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Abstract 

 

 A concern for consumers when buying food is the safety of their food and the risk of 

foodborne illnesses due to contaminated products. The poultry industry deals with known 

foodborne pathogens, Salmonella spp. and Campylobacter spp., that can be found in the gut 

biome of chicken that are being processed daily. To reduce likelihood contamination of 

pathogens spreading throughout processing plants, every chicken is visually inspected by USDA-

FSIS inspectors or trained processing plant workers when processing whole chicken carcasses. 

Processing lines move at 140-175 birds per minute making it a difficult to inspect each bird 

properly for any carcass condemnations such as septicemia-toxemia (sep-tox) and fecal 

contamination, being a zero tolerance in all food processing plants enforced by USDA-FSIS 

ruling. With a real-time fluorescent spectral imaging system that can identify carcass 

condemnations, processing would be easier to target which carcasses will need to be removed for 

reprocessing or discarded if deemed unacceptable for consumption. With technology advancing 

daily, improving the inspection system on the processing line is beneficial for plant workers and 

the safety of consumers’ health. After configuring promising camera parameters with two 

exposure times for fluorescence of photosensitive cells with camera range to explore the 

advantages of a spectral imaging system, known as the CSI-D+ system, with the detection of 

sep-tox birds deemed by trained processing workers and fecal contamination on chicken 

carcasses. Images produced were used for image analysis for classification against carcasses that 

were condemned. Sep-tox birds were 100% classified correctly against normal carcasses when 

fluoresced with LED light. Further analysis revealed variations of sep-tox can be identified with 

an unsupervised image analysis system. Fecal contamination and digesta were identified from 

the ceca (46%), colon (39%), proventriculus (62%), and small intestine (59.50%) with small and 
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large applications onto the breast of chicken carcasses with variation of small and large 

application dots. Additionally, deionized water rinsed fecal contamination carcasses were 

classified with a 97.80% accuracy against chicken carcasses samples inoculated with Salmonella 

Typhimurium. Rinsed inoculated samples were swabbed and tested with a Salmonella PCR assay 

for further analysis. The presence of Salmonella after rinsing was 97.14% for samples that were 

initially negative before inoculation. These results indicate that spectral imaging can reduce the 

spread of contamination by decreasing food safety risks at poultry processing plants through 

providing a resource imaging system for plant workers in comparison to visual inspection. 
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INTRODUCTION 

 

Consumers’ main concerns when buying poultry products is the safety of their food and 

food diseases that are caused by bacterial contamination (Super, 2018). Bacterial contamination 

can develop from fecal contamination through improper feed withdrawal, the piling of birds 

during rehanging in a processing plant, or from processing issues involving the scalder and 

picker. The main pathogens present in the poultry industry are Salmonella spp., Campylobacter 

spp., and Listeria monocytogenes. These foodborne pathogens can cause serious bacterial 

infections that are sometimes fatal to humans and animals. Salmonella and Campylobacter are 

known foodborne pathogens found in poultry processing plants. Every year these bacteria cause 

millions of infections, meanwhile L. monocytogenes can take a more lethal approach, giving this 

pathogen one of the highest mortality rates amongst food borne pathogens if ingested (CDC, 

2021b). These bacteria are important to food safety and quantifying them within the industry can 

be done by running tests such as the most probable number (MPN) on samples that have the 

possibility of being contaminated. Methods such as USDA-FSIS MLG 4.14 method for 

Salmonella, 8.14 method for Listeria monocytogenes, and 41.07 method for Campylobacter 

jejuni/coli/lari can take up to four to seven days for confirmation for each bacterium to their 

respective tests (USDA-FSIS, 2023). With rapid techniques such as multispectral imaging and 

real time PCR assay, test results can be given within a few minutes to hours reducing the amount 

of time it would take to do Most Probable Number (MPN) method, a traditional culture method. 

Rapid detection has made a significant change to detect bacterial problems throughout 

processing and further processing plants allowing production agencies to determine a faster 

decision in disposition. 
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The United States Department of Agriculture Food Safety and Inspection Service 

(USDA-FSIS) has an important job in ensuring the safety of food for consumers given the 

United States is the largest broiler producing country (NCC, 2022). With poultry carcass 

condemnations and foodborne diseases being spectated within the processing plant, having 

sufficient food safety approaches for post-slaughter inspection are imperative in case 

reprocessing has to occur. In conventional poultry processing systems, inspection is overseen by 

FSIS workers, along with plant workers, that are placed along the processing line near the 

evisceration station inspecting each chicken carcass that is processed. The inspection transpired 

is by visual and physical inspection of both the carcass and the viscera that have been extracted 

(Chao, 2010). A new system was introduced in 2014 by the FSIS where the poultry processing 

plants could voluntarily implement a program named the ‘New Poultry Inspection Service’ 

(NPIS) (USDA-FSIS, 2014). The NPIS program allowed trained processing workers to oversee 

the inspection of the chicken being processed for any unwholesome carcasses presented on-line 

before FSIS inspectors receive them at their stations (USDA-FSIS, 2014b). With the inspectors 

allowed to focus on more food safety related issues, this system allows microbial testing and to 

be more attended to on processing lines from the FSIS inspectors. Some of the carcass 

condemnations being examined and removed from the processing line are air sacculitis, ascites, 

bruises, cadavers, dead on arrival, fecal contamination, inflammatory issues, synovitis, and 

tumors (USDA-FSIS, 2014). These inspections can lead to false identifications of a condemned 

carcass or normal carcass due to the speculation of the naked human eye when the speed of the 

processing line is moving as fast as 140-175 birds per minute (bpm). Visual inspection can 

become more difficult with the increased demand of chicken in the industry due to an influx of 

carcasses that would be overseen making difficult to be thoroughly examined. Fecal 
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contamination on chicken carcasses from the ceca, large intestine (colon), small intestine and 

ingesta, from the proventriculus or crop, can be found on chicken carcasses as well during 

inspection which is a “zero-tolerance” policy according to USDA-FSIS regulations specified in 

their HACCP model (USDA-FSIS, 2014a). With the line speed rapidly moving, small amounts 

of fecal contamination could be overlooked in these conditions by the naked eye of the plant 

workers and FSIS inspectors and enter the processing system contaminating other birds and 

processing equipment. Contamination would be detrimental as over 9 billion chickens are 

produced yearly for consumers in America. With the mass consumption of poultry products, 

processing plants will need a more beneficial inspection system overtime. 

 

Background On Sep-Tox and Foodborne Pathogens Common in The Poultry Industry 

 Septicemia-toxemia in Chicken. Septicemia-toxemia is one of the most common carcass 

condemnations found in the poultry industry (USDA-NASS, 2024). Septicemia-toxemia, also 

known as sep-tox, is a bacterial infection that causes systemic changes within the bird. Sep-tox 

can be identified by visual petechial hemorrhages on the following: heart, liver, kidneys, 

muscles, and membranes. Another identification is the red appearance to their skin, the 

underdevelopment in size of the bird, and inflammation to the spleen, liver, and kidneys. Once a 

bird is deemed as sep-tox, it is to be removed from the processing line and named condemned. 

There are multiple bacteria that can cause sep-tox in chicken. Depending on the severity of the 

bacterial infection, the chicken can have a full recovery or can lead to fatality. A significant 

identification of sep-tox is through the redness of the skin on these diseased birds. This redness 

of the skin can vary from a pale white to a purple-reddish color to the skin depending on the 

level of bacterial infection is found within the bloodstream of the chicken. 
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Salmonella spp. One of the most common bacteria found during poultry processing that 

infect and cause outbreaks in people is Salmonella spp. In 2011, these bacteria were the top 

leading causes of foodborne illnesses in the United States (Scallan et al., 2011). Salmonella, from 

the family Enterobacteriaceae, is a gram-negative bacterium with over 2,000 serotypes was 

discovered by Dr. Daniel Salmon in 1885 (CDC, 2021a). Its physical attributes are rod shaped 

with flagella for motility. The chemical makeup of this gram-negative food borne pathogen 

contains H and O antigens. These antigens help the different serotypes be distinguishable 

between one another. The O antigen is the outermost portion of the cell wall surface, while the H 

antigen is the slender-like structure also known as the flagella (CDC, 2021a). This bacterium is 

non-spore forming and attacks the gastrointestinal tract. 

Salmonellosis is an infectious bacterial disease that is caused by a small percentage of the 

known serotypes. This occurs when the foodborne pathogen itself is ingested and adaption to the 

gastrointestinal tract is sustained where it will remain and multiply. Symptoms start developing 

around twelve to seventy-two hours after contracted into the body (Center for Food Safety and 

Applied Nutrition, 2019). This bacterial infection typically lasts four to seven days and can be 

survived without treatment by most. Salmonella can be split into two species, S. bongori and S. 

enterica, where more than 2,000 serovars exist. Salmonella enterica subspecies enterica contains 

all of the human pathogenic types. Salmonella bongori and S. enterica can be separated into 

three groups: human infected only, host-adapted serovars, and unadapted serovars. The human 

infected only group includes typhoidal and paratyphoidal species. This group has a long 

incubation time while having a high mortality rate. Examples of typhoidal serotypes, S. typhi and 

S. paratyphi, cause typhoid fever and paratyphoid fever, also known as enteric fever. These 

serotypes can only be found in humans and can be passed along from one human to the next. 
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Typhoidal Salmonella can enter into the bloodstream and create more alarming problems by 

getting into other organs throughout the body or causing septic shock causing hospitalization 

known as typhoid fever. The host-adapted group are species of Salmonella where some are 

human foodborne pathogens. Some examples of host-adapted pathogens are S. Gallinarum, S. 

Dublin, and S. Abortusovis. The final group is the unadapted serovars which are also known as 

non-typhoidal. The non-typhoidal serotypes of Salmonella are known for infecting humans and 

animals that can only be found in the gastrointestinal tract (Bharmoria et al., 2017). When 

infected with salmonellosis, common symptoms experienced will be the following: diarrhea, 

fever, and abdominal cramps (Center for Food Safety and Applied Nutrition, 2019). If 

experiencing a harsher case of this illness, symptoms can develop into body aches, lethargy, 

blood present in the urine or feces, and can also result in death (Center for Food Safety and 

Applied Nutrition, 2019). Salmonella is dangerous to contract, and the most common way to 

contract salmonellosis is through animal feces that either seeps through soil or is displaced on 

edible parts of the animal. Some strains of Salmonella have become resistant to antibiotics 

making it very difficult to rid of the illness if caught. Salmonella strains that are most associated 

with poultry and human food supply are S. Enteritidis, S. Typhimurium, and S. Heidelberg 

(Robinson, 2018). Salmonella Enteritidis is the most common strain that is present in poultry and 

food supply infecting the gastrointestinal tract of the chicken (Robinson, 2018). Salmonella is 

spread habitually through fecal matter. 

The Problems and Complications of Processing Plants 

The poultry industry battles bacterial contamination with Salmonella spp. and 

Campylobacter spp. in the processing plant as these microorganisms are commonly found in the 

poultry birds’ gut biome. These bacteria are most commonly found in the fecal matter of the 
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birds and can become displaced on the feathers and feet of the birds due to improper feed 

withdrawal. Having proper feed withdrawal indicates no access to food between 8-12 hours 

before slaughter. If farmers, poultry processors, and/or third parties do not adhere to the feed 

withdrawal timeline, the exposure to fecal contamination increases because of the degradation of 

the intestinal walls at 13 hours. Respecting the allotted time for feed withdrawal decreases 

chances of fecal contamination given the excrement of feces will decrease because there will be 

little to nothing in the crop, proventriculus, or ventriculus (gizzard). Additionally, with the 

proper feed withdrawal, the small intestine and large intestine have minimal ingesta located in 

these organs.  

 

Rapid resolutions on problems. 

According to the Food Safety and Inspection Service (FSIS), they require a “zero 

tolerance” policy for fecal material that can be visibly seen with the naked eye at the time of 

inspection (USDA-FSIS, 2019). Even with this policy, there are still outbreaks of Salmonella and 

Campylobacter in the poultry industry. Listeria monocytogenes is found more frequently in 

further processing plants but have the possibility of being in raw chicken meat causing problems 

in the processing plants and has a “zero tolerance” policy in RTE meat and poultry products 

(Gallagher et al., 2003). To help reduce the number of outbreaks from these bacteria, rapid 

detection will help save time and money overall by performing detection methods in real-time 

than performing standard tests lowering food safety risk. Currently to test for food borne 

pathogens in food, some process plants  have their samples sent off to a laboratory and analyzed 

(Romero & Cook, 2018). Enumerated tests can take over a course of four to seven days to get a 

confirmation of the bacteria present in the environment or samples that may be given to test 
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according to the USDA. Standard methods also include extensive training and continual 

purchases of expensive reagent kits and media (Joo et al., 2012). Although the standard methods 

are reliable for results, however it is not able to give real-time information on the absence or 

presence on the bacteria (Romero & Cook, 2018). Rapid detection is a newer and better choice of 

testing to detect bacterial issues to implement proactive methods in hopes to reduce the millions 

of cases of infections that these bacteria spread. Rapid detection can consist of techniques using 

swabbing to hyperspectral imaging. 
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BACKGROUND ON RAPID DETECTION 

 

Table 1.1. Different rapid techniques used in poultry matrices to detect bacteria 

Method Date Matrix Organism Duration Author 
Did it 

work? 

