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Abstract 

 

 

The evaluation of pavement marking materials is primarily based on their retroreflectivity 

(RL), which refers to how well they reflect vehicle headlights back toward the driver. This study 

focuses on rural roadways and thermoplastic markings to i) identify key factors contributing to RL 

degradation, ii) understand the relationship between subjective ratings and measured RL by 

marking line types, iii) develop RL prediction models without initial RL and marking age 

information as inputs, and iv) explore the statistical relationship between RL and road crashes. 

Two years of RL data (2020 and 2021) were collected from ALDOT for the Montgomery area. The 

associated traffic flow, road, location, and crash information were extracted from six different data 

sources. Beta regression, multiple linear regression, and binary logit models were employed to 

uncover statistically significant relationships. The results showed that the effects of factors 

contributing to RL degradation vary by marking line type. For example, yellow centerlines in 

residential, business, and mixed-use areas exhibited statistically significant RL degradation. RL 

degradation for white right edgeline (WREL) was significantly higher on curve segments 

compared to adjacent straight segments. In addition, the analyses found evidence supporting the 

hypothesis that officers may struggle to assign accurate subjective ratings, particularly for yellow 

markings. Moreover, this research demonstrated an effective approach for examining the statistical 

relationship between RL and road crashes by increasing the sample size through developed RL 

prediction models. The safety analyses identified that lower RL levels of WREL (below 250 

mcd/m²/lux) statistically increase the likelihood of single-vehicle run-off-road (ROR) crashes on 

curve segments and in dark conditions. The findings can help ALDOT's pavement management 

system in identifying locations with high RL degradation, enabling more targeted restriping at 

these specific segments. Moreover, the developed RL prediction models offer local transportation 
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agencies a useful tool for forecasting RL with only one year RL measurement and associated traffic 

flow information. The results from crash data analyses highlight the importance of maintaining 

adequate RL levels for highway safety. Overall, the findings of this research align with one of the 

core principles of the Safe System Approach: ‘Making Our Roads Safer’. 
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Chapter 1  Introduction 

 

This section offers a comprehensive overview of the retroreflective properties of pavement 

markings and the current practices outlined in the Manual on Uniform Traffic Control Devices 

(MUTCD) regarding minimum retroreflectivity (RL) requirements. This section discusses the 

specific RL thresholds that have been followed when restriping or installing new markings in 

Alabama. This section also emphasizes the importance of maintaining adequate RL levels in 

context of road safety and in-vehicle technologies, particularly for nighttime driving and under 

adverse weather conditions. Additionally, this section introduces the primary objectives of the 

research and outlines the key topics that will be explored in the subsequent chapters of the 

dissertation. 

1.1 Background 

 

Longitudinal pavement markings serve as crucial sources of conveying regulations, 

guidance, or warnings to motorists, offering insight into road geometry (Rasdorf et al., 2009). They 

delineate boundaries between lanes to assist drivers in choosing the correct travel path and keeping 

their vehicles within the designated lane (Fu and Wilmot, 2013). There is no doubt that pavement 

markings enhance visibility for driving both during day and night by improving the driver’s ability 

to make informed decisions (Hussein et al., 2020; Zwahlen and Schnell, 1997). The specifics of 

longitudinal pavement markings can differ depending on the number of lanes on highways. For 

instance, on two-lane roads, as viewed from the direction of travel, they encompass a yellow 

centerline (YCL) and white right edgeline (WREL), while on multilane roads, they include a 

yellow left edgeline (YLEL), white laneline(s) (WLL), and WREL (Figure 1.1). The service life 

of pavement markings is significantly influenced by the materials used. Across the nation, the 
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predominant materials for longitudinal striping include thermoplastics, solvent-borne paints, and 

water-based paints (Idris et al., 2024). Typically, agencies regard restriping intervals ranging from 

6 to 12 months for paints and 2 to 6 years for thermoplastics (Thomas and Schloz, 2001). In low 

traffic flow conditions, thermoplastic pavement markings can last up to 8 years. The higher 

durability of thermoplastics compared to paints is primarily attributed to their greater thickness 

and highly adhesive coating, resulting in stronger thermal bond with the pavement surface, making 

the markings more resistant to wear and tear (Abboud and Bowman, 2002).  

 

Figure 1.1 Pavement marking line type by lane configurations 

Deciding when the pavement marking material needs to be restriped can be challenging. 

