
Enhanced Indirect and Convex Optimization Methods for Generating
Minimum-Fuel Low-Thrust Trajectories

by

Saeid Tafazzol

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
Dec 14, 2024

Keywords: Optimal Control, Trajectory Optimization, Space Mission Design, Indirect
Control, Convex Optimization

Copyright 2024 by Saeid Tafazzol

Approved by

Ehsan Taheri, Chair, Assistant Professor of Aerospace Engineering, Auburn University
Davide Guzzetti, Assistant Professor of Aerospace Engineering, Auburn University

Hans Werner Van Wyk, Associate Professor of Mathematics and Statistics, Auburn University

Abstract

The high costs of space missions necessitate optimization across all mission aspects, par-

ticularly fuel consumption, which impacts both economic feasibility and payload capacity.

Electric propulsion systems, with higher fuel efficiency but lower thrust output (compared

to their chemical counterparts), have been used for several decades as a promising alterna-

tive propulsion system. To optimize spacecraft equipped with electric propulsion systems,

researchers employ two optimization paradigms: indirect and direct methods.

Indirect methods, based on the calculus of variations and Pontryagin’s minimum princi-

ple, transform the task of solving an optimization problem into finding the roots of nonlin-

ear boundary-value problems (BVPs). This is achieved by introducing time-varying Lagrange

multipliers (a.k.a. costates) and constant Lagrange multipliers. While indirect methods of-

fer high-precision (i.e., with respect to time and resolution) and the solutions are guaranteed

to be extremal, the resulting BVPs exhibit high sensitivity to the unknown decision variables

(typically costates) and can become challenging to form and solve, when they are applied to

constrained nonlinear optimization problems.

Direct methods, on the other hand, discretize variables early, converting the problem into

a nonlinear programming (NLP) problem. A convex optimization problem is a specific type of

NLP problem where the objective function and constraint set are all “convex,” meaning that any

local minimum is also a global minimum, making it significantly easier to solve with guaranteed

globally optimal solutions, while a general NLP problem can have multiple local minima, mak-

ing it potentially much harder to find the true optimal solution; essentially, convex optimization

is a subset of nonlinear programming with the added benefit of guaranteed global optimality

due to its convex structure. By incorporating convexification techniques and leveraging convex

optimization tools, direct methods offer a computationally feasible approach. This research

proposes methods that alleviate some of the difficulties associated with solving minimum-fuel

low-thrust trajectory optimization problems using both indirect and direct methods.

ii

Acknowledgments

To the only love of my life Golnoosh, I dedicate this. You are the source of my will, and I

am forever grateful to you.

Thank you, Maman, Baba, and Samira, for putting the love of science in my heart.

I am grateful for Dr. Taheri’s support. He is the embodiment of a perfect supervisor, with

a high passion for learning alongside his students and his ongoing support and dedication.

I would like to thank Dr. Davide Guzzetti and Dr. Hans Werner Van Wyk for being on my

committee and providing insightful feedback.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Abbreviations . ix

1 Introduction . 1

1.1 Introduction . 1

1.2 Literature Review and Previous Contributions 5

1.2.1 Indirect Methods . 5

1.2.2 Direct Optimization through Convex Programs 7

2 Control Regularization within Indirect Optimization Methods 9

2.1 Problem Formulation . 10

2.1.1 Equations of motion . 10

2.1.2 Cost functional of minimum-fuel trajectory optimization problems . . . 11

2.1.3 Formulation of the minimum-fuel problem using Cartesian coordinates 12

2.1.4 Formulation of the minimum-fuel problem using modified equinoctial
elements (MEEs) . 16

2.2 Calculation of Sensitivities Using State Transition Matrix 19

3 Optimizing Low-Thrust Trajectories Using Successive Convexification 23

3.1 Convexifying the Continuous-time Original Control Problem 24

3.1.1 Introducing Logarithm of Mass . 25

iv

3.1.2 Relaxing Control Constraint . 26

3.1.3 Linearization of the Dynamics . 27

3.2 Discretization of Continuous-time Convex Problems 29

3.3 Successive Convex Optimization & Trust Region 31

3.3.1 Convex Subproblem . 32

3.3.2 Trust-Region Constraint . 33

3.3.3 Enhancing Trust Region Using Nonlinearity Index 36

4 Numerical Simulations and Results . 42

4.1 Minimum-Fuel Earth-to-Mars Problem . 43

4.2 Minimum-Fuel Earth-to-Dionysus Problem 45

4.3 Smoothing Parameter in Regularization of Indirect Methods 47

4.4 Analyzing the solutions of the SCVX and its comparison when nonlinearity
index is used . 52

4.4.1 Number of Discrete Points . 52

4.4.2 SCVX process and effectiveness of using the nonlinearity index 52

5 Concluding Remarks . 57

5.1 Summary . 57

5.2 Future Work . 58

References . 59

Appendices . 72

A Einstein Summation . 73

A.1 Tensor Contraction . 73

A.2 Derivative Rules . 75

v

List of Figures

1.1 A comparison between indirect and direct methods advantages and disadvantages. 2

2.1 The overall idea behind the numerical continuation method. The nonlinear root
finding problem is solved iteratively each time with a reduced ρ value until the
optimal performance is achieved. 15

3.1 Diagram showing how x(tk+1) is constructed. While ΦA(tk+1, tk) maps x(tk)
to x(tk+1), Φ(tk+1, t) and Φ(tk+1, t

′) maps two instances of control and inde-
pendent to the final state through convolution. 30

3.2 High-level overview of the SCVX algorithm. 36

3.3 An illustration showcasing nonlinearity index. 37

4.1 Earth-to-Mars problem: x−y view of the optimal trajectory for ρ = 1.0×10−5.
The red arrows show the thrust direction. 44

4.2 Earth-to-Mars problem: throttle and switching function vs. time for ρ = 1.0×
10−5. 45

4.3 Earth-to-Dionysus problem: 3D view of the minimum-fuel trajectory for ρ =
1.0× 10−5. The red arrows indicate the thrust vector direction. 47

4.4 Earth-to-Dionysus problem: x− y view of the optimal trajectory for ρ = 1.0×
10−5. 48

4.5 Earth-to-Dionysus problem: throttle and switching function vs. time for ρ =
1.0× 10−5. 48

4.6 Earth-to-Mars problem: throttle profile vs. time for different values of ρ. 49

4.7 Earth-to-Mars problem: final mass vs. ρ. 50

4.8 Earth-to-Dionysus problem: throttle vs. time for different values of ρ. 50

4.9 Earth-to-Dionysus problem: final mass vs. ρ. 51

4.10 Earth-to-Dionysus problem: final mass vs. number of discrete points. 52

4.11 Earth-to-Mars problem: final mass vs. number of discrete points. 53

4.12 Earth-to-Mars problem: final mass vs. iteration #. 54

vi

4.13 Earth-to-Mars problem: nonlinear cost vs. iteration # 54

4.14 Earth-to-Mars problem: trust region ratio vs. iteration #. 55

4.15 Earth-to-Dionysus problem: final mass vs. iteration #. 55

4.16 Earth-to-Dionysus problem: nonlinear cost vs. iteration #. 56

4.17 Earth-to-Dionysus problem: trust region vs. iteration #. 56

vii

List of Tables

4.1 Earth-to-Mars problem: spacecraft mission parameters and initial/final condi-
tions. 43

4.2 Parameters for successive convex optimization (Earth-to-Mars). 43

4.3 Earth-to-Mars problem: comparison of convergence rate of the Indirect method
for HTS and L2 smoothing and for Cartesian and MEEs with and without the
STM. 45

4.4 Earth-to-Dionysus problem: spacecraft/mission parameters and initial/final con-
ditions. 46

4.5 Parameters for successive convex optimization (Earth-to-Dionysus) 46

4.6 Earth-to-Dionysus problem: comparison of results using Cartesian and MEEs
for L2 and HTS methods with and without STM. 49

4.7 Number of iterations for the SCVX algorithm with and without the nonlinearity
index augmentation. 53

viii

List of Abbreviations

DACE Differential Algebra Computational Engine

ECOS Embedded Conic Solver

HTS Hyperbolic Tangent Smoothing

IPM Interior-Point Method

NLP Nonlinear Program

ODE Ordinary Differential Equation

SCVX Successive Convex Optimization

SDP Semi-Definite Programming

STM State Transition Matrix

STT State Transition Tensor

TPBVP Two Point Boundary Value Problem

w.r.t. With Respect To

ix

Chapter 1

Introduction

1.1 Introduction

Space exploration is arguably the pinnacle of human curiosity and is often correlated with a

prosperous society. However, with great aspirations comes a great cost, which is attributed

to the fact that space exploration is among the most costly of endeavors. This cost translates

directly to not only sending payload to space, but also to maintaining the operation of the

infrastructure needed to sustain the activities of space assets. Moreover, spacecraft have limited

fuel capacity and there are no fuel stations in space for re-fueling spacecraft. Therefore, one

of the most important metrics to minimize during mission design is the amount of fuel needed

for completing space missions. Moreover, consuming less fuel corresponds to a larger payload

capacity and consequently, can be used to carry more scientific payload to maximize science

outcomes/objectives. As a consequence, electric propulsion systems, which offer great fuel

efficiency, have become popular over the past several decades [1, 2].

Launched on October 24, 1998, Deep Space 1 was the first mission of NASA’s New Mil-

lennium program [3], which among several advanced technologies demonstrated the use of

electric propulsion for deep space missions. SMART-1 was the European Space Agency’s first

mission to the Moon that used electric propulsion system [4]. A similar technology was uti-

lized for the Dawn mission, where a spacecraft was able (for the first time) to orbit a main-belt

asteroid and visit multiple bodies during a single mission [5]. While being fuel-efficient with

respect to their high specific impulse values [6], these propulsion systems generate low-thrust

magnitudes, leading to trajectories that consist of many orbital revolutions around the central

1

body [7, 8]. In very low-thrust cases, the number of orbital revolutions can even exceed a few

hundred [9, 10]. Moreover, depending on the considered performance index (e.g., minimiza-

tion of fuel consumption or time of flight), an optimal trajectory may consist of a finite, but

unknown number of thrusting and coasting arcs. The sequence and duration of these arcs form

the structure of the optimal control profile, where the duration of each arc is also unknown and

must be determined as part of the solution procedure.

Indirect
Rooted in Calculus of variation

+ Optimal Control Theory

Direct
Using Nonlinear Programming

Problems

Pros:
1) Guaranteed satisfaction of the necessary conditions
2) Accurate and fast
3) Provides insights into the structure of the optimal control

Cons:
1) Sensitivity to initial conditions
2) Difficult to handle state-path constraints
3) Not ideal for general-purpose software development.

Pros:
1) Easy to formulate and solve (in particular, for OCPs with
state-path constraints)
2) No deep knowledge of optimal control theory is needed
3) Suitable for developing general-purpose software
development

Cons:
1) Vanilla direct methods show losses in optimality (unless
advanced transcription and mesh-refinement methods are
used)
2) Large number of decision variables (can be overcome by the
structure of the sparsity pattern)
3) For some problems (e.g., OCPs with singular control arcs,
knowledge of the structure of the control is required).

Figure 1.1: A comparison between indirect and direct methods advantages and disadvantages.

Numerical methods for solving practical optimal control problems (OCPs), which tra-

jectory optimization problems constitute an important class thereof, are broadly classified into

direct and indirect optimization methods [11, 12] (See Fig. 1.1). Both methods have been exten-

sively used in spacecraft trajectory optimization. Indirect (variational) approaches to optimal

control, are rooted in the calculus of variations, and result in (Hamiltonian) boundary-value

problems (BVPs) using Lagrange multipliers (co-states) associated with states. However, in

their simplest forms (i.e., for problems without control or state-path equality/inequality con-

straints), the BVPs reduce to two-point boundary value problems (TPBVPs). To solve BVP-

s/TPBVPs, quasi-Newton gradient-based root-solving methods are typically used, iterating on

2

unknown costate values (typically at the initial time of maneuver) to generate state, costate, and

control time histories that satisfy the necessary conditions of optimality.

In this research, we focus on both indirect and direct optimization methods. Indirect opti-

mization methods are considered in Chapter 2 for the following reasons:

• Astrodynamics Context: In astrodynamics, spacecraft motion is primarily governed

by Keplerian motion within the sphere of influence of the central body. The propul-

sive acceleration vector produced by low-thrust propulsion systems is small compared to

central-body gravitational and third-body perturbing accelerations (e.g., due to Jupiter for

a low-Earth orbit). Even with propulsion, the changes in orbital elements remain small

over short time horizons. This makes low-thrust trajectory optimization problems easier

to solve compared to the problems that arise in atmospheric flights, where significant

aerodynamic forces are encountered and cannot be considered mere perturbations. Thus,

indirect methods remain a viable choice for low-thrust trajectory optimization.

• High-Resolution Solutions: Indirect approaches provide high-resolution solutions that

are highly accurate for the same local/global extremal solutions. High-resolution solu-

tions can capture all events, such as thrust switches as well as entry to and exit from

eclipses, with a high precision. This accuracy in capturing the occurrence of events is

crucial, as solutions from indirect methods serve as baseline solutions for assessing the

optimality gap, when compared to direct methods [13]. An example comparison between

indirect and convex optimization-based methods is presented in [14] for minimum-fuel

trajectories. Additionally, indirect methods, combined with homotopy and numerical

continuation techniques, provide a more global mapping of the solution space [15].

• Control Regularization: The concept of control regularization, based on the principle

of “invariant embedding,” is a key enabler for solving Hamiltonian BVPs, particularly

when state, control, and mixed state-control inequality constraints are considered. Direct

methods have historically been favored due to their ability to handle various constraints at

a finite number of mesh points and their broader domain of convergence [16]. However,

recent advances in indirect methods, such as Composited Smooth Control (CSC) [17],

3

the Unified Trigonometrization Method (UTM) [18], Vectorized Trigonometric Regular-

ization (VTR) [19], and Generalized Vectorized Trigonometric Regularization (GVTR)

[20], have significantly alleviated many of the challenges associated with solving con-

strained optimal control problems.

However, when solving TPBVPs using indirect methods, it is necessary to determine the

initial costates, often through quasi-Newton root-finding solvers. This process can be challeng-

ing and, depending on the problem, may be computationally expensive and time-consuming.

In some cases, it may even be impossible to find a solution without resorting to techniques such

as regularization and homotopy methods. Indirect methods also encounter situations where the

control law does not have a closed-form solution during the minimization of the Hamiltonian.

Given these challenges, it is worthwhile to consider direct optimization methods, where the

continuous-time optimal control problem is approximated using a finite set of parameters, by

discretizing the original problem.

Among direct optimization methods, convex optimization [21], which will be covered in

Chapter 3, is considered among the most effective approaches for solving trajectory optimiza-

tion problems for the following reasons [22, 23]:

• High Performance for Large-Scale Problems: Convex optimization provides efficient

and fast solutions even for large-scale problems by utilizing interior-point methods (IPMs),

which are guaranteed to converge in polynomial time. This makes convex optimization

highly suitable for autonomous guidance and control applications.

• Suitable for Embedded Applications: Due to its efficiency, convex optimization has

been adapted for use in embedded systems with limited computational resources [24].

It is expected that custom convex optimization codes will be implemented on different

embedded computers to further enhance their application and utility for trajectory opti-

mization in space missions.

Nonetheless, using convex optimization requires addressing the challenges of problem

discretization and convexification, as detailed in Chapter 3.