Multiplex 

PCR method 
1994 

Raw and 

cooked 

chicken 

products  

Listeria 

monocytogenes 
1h 

Lawrence & 

Gilmour, 1994 
Yes 

Single-

pipetting 

microfluidic 

assay 

2013 
Poultry 

packaging  
Salmonella 

30 

seconds 

Fronczek et 

al., 2013 
Yes 

Dot blot and 

PCR 
2014 

Poultry skin 

from wing 

and thigh  

Campylobacter 1-2 days 
Fontanot et 

al., 2014 
Yes  

Rapid 

Colorimetric 

Immunoassay 

2015, 

2018 

Chicken liver; 

Chicken 

meat, glass 

slide, and 

stainless-steel 

surfaces  

Salmonella, 

Campylobacter 

50-60 

minutes 

Alamer et al., 

2018; 

Sun et al., 

2015 

Yes 

 

Rapid 

LAMP-based 

method3 

2017; 

2018 

Chicken 

breast; Raw 

chicken meat 

Campylobacter, 

Listeria 

monocytogenes 

1h 

Romero and 

Cook, 2018; 

Wachiralurpan 

et al., 2017 

Yes 

  

HSI2
 

2019 Glass slides 

Salmonella, 

Campylobacter, 

Listeria 

monocytogenes 

5-15 

minutes 

Michael et al., 

2019 
Yes 

SPIA4 2020 

Various part 

of raw 

chicken 

samples  

Salmonella 1h 
Yang et al., 

2020 
Yes 

 

HMI1
 

2021 

Broiler 

chicken 

carcass rinses  

Campylobacter, 

Listeria 

monocytogenes, 

Salmonella 

1h 
Eady & Park, 

2021 
Yes 

1HMI = hyperspectral microscope imaging 
2HSI = hyperspectral imaging 
3LAMP = loop-mediated isothermal DNA amplification 
4SPIA = single primer isothermal amplification 
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Rapid colorimetric immunoassay using cotton swabs and nanobeads 

Principle. Immunoassay uses antigens (proteins) and antibodies bound together to help 

identify and measure certain substances (Health, 2021). Control groups are cultured onto media 

and used to prepare for the experiment (Alamer et al., 2018; Sun et al., 2015). Colorimetric 

immunoassay is used for on-siter detection (Alamer et al., 2018; Sun et al., 2015). This technique 

uses nanoparticles that have been modified with antibodies of the pathogenic bacteria in order to 

produce the fluorescence color when the bacteria is present (Alamer et al., 2018; Sun et al., 

2015). Magnetic separation and buffer rinsing are used on the samples to remove any 

nanoparticles not attached (Alamer et al., 2018; Sun et al., 2015). Once rinsing and magnetic 

separation has been performed, the nanoparticles will illuminate and show the presence or 

absence of the bacteria (Alamer et al., 2018; Sun et al., 2015). Quantitative results are able to be 

determined depending on the brightness or dullness of the nanoparticles (Alamer et al., 2018; 

Sun et al., 2015). 

Technique. In this experiment, Alamer et al. (2018) worked with rapid colorimetric 

immunoassay to detect bacteria Campylobacter and Salmonella on solid surfaces and chicken 

breast. A good recovery of pathogens results in swabbing plastic, stainless steel, and wood 

surfaces with a cotton swab and placing in an extraction buffer later (Alamer et al., 2018). The 

extracted buffer is placed into an applied technique (e.g., colored nanobeads) or plated after it is 

vortexed. Alamer et al. (2018) were looking for a method that could be cost-efficient and handy 

while also producing results in a timely manner. This cotton swab method was contrived with 

immunoassay proposal that has specific antibodies that detects each bacterium (Alamer et al., 

2018). The swabs were able to detect pathogens: Salmonella typhimurium, S. Enteritidis, and 

Campylobacter jejuni from surfaces located in processing plants (Alamer et al., 2018). Sun used 
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Salmonella pullorum as its target bacteria, along with four other bacteria, in the experiment (Sun 

et al., 2015). The buffer that the cotton swab is placed into will differentiate the bacteria with 

colored nanobeads that are specific to the related bacteria (Alamer et al., 2018). In the 

experiment Sun orchestrated, magnetic particles and blue-silica nanoparticles were modified 

with antibodies to create antibody-coated magnetic and silica nanoparticles to help with 

identification (Sun et al., 2015). Alamer et al. (2018) and Sun et al. (2015) used the sandwich 

immunoassay to help enable the detection of bacteria from a solid surface by using a single 

device in a centrifuge tube. A DNA extraction kit and real-time PCR were needed in helping 

with this experiment (Alamer et al., 2018). While Alamer used PCR to help assist with his 

project, Sun (2015) used a scanning electron microscope to read the wavelengths of the bacteria 

(Sun et al., 2015). The Salmonella strains were grown in trypticase soy broth after being in 20% 

glycerol solution that was stored in -80 oC (Alamer et al., 2018). After eighteen to twenty hours 

of incubation at 37 oC, they were centrifuged at 10000 Xg for ten minutes at 4 oC and washed in 

TSB broth twice (Alamer et al., 2018). Cell suspensions were primed and adjusted to 108 cfu/mL 

and immediately diluted serially in TSB broth to 108 cfu/mL (Alamer et al., 2018). 

Campylobacter jejuni stayed in a 37 oC incubator for four hours and moved to microaerophilic 

conditions enriched in Bolton broth for 24-28 hours while incubated at 42 oC and made into ten 

serial dilutions (Alamer et al., 2018). Alamer et al. (2018) were able to activate the cotton swabs 

by submersing them in solution that contained 100 mL of 2mM sodium periodate (NaIO4) and 1 

mL of sulfuric acid overnight at room temperature and washed in cold distilled water to remove 

any excess oxidizing agent (Alamer et al., 2018). Activated aldehyde group that is found in the 

cotton swab is used to help identify the antibodies by their amino groups (Alamer et al., 2018). 

Sun grew bacteria in lysogeny broth at 37 oC (Sun et al., 2015). Alamer (2018) used 300 
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microliters (µl) of magnetic or polymer beads in different colors to represent the different types 

of pathogens. 100 µl of blue nanoparticles were used to help identify S. pullorum (Sun et al., 

2015). To bind the beads with the antibodies, Alamer (2018) incubated the two together 

overnight. For the screening technique, there is two steps wherein the first step the beads are now 

antibody-linked and prepared to be conjugated with the cotton swabs to develop the color 

solution from the nanobeads for the secondary antibody detection (Alamer et al., 2018). Chicken, 

glass, and stainless-steel surfaces were contaminated in a 20x20 cm square by the pathogens and 

swabbed for confirmation after 10 minutes (Alamer et al., 2018). The second step involves the 

detection of the bacteria sandwiched in between the cotton swab and the colored nanobeads that 

were rinsed in a buffer for two minutes (Alamer et al., 2018). Whichever specific-colored beads 

trapped on the cotton swab indicated which pathogen was detected by the stained cotton swab on 

the contaminated surfaces (Alamer et al., 2018). PCR was used to confirm for DNA matches to 

the bacterial cultures following the protocol given by QIAGEN running for approximately forty 

minutes (Alamer et al., 2018; Robert-Rössle-Strasse, 2021). The results displayed that as the 

more enumeration of the bacteria was present, the more intense the colors were on the cotton 

swab limiting the number of pathogenic bacteria can be found on surfaces (Alamer et al., 2018). 

Sun et al. (2015), however did not use cotton swabs for identification but a microplate reader to 

identify the bacteria that were bound to magnetic nanoparticles. An increase of absorbance at 

675 nm and an apparent blue color were identified when it came to S. pullorum being present. 

Sun et al. (2015) noticed that that an increase in recovery of more nanoparticles occurred with 

longer incubation periods at thirty minutes. A difference between Alamer et al. (2018) and Sun et 

al. (2015) experiments were that stability of the nanoparticles were performed over a course of 1, 

7, 30, 60, and 90 days in Sun’s experiment. These nanoparticles were left in storage at 4 oC and 
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remained stable showing that anti-S. pullorum molecules on the surface are maintaining 

immobility (Sun et al., 2015). 

Hyperspectral microscope imaging (HMI) 

Principle. This technique collects microscopic data in a three-dimensional (3D) 

hypercube matrix with two dimensions, spatial and spectral (Anderson et al., 2008). The two 

dimensions represent spatial data (x and y coordinates), and another represent spectral data () to 

help identify the unique photosensitive properties of bacteria (Eady et al., 2015). A typical 

colony is picked from an agar plate and inoculated into 100 µl of deionized water, vortexed, and 

placed to dry onto a glass microscope slide (Eady & Park, 2021). The microslide is covered with 

a coverslip and placed on the sample stage of the hyperspectral microscope imaging and 

surveyed (Eady & Park, 2021). Microslides are read with a tungsten halogen (TH) light with a 

wavelength peak of 630 nm (Eady & Park, 2021). Images are captured and shown by cell 

segmentation by highlighting the outside of the cells in a black and white contrast (Eady & Park, 

2021). 

Technique. In a previous study, Anderson et al. (2008) was able to differentiate between 

living and dead damaged Bacillus anthraces spores through HMI technique. Eady and Park 

(2015) performed an experiment using a hyperspectral microscope imaging system with 

Salmonella that allowed them to see different serotypes of the bacteria species. An approach 

known as discriminant analysis (DA) was performed in eight hours or less resulting in a single-

cell based mean pixel intensity pattern for imaging (Eady et al., 2015; Eady & Park, 2021). Eady 

and Park (2021) wanted to continue improving the opportunities of HMI and honed on 

expanding the classification verification this technique’s ability possesses. Since the previous 

experiment gave a pixelated image, they constructed a soft independent model of class analogy 
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(SIMCA) approach to get a “yes/no” answer when in the presence of Salmonella (Eady & Park, 

2021).  SIMCA was a better approach than DA in this experiment for the reasons of rejecting a 

sample if the product was outside of the model’s calibration boundaries avoiding any false 

negatives (Eady & Park, 2021). In Anderson et al. (2008) project, a goal was to see the viable 

spores after being introduced to chlorine and hydrogen peroxide mixtures while requiring 

hyperspectral reflectance reference signatures in those cultures. Eady et al. (2015) wanted to 

examine spectral signatures of bacteria grown at 24-hour culture compared to cultures that were 

grown at 6, 8, 10, and 12-hour cultures as their first objective. The second objective was 

identifying and differentiating five serotypes of Salmonella through spectral signatures at their 

cellular level (Eady et al., 2015). The most previous study that involved Eady and Park (2021) 

wanted to accurately predict presence of Salmonella that can be compared to PCR and enriched 

plating with a 95% accuracy rate. To start off the experiment for Eady and Park (2021), carcass 

rinses were performed on broiler chicken finding a multitude of bacteria that included L. 

monocytogenes, fourteen species of Salmonella, and a few others. Additionally, three species of 

Campylobacter stock cultures that were used in this project, but not found in the carcass rinses, 

were grown on agar media at the respective time and temperature (Eady & Park, 2021). After the 

cultures were harvested from incubation, sample slides for each species were made and stored in 

4 oC until HMI was ran within the next day (Eady & Park, 2021).  
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ADVANTAGES/DISADVANTAGES 

 

Table 1.2. The advantages and disadvantages of rapid detection techniques. 

Type Advantages Disadvantages 
Dot blot and PCR 

• Able to identify different DNA 

sequences of Campylobacter 

(Fontanot et al., 2014) 

• 24h enrichment is required for 

PCR testing (Fontanot et al., 

2014) 

• Did not see positive results at 

0,6,12 h (Fontanot et al., 2014) 

HMI • Reduces false negatives from 

occurring (Eady & Park, 2021) 

• Able to distinguish between 

Salmonella serotypes (Eady & Park, 

2021) 

• Selectivity increase can be 

improved (Eady & Park, 2021) 

MSI 

• Salmonella strains were able to be 

distinguished between another 

(Michael et al., 2019) 

• Can be performed in 15 minutes 

while producing images in 5 minutes 

(Michael et al., 2019) 

•  

• Expensive (Michael et al., 2019) 

• Cross-validation only worked for 

some bacteria with a specific 

genus (Michael et al., 2019) 

Multiplex PCR method • Can be done within an hour 

(Lawrence & Gilmour, 1994) 

• Can differentiate between Listeria 

spp. and L. monocytogenes 

(Lawrence & Gilmour, 1994) 

• Older method (Lawrence & 

Gilmour, 1994) 

Rapid colorimetric 

immunoassay 
• Cost-efficient and easy to use, 

simple (Alamer et al., 2018) 

• Can be spotted with the bare eye 

(Alamer et al., 2018) 

• Instrument-free (Alamer et al., 2018) 

• Preparation for cotton swabs 

takes up to 2 days of preparation 

for use (Alamer et al., 2018; Sun 

et al., 2015) 

• Detection limit (Alamer et al., 

2018) 

• Semi-quantitative (Alamer et al., 

2018) 

Rapid LAMP-based method 

• Takes an hour to achieve results 

(Romero & Cook, 2018) 

• Ran into false negatives if 

samples were < 800 cfu/swab 

when detecting Campylobacter 

(Romero & Cook, 2018) 

SPIA • Specific amplification (Yang et al., 

2020) 

• Can be seen with visual fluorescence 

by day light (Yang et al., 2020) 

• Cannot differentiate between 

dead and living cells (Yang et al., 

2020) 

Single-pipetting microfluidic 

assay 
• Results in less than a minute and 

easy to use (Fronczek et al., 2013) 

• Can maintain a good condition in 

storage up to 8 weeks (Fronczek et 

al., 2013) 

• Has a dip in enumeration around 

the two-well chip at 102 -103 cfu 

mL -1 (Fronczek et al., 2013) 

cfu= colony forming units 

HMI= hyperspectral microscope imaging 

MSI= multispectral imaging 

SPIA = single primer isothermal amplification 
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SPECTRAL IMAGING 

Spectrography is an emerging spectral technology allowing numerous (more than three to 

hundreds) spectral bands to be observed throughout the electromagnetic spectrum simultaneously 

combining spectroscopy and imaging into one (Qin et al., 2011; Michael et al., 2019). MSI is 

another technology that allows rapid detection of bacteria to occur and has been used in multiple 

fields like agriculture and medicine (Eady et al., 2019). Multispectral (MSI) imaging displays the 

fluorescence of the substance being examined at hand through the visible light wavelength 

spectrum. MSI uses a range of 200-1000 nm on the visible near-infrared spectra by reflecting light 

back to the camera in order to receive a seen figure (Michael et al., 2019; Sueker et al., 2021). This 

technology allows foodborne pathogenic bacteria or contaminants to be detected at a faster rate 

than the standard method taking four to seven days for results by reducing the time down to fifteen 

minutes relieving the laborious workload of traditional methods at a presumptive level of traceable 

pathogens (Michael et al., 2019). Spectral imaging is a means to additionally help identify 

contamination on surfaces and on food products. Through the fluorescence sensing techniques, 

quality assessments on foods were applied when using spectral imaging for being a great source 

in food sciences such as meat samples for characteristic measures (Kim et al., 2006; Sueker et al., 

2021). Spectral imaging has been used to help depict fluorescence properties of chicken carcasses 

that showed condemnations and diseases compared to a wholesome bird examining the skin of the 

breast (Kim et al., 2006). This rapid detection method is used to help with detection of inorganic 

materials present on the surfaces of vegetables, meats, fruits, and diverse processed foods for 

quality purposes (Peng and Dhakal, 2015; Chao et al., 2020). Fluorescence production through 

spectral systems has been a useful tool for inspection to assist with food safety with specific spectra 

for biological residues in visible and near-infrared wavelengths (Sueker et al., 2021). Meat 
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products and proteins have shown illumination in UV, blue, and green wavelengths while fecal 

matter from dairy cows emit red illumination that peak at 680 nm when UV radiation was excited 

at 360 nm (Wold et al., 1999; Kim et al., 2003; Sueker et al., 2021). 

Principle. This technique utilizes three to hundreds of wavelengths that is measured in 

nanometers (nm) to help display an image that can also use ultraviolet (UV) light to fluoresce 

what may be present on the surface of objects. Spectral imaging uses wavelengths that typically 

spans from 400 to 700 nm known as visible light, to help with accurate color representation. 