The evaluation of pavement marking materials primarily relies on their retroreflectivity (RL), 

which refers to how well they bounce light from vehicle headlights back toward the driver (Thomas 

and Schloz, 2001). This reflective quality is what makes the markings appear bright at night and 

serves as an indicator of their visibility in darkness (Abboud and Bowman, 2002). RL is usually 

measured in units of millicandelas per square meter per lux (mcd/m²/lux). Quicker identification 

of pavement markings is linked to their RL levels, which vary in brightness (Aktan and Schnell, 

2004). For example, markings with RL of 228 mcd/m²/lux have a longer detection distance 
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compared to those with RL of 118 mcd/m²/lux (Figure 1.2). Therefore, ensuring that markings 

maintain their RL is perceived to improve road safety. Maintaining an adequate level of RL could 

play a significant role in reducing nighttime crashes and fatalities in dark and adverse weather 

conditions (Hussein et al., 2020). Particularly, enhancing safety on rural roads is the primary 

incentive for exploring the connection between RL and crashes. Lower RL values may increase 

the likelihood of single-vehicle run-off-road (ROR) crashes, which are more frequent in rural areas 

(Smadi et al., 2008). Based on RL data experiments, the qualitative states of thermoplastic marking 

can be characterized from prior studies (Ortiz-García et al., 2006; Porras-Alvarado et al., 2014), 

as depicted in Table 1.1. Assuming a failure threshold of 100 mcd/m²/lux for yellow markings, 

these studies observed that a similar degradation nature appeared in white markings at 150 

mcd/m²/lux. The qualitative states were determined by analyzing the patterns of RL degradations 

using a transition probability matrix. 

Table 1.1 RL states of thermoplastic markings (Ortiz-García et al., 2006; Porras-Alvarado et 

al., 2014; Chimba et al. 2018) 

Qualitative state RL interval (mcd/m²/lux) 

White thermoplastic Yellow thermoplastic 

Excellent  ≥ 450 ≥ 400 

Good 350-449 300-399 

Fair 250-349 200-299 

Poor 150-249 100-199 

Failure ≤ 150 ≤ 100 

 

 

Figure 1.2 Pavement markings with different RL levels at nighttime (FHWA, 2017) 
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In recent years, pavement marking RL has been documented as a crucial characteristic for 

enhancing infrastructure compatibility with advanced driver assistance systems (ADAS) and 

automated driving systems (ADS) (Pike et al., 2018). Autonomous vehicle (AV) systems are 

equipped with a variety of safety features designed to prevent crashes; however, the availability 

and functionality of these features largely depend on the level of automation of vehicle. Advanced 

safety systems become more prominent where partial driving automation is introduced. Despite 

the potential safety benefits, many of these features are not widely utilized by the public, as 

vehicles equipped with ADAS are more expensive. Table 1.2 provides an overview of a few 

technologies associated with ADAS contributing to crash prevention, focusing on systems 

specifically designed to reduce the risk of lane departure incidents. 

Table 1.2 Vehicle safety features associated with ADAS to minimize lane departure incidents 

Technology Functions 

Lane Departure Warning 

(LDW) 
• Alerts drivers when they are drifting or have drifted out 

of their lane or off the roadway. 

Lane Keeping Assistance 

(LKA) 
• Applies steering torque or brake pressure to prevent an 

impending lane departure. 

Lane Centering Assistance 

(LCA) 
• Keeps the vehicle centered in the lane, assisting the 

driver with steering. 

 

It is well established that RL is a critical parameter for pavement marking recognition by 

machine vision (MV) systems in AVs equipped with driver assistance technologies (Burghardt et 

al., 2021; Matowicki et al., 2016). Adequate RL is essential for all vision-based MV systems to 

ensure proper nighttime guidance. A research from Croatia found that the minimum RL required 

for optimal detection quality should be above 88 mcd/m²/lx (Babić et al., 2022). However, the 

study was conducted in dry conditions, and detection quality highly depends on the sensors used. 

Furthermore, the related studies specifically focused on digital image sensors designed for camera 

applications, capable of capturing high-quality images even in low-light conditions (Burghardt et 
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al., 2021; Matowicki et al., 2016; Babić et al., 2022). Therefore, there is an opportunity to 

investigate how AVs equipped with combined camera, LiDAR, and radar systems perform in 

recognizing pavement markings with lower RL in dark conditions. Each of these sensor type offers 

unique capabilities that enhance pavement marking detection in different ways (Sauter et al., 

2021): 

• Camera: High-resolution imaging allows to recognize pavement marking colors, shapes, 

and textures, specifically in good lighting conditions. 

• LiDAR: Precise 3D maps can identify raised or textured pavement markings and assess 

their position and orientation relative to the vehicle, particularly in low-visibility scenarios 

where camera may be less effective. 

• Radar: Can confirm the presence of lane boundaries and detect any obstacles on or near 

markings, improving the vehicle's understanding of the road layout in adverse weather and 

low lighting conditions. 

