Ti+1 + bi+1)]. (4.44)

Since Ti’s are i.i.d., E[h(Ti+1 + b)] = E[h(Ti + b)] = · · · = E[h(T1 + b)] for all i and b. Hence,

from (4.44), it is evident that there exists a b∗ ∈ {0, 1, . . . , B − 1} such that b∗1 = b∗2 = · · · =
b∗i+1 = b∗ that satisfies

b∗ =arg min
b∈{0,1,...,B−1}

E[h(T1 + b)]. (4.45)

Because the optimal buffer position is time-invariant, the problem (4.39) can be expressed

as

p̄opt(λ) = min
b∈{0,1,...,B−1}

p̄b,opt(λ), (4.46)
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where p̄b,opt(λ) is given by

p̄b,opt(λ) = inf
πb∈Πb

lim sup
T→∞

1

T
Eπb

[
T−1∑
t=0

w p(∆(t)) + λc(t)

]
, (4.47)

πb = ((S1, b), (S2, b), . . .), Πb is the set of all causal and signal-agnostic scheduling policies πb

with fixed buffer position b, and p̄b,opt(λ) is the optimal objective value to (4.47).

At every i-th decision time Di of the average-cost SMDP (4.47), the scheduler decides

the waiting time τi+1. The average-cost SMDP (4.47) can be solved by using dynamic

programming [69,72]. Given AoI value δ at decision timeDi, the Bellman optimality equation

of (4.47) is obtained by substituting ∆(Di) = δ, bi+1 = b, and p̄opt(λ) = p̄b,opt(λ) into (4.43),

given by

hb(δ) = inf
τ∈{0,1,2,...}

E

[
τ+Ti+1−1∑

k=0

(w p(δ + k)− p̄b,opt(λ))
]

+ λE[Ti+1] + E[hb(Ti+1 + b)], δ = 1, 2, . . .

= inf
τ∈{0,1,2,...}

E

[
τ+T1−1∑
k=0

(w p(δ + k)− p̄b,opt(λ))
]

+ λE[T1] + E[hb(T1 + b)], δ = 1, 2, . . . , (4.48)

where the last equality holds because Ti’s are identically distributed. Let τ(δ, p̄b,opt(λ)) be

an optimal solution to (4.48). If ∆(Di) = δ, then an optimal waiting time τi+1 of (4.47) for

sending the (i+ 1)-th feature is τ(δ, p̄b,opt(λ)).

From (4.48), we can show that τ(δ, p̄b,opt(λ)) = 0 if

inf
τ∈{1,2,...}

E

[
τ+T1−1∑
k=0

(w p(δ + k)− p̄b,opt(λ))
]

≥ E

[
T1−1∑
k=0

(w p(δ + k)− p̄b,opt(λ))
]
. (4.49)
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After some rearrangement, the inequality (4.49) can also be expressed as

inf
τ∈{1,2,...}

E

[
τ−1∑
k=0

(w p(δ + k + T1)− p̄b,opt(λ))
]
≥ 0. (4.50)

Next, similar to [25, Lemma 7], the following lemma holds.

Lemma 4.2 The inequality (4.50) holds if and only if

inf
τ∈{1,2,...}

1

τ
E

[
τ−1∑
k=0

w p(δ + k + T1)

]
≥ p̄b,opt(λ). (4.51)

According to (4.19), the left-hand side of (4.51) is equal to γ(δ). Similarly, τ(δ, p̄b,opt(λ)) = 1,

if τ(δ, p̄b,opt(λ)) ̸= 0 and

inf
τ∈{2,3,...}

E

[
τ−1∑
k=0

(w p(δ + k + T1)− p̄b,opt(λ))
]
≥ 0 (4.52)

By using Lemma 4.2 and (4.19), we can show that the inequality (4.52) can be rewritten as

γ(δ + 1) ≥ p̄b,opt(λ). (4.53)

By repeating this process, we get τ(δ, p̄b,opt(λ)) = k is optimal, if τ(δ, p̄b,opt(λ)) ̸= 0, 1, . . . , k−1
and

γ(δ + k) ≥ p̄b,opt(λ). (4.54)

Hence, the optimal waiting time τi+1 = τ(δ, p̄b(λ)) is determined by

τ(δ, p̄b(λ)) = min
k∈Z
{k ≥ 0 : γ(δ + k) ≥ p̄b,opt(λ)}. (4.55)
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Now, we are ready to compute the optimal objective value p̄b,opt(λ). Using (4.48), we

can determine the value of E[hb(T1 + b)], which is given by

E[hb(T1 + b)] =E

τ(T1+b,p̄b,opt(λ))+T1−1∑
k=0

(wp(T1 + b+ k)− p̄b,opt(λ))


+ λE[T1] + E[hb(T1 + b)], (4.56)

which yields

E

τ(T1+b,p̄b,opt(λ))+T1−1∑
k=0

(
wp(T1 + b+ k)− p̄b,opt(λ)

)+ λE[T1] = 0. (4.57)

Rearranging (4.57), we get

p̄b,opt(λ) =
E
[∑τ(T1+b,p̄b,opt(λ))+T1−1

k=0 wp(T1 + b+ k)
]
+ λE[T1]

E[τ(T1 + b, p̄b,opt(λ)) + T1]

=
E
[∑Di+1(p̄b,opt(λ))−1

t=Di(p̄b,opt(λ))
wp
(
∆(t)

)]
+ λE[T1]

E [Di+1(p̄b,opt(λ))−Di(p̄b,opt(λ))]
, (4.58)

where Di+1(p̄b,opt(λ)) = Si+1(p̄b,opt(λ)) + Ti+1 and

Si+1(p̄b,opt(λ)) = min
t≥0
{t ≥ Di(p̄b,opt(λ)) : γ(∆(t)) ≥ p̄b,opt(λ)}, (4.59)

and the last equality holds due to (4.41) and (4.42).

Now, by combining (4.46), (4.55), and (4.58) and by substituting appropriate values of

λ and w, we obtain optimal solution to (4.16) and (4.17).

Finally, we need to prove that

E

Di+1(β)−1∑
t=Di(β)

wp
(
∆(t)

)− βE [Di+1(β)−Di(β)] + λE[T1] = 0. (4.60)
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has a unique root. We define

J(β) = E

Di+1(β)−1∑
t=Di(β)

wp
(
∆(t)

)− βE [Di+1(β)−Di(β)] + λE[T1]. (4.61)

Lemma 4.3 The function J(β) has the following properties:

(i) The function J(β) is concave, continuous, and strictly decreasing in β.

(ii) limβ→∞ j(β) = −∞ and limβ→−∞ j(β) =∞.

Proof 4.6 See Appendix 4.B

Lemma 4.3 proves the uniqueness of (4.63). Also, the uniqueness of the root of (4.20)

follows immediately from Lemma 4.3.

4.B Proof of Lemma 4.3

We denote Di+1(β) = Si+1(β) + Ti+1, Si+1(β) = τ(∆(Di), β) + Di(β), where τ(δ, β) is

defined as the optimal solution of

inf
τ∈{0,1,2,...}

E

[
τ+T1−1∑
k=0

(wp(δ + k)− β)
]
. (4.62)

Because Ti’s are i.i.d., and ∆(Di) = Ti + b, we can express (4.61) as

J(β) = E

Di+1(β)−1∑
t=Di(β)

wp
(
∆(t)

)− βE [Di+1(β)−Di(β)] + λE[T1]

= E

τ(T1+b,β)+T1−1∑
k=0

(wp(T1 + b+ k)− β)

+ λE[T1]

= inf
τ∈{0,1,...

E

[
τ+T1−1∑
k=0

(wp(T1 + b+ k)− β)
]
+ λE[T1]. (4.63)

Since the right-hand side of (4.63) is the pointwise infimum of the linear decreasing functions

of β, J(β) is concave, continuous, and strictly decreasing in β. This completes the proof of

part (i) of Lemma 4.3.
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Part (ii) of Lemma 4.3 holds because for any τ ≥ 0

lim
β→∞

E

[
τ+T1−1∑
k=0

(wp(T1 + b+ k)− β)
]
= −∞ (4.64)

and

lim
β→−∞

E

[
τ+T1−1∑
k=0

(wp(T1 + b+ k)− β)
]
=∞. (4.65)

This completes the proof.

4.C Proof of Theorem 4.4

According to (4.22) and the definition of set Ωm(λ), a point (∆m(t), dm(t)) ∈ Ωm(λ) if

either (i) dm(t) > 0 such that a feature from source m is currently in service at time t, or (ii)

γm(∆m(t)) < p̄m,opt(λ) such that the threshold condition in (4.22) for sending a new feature

is not satisfied. By this, an analytical expression of set Ωm(λ) is derived as

Ωm(λ) = {(δ, d) : d > 0 or γm(δ) < p̄m,opt(λ)}, (4.66)

where according to Theorem 4.2 and Theorem 4.3, β = p̄m,opt(λ) is the unique root of

Jm,1(β) + λE[Tm,1] = 0, (4.67)

and

Jm,1(β) =E

Dm,i+1(β)−1∑
t=Dm,i(β)

wmpm
(
∆m(t)

)− βE [Dm,i+1(β)−Dm,i(β)] .

Because λE[Tm,1] does not change with β, from Lemma 4.3, we can show that Jm,1(β) is

a strictly decreasing function of β with limβ→∞ jm,1(β) = −∞ and limβ→−∞ jm,1(β) = ∞.

Hence, the inverse function J−1
m,1(·) exists and from (4.67), we get J−1

m,1(λE[Tm,1]) = p̄m,opt(λ).

Because the inverse function of a strictly decreasing function is strictly increasing, p̄m,opt(λ)
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is strictly increasing function of λ. Substituting this into (4.66), we get that if λ1 ≤ λ2, then

Ωm(λ1) ⊆ Ωm(λ2).

For dummy bandits, it is optimal in (4.15) to activate a dummy bandit when λ ≤ 0.

Hence, dummy bandits are always indexable.

4.D Proof of Theorem 4.5

By substituting (4.66) into (4.25), we obtain, if d > 0, then Wm(δ, d) = −∞, and if

d = 0, then

Wm(δ, 0) = inf{λ : γm(δ) < p̄m,opt(λ)}. (4.68)

Using (4.23) and (4.68), we get

Wm(δ, 0) = max
0≤b≤Bm−1

Wm,b(δ, 0), (4.69)

where

Wm,b(δ, 0) = inf{λ : γm(δ) < p̄m,b,opt(λ)}. (4.70)

Because p̄m,b,opt(λ) is strictly increasing function of λ, (4.70) implies thatWm,b(δ, 0) is unique

and satisfies

p̄m,b,opt(Wm,b(δ, 0)) = γm(δ). (4.71)

By including source index m into (3.32), we get

p̄m,b,opt(λ) =
E
[∑Dm,i+1(p̄m,b,opt(λ))−1

t=Dm,i(p̄m,b,opt(λ))
pm
(
∆m(t)

)]
+ λE[Tm,1]

E [Di+1(p̄m,b,opt(λ))−Di(p̄m,b,opt(λ))]
. (4.72)

By substituting λ = Wm,b(δ, 0) and (4.71) into (4.72). and then, re-arranging, we get (4.27).