Some spectral systems use infrared or UV light, where wavelengths range from 700 to 1,000 nm 

for infrared and 100 to 400 nm for UV. There are three types of UV light used and are the 

following: UV-A, UV-B, and UV-C. UV-A (315-400 nm) and UV-B (285-315 nm) lights are 

used for fluorescent of organic materials while UV-C (100-285 nm) is a stronger, more 

dangerous light used for disinfection of bacteria, fungi, and viruses on surfaces. UV-C can be 

commercially made for disinfection but naturally, it will rarely reach the skin’s surface due to the 

length of its wavelength. Spectral imaging is used to rapidly detect and provide documentation of 

visible and invisible organic materials and pathogenic biofilms (Sueker et al., 2021). Ultraviolet 

light has been used for in the food industry previously for sanitation purposes and is finding its 

way into food distributing companies and processing plants for preventative purposes with 

contamination inspection to help with the avoidance of recalls and the spread of bacterial 

exposure to the consumers. Spectroscopy is used to help develop a more automized system for 

food processing plants with inspection of products going to consumers in search to reduce 

outbreaks of foodborne pathogens and maintaining distribution of high-quality foods. Although 

spectroscopy uses a range of wavelengths, each imaging system has different wavelength ranges 

that are used to fit each specific environment.  



 18 

Technique. Research involving spectral imaging has constantly been developed since the 

1990s, specifically on chicken meat for detection of wholesome versus unwholesome birds. 

USDA-ARS scientists, Chen and Massie (1993) used visible and near-infrared reflectance 

spectroscopy systems to distinguish chicken carcasses that are identified as cadavers, septicemic, 

and normal birds for veterinarians. Wavelength parameters ranging from 500 to 1113 nm were 

used in a completely dark room on cold (0º C) and warm (20º C) carcasses with a diode array 

detector with an average 200 scans per spectrum using over 250 chicken carcasses in total (Chen 

and Massie, 1993). Classification was formed with a training and test set by separating the odd 

and even numbered cases out, further allowing model systems to be made depending on the 

characteristics shown through the reflectance and interactance in the training sets where the 

temperature was not a factor in these sets. To evaluate these class functions, a multiple linear 

regression was performed to help classify normal and septicemic birds, but cadavers were not a 

part of this first regression. A second regression was made where the septicemic birds were not 

used but the normal and cadaver carcasses were used for classifier functions. A third regression 

was made to form classifier functions for the unwholesome carcasses. After classifiers were 

created, wavelengths showing variation between the samples were selected resulting in four 

wavelengths variations. As a result, there was distinct separation in the training set for 

reflectance spectra for the normal carcasses when compared to the septicemic and cadaver 

carcasses at several wavelength absorption bands that were under 850nm (Chen and Massie, 

1993). A scatterplot was made to show if there was any misclassification using reflectance, only 

four normal birds were classified as septicemic, one normal bird was classified as both 

septicemic and a cadaver, and six septicemic and five cadavers were classified as normal. This 

resulted in a 33% misclassification rate when the training set was observed, and the testing set 
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had a 5.6% in misclassification when using the reflectance model. Another scatterplot was made 

to show the interactance linear functions, this resulted in the rate of misclassification for 

wholesome carcasses to be 16.7% and for unwholesome carcasses to be 12.5% found in the 

testing set. Secondary difference scatterplots were made for each reflectance and interactance 

spectra, each showing less misclassification when observed. Overall, when reflectance spectra 

were used, a 94.4% accuracy for normal carcass classification was projected while a 93.1% 

accuracy classification was demonstrated for abnormal carcasses (Chen and Massie, 1993). 

When interactance spectra were used, 93.3% classification accuracy for normal carcasses and 

96.2% accuracy for abnormal carcasses were displayed. Chen and Massie (1993) were able to 

successfully classify septicemic, cadavers, and normal carcasses with a diode-array 

spectrophotometer used at high-speed. This experiment using interactance used twenty-four 

wavelengths and had a probe that required to touch the carcass in order to gain a proper 

measurement. Although, results were ideal for an automated system, the procedure is limited on 

the execution of running at processing line speeds. The reflectance spectra did not require a 

probe for a point of contact with the carcasses and were able to narrow the use of four 

wavelength readings ranging from 500-850 nm (Chen and Massie, 1993).  

Chao et al. (1999) examined chicken livers and hearts using a visible light/near-infrared 

(VIS/NIR) spectral camera. They worked with chicken livers and hearts that were separated into 

four classes, based on postmortem pathology, which were the following: normal, air sacculitis, 

cadaver, and septicemia. The images were taken with a white background and processed for 

morphological features and measurements of grey intensity (Chao et al., 1999). This experiment 

used feature extraction to help classify these organs. These images were processed using neuro-

fuzzy based image classification algorithms where threshold values were depicted from 
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histogram intensities based on the images in each color space of red, green, and blue (RGB) 

(Chao et al., 1999). The fat band to total width band area ratio was used for the heart’s 

classification while the gray-level intensities were averaged in RGB color space for the chicken 

liver classification (Chao et al., 1999). For statistical analysis, two models of neuro-fuzzy were 

used and 50% of the images were used for the training while the remaining 50% was used for the 

validation set. There were significant differences between the normal livers and the condemned 

carcasses when the RGB brightness values were compared. A significant difference was found 

between the cadaver and normal livers when paired similarly to the normal and air sacculitis 

livers when a Dunnett t-test was performed. There was not any significant difference found 

between the normal livers and the septicemic livers. When comparing the chicken hearts, there 

was significant differences between all four types. A Dunnett t-test was performed, showing 

significant differences between the normal and air sacculitis hearts as a pair and the normal and 

septicemic hearts. There was no significant difference found between the normal and cadaver 

hearts when compared. Results from the neuro-fuzzy model concluded with an 87.5% accuracy 

when using 50% of the data when comparing cadaver livers against normal livers (Chao et al., 

1999). When RGB color was used for classification purposes for air sacculitis livers and normal 

livers, the results concluded a 92.5% accuracy for the validation set and 95% accuracy for the 

training set. For heart classification, the normal and air sacculitis samples resulted in % accuracy 

for the training set and 97.5 % accuracy for the validation set. The results for normal hearts and 

septicemic hearts were 95% accuracy for the training set and 92.5% accuracy for validation set. 

A four-class classifier was made to classify all four classes amongst another where spectral and 

spatial data was used, where the training set resulted in an 86.2 +/- 1% and the validation set had 

82.5% accuracy (Chao et al., 1999). 
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Spectral imaging has been used to help identify carcass condemnations with the inspection of 

broiler chicken visceral organs but also with whole carcasses. Carcasses that were deemed to be 

cadavers, septicemia-toxemia, and air sacculitis were examined through spectral imaging for 

classification to begin the discussion of implementation of automated systems in poultry 

processing plants (Chen and Massie, 1993; Kim et al., 2006; Chao et al, 2007). The detection of 

fecal contamination on processing equipment has utilized spectral imaging given FSIS has a zero 

tolerance in processing plants before operation starts. Chao et al. (2007) used a hyperspectral-

multispectral imaging system to locate the region of interest (ROI) on the breast of each carcass 

for determination of wholesome of unwholesome birds using line scan imaging. The ROI was 

the breast of the bird where line-scan images were taken at 400 images per second detecting the 

entry and exit of each carcass in the view of the camera that passed (Chao et al, 2007). 

Wavelength, 629 nm, was used for reflectance to detect the chicken carcass with a black 

background and using the hyperspectral camera using a total of fifty-five wavelengths for 

analysis. With a ROI boundary made, the pixels located in each image were used to form 

calibration sets taking the average highest and lowest values for each wholesome chicken for one 

set and systemically diseased for another (Chao et al., 2007). An image classification algorithm 

was developed on MATLAB using a fuzzy function using the ROI and significant wavelengths. 

As a result, they discovered using key wavelengths of 4 had the ability to perform quicker with 

data processing than using a higher number of wavelengths which were used for analysis (Chao 

et al, 2007). As a result of using the key wavelengths for the average fuzzy output calibration 

data set, when threshold was 40%, a 93.8% accuracy of unwholesome birds, where only four 

birds that were deemed unwholesome being misclassified, when plotted against the total number 

of ROI pixel values (Chao et al., 2007). When the systemically diseased birds were measured, 
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there was a 100% accuracy for correct classification and had 91.4% accuracy when off-shift 

imaged birds were removed. This resulted in an average of  96% accuracy for systemically 

diseased birds were classified correctly at 40% threshold. When threshold was increased, 

however, the differentiation accuracy for unwholesome and wholesome birds began to decrease. 

With systemically diseased birds being classified correctly, other condemnations were 

considered to be an issue in the industry. Fecal contamination has close association with 

foodborne pathogens which can be found on processing equipment surfaces, fruits, and meat 

carcasses (Park et al., 2005; Yang et al., 2010; Gorji et al., 2022). A spectral imaging system was 

used on post-harvest apples that were artificially inoculated with  four different concentration 

levels of fecal matter from Holstein cows (Yang et al., 2010). A hyperspectral line-scan system 

utilizing violet LED excitation light was used for imaging once the apples were placed on a tray 

with a black background (Yang et al., 2010). Yang et al. (2010) developed an algorithm to detect 

the contaminated spots of the apple surfaces and not be recognized as a bruised spot for 

contamination. The fecal contamination spectra peaked at 680 nm in this observation (Yang et 

al., 2010). All fecal spots on the apples were able to be successfully identified through a 

multispectral algorithm model where the threshold was held at 89% while the highest accuracy 

percentage for both normal apples and contaminated apples together was only 92% (Yang et al., 

2010). A hyperspectral imaging system was used in another study to detect fecal matter on hand-

eviscerated broiler chicken carcasses. Cecal contaminants were collected from the ceca part of 

the digestive tract due to the consistency and color when compared to other digesta/fecal 

materials found in the digestive tract of chicken. Carcasses were cut in half to expose the internal 

visceral for this research for easier imaging (Park et al., 2005). Carcasses were hung on standard 

processing shackles and the imaging system sat on a transportable cart for ease of camera and 
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light adjustments. Line-scan images were taken of the clean carcass before contamination was 

placed on four areas that included fat, meat, bone, and inside shade of the carcass (Park et al., 

2005). Images were analyzed and processed further to obtain a threshold, masked ratio, mask, 

and other components for comparison of clean and contaminated carcass halves (Park et al., 

2005). Seven ROIs were used for on each carcass to detect where spectra peaks decreased for 

each contaminant spot and to determine a threshold for classification of contaminants. The 

percent accuracy varied from 75.9% to 96.95% when threshold values were 1.00 and 1.05 (Park 

et al., 2005). They concluded that the higher the threshold, the more contaminated carcasses were 

misclassified, although the imaging system was able to identify 92.5% accuracy of contaminated 

carcasses (Park et al., 2005). Although the method for this research was unconventional for the 

industry, given carcasses are not cut in half for processing, Park et al. (2005) were able to 

identify that cecal contamination can be detected on the outside and inside of chicken carcasses. 

A fluorescence imaging system was used in another research study examining raw meat 

carcasses to identify fecal contamination with a handheld camera system. This system differs 

from the other imaging system discussed in previous studies due to the flexibility and 

transporting ease of this camera. This multispectral camera utilizes LED lights to assist with 

ambient light brightness issues that were discovered in past research (Gorji et al., 2022). Raw 

skinned beef and sheep carcasses were video recorded at processing plants before chilling with 

this imaging system and removed from the processing line if deemed suspect for review of the 

inspectors on-hand. This research had two objectives: to identify fecal contamination on these 

carcasses and to differentiate contamination areas using a sematic segmentation algorithm on 

CNN models for further analysis. This research concluded that contaminated carcasses were 

detected when compared to clean carcasses at an accuracy rate of 97.32%, precision at 97.66%, 
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and recall at 97.06% (Gorji et al., 2022). When the sematic segmentation model was run to 

determine whether the segmented areas of fecal matter showed presence or absence, a different 

metric was used called intersection over union (IoU) to help with performance levels (Gorji et 

al., 2022). This produced these segmented fecal matter surfaces with an IoU of 89.34%, 

precision of 92.25%, and recall of 95.84% (Gorji et al., 2022). Gorji and team provided key 

research that fecal contamination can be detected with this handheld spectral imaging system. 

The conventional way of inspection can cause false negatives and even if contamination is 

caught, testing results in days of lab work. With implementing an automated system in 

processing plants, this reduces technical errors performed by plant workers and can provide 

beneficial inspection system for the industry. 

  

 DATA ANALYITICS 

Multispectral imaging system. The optical imaging system called Contamination, 

Sanitation, Inspection, and Disinfection (CSI-D+) system (SafetySpect, Grand Forks, ND) was 

used for this study. Spectral imaging was captured through the settings that include multiple 

wavelength bands, a red, green, and blue (RGB) camera, an ultraviolet (UV) camera with an option 

of disinfection, and a LED setting for fluorescence. The disinfection setting was not utilized in this 

study. This system can be controlled by the screen on the camera or through a wireless connection 

to a computer or tablet placed within 20-30 ft of the camera. The displayed screen gives three 

modes to work the system where either a still image, video, or view finder modes can be exhibited 

and recorded on the desired connected device. Light Detection and Ranging (LIDAR) is used for 

measuring the distance between the CSI-D+ device and the surface that is being examined. Two 

of the RGB channels can be adjusted while fluorescence is in use. The green channel is a constant 
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while the red and blue channels can be adjusted. When the red channel is used, green color can be 

seen because the two wavelengths overlap. UV settings intentionally activated using special 

buttons on the camera can be used for disinfection. The LED light on the camera is used to induce 

fluorescence and can be intentionally activated. The LED light is  combination of UV-A and UV-

B light is used. The LED light cannot be altered and is set at 405nm when the RGB settings are 

used, and the LED light emits at 275nm when the UV-C LEDs are used. These lights are activated 

through electronic signals, being turned on and off by buttons. Materials can be detected using UV 

that are as low as 325-375 nm showing excitation of molecules. Certain parameters are used for 

the operation of the camera. (1) Exposure is how long the photo-sensitive cells are exposed to light 

that range from 0 to 350 milliseconds (ms). (2) Gain, measured in 1/100th decibels or Millibels 

(mB), controls the sound or noise levels in background of images by adjusting the pixel activity. 