In terms of emerging technologies associated with ADAS, the performance of LDW 

systems improves as RL increases (Hadi and Sinha, 2011). Specifically, lower RL significantly 

reduces LDW performance under medium and high rainfall conditions. In dry and light rain at 

night, LDW performed well even at low RL levels, such as 100 mcd/m²/lx. Beyond RL, MV 

performance also depends on the color of pavement markings, as color contrast enhances detection 

(Davies, 2017). White markings are generally easier to detect than yellow ones (Davies, 2017), 

and glare can significantly affect the performance MV systems that rely on low-resolution 

monochrome cameras (Pike et al., 2018). Some studies have noted that contrast may be an even 

more important factor than RL in some instances (Cafiso and Pappalardo, 2020; Pike et al., 2018). 

Despite ongoing advancements, current MV technologies still struggle to handle road surface 
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irregularities obvious to human drivers, such as potholes, cracks, repair marks, excessive wheel 

ruts, and partially concealed or irregular markings. There has been limited research on how the 

material characteristics of pavement markings influence the performance of MV systems, with 

most studies focusing on paint, plastic, and tape markings rather than thermoplastic markings. 

The degradation rate of RL, a crucial factor determining the service life of pavement 

markings, can be influenced by various factors, including type of material, traffic volume, 

geographic location, percentage of heavy vehicles, climate conditions, road surface type, material 

thickness, type and quality of glass beads or other reflective elements used, and the initial value of 

installation (Idris et al., 2024). Transportation agencies such as American Association of State 

Highway and Transportation Officials (AASHTO), Federal Highway Administration (FHWA), and 

State Departments of Transportation (DOTs) have made significant efforts to prepare 

comprehensive standard specifications, manuals, and procedures to ensure the appropriate 

application and maintenance of pavement markings (Sasidharan et al., 2009). In this perspective, 

FHWA aims to enhance safety by setting minimum RL levels in the Manual on Uniform Traffic 

Control Devices (MUTCD), thereby meeting the nighttime visibility requirements of drivers on 

public roadways. On August 5, 2022, FHWA published a new regulation establishing national 

standards for minimum RL levels of longitudinal marking lines on all roads, varying according to 

posted speed limits (2009 MUTCD Revision 3) (FHWA, 2022). This regulation mandates that all 

state agencies establish a method by 2027 to maintain the designated minimum RL level and 

integrate RL considerations into future restriping endeavors. As per the regulation, roads with 

posted speed limits equal to or greater than 35 mph need to maintain a minimum RL of 50 

mcd/m²/lux, while no minimum threshold is set for speed limits below 35 mph. Furthermore, it is 

recommended to maintain a minimum RL of 100 mcd/m²/lux for freeways with posted speed limits 
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of 70 mph and above. These regulations and guidelines apply under dry conditions and exclude 

conditions such as ambient lighting, roads with less than 6000 annual average daily traffic (ADT), 

dashed extension lines, curb markings, parking spaces, and shared-use paths. The changes 

regarding RL in the 2009 MUTCD revisions are exhibited in Table 1.3. It is noteworthy that in the 

latest 11th Edition of the MUTCD effective in December 2023, the minimum RL requirements 

have remained consistent with the previous version, 2009 MUTCD Revision 3. In recent years, 

Alabama Department of Transportation (ALDOT) has hired a consulting firm to gather RL data 

on Alabama highways. According to the Standard Specifications for Highway Construction 

Special Provisions 2022, the initial RL of standard thermoplastic should be at least 450 mcd/m²/lux 

for white markings and 300 mcd/m²/lux for yellow markings (ALDOT, 2022). 

Table 1.3 Minimum RL values in 2009 MUTCD revisions  

Revision 3 (Effective September 6, 2022) Revision 1 & 2 (Effective June 13, 2012) 

 Standard Guidance Two-lane with 

centerline only 

All other roads 

Speed limit 

(mph) 

< 35 ≥ 35 ≥ 70 35-50 ≥ 55 35-50 ≥ 55 

RL 

(mcd/m²/lux) 

n/a 50 100 100 250 50 100 

 

1.2 Research Objectives 

 

The primary objectives of this research are follows: 

• To identify the key factors contributing to the degradation of RL based on marking line 

type 

• To understand the relationship between subjective RL ratings and measured RL in relation 

to marking line type 

• To develop regression models to predict RL specific to WREL and YCL without initial RL 

and marking age information  
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• To explore the statistical relationship between RL and targeted road crashes  

The rest of the chapter of this dissertation is organized as follows: 

• Chapter 2: Comprehensive literature review to i) synthesize existing RL prediction model, 

ii) understand how earlier studies explained subjective RL rating with measured RL, and 

iii) explore the established correlations between RL and road safety. 

• Chapter 3: An overview of the datasets collected from multiple sources and the variables 

extracted for analyses, featuring RL, traffic flow, road, and crash characteristics.   

• Chapter 4: Identify the factors contributing to the degradation of RL, including traffic 

volume, road geometry, and pavement marking characteristics. 