This concludes the proof.
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4.E Proof of Theorem 4.6

Preliminaries

Policy π in (4.9)-(4.12) can be expressed as a sequence of actions π = (µ(t))t=0,1,...,

with µ(t) = µm(t))
M
m=0 representing actions taken at successive time slots. Let (µ∗(t))t=0,1,...

denote the optimal policy for solving (4.9)-(4.12). Given the optimal dual variable λ = λ∗,

Theorems 4.2-4.3 imply that in the optimal policy for (4.9)-(4.12), class m bandits choose

either action µm(t) = 0 or µm(t) = b∗m(λ
∗) + 1 at every time slot t. Therefore, the optimal

state-action frequency satisfies: um∗
δ,d,µ = 0 for all µ ̸= 0, b∗m(λ

∗) + 1. Hence, for all class m,

only two actions can occur for every bandit in class m. Thus, our multiple-action RMAB

problem can be reduced to a binary action RMAB problem. After that, for the truncated

state space (δ, d) ∈ {1, 2, . . . , δbound} × {0, 1, . . . , dbound}, we directly use [74, Theorem 13

and Proposition 14] to prove the asymptotic optimality of our policy. Though [74, Theorem

13 and Proposition 14] is proved for a single class of bandits, we can use the results for

multiple classes of bandits because of a similar argument provided in [77, Section 5]: we

argue that having multiple classes of bandits can be represented by a single class of bandits

by considering a larger state space: the state of a bandit would be (m, δ, d), where m is its

class.
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Chapter 5

Learning and Communications Co-design for Remote Inference: Feature Length Selection

and Transmission Scheduling

5.1 Introduction

In this paper, we study a learning and communications co-design problem that jointly

controls the timeliness and the length of the feature sequences. The contributions of this

paper are summarized as follows:

• We demonstrated that the inference error is a function of the AoI, whereas the function

is not necessarily monotonic. This chapter further investigates the impact of feature

length on inference error. Our information-theoretic and experimental analysis show

that the inference error is a non-increasing function of the feature length (See Figs.

2.5(a)-5.3(a), and Lemma 5.1).

• We propose a novel learning and communications co-design framework (see Section

5.2). In this framework, we adopted the “selection-from-buffer” model proposed in [12],

which is more general than the popular “generate-at-will” model that was proposed

in [20] and named in [21]. In addition, we consider both time-invariant and time-variant

feature length. Earlier studies, for example [12, 78], did not consider time-variant

feature length.

• For a single sensor-predictor pair and a single channel, this paper jointly optimizes

feature length selection and transmission scheduling to minimize the time-averaged in-

ference error. This joint optimization is formulated as an infinite time-horizon average-

cost semi-Markov decision process (SMDP). Such problems often lack analytical so-

lutions or closed-form expressions. Nevertheless, we are able to derive a closed-form

expression for an optimal scheduling policy in the case of time-invariant feature length

(Theorem 5.1). The optimal scheduling time strategy is a threshold-based policy. Our

threshold-based scheduling approach differs significantly from previous threshold-based

policies in e.g., [12,23,25–27], because our threshold function depends on both the AoI
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value and the feature length, while prior threshold functions rely solely on the AoI

value. In addition, our threshold function is not necessarily monotonic with AoI. This

is a significant difference with prior studies [23,25–27].

• We provide an optimal policy for the case of time-variant feature length. Specifically,

Theorem 5.2 presents the Bellman equation for the average-cost SMDP with time-

variant feature length. The Bellman equation can be solved by applying either relative

value iteration or policy iteration algorithms [72, Sec. 11.4.4]. Given the complexity

associated with converting the average-cost SMDP into a Markov Decision Process

(MDP) suitable for relative value iteration, we opt for the alternative: using the policy

iteration algorithm to solve our average-cost SMDP. By leveraging specific structural

properties of the SMDP, we can simplify the policy iteration algorithm to reduce its

computational complexity. The simplified policy iteration algorithm is outlined in

Algorithm 2 and Algorithm 3.

• Furthermore, we investigate the learning and communications co-design problem for

multiple sensor-predictor pairs and multiple channels. This problem is a restless multi-

armed, multi-action bandit problem that is known to be PSPACE-hard [75]. Moreover,

proving indexability condition relating to Whittle index policy [33] for our problem is

fundamentally difficult. To this end, we propose a new scheduling policy named “Net

Gain Maximization” that does not need to satisfy the indexability condition (Algorithm

5).

• Numerical evaluations demonstrate that our policies for the single source case can

achieve up to 10000 times performance gain compared to periodic updating and zero-

wait policy (see Figs. 5.5-5.6). Furthermore, our proposed multiple source policy

outperforms the maximum age-first policy (see Fig. 5.7) and is close to a lower bound

(see Fig. 5.8).

5.1.1 Related Works

The age of information (AoI) has emerged as a popular metric for analyzing and

optimizing communication networks [32, 79], control systems [27, 80], remote estimation
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[25, 45], and remote inference [11, 12]. As surveyed in [43], several studies have investi-

gated sampling and scheduling policies for minimizing linear and nonlinear functions of

AoI [12,21,23,26–28,30–32,79,81–84]. In most previous works [21,23,26–28,30–32,79,81–84],

monotonic AoI penalty functions are considered. However, in a recent study [12], it is demon-

strated that the monotonic assumption is not always true for remote inference. In contrast,

the inference error is a function of AoI, but the function is not necessarily monotonic. The

present paper further investigates the impact of feature length on the inference error and

jointly optimizes AoI and feature length.

In recent years, researchers have increasingly employed information-theoretic metrics to

evaluate information freshness [11, 12, 23, 24, 36–38, 85]. In [23, 24, 36], the authors utilized

Shannon’s mutual information to quantify the amount of information carried by received data

messages about the current source value, and used Shannon’s conditional entropy to measure

the uncertainty about the current source value after receiving these messages. These metrics

were demonstrated to be monotonic functions of the AoI when the source follows a time-

homogeneous Markov chain [23,24]. Built upon these findings, the authors of [38] extended

this framework to include hidden Markov model. Furthermore, a Shannon’s conditional en-

tropy term HShannon(Yt|Xt−∆(t) = x) was used in [37,85] to quantify information uncertainty.

However, a gap still existed between these information-theoretic metrics and the perfor-

mance of real-time applications such as remote estimation or remote inference. In our recent

works [11,12,14] and the present paper, we have bridged this gap by using a generalized condi-

tional entropy associated with a loss function L, called L-conditional entropy, to measure (or

approximate) training and inference errors in remote inference, as well as the estimation error

in remote estimation. For example, when the loss function L(y, ŷ) is chosen as a quadratic

function ||y − ŷ||22, the L-conditional entropy HL(Yt|Xt−∆(t)) = minϕ E[(Yt − ϕ(Xt−∆(t)))
2] is

exactly the minimum mean squared estimation error in remote estimation. This approach

allows us to analyze how the AoI ∆(t) affects inference and estimation errors directly, in-

stead of relying on information-theoretic metrics as intermediaries for assessing application

performance. It is worth noting that Shannon’s conditional entropy is a special case of

L-conditional entropy, corresponding to the inference and estimation errors for softmax re-

gression and maximum likelihood estimation, as discussed in Section 5.2.
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The optimization of linear and non-linear functions of AoI for multiple source scheduling

can be formulated as a restless multi-armed bandit problem [12, 26, 86–88]. Whittle, in his

seminal work [33], proposed an index-based policy to address restless multi-armed bandit

(RMAB) problems with binary actions determining whether to select or not select a bandit.

Our multiple source scheduling problem is a RMAB problem with multiple actions. An

extension of the Whittle index policy for multiple actions was provided in [89], but it requires

to satisfy a complicated indexability condition. In [78], the authors considered joint feature

length selection and transmission scheduling, where the penalty function was assumed to

be non-decreasing in the AoI, the feature length is time-invariant, and there is only one

communication channel. Under these assumptions, [78] established the indexability condition

and developed a Whittle Index policy. Compared to [78], our work could handle both

monotonic and non-monotonic AoI penalty functions, both time-invariant and time-variant

feature lengths, and both one and multiple communication channels.

Because of (i) the time-variant feature length and non-monotonic AoI penalty function

and (ii) the fact that there exist multiple transmission actions, we could not utilize the

Whittle index theory to establish indexability for our multiple source scheduling problem. To

address this challenge, we propose a new “Net Gain Maximization” algorithm (Algorithm 5)

for multi-source feature length selection and transmission scheduling, which does not require

indexability. During the revision of this paper, we found a related study [85], where the

authors introduced a similar gain index-based policy for a RMAB problem with two actions:

to send or not to send. The “Net Gain Maximization” algorithm that we propose is more

general than the gain index-based policy in [85] due to its capacity to accommodate more

than two actions in the RMAB.

5.2 System Model and Scheduling Policy

We consider a remote inference system composed of a sensor, a transmitter, and a

receiver, as illustrated in Fig. 5.1. The sensor observes a time-varying target Yt ∈ Y
and feeds its measurement Vt ∈ V to the transmitter. The transmitter generates features

from the sensory outputs and progressively transmits the features to the receiver through a
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Figure 5.1: A remote inference system, where X l
t−b := (Vt−b, Vt−b−1, . . . , Vt−b−l+1) is a feature with

sequence length l.

communication channel. Within the receiver, a neural network infers the time-varying target

based on the received features.

System Model

The system is time-slotted and starts to operate at time slot t = 0. At every time

slot t, the transmitter appends the sensory output Vt ∈ V to a buffer that stores the B

most recent sensory outputs (Vt, Vt−1, . . . , Vt−B+1); meanwhile, the oldest output Vt−B is

removed from the buffer. We assume that the buffer is full initially, containing B signal

values (V0, V1, . . . , V−B+1) at time t = 0. This ensures that the buffer remains consistently

full at any time t.1 The transmitter progressively generates a feature X l
t−b, where each

feature X l
t−b := (Vt−b, . . . , Vt−b−l+1) ∈ V l is a temporal sequence of sensory outputs taken

from the buffer such that V l is the set of all l-tuples that take values from V , 1 ≤ l ≤ B, and

0 ≤ b ≤ B − l. For ease of presentation, the temporal sequence length l of feature X l
t−b is

called feature length and the starting position b of feature X l
t−b in the buffer is called feature

position. If the channel is idle in time slot t, the transmitter can submit the feature X l
t−b to

the channel. Due to communication delays and channel errors, the feature is not instantly

1This assumption does not introduce any loss of generality. If the buffer is no full at time t = 0, it would
not affect our results.
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Figure 5.2: Performance of wireless channel state information prediction: (a) Inference error Vs.
Feature length and (b) Inference error Vs. AoI.

received. The most recently received feature is denoted asX l
t−δ = (Vt−δ, Vt−δ−1, . . . , Vt−δ−l+1),

where the latest observation Vt−δ in feature X l
t−δ is generated δ time slots ago. We call δ

the age of information (AoI) which represents the difference between the time stamps of the

target Yt and the latest observation Vt−δ in feature X l
t−δ.

The receiver consists of B trained neural networks, each associated with a specific feature

length l = 1, 2, . . . , B. The neural network associated with feature length l takes the AoI

δ ∈ Z+ and the feature X l
t−δ ∈ V l as inputs and generates an output a = ϕl(δ,X

l
t−δ) ∈ A,

where the neural network is represented by the function ϕl : Z+×V l 7→ A. The performance

of the neural network is measured by a loss function L : Y ×A 7→ R, where L(y, a) indicates

the incurred loss if the output a ∈ A is used for inference when Yt = y. The loss function

L is determined by the purpose of the application. For example, in softmax regression (i.e.,

neural network based maximum likelihood classification), the output a = QY is a distribution

of Yt and the loss function Llog(y,QY ) = −log QY (y) is the negative log-likelihood of the

value Yt = y. In neural network based mean-squared estimation, a quadratic loss function

L2(y, ŷ) = ∥y− ŷ∥22 is used, where the action a = ŷ is an estimate of the target value Yt = y

and ∥y∥2 is the euclidean norm of the vector y.