4

1.2 Literature Review and Previous Contributions

1.2.1 Indirect Methods

In minimum-fuel trajectory optimization problems, the presence of thrusting and coasting arcs

is a consequence of applying Pontryagin’s minimum principle [25]. For minimum-time ma-

neuvers, the optimality principle requires the thruster to operate at its maximum thrusting ca-

pability during the entire maneuver time [26]; however, it is still possible to have coasting arcs

if the optimization problem has to take into account eclipses mostly during the planet-centric

phases of flights [27, 28] and for cislunar trajectory optimization problems [29]. For minimum-

fuel trajectory optimization problems, the optimal bang-off-bang thrust profile causes the Jaco-

bian (used in gradient-based solvers for determining the search direction) to become singular

[30, 25], which in turn deteriorates the selection of the descent direction (in typical gradient-

based nonlinear root-finding methods) and renders the numerical solution of the resulting TPB-

VPs impossible. The existence of multiple throttle switches exacerbates the issue, and reduces

the basin of attraction of the numerical methods [25, 31, 32].

To overcome the singularity in the Jacobian, the TPBVPs associated with minimum-fuel

trajectory optimization problems are typically solved through various regularization methods,

such as those that regularize the non-smooth thrust/throttle profiles. Control regularization

methods such as logarithmic smoothing [30], extended logarithmic smoothing [33], hyperbolic

tangent smoothing (HTS) [34] are among the popular and most efficient methods for attenuating

the issues with non-smooth control profiles. Through regularization methods, the non-smooth

optimal control problem is embedded into a one- or multiple-parameter family of smooth neigh-

boring optimal control problems. Then, standard (or advanced) numerical continuation and/or

homotopy methods are used to solve the resulting family of smooth TPBVPs until a solution to

the original optimal control problem is obtained [12].

In terms of applications, the HTS method is already used to solve interplanetary minimum-

fuel trajectory optimization and minimum-time rest-to-rest satellite reorientation problems [34].

One of the main advantages of the HTS method is its ease of implementation. One can pro-

ceed with the standard approach to the optimal control problem and determine the so-called

5

thrust/throttle switching function. Then, the HTS method is applied as a filter to the thrust

switching function to form a smooth approximation of the theoretically optimal bang-bang

thrust profile. Thus, the HTS method is directly applied at the control level, which is an im-

portant feature because the standard procedure for formulating the necessary conditions (using

indirect methods) remains unaffected. The HTS method is also a key component of a novel

framework – Composite Smooth Control (CSC) – proposed for solving optimal control prob-

lems with discrete and multiple modes of operations [17, 35]. The CSC framework and the HTS

method are also used for co-optimization of spacecraft propulsion system and its trajectory [36],

optimal mode-selection and net payload mass optimization using indirect optimization methods

[37], multimode trajectory optimization with low-thrust gravity-assist maneuvers [38], eclipse-

conscious cislunar low-thrust trajectory design [39], and for minimum-fuel asteroid landing

trajectory optimization problems [40].

In this research, we compare two state-of-the-art regularization methods, i.e., the HTS

method and a recent L2-norm-based regularization, proposed by Taheri and Li [41]. In [41], the

utility of the L2-norm-based regularization is demonstrated for solving three optimal control

problems: 1) minimum-fuel low-thrust trajectories, 2) the standard Goddard rocket problem

with its characteristic bang-singular-bang thrust profile and 3) a minimum-time spacecraft re-

orientation problem with both bang-bang and a second-order singular arc. The L2-norm-based

regularization is already used for co-optimization of the spacecraft propulsion system and its

trajectory using a direct optimization method [42]. The HTS method is already compared

against the logarithmic smoothing in [34] and against the standard quadratic smoothing in [43]

revealing its advantages by broadening the basin of attraction of the resulting TPBVPs. Ap-

plication of the HTS combined with the State Transition Matrix (STM) is also studied in [44].

Similar to [44], we consider the impact of accurate calculation of sensitivities for the HTS and

L2-norm-based regularization/smoothing methods, when finite-difference and the STM meth-

ods, are used. We compare the results of the two methods on two benchmark minimum-fuel

trajectory optimization problems. Combining the advantages of the L2-norm-based regulariza-

tion with the STM method is one of the contributions of this thesis.

6

1.2.2 Direct Optimization through Convex Programs

Optimal Control is a broad topic that deals mainly with two technical areas that are aimed to

improve the overall efficiency of operation of dynamical systems: 1) (open-loop) path planning

and guidance, and 2) closed-loop control design to regulate dynamical systems by leveraging

optimization techniques. A well-known classical example is the Linear Quadratic Regulator

(LQR) introduced by Kalman [45], where the control solution is derived in closed form, rep-

resenting a special case of convex optimization. Over time, the connection between convex

optimization and optimal control deepened, as it was recognized that numerous optimal control

problems could be effectively modeled using convex optimization [46].

Even in scenarios where a problem could not be directly formulated as a convex problem,

researchers exploited the efficiency of convex optimization by employing approximation tech-

niques like convexification, enabling its application to a broader class of problems. The contin-

uous advancement of convex optimization further influenced control theory in profound ways.

For instance, the development of Semi-Definite Programming (SDP) [47] played a crucial role

in formalizing the S-Lemma [48], thereby expanding the theoretical and practical horizons of

optimization in control systems.

As a result, Convex Optimization has become a powerful numerical framework for solv-

ing complex optimal control problems. For example, the powered descent guidance for Mars

pinpoint landing was effectively addressed using Second-Order Cone Programming (SOCP) in

[49, 50, 51]. Similar techniques were applied to trajectory planning for near-field rendezvous

and Proximity Operations (PRO) in [52, 53, 54], where the complex dynamics necessitated the

use of successive convex optimization instead of direct convex methods. This approach has

also been employed for spacecraft hypersonic reentry problems [55, 56, 57], where the vehicle

re-enters Earth’s atmosphere at speeds exceeding Mach 5, facing extreme aerodynamic heating

and forces. Precise control is essential to maintain a safe trajectory while mitigating intense

thermal loads and structural stresses. For further examples of successive convexification ap-

plications, please refer to [58, 59], which explore the application of convex optimization in

rendezvous and docking scenarios.

7

One practical aspect of Convex Optimization is the possibility of making it highly efficient

for onboard online trajectory optimization [24]. Tools like Embedded Conic Solver [60], CVX-

GEN [61], and [62] enable exciting real-world applications such as Landing of Space Rockets

[63], and autonomous obstacle avoidance in quad-rotors [64].

8

Chapter 2

Control Regularization within Indirect Optimization Methods

Trajectory optimization of space vehicles is a critical task in astrodynamics [65, 66], impact-

ing both mission success and cost efficiency. Advances in electric propulsion systems, with

their characteristic high specific impulse values, have led to more fuel-efficient low-thrust tra-

jectories [6], often involving numerous orbital revolutions [7, 8]. These trajectories consist of

thrusting and coasting arcs, determined by optimization methods [10].

Optimization approaches are broadly classified as direct or indirect [11]. Indirect methods,

based on the calculus of variations, solve two-point boundary value problems (TPBVPs) using

root-finding techniques, offering high-resolution solutions [13]. Despite numerical challenges,

such as sensitivity of the TPBVPs to the unknown values of the costates, recent advances have

enabled indirect methods to handle complex constraints effectively [18, 19].

In minimum-fuel space trajectory optimization, thrusting and coasting arcs arise from ap-

plying Pontryagin’s principle [25]. However, the bang-off-bang thrust profile can cause sin-

gularities in the Jacobian, complicating the solution to the resulting Hamiltonian BVPs [30].

Regularization methods like Hyperbolic Tangent Smoothing (HTS) mitigate this issue, result-

ing in smooth control profiles that improve numerical stability [34].

This chapter compares the HTS method with a recent L2-norm-based regularization [41],

analyzing their performance on two benchmark minimum-fuel low-thrust trajectory optimiza-

tion problems. We evaluate the impact of accurate sensitivity calculations using finite-difference

and State Transition Matrix (STM) methods, providing insights into optimal control problem

solutions [44, 42].

9

2.1 Problem Formulation

To assess the impact of control regularization on the convergence performance of numerical

methods, we consider two different parameterizations of the motion dynamics using Cartesian

coordinates and the set of modified equinoctial elements (MEEs) [33, 67]. The choice of coor-

dinates is shown to significantly impact the convergence of the BVPs associated with minimum-

time and minimum-fuel space trajectory optimization problems. In addition, we consider op-

timizing the trajectory of spacecraft during heliocentric phases of flights with zero hyperbolic

excess velocity relative to the departing and arrival bodies. We consider two-body dynam-

ics assumptions and ignore third-body and other types of perturbations (e.g., solar-radiation

pressure). The only perturbing acceleration (and at the same time control input) is due to the

operation of the propulsion system during the thrusting arcs. These assumptions are consistent

with the dynamical models and boundary conditions of the chosen benchmark problems [33].

2.1.1 Equations of motion

Following [67, 15], we adopt a unified control-affine representation of the dynamics. Let x ∈

R6 denote part of the state vector (e.g., Cartesian coordinates consisting of components of the

position and velocity vectors or the six modified equinoctial elements). Let m ∈ R+ denote

the instantaneous mass of the spacecraft. We adopt a magnitude-vector parameterization of the

control-acceleration vector. Let δ ∈ [0, 1] denote engine throttle input and let α̂ denote the

thrust steering unit vector (i.e., ∥α̂∥ = 1), the acceleration vector produced by the propulsion

system can be written as,

u =
Tmax

m
α̂δ, (2.1)

where Tmax denotes the maximum thrust magnitude and m is the mass of the spacecraft. Alto-

gether, the control vector can be written as u⊤ = [α̂⊤, δ] ∈ R4. The time rate of change of x

10

and m (with x = x(t)) can be written as,

ẋ = A(x) + B(x)
(
Tmax

m
α̂δ

)
, ṁ = −Tmax

c
δ, (2.2)

where the entries of the A vector and the B matrix depend on the choice of coordinates and/or

elements [33, 67]. In Eq.(2.2), c = Ispg0 denotes the effective exhaust velocity. In Eq. (2.1),

Isp is the thruster specific impulse value and g0 is the Earth’s sea-level gravitational constant.

To simplify the problem formulation, it is assumed that the values of Tmax and c remain con-

stant throughout the trajectory. In reality, and for solar-powered low-thrust propulsion systems,

these parameters depend on the power that is sent to the engine [36]. The main task, in space-

craft trajectory optimization problems, is to determine the time history of the optimal/extremal

(typically denoted by superscript ‘*’) control vector, u∗, such that a performance index is mini-

mized/maximized while equations of motions, given in Eq. (2.2), are satisfied along with addi-

tional boundary conditions and along-the-path state and control equality/inequality constraints.

We proceed by defining the cost functional (a.k.a. the performance index or objective) of the

minimum-fuel trajectory optimization problems.

2.1.2 Cost functional of minimum-fuel trajectory optimization problems

In this research, we focus on minimum-fuel trajectory optimization problems. In optimal con-

trol terminology, the cost functional, J ∈ R, can be stated in various equivalent forms [68].

However, in this research, we consider the Lagrange form in which the cost functional is ex-

pressed in the form of an integral. For spacecraft with a fixed initial mass, minimum-fuel

trajectories correspond to minimizing the propellant consumption, which can be stated mathe-

matically as,

Minimize
δ∈Uδ & α̂∈Uα̂

J =

∫ tf

t0

Tmax

c
δ(t) dt, (2.3)

11

where Uα̂ = {α̂ : [t0,+∞)→ U | α̂ is measurable} with U = {α̂ | ∥α̂∥ = 1} and Uδ = {δ :

[t0,+∞) → [0, 1] | δ is measurable}. The admissible set of throttle control is listed under the

minimization operator.

Please note that while optimization appears to be performed only over the control vec-

tor, u⊤(t) = [α̂⊤(t), δ(t)], the optimization is actually performed over all admissible sets of

states and controls. The time derivative of states (consisting of x and m) is governed by the

right-hand side of the differential equations that is given in Eq. (2.2). We note that one could

have written the cost functional in Mayer form, as J = −m(tf) that considers the negative of

the final mass of the spacecraft, minimization of which is equivalent to maximizing the final

mass for a fixed initial mass. We now can proceed by writing the optimal control problem for-

mulation associated with the minimum-fuel trajectory optimization problems, when Cartesian

coordinates and MEEs are used.

2.1.3 Formulation of the minimum-fuel problem using Cartesian coordinates

Let r = [x, y, z]⊤ and v = [vx, vy, vz]
⊤ denote the position and velocity vectors of the center

of mass of the spacecraft relative to the origin of the heliocentric frame of reference. Thus, we

have x⊤ = [r⊤,v⊤]. The time rate of change of states can be written as, [67]

ṙ = v = fr,

v̇ = − µ

r3
r +

Tmax

m
α̂δ = fv,

ṁ = −Tmax

c
δ = fm, (2.4)

where µ is the gravitational parameter for the central body (Sun in our problems) and r = ∥r∥.

Let f⊤ = [f⊤
r ,f

⊤
v], the time rate of change of position and velocity vectors, given in Eq. (2.4),

can be written as ẋ = f(x(t),u(t), t). The minimum-fuel optimal control problem can be

12

written as,

Minimize
δ∈Uδ & α̂∈Uα̂

J =

∫ tf

t0

Tmax

c
δ(t) dt

s.t.:

ẋ(t) = f(x(t),u(t), t), ṁ = −Tmax

c
δ,

r(t0)− r0 = 0, v(t0)− v0 = 0,

r(tf)− rf = 0, v(tf)− vf = 0,

m(t0)−m0 = 0,

(2.5)

where x⊤
0 = [r⊤0 ,v

⊤
0] and m0 denote the complete states of the spacecraft at the time of de-

parture from the departing planet (Earth) and rf and vf denote the fixed position and velocity

vectors of the target/arrival body. In addition, Uα̂ = {α̂ : [t0,+∞) → U | α̂ is measurable}

with U = {α̂ | ∥α̂∥ = 1} and Uδ = {δ : [t0,+∞)→ [0, 1] | δ is measurable}.

We can use the indirect formalism of optimal control theory, which treats the state dif-

ferential equation as constraints [68]. We proceed by introducing the costate vector associated

with Cartesian position and velocity vectors as λr = [λx, λy, λz]
⊤ and λv = [λvx , λvy , λvz]

⊤.

Let λ⊤ = [λ⊤
r ,λ

⊤
v] denote the vector of Cartesian coordinates and let λm denote the mass

costate. We have dropped the argument t from the terms to make the relations more concise

(e.g., λr = λr(t)). We now proceed by forming the (variational) Hamiltonian associate with

the Cartesian coordinates as,

HC =
Tmax

c
δ + λ⊤

r fr + λ
⊤
v fv + λmfm. (2.6)

The differential equations for the costates are determined using the Euler-Lagrange equa-

tion [68] as,

λ̇ = −
[
∂HC

∂x

]⊤
, λ̇m = −∂HC

∂m
. (2.7)

13

Following the primer vector theory of Lawden [31] and Pontryagin’s minimum principle,

the extremal control expressions [43, 44] can be derived and stated compactly as,

α̂∗ = − λv

∥λv∥
, δ∗


= 1 if S > 0,

∈ [0, 1] if S = 0,

= 0 if S ≤ 0,

with S =
c∥λv∥
m

+ λm − 1, (2.8)

where S is the so-called throttle switching function. The primer vector is p = −λv. According

to Lawden, and for problems in which the direction of the thrust vector is not constrained, the

time history ofλv is continuous, which results in a continuous profile of α̂∗. However, the value

of δ∗ depends on the sign of the throttle switching function, which results in discontinuities

in δ∗. Note that the number and time instants of the zero-crossings of S are not known a

priori. The presence of instantaneous changes in the value of δ∗ poses significant challenges to

numerical solvers and integrators that are used for solving the resulting BVPs.