Gain changes the brightness of the background using an analog to digital converter. This allows 

the image to appear either more realistic or abstract. With more gain parameters set, however, more 

noise in the background will be present. (3) Brightness adds whiteness to the image. (4) Saturation 

changes the color intensity for display of the image. By reducing saturation, this helped the red, 

green, and blue channels to be more equivalent creating a more monochrome image. The blue 

channel can respond to 850 nm with red, which also overlaps into green. However, the red can see 

the green spectrum without any overlap of the two. The wavelength range for red is 500-565 nm 

and 660-735 nm for blue. (5) Hue adjusts the color tone intensity by rotating the chrominance field 

clockwise around its axis. (6) Gamma bends light to have darker or lighter values in image appear 

by controlling the linearity of the intensity response of the imaging system. (7) The red and blue 

balance (RB balance) is the last setting used. (8) The RB balance controls the red channel and blue 
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channel in the camera to give different illumination scenarios for best imaging results. Images 

produced are 1024 x 768 pixels in size which can be saved as either .jpg, .tiff, or .raw on the tablet. 

 

Image Classification. 

 Convolution Neural Network. One of the models used in this experiment is called 

Convolution Neural Network, often called the CNN deep-learning model. The CNN model is 

derived from another system known as Artificial Neural Network (ANN) to develop the 

classification of images, segmentation of images, and for high performance and accuracy with 

object recognition (Ramdani et al., 2020; Ristiawanto et al., 2019). This is a supervised learning 

network that uses a deep learning algorithm that handles two-dimensional input data (Al-Saffar et 

al., 2017). This deep learning model can be used for image classification to provide knowledge 

elaborating on what one frame of food is portrayed as when using a food detection system 

(Ramdani et al., 2020).  

The images were applied to the CNN model using Google Collaboration. Images were 

downloaded into Google Drive and separated by sessions of images were taken and into another 

folder by sep-tox and normal carcasses. An image analysis model was created for further image 

analysis using platform CUDA 11.2 and Pytorch machine learning framework with three ConvNet 

layers. Adam Optimizer (learning rate= 0.001, weight decay= 0.0001) with cross entropy loss 

function for training of model with fifty epoch which can be changed as required. There are three 

major steps that partake while working the CNN model. In the first step, the images were uploaded 

and placed into separate folders for normal and sep-tox carcasses. Images analyzed with this 

program underwent three major steps: picture collection, model configuration, and validation. In 

the first step, images were gathered for the base data where they are placed into appropriate folders 
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for identification. The next step was model configuration where CNN model uses iterative training 

to improve its identification accuracy (Wang et al., 2020). The pictures were augmented by 

resizing, rotations, and flipping. Seventy percent of the pictures that were uploaded were used for 

the training model, these images are classified as either normal or sep-tox. After classification, 

each image was augmented to reduce each picture to 150 x150, be vertically and horizontally 

flipped, and have a random rotation added to it. After being augmented, a test model was run using 

20% of the remaining images to produce the best model or epoch for a validation test to ensure the 

model was accurate. The model was trained by the number of epochs, or iterations, that were 

selected by the user. The best model was selected through percent accuracy and tensor, which is 

used in the last decisive step and named the best test model. Tensor is a means of loss, the smaller 

the tensor produced, the higher the accuracy of classification will be when creating the best model 

for the validation step. The last step was the validation step where the best test model was run 

against an unidentified folder of the remaining images that were not used in the training set. This 

is where the CNN model uses the final 10% of images from a folder that has no identity 

specification of normal birds or sep-tox birds described and use the best selected test model created 

from the testing model. This validation model sorts those remaining images at random into their 

correct classification as best as possible. When the validation model is run, the convolution neural 

network model displays the categories in which they are classified. After prediction is performed, 

a data frame is created to calculate the class probabilities and percentages each image falls into 

place. The results are shown in a table format and a heat map is created for each individual image 

to show what percentage each image fell into the two classes represented in this research. 

Additionally, a heat map is created to display the overall classification map for each folder 

displaying which images are predicted into each class by percentage. 
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The images were classified using a second method, Custom Vision AI which is a supervised 

image classification system. This system uses the Microsoft Azure platform to help train a custom 

multi-class image classification using machine learning techniques in real time through a CNN 

algorithm. Microsoft Custom Vision provides models that cultivates detection, segmentation, and 

classification (Andriyanov et al., 2023). Images were uploaded in appropriate folders and trained. 

After training, a performance was run on the images for accuracy of classification. This system 

scales probability threshold and depicts the precision, recall, and accuracy percentage (AP). The 

precision measures the percentage of the model selected on how accurate it will predict images to 

their respective tags. The recall shows all tag outcomes and the correct predictability percentage 

the model correctly places each image within these tags. The AP is the measure of the model 

performance which outlines the precision and recall at different thresholds and shown through 

percentage accuracy. The threshold can change the predictable probability of images into the 

correct tag. The threshold ranges from 0 to 100%, where the default threshold is 50%. After 

training has occurred, there is a probability threshold that administers the minimum probability 

score for a prediction validity during classification of the images when calculating precision and 

recall. After the model has been trained, images that are to be tested can be run with the trained 

model and computes the percentage probability for the image to be classified under each tag. There 

is an additional test that can be run for individual pictures to determine the percent the image 

categorized under each tag. 

The results were shown in a table format and a heat map is created for each individual 

image to show what percentage each image fell into the two classes represented in this research. 

Additionally, a heat map is created to display the overall classification map for each folder 

displaying which images are predicted into each class by percentage. 
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CONCLUSION 

Rapid detection is able to help identify these foodborne pathogens in a quicker and more 

illustrated manner like the spectral technique that was able to produce results in five to fifteen 

minutes (Michael et al., 2019). With spectral technologies like this, it will help the improvement 

of the detection of bacterial contamination in poultry processing plants. For future studies in 

identifying bacteria, spectral detection is a positive and upcoming method used through multi-

scaled industries. With processing lines ran at high speeds, spectral imaging must be suitable to 

the fast pace of the line and can execute tactful low-light imaging successfully for online use in 

processing plants. One of the benefits of multispectral imaging to the industry is providing an 

easier process to detect bacteria on food and equipment surfaces, fecal contamination of meat 

products and produces, or organic residues found on processing equipment compared to cultural 

methods that are currently set in place if PCR is not currently in use at facilities. The evisceration 

line would be fed only wholesome birds, allowing for higher speed processing lines while 

minimizing food safety risks and cross-contamination of equipment (Park et al., 2005; Chao et 

al., 2007). Implementing spectral imaging into poultry processing plants to adhere with the 

unwavering speed of production lines can alleviate some missed contaminated carcasses that 

spread foodborne pathogens to consumers.  
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CHAPTER II. 

 

Identification and Classification of Broiler Carcasses Exhibiting Septicemia-Toxemia using 

Spectral Imaging Systems 
 

  



 36 

Abstract 

 

Septicemia-toxemia (sep-tox) is a bacterial infection in the bloodstream of live broilers which 

can result in red carcasses, dehydrated skin, or organ hemorrhaging. During processing, USDA 

inspectors or trained plant personnel visually inspect broiler carcasses and separate those 

exhibiting sep-tox characteristics, which can be a fatiguing process. With the potential of 

increasing processing line speeds, it is appropriate to develop innovative real-time technologies 

to detect sep-tox. We investigated an RGB color imaging spectral camera system combined with 

machine learning for the detection of sep-tox carcasses. A total of 380 carcasses, identified as 

sep-tox by trained plant personnel or USDA inspectors, and 286 non-sep-tox (market ready) 

carcasses were procured from a commercial poultry processor in twelve separate trials. Each 

carcass was placed in a cabinet to prevent ambient light from interfering with imaging. The 

CSID+ imaging system (SafetySpect) was used for collecting two images per carcass at different 

exposure times to obtain a total of 1,332 images. Image analysis using data analytics was 

conducted with a supervised learning network, convolution neural network, to categorize images 

into normal and sep-tox. The convolution neural network was able to validate the picture with a 

ninety-eight percent training accuracy and a one-hundred percent testing accuracy average using 

the best model this network produced. Custom Vision was used for classification at two 

thresholds, fifty and eighty-five percent, resulting in 100 percent accuracy for all images in their 

respective class. RStudio was run on only sep-tox images to receive a scatterplot showing 

diversity between septox images. The scatterplot resulted in close knit clusters, but clusters were 

distinguishable resulting in 252 images in cluster one, 146 images in cluster two, and 214 images 

in cluster three. The spectral camera was effective in detecting septicemia-toxemia in broiler 
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carcasses in a laboratory setting and can be further investigated for its application in the 

processing environment. 

 

Introduction 

 

 Poultry is the most popular meat consumed across the world with the consumption rates 

almost doubling over the past two decades (OECD, 2017). In the US alone, there has been a 20% 

increase in chicken consumption over the last twenty years which has reached 98.0 lbs. per 

capita in 2021 (USDA-FSIS, 2022). Although popular, consumers are concerned about the safety 

of poultry and the foodborne diseases associated with it (Super, 2018). Hence, there are 

significant efforts taken by the poultry industry and government regulators to ensure safety and 

wholesomeness of poultry meat. 

Broiler carcasses are inspected individually in processing plants for several defects or 

condemnations that may render the meat unsafe and unwholesome which will lead to 

degradation of meat quality or discarding of the carcass. At a commercial poultry processing 

plant, the inspection is overseen by USDA-Food Safety and Inspection Service (FSIS) 

inspectors, along with trained plant workers, who are placed along the processing line near the 

evisceration station inspecting each chicken carcass that is processed. The inspectors conduct 

visual and physical inspection of both the carcass and the viscera that have been extracted from 

that particular carcass (Chao, 2010). Inspection includes examining the external surface of the 

carcass, the internal cavity surfaces, and all organs of the carcass to identify any of the prescribed 

reasons for carcass condemnations such as fecal contamination, air sacculitis, septicemia-

toxemia among others. Carcasses affected by certain contaminations such as fecal contamination 
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are reprocessed as per the prescribed method and rehung for next steps in processing. However, 

certain other defects render the carcass unfit for human consumption and must be condemned. 

One such carcass defect that results in condemnation that is prominent in the poultry 

processing industry is called septicemia-toxemia. Septicemia-toxemia is the number one named 

cause of carcass condemnations observed in the poultry industry (USDA-NASS, 2024). With 

more than nine billion chickens being produced a year on average, this is an issue as it results in 

an overall yield loss (USDA-FSIS, 2021). Septicemia-toxemia, commonly referred to as sep-tox, 

encompasses septicemia, a bacterial infection that enters the bloodstream due to pathogenic 

microorganisms or their toxins, and toxemia, a localized infection resulting from toxins produced 

by cells or the proliferation of microorganisms (Chao et al., 2008). Signs of sep-tox on carcasses 

are a range of red, dark red to bluish color to the appearance of the carcass and can have 

excessive fluid in the chest cavity (Dey et al., 2003). The red appearance is produced from 

petechial hemorrhages to the liver, heart, kidney, muscle, and membranes. Another common sign 

in chicken is inflammation of organs such as the liver, spleen, and kidneys (Chao et al., 1999). 

Sep-tox birds are smaller in size and have a dehydrated look with potentially stunted growth 

(USDA-FSIS, 2014). Although septicemia-toxemia is an infection in the bloodstream, in some 

cases it cannot be seen before processing the broiler chicken. This illness can have a full 

recovery from the bacterial infection but over time, if not treated, can be fatal to the infected 

bird. The infected chickens are deemed unsafe for human consumption and discarded (USDA-

FSIS, 2014). Birds that develop septicemia-toxemia are prohibited by federal regulation and 

occur in less than 0.2% of the chickens that are processed (Chao et al., 2007) which extrapolates 

to 18 million broilers of the 9 billion produced every year in the US.  
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In a processing plant, the USDA inspector or a trained plant personnel visually identify a 

sep-tox affected carcass and remove it from the processing line legally allowed to be run at 140-

175 birds per minute (bpm) (Chao et al., 2004). The processing line speed, combined with 

personnel bias and fatigue could result in the detection of false negative or false positive sep-tox 

carcass identification leading to either unwholesome carcasses entering the food chain or 

economic losses, respectively. However, HACCP-based inspection models project (HIMP) of the 

USDA-FSIS requirements includes a zero tolerance for unwholesome chickens demonstrating 

symptoms of sep-tox (Chao, 2010; Dey et al., 2003). Hence rapid sep-tox carcass detection 

technologies which can allow for an accurate and repeatable detection of affected carcasses while 

aiding trained workers doing their laborious job would be beneficial to the poultry industry and 

regulators. 

A spectral camera can use wavelength bands of red, green, and blue (RGB), ultraviolet 

light (UV), and LED settings for fluorescence on the chicken carcasses on processing lines to 

identify the carcass defects. Multiple spectral imaging systems have been researched for 

automation inspection with the goal of implementation into poultry systems. Research using 

spectral imaging was conducted by Dey et al. (2003) on chicken livers from birds diseased with 

septicemia. These organs were examined with visible light/near-infrared (vis/NIR) spectroscopy 

to record any physical or chemical changes that have occurred for rejection under the HIMP 

criteria using pattern recognition from both healthy and infected livers. They observed a 

significant spectral difference between the normal and sep-tox livers at 750 nm for visible light 

and 2,300 nm for infrared light. Chao et al. (2004) successfully demonstrated the effectiveness of 

a transportable vis/NIR spectroscopy data acquisition and processing capability at a high 
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throughput processing facility at 70-90 birds per minute to classify birds at wholesome and 

unwholesome. 

Over the years, steps into using spectral imaging have progressed from line scan imaging 

systems to a more readily accessible system. Sueker et al. (2021) performed a study with a 

handheld spectral camera, CSI-D, for the rapid detection of saliva and respiratory droplets, along 

with other organic residues, on stainless steel and plastic surfaces that are present daily in food 

processing facilities and kitchens. The CSI-D system captures the presence and absence of 

contamination using different variations of UV light. This type of CSI-D camera system may 

also have useful applications within the poultry processing industry. 

The objective of the study performed was to use a fluorescent multi-spectral imaging 

system to facilitate the identification of processed chicken carcasses that exhibit septicemia-

toxemia using an image classification method system based on supervised and unsupervised deep 

learning algorithms for further image analysis. 

 

Materials and Methods 

 

Experimental Design. 

 

To help reduce errors in identifying sep-tox chicken, twelve sessions were performed 

using the CSI-D+ system in a laboratory setting to capture images. A box was configured with 

two black forty-five-gallon polypropylene tote containers (20.8 in. L x 45.2 in. W x 18.9 in. H) 

(Rubbermaid, Atlanta, GA) a plain steel cold rolled round rod (1/8 in. x 36 in.), and a poultry 

shackle to hang the chicken carcasses for imaging shown in Figure 2.1. The box was essential to 

limit any ambient light interference and for a more controlled background in the images. A 

camera stand (9.5 in. L x 7.2 in. W x 6.2 in. H) was built to keep the carcasses within the 

camera’s view once placed on the shackle. CSI-D+ was set up and placed inside the box on the 
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stand, twelve inches (30.48 cm) away from the breast of the chicken carcass hung on the shackle. 