Inference Error

We assume that {(Yt, X l
t), t ∈ Z} is a stationary process and the processes {(Yt, X l

t), t ∈
Z} and {∆(t), t = 0, 1, 2, . . .} are independent for every l. Under these assumptions, given
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AoI δ and feature length l, the expected inference error is a function of δ and l, given by

errinference(δ, l) := EY,Xl∼P
Yt,X

l
t−δ

[
L

(
Y, ϕl

(
δ,X l

))]
, (5.1)

where PYt,Xl
t−δ

is the joint distribution of the label Yt and feature X l
t−δ during online inference

and the function ϕl represents any trained neural network that maps from Z+ × V l to A.
The inference error errinference(δ, l) can be evaluated through machine learning experiments.

In this paper, we conduct two experiments: (i) wireless channel state information (CSI)

prediction and (ii) actuator states prediction in the OpenAI CartPole-v1 task [2]. Detailed

information regarding the experimental setup for both experiments can be found in Appendix

A of the supplementary material. The code for these experiments is available in GitHub

repositories2,3.

The experimental results, presented in Figs. 5.2(a)-5.3(a), demonstrate that the infer-

ence error decreases with respect to feature length. Moreover, Figs. 5.2(b)-5.3(b) illustrate

that the inference error is not necessarily a monotonic function of AoI. These findings align

with machine learning experiments conducted in [11, 12, 14]. Collectively, the results from

this paper and those in [11,12,14] indicate that longer feature lengths can enhance inference

accuracy and fresher features are not always better than stale features in remote inference.

Feature Length Selection and Transmission Scheduling Policy

Because (i) fresh feature is not always better than stale feature and (ii) longer feature

can improve inference error, we adopted “selection-from-buffer” model, which is recently

proposed in [12]. In contrast to the “generate-at-will” model [20, 21], where the transmitter

can only select the most recent sensory output Vt, the “selection-from-buffer” model offers

greater flexibility by allowing the transmitter to pick multiple sensory outputs (which can

be stale or fresh). In other words, “selection-from-buffer” model allows the transmitter

to choose feature position b and feature length l under the constraints 1 ≤ l ≤ B − 1

and 0 ≤ b ≤ B − l. Feature length selection represents a trade-off between learning and

2https://github.com/Kamran0153/Channel-State-Information-Prediction
3https://github.com/Kamran0153/Impact-of-Data-Freshness-in-Learning
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communications: A longer feature can provide better learning performance (see Figs. 2.5-

5.3), whereas it requires more channel resources (e.g., more time slots or more frequency

resources) for sending the feature. This motivated us to study a learning-communication co-

design problem that jointly optimizes the feature length, feature position, and transmission

scheduling.

The feature length and feature position may vary across the features sent over time.

Feature transmissions over the channel are non-preemptive: the channel must finish sending

the current feature, before becoming available to transmit the next feature. Suppose that

the i-th feature X li
Si−bi

= (VSi−bi , VSi−bi−1, . . . , VSi−bi−li+1) is submitted to the channel at time

slot t = Si, where li is its feature length and bi is its feature position such that 1 ≤ li ≤ B

and 0 ≤ bi ≤ B − li. It takes Ti(li) ≥ 1 time slots to send the i-th feature over the

channel. The i-th feature is delivered to the receiver at time slot Di = Si + Ti(li), where

Si < Di ≤ Si+1. The feature transmission time Ti(li) depends on the feature length li. Due

to time-varying channel conditions, we assume that, given feature length li = l, the Ti(l)’s

are i.i.d. random variables, with a finite mean 1 ≤ E[Ti(l)] <∞. Once a feature is delivered,

an acknowledgment (ACK) is sent back to the transmitter, notifying that the channel has

become idle.

In time slot t, the i(t)-th feature X
li(t)
Si(t)−bi(t)

is the most recently received feature, where

i(t) = maxi{Di ≤ t}. The receiver feeds the feature X
li(t)
Si(t)−bi(t)

to the neural network to

infer Yt. We define age of information (AoI) ∆(t) is defined as the difference between the

time-stamp of the freshest sensory output VSi(t)−bi(t) in feature X
li(t)
Si(t)−bi(t)

and the current

time t, i.e.,

∆(t) := t−max
i
{Si − bi : Di ≤ t}. (5.2)

Because Di < Di+1, it holds that

∆(t) = t− Si + bi, if Di ≤ t < Di+1. (5.3)

The initial state of the system is assumed to be S0 = 0, l0 = 1, b0 = 0, D0 = T0(l0), and ∆(0)

is a finite constant.
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Figure 5.3: Performance of actuator state prediction in the OpenAI CartPole-v1 task under me-
chanical response delay: (a) Inference error Vs. Feature length and (b) Inference error Vs. AoI.

Let π = ((S1, b1, l1), (S2, b2, l2), . . .) represent a scheduling policy and Π denote the set

of all the causal scheduling policies that satisfy the following conditions: (i) the scheduling

time Si, the feature position bi, and the feature length li are decided based on the current

and the historical information available at the transmitter such that 1 ≤ li ≤ B and 0 ≤ bi ≤
B − li, (ii) the scheduler does not have access to the realization of the process {(Yt, X l

t), t =

0, 1, 2, . . .}, and (iii) the scheduler has access to the inference error function errinference(·) and
the distribution of Ti(l) for each l = 1, 2, . . . , B. We use Πinv ⊂ Π to denote the set of causal

scheduling policies with time-invariant feature length, defined as

Πinv :=
B⋃
l=1

Πl, (5.4)

where Πl := {π ∈ Π : l1 = l2 = · · · = l}.

5.3 Preliminaries: Impacts of Feature Length and AoI on Inference Error

In this section, we adopt an information-theoretic approach that was developed recently

in [12] to show the impact of feature length l and AoI δ on the inference error errinference(δ, l).

Information-theoretic Metrics for Training and Inference Errors
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Training error errtraining(δ, l) is expressed as a function of δ and l, given by

errtraining(δ, l) = EY,Xl∼P
Ỹ0,X̃

l
−δ

[L(Y, ϕl(δ,X
l))], (5.5)

where ϕl a trained neural network used in (5.1) and PỸ0,X̃l
−δ

is the joint distribution of the

target Ỹ0 and the feature X̃ l
−δ in the training dataset. The training error errtraining(δ, l) is

lower bounded by

HL(Ỹ0|X̃ l
−δ) = min

ϕl∈Φ
EY,Xl∼P

Ỹ0,X̃
l
−δ

[L(Y, ϕl(δ,X
l))], (5.6)

where Φ = {ϕl : Z+ × V l 7→ A} is the set of all functions that map from Z+ × V l to A.
Because the trained neural network ϕl in (5.5) satisfies ϕl ∈ Φ, HL(Ỹ0|X̃ l

−δ) ≤ errtraining(δ, l).

The inference error errinference(δ, l) can be approximated as the following L-conditional

cross entropy

HL(PYt|Xl
t−δ

;PỸ0|X̃l
−δ
|PXl

t−δ
) =

∑
x∈X l

PXl
t−δ

(x)EY∼P
Yt|Xl

t−δ
=x

[
L

(
Y, aP

Ỹ0|X̃l
−δ

=x

)]
, (5.7)

where the L-conditional cross entropy HL(PY |X ;PỸ |X̃ |PX) is defined as [12]

HL(PY |X ;PỸ |X̃ |PX) =
∑
x∈X

PX(x)EY∼PY |X=x

[
L
(
Y, aPỸ |X̃=x

)]
. (5.8)

If training algorithm considers sets of large and wide neural networks such that aP
Ỹ0|X̃l

−δ
=x

and

ϕl(δ, x) for all δ ∈ Z+ and x ∈ X l are close to each other, then the difference between the in-

ference error errinference(δ, l) and the L-conditional cross entropy HL(PYt|Xl
t−δ

;PỸ0|X̃l
−δ
|PXl

t−δ
) is

small [12]. Compared to errinference(δ, l), the L-conditional cross entropyHL(PYt|Xl
t−δ

;PỸ0|X̃l
−δ
|PXl

t−δ
)

are mathematically more convenient to analyze, as we will see next.

Information-theoretic Monotonicity Analysis

The following lemma interprets the monotonicity of the L-conditional entropyHL(Ỹ0|X̃ l
−δ)

and the L-conditional cross entropy HL(PYt|Xl
t−δ

;PỸ0|X̃l
−δ
|PXl

t−δ
) with respect to the feature

length l.
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Lemma 5.1 The following assertions are true:

(a) Given δ ≥ 0, HL(Ỹ0|X̃ l
−δ) is a non-increasing function of l, i.e., for all 1 ≤ l1 ≤ l2

HL(Ỹ0|X̃ l2
−δ) ≤ HL(Ỹ0|X̃ l1

−δ). (5.9)

(b) Given β ≥ 0, if for all l = 1, 2, . . . , and x ∈ V l

∑
x∈X l

PXl
t−δ

(x)
∑
y∈Y

(PYt|Xl
t−δ=x(y)− PỸ0|X̃l

−δ=x(y))
2 ≤ β2, (5.10)

then for all 1 ≤ l1 ≤ l2

HL(PYt|X
l2
t−δ

;P
Ỹ0|X̃

l2
−δ
|P

X
l2
t−δ

) ≤ HL(PYt|X
l1
t−δ

;P
Ỹ0|X̃

l1
−δ
|P

X
l1
t−δ

) +O(β). (5.11)

Proof 5.1 Lemma 1 can be proven by using the data processing inequality for L-conditional

entropy [48, Lemma 12.1] and a local information geometric analysis. See Appendix 5.B for

the details.

Lemma 5.1(a) demonstrates that for a given AoI value δ, the L-conditional entropy

HL(Ỹ0|X̃ l
−δ) decreases as the feature length l increases. This is due to the fact that a longer

feature provides more information, consequently leading to a lower L-conditional entropy.

Additionally, as indicated in Lemma 5.1(b), when the conditional distributions in training

and inference data are close to each other (i.e., when β in (5.10) is close to 0), the L-

conditional cross entropy HL(PYt|Xl
t−δ

;PỸ0|X̃l
−δ
|PXl

t−δ
) is close to a non-increasing function of

the feature length l. This information-theoretic analysis clarifies the experimental results

depicted in Fig. 2.5(a) and Fig. 5.3(a), where the inference error diminishes with the

increasing feature length.

5.4 Learning and Communications Co-design: Single Source Case

Let d(t) denote the feature length of the most recently received feature in time slot t.

The time-averaged expected inference error under policy π = ((S1, b1, l1), (S2, b2, l2), . . .) is
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expressed as

p̄π = lim sup
T→∞

1

T
Eπ

[
T−1∑
t=0

errinference(∆(t), d(t))

]
, (5.12)

where p̄π is denoted as the time-averaged inference error, and errinference(∆(t), d(t)) is the

expected inference error at time t corresponding to the system state (∆(t), d(t)). In this

section, we slove two problems. The first one is to find an optimal policy that minimizes the

time-averaged expected inference error among all the causal policies in Πinv that consider

time-invariant feature length. Another problem is to find an optimal policy that minimizes

the time-averaged expected inference error among all the causal policies in Π.