To overcome the control discontinuity issue, smoothing functions are used, which employ

squeezing continuous functions such as the hyperbolic tangent function to map the switching

function between 0 and 1. In this research, we consider and compare the following smoothing

functions:

1. Hyperbolic-Tangent-Based Smoothing [34]:

δ∗tanh ≈ δtanh(S; ρ) = 0.5

[
1 + tanh

(
S

ρ

)]
, (2.9)

2. L2-norm-Based Smoothing [41, 69]:

δ∗L2 ≈ δL2(S; ρ) = 0.5

[
1 +

S√
S2 + ρ2

]
, (2.10)

where ρ denotes a smoothing parameter that allows us to control the sharpness of change

in throttle. The smoothing parameter, as will be shown later, will be used within a standard

numerical continuation method. The principal idea, in control regularization methods, is to

14

𝑡0 𝑡𝑓

Smooth

Thrust

unknowns

Quasi-Newton

solver

Nonlinear root finding:

7 unknowns

7 equations

Figure 2.1: The overall idea behind the numerical continuation method. The nonlinear root
finding problem is solved iteratively each time with a reduced ρ value until the optimal perfor-
mance is achieved.

embed the non-smooth, piece-wise continuous optimal throttle logic, given in Eq. (2.8), into a

one-parameter family of smooth curves. In the limit and as the value of ρ is decreased (from a

relatively large value, e.g., ρ = 1.0) to small values (e.g., ρ = 1.0× 10−3), the smooth throttle

approaches the piece-wise continuous throttle, given in Eq. (2.8), i.e., δ(S; ρ) → δ∗ as ρ → 0(

See Fig. 2.1).

The resulting one-parameter family of smooth TPBVPs can be summarized as follows:

the state differential equations, given in Eq. (2.4), the costate differential equations, obtained

from Eq. (2.7), the extremal thrust steering unit vector, α̂ and the throttle switching function,

given in Eq. (2.8), and the smooth throttle function (either HTS or L2-norm based), given in

Eq. (2.9) or (2.10), and the transversality condition on the costate associated with mass at the

final time, λm(tf) = 0. The resulting TPBVP is written as a nonlinear shooting problem as,

ψ(η(t0); ρ) = [r⊤(tf)− r⊤f ,v⊤(tf)− v⊤f , λm(tf)] = 07×1, (2.11)

where η⊤(t0) = [λ⊤
r (t0),λ

⊤
v (t0), λm(t0)] ∈ R7 denotes the vector of unknown initial costates.

15

Typically, the resulting shooting problems are solved using single- or multiple-shooting

solution schemes [29]. Note that the initial states at t = t0 are known and these conditions

are not added to the boundary conditions of the shooting problem. Numerical continuation

methods are typically used for solving the problems by setting ρ = 1 and solving the shooting

problem. Once a solution to η⊤(t0) is obtained, the value of ρ is decreased, say by a factor of

0.1 or 0.5 (i.e., ρ = ρ × 0.1). The previous value of η⊤(t0) is used as an initial guess for the

same shooting problem, but with a new value of ρ. These steps are repeated until the value of

ρ is smaller than some prescribed user-defined value or when subsequent changes in the value

of cost, J , become smaller than a threshold.

2.1.4 Formulation of the minimum-fuel problem using modified equinoctial elements (MEEs)

Let the state vector associated with the MEEs be denoted as x = [p, f, g, h, k, L]⊤ (with an

abuse of notation). The mappings between MEEs and the Keplerian classical orbital elements

(COEs) are as follows [70]: p = a(1 − e2), f = e cos (ω + Ω), g = e sin (ω + Ω), h =

tan
(
i
2

)
cos(Ω), k = tan

(
i
2

)
sin(Ω), L = θ + ω + Ω, where a, e, i, Ω, ω and θ, denote the

semi-major axis, eccentricity, inclination, right-ascension of the ascending note, argument of

periapses, and true anomaly, respectively. The MEEs present an ideal parameterization of the

evolution of low-thrust trajectories, avoiding the singularities (associated with zero inclination

and eccentricity values) present in the classical orbital elements [67]. The time rate of change

of MEEs and mass can be written as,

ẋ = A(x) + B(x)
(
Tmax

m
α̂δ

)
ṁ = −Tmax

c
δ, (2.12)

16

with A(x) and B(x) defined (under the canonical unit scaling with µ = 1.0) as,

A⊤(x) =

[
0 0 0 0 0

√
p
(

q
p

)2
]
, (2.13)

B(x) =



0 2p
q

√
p 0

√
p sinL

√
p

q
((q + 1) cosL+ f) −

√
pg

q
(h sinL− k cosL)

−√p cosL
√
p

q
((q + 1) sinL+ g)

√
pf

q
(h sinL− k cosL)

0 0
√
ps2 cosL

2q

0 0
√
ps2 sinL

2q

0 0
√
p

q
(h sinL− k cosL)


, (2.14)

with s2 = 1 + h2 + k2 and q = 1 + f cosL + g sinL. The minimum-fuel optimal control

problem can be written as,

Minimize
δ∈[0,1] & α̂∈Uα̂

J =

∫ tf

t0

Tmax

c
δ(t) dt

s.t.:

ẋ(t) = A(x) + B(x)
(
Tmax

m
α̂δ

)
, ṁ(t) = −Tmax

c
δ,

x(t0)− x0 = 0,

x(tf)− xf = 0,

m(t0) = m0,

(2.15)

where x⊤
0 = [p0, f0, g0, h0, k0, L0] denotes the MEEs of the spacecraft at the time of departure

from the departing planet (Earth) and x⊤
f = [pf , ff , gf , hf , kf , Lf] denote the fixed vector of

target MEE values associated with the target body at the end of the trajectory.

Let λ⊤ = [λp, λf , λg, λh, λk, λL] (with an abuse of notation) denote the costate vector

associated with the MEEs and let λm denote the costate associated with mass. We can proceed

and form the Hamiltonian associated with the MEEs as,

HMEE =
Tmax

c
δ + λ⊤

(
A+ B

[
Tmax

m
δα

])
− λm

Tmax

c
δ. (2.16)

17

The differential equations for the costates associated with MEEs are determined using the

Euler-Lagrange equation [68] as,

λ̇ = −
[
∂HMEE

∂x

]⊤
, λ̇m = −∂HMEE

∂m
. (2.17)

Following the steps that we followed, when we used the Cartesian coordinates, and upon

using the primer vector theory of Lawden and the PMP, the extremal control expressions can

be derived and written as

α̂∗ = − B⊤λ

∥B⊤λ∥
, δ∗


= 1 if S > 0,

∈ [0, 1] if S = 0,

= 0 if S ≤ 0,

with S =
c∥B⊤λ∥

m
+ λm − 1, (2.18)

where S is the so-called throttle switching function. It is important to notice that the primer vec-

tor, is obtained by modulating the costate vector associated with MEEs by the control influence

matrix, i.e., p = −B⊤λ. Please also note that the primer vector, when Cartesian coordiates

are used, can be expressed in a similar form, i.e., p = −B⊤λ except that the control influ-

ence matrix for the set of Cartesian coordinates is B = [03×3, I3×3] and the costate vector is

λ = [λ⊤
r ,λ

⊤
v]. Thus, we have p = −B⊤λ = −λv, which is identical to the primer vector

relation given below Eq. (2.8).

The resulting smooth TPBVP is summarized as follows: the state differential equations,

given in Eq. (2.12), the costate differential equations, obtained from Eq. (2.17), the extremal

thrust steering unit vector, α̂ and the throttle switching function, given in Eq. (2.18), and the

smooth throttle function (either HTS or L2-norm based), follow the same relations given in

Eq. (2.9) or (2.10) except that the switching function is calculated using the relation given in

Eq. (2.18), and the transversality condition on the costate associated with mass at the final time,

λm(tf) = 0. The resulting TPBVP is written as a shooting problem as

ψ(η(t0); ρ) = [x⊤(tf)− x⊤
f , λm(tf)] = 07×1, (2.19)

18

where η⊤(t0) = [λ⊤(t0), λm(t0)] ∈ R7 denotes the vector of unknown initial costates. Nu-

merical continuation methods are typically used for solving the problems by setting ρ = 1 and

solving the shooting problem. Once a solution to η⊤(t0) is obtained. The value of ρ is de-

creased, say by a factor of 0.1 or 0.5 (i.e., ρ ← ρ× 0.1). The previous value of η⊤(t0) is used

as an initial guess for this slightly-modified shooting problem. These steps are repeated until

the value of ρ is smaller than some prescribed user-defined value or when subsequent changes

in the value of cost, J , become smaller than a user-defined threshold.

2.2 Calculation of Sensitivities Using State Transition Matrix

The TPBVPs associated with minimum-fuel trajectory optimization problems, resulting in non-

linear shooting problems, can be written as,

Cartesian: ψ(η(t0); ρ) =


r(tf)− rf

v(tf)− vf

λm(tf)

 = 0, (2.20)

MEE: ψ(η(t0); ρ) =

x(tf)− xf

λm(tf)

 = 0. (2.21)

In these problems, the initial states, including the initial mass value, are known. Our

objective is to determine the initial costate vector, denoted as η(t0). While numerous off-the-

shelf root-finding solvers are available, we utilize Powell’s dog-leg method, a well-regarded

choice for this category of problems. Powell’s method is a gradient-based numerical solver that

leverages the Jacobian to solve a nonlinear system of equations. If the Jacobian function is not

provided, it approximates the Jacobian using a Finite Difference (FD) method. Although FD

is often effective, it can introduce instability and inefficiency into the solver [71]. Therefore, it

is often advantageous to provide Powell’s method with accurate values for the Jacobian of the

residual error vector with respect to the unknown decision values.

In our trajectory optimization problems, given the TPBVP, and for a fixed value of ρ, we

intend to find the Jacobian of the final boundary conditions w.r.t. the initial costates, which can

19

be written as,
∂ψ(x(tf), λm(tf), tf)

∂η(t0)
. (2.22)

To find the Jacobian, we utilize the State Transition Matrix (STM) [72]. Let z denote the

states of a continuous set of differential equations denoted as,

ż(t) = Γ(z(t), t). (2.23)

We intend to find the Jacobian of z(t) w.r.t. z(t0), which can be written as,

Φ(t, t0) =
∂z(t)

∂z(t0)
. (2.24)

The solution to the differential equation that is given in Eq. (2.23) can be written as,

z(t) = z(t0) +

∫ t

t0

Γ(z(t), t)dt. (2.25)

We can take the derivative of both sides of Eq. (2.25), and using the definition given in

Eq. (2.24), we can write

∂z(t)

∂z(t0)
= I +

∫ t

t0

∂Γ(z(t), t)

∂z(t)

∂z(t)

∂z(t0)
dt, (2.26)

which following the definition of the sensitivity matrix given in Eq. (2.24), can be written as,

Φ(t, t0) = I +

∫ t

t0

∂Γ(z(t), t)

∂z(t)
Φ(t, t0)dt. (2.27)

We proceed by taking the time derivative of both sides to obtain the differential equation

that describes the time derivative of the sensitivity matrix as,

Φ̇(t, t0) =
∂Γ(z(t), t)

∂z(t)
Φ(t, t0), with Φ(t0, t0) = I. (2.28)

20

In the context of the minimum-fuel trajectory optimization problems, z corresponds to

the vector consisting of states x, m, costates associated with x, denoted as λ, and the costate

associated with mass, λm.

Let z⊤ = [x⊤,m,λ⊤, λm] ∈ R14. From Eq. (2.22) and using the chain rule, we have

[
∂ψ(tf)

∂η(t0)

]
7×7

=

[
∂ψ(tf)

∂z(tf)

]
7×14

[
∂z(tf)

∂z(t0)

]
14×14︸ ︷︷ ︸

=Φ(tf ,t0)

[
∂z(t0)

∂η(t0)

]
14×7

. (2.29)

The elements of the ∂Γ(z(t))/∂z(t) matrix for the Cartesian coordinates in Eq. (2.28),

can be derived as follows:

∂Γ

∂z
=



03×3 I3×3 03×1 03×3 03×3 03×1

F21 03×3 F23 03×3 F25 F26

01×3 01×3 F33 01×3 F35 F36

F41 03×3 03×1 03×3 F45 03×1

03×3 03×3 03×1 −I 03×3 03×1

01×3 01×3 F63 01×3 F65 F66


. (2.30)

F21 =
3µrr⊤

∥r∥5
− µ

∥r∥3
I3×3 , F23 =

Tmax

m2||λv||
λvδ(S) +

Tmaxc

m3
λvδ

′(S) ,

F25 =
Tmaxλvλ

⊤
v

m||λv||3
δ(S)− Tmax

m||λv||
I3×3δ(S)−

Tmaxc

(m||λv||)2
λvλ

⊤
v δ

′(S) , F26 = −
Tmax

m||λv||
λvδ

′(S),

F33 =
Tmax

m2
||λv||δ′(S) , F35 =

Tmax

m||λv||
λ⊤

v δ
′(S) , F36 = −

Tmax

c
δ′(S),

F41 =
15µrr⊤λvr

⊤

||r||7
− 3µ13×1r

⊤λv

||r||5
− 3µr11×3λv

||r||5
− 3µλvr

⊤

||r||5
, F45 = −

3µrr⊤

||r||5
+

µ

||r||3
I3×3

F63 =
2Tmax

m3
||λv||δ(S) +

Tmaxc

m4
||λv||2δ′(S) , F65 = −

Tmax

m2||λv||
λ⊤

v δ(S)−
Tmaxc

m3
δ′(S)λ⊤,

F66 = −
Tmax

m2
||λv||δ′(S),

21

where S is the switching function and δ(S) is the smoothing function and δ′(S) =
∂δ

∂S
. For

each smoothing method, δ and δ′ are defined as,

1. Hyperbolic-Tangent-Based Smoothing:

δtanh(S) = 0.5

[
1 + tanh

(
S

ρ

)]
, δ′tanh(S) =

0.5

ρ
sech2

(
S

ρ

)
. (2.31)

2. L2-norm-Based Smoothing [41]:

δL2(S) = 0.5

[
1 +

S√
S2 + ρ2

]
, δ′L2(S) = 0.5

ρ2

(S2 + ρ2)
3
2

. (2.32)

One of the key implementation steps in this derivation is that, the state transition matrix is

obtained after substituting the smooth optimal throttle into the right-hand side of the differential

equations to respect the continuous state assumption in the STM derivation [73]. The idea

of substituting the smooth control is first introduced in [33] to avoid developing an event-

detection logic as part of the solution of the resulting TPBVPs. However, the authors in [33]

used logarithmic and extended logarithmic smoothing methods.

Please note that if the smooth control is not substituted in the right-hand side of the differ-

ential equations, an event-detection logic is required to determine the precise zero-crossings of

the throttle switching function [74] to not only update the control value, but also to determine

a transition matrix that is required to updating the value of the STM matrix after the control

switch has occurred.

The details involved in deriving the relations for updating the state transition matrix are

given in [75]. Finally, after forming the equations for both ż and Φ̇, the system of differential

equations consists of 210 differential equations (7 for states and mass, 7 for costates, and 14×

14 = 196 for the Jacobian matrix Φ). For a randomly initialized costates, we obtain the

Jacobian and boundary conditions and reiterate over initial costates using Powell’s method to

search for the solution that satisfies the boundary conditions. The solution procedure is similar

to what is outlined in [44]. The results of applying the advanced indirect methods will be

presented in Chapter 4.