• Chapter 5: Explore how the distribution of measured RL varies with subjective RL rating, 

considering different pavement marking line types. 

• Chapter 6: Employ multiple regression models to develop RL prediction models for WREL 

and YCL, considering lane configurations. 

• Chapter 7: Analyze crash data to establish statistical correlations between RL and targeted 

crash frequency, with a particular focus on dark lighting conditions and single-vehicle ROR 

collisions. 

• Chapter 8: Highlight the research contributions, discuss the key findings and 

recommendations, address the study limitations, and outline potential areas for future 

research.  
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Chapter 2  Literature Review 

 

This section provides a comprehensive review of earlier studies, synthesizing their findings 

to understand the diverse methodologies used to develop RL predictive models. The discussion 

covers a range of factors, including road conditions, traffic patterns, and pavement characteristics, 

that contribute to RL degradation. In addition, a thorough examination of existing literature 

highlights the correlation between RL levels and road crashes. The section also reviews studies 

that explain the relationship between measured RL and subjective RL ratings. Overall, this 

literature review serves two primary purposes: i) identifying potential variables essential for 

developing regression models to predict RL degradation, and ii) facilitating the selection of 

relevant crash types to explore the statistical relationship between crash frequency and RL levels. 

2.1 RL Degradation Modeling 

 

During the late 1990s and early 2000s, the prevalent approach to predicting RL relied on 

simplistic linear and nonlinear regression models centered on a single variable, such as marking 

age or traffic volume (Abboud and Bowman, 2002; Andrady et al., 1997; Lee et al., 1999; Migletz 

et al., 2001). However, the low goodness of fit of these models in capturing the complexity of RL 

led to their gradual replacement with multiple linear regression models. These regression models 

have offered considerably higher goodness of fit by incorporating numerous variables such as 

initial RL (within 30 days after installation), marking age, geographic location, traffic 

characteristics, marking color, and position (Fu and Wilmot, 2013; Malyuta, 2015; Mull and 

Sitzabee, 2012; Ozelim and Turochy, 2014; Robertson et al., 2013; Sasidharan et al., 2009; 

Sitzabee et al., 2009; Wang et al., 2016). However, considering highly correlated variables can 

lead to insignificant model outcomes; for instance, cumulative traffic passage (CTP) may not be 
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included in the model if ADT and time are already taken into account (Zhang and Wu, 2010). 

Additionally, in larger datasets, increased heterogeneity can significantly diminish the model's 

performance by introducing greater variability that is difficult to account for (Zuur et al., 2009). 

Among the range of material types studied, paint and thermoplastic emerged as the most 

commonly used. However, with growing interest in alternative durable materials like epoxy, 

polyurea, preformed tape, and methyl methacrylate, researchers have developed predictive models 

tailored to these materials (Fu and Wilmot, 2013; Idris et al., 2024; Kopf, 2004; Migletz et al., 

2001; Mull and Sitzabee, 2012; Pike and Songchitruksa, 2015; Sasidharan et al., 2009; Wang et 

al., 2016). Regarding marking color, it is observed that yellow paint and thermoplastic generally 

exhibit slower RL degradation compared to white markings of the same type. However, when 

considering the position of markings, the influence of color on RL models is automatically 

regulated (with possible variations by location), as specific marking line types correspond to 

distinct colors: solid white for right edgeline, broken/solid yellow for centerline, broken white for 

laneline, and solid yellow for left edgeline. Typically, RL models are significantly associated with 

initial RL readings, traffic flow attributes, and marking age. It is worth noting that a few studies 

have revealed the non-linear degradation trend of RL, taking on an inverted parabolic shape, where 

readings initially rise above the initial values before gradually declining thereafter (Chimba et al., 

2018; Lee, 2009; Sitzabee et al., 2009).  

In Alabama, over twenty years ago, Abboud and Bowman (2002) conducted a case study 

aimed at determining the service life of paint and white thermoplastic markings. They utilized field 

data from 520 miles of longitudinal pavement markings across nine counties in Alabama, setting 

a minimum RL standard of 150 mcd/m²/lux for WREL. The study revealed a logarithmic 

relationship between RL and traffic exposure, a function of Annual Average Daily Traffic (AADT) 
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and marking age. Building upon this groundwork, Ozelim and Turochy (2014) embarked on a 

study in the last decade to assess the applicability of established RL models to Alabama's road 

conditions, alongside testing their newly developed models. They used four years of RL data, 

ensuring a comprehensive representation of road segments across the state, encompassing both 

two-lane and four-lane highways. While some conventional models showed promising 

performance on actual RL data, the service life estimates derived from the best-fitted models for 

thermoplastic materials seemed impractical. Consequently, the study pivoted towards developing 

new regression models to forecast RL for each marking color attribute. The results underscored a 

strong correlation between RL and factors such as marking age and AADT, with initial RL value 

exhibiting minimal influence on model accuracies. The unit of AADT is vehicles per day (vpd). 