5.4.1 Time-invariant Feature Length

We first find an optimal policy that minimizes the time-averaged inference error among

all causal policies with time-invariant feature length in Πinv defined in (5.4):

p̄inv= inf
π∈Πinv

lim sup
T→∞

1

T
Eπ

[
T−1∑
t=0

errinference(∆(t), d(t))

]
, (5.13)

where p̄inv is the optimum value of (5.13). The problem (5.13) is an infinite time-horizon

average-cost semi-Markov decision process (SMDP). Such problems are often challenging to

solve analytically or with closed-form solutions. The per-slot cost function errinference(∆(t), d(t))

in (5.13) depends on two variables: the AoI ∆(t) and the feature length d(t). Prior stud-

ies [21,23,25–27,29,32,45,79] have considered linear and non-linear monotonic AoI functions.

Due to the fact that (i) the cost function in (5.13) depends on two variables and (ii) is not

necessarily monotonic with respect to AoI, finding an optimal solution is challenging and

the existing scheduling policies cannot be directly applied to solve (5.13). Therefore, it is

necessary to develop a new scheduling policy that can address the complexities of (5.13).
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Surprisingly, we get a closed-form solution of (5.13). To present the solution, we define

a function γl(δ, d) as

γl(δ, d) := inf
τ∈{1,2,...}

1

τ

τ−1∑
j=0

E
[
errinference

(
δ + j + T1(l), d

)]
. (5.14)

Theorem 5.1 If Ti(l)’s are i.i.d. with a finite mean E[Ti(l)] for each l = 1, 2, . . . , B, then

there exists an optimal solution π∗ = ((S∗
1 , b

∗
1, l

∗), (S∗
2 , b

∗
2, l

∗), . . .) ∈ Πinv to (5.13) that satis-

fies:

(a) The optimal feature position in π∗ is time-invariant, i.e., b∗1 = b∗2 = · · · = b∗. The

optimal feature length l∗ and the optimal feature position b∗ in π∗ are given by

(l∗, b∗) = argmin
l∈Z,b∈Z

1≤l≤B,0≤b≤B−l

βb,l, (5.15)

where βb,l is the unique root of equation

E

Di+1(βb,l)−1∑
t=Di(βb,l)

errinference(∆b(t), l)


− βb,l E

[
Di+1(βb,l)−Di(βb,l)

]
= 0, (5.16)

Di(βb,l) = Si(βb,l) + Ti(l), ∆b(t) = t − Si(βb,l) + b, the sequence (S1(βb,l), S2(βb,l), . . .)

is determined by

Si+1(βb,l)=min
t∈Z

{
t≥Di(βb,l) : γl(∆b(t), l)≥βb,l

}
, (5.17)

and the function γl(·) is defined in (5.14).

(b) The optimal scheduling time S∗
i+1 in π∗ is determined by

S∗
i+1=min

t∈Z

{
t≥S∗

i +Ti(l
∗):γl∗(∆b∗(t), l

∗)≥ p̄inv
}
, (5.18)
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where ∆b∗(t) = t − S∗
i + b∗ is the AoI at time t. The optimal objective value p̄inv of

(5.13) is

p̄inv = min
l∈Z,b∈Z

1≤l≤B,0≤b≤B−l

βb,l. (5.19)

We prove Theorem 5.1 in two steps: (i) We find B policies, each of which is optimal among

the set of policies Πl where l = 1, 2, . . . , B. After that (ii) we select the policy that results

in the minimum average inference error among the B policies. See Appendix 5.C for details.

Theorem 5.1 implies that the optimal scheduling policy has a nice structure. According

to Theorem 5.1(a), the feature position b∗i is constant for all i-th features, i.e., b∗1 = b∗2 =

. . . = b∗. The optimal feature length l∗ and the optimal feature position b∗ are pre-computed

by solving (5.15) and then used in real-time. The parameter βb,l in (5.15) is the unique

root of (5.16), which is solved by using low-complexity algorithms, e.g., bisection search,

newtons method, and fixed point iteration [25]. Theorem 5.1(b) implies that the optimal

scheduling time S∗
i+1 follows a threshold policy. Specifically, a feature is transmitted in

time-slot t if the following two conditions are satisfied: (i) The channel is idle in time-slot

t and (ii) the value γl∗(∆(t), l∗) exceeds the optimal objective value p̄inv of (5.13). The

optimal objective value p̄inv is obtained from (5.19). Our threshold-based scheduling policy

has a significant distinction from previous threshold-based policies studied in the literature,

such as [23, 25, 27, 45]. In these prior works, the threshold function used to determine the

scheduling time is based solely on the AoI value and is non-decreasing with respect to AoI.

However, in our proposed strategy, (i) the threshold function γl(·) depends on both the AoI

value and the feature length and (ii) the threshold function γl(·) can be non-monotonic with

respect to AoI.

Monotonic AoI Cost function

Consider a special case where the inference error errinference(δ, l) is a non-decreasing

function of δ for every feature length l. A simplified solution can be derived for this specific

case of (5.13). In this scenario, the optimal feature position is b∗ = 0, and the threshold
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function γl(·) defined in (5.14) becomes:

γl(δ, d) = E
[
errinference

(
δ + T1(l), d

)]
. (5.20)

In this special case of monotonic AoI cost function, (5.18) can be rewritten as a threshold

policy of the AoI ∆(t) in the form of ∆(t) ≥ w(l∗, p̄inv), where w(l, β) is defined as:

w(l, β) = inf

{
δ ≥ 0 : E

[
errinference

(
δ + T1(l), l

)]
≥ β

}
. (5.21)

However, when errinference(δ, l) is not monotonic with respect to AoI δ, (5.18) cannot be

reformulated as a threshold policy of the AoI ∆(t). This is a key difference with earlier

studies [23, 26,27].

Connection with Restart-in-state Problem

Consider another special case in which all features take 1 time-slot for transmission. For

this special case, the threshold function γl(·) defined in (5.14) becomes

γl(δ, d) = inf
τ∈{1,2,...}

1

τ

τ−1∑
j=0

E
[
errinference

(
δ + j + 1, d

)]
. (5.22)

This special case of (5.13) is a restart-in-state problem [70, Chapter 2.6.4]. This is because

whenever a feature with the optimal feature length l∗ and from the optimal feature position

b∗ is transmitted, AoI value restarts from b∗+1 in the next time slot. For this restart-in-state

problem, the optimal sending time follows a threshold policy [70, Chapter 2.6.4]. Specifically,

a feature is transmitted if

h(∆b∗(t+ 1), l∗) ≥ h(b∗ + 1, l∗), (5.23)

where the relative value function h(δ, l∗) of the restart-in-state problem is given by

h(δ, l∗) = min
Z∈{0,1,...}

E

[
Z∑

k=0

(
errinference(δ + k, l∗)− p̄inv

)]
+ h(b∗ + 1, l∗). (5.24)
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By using (5.24), we can show that (5.23) is equivalent to

γl∗(∆b∗(t), l
∗) ≥ p̄inv. (5.25)

where the function γl(δ, d) is defined in (5.22). This connection between the restart-in-state

problem and AoI minimization was unknown before. The original problem considers more

general Ti(l), which can be considered as a restart-in-random state problem. This is because

whenever i-th feature with optimal feature length l∗ and from optimal feature position b∗ is

transmitted, AoI restarts from a random value b∗ + Ti(l
∗) after Ti(l

∗) time slots.

5.4.2 Time-variant Feature Length

Now, we find an optimal scheduling policy that minimizes time-averaged inference error

among all causal policies in Π:

p̄opt=inf
π∈Π

lim sup
T→∞

1

T
Eπ

[
T−1∑
t=0

errinference(∆(t), d(t))

]
, (5.26)

where errinference(∆(t), d(t)) is the inference error at time slot t and p̄opt is the optimum value

of (5.26). Because Πinv ⊂ Π,

p̄opt ≤ p̄inv, (5.27)

where p̄inv is the optimum value of (5.13). Like (5.13), problem (3.3) can also be expressed

as an infinite time-horizon average-cost SMDP. Note that (3.3) is more complex SMDP than

(5.13) because the feature length in (5.26) is allowed to vary over time.

The optimal policy can be determined by using a dynamic programming method asso-

ciated with the average cost SMDP [69, 72]. There exists a function h(·) such that for all

δ ∈ Z+ and 0 ≤ d ≤ B, the optimal objective value p̄opt of (5.26) satisfies the following
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Bellman equation:

h(δ, d) = min
Z∈{0,1,...}
l∈Z:1≤l≤B

b∈Z:0≤b≤B−l

E

Z+T1(l)−1∑
k=0

(
errinference(δ + k, d)− p̄opt

)+ E[h(T1(l) + b, l)]. (5.28)

Let (Z∗(δ, d), l∗(δ, d), b∗(δ, d)) be the optimal solution to the Bellman equation (5.28). There

exists an optimal solution π∗ = ((S∗
1 , b

∗
1, l

∗
1), (S

∗
2 , b

∗
2, l

∗
2), . . .) ∈ Π to (3.3), determined by

l∗i+1 = l∗(Ti(l
∗
i ) + b∗i , l

∗
i ), (5.29)

b∗i+1 = b∗(Ti(l
∗
i ) + b∗i , l

∗
i ), (5.30)

S∗
i+1 = S∗

i + Ti(l
∗
i ) + Z∗(Ti(l

∗
i ) + b∗i , l

∗
i ), (5.31)

where Z∗(Ti(l
∗
i ) + b∗i , l

∗
i ) is the optimal waiting time for sending the (i + 1)-th feature after

the i-th feature is delivered.

To get the optimal policy π∗, we need to solve (5.28). Solving (5.28) is complex as it

requires joint optimization of three variables. Moreover, an optimal solution obtained by

the dynamic programming method provides no insight. We are able to simplify (5.28) in

Theorem 5.2 by analyzing the structure of the optimal solution.

Theorem 5.2 The following assertions are true:

(a) If Ti(l)’s are i.i.d. with a finite mean E[Ti(l)] for each l = 1, 2, . . . , B, then there exists

a function h(·) such that for all δ ∈ Z+ and 0 ≤ d ≤ B, the optimal objective value

p̄opt of (5.26) satisfies the following Bellman equation:

h(δ, d)

= min
l∈Z

1≤l≤B

{
E

Zl(δ,d)+T1(l)−1∑
k=0

(
errinference(δ + k, d)−p̄opt

)+ min
b∈Z

0≤b≤B−l

E[h(T1(l) + b, l)]

}
,

(5.32)
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where h(·) is called the relative value function and the function Zl(δ, d) is given by

Zl(δ, d) = min
τ∈Z
{τ ≥ 0 : γl(δ + τ, d) ≥ p̄opt}, (5.33)

and the function γl(δ, d) is defined in (5.14).

(b) In addition, there exists an optimal solution π∗ = ((S∗
1 , b

∗
1, l

∗
1), (S

∗
2 , b

∗
2, l

∗
2), . . .) ∈ Π to

(5.26) that is determined by

l∗i+1 =argmin
l∈Z

1≤l≤B

{
E
[Zl(T1(l∗i )+b∗i ,l

∗
i )

+T1(l)−1∑
k=0

(
errinference(∆(Di) + k, l∗i )− p̄opt

)]

+ min
b∈Z

0≤b≤B−l

E[h(T1(l) + b, l)]

}
, (5.34)

b∗i+1 = argmin
b∈Z:0≤b≤B−l∗i+1

E[h(T1(l∗i+1) + b, l∗i+1)], (5.35)

S∗
i+1 =min

t∈Z
{t ≥ Di : γl∗i+1

(∆(t), l∗i ) ≥ p̄opt}, (5.36)

where ∆(t) = t− S∗
i + b∗i is the AoI at time t and Di = S∗

i + Ti(l
∗
i ) is the i-th feature

delivery time.