22

Chapter 3

Optimizing Low-Thrust Trajectories Using Successive Convexification

In contrast with the indirect optimization methods, which utilize the optimality conditions to

derive control in an indirect manner, direct optimization methods tackle the optimality problem

through direct manipulation of decision variables [11]. To do so, one needs to transcribe the

continuous-time optimization problem into a finite-dimensional parametric optimization prob-

lem through various transcription schemes. The resulting parameters constitute the elements of

the entire decision vector, the decision vector is optimized/tuned to optimize the problem’s ob-

jective. This transforms the continuous-time optimal control problem into a finite-dimensional

Nonlinear programming (NLP) problem [76].

Significant progresses have been made in solving practical and challenging optimal control

problems using direct methods [77]. Direct methods offer indispensable advantages compared

to indirect methods [78, 79]. Most notably, a subclass of direct optimization methods, known

as convex optimization problems can be formulated and solved efficiently using Convex Op-

timization [21], which offers to solve various trajectory optimization problems in a matter of

milliseconds [23].

Convex optimization represents one of the state-of-the-art in rapid path-planning/guidance

algorithms [80, 81]. These methods make up for the computational inefficiencies that come

with direct methods by casting and solving the problem (if possible) in a convex form. Because

of the efficiency of the state-of-the-art interior-point methods (IPMs), convex programming

problems can be solved extremely fast and are guaranteed to converge in polynomial time,

making them highly desirable for autonomous operations.

23

More recently, convex optimization methods have been applied to low-thrust spacecraft

trajectory optimization. Wang and Grant present the minimum-time [82] and minimum-fuel

[83] convex optimization solutions. Tang et al. [84] show that the adjoined variables recovered

from convex optimization low-thrust solutions can be used to initialize the adjoint variables in

an indirect-based shooting algorithm. Kayama et al. [85] present convex optimization solutions

to low-thrust trajectory problems under three-body dynamics. Hofmann and Topputo [86] have

also investigated convex optimization methods for solving low-thrust trajectory optimization

problems.

Nurre and Taheri have conducted the first study to compare the application of convex opti-

mization using the set of MEEs and Cartesian coordinates and compared the results of a convex

optimization method against an indirect method for minimum-fuel low-thrust trajectories [14].

Inspired by the work in [14], this chapter covers the process of solving the inherently nonlinear

optimization of minimum-fuel low-thrust trajectories by converting the original problem into a

convex one and presents an advanced convex optimization method, which uses a trust-region

based algorithm. We also show that solutions obtained by the proposed convex optimization

methods have a smaller optimality gap compared to the theoretically optimal solutions obtained

using indirect methods.

3.1 Convexifying the Continuous-time Original Control Problem

Let T ∈ R3 denote the thrust vector produced by the spacecraft propulsion system. As in the

previous chapter, consider the following minimum-fuel trajectory optimization problem:

Minimize
T

J =

∫ tf

t0

∥T (t)∥2 dt

s.t.:

ẋ(t) = A(x) + B(x)
T

m
, ṁ = −∥T ∥2

c
,

∥T (t)∥2 ≤ Tmax,

x(t0)− x0 = 0, x(tf)− xf = 0,

m(t0)−m0 = 0.

(3.1)

24

The primary difference, in this formulation, is that the magnitude of the thrust vector

and its direction are not decoupled. Aside from this, we continue to address the same TP-

BVP, with the state and mass represented by x ∈ R6 and m ∈ R+, respectively. Several

steps are required to enable convex optimization, since the dynamics are continuous and highly

nonlinear. Although the derivations are based on the MEEs, the general control-affine form

ẋ(t) = A(x) +B(x)
T

m
can be applied to any choice of coordinate system and/or element sets,

as it is demonstrated in [14] for the set of spherical coordinates.

3.1.1 Introducing Logarithm of Mass

To achieve effective convexification, it is preferable to apply transformations that minimize any

potential loss of optimality. One such method was previously introduced in [49], which was

also adopted in [87]. This method utilizes the logarithm of mass as an alternative to its original

counterpart. In the dynamics, the term B(x)
T

m
couples, mass, thrust, and other states (through

the B(x) matrix). Let τ ∈ R3 denote the acceleration vector defined as τ :=
T

m
, and logarithm

of mass (z := lnm), the dynamics can be re-written as:

ẋ(t) = A(x) + B(x)τ , ż =
ṁ

m
= −∥T ∥2

cm
= −1

c

∥T ∥2
m

= −∥τ∥2
c

, (3.2)

in which the thrust and mass are decoupled causing more stability in numerical solutions later.

However, the original second-order cone constraint on thrust (i.e., ∥T ∥2 ≤ Tmax), has taken a

new form:

∥τ∥2 =
∥T ∥2
m
≤ Tmax

m
= Tmaxe

−z, (3.3)

which is not a convex constraint and requires linearization. Given a reference pseudo mass ẑ,

we can approximate the right-hand side of Eq. (3.3) as follows:

∥τ∥2 ≤ Tmaxe
−ẑ[1− (z − ẑ)]. (3.4)

A notable property of the relation in Eq. (3.4) is that it imposes a stronger constraint on

the upper bound than it is defined in the original problem. To be more specific, any feasible

25

solution to the linearized problem is also feasible for the original one. This can be demonstrated

using Taylor’s Theorem:

e−z = e−ẑ [1− (z − ẑ)] + ez∗
(z − ẑ)2

2
, (3.5)

for some z∗ ∈ [ẑ, z]. Given that the term ez∗
(z − ẑ)2

2
≥ 0, it follows that:

e−ẑ [1− (z − ẑ)] ≤ e−z. (3.6)

3.1.2 Relaxing Control Constraint

Another challenge in the formulation of a convex optimization problem is the presence of the

2-norm (∥τ∥2) in Eq. (3.2) as well as in the objective function of Eq. (3.1). This corresponds

to a constraint on the surface of the cone, which is not convex. To enable convexification, the

“epigraph approach” approach is used [21], which refers to a method where a convex optimiza-

tion problem is reformulated by using the epigraph of the objective function. To achieve the

goal, a slack variable is introduced in place of the magnitude, and the constraint is relaxed:

∥τ∥2 ≤ τ, (3.7)

where τ now represents the magnitude of the thrust vector and the constraint can be solved as

part of a second-order cone program (SOCP) with the following constraints:

ż = −τ

c
, ∥τ∥2 ≤ τ. (3.8)

Note that ż = −τ/c, is now a linear constraint n terms of the decision variables, z and

τ . A feasible solution to the original problem remains feasible in this reformulated problem;

however, the reverse is not necessarily true. Nevertheless, it is shown in [49] that the Hamilto-

nian for this problem (verified also in Chapter 4) assumes a linear form, which ensures that the

optimal control follows a bang-off-bang structure. Consequently, the actual thrust magnitude

resides on the surface of the constraint in Eq. (3.7).

26

3.1.3 Linearization of the Dynamics

Addressing the nonlinearities in the dynamics of Eq. (3.2) is still necessary. To accomplish

this, we use the idea of successive convexification [16]. More specifically, we linearize the

equations of motion around a reference state and thrust, denoted by (x̂, τ̂). These references

are initially set and are subsequently updated using the solution from the previous optimization

step in each successive iteration and is repeated until certain convergence criteria are satisfied.

In this work, the state reference is initialized by a linear interpolation between x(t0) and

x(tf); the control reference is initially set to 0 (although other values could have been con-

sidered). For any well-behaved dynamics, it is possible to perform linearization around these

reference values using a Taylor series expansion:

ẋ(t) = f(x(t),u(t)) ≈ AL(t)x(t) +BL(t)u(t) + d(t), (3.9a)

AL(t) :=
∂

∂x
f(x,u)

∣∣∣∣
x̂(t),û(t)

, (3.9b)

BL(t) :=
∂

∂u
f(x,u)

∣∣∣∣
x̂(t),û(t)

, (3.9c)

d(t) := f(x̂(t), û(t))− AL(t)x̂(t)−BL(t)û(t). (3.9d)

Upon applying the linearization to the governing equations of spacecraft motion, this will

result in the following approximation:

ẋ(t) ≈ A(x̂) +
∂A
∂x

∣∣∣∣
x̂

(x− x̂) +

[
∂B
∂x

∣∣∣∣
x̂IJK

τ̂J(x− x̂)K

]
I

+ B(x̂)τ . (3.10)

The third term, on the right-hand side, is computed using a tensor contraction method (over

the involved dimensions I , J , and K, where I and K correspond to the dimension of x, and

J corresponds to the dimension of τ) known as the Einstein summation, which is explained in

Appendix A. For the dynamics under consideration, the matrices defined in Eq. (3.9) are given

by:

27

AL(t) =
∂A
∂x

∣∣∣∣
x̂

+

[
∂B
∂x

∣∣∣∣
x̂IJK

τ̂J

]
IK

, (3.11a)

BL(t) = B(x̂), (3.11b)

d(t) = A(x̂)− ∂A
∂x

∣∣∣∣
x̂

x̂. (3.11c)

Note that the term
∂A
∂x

∣∣∣∣
x̂

(x− x̂) does not need a tensor contraction since A(x) is a vector

(see Eq. (2.13)) and its derivative results in a matrix. Finally, the original nonlinear dynamics

are linearized and expressed in an affine form, and we have reduced the original non-convex

optimization problem into an approximated continuous-time convex one:

Minimize
τ

J =

∫ tf

t0

τ(t) dt,

s.t.:

ẋ(t) = AL(t)x(t) +BL(t)τ (t) + d(t), ż = −τ

c
,

∥τ∥2 ≤ τ, τ ≤ Tmaxe
−ẑ[1− (z − ẑ)],

x(t0)− x0 = 0,

x(tf)− xf = 0,

z(t0)− ln(m0) = 0.

(3.12)

Before proceeding with the discretization step, it is important to clarify a subtle difference

between Problem (3.12) and Problem (3.1): the objectives in these two problems are not

exactly identical. To demonstrate that the objective of both problems are equivalent, we can

rewrite the objective in (3.12) as shown in [87] as:

J =

∫ tf

t0

τ(t) dt = −c
∫ tf

t0

ż(t) dt = −c
∫ tf

t0

ṁ(t)

m(t)
dt = −c ln m(tf)

m(t0)
, (3.13)

28

and thus,

m(tf) = m(t0) exp

[
−1

c

∫ tf

t0

τ(t) dt

]
. (3.14)

Equation (3.14) shows that minimizing the magnitude of the new acceleration vector, τ ,

along the entire time horizon, is equivalent to maximizing the final mass, and ultimately, mini-

mizing the original thrust (note that c > 0).

3.2 Discretization of Continuous-time Convex Problems

To solve Problem (3.12) using convex optimization, it is necessary to discretize both the dy-

namics and the objective and the constraints. This step turns the infinite-dimensional optimiza-

tion problem into a finite-dimensional parametric optimization problem. Over the past decades,

efficient interior-point algorithms are developed for solving convex optimization problems.

Following the approach in [88], the state transition matrix (STM), introduced in Chapter 2,

along with convolution operations, is used to obtain an accurate discretized formulation suitable

for convex optimization. The trajectory is discretized into K evenly distributed discretization

points. Let us define the following sets for convenience:

K := {0, 1, . . . , K − 2, K − 1},

K̄ := {0, 1, . . . , K − 3, K − 2}.
(3.15)

Previous studies assume a first-order hold on control over each time step to preserve more

feasibility. Thus, over any time segment t ∈ [tk, tk+1], the acceleration vector, τ (t), can be

expressed in terms of τk := τ (tk) and τk+1 := τ (tk+1) as follows:

τ (t) := αk(t)τk + βk(t)τk+1, t ∈ [tk, tk+1], ∀k ∈ K̄, (3.16a)

αk(t) :=

(
tk+1 − t

tk+1 − tk

)
, (3.16b)

βk(t) :=

(
t− tk

tk+1 − tk

)
. (3.16c)

Following the details of the derivation of the STM in Chapter 2, ΦA(tk+1, tk) is donated as the

STM and describes the zero-input solution from xk := x(tk) to xk+1 := x(tk+1). The same

29

x(tk+1)x(tk)

ΦA(tk+1, tk)

ΦA(tk+1, t) ΦA(tk+1, t
′)

τ (t)
d(t)

τ (t′)
d(t′)

Figure 3.1: Diagram showing how x(tk+1) is constructed. While ΦA(tk+1, tk) maps x(tk) to
x(tk+1), Φ(tk+1, t) and Φ(tk+1, t

′) maps two instances of control and independent to the final
state through convolution.

differential equations are used:

Φ̇A(t, tk) = AL(t)ΦA(t, tk), ΦA(tk, tk) = I, ∀k ∈ K̄, (3.17)

The discrete-time dynamics can be expressed as:

xk+1 = Ākxk + B̄kτk + C̄kτk+1 + d̄k, ∀k ∈ K̄, (3.18a)

Āk := ΦA(tk+1, tk), (3.18b)

B̄k :=

∫ tk+1

tk

ΦA(tk+1, t)BL(t)αk(t)dt, (3.18c)

C̄k :=

∫ tk+1

tk

ΦA(tk+1, t)BL(t)βk(t)dt, (3.18d)

d̄k :=

∫ tk+1

tk

ΦA(tk+1, t)d(t)dt, (3.18e)

where the convolution operator was applied to account for the effect of each control input

and constant perturbation on x(tk+1) (see Fig. 3.1). In these equations, the integrands are

functions of t, while the references (that we monitor) are discrete and finite. To approximate the

continuous solution, the discrete references for each segment are used to construct a continuous

30

trajectory by incorporating the trajectory itself as part of the integration, resulting in a more

accurate representation of continuous dynamics in the discrete formulation.

Note that for practical purposes, it is not efficient to calculate Φ(tk+1, t) for all values of t.

Also note that, for Φ itself, we only monitor Φ(t, tk) for all values of t, which is in the opposite

direction of the sense of increase in the dummy variable of integration. To address this, [89]

utilizes the following identity:

Φ(tk+1, t) = Φ(tk+1, tk)Φ
−1(t, tk), (3.19)

which, for instance, converts Eq. (3.18c) into:

B̄k := ΦA(tk+1, tk)

∫ tk+1

tk

Φ−1
A (t, tk)BL(t)αk(t) dt. (3.20)

Finally, the constraints in our problem are applied at each discrete point along the trajec-

tory and control, making the problem ready to be solved using a convex optimization solver.

3.3 Successive Convex Optimization & Trust Region

Due to the convexification process, particularly the linearization of dynamics, the original prob-

lem is reduced to a subproblem that is not an entirely accurate representation of the initial for-

mulation. Similar to Newton’s method and other iterative approaches, this convex subproblem

serves as an intermediate solution and is solved iteratively.

Through repeated iterations of Successive Convex Optimization (SCVX), the convex sub-

problem converges to a solution that, due to the proximity of the linear approximation, accu-

rately represents a solution to the original problem. To effectively manage deviation from the

reference solution, trust-region constraints are commonly applied to restrict the update step

sizes (within each iteration of the SDCVX) to within a neighborhood of the reference solution.

In this research, we focus primarily on adaptive trust-region methods.

31

3.3.1 Convex Subproblem

One practical concern is the issue of artificial infeasibility [89, 22, 90, 14]. The artificial in-

feasibility occurs when, despite the existence of a feasible solution to the original nonlinear

dynamics, the problem becomes infeasible after linearization is applied. To address this, slack

variables are introduced to help the convex optimization process find a solution, because the

slack variables play the role of “virtual” controls and are meant to prevent the potential infea-

sibility caused by the linearization.

The use of slack variables is then penalized (with the use of a properly chosen norm) to

ensure that, when a feasible trajectory exists, the slack variables approach zero. Eventually and

on a converged solution, the penalty term will be effectively negligible, meaning that the ob-

tained states and controls are accurate enough to satisfy the equations of motion, and therefore

the solution is a dynamically feasible one.