The carcasses were placed inside the box onto the poultry shackle and images were taken using 

the RGB setting. Broiler chicken carcasses were processed and received from a USDA-inspected 

commercial poultry processing plant and brought to the Department of Poultry Science, Auburn 

University in coolers on ice. Broiler carcasses identified as sep-tox by either the USDA-FSIS 

personnel or the trained plant personnel and those deemed wholesome (normal) were received 

from the processor. The first four imaging sessions involved a total of 160 chicken carcasses with 

an average of forty chicken carcasses per session (Table 2.1).  The next six sessions (5-10) 

contained 395 chicken carcasses with approximately thirty carcasses per session, (Table 2.1). A 

total of 790 images were captured with a resolution of 1024 x 768 pixels. The last two sessions 

(11-12) were performed at the poultry processing plant where only carcasses deemed 

systemically diseased with sep-tox from processing plant workers were photographed. The 

ambient light free box was transported to the processing plant and used for imaging. In total, 111 

birds that were deemed to have sep-tox were collected, resulting in 222 images captured with 

two exposure times, 230ms and 270ms, and a resolution of 1024 x 768 pixels. Images were 

uploaded onto a computer and used for further analysis on Google Collaboration, Azure Custom 

Vision, and R Studio for image classification. 
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Figure 2.1. Experimental design of camera set up to remove ambient light. 

 

Table 2.1. Summary of sessions displaying the number of carcasses and carcass images taken 

with camera parameters listed in Table 2.2. 

Carcass Sessions and Parameters 

Session No. Septox no. Normal no. Images Taken Camera Parameters used 

1 24 24 96 A 

2 10 23 66 A 

3 20 20 80 A 

4 20 19 78 A 

5 21 16 74 B 

6 20 16 72 B 

7 20 18 76 B 

8 68 50 236 B 

9 33 50 166 B 

10 33 50 166 B 

11 64 0 128 B 

12 47 0 94 B 

 

 

Multispectral Imaging System. 

 The optical imaging system called Contamination, Sanitation, Inspection, and 

Disinfection (CSI-D+) system (SafetySpect, Grand Forks, ND) was used for the study. This 
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system was controlled by a wireless connection to a tablet placed within 20-30 ft of the camera. 

The displayed screen gives three modes to work the system where either a still image, video, or 

view finder mode can be exhibited and recorded on the desired connected device. For this 

experiment still images were selected. Light Detection and Ranging (LIDAR) was used for 

measuring the distance between the CSI-D+ device and the surface that was being examined to 

determine the proximity of the chicken carcass to the camera. Two of the RGB channels were 

adjusted while fluorescence was in use. The LED light on the camera induced fluorescence and 

was intentionally activated. The LED light was a combination of UV-A and UV-B light and was 

set at 405nm when the RGB settings were used in this experiment. Two different sets of camera 

parameters were used in this study in Table 2.2. The first four imaging sessions (sessions 1-4) 

utilized camera setting A (Table 2.2) Exposure times were set at 175 and 350 ms. Gain was set at 

1296 mB and brightness was set at 11. Saturation was set to 166 and gamma settings were placed 

at 145. The red balance was set to 4741 while the blue balance was set to 0. Due to 

oversaturation of images taken with setting A, camera parameters were adjusted for the 

remaining sessions (5-12) and are labeled as setting B (Table 2.2). For setting B’s parameters, the 

exposure times were at 230 and 270 ms. Gain was set to 1000 mB and the brightness was 

reduced to 3. The saturation decreased to 45 and hue was set to 0. The gamma was set to 80 

while both red and blue balance were set to 4000. Images produced were 1024 x 768 pixels in 

size and were saved as either .jpg or .tiff on the tablet. 

 

Image Classification. 

 Google Collaboration. All of the images were applied to a CNN model using Google 

Collaboration. An image analysis model was created using platform CUDA 11.2 and Pytorch 
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machine learning framework with three ConvNet layers. Adam Optimizer (learning rate= 0.001, 

weight decay= 0.0001) was used with cross entropy loss function for training of model with fifty 

epochs which was changed as needed. Three major steps occurred while working the CNN 

model: picture collection, model configuration, and validation. In the first step, the images were 

uploaded and placed into separate folders for normal and sep-tox carcasses. The next step was 

model configuration where the CNN model used iterative training to improve its identification 

accuracy (Wang et al., 2020). Seventy percent of the pictures that were uploaded were used for 

the training model and these images were classified as either normal or sep-tox. The pictures 

were augmented by resizing to 150 x 150 pixels, rotated randomly, and flipped vertically and 

horizontally after classification occurred. After being augmented, for the third step, a test model 

was run using 20% of the remaining images to produce the best model or epoch for a validation 

test to ensure the model was accurate. The model was trained by the number of epochs, or 

iterations, that were selected by the user. The best model was selected through highest percent 

accuracy and tensor, which was used in the last decisive step and named the best test model. The 

last step was the validation step where the best test model was run against an unidentified folder 

of the remaining images that were not used in the training set. The CNN model used the final 

10% of images from a folder that had no identity specification of normal birds or sep-tox birds 

described and used the best selected test model created from the testing model. This validation 

model sorted the remaining images at random into their correct classification. When the 

validation model was run, the convolution neural network model displayed the categories in 

which they were classified. After prediction performance, a data frame was created to calculate 

the class probabilities and percentages to display where each image was classified. 
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Custom Vision AI. The images were classified using a second method, Custom Vision AI, 

which is a supervised image classification system. This system was used to help train a custom 

multi-class image classification using machine learning techniques in real-time through a CNN 

algorithm for the normal carcass and sep-tox images. Images from sessions 5-12 only were 

uploaded in appropriate folders and trained. After training, a performance was run on the images 

for accuracy of classification. This system scales the probability threshold and depicts the 

precision, recall, and accuracy percentage (AP). The precision measures the percentage of the 

model selected on how accurate it will predict images to their respective tags. The recall shows 

all tag outcomes and the correct predictability percentage the model correctly places each image 

within these tags and the AP is the measure of the model performance which outlines the 

precision and recall at different thresholds and is shown through percentage accuracy. After 

training has occurred, there is a probability threshold used at 50 and 85 percent. After the model 

was trained, images were tested with the trained model and the percentage probability for the 

images was classified under each tag. 

RStudio. The third machine learning program used in this experiment was unsupervised 

learning using RStudio version 2.1.4. A code was generated using the Artificial Intelligence 

Machine-Learning (AI-ML) ChatGPT 3.5 (OpenAI, San Francisco, CA) to separate and evaluate 

the familiarity or differences between the carcasses deemed septicemia-toxemia by using k-

means clustering and principal components. The images used for RStudio were the sep-tox 

images from sessions 5-12. Libraries, described below, were downloaded and used to help 

evaluate the images and separate them into clusters. To create the scatterplot, “ggplot2” was 

added to the system’s library. The library “jpeg” used either name of the file (jpg, jpeg) to read 

from a raw vector representing the JPEG file content that was used in the selected folder. All 
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images were converted to their respectable files so cluster formation could use all images. The 

library “cluster” was used to help sort each image uploaded into the database and placed into 

respective groups through similarities between the images. To help develop the clusters that were 

picked for the R code used, principal component analysis was performed for an unsupervised 

analysis of the linear components of each image to better visualize the small variables that were 

present within the dataset without any associated Y component (Boehmke, 2018). Before getting 

the principal components, the images were extracted, nulled, standardized, and an analysis was 

run to determine the principal component analysis. After all image features were selected, the 

type of image was described in the codes using “.jpg” and “.jpeg” that was recognized as a 

regular expression pattern for files that end in either “.jpg” and “.jpeg” and were matched 

together for selection of files. An image file was created on R to extract features or values from 

all images placed inside the image directory for image analysis. A matrix file was created for the 

features to help remove any duplicate features that were stored. The data collected in the matrix 

was standardized for clustering by organizing the image matrices in order. The scaled matrix 

consisted of 612 images with 50 vectors. With the surplus of vectors produced, the first two 

vectors were only used for clustering. A total of three clusters were chosen for differentiation of 

levels of sep-tox with k-means clustering. A file was made to help extract features from the 

images that included any null or undefined values. The null values were removed from the image 

features file and the image file. With the null values discarded, the data were standardized, and k-

means clustering was performed again for a more accurate demonstration of variation between 

septicemia-toxemia in the images that were collected. The cluster assignments created were 

reintroduced to the original data where a bar plot was created to show variation in sep-tox 

carcasses where k-means clustering was implemented. Principal components analysis (PCA) was 
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performed on the scaled matrix data. The first two main components were used with the cluster 

assigned groups to create a scatterplot for the images. The standard deviation for the first 

principal component was 15.07 and the second principal component’s standard deviation was 

12.61. These two principal components and the clustered data collected earlier were collectively 

added to the original data to compute a desired scatterplot. 

 

 

Table 2.2. CSI-D+ camera parameters utilized for all sessions, where the settings for sessions 1-4 

are recognized as A, and the reframed parameters in sessions 5-12 are recognized as B. 

 

Results and Discussion 

 

The first camera settings (A) resulted in a total of 160 carcasses, sep-tox (n=74) and 

normal (n=86), being used over four sessions of image capturing (Table 2.1). Images from 

sessions 5-12 (B) were run with the CNN supervised learning models with 306 sep-tox and 200 

normal carcasses resulting in 506 total. 

Sessions 1-4. The sep-tox carcasses appeared red in the images while the normal carcasses were 

yellow in appearance with the initial settings used and are shown in Figure 2.2. These images 

were cropped to remove the excess background. Carcass images were classified with the CNN 

Google Collaboration resulting in 98% accuracy for the training and testing models, while 

Camera Parameters Sessions 1-4 (A) Sessions 5-12 (B) 

LED 405nm 405nm 

Exposure 175ms; 350ms 230ms; 270ms 

Gain 1296mB 1000mB 

Brightness 11 3 

Saturation 166 45 

Hue -1165 0 

Gamma 145 80 

Red Balance 4741 4000 

Blue Balance 0 4000 
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resulting in 100% accuracy for the validation model. With the camera settings used (A), there 

was an excessive amount of saturation on the carcasses photographed. After reviewing the 

images, new camera setting parameters were set to create more efficient images for classification 

(Table 2.2, B). The images from sessions 1-4 were not used for further analysis and were 

removed from the data set. 

 

     
(a)   (b)     (c)   (d) 

 

Figure 2.2. Spectral images of sep-tox and normal carcasses taken at exposure times of 175 ms 

(a-b) and 350 ms (c-d) at initial setting A used for sessions 1-4, showing oversaturation. 

 

Sessions 5-10. Subsequent sessions 5-10 were conducted with 506 chicken carcasses over six 

sessions, where 306 septox birds and 200 normal chicken carcasses were photographed resulting 

in 1,012 images taken. There was a visible difference between the sep-tox carcass and normal 

carcass in the images shown in Figure 2.3. The normal carcasses appeared pale with some white 

reflectance on the breast area. The sep-tox carcasses were red in appearance and only displayed 

reflectance from missed cuticle skin due to processing. The configured CNN model 

demonstrated 100% accuracy in training, testing, and validation results. A heat map was created 

upon classification showing that 52% of images were placed into the normal class and 48% of 



 49 

images were placed into the sep-tox class (Figure 2.4). The individual classification heatmap 

shows that all images in the testing model were placed 100% into their correct classification. 

 

    
         (a)             (b)             (c)             (d) 

 

Figure 2.3. Spectral images of sep-tox and normal carcasses taken at exposure times of 230 ms 

(a-b) and 270 ms (c-d) with updated camera parameters B, sessions 5-12, for grey-scale imaging. 

 

 

 
Figure 2.4. Heatmap for overall classification of sep-tox and normal carcass images from 

sessions 5-12. 

 

Microsoft Custom Vision is a supervised learning machine that determined at a threshold 

of 50%, the precision, recall, and accuracy percentage and was able to classify all images at 
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100% accuracy. To get a better understanding in the accuracy of this system, the threshold was 

placed at 85%, where the precision was 100%, recall was 96.6%, and the AP was 100% for 

overall classification (Table 2.3). The recall had a 96.7% accuracy of proper classification for 

sep-tox and a 96.3% for normal carcasses in their respective classes. Four images from the sep-

tox class and three images from normal class did not meet the 85% threshold probability 

prediction for recall. This image classification system was able to accurately identify all images 

in their respective tags, “Septox” and “Normal” though the probability scores in recall did not 

predict that in the 85% threshold. Providing aide for the processing plant workers and USDA 

inspectors with their task of identifying sep-tox birds can be beneficial with this camera used in 

the poultry processing plants for assisting with inspection of carcass condemnations such as 

septicemia-toxemia. 

 

Table 2.3. Microsoft Custom Vision classification accuracies of sep-tox and normal images at 

50% and 85% thresholds displaying performance percentages per class for precision, recall, and 

accuracy percentage. 

Custom Vision Sep-tox Classification Performance Results 

 Threshold (%) Precision (%) Recall (%) AP1 (%) 

Septox 50 100 100 100 

Normal 50 100 100 100 

Septox 85 100 96.7 100 

Normal 85 100 96.3 100 
1Accuracy Percentage 

 

RStudio Classification. R-Studio was designed to configure a scatterplot using k-means 

clustering with principal components. Using this unsupervised learning algorithm, RStudio was 

given only sep-tox images to distinguish if there were significant differences that could be 

established and help categorize levels of birds that were deemed with this carcass condemnation. 
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In Figure 2.5, the different clusters are displayed. Cluster 1 had the most images with 252 

images, Cluster 2 had 146 images, and cluster 3 had 214 images totaling to 612 images. The 

scatterplot shown in Figure 2.6 displays the different variations of the cluster sizes. The clusters 

were very close in proximity, causing an overlap between each cluster. Cluster 1 had the most 

overlap with Cluster 3 where both clusters contained more images than Cluster 2. Cluster 1 and 

Cluster 2 had very minimal overlap. Although Cluster 2 and Cluster 3 had some overlap, the 

overlap was minimal when comparing Cluster 1 and Cluster 3. To get a better concept of each 

cluster, images from each cluster were selected to see a comparison (Figure 2.7). Cluster 1 and 

Cluster 3 had the most crossover due to the similarity in appearance. Images from Cluster 1 had 

the palest skin on the breast when compared to the other clusters. The breast frame size in the 

images appeared longer and skinnier in size creating an almond-like or “v-like” shape in Cluster 

1 being a distinct difference between the other two clusters. As for Cluster 3, the chicken 

carcasses were paler in color but had more red tone to them on the breast and leg section. The 

images examined in Cluster 2 had the reddest tone in appearance while the breast size of these 

birds was similar to Cluster 3, being wider in stature. These different clusters showed variations 

of color, breast size, and shape of birds that are recognized as sep-tox. By identifying variations 

of sep-tox, this data can be used to evaluate correlations between bird health and resulting 

septicemia-toxemia at processing within a flock to better predict future flock needs. 
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Figure 2.5. Bar graph of sep-tox bird images. 