The final regression equations from both of these Alabama studies are outlined in Table 2.1.  

Table 2.1 Regression equations for RL prediction in Alabama 

Reference Equations 

Abboud and 

Bowman (2002) 
𝑅𝐿 = −19.457 ∗ ln(𝑉𝐸) + 26.27 (for paint) 

𝑅𝐿 = −70.806 ∗ ln(𝑉𝐸) + 639.66 (for thermoplastic) 

𝑉𝐸 = 𝐴𝐷𝑇𝑙𝑛 ∗ 𝑃𝑀𝑎𝑔𝑒 ∗ 20.4 ∗ 10
−3 

𝑅𝐿 = retroreflectivity (mcd/m²/lux), 𝑉𝐸 = vehicle exposure (thousands of 

vehicles), 𝐴𝐷𝑇𝑙𝑛 = ADT per lane, 𝑃𝑀𝑎𝑔𝑒 = marking age (months). 

Ozelim and 

Turochy (2014) 
𝑅𝐿 = 619.4 − 5.13𝑡 − 0.00699 ∗ 𝐴𝐴𝐷𝑇 (for white marking) 

𝑅𝐿 = 407.3 − 4.969𝑡 − 0.00217 ∗ 𝐴𝐴𝐷𝑇 (for yellow marking) 

𝑅𝐿 = retroreflectivity (mcd/m²/lux), 𝑡 = marking age (months), 𝐴𝐴𝐷𝑇 = 

Annual average daily traffic (vpd) 

 

In addition to utilizing RL data collected from specific states, numerous studies have 

incorporated data from the National Transportation Product Evaluation Program (NTPEP) to 

develop RL prediction models (Idris et al., 2024; Mousa et al., 2021; Wang et al., 2016). NTPEP 

selects test decks from various locations across the United States (Minnesota, Pennsylvania, 

Florida, and Wisconsin), encompassing diverse traffic patterns and geographical conditions, and 

installs marking products in a transverse direction. The degradation of RL in transverse skip lines 
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aligns with longitudinal pavement markings, providing a strong representation of RL degradation. 

RL readings are collected at 12 different time intervals (0, 1, 2, 3, 11, 12, 15, 21, 24, 27, 33, 36 

months) over a period of up to three years. Consequently, there exists a substantial volume of data 

suitable for the implementation of comprehensive machine learning algorithms. A few researchers 

have taken an intriguing approach by categorizing RL levels into bins (Sitzabee et al., 2013; Xu et 

al., 2021). However, this method overlooks the fact that linearly deriving the thresholds is 

inherently limited, as RL performance has consistently demonstrated better modeling results when 

approached logarithmically. These researchers explore various bin intervals, ensuring that all bins 

maintain RL levels above previously recommended minimum thresholds. Table 2.2 outlines a 

compilation of literature review in the U.S. proposing models for RL degradation. 



 

 

Table 2.2 A summary of studies in the U.S. on RL degradation modeling 

Reference Study area Material(s) Input(s) Method(s) 𝑹𝟐 

Andrady et al. 

(1997) 

TN, KY, CO, 

and OH 

Thermoplastics Marking age, initial RL Simple linear 

regression 

0.50-0.71 

Lee et al. (1999) MI Waterborne paint, 

thermoplastic, 

polyester, tape 

Marking age Simple linear 

regression 

0.14-0.18 

Migletz et al. 

(2001) 

AZ, AR, CA, 

CO, FL, GA, 

IA, KS, LA, 

MN, MO, NH, 

NC, OK, UT, 

VI, WA, WV, 

WI 

Waterborne paint, 

thermoplastics, 

polyurea material, 

epoxy paint 

Traffic volume, initial RL Linear and exponential 

regression 

---- 

Abboud and 

Bowman (2002) 

AL Waterborne paint, 

thermoplastic 

Marking age, traffic volume Exponential regression 0.31-0.58 

Sarasua et al. 

(2003) 

SC  Thermoplastic, epoxy Marking age Simple linear 

regression 

0.21-0.47 

Thamizharasan et 

al. (2003) 

SC Thermoplastic and 

epoxy 

Marking age, traffic volume Multiple linear 

regression 

0.21-0.78 

Lindly and 

Wijesundera 

(2004) 

AL Thermoplastics and 

profiled 

Traffic volume  Linear and exponential 

regression 

0.53-0.67 

Kopf (2004) WA Waterborne and 

solvent-borne paint 

Marking color, AADT, 

marking age 

Linear and exponential 

regression 

0.33-0.73 

Bahar et al. 