Let hk ∈ R6 ∀k ∈ K̄ denote the vector of slack variables. Finally, constructing the convex

subproblem:

Minimize
τk,τk,xk,zk,hk

L =
∑
k∈K̄

τk + τk+1

2
(tk+1 − tk) + C

∑
k∈K̄

5∑
i=0

|hk,i|, (3.21a)

s.t.: (3.21b)

xk+1 = Ākxk + B̄kτk + C̄kτk+1 + d̄k + hk, ∀k ∈ K̄, (3.21c)

zk+1 = zk −
τk + τk+1

2c
(tk+1 − tk), (3.21d)

∥τk′∥2 ≤ τk′ , ∀k′ ∈ K, (3.21e)

τk′ ≤ Tmaxe
−ẑk′ [1− (zk′ − ẑk′)], (3.21f)

x0 = x(t0), xK−1 = x(tf), z0 = ln(m0), (3.21g)

|xk′ − x̂k′| ≤ rk′ . (3.21h)

In Eq. (3.21a), C represents a coefficient for penalizing the introduction of the slack vari-

ables. For the trust region in Eq. (3.21h), the absolute operator is used. Since this research

32

utilizes CVXPY [91], there is no need to handle the absolute operator present in the objective

manually. However, the presence of an absolute value function could be managed by intro-

ducing an auxiliary slack variable h2 with the inequality constraints −h2 ≤ h ≤ h2, then

incorporating h2 in the objective to bypass the absolute operator. Eq. (3.21d) represents the

discrete form of the continuous integral, taking a trapezoidal structure. Eq. (3.21h) is known as

the trust-region constraint, which is discussed in detail in the following subsections.

3.3.2 Trust-Region Constraint

Another common issue in applying SCVX is due to linearization, in which the previously

bounded dynamics (with finite thrust) may now become relatively unbounded and, in some

cases, ill-defined [90]. For these reasons, it is desirable to limit the deviation from the refer-

ence state variables (within each iteration). This approach, rooted in optimization theory [92],

is known as the trust-region method. The idea is simply enforced in Eq. (3.21h), meaning

that the deviation from state trajectory cannot exceed a threshold defined as r. While some

approaches [14, 87] consider a constant threshold r, in this chapter, we focus on an adaptive

approach introduced in [90].

First, we must distinguish between the actual cost, J , from the cost returned after opti-

mizing Eq. (3.21a). By “actual cost,” we mean the result when the obtained thrust profile is

applied to each segment of the trajectory (divided by discrete starting points throughout the en-

tire trajectory). While the thrust cost remains identical, the discrepancy between the achieved

states and the desired ones differs from the slack variables (which are introduced to track this

difference in the linearized version). Thus, for each segment, we can define:

Ek =

∣∣∣∣∣∣∣∣∣xk +

∫ tk+1

tk

f(x(t), τ (t)) dt︸ ︷︷ ︸
solution of the nonlinear dynamics

− xk+1︸︷︷︸
solution of the convex optimization

∣∣∣∣∣∣∣∣∣ , ∀k ∈ K̄, (3.22)

33

where Ek represents the discrepancy between the state produced by convex optimization and

the actual state obtained by propagating the nonlinear dynamics, f , from the point xk. Conse-

quently, the nonlinear cost is defined as:

J =

∫ tf

t0

τ(t) dt+ C
∑
k∈K̄

5∑
i=0

Ek,i. (3.23)

By monitoring the linear cost L (given in Eq. (3.21a)), and the nonlinear cost, J , the

SCVX algorithm is defined in Algorithm 1. After each iteration of optimization, the algorithm

monitors the predicted improvement (i.e., the difference between the previous nonlinear cost

and the obtained convex cost) and the actual nonlinear improvement.

If the improvement in the nonlinear cost is significantly lower than predicted, it indicates

an overly optimistic estimate, suggesting that the trust region should be reduced. Conversely,

if the improvement exceeds expectations, the trust region can be expanded. These adjustments

are guided by three thresholds, ρ0, ρ1, and ρ2.

Additionally, α and β represent the factors by which the trust region is reduced and ex-

panded, respectively. The iterations continue until the algorithm predicts a minimal improve-

ment. Moreover, the high-level logic for successive optimization is depicted in Fig. 3.2. It is

important to note that in the trust region, Eq. (3.21h), rk has a subscript k, indicating that the

trust region does not need to remain constant along the trajectory. Although this is not explored

in the SCVX algorithm, it will be explored in the next subsection.

34

Algorithm 1 The SCVX Algorithm
1: procedure SCVX(x̂, τ̂ , ẑ, ϵtol)
2: input Select initial state x̂ ∈ R(K−1)×6, control û ∈ R(K−1)×3, and logarithm of mass
ẑ ∈ RN−1. Initialize trust region vector r > 0. Select parameters 0 < ρ0 < ρ1 < ρ2 < 1,
rl > 0 and α > 1, β > 1.

3: while not converged, i.e., ∆L > ϵtol do
4: step 1 Solve Problem (3.21) at (x̂, τ̂ , ẑ, r) to get an optimal solution (x, τ , z).
5: step 2 Compute the actual change in the penalty cost Eq. (3.23):

∆J = J(x̂, τ̂)− J(x, τ), (3.24)

and the predicted change by the convex cost (3.21a):

∆L = J(x̂, τ̂)− L(x, τ). (3.25)

6: compute the ratio

ρ :=
∆J

∆L
. (3.26)

7: step 3
8: if ρ < ρ0 then
9: reject this step, contract the trust region radius, i.e., r ← r/α and go back to

step 1;
10: else
11: accept this step, i.e., x̂← x, τ̂ ← τ , ẑ ← z, and update the trust region radius

rk+1 by

r ←


r/α, if ρ < ρ1;

r, if ρ1 ≤ ρ < ρ2;

βr, if ρ2 ≤ ρ.

(3.27)

12: end if
13: r ← max{r, rmin}, and go back to step 1.
14: end while
15: return (x, τ , z).
16: end procedure

35

Provide Initial Guess:
x̂, ẑ, τ̂

Solve Convex
Sub-problem

Has the problem converged?

Return x, z, τ

1. Adapt the Trust Region
2. Update references if not rejected

Yes

No

Figure 3.2: High-level overview of the SCVX algorithm.

3.3.3 Enhancing Trust Region Using Nonlinearity Index

In [93], it is proposed that, since inaccuracies from linearization clearly arise from nonlinear-

ities, measuring these nonlinearities could potentially allow for adjusting the trust region ac-

cordingly—making it more conservative in highly nonlinear areas and more generous in more

linear regions. Therefore, the study suggests using the successful nonlinearity index introduced

by Junkins in [94, 95]. As used numerously in this research, the STM, ΦA(t, t0), contains the

information of zero-input evolution of trajectory, relating the initial state to a final state at time

t.

Clearly, if the dynamics are linear, the STM will be constant given any initial state. On the

other hand, the higher the deviation, the higher the nonlinearity. Given this intuition, one can

write the nonlinearity index as:

v(t, t0) := sup
i=1,...,N

∥Φi(t, t0)− Φ(t, t0)∥
∥Φ(t, t0)∥

, (3.28)

36

Figure 3.3: An illustration showcasing nonlinearity index.

where given an initial state, x0, and using Eq. (3.17), the STM Φ(t, t0) is propagated until time

t. As for Φi, the initial state is perturbed (see Fig. 3.3) over N sample perturbations:

xi(t0) = x(t0) + δxi(t0), with ∥δxi(t0)∥ = δxmax, for i = 1, · · · , N. (3.29)

The same set of equations is then propagated forward. The two resulting matrices are

subtracted, and the norm of this difference serves as the nonlinearity index, after being normal-

ized by the magnitude of Φ to eliminate the influence of the first-order linear transformation.

Finally, we sample from these perturbations and select the maximum of the collected nonlinear-

ity indices. Although sampling can be used to compute the nonlinearity matrix, [96] suggests

that this issue can be avoided by approximating the STM using State Transition Tensor (STT)

Models [97, 98, 99]. While the STM provides a first-order approximation of zero-input state

37

evolution, higher-order state transition tensors can also be employed. Define:

ΛIJK(t, t0) :=
∂2xI(t)

∂xJ(t0)∂xK(t0)
=

∂ΦIJ(t, t0)

∂xK(t0)
, (3.30)

where ΛIJK ∈ RIJK denotes the second-order STT. The method used to derive the ODE for the

STM can similarly be applied here to compute the state transition tensor. The only distinction

is using tensor derivative conventions introduced in Appendix A.

Starting from the original ODE:

xI(t1) = xI(t0) +

∫ t1

t0

fI(x(t),u(t)) dt, (3.31a)

STM ODE:

=⇒
(
∂xI(t1)

∂xJ(t0)

)
= IIJ +

∫ t1

t0

∂fI(x(t),u(t))

∂xD(t)

∂xD(t)

∂xJ(t0)
dt, (3.31b)

State Transition Tensor ODE:

=⇒ ∂2xI(t1)

∂xJ(t0)∂xK(t0)
=

∂

∂xK(t0)

(
∂xI(t1)

∂xJ(t0)

)
(3.31c)

=

∫ t1

t0

[
∂

∂xK(t0)

(
∂fI(x(t),u(t))

∂xD(t)

)
∂xD(t)

∂xJ(t0)
+

∂fI(x(t),u(t))

∂xD(t)

∂

∂xK(t0)

(
∂xD(t)

∂xJ(t0)

)]
dt,

(3.31d)

38

where:

∂

∂xK(t0)

(
∂fI(x(t),u(t))

∂xD(t)

)
=

∂2fI(x(t),u(t))

∂xD(t)∂xE(t)

∂xE(t)

∂xK(t0)
, (3.31e)

∂

∂xK(t0)

(
∂xD(t)

∂xJ(t0)

)
=

∂2xD(t)

∂xJ(t0)∂xK(t0)
=⇒ ∂2xI(t1)

∂xJ(t0)∂xK(t0)
= (3.31f)∫ t1

t0

[
∂2fI(x(t),u(t))

∂xD(t)∂xE(t)

∂xE(t)

∂xK(t0)

∂xD(t)

∂xJ(t0)
+

∂fI(x(t),u(t))

∂xD(t)

∂2xD(t)

∂xJ(t0)∂xK(t0)

]
dt,

(3.31g)

Here, each term represents:

ΛIJK(t1) =

∫ t1

t0

[HIDE(t)ΦEK(t, t0)ΦDJ(t, t0) + AID(t)ΛDJK(t, t0)] dt. (3.31h)

Starting from the system dynamics in Eq. (3.31a), by taking the partial derivative w.r.t. xJ(t0),

we obtain the already mentioned ODE for the State Transition Matrix (STM), this time with

specified dimensions. In Eq. (3.31b), the resulting STM has dimensions IJ , hence the two

factors in the integral—having dimensions ID and DJ—should yield IJ through matrix mul-

tiplication.

To derive the STT, we take another derivative in Eq. (3.31c) w.r.t. xK(t0). Note that the

subscript K is used only to distinguish dimensions and does not imply that x(t0) is a different

variable. In Eq. (3.31d), the product rule is applied, while in Eq. (3.31e), the chain rule is

utilized. Eq. (3.31f) reverts to the definition of the second-order STT. Substituting in these

results yields Eq. (3.31g). Finally, by replacing each term with its respective representation, we

arrive at Eq. (3.31h), where H is the Hessian of the dynamics (ẋ) w.r.t. the state variables, A is

the Jacobian, Φ is the STM, and Λ is the STT.

The integral in Eq. (3.31h) contains two terms as integrands. In the first term, the factors

have dimensions IDE, EK, and DJ , while in the second term, they have dimensions ID and

DJK. Both yield the final dimension of IJK. To compute these operations, the Einstein

summation convention (Einsum) can be conveniently utilized using Python’s NumPy:

Lambda_dot = np.einsum(’IDE,EK,DJ->IJK’, H, Phi, Phi) + np.einsum(’ID,DJK->IJK’, A, Lambda).

39

Like the STM, the STT can also be computed for each trajectory segment during the con-

vex optimization process, as explained in Section 3.2. In [96], it is proposed that the perturbed

STM in the numerator of Eq. (3.28) can be approximated using the STT as follows:

∥Φi(t, t0)− Φ(t, t0)∥
∥Φ(t, t0)∥

≈ ∥�
���Φ(t, t0) + [ΛIJK(t, t0)δxi,K]IJ −����Φ(t, t0)∥

∥Φ(t, t0)∥
, (3.32)

where the tensor approximation replaces the need for directly computing the perturbed STM.

The same authors in [100] assume that each entry of δx is either +1 or−1. Under this assump-

tion, they use the entrywise L1 norm for the matrix, leading to the following expression for the

nonlinearity matrix:

v(t, t0) = sup
i=1,...,N

∥[ΛIJK(t, t0)δxi,K]IJ∥
∥Φ(t, t0)∥

=

∑n
i=1

∑n
j=1

∑n
k=1 |Λijk(t, t0)|∑n

i=1

∑n
j=1 |Φij(t, t0)|

. (3.33)

Furthermore, since we are interested in the contribution of each state variable to the non-

linearity index, the directional nonlinearity index can be computed by considering the specific

variable of interest in the last dimension:

ve(t, t0) =

∑n
i=1

∑n
j=1 |Λije(t, t0)|∑n

i=1

∑n
j=1 |Φij(t, t0)|

. (3.34)

This would be the case if the perturbation vector δxe takes the form of a one hot vector:[
0 . . . 0 δx 0 . . . 0

]
. In the previous subsection, the trust region, r in (3.21h) remained

constant throughout the trajectory segments. Now, given this nonlinearity index for each seg-

ment and along each direction, we will arrive at vKE , where K is the dimension for segments

and E is the dimension for each direction of the state vector. Then the trust region can be

modified using the nonlinearity index with:

r̃KE ← (
s

v
)KErE, (3.35)

where s is a scaling parameter. Replacing r̃ in Eq. (3.21h) with the previous trust region allows

for penalizing nonlinearity while maintaining a larger trust region in more linear regions. For

40

stability,
s

v
is clipped between two values. Note that if the system is almost linear, this value

can become enormous.

41

Chapter 4

Numerical Simulations and Results

We investigate two benchmark fixed-time minimum-fuel trajectory optimization problems: the

Earth-to-Mars and Earth-to-Dionysus problems [33]. Given the bang-off-bang nature of opti-

mal control in these scenarios, numerical solvers and integrators may face significant challenges

in solving these problems. To address and overcome issues in solving these problems, we com-

pare two smoothing functions, HTS and L2 (short for L2-norm-based) methods, solving both

using Cartesian and MEEs as outlined in earlier chapters. Additionally, we examine the im-

pact of calculating the sensitivities using the STM for both regularization methods and for both

problems. Furthermore, the problems are solved using the proposed SCVC method and com-

pared against indirect results, with a detailed examination of iterations, especially when the

trust region is enhanced with a nonlinearity index.

The time and distance units used to solve the problems, respectively, are TU = 3.1536 ×

107 s, AU = 1.496 × 108 km. The unknown initial values for the costates, in the Cartesian

coordinate system, are randomly generated in the range [0, 1], and for the MEEs, they are

randomly generated in the range [0, 0.1] except for λm, which is randomly generated in the

range [0, 1.0]. Moreover, the relative and absolute tolerances for the numerical integrator are

both set to 1.0× 10−13.

The code was developed using Python leveraging Sympy [101] and Casadi libraries [102].

Casadi is employed for modeling the problem, while SciPy [103] is used for numerical inte-

gration and root finding. It is noteworthy that the default nonlinear root finder in SciPy utilizes

the original Minpack [104] hybrid process, which is an implementation of a modified version

42

of Powell’s dog leg method [92]. Finally, CVXPY [91] was utilized for solving the convex

optimization subproblems, where the SOCPs were solved using ECOS [60].