Theorem 5.2(a) simplifies the Bellman equation (5.28) to (3.22). Unlike (5.28), which in-

volves joint optimization of three variables, (5.32) is an integer optimization problem. This

simplification is possible because, for a given feature length l, the original equation (5.28) can

be separated into two separated optimization problems. The first problem involves finding

the optimal stopping time, denoted by Zl(δ, d) defined in (5.33), and the second problem is

to determine the feature position b that minimizes E[h(T1(l) + b, l)]. By breaking down the

original equation in this way, we can solve the problem more efficiently. Detailed proof of

Theorem 5.2 can be found in Appendix 5.D.

Furthermore, Theorem 5.2(a) provides additional insights into the solution of (5.28).

Theorem 5.2(a) implies that the optimal stopping time Z∗(δ, d) in (5.28) follows a threshold

policy. Specifically, if l∗(δ, d) = l, then Z∗(δ, d) equals Zl(δ, d), which is defined in (5.33).
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Algorithm 2 Policy Evaluation Algorithm

1: Input: Zπ(δ, d), lπ(δ, d), and bπ(δ, d) for all (δ, d).
2: Initialize hπ(δ, d) arbitrarily for all (δ, d), except for one fixed state (δ′, d′) with
hπ(δ

′, d′) = 0.
3: Initialize a small positive number α1 as a threshold.
4: repeat
5: θ1 ← 0.
6: Determine p̄π using (5.37).
7: for each state (δ, d) do
8: τ ′ ← Zπ(δ, d) + T1(lπ(δ, d)).

9: h′π(δ, d)← E[
∑τ ′−1

k=0 (errinference(δ+k, d)−p̄π)]+E[hπ(T1(lπ(δ, d))+bπ(δ, d), lπ(δ, d))].
10: θ1 ← max{θ1,

∣∣h′π(δ, d)− hπ(δ, d)∣∣}.
11: end for
12: hπ ← h′π.
13: until θ1 ≤ α1.
14: return p̄π and hπ(·).

Here, Zl(δ, d) is the minimum positive integer value τ for which γl(δ+ τ, d) defined in (5.14)

exceeds the optimal objective value p̄opt.

Theorem 5.2(b) provides an optimal solution π∗ ∈ Π to (5.26). According to Theorem

5.2(b), by using precomputed p̄opt and the relative value function h(·), we can obtain the

optimal feature length l∗i+1 from (5.34) using an exhaustive search algorithm. After obtaining

l∗i+1, the optimal feature position b∗i+1 can be determined from (5.35). The optimal scheduling

time S∗
i+1 provided in (5.36) follows a threshold policy. Specifically, the (i+ 1)-th feature is

transmitted in time-slot t if two conditions are satisfied: (i) the previous feature is delivered

by time t, and (ii) the function γl∗i+1
(∆(t), l∗i ) exceeds the optimal objective value p̄opt of

(5.26).

Policy Iteration Algorithm for Computing p̄opt and h(·)

To effectively implement the optimal solution π∗ ∈ Π for (5.26), as outlined in Theorem

5.2, it is necessary to precompute the optimal objective value p̄opt and the relative value

function h(·) that satisfies the Bellman equation (5.32). The computation of p̄opt and h(·) can
be achieved by employing policy iteration algorithm or relative value iteration algorithm for

SMDPs, as detailed in [72, Section 11.4.4]. To apply the relative value iteration algorithm, we

need to transform the SMDP into an equivalent MDP. However, this transformation process
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can be challenging to execute. Therefore, in this paper, we opt to utilize the policy iteration

algorithm specifically tailored for SMDPs [72, Section 11.4.4]. Algorithm 3 provides a policy

iteration algorithm for obtaining p̄opt and h(·), which is composed of two steps: (i) policy

evaluation and (ii) policy improvement.

Policy Evaluation: Let hπ and p̄π be the relative value function and the average inference

error under policy π. Let lπ(δ, d), bπ(δ, d), and Zπ(δ, d) represent feature length, feature

position, and waiting time for sending the (i+1)-th feature under policy π when ∆(Di) = δ

and d(Di) = d. Given lπ(δ, d), bπ(δ, d), and Zπ(δ, d) for all (δ, d), we can evaluate the relative

value function hπ(·) and the average inference error p̄π using Algorithm 2. The relative

value function hπ(δ, d) represents relative value associated with a reference state. We can set

(δ′, d′) as a reference state with hπ(δ
′, d′) = 0. By using hπ(δ

′, d′) = 0, the average inference

error p̄π is determined by

p̄π =
1

E[τ ]

(
E

[
τ−1∑
k=0

errinference(δ
′ + k, d′)

]
+ E[hπ(T1(lπ(δ′, d′)) + bπ(δ

′, d′), lπ(δ
′, d′))]

)
,

(5.37)

where τ = Zπ(δ
′, d′) + T1(lπ(δ

′, d′)). We then use an iterative procedure within Algorithm 2

to determine the relative value function hπ(·).
Policy Improvement : After obtaining hπ and p̄π from Algorithm 2, we apply Theorem

5.2 to derive an improved policy π′ in Algorithm 3. Feature length lπ′(δ, d), feature position

bπ′(δ, d), and waiting time Zπ′(δ, d) under policy π′ is determined by

lπ′(δ, d) = argmin
1≤l≤B

{
E

Zl(δ,d)+T1(l)−1∑
k=0

errinference(δ + k, d)


− E[Zl(δ, d) + T1(l)]p̄π

+ min
0≤b≤B−l

E[hπ(T1(l) + b, l)]

}
, (5.38)

bπ′(δ, d)= argmin
0≤b≤B−lπ′ (δ,d)

E[hπ(T1(lπ′ (δ, d))+b, lπ′(δ, d))], (5.39)
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Algorithm 3 Policy Iteration Algorithm

1: Initialize Zπ(δ, d), lπ(δ, d), and bπ(δ, d) for all (δ, d).
2: Initialize a small positive number α2 as threshold.
3: repeat
4: θ2 ← 0.
5: Obtain hπ(·) and p̄π from Algorithm 2.
6: for all (δ, d) do
7: Get lπ′(δ, d), bπ′(δ, d), Zπ′(δ, d) using (5.38)-(5.40).

8: θ2 ← max

{
θ2, |lπ′(δ, d)− lπ(δ, d)|

9: + |bπ′(δ, d)− bπ(δ, d)|+ |Zπ′(δ, d)− Zπ(δ, d)|
}
.

10: lπ(δ, d)← lπ′(δ, d).
11: bπ(δ, d)← bπ′(δ, d).
12: Zπ(δ, d)← Zπ′(δ, d).
13: end for
14: until θ2 ≤ α2.
15: return p̄opt ← p̄π and h← hπ.

Zπ′(δ, d)= min
τ∈{0,1,...}

{
τ ≥ 0 : γlπ′ (δ,d)(δ + τ, d) ≥ p̄π

}
. (5.40)

Instead of a joint optimization problem (5.28), Algorithm 3 utilizes separated optimization

problems (5.38)-(5.40) based on Theorem 5.2. If the improved policy π′ is equal to the old

policy π, then the policy iteration algorithm converges. Theorem 11.4.6 in [72] establishes

the finite convergence of the policy iteration algorithm of an average cost SMDP.

Now, we discuss the time-complexity of Algorithms 2-3. To manage the infinite set of

AoI values in practice, we introduce an upper bound denoted as δbound. Whenever δ exceeds

δbound, we set hπ(δ, d) = hπ(δbound, d) for all d. Hence, each iteration of our policy evaluation

step requires one pass through the approximated state space {1, 2, . . . , δbound}×{1, 2, . . . , B}.
Therefore, the time complexity of each iteration is O(δboundB), assuming that the required

expected values are precomputed. Considering the bounded set {0, 1, . . . , δbound} instead

of Z+, the time complexities of (5.38), (5.39), and (5.40) are O(B2), O(B), and O(δbound),

respectively, provided that the expected values in (5.38)-(5.40) are precomputed. The overall

complexity of (5.38)-(5.40) is O(max{B2, B, δbound}), which is more efficient than the joint

optimization problem (5.28). The latter has a time complexity of O(δboundB
2). In each

iteration of the policy improvement step, the optimization problems (5.38)-(5.40) are solved
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Figure 5.4: A multiple source-predictor pairs and multiple channel remote inference system.

for all state (δ, d) such that δ = 1, 2, . . . , δbound and d = 1, 2, . . . , B. Hence, the total

complexity of each iteration of the policy improvement step is O(max{B3δbound, Bδ
2
bound}).

5.5 Learning and Communications Co-design: Multiple Source Case

System Model

Consider a remote inference system consisting ofM ≥ 1 source-predictor pairs connected

through N ≥ 1 shared communication channels, as illustrated in Fig. 5.4. Each source j

has a buffer that stores Bj most recent signal observations at each time slot t. At time slot

t, a centralized scheduler determines whether to send a feature from source j with feature

length lj(t) and feature position bj(t). We denote lj(t) = 0 if the scheduler decides not to

send a feature from source j at time t. If a feature from source j is sent, we assume it will

be delivered to the j-th neural predictor in the next time slot using lj(t) channel resources.

The transmission model of the multiple source system is significantly different from that

of the single source model discussed in Chapter 5.2. In the latter case, only one channel

was considered, while N communication channels are available in the former. The channels
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could be from multiple frequencies and/or time resources. For example, if the clock rate in

the multiple access control (MAC) layer is faster than that of the application layer, then

one application-layer time-slot could comprise multiple MAC-layer time-slots. A feature can

utilize multiple channels (i.e., frequency or time resources) for transmission during a single

time slot. However, the channel resource is limited, so the system must satisfy

M∑
j=1

lj(t) ≤ N. (5.41)

The system begins operating at time t = 0. Let Sj,i denote the sending time of the

i-th feature from the j-th source. Since we assume that a feature takes one time-slot to

transmit, the corresponding neural predictor receives the i-th feature from the j-th source

at time Sj,i + 1. The AoI of the source j at time slot t is defined as

∆j(t) := t− Sj,i + bj(Sj,i), if Sj,i < t ≤ Sj,i+1. (5.42)

We denote dj(t) as the feature length of the most recent received feature from j-th source

by time t, given by

dj(t) = lj(Sj,i), if Sj,i < t ≤ Sj,i+1. (5.43)

Scheduling Policy

At time slot t, a centralized scheduler determines the value of the feature length lj(t) and

the feature position bj(t) for every j-th source. A scheduling policy is denoted by π = (πj)
M
j=1,

where πj = ((lj(1), bj(1)), (lj(2), bj(2)), . . .). Let Π denote the set of all the causal scheduling

policies that determine lj(t) and bj(t) based on the current and the historical information

available at the transmitter such that 0 ≤ lj(t) + bj(t) ≤ Bj.

Problem Formulation
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Our goal is to minimize the time-averaged sum of the inference errors of the M sources,

which is formulated as

inf
π∈Π

M∑
j=1

lim sup
T→∞

Eπ

[
1

T

T−1∑
t=0

pj(∆j(t), dj(t))

]
, (5.44)

s.t.
M∑
j=1

lj(t) ≤ N, t = 0, 1, 2, . . . , (5.45)

where pj(∆j(t), dj(t)) is the inference error of source j at time slot t.

The problem (5.44)-(5.45) can be cast into an infinite-horizon average cost restless multi-

armed multi-action bandit problem [33, 89] by viewing each source j as an arm, where a

scheduler needs to decide multiple actions (lj(t), bj(t))
M
j=1 at every time t by observing state

(∆j(t), dj(t)).