(2006) 

AL, CA, MN, 

MO, PA, TX, 

UT, WI 

Waterborne paint, 

thermoplastic 

Marking age Inverse polynomial 

model 

--- 

Hollingsworth 

(2008) 

NC Waterborne paint, 

thermoplastic 

Marking age, traffic volume,  Logarithmic 0.53 

Sitzabee et al. 

(2009) 

NC Thermoplastic, 

waterborne 

Marking age, initial RL, Multiple linear 

regression 

0.60-0.75 
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Reference Study area Material(s) Input(s) Method(s) 𝑹𝟐 

 paint traffic volume, marking 

location, marking color 

Sasidharan et al. 

(2009) 

PA Epoxy and waterborne 

paint 

Marking age, ADT, line type, 

Surface type 

Multiple linear 

regression 

0.27-0.44 

Hummer et al. 

(2011) 

NC Solvent-borne 

paint 

Initial RL, marking age Linear mixed-effect 

model 

0.67 

Karwa and 

Donnell (2010) 

NC Thermoplastic Initial RL, marking age, 

traffic volume, marking type, 

marking location 

Artificial Neural 

Network 

(ANN) 

--- 

Mull and Sitzabee 

(2012) 

NC and OH Solvent-borne 

paint 

Marking age, AADT, 

initial RL, 

winter road maintenance 

activities 

Multiple linear 

regression 

0.76 

Fu and Wilmot 

(2013) 

LA Thermoplastic, tape, 

and inverted profile 

thermoplastic 

Marking age, traffic volume Multiple linear 

regression 

0.18-0.89 

Robertson et al. 

(2013) 

SC Waterborne paint Marking age, traffic volume, 

lane width, 

shoulder width 

Multiple linear 

regression 

0.24-0.34 

Ozelim and 

Turochy (2014) 

AL Thermoplastic Marking age, traffic volume, 

initial RL 

Multiple linear 

regression 

0.46-0.50 

Malyuta (2015) TN Waterborne paint, 

thermoplastic 

Marking age, traffic volume  Multiple linear 

regression 

0.33-0.46 

Pike and 

Songchitruksa 

(2015) 

TX Waterborne and epoxy 

paint, polyurea 

material, 

thermoplastics 

Marking age, 

initial RL 

Exponential regression 0.64-0.98 

Wang et al. 

(2016) 

FL, PA, MN Permanent polymeric 

tape and methyl 

methacrylate 

Marking age, maximum RL 

value, and traffic volume 

Multiple linear 

regression 

0.56-0.68 

Chimba et al. 

(2018) 

TN Thermoplastic Marking age Markov Chain Model ---- 
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Reference Study area Material(s) Input(s) Method(s) 𝑹𝟐 

Mohamed et al. 

(2019) 

ID Waterborne Marking age Simple linear 

regression 

0.80-0.97 

Mousa et al. 

(2021) 

FL, PA, MN, 

MS 

Waterborne paint Initial RL, 

manufacturer, surface type, 

marking color, thickness, bead 

types, marking age, air 

temperature, rainfall, 

snowfall, traffic volume, 

surface age 

Categorical Boosting 0.83-0.98 

Idris et al. (2024) MN, PA, Fl, 

WI 

Waterborne paint, 

thermoplastic, 

preformed 

thermoplastic, 

permanent polymeric 

tape, epoxy, polyurea, 

and methyl 

methacrylate 

Marking age, traffic volume, 

snowfall, thickness, surface 

type, marking materials, 

marking color, manufacturer, 

bead type of the first drop, 

bead type of the second drop 

Decision Tree (DT) and 

ANN  

0.55-0.96 



 

 

2.2  Subjective Assessment of Pavement Marking  

 

Subjective RL assessments are conducted by visually inspecting pavement markings to 

ensure they provide adequate visibility and presence. In Alabama, pavement marking management 

systems typically involve daytime visual inspections, with actual RL measurements taken on 

annually. However, a key limitation of visual inspections is their subjective nature, as results can 

vary significantly between evaluators. Additionally, the perceived brightness of pavement 

markings can be influenced by the contrast between the markings and the pavement. For instance, 

a marking on darker pavement may appear brighter than one on lighter pavement, even though 

both have the same RL. Consequently, multiple studies have highlighted that visual inspections 

are prone to human error, difficult to verify, and often produce inconsistent results (Benz et al., 

2008; Satterfield et al., 2022). Despite these limitations, many districts within the ALDOT rely on 

subjective evaluations to determine whether pavement markings meet acceptable RL levels or 

require restriping. These markings are typically rated on a scale from 1 to 5, with 1 indicating poor 

condition and 5 indicating excellent condition. The criteria used for rating—such as color, contrast, 

and overall appearance—can vary from state to state, further contributing to the variability of 

visual inspection results. 