4.1 Minimum-Fuel Earth-to-Mars Problem

In this problem, the spacecraft should leave the Earth and rendezvous with Mars over a fixed

time of flight of TOF = 348.795 days. Only the heliocentric phase of flight is considered,

and the hyperbolic excess velocity vectors with respect to Earth and Mars are assumed to be

zero. We used subscript ‘E’ for denoting position and velocity vectors of the Earth. We also

used ‘M ’ for position and velocity vectors of Mars. The parameters and boundary conditions

that are used for this problem are summarized in Table 4.1. Note that MEEs can be obtained

from the Cartesian boundary conditions [67]. Furthermore, the hyperparameters for the SCVX

algorithm are given in Table 4.2.

Table 4.1: Earth-to-Mars problem: spacecraft mission parameters and initial/final conditions.
Symbol Value (unit)

µ 132712440018 (km3/s2)
m0 1000 (kg)
Isp 2000 (s)
Tmax 0.5N

(rE,vE)
rE = [−140699693,−51614428, 980]⊤ (km),

vE = [9.774596,−28.07828, 4.337725× 10−4]⊤ (km/s)

(rM ,vM)
rM = [−172682023, 176959469, 7948912]⊤ (km),

vM = [−16.427384,−14.860506, 9.21486× 10−2]⊤ (km/s)
TOF 348.795 (days)

Table 4.2: Parameters for successive convex optimization (Earth-to-Mars).
Parameter Value
Number of discrete points (N) 1000
Penalty coefficient (C) 30
Tolerance (ϵtol) 1× 10−3

Estimated final mass 500
Trust region vector [10, 0.1, 10, 1, 1, 10]
Step size increase factor (α) 1.5
Step size decrease factor (β) 1.5
Lower threshold (ρ0) 0.04
Middle threshold (ρ1) 0.2
Upper threshold (ρ2) 0.7

43

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x (AU)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
(A
U

) SC Trajectory
Earth
Mars

Figure 4.1: Earth-to-Mars problem: x − y view of the optimal trajectory for ρ = 1.0 × 10−5.
The red arrows show the thrust direction.

The indirect method results, for 100 randomly generated sets of costates, are summarized

in Table 4.3. The last column refers to the average time it took for the solver to find a solution.

Note that this average time includes the time for all values of ρ from 1.0 to 1.0×10−5. From the

results, it is observed that L2 smoothing has a slight advantage over the HTS method. Moreover,

confirming the results of previous studies [33, 44], using the STM method greatly improves the

convergence rate of the nonlinear root-finding algorithms. In Table 4.3, the optimal final mass

for this problem is m(tf) = mf = 603.935 kg, which is consistent with the globally optimal

solution for this benchmark problem [33]. The minimum-fuel trajectory is shown in Fig. 4.1.

Figure 4.2 shows the throttle and switching function values for L2, HTS, and SCVX methods.

44

0 1 2 3 4 5 6
Time (TU)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
δ

Indirect: L2
Indirect: HTS
Switching Functi n
Direct: SCVX

Figure 4.2: Earth-to-Mars problem: throttle and switching function vs. time for ρ = 1.0×10−5.

Table 4.3: Earth-to-Mars problem: comparison of convergence rate of the Indirect method for
HTS and L2 smoothing and for Cartesian and MEEs with and without the STM.

Smoothing Function Coordinates STM Convergence % Time (s)
Hyperbolic Tangent Cartesian True 85 1.60
Hyperbolic Tangent Cartesian False 76 1.62
L2 Cartesian True 89 1.60
L2 Cartesian False 78 1.47
Hyperbolic Tangent MEE True 76 1.25
Hyperbolic Tangent MEE False 75 0.98
L2 MEE True 77 1.37
L2 MEE False 66 1.29

4.2 Minimum-Fuel Earth-to-Dionysus Problem

In this problem, the spacecraft departs from Earth and rendezvous with the asteroid Dionysus

over a fixed time of flight of 3534 days. Only the heliocentric phase of flight is considered, and

the hyperbolic excess velocities with respect to Earth (subscript ’E’) and Dionysus (subscript

’D’) are assumed to be zero. The parameters and boundary conditions used for this problem

are summarized in Table 4.4. Additionally, the hyperparameters for the SCVX algorithm are

listed in Table 4.5.

45

Table 4.4: Earth-to-Dionysus problem: spacecraft/mission parameters and initial/final condi-
tions.

Symbol Value (unit)
µ 132712440018 (km3/s2)
m0 4000 (kg)
Isp 3000 (s)
Tmax 0.32 (N)

(rE,vE)
rE = [−3637871.081, 147099798.784,−2261.441]⊤ (km),

vE = [−30.265097,−0.8486854, 0.505× 10−4]⊤ (km/s)

(rD,vD)
rD = [−302452014.884, 316097179.632, 82872290.0755]⊤ (km),

vD = [−4.533473,−13.110309, 0.656163]⊤ (km/s)
TOF 3534 days

Table 4.5: Parameters for successive convex optimization (Earth-to-Dionysus)
Parameter Value
Number of discrete points (N) 1000
Penalty coefficient (C) 5
Tolerance (ϵtol) 5× 10−3

Estimated final mass 2500
Initial trust region vector [10, 0.1, 10, 1, 1, 10, 30]⊤

Step size increase factor (α) 1.5
Step size decrease factor (β) 1.5
Lower threshold (ρ0) 0.04
Middle threshold (ρ1) 0.2
Upper threshold (ρ2) 0.7

The problem features multiple extremal points [15], corresponding to different numbers

of revolutions around the Sun. The most optimal solution involves five orbital revolutions, as

shown in the three-dimensional (3D) view of the trajectory in Fig. 4.3. The projection onto the

x − y plane is depicted in Fig. 4.4. The time histories of the throttle and switching functions

for L2, HTS, and SCVX methods are shown in Fig. 4.5.

The results of the simulations are presented in Table 4.6. In total, 100 randomly generated

initial costates are considered. The L2 smoothing method has a slight advantage over HTS,

except when the STM is not used with MEEs. The optimal final mass is m(tf) = mf = 2718.33

kg, which aligns with the globally optimal solution for this problem [33].

46

x (AU)

−2.0
−1.5

−1.0
−0.5

0.0
0.5

1.0
1.5

y (AU
)

−1

0

1

2

3

z
(A
U

)

−0.2

0.0

0.2

0.4

0.6

SC Trajectory
Earth
Dionysus

Figure 4.3: Earth-to-Dionysus problem: 3D view of the minimum-fuel trajectory for ρ = 1.0×
10−5. The red arrows indicate the thrust vector direction.

4.3 Smoothing Parameter in Regularization of Indirect Methods

For indirect methods, we initially set the value of ρ (the smoothing parameter) to 1 to find an

initial solution. The obtained solution is then fed back into the problem with a reduced value

of ρ← 0.1ρ and solved again. This iterative process continues until ρ reaches 1.0× 10−5.

For the Earth-to-Mars problem, the throttle profile and its sensitivity to different values

of ρ are shown in Fig. 4.6, which depicts the throttle behavior for five distinct values of ρ.

This analysis demonstrates the gradual transition from a smooth control profile at higher ρ to a

sharper, bang-bang type control as the value of ρ decreases. The impact of ρ on the final mass

is illustrated in Fig. 4.7, highlighting the trade-off between regularization smoothness and fuel

efficiency.

47

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x (AU)

−1

0

1

2

3

y
(A
U

)

SC Trajectory
Earth
Dionysus

Figure 4.4: Earth-to-Dionysus problem: x−y view of the optimal trajectory for ρ = 1.0×10−5.

0 10 20 30 40 50 60
Time (TU)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

δ

Indirect: L2
Indirect: HTS
Switching Functi n
Direct: SCVX

Figure 4.5: Earth-to-Dionysus problem: throttle and switching function vs. time for ρ =
1.0× 10−5.

Similarly, for the Earth-to-Dionysus problem, the variation in throttle profiles with chang-

ing ρ values is depicted in Fig. 4.8. The results reveal a similar trend, where a smoother control

profile is observed at higher ρ values, transitioning to a more step-like throttle behavior at lower

48

Table 4.6: Earth-to-Dionysus problem: comparison of results using Cartesian and MEEs for
L2 and HTS methods with and without STM.

Smoothing Function Coordinates STM Convergence % Time (s)
Hyperbolic Tangent Cartesian True 34 20.48
Hyperbolic Tangent Cartesian False 3 9.33
L2 Cartesian True 40 22.34
L2 Cartesian False 3 19.87
Hyperbolic Tangent MEE True 70 5.05
Hyperbolic Tangent MEE False 36 4.23
L2 MEE True 72 5.35
L2 MEE False 34 4.01

0 1 2 3 4 5 6
Time (TU)

0.0

0.2

0.4

0.6

0.8

1.0

δ

ρ= 1.0
ρ= 0.1
ρ= 0.01
ρ= 0.001
ρ= 0.0001

Figure 4.6: Earth-to-Mars problem: throttle profile vs. time for different values of ρ.

ρ values. The corresponding changes in final mass are shown in Fig. 4.9, indicating a consis-

tent mass efficiency improvement as ρ is reduced, aligning with the expected behavior of the

solutions of minimum-fuel trajectory optimization problems.

49

10−5 10−4 10−3 10−2 10−1 1.0
ρ

550
555
560
565
570
575
580
585
590
595
600
605

m
f (

kg
)

L2
Hyperbolic Tangent

Figure 4.7: Earth-to-Mars problem: final mass vs. ρ.

0 10 20 30 40 50 60
Time (TU)

0.0

0.2

0.4

0.6

0.8

1.0

δ

ρ= 1.0
ρ= 0.1
ρ= 0.01
ρ= 0.001
ρ= 0.0001

Figure 4.8: Earth-to-Dionysus problem: throttle vs. time for different values of ρ.

50

10−5 10−4 10−3 10−2 10−1 1.0
ρ

2440
2460
2480
2500
2520
2540
2560
2580
2600
2620
2640
2660
2680
2700
2720

m
f (

kg
)

L2
Hyperbolic Tangent

Figure 4.9: Earth-to-Dionysus problem: final mass vs. ρ.

51

4.4 Analyzing the solutions of the SCVX and its comparison when nonlinearity index is used

4.4.1 Number of Discrete Points

As SCVX relies heavily on discretization, the number of discrete points directly impacts its

performance. This effect is illustrated in Figs. 4.10 and 4.11 for the Earth-to-Mars and Earth-

to-Dionysus problems, respectively. In these figures, it can be observed that increasing the

number of discrete points leads to a higher final mass. For the Earth-to-Dionysus problem, this

outcome aligns with expectations, as a finer discretization typically yields a solution closer to

the true optimal final mass. In contrast, for the Earth-to-Mars problem, the final mass obtained

by the optimization is higher than the known optimal value. This discrepancy warrants fur-

ther investigation; however, it is likely attributable to the linearization of the original system

dynamics within the convex optimization framework.

200 400 600 800 1000
Number of Discrete points

2708

2710

2712

2714

2716

2718

fin
al
 m

as
s (
kg
)

Obtained Final Mass by SCVX
Optimal Final Mass

Figure 4.10: Earth-to-Dionysus problem: final mass vs. number of discrete points.

4.4.2 SCVX process and effectiveness of using the nonlinearity index

The number of iterations required for convergence is summarized in Table 4.7. The effect of the

nonlinearity index is constrained between 1 and 3, allowing for a more relaxed trust region in

linear regions. Additionally, the scaling parameter was set to
1

30
(as discussed in Section 3.3).

52

200 400 600 800 1000
Number of Discrete points

603.9

604.0

604.1

604.2

604.3

604.4

604.5

604.6

604.7

fin
al

 m
as

s (
kg

)

Obtained Final Mass by SCVX
Optimal Final Mass

Figure 4.11: Earth-to-Mars problem: final mass vs. number of discrete points.

The figures illustrate various aspects of the optimization process for both problems. Specif-

ically, Figs. 4.12, 4.13, and 4.14 show the evolution of final mass, nonlinear cost, and trust

region ratio against the number of iterations for the Earth-to-Mars problem. For the Earth-to-

Dionysus problem, similar analyses are presented in Figs. 4.15, 4.16, and 4.17.

Table 4.7: Number of iterations for the SCVX algorithm with and without the nonlinearity
index augmentation.

Problem With Augmentation Without Augmentation
Earth-to-Mars 5 5
Earth-to-Dionysus 25 31

53

0 1 2 3 4
Iteration

600

620

640

660

680

Fin
al

 M
as

s (
Kg

)

With Nonlinearity Index
Without Nonlinearity Index

Figure 4.12: Earth-to-Mars problem: final mass vs. iteration #.

0 1 2 3 4
Iteration

0

5

10

15

20

25

No
nl

in
ea

r C
os

t

With Nonlinearity Index
Without Nonlinearity Index

Figure 4.13: Earth-to-Mars problem: nonlinear cost vs. iteration #

54

0 1 2 3 4
Iteration

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Tr
us

t R
eg

io
n

Ra
tio

With Nonlinearity Index
Without Nonlinearity Index

Figure 4.14: Earth-to-Mars problem: trust region ratio vs. iteration #.

0 5 10 15 20 25 30
Iteration

2000

2100

2200

2300

2400

2500

2600

2700

2800

Fin
al
 M
as
s (

Kg
)

With Nonlinearity Index
Without Nonlinearity Index

Figure 4.15: Earth-to-Dionysus problem: final mass vs. iteration #.

55

0 5 10 15 20 25 30
Iteration

0

50

100

150

200

250

300

No
nl

in
ea

r C
os

t

With Nonlinearity Index
Without Nonlinearity Index

Figure 4.16: Earth-to-Dionysus problem: nonlinear cost vs. iteration #.

0 5 10 15 20 25 30
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Tr
us

t R
eg

io
n

Ra
tio

With Nonlinearity Index
Without Nonlinearity Index

Figure 4.17: Earth-to-Dionysus problem: trust region vs. iteration #.

56

Chapter 5

Concluding Remarks

5.1 Summary

This thesis explored the challenges and methodologies associated with solving the class of

fixed-time minimum-fuel low-thrust trajectory optimization problems, focusing on two bench-

mark missions: Earth-to-Mars and Earth-to-Dionysus. Through a comparative analysis of in-

direct methods and convex optimization techniques, this work demonstrated the effectiveness

and limitations of each approach.

Indirect optimization methods, rooted in the calculus of variations, were examined due

to their high accuracy and ability to capture fine-scale dynamics. However, the inherent dif-

ficulties in solving two-point boundary value problems (TPBVPs), highlighted the need for a

regularization technique. This study emphasized the role of control regularization in stabiliz-

ing the numerical solvers and ensuring convergence for challenging low-thrust scenarios with

discontinuous control structures. The comparative analysis between different smoothing tech-

niques (L2 and HTS) and the use of Cartesian and Modified Equinoctial Elements (MEEs)

provided deeper insights into the performance trade-offs. The inclusion of the State Transition

Matrix (STM) significantly enhanced the convergence rate of both indirect and direct methods,

underscoring its importance in sensitivity analysis.

The thesis introduced Successive Convex Optimization as a robust alternative to traditional

indirect methods by discretizing the problem and employing convexification. The augmentation

with a nonlinearity index slightly improved the number of iterations, particularly for the multi-

revolution Earth-to-Dionysus trajectory. The results demonstrated that while indirect methods

57

offer higher-resolution solutions, Successive Convex Optimization also provides a scalable and

reliable framework for practical mission scenarios.

In conclusion, this thesis contributes to the field of trajectory optimization by presenting a

comprehensive framework that leverages both indirect methods and modern convex optimiza-

tion techniques.