Finding an optimal solution to the RMAB problem is PSPACE hard [75]. Whittle, in his

seminal work [33], proposed a heuristic policy for RMAB problem with binary action. In [89],

a modified Whittle index policy is proposed for the multi-action RMAB problems. Whittle

index policy is known to be asymptotically optimal [90], but the policy needs to satisfy a

complicated indexability condition. Proving indexability is challenging for our multi-action

RMAB problem because we allow (i) general penalty function pj(δ, l) that is not necessarily

monotonic with respect to AoI δ and (ii) time-variant feature length. To this end, we propose

a low-complexity algorithm that does not need to satisfy any indexability condition.

Lagrangian Optimization of a Relaxed Problem

Similar to Whittle’s approach [33], we utilize a Lagrange relaxation of the problem

(5.44)-(5.45). We first relax the per time-slot channel constraint (5.45) as the following

time-average expected channel constraint

M∑
j=1

lim sup
T→∞

Eπ

[
1

T

T−1∑
t=0

lj(t)

]
≤ N. (5.46)
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The relaxed constraint (5.46) only needs to be satisfied on average, whereas (5.45) is required

to hold at every time-slot. By this, the original problem (5.44)-(5.45) becomes

inf
π∈Π

M∑
j=1

lim sup
T→∞

Eπ

[
1

T

T−1∑
t=0

pj(∆j(t), dj(t))

]
, (5.47)

s.t.
M∑
j=1

lim sup
T→∞

Eπ

[
1

T

T−1∑
t=0

lj(t)

]
≤ N. (5.48)

The relaxed problem (5.47)-(5.48) is of interest as the optimal solution of the problem pro-

vides a lower bound to the original problem (5.44)-(5.45).

Lagrangian Dual Decomposition of (5.47)-(5.48)

To solve (5.47)-(5.48), we utilize a Lagrangian dual decomposition method [33, 76]. At

first, we apply Lagrangian multiplier λ ≥ 0 to the time-average channel constraint (5.48)

and get the following Lagrangian dual function

q(λ) = inf
π∈Π

M∑
j=1

lim sup
T→∞

Eπ

[
1

T

T−1∑
t=0

(
pj(∆j(t), dj(t))+λlj(t)

)]
− λN. (5.49)

The problem (5.49) can be decomposed into M sub-problems. The sub-problem associated

with the j-th source is defined as:

p̄j(λ) = inf
πj∈Πj

lim sup
T→∞

1

T
Eπj

[
T−1∑
t=0

(
pj(∆j(t), dj(t))+λlj(t)

)]
, (5.50)

where Πj is the set of all causal scheduling policies πj. The sub-problem (5.50) is an infinite

horizon average cost MDP, where a scheduler decides action (lj(t), bj(t)) by observing state

(∆j(t), dj(t)). The Lagrange multiplier λ in (5.50) can be interpreted as a transmission cost:

whenever lj(t) = l, the source j has to pay cost of λl for using l channel resources.
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The optimal solution to (5.50) can be obtained by solving the following Bellman equa-

tion:

hj,λ(δ, d) = min
l∈Z,b∈Z

0≤l+b≤Bj

Qj,λ((δ, d), (l, b)), (5.51)

where hj,λ(·) represents the relative value function of the MDP (5.50), and the function

Qj,λ(·, ·) is defined as follows

Qj,λ((δ, d), (l, b)) :=

pj(δ, d)− p̄j(λ) + hj,λ(δ + 1, d), if l = 0,

pj(δ, d)− p̄j(λ) + hj,λ(b+ 1, l) + λl, otherwise.

(5.52)

The relative value function hj,λ(·) can be computed using the relative value iteration algo-

rithm [69,72].

Let π∗
j,λ = ((l∗j,λ(1), b

∗
j,λ(1)), (l

∗
j,λ(2), b

∗
j,λ(2)), . . .) be an optimal solution to (5.50), which

is derived by using (5.51) and (5.52). The optimal feature length l∗j,λ(t) is determined by

l∗j,λ(t) = argmax
l∈Z:0≤l≤Bj

hj,λ(∆(t) + 1, d(t))−hj,λ(b̂j,λ(l) + 1, l)−λl, (5.53)

where the function b̂j,λ(l) is given by

b̂j,λ(l) = argmin
b∈Z:0≤b≤Bj−l

hj,λ(b+ 1, l), (5.54)

The optimal feature position in π∗
j,λ is

b∗j,λ(t) = b̂j,λ(lj,λ(t)). (5.55)
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Algorithm 4 Dual Algorithm to Solve (5.56)

1: Input: Step size β > 0 and dual cost λ(1) = 0.
2: Initialize ∆j(0), dj(0), lj(0), and bj(0) for all j.
3: Initialize a small positive number θ as threshold.
4: repeat
5: for each source j do
6: if lj(k − 1) > 0 then
7: ∆j(k)← 1 + bj(k − 1), dj(k)← lj(k − 1).
8: else
9: ∆j(k)← ∆j(k − 1) + 1, dj(k)← dj(k − 1).
10: end if
11: Compute lj,λ(k)(k) using (5.53).
12: Compute bj,λ(k)(k) using (5.55).
13: end for
14: Update λ(k + 1) using (5.57).
15: until |λ(k + 1)− λ(k)| ≤ θ.
16: return λ∗ ← λ(k + 1)

Lagrange Dual Problem

Next, we determine the optimal dual cost λ∗ that solves the following Lagrange dual

problem:

max
λ≥0

q(λ), (5.56)

where q(λ) is the Lagrangian dual function defined in (5.49). To get λ∗, we apply the

stochastic sub-gradient ascent method [76], which iteratively updates λ(k) as follows

λ(k + 1)=max

{
λ(k) +

β

k

(
M∑
j=1

lj,λ(k)(k)−N
)
, 0

}
, (5.57)

where k is the iteration index, β > 0 determines the step size β
k
, and lj,λ(k)(k) is the feature

length of source j at the k-th iteration. Detailed optimization technique is provided in

Algorithm 4.
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5.6 Net Gain Maximization Policy

After getting optimal dual cost λ∗, we can use policy (πj,λ∗)Mj=1 for the relaxed problem

(5.47)-(5.48). But it is infeasible to implement the policy for the original problem (5.44)-

(5.45) because it may violate the scheduling constraint (5.45). Motivated by Whittle’s ap-

proach [33], we aim to select actions with higher priority, while satisfying the scheduling

constraint (5.45) at every time slot. Towards this end, we introduce “Net Gain”, denoted as

αj,λ(δ, d, l), to measure the advantage of selecting feature length l, which is given by

αj,λ(δ, d, l) := Qj,λ((δ, d), (0, b̂j,λ(l)))−Qj,λ((δ, d), (l, b̂j,λ(l))), (5.58)

where the function Qj,λ is defined in (5.52) and the function b̂j,λ is defined in (5.54). Substi-

tuting (5.52) into (5.58), we get

αj,λ(δ, d, l) = hj,λ(δ + 1, d)− hj,λ(b̂j,λ(l) + 1, l)− λl. (5.59)

For a given λ, the net gain αj,λ(δ, d, l) has an economic interpretation. Given the

state (δ, d) of source j, the net gain αj,λ(δ, d, l) measures the maximum reduction in the

loss by selecting source j with feature length l, as opposed to not selecting source j at

all. If αj,λ(δ, d, l) is negative for all l = 1, 2, . . . , Bj, then it better not to select source

j. If αj,λ(∆j(t), dj(t), lj) > αk,λ(∆k(t), dk(t), lk), then the feature length lj for source j is

prioritized over the feature length lk for source k. Under the constraint (5.45), we select

feature lengths that maximize “Net Gain”:

max
0≤lj(t)≤B
lj(t)∈Z,∀j

M∑
j=1

αj,λ∗(∆j(t), dj(t), lj(t)), (5.60)

s.t.
M∑
j=1

lj(t) ≤ N. (5.61)

The “Net Gain Maximization” problem (5.60) with constraint (5.61) is a bounded Knapsack

problem. By using (5.60)-(5.61), we propose a new algorithm for the problem (5.44)-(5.45)

in Algorithm 5.
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Algorithm 5 Net Gain Maximization Policy

1: Input: Optimal dual variable λ∗ obtained in Algorithm 4.
2: Compute αj,λ∗(δ, d, l) using (5.59) for all j, δ, d, l.
3: for each time t ≥ 0 do
4: Update ∆j(t) and dj(t) using (5.42) and (5.43) for all source j.
5: Compute (lj(t))

M
j=1 by solving problem (5.60)-(5.61).

6: (bj(t))
M
j=1 ← (b̂j,λ∗(lj(t)))

M
j=1 by using (5.54).

7: end for

Algorithm 5 starts from t = 0. At time t = 0, the algorithm takes the dual variable

(transmission cost) λ∗ from Algorithm 4 which is run offline before t = 0. The “Net Gain”

αj,λ∗(δ, d, l) is precomputed for every source j, every feature length l, and every state (δ, d)

such that δ ∈ Z+, l, d ∈ {1, 2, . . . , Bj}, where we approximate infinite set of AoI values Z+

by using an upper bound δbound. We can set αj,λ∗(δ, d, l) = αj,λ∗(δbound, d, l) if δ > δbound.

From time t ≥ 0, Algorithm 5 solves the knapsack problem (5.60)-(5.61) at every time

slot t. The knapsack problem is solved by using a dynamic programming method inO(MNB)

time [?], where M is the number of sources, N is the number of channels, and B is the

maximum buffer size among all source j. The feature position bj(t) is obtained from a look

up table that stores the value of function b̂j,λ∗(l) for all j and l.

Unlike the Whittle index policy [33], our policy proposed in Algorithm 5 does not need

to satisfy any indexability condition. There exists some other policies that do not need to

satisfy indexability condition [86, 88]. The policies in [86, 88] are developed based on linear

programming formulations, our policy does not need to solve any linear programming.

5.7 Data Driven Evaluations

In this section, we demonstrate the performance of our scheduling policies. The per-

formance evaluation is conducted using an inference error function obtained from a channel

state information (CSI) prediction experiment. In Fig. 5.2, one can observe the inference

error function of a CSI prediction experiment. The discrete-time autocorrelation function

of the generated fading channel coefficient is defined as r(k) = bJ0(2πfdTs|k|), where r(k)
represents the autocorrelation of the CSI signal process with time lag k, b signifies the vari-

ance of the process, J0(·) denotes the zeroth-order Bessel function, Ts is the channel sampling
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duration, fd =
vfc
c

is the maximum Doppler shift, v stands for the velocity of the source, fc is

the carrier frequency, and c represents the speed of light. In this experiment, we employed a

quadratic loss function. Although we utilize the CSI prediction experiment and a quadratic

loss function for evaluating the performance of our scheduling policies, we note that our

scheduling policies are not limited to any specific experiment, loss function, or predictor.

Single Source Scheduling Policies

We evaluate the following four single source scheduling policies.

1. Generate-at-Will, Zero Wait with Feature Length l: In this policy, Si+1 = Si + Ti(li),

bi = 0, and li = l for all i-th feature transmissions.

2. Optimal Policy with Time-invariant Feature Length (TIFL): The policy that we pro-

pose in Theorem 5.1.

3. Optimal Policy with Time-variant Feature Length (TVFL): The policy that we propose

in Theorem 5.2.

4. Periodic Updating with Feature Length l: After every time slot Tp, the policy submits

features with feature length l and feature position 0 to a First-Come, First-Served

communication channel.

We evaluate the performance of the above four single source scheduling policies, where

the task to infer the current CSI of a source by observing features. For generating the CSI

dataset, we set b0 = 1, Ts = 1ms, v = 15 m/s, and fc = 2GHz. Additionally, we add white

noise to the feature variable with a variance of 10−6.