 

 

 

 

 

 
Figure 2.6. Scatterplot of sep-tox bird images. 
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                 (a)       (b)         (c) 

Figure 2.7. Sep-tox images from Cluster 1 (a), Cluster 2 (b), and Cluster 3 (c) displaying the 

differences observed in each cluster. 

 

 

Detection of unwholesome birds using spectroscopy is a method that has been used for 

almost two decades and has been improved over time by examining whole chicken carcasses for 

viscera inspection (Chao et al., 1999; Kim et al., 2006). Kim et al. (2006) used fluorescence 

spectroscopy to determine the characteristic properties of wholesome chicken and chicken 

visually identified as diseased with air sacculitis, sep-tox, and cadavers by the on-site USDA-

FSIS veterinarian. This method used a spectrofluorometer with interactance and reflectance 

spectra fluorescing the skin of processed birds from their breast for measurement to observe the 

potential of applying spectroscopy on processing lines for classification of condemned and 

normal carcasses on intact epidermal skin layers (Kim et al., 2006). To observe these readings 

when interactance spectra was used, the spectrofluorometer had direct contact with the breast of 

the chicken carcass. The readings were given by the observation of excitation and emission 

wavelengths on a matrix compared to an image source produced by the CSI-D+ system. Results 

concluded in a 97.1% and 94.8% classification between wholesome and unwholesome carcasses. 

In comparison to the CSI-D+, the spectrofluorometer had direct contact with the carcasses was 
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required to spot the differences between normal and sep-tox carcasses. Whereas the CSI-D+ did 

not require direct contact with carcasses for production purposes. 

A study using color image classification with a hyperspectral-multispectral line-scan 

imaging system has been researched for poultry carcass inspection during processing for 

separating carcasses into unwholesome and wholesome (Chao et al., 2007). Chao et al. (2007) 

used a suitable region of interest (ROI) on the chicken images where specific wavelengths were 

required for the classification of infectious birds to assist in configuring 400 masked line-scan 

images into a hyperspectral image cube of a whole chicken carcass. This allowed the carcass to 

be examined from any angle to determine if there were any factors that could lead to 

condemnation located on the carcass. The researchers also detected various oxidative forms of 

myoglobin, oxymyoglobin, deoxymyoglobin, and metmyoglobin and used them to differentiate 

between wholesome and diseased birds. This fuzzy method gave a combined classification 

accuracy of 96% for birds that are deemed systemically diseased (Chao et al., 2007). This study 

successfully identified wholesome and systemically diseased birds at 100% accuracy at a 40% 

threshold. When the threshold was increased, the unwholesome carcasses were recognized for 

rejection but 11% of wholesome carcasses were misclassified for rejection. This study was not 

able to increase the threshold with 100% accuracy for both classes above 40% compared to the 

current study where thresholds were held at 50% and 85% without misclassification. Chao et al. 

(2007) used 55 channels and provided 400 line scan images for completion of a full carcass 

image. The current study also is ideal for image classification with only using three wavelengths 

and one image to capture the full carcass in the image. 

Overall, spectral imaging was demonstrated to have accurate classification for processed 

chicken carcasses as wholesome or unwholesome.  
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Conclusion 

 

Having a technical approach to help with the detection and identification of septicemia-

toxemia chicken carcasses was concluded to be successful. Through experimentation, images 

were able to produce good results with over 95 percent accuracy. However, the first experiment 

images, sessions 1-4, were too saturated resulting in an image not as clear as expected. With the 

revision of images and modified camera parameters, clearer images and little to no saturation in 

the images was achieved. With promising results from the deep learning analytic algorithms, the 

CSI-D+ camera has potential to help with aiding in the detection of septicemia-toxemia chicken 

carcasses in processing plants. A limitation of this study is the data extraction from the images to 

gain intensity values to help predict the differences of carcasses and the need to have a better 

understanding of set wavelengths used to help identify unwholesome carcasses with the system. 

Knowing the intensity values from the breast of the chicken carcasses will help determine the 

variation of birds deemed sep-tox to be more reliable on the principal components demonstrated 

in RStudio. Although clusters were able to be formed, the clusters were close in proximity. 

Providing more discernable values will provide a better idea of the severity of sep-tox within 

these birds. Both CNN models were able to classify all images at 100% accuracy. Using the CSI-

D+ system allowed examination of whole chicken carcasses without probing the breast to show 

differences in wholesome and sep-tox carcasses. The camera is currently handheld, so testing on 

processing plant lines for real-world evaluation will give more accurate results on how effective 

the CSI-D+ system could be within a commercial broiler processing facility. Implementing an 

inspection station for stationary use could improve accuracy and help reduce the workload in the 

processing plants for trained plant workers who are required to remove condemned birds off the 



 56 

processing line. Organizing an autonomous system with this easy-to-use and rapid system to 

differentiate sep-tox birds from normal birds would be beneficial for the NPIS program for real-

world applications. With the identification of differences in sep-tox birds through PCA analysis, 

a model can be configured to distinguish the potential health correlation for each flock.  



 57 

REFERENCES 

 

Boehmke, B. 2018. Principal Components Analysis. Principal Components Analysis · UC 

Business Analytics R Programming Guide. https://uc-r.github.io/pca. 

 

Chao, K. 2010. Online inspection. Handbook of Poultry Science and Technology:683–701. 

((Chao, K. 2010. “Online Inspection.” In I. G. Legarreta and Y. H. Hui, edited by. 

Handbook of Poultry Science and Technology (Vol. 1). NJ, USA: Primary Processing. John 

Wiley & Sons; 683–701.)) 

 

Chao, K., Y. R. Chen, and D. E. Chan. 2004. A Spectroscopic System for High-Speed Inspection 

of Poultry Carcasses. Applied Engineering in Agriculture, 20:683–690. 

 

Chao, K., C.-C. Yang, M.S. Kim, and D.E. Chan. 2008. High Throughput Spectral Imaging 

System for Wholesomeness Inspection of Chicken. Applied Engineering in Agriculture, 

24:475–485. 

 

Chao, K., C. C. Yang, Y. R. Chen, M. S. Kim, and D. E. Chan. 2007. Hyperspectral-Multispectral 

Line-Scan Imaging System for Automated Poultry Carcass Inspection Applications for 

Food Safety. Poultry Science 86:2450–2460. 

 

Chao, K., Y.R. Chen, H. Early, and B. Park. 1999. Color Image Classification Systems for 

Poultry Viscera Inspection. Applied Engineering in Agriculture, 15:363–369. 

 

Corporation, NCC. 2024. Light Detection and Ranging (LIDAR). Light Detection and Ranging 

(LiDAR) System Design Available at https://www.newport.com/n/lidar. 

 

Dey, B.P., Y.R. Chen, C. Hsieh, and D.E. Chan. 2003. Detection of Septicemia in Chicken Livers 

by Spectroscopy. Poultry Science, 82:199–206.  

 

Kim, M. S., Y. R. Chen, S. Kang, I. Kim, A. M. Lefcourt, and M. Kim. 2006. Fluorescence 

Characteristics of Wholesome and Unwholesome Chicken Carcasses. Applied 

Spectroscopy, 60(10):1210–1216. https://doi.org/10.1366/000370206778664644. 

 

Organisation for Economic Co-operation and Development (OECD). 2017. Meat consumption. 

OECD iLibrary. https://www.oecd-ilibrary.org/agriculture-and-food/meat-

consumption/indicator/english_fa290fd0-en. 

Sueker, M., K. Stromsodt, H. T. Gorji, F. Vasefi, N. Khan, T. Schmit, R. Varma, N. Mackinnon, 

S. Sokolov, A. Akhbardeh, B. Liang, J. Qin, D. E. Chan, I. Baek, M. S. Kim, and K. 

Tavakolian. 2021. Handheld Multispectral Fluorescence Imaging System to Detect and 

Disinfect Surface Contamination. Sensors 21:7222.  

Super, T. 2018, July 24. Survey Shows Us Chicken Consumption Remains Strong. National 

Chicken Council. Retrieved November 24, 2021, from 

https://uc-r.github.io/pca
https://doi.org/10.1366/000370206778664644
https://www.oecd-ilibrary.org/agriculture-and-food/meat-consumption/indicator/english_fa290fd0-en
https://www.oecd-ilibrary.org/agriculture-and-food/meat-consumption/indicator/english_fa290fd0-en


 58 

https://www.nationalchickencouncil.org/survey-shows-us-chicken-consumption-remains-

strong/. 

 

United States Department of Agriculture National Agricultural Statistics Service (USDA-NASS). 

2024. USDA Economics, Statistics and Market Information System. Available at 

https://usda.library.cornell.edu/.  

United States Department of Agriculture Food Safety and Inspection Service (USDA-FSIS). 

2021. Food Safety and Inspection Service. FSIS Stabilization Guideline for Meat and 

Poultry Products (Revised Appendix B) | Food Safety and Inspection Service Available at 

https://www.fsis.usda.gov/guidelines/2021-0013.  

United States Department of Agriculture Food Safety and Inspection Service (USDA-FSIS). 

2014. “Compliance Guideline for Training Establishment Carcass Sorters in the New 

Poultry Inspection System (NPIS).” FSIS-GD-2014-

0013. https://www.fsis.usda.gov/guidelines/2014-0013. 

United States Department of Agriculture Food Safety and Inspection Service (USDA-FSIS). 

2022. Broiler Chicken Industry Key Facts 2021. National Chicken Council, Available at 

https://www.nationalchickencouncil.org/about-the-industry/statistics/broiler-chicken-

industry-key-facts/. 

Wang, D., F. Tian, S.X.Yang, Z. Zhu, D. Jiang, and B. Cai. 2020. Improved Deep CNN with 

Parameter Initialization for Data Analysis of Near-Infrared Spectroscopy Sensors. Sensors, 

20:874. 
 

  

https://www.nationalchickencouncil.org/survey-shows-us-chicken-consumption-remains-strong/
https://www.nationalchickencouncil.org/survey-shows-us-chicken-consumption-remains-strong/
https://www.fsis.usda.gov/guidelines/2014-0013


 59 

CHAPTER III.  

 

Application of Fluorescence Imaging on Chicken Carcasses for the Detection of Visible and Invisible 

Fecal Contaminations 
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Abstract 

The USDA-FSIS implements a zero visible fecal tolerance policy on WOGs entering into the 

chiller in efforts to enhance food safety. With the introduction of the New Poultry Inspection 

System, plant personnel undergo training to identify carcass condemnations, including fecal 

contamination. A study was conducted to assess the efficacy of spectral imaging technology in 

detecting visible fecal matter, aiming to enhance automation in processing plants. Additionally, 

the investigation explored the capability of the imaging system to identify fecal contamination 

even after WOGs undergo reworking (washing), highlighting the potential risk of invisible (to 

the human eye) fecal matter as a source of Salmonella contamination. Eviscerated broiler 

carcasses (weighing 8-10lbs live weight) were collected from a processing plant. Fecal 

contamination from the ceca (~100g) was collected and inoculated with an 18-hour Salmonella 

Typhimurium culture, which was then applied to the breast skin of the chicken carcasses for 

examination. Inoculated carcasses (n=100) were suspended by shackle in a light-free enclosure 

and scanned using a handheld spectral imaging system. Images were captured before inoculation, 

after inoculation, and after spraying the fecal-contaminated area of the carcasses with water. 

Subsequent image analysis was conducted using Microsoft Custom Vision. Carcasses were 

swabbed after each imaging session and subjected to a 24-hour incubation in Brain Heart 

Infusion (BHI) broth for BioMerieux GeneUp Salmonella PCR assay testing. The imaging 

revealed that fecal contamination could indeed be identified using the spectral camera. 

Furthermore, image analysis indicated the presence of fecal remnants, invisible to the human 

eye, on the WOGs. Salmonella analysis of all 100 WOGs prior to fecal contamination yielded 

negative results for the pathogen. However, Salmonella was detected in those areas following the 

reworking of the carcasses to eliminate fecal matter. Custom Vision classification results 

demonstrated 100% precision and 83.3% recall, resulting in a 99.4% accuracy rate. The findings 
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of fecal matter invisible to the human eye underscores the necessity to enhance reworking 

procedures and develop improved protocols for thoroughly eliminating all traces of fecal 

contamination to lower food safety risks. 

 

Introduction 

 With over 9 billion broiler chickens being produced yearly in the United States, the 

poultry industry is the largest meat producing industry in the world. The poultry industry has 

grown tremendously in the United States the last 40 years, with broiler chicken consumption 

doubling from 48.8 pounds in 1984 and now reaching 98.9 pounds of broiler chicken being 

consumed per capita in 2022 (NCC Admin & USDA, 2022). Satisfying the rising demand 

necessitates an increase in poultry production, with equal importance given to ensure poultry 

meat safety at different stages of poultry meat production including processing plants. One of the 

traditional food safety steps in poultry processing plants is the inspection of poultry carcasses for 

carcass wholesomeness implemented under the Poultry Product Inspection Act of 1957. Further, 

the introduction of the voluntary New Poultry Inspection System (NPIS) in 2014 allowed trained 

plant personnel to inspect carcasses and allowing USDA-FSIS to focus on food safety activities 

(Chowdhury and Morey, 2020). The inspection involves U.S. Department of Agriculture-Food 

Safety and Inspection Service (USDA-FSIS) inspectors or trained plant personnel to be placed 

on the processing line to investigate carcasses and viscera visually and physically for factors 

such as fecal contamination, diseases, or defects. The presence of fecal matter increases 

Salmonella and Campylobacter food safety risks of raw poultry and hence it is important that 

carcasses with fecal contamination be accurately detected and reworked. However, visual 

inspection and detection of fecal contamination on fast moving poultry processing lines allows 

an inspection time of 35 birds per minute (Dey et al., 2003; Yoon et al., 2011). Such high speeds 
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may introduce human error in detecting fecal contamination and increase food safety risks of raw 

poultry. It is imperative that rapid technologies to detect fecal matter on carcasses should be 

evaluated to reduce the spread of contamination and improve food safety.  

With the use of an automated system that can target carcass condemnations and reduce 

repetitive work actions during inspection would be beneficial to the industry’s inspection system. 

In recent decades, spectral imaging has become more prominent in the industry, proving 

itself to be beneficial for inspection purposes. Chen and Massie (1993) utilized a visible/near-

infrared reflectance spectroscopy system to identify unwholesome birds that were either had sep-

tox conditions or cadavers deemed by veterinarians. Park et al. (2005) observed cecal 

contaminants using spectral imaging on broiler carcasses in the visceral cavity with a 

classification accuracy ranging from 75.9% to 96.69%. A constant issue for the algorithms was 

the missed contaminants or false positives depending on the median filter that was applied at 

each set threshold value. Other limitations to this study were only cecal material was used 

without the addition of other contaminants that could be present during processing and half birds 

were used, whereas, in processing plants, whole birds are evaluated for contamination. Fecal 

contamination is not only a problem for consumed products but can also be found on equipment 

surface which creates an unclean environment for processing plants. Organic material and fecal 

contamination primarily remain on processing equipment during processing. 