5.2 Future Work

Several potential research directions could further enhance the methods presented in this thesis:

1. In this thesis, the costate initialization process was performed manually without leverag-

ing specific problem insights. A promising direction for improvement involves exploring

data-driven techniques for costate initialization [105]. An interesting approach would be

to employ a reinforcement learning-based framework that iteratively learns the costate

values with minimal supervision and without the need for labeled data.

2. The nonlinearity index, employed in this research, was based on the zero-input evolution

of the states. Future studies could benefit from redefining the nonlinearity index using

a perturbation mapping that accounts for the transition between zero or first-order hold

control inputs and the final state. This could provide a more accurate measure of the

system’s nonlinear characteristics.

3. In this work, the nonlinearity index was approximated using a second-order state tran-

sition tensor. Future research could investigate the use of higher-order state transition

models to enhance the accuracy of the nonlinearity index estimation.

4. The Differential Algebra Computational Engine (DACE) [106] is a powerful tool that can

automatically compute higher-order state transition tensors and time-discrete mappings.

Incorporating DACE into future research could be especially valuable for tackling more

complex problems, where detailed higher-order analysis is required.

58

References

[1] Edgar Y Choueiri. New dawn for electric rockets. Scientific American, 300(2):58–65,

2009.

[2] Marc D Rayman and Steven N Williams. Design of the first interplanetary solar electric

propulsion mission. Journal of Spacecraft and Rockets, 39(4):589–595, 2002.

[3] Marc D Rayman, Philip Varghese, David H Lehman, and Leslie L Livesay. Results from

the deep space 1 technology validation mission. Acta Astronautica, 47(2-9):475–487,

2000.

[4] Joakim Kugelberg, Per Bodin, Staffan Persson, and Peter Rathsman. Accommodating

electric propulsion on smart-1. Acta Astronautica, 55(2):121–130, 2004.

[5] Paul D Fieseler, Jim Taylor, and Roger W Klemm. Dawn spacecraft performance:

resource utilization and environmental effects during an 11-year mission. Journal of

Spacecraft and Rockets, 57(1):147–159, 2020.

[6] Dan Lev, Roger M Myers, Kristina M Lemmer, Jonathan Kolbeck, Hiroyuki Koizumi,

and Kurt Polzin. The technological and commercial expansion of electric propulsion.

Acta Astronautica, 159:213–227, 2019.

[7] VG Petukhov. Application of the angular independent variable and its regularizing

transformation in the problems of optimizing low-thrust trajectories. Cosmic research,

57(5):351–363, 2019.

59

[8] Yazhe Meng, Hao Zhang, and Yang Gao. Low-thrust minimum-fuel trajectory optimiza-

tion using multiple shooting augmented by analytical derivatives. Journal of Guidance,

Control, and Dynamics, 42(3):662–677, 2019.

[9] Jonathan D Aziz, Jeffrey S Parker, Daniel J Scheeres, and Jacob A Englander. Low-

thrust many-revolution trajectory optimization via differential dynamic programming

and a sundman transformation. The Journal of the Astronautical Sciences, 65:205–228,

2018.

[10] Ehsan Taheri. Optimization of many-revolution minimum-time low-thrust trajectories

using sundman transformation. In AIAA Scitech 2021 Forum, page 1343, 2021.

[11] John T Betts. Survey of numerical methods for trajectory optimization. Journal of

guidance, control, and dynamics, 21(2):193–207, 1998.

[12] Emmanuel Trélat. Optimal control and applications to aerospace: some results and

challenges. Journal of Optimization Theory and Applications, 154:713–758, 2012.

[13] I Michael Ross, Qi Gong, and Pooya Sekhavat. Low-thrust, high-accuracy trajectory

optimization. Journal of Guidance, Control, and Dynamics, 30(4):921–933, 2007.

[14] Nicholas P Nurre and Ehsan Taheri. Comparison of indirect and convex-based methods

for low-thrust minimum-fuel trajectory optimization. In 2022 AAS/AIAA Astrodynamics

Specialist Conference, AAS 22, volume 782, page 21, 2022.

[15] Ehsan Taheri and John L Junkins. How many impulses redux. The Journal of the

Astronautical Sciences, 67(2):257–334, 2020.

[16] Danylo Malyuta, Yue Yu, Purnanand Elango, and Behçet Açıkmeşe. Advances in tra-

jectory optimization for space vehicle control. Annual Reviews in Control, 52:282–315,

2021.

[17] Ehsan Taheri, John L Junkins, Ilya Kolmanovsky, and Anouck Girard. A novel approach

for optimal trajectory design with multiple operation modes of propulsion system, part

1. Acta Astronautica, 172:151–165, 2020.

60

[18] Ehsan Taheri and Kshitij Mall. Minimum-fuel low-thrust trajectory optimization using

trigonometric-based regularization. In Proceedings of the 2020 AAS/AIAA Astrodynam-

ics Specialist Conference, Virtually, pages 9–13, 2020.

[19] Yevhenii Kovryzhenko and Ehsan Taheri. Vectorized trigonometric regularization for

singular control problems with multiple state path constraints. The Journal of the Astro-

nautical Sciences, 71(1):1, 2023.

[20] Yevhenii Kovryzhenko, Nicholas P Nurre, and Ehsan Taheri. Generalized vectorized

trigonometric regularization for solving optimal control problems with complex solution

structures. In AIAA Scitech 2024 Forum, page 2208, 2024.

[21] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university

press, 2004.

[22] Xinfu Liu, Ping Lu, and Binfeng Pan. Survey of convex optimization for aerospace

applications. Astrodynamics, 1:23–40, 2017.

[23] Zhenbo Wang. A survey on convex optimization for guidance and control of vehicular

systems. Annual Reviews in Control, 57:100957, 2024.

[24] Daniel Dueri, Behçet Açıkmeşe, Daniel P Scharf, and Matthew W Harris. Customized

real-time interior-point methods for onboard powered-descent guidance. Journal of

Guidance, Control, and Dynamics, 40(2):197–212, 2017.

[25] Thomas Haberkorn, Pierre Martinon, and Joseph Gergaud. Low thrust minimum-fuel

orbital transfer: a homotopic approach. Journal of Guidance, Control, and Dynamics,

27(6):1046–1060, 2004.

[26] Ehsan Taheri, Nan I Li, and Ilya Kolmanovsky. Co-state initialization for the minimum-

time low-thrust trajectory optimization. Advances in Space Research, 59(9):2360–2373,

2017.

61

[27] Max Cerf. Fast solution of minimum-time low-thrust transfer with eclipses. Proceedings

of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,

233(7):2699–2714, 2019.

[28] Samuel Sowell and Ehsan Taheri. Eclipse-conscious low-thrust trajectory optimization

using pseudospectral methods and control smoothing techniques. Journal of Spacecraft

and Rockets, 61(3):900–907, 2024.

[29] Nicholas P Nurre and Ehsan Taheri. End-to-end operationally-constrained low-thrust

transfers to gateway’s near-rectilinear halo orbit. In AIAA SCITECH 2024 Forum, page

0838, 2024.

[30] Régis Bertrand and Richard Epenoy. New smoothing techniques for solving bang–bang

optimal control problems—numerical results and statistical interpretation. Optimal Con-

trol Applications and Methods, 23(4):171–197, 2002.

[31] John E Prussing. Primer vector theory and applications. Spacecraft trajectory optimiza-

tion, 29:16, 2010.

[32] Fanghua Jiang, Hexi Baoyin, and Junfeng Li. Practical techniques for low-thrust trajec-

tory optimization with homotopic approach. Journal of guidance, control, and dynamics,

35(1):245–258, 2012.

[33] Ehsan Taheri, Ilya Kolmanovsky, and Ella Atkins. Enhanced smoothing technique for

indirect optimization of minimum-fuel low-thrust trajectories. Journal of Guidance,

Control, and Dynamics, 39(11):2500–2511, 2016.

[34] Ehsan Taheri and John L Junkins. Generic smoothing for optimal bang-off-bang space-

craft maneuvers. Journal of Guidance, Control, and Dynamics, 41(11):2470–2475,

2018.

[35] Ehsan Taheri, John L. Junkins, Ilya Kolmanovsky, and Anouck Girard. A novel approach

for optimal trajectory design with multiple operation modes of propulsion system, part

2. Acta Astronautica, 172:166–179, 2020.

62

[36] Vishala Arya, Ehsan Taheri, and John L Junkins. A composite framework for

co-optimization of spacecraft trajectory and propulsion system. Acta Astronautica,

178:773–782, 2021.

[37] Vishala Arya, Ehsan Taheri, and John Junkins. Electric thruster mode-pruning strate-

gies for trajectory-propulsion co-optimization. Aerospace Science and Technology,

116:106828, 2021.

[38] Vishala Arya, Ehsan Taheri, and John L Junkins. Low-thrust gravity-assist trajectory

design using optimal multimode propulsion models. Journal of Guidance, Control, and

Dynamics, 44(7):1280–1294, 2021.

[39] Sandeep Singh, John Junkins, Brian Anderson, and Ehsan Taheri. Eclipse-conscious

transfer to lunar gateway using ephemeris-driven terminal coast arcs. Journal of Guid-

ance, Control, and Dynamics, 44(11):1972–1988, 2021.

[40] Ryota Nakano, Ehsan Taheri, and Masatoshi Hirabayashi. Time-optimal and fuel-

optimal trajectories for asteroid landing via indirect optimization. In AIAA SCITECH

2022 Forum, page 1128, 2022.

[41] Ehsan Taheri and Nan Li. L2 norm-based control regularization for solving optimal

control problems. IEEE Access, 11:125959–125971, 2023.

[42] Keziban Saloglu and Ehsan Taheri. Co-optimization of spacecraft and low-thrust trajec-

tory with direct methods. arXiv preprint arXiv:2408.15943, 2024.

[43] Ehsan Taheri, Ella M Atkins, and Ilya Kolmanovsky. Performance comparison of

smoothing functions for indirect optimization of minimum-fuel low-thrust trajectories.

In 2018 Space Flight Mechanics Meeting, page 0214, 2018.

[44] Vishala Arya, Ehsan Taheri, and J Junkins. Hyperbolic tangent-based smoothing with

state transition matrix implementation for generating fuel-optimal trajectories. In 29th

AAS/AIAA Space Flight Mechanics Meeting, 2019.

63

[45] Rudolf Emil Kalman et al. Contributions to the theory of optimal control. Bol. soc. mat.

mexicana, 5(2):102–119, 1960.

[46] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Lin-

ear matrix inequalities in system and control theory. SIAM, 1994.

[47] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM review,

38(1):49–95, 1996.

[48] Imre Pólik and Tamás Terlaky. A survey of the s-lemma. SIAM review, 49(3):371–418,

2007.

[49] Behcet Acikmese and Scott R Ploen. Convex programming approach to powered descent

guidance for mars landing. Journal of Guidance, Control, and Dynamics, 30(5):1353–

1366, 2007.

[50] Lars Blackmore, Behçet Açikmeşe, and Daniel P Scharf. Minimum-landing-error

powered-descent guidance for mars landing using convex optimization. Journal of guid-

ance, control, and dynamics, 33(4):1161–1171, 2010.

[51] Behçet Açıkmeşe, John M Carson, and Lars Blackmore. Lossless convexification of

nonconvex control bound and pointing constraints of the soft landing optimal control

problem. IEEE transactions on control systems technology, 21(6):2104–2113, 2013.

[52] Ping Lu and Xinfu Liu. Autonomous trajectory planning for rendezvous and proxim-

ity operations by conic optimization. Journal of Guidance, Control, and Dynamics,

36(2):375–389, 2013.

[53] Xinfu Liu and Ping Lu. Robust trajectory optimization for highly constrained rendezvous

and proximity operations. In AIAA Guidance, Navigation, and Control (GNC) Confer-

ence, page 4720, 2013.

[54] Xinfu Liu and Ping Lu. Solving nonconvex optimal control problems by convex opti-

mization. Journal of Guidance, Control, and Dynamics, 37(3):750–765, 2014.

64

[55] Xinfu Liu, Zuojun Shen, and Ping Lu. Entry trajectory optimization by second-order

cone programming. Journal of Guidance, Control, and Dynamics, 39(2):227–241, 2016.

[56] Zhenbo Wang and Michael J Grant. Constrained trajectory optimization for planetary

entry via sequential convex programming. Journal of Guidance, Control, and Dynamics,

40(10):2603–2615, 2017.

[57] Xinfu Liu. Fuel-optimal rocket landing with aerodynamic controls. Journal of Guidance,

Control, and Dynamics, 42(1):65–77, 2019.

[58] Matthew W Harris and Behçet Açıkmeşe. Minimum time rendezvous of multiple space-

craft using differential drag. Journal of Guidance, Control, and Dynamics, 37(2):365–

373, 2014.

[59] Danylo Malyuta, Michael Szmuk, and Behcet Acikmese. Lossless convexification

of non-convex optimal control problems with disjoint semi-continuous inputs. arXiv

preprint arXiv:1902.02726, 2019.

[60] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded systems. In

European Control Conference (ECC), pages 3071–3076, 2013.

[61] Jacob Mattingley and Stephen Boyd. Cvxgen: A code generator for embedded convex

optimization. Optimization and Engineering, 13:1–27, 2012.

[62] Daniel Dueri, Jing Zhang, and Behçet Açikmese. Automated custom code generation

for embedded, real-time second order cone programming. IFAC Proceedings Volumes,

47(3):1605–1612, 2014.

[63] Lars Blackmore. Autonomous precision landing of space rockets. In Frontiers of Engi-

neering: Reports on Leading-Edge Engineering from the 2016 Symposium, volume 46,

pages 15–20. The Bridge Washington, DC, 2016.

[64] Michael Szmuk, Carlo Alberto Pascucci, Daniel Dueri, and Behcet Açikmeşe. Con-

vexification and real-time on-board optimization for agile quad-rotor maneuvering and

65

obstacle avoidance. In 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 4862–4868. IEEE, 2017.

[65] Gregory Whiffen. Mystic: Implementation of the static dynamic optimal control algo-

rithm for high-fidelity, low-thrust trajectory design. In AIAA/AAS Astrodynamics Spe-

cialist Conference and Exhibit, page 6741, 2006.

[66] Donald H Ellison, Bruce A Conway, Jacob A Englander, and Martin T Ozimek. Applica-

tion and analysis of bounded-impulse trajectory models with analytic gradients. Journal

of Guidance, Control, and Dynamics, 41(8):1700–1714, 2018.

[67] John L Junkins and Ehsan Taheri. Exploration of alternative state vector choices for low-

thrust trajectory optimization. Journal of Guidance, Control, and Dynamics, 42(1):47–

64, 2019.

[68] Arthur Earl Bryson. Applied optimal control: optimization, estimation and control.

Routledge, 2018.

[69] Saeid Tafazzol, Ehsan Taheri, and Nan Li. Comparison of control regularization tech-

niques for minimum-fuel low-thrust trajectory design using indirect methods. arXiv

preprint arXiv:2409.01490, 2024.

[70] MJH Walker, B Ireland, and Joyce Owens. A set modified equinoctial orbit elements.

Celestial mechanics, 36(4):409–419, 1985.

[71] Joaquim RRA Martins and John T Hwang. Review and unification of methods

for computing derivatives of multidisciplinary computational models. AIAA journal,

51(11):2582–2599, 2013.

[72] Eric A. Butcher. Analytical mechanics of space systems: Fourth edition [bookshelf].

IEEE Control Systems, 39(5):110–111, October 2019.

[73] Hanspeter Schaub and John L Junkins. Analytical mechanics of space systems. Aiaa,

2003.