 Benz et al. (2008) conducted a comprehensive study in Texas to investigate how well 

subjective evaluations of RL correlated with actual measured RL. The study applied multiple trend 

analyses to examine how closely subjective ratings aligned with RL trends, considering factors 

such as marking color, line type, and pavement type. To establish consistent rating criteria, the 

researchers conducted a phone survey across 25 districts to gather information on current practices 

for assessing pavement marking RL. Based on the survey, the criteria for subjective evaluation 

included marking color, contrast with surrounding pavement, and overall marking condition. 
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Observers applied these criteria at 16 sample locations, with each location spanning between one-

tenth and one-half of a mile in length. The study revealed that for RL values below 300 mcd/m²/lux, 

there was less variability in subjective ratings around the RL trend line, while greater variability 

was observed for values above 300 mcd/m²/lux. Correlation analyses between measured RL values 

and the subjective criteria—color, contrast, and overall quality—showed strong correlations of 

0.77, 0.71, and 0.68, respectively, indicating a consistent relationship between subjective 

assessments and actual RL measurements, particularly for lower RL levels. 

2.3  Relationship Between RL and Road Safety 

 

Because of the higher cost involved, RL data is typically collected during summers with 

one to three intervals per year to minimize the winter effects. This presents a challenge in 

accurately determining the RL levels of pavement markings at the precise time and location of 

each crash. Despite the availability of crash data, researchers have often had to make assumptions 

regarding RL levels for their analyses. Earlier, a few researchers utilized measured data to model 

RL for predictive purposes, while others relied on assumptions without direct measurements. 

Furthermore, in the majority of states, roadways with high traffic volume are restriped every 2 to 

4 years with thermoplastic markings. Consequently, there are very few instances of roadways with 

RL levels below 50 mcd/m2/lx. 

A limited number of studies have used RL measurements to assess their impact on safety 

and crashes. Earlier studies primarily established minimum RL thresholds based on crash rates. 

For instance, a study from New Zealand conducted a before-and-after comparison of crash rates 

to evaluate the effects of a policy implemented in 1997, setting a minimum RL of 70 mcd/m2/lx 

for pavement markings (Dravitzki et al., 2006). This study was performed on the assumption of 

increased brightness in the post-implementation period. Subsequent studies have utilized measured 
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RL data, available for specific road segments across various settings over multiple years. 

Retroreflective markings reflect the light from headlights back toward the driver, enhancing the 

visibility of road lanes, edges, and centerlines in low-light or dark conditions. As a result, most 

studies have concentrated on examining the impact of RL on nighttime crashes and crashes in dark 

conditions, given its critical role in improving driver guidance and safety during these conditions. 

However, very few have successfully established a statistical relationship between crashes and RL. 

One key challenge lies in the scarcity of target crashes within segments, making it difficult to select 

appropriate statistical techniques. Moreover, the distribution of RL is highly skewed, necessitating 

a logarithmic description of the data rather than a linear one. Table 2.3 summarizes studies that 

have endeavored to establish the correlation between crashes and RL. 

 



 

 

Table 2.3 Overview of studies investigating the association between target crashes and RL 

References Study area Method(s) Target crashes Key findings 

Bowman (2001) AL Descriptive analysis Nighttime  Thermoplastic long lines offered a safer traffic 

operation compared to painted highways. 

Dravitzki et al. 

(2006) 

New 

Zealand 

Descriptive analysis Dark conditions, nighttime, 

curve, curve during dark 

No significant changes observed in crash 

trends following the maintenance of a 

minimum RL of 70 mcd/m²/lx. 

Masliah et al. 

(2007) 

CA Innovative time 

series analysis 

Nighttime and non-

intersection  

Minimal effect of RL on crash modification 

factors. 

Smadi et al. 

(2008) 

IA Logistic regression Nighttime and lane departure 

not attributed to collision with 

animals or objects, vehicle-to-

vehicle collisions, maneuvers 

to avoid collisions with other 

vehicles, or equipment 

malfunctions. 

Lower RL associated with higher crash 

probability when segments with RL ≤ 70 

mcd/m²/lx analyzed separately.  

Donnell et al. 

(2009) 

NC ANN and 

generalized 

estimating 

equations with 

negative binomial 

(NB) distribution 

Nighttime, sideswipe 

collisions, and ROR collisions 

involving fixed objects in 

non-work zones, without 

alcohol involvement, and in 

dry weather. 

Increasing RL on two-lane highways may 

correspond to reduced frequencies of target 

crashes. The related outcomes for YCL showed 

marginal significance, whereas the results for 

WREL were not found to be significant. 

Carlson et al. 

(2013) 

MI  NB regression Nighttime and single-vehicle 

nighttime crashes at non-

intersection  

during the nonwinter months 

The expected crash frequency decreased when 

RL increases; varies in datasets within the 

range of ≤ 150-200 mcd/m²/lx across 

marketing positions. 