Scientists have observed processing equipment with fecal matter and ingesta 

contamination using reflectance and interactance light to detect organic residues and ingesta 

based off of intensity changes based on different wavelengths on stainless steel (Park et al., 2005; 

Qin et al., 2011). Fluorescence light is a highly sensitive method, capable of detecting even the 

most subtle changes in biological material such as animal tissues (Qin et al., 2011). Fluorescence 
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light detection measures the light being emitted from the biological samples excited by high-

intensity UV-B or narrowband light (Qin et al., 2011). On the other hand, LED lights have an 

advantage compared to other lights due to their longevity, low heat, response time, and 

consumption of power source. A study was conducted using fluorescence techniques to assist 

with safety inspection using light emitting diode (LED) excitation line-scanning imaging system 

on stainless steel to detect chicken fat, blood, and fecal matter (Qin et al., 2011). Principal 

components analysis (PCA), an unsupervised data analysis method, was used for data analysis 

models for classification and identify key wavelengths. The researchers found that excitation 

wavelength for fecal matter, fat and blood were 580 nm, 570-610 nm and 618 nm, respectively 

and formed distinct groups on PCA plots. Among the fecal sources of fecal matter, cecal matter 

had a distinct spectra and a group while the other sources (duodenum, colon, and small intestine) 

were difficult to distinguish from each other, resulting in a larger group for these three feces. Seo 

and team (2019) used a multispectral line-scan imaging system to identify fecal contaminants 

from the ceca, duodenum, colon, and small intestine at different line speeds (1, 3 and 5 bird per 

second birds per second). UV lamps were used in addition to the spectral camera for 

fluorescence. The imaging technology had a 97.5% accuracy for the detection and isolation of 

the fecal spots for different processing speeds indicating its potential application in a high-speed 

poultry processing environment (Seo et al., 2019).  

A previous study addressed fecal contamination on meat carcasses using a handheld 

fluorescence imaging system that includes UV settings. Gorji et al. (2022) used raw skinned 

cattle and sheep carcasses for video recording with, and later without, guidance from a meat 

inspector for further review of the meat carcasses. In this study, video frames with fecal 

contamination on meat surfaces and identified segmented areas were evaluated to produce 
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successful classification of clean and unclean carcass images with the CSI-D system. Gorji et al. 

(2022) emphasized a need to overcome oversaturation from bright ambient light concerns when 

fluorescence imaging is used. With the CSI-D system, Gorji et al. (2022) successfully mitigated 

concerns with difficult visual inspections on meat carcasses in meat processing plants. This 

handheld system being implemented in processing plants can be the assistance meat processing 

plants need for the reduction of contaminated samples limiting the spread of foodborne 

pathogens to consumers. 

The current study used a hand-held, multispectral fluorescence system with the following 

objectives: 

(1) Distinguish differences between fecal contaminants from four regions of the 

gastrointestinal tract.  

(2) Detect fecal contamination invisible to the naked eye and establish the presence or 

absence of Salmonella after rinsing. 

Materials and Methods 

Multispectral Imaging System. 

The optical imaging system called Contamination, Sanitation, Inspection, and Disinfection (CSI-

D+) system (SafetySpect, Grand Forks, ND) was used for the study. The multispectral RGB 

images were captured through fluorescence of the camera to illuminate contamination sights on 

the chicken carcasses. This system was controlled through a wireless connection to a tablet 

placed within 6 feet of the camera taking still images in .png format at 1024 x 768 pixels where 

camera parameters that were set are shown in table 3.1. Light Detection and Ranging (LIDAR) 

was used for measuring the distance between the CSI-D+ device and the carcass surface that was 

being examined. The LED light cannot be altered and was set at 405nm. Exposure exposed the 
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photo-sensitive cells to light at 230 and 270 (ms). Gain controlled noise levels in background of 

images activity set at 1,000 mB,  Brightness set at 3 added whiteness to images. Saturation set at 

45 created monochrome images. Hue was set at 0  and gamma set at 80. The red and blue 

balance (RB balance) were both set to 4,000. 

Table 3.1. Settings used for CSI-D+ imaging system to fluoresce in ambient light-free 

conditions. 

Camera Settings 

LED 

(nm) 

Exposure 

(ms) 
Gain (mB) Brightness Saturation Hue Gamma 

Red 

Balance 

Blue 

Balance 

405 230; 270 1000mB 3 45 0 80 4000 4000 

 

Detection of fecal matter from different regions of the GI tract. 

Freshly slaughtered and chilled whole chicken without giblets (WOGs) weighing 8-10lbs. 

live weight and gastrointestinal (GI) tracts were collected from a local USDA-inspected 

commercial poultry processing plant and transported to the department of Poultry Science at 

Auburn University under refrigeration conditions (4 ºC). The GI tracts were examined for 

abnormalities and dissected to retrieve the fecal contaminants used in this experiment. Fecal 

matter and digesta (20-25 g each) were collected from the proventriculus, small intestine, large 

intestine, and ceca. A polypropylene stamp (0.8 cm and 2.5 cm dia) was used to inoculate the 

contaminants on the breast skin of WOG. The stamp created a small and large sized application 

point for imaging. Samples were photographed using the multispectral CSI-D+ system in an 

ambient-light free box placed 12 inches (30.48cm) away from the chicken carcass that is hung by 

a processing plant shackle for a more controlled background setting in this study. Each 

contaminant with small and large applications points were placed on a different carcass to not 

interfere with fluorescence. This process was reproduced for six sessions that produced 50 
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images on average of each contaminant for every exposure time and application size. A total of 

404 birds were used with 1,614 images composed. 

Detection of fecal contamination invisible to the naked eye and occurrence of Salmonella. 

In a separate experiment, post-chill chicken WOGs and GI tracts were collected as stated 

above. Cecal matter from the ceca (100 g) was collected and inoculated with an 18-hour grown 

culture of Salmonella Typhimurium (35µg nalidixic acid resistant) to obtain a final concentration 

of 105 CFU/g which was plated out using the selective media, Xylose Lysine Deoxycholate 

(XLD) agar, for validation. Prior to the inoculating cecal matter, each WOG was imaged twice 

using the CSI-D+ at 230 and 270 ms exposure (Table 3.1) to ensure absence of fecal 

contamination. After imaging, the carcass was removed and swabbed with a sterile foam swab tip 

(2.5 x 2.5 cm) on the crown of the skin-on breast (region of interest; ROI) and placed into 9mL 

Brain Heart Infusion (BHI) broth to be analyzed using the GeneUp® PCR-based procedure 

(described below) for presence of Salmonella spp.  

Further, the polypropylene rubber stamp (2.5 cm dia.) was used to inoculate the 

Salmonella contaminated cecal remnants on the ROI and then placed into the box for imaging. 

After imaging with inoculation, the ROI was swabbed again and later analyzed using the 

procedure described below. To mimic processing plant methods, the inoculated WOGs were 

sprayed with deionized water (DI) water using a water bottle to remove visible contamination 

with 50 sprays and images were taken as per the standard protocol followed by swabbing of the 

ROI. A total of 100 chicken carcasses over five trials were used producing 600 images (3 images 

per carcass x two exposure times) and 300 swabs were incubated for PCR assay testing for 

laboratory settings.  
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In-plant validation of the CSI-D+ and presence of Salmonella. 

An additional three sessions were conducted where equipment was taken and set up at the 

commercial processing plant and utilized in a similar fashion as the laboratory setting. 

Eviscerated carcasses spotted with fecal contamination by trained plant workers and were 

removed from the processing line for fluorescent imaging (CSI-D+). Contaminated carcasses 

were rinsed off with an antimicrobial agent by the trained worker and imaged again. Each 

contaminated carcass was swabbed before and after rinsing for further analysis of Salmonella 

presence using the GeneUp PCR Assay. A total of 57 carcasses were collected from these 

sessions resulting in 225 images taken and 114 swab samples for prevalence. 

PCR Assay. 

In total, 414 swabbed samples, from the laboratory and in-plant studies, were analyzed 

for the presence of Salmonella spp. Swabs from each sampling in BHI broth test tubes were 

enriched at 37ºC for 24h and further analyzed on BioMerieux (MO) GeneUp PCR Assay for the 

probable presence or absence of Salmonella spp. (bioMerieux, 2020). Additionally, a positive 

and negative control were prepared for testing. The transferring of twenty microliters (µL) of the 

incubated samples were pipetted into lysis tubes. The lysis tube plate was vortex for five minutes 

at 2200 rpm. Lysed samples are removed and prepared for transfer to PCR tubes. The lysed 

samples were pipetted 10 µl into Salmonella PCR assay tubes and spun down for ten seconds to 

remove any excess liquid from the optical caps. PCR tubes are placed into the GeneUp and ran 

for analysis. GeneUp analysis was ran for less than an hour to produce presumptive positive or 

negative samples of Salmonella. 
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Image Classification. 

Google Collaboration Convolution Neural Network. Convolution neural network 

(CNN) deep-learning model was utilized in this study. Derived from the Artificial Neural 

Network (ANN) system, the CNN model is employed for image classification, segmentation, and 

achieving high performance and accuracy in object recognition (Ramdani et al., 2020; 

Ristiawanto et al., 2019). Specifically, the CNN model is employed for image classification 

within a food detection system, particularly in dining environments, due to its advanced 

knowledge representation capabilities. (Ramdani et al., 2020). Image analysis was performed 

using the Convolution Neural Network (CNN) algorithm on Google Collaboratory with Adam 

Optimizer using 50 epochs at a learning rate (lr) of 0.001 and weight decay (wd) value of 0.0001. 

The process of working with the CNN model involves three main steps: image uploading and 

sorting, model configuration, and validation. Image classification of contaminant variation was 

ceca versus large intestine versus proventriculus versus small intestine after uploading images 

into their respective folders. Additionally, image augmentation techniques were applied to 

enhance the robustness of the model. Data augmentation types consisted of the following: image 

size reduction (150 L x150 W), a vertical and horizontal flip, and a random rotation. Image 

classification was performed using 70::30 ratio. The images were places in three separate folders 

where the 70% of images were used for training the model, 20% of the images were used for 

testing the model which would select the best testing model for the validation step. Subsequently, 

a validation test was conducted using a subset of images to ensure the accuracy of the model 

with the last 10% of the images. The best model was selected based on its accuracy and loss 

tensor, which was indicative of the model's classification accuracy. The best generated test 

model saved for validation which was created after 50 epochs or iterations with a lr of 0.001 and 
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wd of 0.0001. In the final validation step, the selected model was applied to an unidentified set of 

images to categorize them into their respective four different categories. An image analysis 

model was created for further image analysis using platform CUDA 11.2 and Pytorch machine 

learning framework with three ConvNet layers.  

Custom Vision. Custom Vision, leveraging the Microsoft Azure platform, was operated. 

This system utilizes machine learning techniques through a CNN algorithm to train a custom 

multi-class image classification model in real-time. Post-training, performance metrics such as 

precision, recall, and accuracy percentage are evaluated to assess the model's classification 

accuracy. The threshold for probability scoring can be adjusted to optimize the model's 

performance during image classification was set at 50%. Four different models were made for 

the two exposure times, 230 and 270 ms, and the various fecal matter sizes administered onto the 

chicken carcasses for the first objective and used both CNN algorithm platforms. The second 

objective of this study depended solely on Custom Vision for the image analysis system with 

three models created. 

 

Results and Discussion 

Fluorescence imaging.   

Fluorescence imaging using CSI-D+ was able to detect fecal contamination (Figures 3.1 

and 3.2) irrespective of the exposure times (230 and 270 ms) and the size of contaminant (0.8 

and 2.5 cm). Images of contaminants from different GI tract regions had some distinct 

differences. Digestion of the ingested feed is initiated in the proventriculus through the 

introduction of enzymes and gastric juices and then it gets digested, and the proteins are 

absorbed in the small intestine (Jacob, 2024). The ceca, two elongated pouches, interconnect the 

small and large intestines where some water absorption and fermentation occur for the digested 



 70 

feed (Jacob, 2024). Lastly, the large intestine is where final water reabsorption of the digested 

material takes place before exiting the chicken through the cloaca (Jacob, 2024). The different 

consistencies of contaminants are relative to the stages the feed is in the digestive system. Ceca 

samples had a smooth appearance with a darker tone of red and had a firm, thick consistency to it 

while small intestine samples had a deeper tone of red and a looser, chunky consistency and in 

some images was running down the chicken carcass when changing exposure times. The large 

intestine samples had a pale redness to the contaminant where the consistency was thinner when 

compared to the proventriculus samples that had a brighter red tone color with a clumpier, feed-

like consistency.  

Fecal matter from poultry, in recent studies, can possibly include blood substances such 

as myoglobin. Myoglobin is an iron ion responsible for carrying oxygen and giving meat its 

color (Courrol & Samad, 2018). An organic group found in myoglobin, called porphyrins, 

contain a subgroup, known as protoporphyrin IX, that accumulates in meat products at 

production time exhibits fluorescence (Courrol & Samad, 2018; Seo et al., 2019). Porphyrin can 

also be produced by different microorganisms at increased temperature and atmospheric 

conditions exciting at 420nm and fluorescing from 500 to 750 nm (Silva et al., 2012; Courrol & 

Samad, 2018). This protein is likely found in fecal matter giving contribution to fluorescence of 

this matter given excitation of protoporphyrin IX and chlorophyll, another constituent known for 

fluorescence, found in undigested feed material during digestion (Chao et al., 2008; Courrol & 

Samad, 2018). 

Cecal contamination was used for the second objective due to the importance it brings to 

the digestive system and health of the bird. The ceca have an important role of fermenting of 

remaining digested material for continuance of breaking down undigested material, the transport 
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for electrolytes, and water absorption for the chicken. Observations from Objective one 

indicates,  the cecal content displayed a deep red color when placed on the breast skin of the 

chicken carcass. Images taken before inoculation, showed no sign of fecal contamination upon 

receiving. The inoculated carcass successfully shown where cecal matter had been placed on the 

breast. Once the carcass was rinsed with DI water, the presence of fecal contamination could not 

be seen with the naked human eye, but a white spot emitted when fluorescence images were 

taken. This spot was apparent on every carcass that was inoculated signifying where the cecal 

matter was placed previously upon rinsing. 