66

[74] Mohammadreza Saghamanesh, Ehsan Taheri, and Hexi Baoyin. Interplanetary gravity-

assist fuel-optimal trajectory optimization with planetary and solar radiation pressure

perturbations. Celestial Mechanics and Dynamical Astronomy, 132:1–21, 2020.

[75] Ryan P Russell. Primer vector theory applied to global low-thrust trade studies. Journal

of Guidance, Control, and Dynamics, 30(2):460–472, 2007.

[76] Bruce A Conway. A survey of methods available for the numerical optimization of con-

tinuous dynamic systems. Journal of Optimization Theory and Applications, 152:271–

306, 2012.

[77] Bruce A Conway and Stephen W Paris. Spacecraft trajectory optimization using direct

transcription and nonlinear programming. Spacecraft trajectory optimization, 29:37,

2010.

[78] Prasun N Desai and Bruce A Conway. Six-degree-of-freedom trajectory optimization

using a two-timescale collocation architecture. Journal of guidance, control, and dy-

namics, 31(5):1308–1315, 2008.

[79] Jacob A Englander and Bruce A Conway. Automated solution of the low-thrust inter-

planetary trajectory problem. Journal of Guidance, Control, and Dynamics, 40(1):15–

27, 2017.

[80] Xinfu Liu, Ping Lu, and Binfeng Pan. Survey of convex optimization for aerospace

applications. Astrodynamics, 1(1):23–40, September 2017.

[81] Danylo Malyuta, Taylor P. Reynolds, Michael Szmuk, Thomas Lew, Riccardo Bonalli,

Marco Pavone, and Behcet Acikmese. Convex Optimization for Trajectory Generation,

June 2021. arXiv:2106.09125 [cs, eess, math].

[82] Zhenbo Wang and Michael J. Grant. Optimization of Minimum-Time Low-Thrust Trans-

fers Using Convex Programming. Journal of Spacecraft and Rockets, 55(3):586–598,

May 2018.

67

[83] Zhenbo Wang and Michael J. Grant. Minimum-Fuel Low-Thrust Transfers for Space-

craft: A Convex Approach. IEEE Transactions on Aerospace and Electronic Systems,

54(5):2274–2290, October 2018.

[84] Gao Tang, Fanghua Jiang, and Junfeng Li. Fuel-Optimal Low-Thrust Trajectory Opti-

mization Using Indirect Method and Successive Convex Programming. IEEE Transac-

tions on Aerospace and Electronic Systems, 54(4):2053–2066, August 2018.

[85] Yuki Kayama, Kathleen C. Howell, Mai Bando, and Shinji Hokamoto. Low-Thrust Tra-

jectory Design with Successive Convex Optimization for Libration Point Orbits. Journal

of Guidance, Control, and Dynamics, 45(4):623–637, April 2022.

[86] Christian Hofmann and Francesco Topputo. Toward On-Board Guidance of Low-Thrust

Spacecraft in Deep Space Using Sequential Convex Programming. page 19, 2021.

[87] Zhenbo Wang and Michael J Grant. Minimum-fuel low-thrust transfers for spacecraft: A

convex approach. IEEE Transactions on Aerospace and Electronic Systems, 54(5):2274–

2290, 2018.

[88] Michael Szmuk and Behcet Acikmese. Successive convexification for 6-dof mars rocket

powered landing with free-final-time. In 2018 AIAA Guidance, Navigation, and Control

Conference, page 0617, 2018.

[89] Danylo Malyuta, Taylor P Reynolds, Michael Szmuk, Thomas Lew, Riccardo Bonalli,

Marco Pavone, and Behcet Acikmese. Convex optimization for trajectory generation.

arXiv preprint arXiv:2106.09125, 2021.

[90] Yuanqi Mao, Michael Szmuk, Xiangru Xu, and Behçet Açikmese. Successive convexifi-

cation: A superlinearly convergent algorithm for non-convex optimal control problems.

arXiv preprint arXiv:1804.06539, 2018.

[91] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language

for convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

68

[92] Michael JD Powell. A hybrid method for nonlinear equations. Numerical methods for

nonlinear algebraic equations, pages 87–161, 1970.

[93] Nicolò Bernardini, Nicola Baresi, and Roberto Armellin. State-dependent trust region

for successive convex programming for autonomous spacecraft. Astrodynamics, pages

1–23, 2024.

[94] John L Junkins. von karman lecture: Adventures on the interface of dynamics and

control. Journal of Guidance, Control, and Dynamics, 20(6):1058–1071, 1997.

[95] John L Junkins and Puneet Singla. How nonlinear is it? a tutorial on nonlinearity of

orbit and attitude dynamics. The Journal of the Astronautical Sciences, 52:7–60, 2004.

[96] Alberto Fossà, Roberto Armellin, Emmanuel Delande, Matteo Losacco, and Francesco

Sanfedino. Multifidelity orbit uncertainty propagation using taylor polynomials. In AIAA

SciTech 2022 Forum, page 0859, 2022.

[97] Ahmad Bani Younes, James Turner, Manoranjan Majji, and John Junkins. High-order

uncertainty propagation enabled by computational differentiation. In Recent Advances

in Algorithmic Differentiation, pages 251–260. Springer, 2012.

[98] A Bani Younes and J Turner. High order state transition tensors of perturbed orbital

motion using computational differentiation. In Proceedings of the 26th AAS/AIAA Space

Flight Mechanics Meeting, Napa, CA, USA, AAS, pages 16–342, 2016.

[99] Ahmad Bani Younes. Exact computation of high-order state transition tensors for per-

turbed orbital motion. Journal of Guidance, Control, and Dynamics, 42(6):1365–1371,

2019.

[100] Matteo Losacco, Alberto Fossà, and Roberto Armellin. Low-order automatic domain

splitting approach for nonlinear uncertainty mapping. Journal of Guidance, Control,

and Dynamics, 47(2):291–310, 2024.

[101] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B. Kir-

pichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh,

69

Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi,

Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry,

Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert

Cimrman, and Anthony Scopatz. Sympy: symbolic computing in python. PeerJ Com-

puter Science, 3:e103, January 2017.

[102] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.

CasADi – A software framework for nonlinear optimization and optimal control. Math-

ematical Programming Computation, 11(1):1–36, 2019.

[103] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David

Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,

Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-

orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,

Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimr-

man, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.

Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:

Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–

272, 2020.

[104] Jorge J Moré, Burton S Garbow, and Kenneth E Hillstrom. User guide for minpack-1.

Technical report, CM-P00068642, 1980.

[105] Zhijun Chen, Jiaxiang Luo, Quan Chen, Yong Zhao, Yuzhu Bai, and Xiaoqian Chen.

Fast estimation of initial costate for time-optimal trajectory based on surrogate model.

Journal of Aerospace Engineering, 36(6):04023078, 2023.

[106] Mirco Rasotto, Alessandro Morselli, Alexander Wittig, Mauro Massari, Pierluigi

Di Lizia, Roberto Armellin, Celia Valles, and Guillermo Ortega. Differential algebra

space toolbox for nonlinear uncertainty propagation in space dynamics. 2016.

[107] Albert Einstein. Die grundlagen der allgemeinen. Relativitats- teorie, Annale der Physic,

49:769, 1916.

70

[108] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary

DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor

comprehensions: Framework-agnostic high-performance machine learning abstractions.

arXiv preprint arXiv:1802.04730, 2018.

[109] Tim Rocktäschel. Einsum is all you need - einstein summation in deep learning.

https://rockt.github.io/2018/04/30/einsum, 2018.

71

Appendices

72

Appendix A

Einstein Summation

Einstein notation [107] was introduced as a mathematical convention to simplify tensor con-

tractions in physics. While it offers a concise and efficient way to represent summation over

indices, it is often overlooked by alternative methods like explicit index-based notation and the

Kronecker product. Explicit index-based notation, which writes out each index explicitly, pro-

vides clarity but can become verbose and cumbersome for high-dimensional tensor operations.

In the original notation, considerations of covariant and contravariant indices were included.

However, for the purposes of our applications, these distinctions are not relevant.

Despite the growing popularity of Einstein notation under the term “Einsum,” particularly

in the Deep Learning community [108, 109], there remains a lack of a standardized set of

conventions for manipulating tensors using Einsum notation. This Appendix introduces a series

of conventional rules for tensor contraction and computing derivatives involving tensors using

Einsum notation, aiming to partially address this gap and streamline the mathematical handling

of tensors.

A.1 Tensor Contraction

In Einsum notation, the first aspect to consider is the dimensions of the involved tensors. For

instance, xI has a single dimension I , making it a vector; AIJ has two dimensions I and J ,

making it a matrix; and a third-rank tensor, BIJK , has three dimensions I , J , and K. Now,

suppose we intend to compute the dot product between two vectors, xI and yI . Using explicit

index-based notation, this operation is expressed as:

73

r = x · y =
∑
i∈I

xiyi, (A.1)

where xi, yi are shorthand notations for the i-th entry of x, and y tensors along their I dimen-

sion. However, in the Einsum notation, the same operation can be written as:

r = xIyI . (A.2)

This indicates that we started with two one-dimensional tensors sharing the same dimen-

sion and contracted them to a scalar. The general case for any tensor contraction operation will

be explained and become clearer shortly. Now, consider multiplying a matrix AIJ with a vector

xJ , which yields a vector yI . Using the standard matrix multiplication notation, we have:

y = Ax, (A.3)

while in explicit index notation, the same operation can be written as:

yi =
∑
j∈J

Aijxj, ∀i ∈ I, (A.4)

and in Einsum notation, it becomes:

yI = AIJxJ . (A.5)

From these two examples, we can introduce the general rule for contraction between two

arbitrary tensors:

CΓr = AΓ1BΓ2 , (A.6)

where Γ(.) := (Γ
(.)
1 , . . . ,Γ

(.)
N) represents the N-tuple of dimensions for each tensor, with each

Γ
(.)
a (for a = 1, · · · , N) indicating a specific dimension.

For example, in the matrix multiplication given in Eq. (A.5), we have Γ1 = (I, J) for A.

In explicit index notation, at each iteration, the tuples are reduced to a specific order of indices.

74

In this example: Aij; i ∈ I, j ∈ J . To formalize this, we define γ(.) = (γ
(.)
1 , . . . , γ

(.)
N), where

γ
(.)
a ∈ Γ

(.)
a represents an individual index. For instance, in Eq. (A.6), if Γ1 = (I, J,K), where

I = {1, 2, 3, 4}, J = {1, 2, 3}, K = {1, 2, 3} then γ1 = (i, j, k) where i ∈ I, j ∈ J, k ∈ K.

Next, we introduce Γ̃ as the set form of Γ, and γ̃ as its reduced counterpart. This conver-

sion from tuples to sets is helpful because the order of indices does not matter during tensor

contraction. Finally, the contraction in Eq. (A.6) can be defined using explicit index-based

notation as:

Cγr =
∑

γ̃u∈(Γ̃1∪Γ̃2)\Γ̃r

Aγ1Bγ2 , (A.7)

where the indices that do not appear in the result, are summed over (i.e., contracted). It is

also possible, though less common, for the resulting tensor to have indices not present in the

input arguments. In this case, the resulting tensor is repeated along the absent indices. The

contraction generalizes to:

CΓr = A1
Γ1A2

Γ2 · · ·AN
ΓN =⇒ Cγr =

∑
γ̃u∈(

⋃
i Γ̃

i)\Γ̃r

A1
γ1A2

γ2 · · ·AN
γN , (A.8)

where Ai corresponds to an arbitrary i-th tensor and the superscript denotes the index for each

tensor. While this notation might initially seem complex, the following sections demonstrate

that it improves the conciseness of both implementation and the representation of equations

involving tensors.

A.2 Derivative Rules

When three scalars are multiplied together, such as d = abc, determining the derivative
∂d

∂b
=

ac is straightforward. Now, consider a similar setup involving the product of three matrices,

D = ABC. In this case, computing the derivative
∂D

∂B
is not as trivial and certainly ̸= AC.

This expression would not only be incorrect, but also invalid, as the dimensions of A and C

may not align for multiplication.

75

To leap into it, let us represent the matrix multiplication using Einsum notation:

DIL = AIJBJKCKL. (A.9)

In this form, the derivative can be computed as:

∂DIL

∂BJK

= [AIJCKL]ILJK , (A.10)

which closely resembles its scalar counterpart in simplicity and notation. To show why that is

the case, first note that
∂DIL

∂BJK

means taking the derivative of every component of D w.r.t. every

component of B, which results in a 4D tensor. Looking at explicit indices:

Dil =
∑
j∈J

∑
k∈K

AijBjkCkl, (A.11)

and taking the derivative (with ∧ denoting logical ‘and’), we have:

∂Dil

∂Bj′k′
=

∑
j∈J

∑
k∈K

1(j = j′ ∧ k = k′)AijCkl = Aij′Ck′l, (A.12)

which leads to the same conclusion. In general, the derivative rule from Eq. (A.8) can be

expressed as:
∂CΓr

∂Ae
Γe′

= [A1
Γ1A2

Γ2 · · · δΓeΓe′︸ ︷︷ ︸
∂Ae

Γe

∂Ae
Γe′

· · ·AN
ΓN]ΓrΓe′ , (A.13)

where δΓeΓe′ is the Kronecker delta tensor:

δγγ′ =


1, γ = γ′,

0, otherwise.
(A.14)

In other words, entries with identical indices are assigned a value of 1, and all other entries

are assigned 0. By ΓeΓe′ or ΓrΓe′ , we denote the concatenation of dimensions.

76

A subtlety arises in Eq. (A.10), where we did not introduce these prime (’) dimensions and

computed the derivative without adding new dimensions. This approach works without issue if

the resulting tensor does not share any dimensions with the differentiation variable. However,

when dimensions are shared, taking the partial derivative yields 0 for distinct indices within the

same dimension, as they are independent of each other. By including only one pair for each

shared dimension, no information is lost, but the notation becomes less systematic. To illustrate

the difference between these conventions, consider the derivative of a vector x w.r.t. itself. For

consistency, the standard convention is to write:

∂x

∂x
= I, (A.15)

rather than yielding a vector of ones (1), which could also preserve the information but lacks

systematic notation. Setting the groundwork for derivatives, we will next examine the Product

Rule and Chain Rule within the context of Einsum.

1. Product Rule: Starting from Eq. (A.8):

CΓr(xζ) = A1
Γ1(xζ)A

2
Γ2(xζ) · · ·AN

ΓN (xζ), (A.16)

where the tensors now depend on the tensor variable x. To compute the derivative with

respect to x, we have:

∂CΓr(xζ)

∂xζ

= [
∂

∂xζ

(A1
Γ1(xζ))A

2
Γ2(xζ) · · ·AN

ΓN (xζ)

]
Γrζ

+

[
A1

Γ1(xζ)
∂

∂xζ

(A2
Γ2(xζ)) · · ·AN

ΓN (xζ)

]
Γrζ

· · ·

+

[
A1

Γ1(xζ)A
2
Γ2(xζ) · · ·

∂

∂xζ

(AN
ΓN (xζ))

]
Γrζ

.

(A.17)

77

For an avid user of Einsum, the summation in the product rule can be changed by first

concatenating each product term and then contracting the resulting dimensions:

∂CΓr(xζ)

∂xζ

= [RΓrζN]Γrζ , (A.18)

where Einsum is used as a unary operator to perform summation along the dimension N .

2. Chain Rule:

Consider a chain of tensor functions:

Aα(Bβ(Cγ)), (A.19)

then:

[
∂Aα(Bβ(Cγ))

∂Cγ

]
αγ

=

[[
∂Aα(Bβ)

∂Bβ

]
αβ

[
∂Bβ(Cγ)

∂Cγ

]
βγ

]
αγ

, (A.20)

where α,β, and γ are tuple of dimensions as before.

78