In the single source case, we consider that the i-th feature requires Ti(l) = ⌈αl⌉ time-

slots for transmission, where α represents the communication capacity of the channel. For

example, if the number of bits used for representing a CSI symbol is n and the bit rate of

the channel is ρ, then α = ρ
n
.

Fig. 5.5 shows the time-averaged inference error under different policies against the

parameter α, where α > 0. The plot is constrained to α = 1 since values of α > 1 is

impractical due to the possibility of sending CSI using fewer bits. The buffer size of the
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Figure 5.5: Single Source Case: Time-averaged inference error vs. the scale parameter α in trans-
mission time Ti(l) = ⌈αl⌉ for all i.
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Figure 5.6: Single Source Case: Time-averaged inference error vs. the buffer size B.

132



source is B = 10. Among the four scheduling policies, the “Optimal Policy with TVFL”

yields the best performance, while the “Optimal Policy with TIFL” outperforms the other

two policies. The findings in Figure 5.5 demonstrate that when α ≤ 0.1, the “Optimal

Policy with TVFL” can achieve a performance improvement of 104 times compared to the

“Periodic Updating, l = 1” with Tp = 4 and “Generate-at-Will, Zero Wait, l = 1” policies.

This result is not surprising since “Periodic Updating, l = 1” and “Generate-at-Will, Zero

Wait, l = 1” do not utilize longer features, despite all features with l = 1, 2, . . . , 10 taking

only 1 time slot when α ≤ 0.1. When α > 0.1, the average inference error of the “Periodic

Updating” and “Generate-at-Will, Zero Wait” policies are at least 10 times worse than

that of the “Optimal Policy with TVFL.” The reasons are as follows: (1) The “Periodic

Updating” policy does not transmit a feature even when the channel is available, leading to

an inefficient use of resources. In our simulation, this situation is evident as Ti(1) = 1 and

Tp = 4. Again, “Periodic Updating” may transmit features even when the preceding feature

has not yet been delivered, resulting in an extended waiting time for the queued feature.

This frequently leads to the receiver receiving a feature with a significantly large AoI value,

which is not good for accurate inference. (2) Conversely, the “Generate-at-Will, Zero-Wait”

policy isn’t superior because zero-wait is not advantageous, and the feature position b = 0

may not be an optimal choice since the inference error is non monotonic with respect to AoI.

The policy “Optimal Policy with TIFL” achieves an average inference error very close

to that of the “Optimal Policy with TVFL,” but it is simpler to implement. Furthermore,

the “Optimal Policy with TIFL” requires only one predictor associated with the optimal

time-invariant feature length and does not require switching the predictor.

Fig. 5.6 plots the time-averaged inference error vs. the buffer size B. In this simulation,

α = 0.2 is considered. The results show that increasing B can improve the performance

of the “Optimal Policy with TVFL” and “Optimal Policy with TIFL” compared to the

other policies. As B increases, “Optimal Policy with TVFL” and “Optimal Policy with

TIFL” outperform the others. In contrast, the “Periodic Updating” and “Generate-at-Will”

policies do not utilize the buffer and their performance remains unchanged with increasing

B. Moreover, we can notice that the buffer size B = 5 is enough for this experiment as

further increase in buffer size does not improve the performance.
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Multiple Source Scheduling Policies

In this section, we evaluate the time-averaged inference error of the following three

multiple source scheduling policies.

1. Maximum Age First (MAF), Generate-at-will, l = 1: As the name suggests, this

policy selects the sources with maximum AoI value at each time. Specifically, under

this policy, min{N,M} sources with maximum AoI are selected. Moreover, the feature

length and the feature position of the selected sources are 1 and 0, respectively.

2. Maximum Age First (MAF), Generate-at-will, l = B: This policy also selects the

sources with maximum AoI values at each time, but with feature length l = B. Under

this policy, min{⌊N
B
⌋,M} sources with maximum AoI are selected, where B is the

buffer size of all sources, i.e., Bj = B for all source j. Moreover, the feature position

of the selected sources is 0.

3. Proposed Policy: The policy in Algorithm 5.

The performance of three multiple source scheduling policies is illustrated in Fig. 5.7,

where each source sends its observed CSI to the corresponding predictor. In this simulation,

three types of sources are considered: (i) type 1 source with a velocity of v1 = 15 m/s and a

CSI variance of b1 = 0.5, (ii) type 2 sources with a velocity of v2 = 20 m/s and a CSI variance

of b2 = 0.1, and (iii) type 3 sources with a velocity of v3 = 25 m/s and a CSI variance of

b3 = 1.

Fig. 5.7 illustrates the normalized average inference error (the total time-averaged

inference error divided by the number of sources) plotted against the number of sources M ,

with N = 100 and B = 10. We can observe from Fig. 5.7 that when the number of sources

is less, the normalized average inference error of our proposed policy is 104 times better than

“MAF, Generate-at-will, l = 1.” However, “MAF, Generate-at-will, l = B” is close to the

proposed policy. But, When number of sources is more than 400, the normalized average

inference error becomes 4 times lower than that of the “MAF, Generate-at-will, l = B”

policy. As the number of sources increases, the normalized average inference error obtained

by “MAF, Generate-at-will, l = 1” becomes close to the normalized average inference error

of the proposed policy.
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Fig. 5.8 compares the time-averaged inference error of the proposed policy and a lower

bound from a relaxed problem. The lower bound is achieved by selecting feature length and

feature position by using (5.53) and (5.55), respectively under dual cost λ = λ∗ obtained

from Algorithm 4. For this evaluation, we have taken step size 10−4/(kr) at each iteration

k In Algorithm 4. In Fig. 5.8, we consider N = 10r channels and M = 3r sources, where r

represents the system scale. Observing Fig. 5.8, it becomes evident that our proposed policy

converges towards the lower bound as the system scale r increases.
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5.A Experimental Setup for ML Experiments in Chapter 5.2

In the first machine learning (ML) experiment: wireless channel state information (CSI)

prediction, our objective is to infer the CSI of a source at time t by observing a feature

consisting of a sequence of stale and noisy CSIs. Specifically, we consider a Rayleigh fading-

based CSI. The dataset is generated by using the Jakes model [91]. In the Jakes fading

channel model, the CSI can be expressed as a Gaussian random process. Due to the joint

Gaussian distribution of the target and feature random variables, the optimal inference error

performance is achieved by a linear MMSE estimator. Hence, a linear regression algorithm

is adopted in our simulation. Nonetheless, our study can be readily applied to other neural

network-based predictors.

In the second experiment: actuator state prediction, we employ a neural network based

predictor. In this experiment, we use an OpenAI CartPole-v1 task [2] to generate a dataset,

where a DQN reinforcement learning algorithm [61] is utilized to control the force on a cart

and keep the pole attached to the cart from falling over. Our goal is to predict the pole

angle at time t based on a sequence of stale information of cart velocity with length l. The

predictor in this experiment is an LSTM neural network that consists of one input layer, one

hidden layer with 64 LSTM cells, and a fully connected output layer. Additional experiments

can be found in Chapter 3, including (a) video prediction and (b) robot state prediction.

5.B Proof of Lemma 5.1

Part (a): Consider the sequence X̃ l
−δ = (Ṽ−δ, Ṽ−δ−1, . . . , Ṽ−δ−l+1). It can be demon-

strated that for any 1 ≤ l1 ≤ l2, the Markov chain Ỹ0 ↔ X̃ l2
−δ ↔ X̃ l1

−δ holds. This is due to the

fact that for 1 ≤ l1 < l2, the sequence X̃ l2
−δ = (Ṽ−δ, Ṽ−δ−1, . . . , Ṽ−δ−l1+1, Ṽ−δ−l1 , . . . , V−δ−l2+1)

includes X̃ l1
−δ = (Ṽ−δ, Ṽ−δ−1, . . . , Ṽ−δ−l1+1) as well as (Ṽ−δ−l1 , . . . , Ṽ−δ−l2+1). By applying the

data processing inequality [48, Lemma 12.1] for L-conditional entropy, we can deduce that

HL(Ỹ0|X̃ l2
−δ) ≤ HL(Ỹ0|X̃ l1

−δ). (5.62)
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Part (b): Assuming that (5.10) holds for all l = 1, 2, . . . and x ∈ V l, and employing [12,

Lemma 3], [14] yields

HL(PYt|Xl
t−δ

;PỸ0|X̃l
−δ
|PXl

t−δ
) = HL(Yt|X l

t−δ) +O(β). (5.63)

Combining (5.63) with (5.62), we deduce that

HL(PYt|X
l2
t−δ

;P
Ỹ0|X̃

l2
−δ
|P

X
l2
t−δ

) = HL(Yt|X l2
t−δ) +O(β)

≤ HL(Yt|X l1
t−δ) +O(β)

= HL(PYt|X
l1
t−δ

;P
Ỹ0|X̃

l1
−δ
|P

X
l1
t−δ

) +O(β) +O(β)

= HL(PYt|X
l1
t−δ

;P
Ỹ0|X̃

l1
−δ
|P

X
l1
t−δ

) +O(β). (5.64)

This concludes the proof.

5.C Proof of Theorem 5.1

Optimal Feature Length Determination: To find the optimal feature length for

the time-invariant scheduling problem (5.13), we undertake a two-step process:

1. Calculation of p̄l: Given a feature length l, we start by determining p̄l, defined as

p̄l = inf
π∈Πl

lim sup
T→∞

1

T
Eπ

[
T−1∑
t=0

errinference(∆(t), l)

]
, (5.65)

where Πl represents the set of admissible policies for feature length l. This step quan-

tifies the optimal objective value for each specific feature length.

2. Optimal Feature Length and Objective Value: Having obtained p̄l for all relevant l, the

optimal feature length l∗ can be determined by solving

l∗ = argmin
l∈Z:1≤l≤B

p̄l, (5.66)
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where B represents an upper bound on the feature length. Additionally, the optimal

objective value is given by

p̄inv = min
l∈Z:1≤l≤B

p̄l. (5.67)

These steps collectively identify the most suitable feature length and its corresponding

objective value.

We aim to solve the problem (5.13) by addressing the sub problems (5.65)-(5.66). Let’s

begin by solving (5.65) using [12, Theorem 4.2], restated below for completeness.

Theorem 5.3 [12, Theorem 4.2] If the transmission times Ti(l)’s are i.i.d. with a finite

mean E[Ti(l)], then there exists an optimal solution π∗
l = ((S∗

1(l), b
∗
1(l), l), (S

∗
2(l), b

∗
2(l), l), . . .) ∈

Πl to (5.65) that satisfies:

(a) The optimal feature position in π∗
l is time-invariant, i.e., b∗1(l) = b∗2(l) = · · · = b∗(l).

The optimal feature position b∗(l) in π∗
l is given by

b∗(l) = argmin
0≤b≤B−l

βb,l, (5.68)

where βb,l is the unique root of equation (5.16).

(b) The optimal scheduling time S∗
i+1(l) in π

∗
l is determined by

S∗
i+1(l) = min

t∈Z

{
t ≥ S∗

i (l) + Ti(l) : γl(∆b(t), l) ≥ p̄l
}
, (5.69)

where ∆b(t) = t− S∗
i (l) + b∗(l) is the AoI at time t. The optimal objective value p̄l of

(5.65) is

p̄l = min
0≤b≤B−l

βb,l. (5.70)

Using Theorem 5.3, we obtain values of p̄l for all l = 1, 2, . . . , B. We can then determine

l∗ and p̄inv using (5.66) and (5.67), respectively. Substituting l∗ and p̄inv into the policy π∗
l∗
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established in Theorem 5.3, we derive the optimal policy π∗, as asserted in Theorem 5.C.