             
  (a)       (b)        (c)          (d) 

 

            
  (e)      (f)       (g)        (h) 

Figure 3.1. Images of chicken carcass at with fecal matter of (a-b) ceca, (c-d) large intestine, (e-

f) proventriculus, and (g-h) small intestine with both small and large applications of rubber stamp 

at 230ms exposure. 
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(a)        (b)         (c)           (d) 

   

               
   (e)     (f)         (g)           (h) 

Figure 3.2. Images of chicken carcass at with fecal matter of (a-b) ceca, (c-d) large intestine, (e-

f) proventriculus, and (g-h) small intestine with both small and large applications of rubber stamp 

at 270ms exposure. 
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(a)          (b)         (c)     

   
      (d)         (e)        (f) 

Figure 3.3. Images of chicken carcass before inoculation of fecal matter, with inoculation of 

fecal matter, and after rinsed with deionized water at exposure times of (a-c) 230ms and (d-f) 

270ms. 

 

Classification model performance for different contaminants. 

Four models were built for classification of the different fecal contaminants and digesta 

using Google Collaboration. The classification models were carried out with an average of 200 

frames per model where inoculated carcasses were used in Table 3.2 listing the standard 

deviation and average for each exposure time and contaminant size. The model was trained with 

a 70::30 split for each model where 70% of images went to the training set, 20% for validation of 

the model, and 10% of the images used for evaluation of the model performance; these images 

were all selected at random for these folders. As shown in Table 3.2, the contaminants were able 

to be classified into their own category at various accuracy percentages. The contaminant, 
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proventriculus, had the best outcome across all four models while the large intestine sample had 

the least percentage accuracy. Proventriculus had the highest percent accuracy at 49.93% for the 

small application size at 230ms exposure. Small intestine was classified with a 47.60% accuracy 

while ceca had a 40.08% accuracy for the large application size at 270ms exposure. The 

remaining percent accuracies were relatively low. A second CNN algorithmic platform was used 

for comparison of platform performances. Custom Vision resulted in having a better percentage 

accuracy in some classifications when threshold was held at 50 in Tables 3.3 and 3.4. The large 

intestine sample was able to increase the accuracy from 0.002% to 39.10% accuracy rate when 

large application point at 270ms exposure when compared to the other platform. In other cases, 

Ceca samples reduced in classification from 40.08% to 28.20% when large application at 270ms 

exposure were compared. Overall, this system concluded better classification results when 

compared to the program on Google Collaboration. Seo (2019) performed a similar project 

comparing four contaminants on chicken carcasses. However, this research was classified by 

detection of fecal matter using color analysis where these contaminants fell on the RGB 

spectrum that ranged from 430-690nm. Classifying the fecal spots placed on the chicken 

carcasses resulted in two contaminants, from the ceca and colon, placed into the upper ROI while 

the other two, small intestine and duodenum, were placed into the bottom ROI and a skin ROI 

where no fecal matter was placed. The goal for this research was not to identify the fecal matter 

for all contaminations but to distinguish a difference between the pair of contamination spots 

placed on the carcass. Three out of the four contaminants used in Seo’s project were the same for 

the objectives of this research, however, the comparison of contaminants amongst each other 

were not a part of the objective described in their research. Complications with these models 
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involved fluorescence of feather follicles on some carcasses which led to misclassification. 

Another limitation to misclassification is the minute data set for each model program built. 

Table 3.2. Summation of percentage accuracy average and standard deviation for classification 

between fecal contaminants exposure time and contaminant size from CNN model performed in 

Google Collaboration. 

Fecal Matter Percentage Accuracy (%) Validation Results 

Application 

Size 

Exposure 

time 
Ceca Large Intestine Proventriculus Small Intestine 

Large 230 ms 17.592 ± 19.138 34.495 ± 12.755 29.893 ±  16.583 8.667 ± 7.978 

Large 270 ms 40.084 ± 43.508 0.002 ± 0.004 16.408 ± 18.025 47.596 ± 34.345 

Small 230 ms 11.431 ± 10.425 15.426 ± 4.783 49.928 ± 22.540 17.660 ± 12.570 

Small 270 ms 42.819 ± 24.097 9.826 ± 4.926 10.005 ± 6.024 24.197 ± 14.666 

 

Table 3.3. Individual percentage accuracy for classification of fecal matter contaminants sizes 

and exposure times from Azure Custom Vision displaying accuracy percentage (AP) with 

threshold. 

Fecal Matter Percentage Accuracy (%) Validation Results 

Image Type Threshold Ceca Large Intestine Proventriculus Small Intestine 

Large 230 ms 50 46.20 37.80 62.80 57.80 

Large 270 ms 50 28.20 39.10 59.10 54.00 

Small 230 ms 50 32.50 39.90 52.00 59.50 

Small 270 ms 50 37.70 28.10 53.00 33.40 

 

Table 3.4. Overall percentage accuracy for classification of fecal matter contaminants sizes and 

exposure times from Azure Custom Vision displaying precision, recall, and accuracy percentage 

(AP) with threshold. 

Fecal Matter Performance Percentage Accuracy (%) Results 

Image Type Threshold Precision Recall AP 

Large 230 ms 50 66.70 7.10 55.40 

Large 270 ms 50 50.00 2.50 41.80 

Small 230 ms 50 100.00 7.10 42.10 

Small 270 ms 50 60.00 7.50 35.90 



 76 

 

 

Classification model performance for invisible contamination. 

 The three classes were created for this data set containing 300 images per model. Two 

models were created from the different exposure times for image analysis using Custom Vision 

shown in Table 3.5. There were promising results for classification with an accuracy percentage 

of 99.40% for images taken at 230ms exposure with 50 as the threshold. Since the results at 

threshold for 50 were promising, threshold was increased to 85 for more accuracy of the 

platform. When threshold was held at 85, the rate of 99.40% accuracy was concluded with only 

one image being tagged at 62.90% probability in the right class falling below the set threshold. 

When exposure time at 270ms was analyzed, both threshold points resulted in 97.20% accuracy 

rate. An overall percentage accuracy model was created with the images taken at the plant site in 

table 10 showing precision, recall, and accuracy percentage results. The exposure times were 

combined together to determine if there was a difference in analysis when combined. The model 

showed when threshold was held at 50 and 85 a result of 97.80% accuracy rate. The prediction 

model can be an advantage to the development of automated system approaches in the poultry 

industry. 

 

Table 3.5. Percentage accuracy for classification of fecal contamination exposure times before 

inoculation, during inoculation, and rinsed samples from Azure Custom Vision displaying 

precision, recall, and accuracy percentage (AP) at two thresholds. 

Custom Vision Prediction Percentage Accuracy (%) Results 

Exposure Time 

(ms) 
Threshold Precision Recall AP 

230 50 96.60 95.00 99.40 

230 85 100.00 80.00 99.40 

270 50 93.30 93.30 97.20 

270 85 100.00 40.00 97.20 
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Table 3.6. Percentage accuracy of overall images before inoculation, during inoculation, and 

rinsed samples from Azure Custom Vision displaying precision, recall, and accuracy percentage 

(AP) at two thresholds. 

Custom Vision Prediction Percentage Accuracy (%) Results 

Threshold Precision Recall AP 

50 93.80 92.10 97.80 

85 99.10 63.60 97.80 

 

 

Salmonella PCR assay. 

 Samples from the laboratory setting are discussed in Table 3.7 where only 60 test samples 

were recovered due to technical issues with the PCR device. From the 60 samples, 58.33% of 

these samples were found negative before inoculation of the cecal matter. These 35 samples were 

looked into further of their results after inoculation and after rinsing. After further review, 

97.14% of the samples that were initially negative transpired to positive samples once inoculated 

and rinsed with DI water. Rinsing the cecal matter until not visible was not successful in 

removing the presence of Salmonella. Samples found contaminated in plant settings, were 

9.65%. With the use of microbial agents for rinsing of contaminated carcasses in plant settings 

out of the 11 samples, 27.27% of these samples were found positive after antimicrobial rinsing of 

the carcass (Table 3.8). This information is beneficial on moving forward with the protection of 

poultry carcasses in the food industry. The presence of Salmonella is possible due to the 

antimicrobial resistant microorganism attachment onto the skin of the chicken carcass. 
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Table 3.7. Swabbed samples from before inoculation, during inoculation, and after rinsing of 

fecal contamination for the presence or absence of Salmonella spp. using GeneUp® PCR 

machine. 

BioMerieux GeneUp® Salmonella PCR Assay Results 

 Before Inoculation Inoculated After Rinsing 

Salmonella 

Detected 
Positive Negative Positive Negative Positive Negative 

Samples no. 

Tested 
25 35 34 1 34 1 

Percentage 

(%) 
41.67 58.33 97.14 2.86 97.14 2.86 

 

Table 3.8. Plant setting swabbed samples from contaminated and after rinsing of fecal 

contamination for the presence or absence of Salmonella spp. using GeneUp® PCR machine. 

BioMerieux GeneUp® Salmonella PCR Assay Results 

 Contaminated After Rinsing 

Salmonella Detected Positive Negative Positive Negative 

Samples no. Tested 11 103 3 8 

Percentage (%) 9.65 90.35 27.27 72.73 

 

 

Conclusion 

In this work, a handheld multispectral fluorescence imaging system for detection of various 

fecal contaminants and invisible fecal contamination using based on CNN image analysis 

algorithms was successful. The findings in this research indicates that the direction of spectral 

imaging systems in poultry processing plants is beneficial to the poultry industry. When 

determining the difference detection of the contaminants from ceca, large intestine, 

proventriculus, and small intestine, it is important to know the origin of contamination. The 

knowledge of contamination origin can allow the adjustment of evisceration equipment to reduce 

cutting these organs. Creating a larger data set for each contaminant size and exposure time will 

allow the models’ performance to increase the accuracy percentages given datasets gathered were 

comparably small to other studies. With a minimal amount of data being gathered, the model 

performances were not able to produce higher differential classifications. Given the limited 
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amount of data, retrieving 49.93 and 55.40% accuracy rates in classification is promising work. 

Training these models with more data will be most beneficial for future studies. The second 

objective on invisible fecal matter showed promising results achieving a 97.80 to 99.40% 

accuracy rate for classification when compared to chicken carcasses that had visible 

contamination and no contamination found on the carcass. In regard to rinsing with DI water and 

recovering Salmonella, this exhibits a potential indication source on foodborne pathogens 

contacting consumers. To further develop this inspection system, additional research with an 

antimicrobial agent is necessary to determine the presence of Salmonella after fecal 

contamination has been rinsed from the contaminated carcass. Further research needs to be 

conducted on contaminated samples at poultry processing sites to create a stronger awareness of 

invisible fecal matter on rinsed carcasses. 
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SUMMARY 

 

The objective of the research was to identify and differentiate normal broilers and broilers 

with septicemia-toxemia (septox) using a handheld, rapid fluorescence imaging system. Freshly 

processed eviscerated broiler carcasses (8-10 lb live weight), both normal (n=200) and septox 

(n=195), were collected from a local commercial poultry processor. Broiler carcasses were 

photographed using a handheld fluorescence spectral imaging system called the CSI-D+, a RGB 

camera with UV camera for fluorescence. The spectral camera and carcasses were placed in a 

box with a shackle attachment and images were taken. Normal broiler and septox carcasses had 

two images captured for different fluorescence exposure times (175 and 350ms; 230 and 270 

ms). Images were collected for further image analysis using Convolution Neural Network deep 

learning (CNN-DL) algorithms. Data augmentation techniques were used to improve the 

complexity of collected images using transformation techniques including resizing, horizontal 

and vertical flip with random rotation. CNN model was developed on Google Collaboratory 

platform using CUDA 11.2 and Pytorch machine learning framework with 3 ConvNet layers. 

Adam Optimizer (learning rate =0.001, weight decay = 0.0001) with cross entropy loss function 

was used for training of model with 50 epoch. Septox and normal images were differentiated 

with a 98% accuracy with the testing model and 100% accuracy with the validation model. 

Results indicate that the CSI-D+ imaging system can provide image data to eliminate error in 

sorting septox affected broiler carcasses through fluorescent imaging. 

Along with sep-tox being identified through spectral imaging, fecal contamination can be 

observed using the CSI-D+ camera, which has a zero-tolerance policy in the poultry processing 

industry enforced by the USDA-FSIS to prevent the spread of foodborne pathogens to 

consumers. The objective for this study was to assist in the identification of fecal matter on 
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processed chicken carcasses that cannot be seen with the human naked eye using a fluorescence 

imaging system through still images. A total of fifty chicken carcasses were collected from a 

processing plant. Four different types of fecal contamination (digesta, small intestine, large 

intestine, and ceca) were used to place on the breast of whole-chicken carcasses for comparison. 

Chicken carcasses were placed in an ambient light-free box and observed with a spectral 

handheld imaging system. Visually, the spectral images exhibited a red color in the area 

contaminated with fecal matter. Developed CNN-DL algorithm was able to identify the fecal 

matter presence on the chicken carcasses. Fecal matter present on the chicken carcasses was able 

to be identified by the spectral camera. Image analysis was performed through deep learning 

algorithms to classify broiler carcasses with fecal matter to determine which carcasses should be 

reprocessed for the establishment of food safety standards for future processing line automated 

imaging on carcass condemnations. Spectral imaging system can be deployed in poultry 

processing plants to detect fecal contamination and ultimately improve food safety. The 

significance of this study is for the identification of condemnations done to the carcass through a 

spectral imaging system to prevent foodborne illness and the implementation of food safety 

standards. 

Research was conducted to evaluate a spectral imaging technology to detect visible fecal 

matter to improve automation in processing plants. Further, we investigated if the imaging 

system could detect fecal contamination after the WOGs are reworked (washed) and that 

invisible (to human eye) fecal can be a source of Salmonella contamination. Processed 

eviscerated broiler carcasses (8-10lbs live weight) were collected in a processing plant. Fecal 

contamination from the ceca (~100g) was collected and inoculated with an 

18h Salmonella Typhimurium culture which was then placed on the breast skin of the chicken 
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carcass for examination. Inoculated carcasses (n=100) were hung by shackle in an ambient light-

free box and imaged with a handheld spectral imaging system. Images were taken before 

inoculation, after inoculation, and after spraying the fecal contaminated area of carcasses with 

water. Images taken were used for further image analysis using Microsoft Custom 

Vision. Carcasses were swabbed after each taken image and incubated for 24 hours in Brain 

Heart Infusion (BHI) broth for BioMerieux GeneUp Salmonella PCR assay testing. Images 

determined that fecal contamination can be detected using the spectral camera. Moreover, the 

image analysis indicated that the remnants of fecal contamination, invisible to human eye, were 

present on the WOGs. Salmonella analysis of all 100 WOGs pre-fecal contamination were 

negative for the pathogen while those spots were found to be positive 

for Salmonella after reworking the carcasses to remove fecal matter. Custom Vision 

classification results had 100% precision and 83.3% recall concluding to have a 99.4% accuracy 

percentage. The research indicates a need to improve reworking and developing improved 

protocols for removing all traces of fecal contamination to improve food safety. 