This completes the proof.

5.D Proof of Theorem 5.2

The infinite time-horizon average cost problem (5.26) can be cast as an average cost

semi-Markov decision process (SMDP) [69, 72]. To describe the SMDP, we define decision

times, action, state, state transition, and cost of the SMDP.

Decision Times and Waiting Time

Each i-th feature delivery time Di = Si + Ti(li) is considered a decision time. Let Zi+1

denote the waiting time between the i-th feature delivery time Di and the (i+ 1)-th feature

sending time Si+1, given by:

Zi+1 = Si+1 −Di. (5.71)

With S0 = 0, we can express Si+1 =
∑i

k=0 Tk(lk) + Zk+1. Thus, given (T0, T1, . . .), we

can uniquely determine (S1, S2, . . .) from (Z1, Z2, . . .). Consequently, a policy in Π can be

represented as π = ((Z1, b1, l1), (Z2, b2, l2), . . .), where at time Di, (Zi+1, bi+1, li+1) represents

the action.

State and State Transition

At time Di, the state is (∆(Di), d(Di)). The AoI process ∆(t) evolves as:

∆(t) =

Ti(li) + bi, if t = Di, i = 0, 1, . . . ,

∆(t− 1) + 1, otherwise.

(5.72)

The feature length d(t) evolves as:

d(t) =

{
li, if Di ≤ t < Di+1. (5.73)
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Hence, at the decision time Di, the state value is (∆(Di), d(Di)) = (Ti(li) + bi, li).

Cost

The expected time between two decision times, Di and Di+1, is given by:

E[Di+1 −Di] = E[Zi+1 + Ti+1(li+1)]. (5.74)

Given ∆(Di) = δ and d(Di) = d, the expected cost within the interval [Di, Di+1) is:

E

[
Di+1−1∑
t=Di

errinference

(
∆(t), d(t)

)]
= E

Zi+1+Ti+1(li+1)−1∑
k=0

errinference

(
δ + k, d

) . (5.75)

Solution via Dynamic Programming: To solve the SMDP, we employ the dynamic

programming method [69, 72]. Initially, we define a σ-field and a stopping time set for the

state process (∆(t), d(t)).

Define σ-field

F t
s = σ((∆(t+ k), d(t+ k)) : k ∈ {0, 1, . . . , s}), (5.76)

which is the set of events whose occurrence are determined by the realization of the process

{(∆(t + k), d(t + k)) : k ∈ {0, 1, . . . , s}} from time slot t up to time slot t + s. Then,

{F t
k, k ∈ {0, 1, . . .}} is the filtration of the process {S(t+ k) : k ∈ {0, 1, . . .}}. We define M

as the set of all stopping times by

M = {ν ≥ 0 : {ν = k} ∈ F t
k, k ∈ {0, 1, 2, . . .}}. (5.77)
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Given (∆(Di), d(Di)) = (δ, d), the optimal action (Z∗
i+1, l

∗
i+1, b

∗
i+1) satisfies the following

Bellman optimality equation for the SMDP (5.26):

h(δ, d) = min
Z∈M

l∈Z:1≤l≤B
b∈Z:0≤b≤B−l

{
E

Z+Ti+1(l)−1∑
k=0

errinference(δ + k, d)


− E[Z + Ti+1(l)] p̄opt + E[h(Ti+1(l) + b, l)]

}

= min
Z∈M

l∈Z:1≤l≤B
b∈Z:0≤b≤B−l

{
E

Z+T1(l)−1∑
k=0

errinference(δ + k, d)


− E[Z + T1(l)] p̄opt + E[h(T1(l) + b, l)]

}
, (5.78)

where M is the set of stopping times defined in (5.77), and the last equality holds because

Ti(l)’s are independent and identically distributed.

The Bellman optimality equation (5.78) is complex due to the need to jointly optimize

three parameters: feature length l, feature position b, and waiting time Z. If Zl(δ, d) defined

in (5.33) represents the optimal waiting time for a given feature length l, then equation

(5.78) can be simplified as follows:

h(δ, d) = min
l∈Z

1≤l≤B

{
E

Zl(δ,d)+T1(l)−1∑
k=0

(
errinference(δ + k, d)− p̄opt

)
+ min

b∈Z
0≤b≤B−l

E[h(T1(l) + b, l)]

}
, (5.79)

which leads to (5.32) and (5.34).

Now, we need to prove that Zl(δ, d) is the optimal waiting time for a given feature length

l. This is true if Zl(δ, d) is the optimal solution to the following optimization problem:

min
Z∈M

E

Z+T1(l)−1∑
k=0

(
errinference(δ + k, d)− p̄opt

) . (5.80)

143



Simplification of the Problem (5.80) The problem (5.80) poses a challenge due to

its nature as an optimal stopping time problem. However, we can simplify the problem by

exploiting a property of the state transition. Let ν∗ ∈M represent the optimal stopping time

that solves (5.80). For any k ≤ ν∗, it holds that ∆(Di+k) = ∆(Di)+k and d(Di+k) = d(Di).

Consequently, the set {(∆(Di+k), d(Di+k)) : k = 1, 2, . . . , ν∗} is entirely determined by the

initial value (∆(Di), d(Di)). Additionally, for all k ≤ ν∗, the σ-field FDi
k can be simplified as

FDi
k = σ((∆(Di), d(Di)). Thus, any stopping time in M corresponds to a deterministic time.

As a result, problem (5.80) can be further simplified into the following integer optimization

problem:

min
Z∈{0,1,...}

E

Z+T1(l)−1∑
k=0

(
errinference(δ + k, d)− p̄opt

) . (5.81)

We aim to demonstrate that Zl(δ, d) is the optimal solution for (5.81).

Optimal Waiting Time Determination: By utilizing (5.81), we can determine that

waiting time Z = 0 is optimal if the following inequality holds:

min
Z∈{1,2,...}

E

Z+T1(l)−1∑
k=0

(
errinference(δ + k, d)− p̄opt

)
≥ E

T1(l)−1∑
k=0

(
errinference(δ + k, d)− p̄opt

) . (5.82)

In scenarios where Z = 0 is not optimal, the optimal choice becomes Z = 1 if the

following condition is satisfied:

min
Z∈{2,3...}

E

Z+T1(l)−1∑
k=0

(
errinference(δ + k, d)− p̄opt

)
≥ E

1+T1(l)−1∑
k=0

(
errinference(δ + k, d)− p̄opt

) . (5.83)
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Following a similar argument, if Z = 0, 1, . . . , τ−1 are not optimal, then Z = τ becomes

optimal when

min
Z∈{τ+1,τ+2...}

E

Z+T1(l)−1∑
k=0

(
errinference(δ + k, d)− p̄opt

)
≥ E

τ+T1(l)−1∑
k=0

(
errinference(δ + k, d)− p̄opt

) . (5.84)

Hence, we deduce that the optimal waiting time is the least integer value τ that satisfies

(5.84). This inequality can be equivalently expressed as

min
j∈{1,2...}

E

[
j−1∑
k=0

(
errinference(δ + τ + j + T1(l), d)− p̄opt

)]
≥ 0. (5.85)

Similar to Lemma 7 in [25], the following lemma holds.

Lemma 5.2 The following inequality holds

min
j∈{1,2...}

E

[
j−1∑
k=0

(
errinference(δ + τ + j + T1(l), d)− p̄opt

)]
≥ 0, (5.86)

if and only if

min
j∈{1,2,...}

1

j

j−1∑
k=0

E
[
errinference

(
δ + τ + j + T1(l), d

)]
≥ p̄opt. (5.87)

The left hand side of (5.87) is exactly γl(δ + τ, d) defined in (5.14).

To conclude the proof, the optimal waiting time corresponds to the least integer value

τ that satisfies γl(δ + τ, d) ≥ p̄opt. This optimal waiting time leads to (5.33).
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Chapter 6

Concluding Remarks and Future Works

Next-generation communications (Next-G), such as 6G, are expected to enhance perfor-

mance, coverage, capacity, and energy efficiency by orders of magnitude compared to exist-

ing cellular infrastructures. This objective accompanies the demand for networked intelligent

applications including remote monitoring, control, and inference over networks. For the in-

creasing numbers of the networked intelligent applications, the scalability of the network

architecture requires a paradigm shift in the communication strategies—from maximizing

data transmission rates to extracting and transmitting the right piece of information (often

referred to as semantic information) to accomplish specific tasks such as accurate infer-

ence (e.g., the location of vehicles) or control (e.g., navigation) [14–19, 34]. We will refer

to this paradigm as Semantic communication. Recent activities in the communication and

control communities illustrate the value of such an approach in reducing communication

requirements for a given level of application performance [18, 19]. In this dissertation, by

considering “Freshness” as a “Semantic” property of information, we focus on the design of

communication systems to improve the performance of a remote inference system.

Summary of Contributions

InChapter 1, we introduce a remote inference system and its applications for networked

intelligence. Moreover, we define Age of Information (AoI) as the measure of information

freshness in a remote inference system. We found inference error can be expressed as a

function of AoI. We use inference error as the performance metric and AoI as the seman-

tic metric to design timely communication protocols. In Chapter 2, we interpret how to

evaluate the importance of fresh information in a remote inference system by using a new

information-theoretic tool called ϵ-Markov chain. We found that fresher data is always better

for Markovian data sequences, but fresher data is NOT necessarily better for non-Markovian

data sequences. Based on these insights, in Chapter 3, we propose a new “Selection-from-

Buffer” status updating model that has the option to select the most important feature

among the features stored in the source buffer. We design optimal selection-from-buffer

146



scheduling policies for single-source and single-channel remote inference networks. Further-

more, in Chapter 4, we design an asymptotically optimal selection-from-buffer scheduling

policy for multiple-source and multiple-channel remote inference networks by integrating the

Whittle index and a duality-based feature selection algorithm. In Chapter 5, we analyzed

the joint impact of timeliness and feature sequence length in a remote inference system. We

develop learning and communications co-designs that jointly control the timeliness and the

length of the feature sequences. For a single source-predictor pair and a single channel, we

develop optimal co-designs for both time-invariant and time-varying feature lengths. For

multiple source-predictor pairs and multiple channels, we develop learning and communica-

tion co-design by using a new gain index.

Future Works

The following research problems could be interesting directions based on our findings.

• How to design a semantic encoder and predictor/controller?–Sensor measurements can

be of high dimensional and can require huge communication resources. Instead of

sending high-dimensional sensor measurements, we can design a neural network that

extracts low-dimensional information from high-dimensional measurements. In the

future, we will jointly optimize a neural network (NN)-based semantic encoder and a

NN-based predictor/controller for end-to-end communications. This problem requires

to address high-dimensional parameter spaces and dynamic environments.

• Online scheduling problem for remote inference/control: When the statistics of the

communication channel are unknown, it is required to formulate a robust online learn-

ing algorithm. Moreover, an online learning algorithm is necessary for the case of

non-stationary data sequences. The structure of our optimal scheduling policies is

useful for designing online scheduling algorithms.

• Reinforcement Learning-based Scheduler : For the multi-source setting, we need to

answer: which sources to select? and what information to send (from the selected

sources)? This scheduling decision is amulti-action restless multi-armed bandit (RMAB)
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problem [12,14,26,33,34,87], which is PSPACE-hard [75]. Our works [12,14,34] intro-

duced new asymptotically optimal policies using gain index and Whittle index. The

indices are difficult to compute for high dimensional state space and non-stationary en-

vironment [92, 93]. We will design deep reinforcement learning (RL)-based scheduling

algorithms, which are best-suited for decision problems with high dimensional state

space and changing environments.
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