Avelar and 

Carlson (2014) 

MI Generalized linear 

mixed-effects 

models 

Single-vehicle, sideswipe, and 

ROR crashes at night 

Segments with higher RL were observed to 

have fewer crashes compared to segments with 

lower retroreflectivity, for both WREL and 

YCL 
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References Study area Method(s) Target crashes Key findings 

Bektas et al. 

(2016) 

IA NB regression Nighttime, ROR crashes, and 

nighttime ROR crashes 

For 1-mile four-lane road segments, the 

expected number of crashes decreased 

significantly as the increase of RL of WREL 



 

 

2.4  Existing Research Gaps 

 

RL measurements require mobilizing equipment and personnel, making it challenging to 

conduct quarterly/monthly readings of selected road segments within the constraints of limited 

budgets and manpower. Therefore, agencies often prioritize restricting RL assessments to one or 

two readings per segment per year. Additionally, state DOTs commonly enlist private consulting 

firms to measure RL in specific road segments, yet without precise records indicating the timing 

of pavement marking installation or restriping. Thus, to expand the practice and implementation 

of pavement marking RL measurement as a crucial aspect of road service life and safety, it becomes 

imperative to develop RL models that do not rely on input regarding the marking age and initial 

RL readings. These regression models can help ALDOT's pavement management system in 

identifying locations where RL levels are projected to drop below safe thresholds in the coming 

years. 

In previous studies examining factors influencing RL degradation or developing RL 

prediction models, researchers typically focused on calculating the average RL for each 1-mile 

road segment. While this approach provides a general view, a more effective and practical method 

would involve calculating the average RL for road segments with similar geometric and traffic 

characteristics. By grouping segments with comparable factors—such as traffic volume, posted 

speed limit, functional class, lane configuration, and horizontal alignment—this approach can 

yield more precise insights into RL degradation patterns. In addition, this method can reduce 

heterogeneity within the dataset, leading to more accurate and reliable predictions of RL 

degradation. Previous studies have predominantly emphasized marking and traffic characteristics 

over road geometric design factors. For example, vehicles navigating through curves may 

inadvertently brush against or overlap the markings, leading to more rapid wear and tear of WREL 
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markings. Therefore, the RL in curved segments could be degraded more rapidly compared to 

straight sections. Furthermore, it is crucial to consider the impact of horizontal alignment when 

analyzing RL data to comprehend the critical factors contributing to RL degradation. Moreover, 

most studies have combined WREL data for rural two-lane and multi-lane roads in their analyses, 

even though degradation patterns may vary depending on the number of lanes. Furthermore, RL 

degradation may exhibit inconsistencies within one road segment, yet no prior study has delved 

into the underlying reasons for this phenomenon. These analyses could assist state DOTs in 

restriping specific areas with higher RL degradation instead of the entire segment, thereby reducing 

maintenance costs. To gain a deeper understanding of the correlation between subjective RL ratings 

and measured RL, further research is necessary to explore how RL values are distributed across 

each rating category. Additionally, it is important to investigate how measured RL varies according 

to pavement marking line types within each rating scale and assess the statistical significance of 

these variations. Such analyses would provide valuable insights into the consistency and reliability 

of subjective evaluations and improve pavement marking management practices. 

Establishing the statistical correlation between RL and road safety relies significantly on 

meticulous data preparation, segmentation, and practical assumptions regarding the assignment of 

retroreflectivity values for each segment throughout the specified analytical period. Hence, there 

is a need for further research to thoroughly investigate the statistical relationship between RL and 

crashes. This entails organizing and segmenting the dataset using multiple criteria/assumptions 

and adopting appropriate statistical techniques to uncover meaningful insights into this correlation. 

The findings can help determine the RL threshold below which the probability of crashes increases 

significantly. 
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Chapter 3  Study Data 

 

This section provides an overview of the datasets collected from multiple sources to extract 

the variables required to fulfill the research objectives. This section discusses the accessibility, 

limitations, and constraints associated with each data source, as such factors play a significant role 

in selecting the preliminary contributing factors and the choice of analytical methodologies. The 

primary datasets encompass RL data and crash data acquired from ALDOT, traffic flow data 

sourced from ALDOT's traffic data website, and road inventory data obtained from Google Earth 

Pro, crash data, and the Highway Performance Monitoring System (HPMS). 

3.1  RL Data 

 

Thermoplastic is a widely used material for pavement markings due to its moderate cost 

and exceptional durability, making it the predominant choice in Alabama. When reapplying 

thermoplastics over existing markings, there is no need to remove the old markings. For this study, 

RL data were collected from ALDOT for the Montgomery area in 2020 and 2021. All RL 

measurements were conducted under dry weather and daylight conditions. A thorough analysis of 

the RL data revealed that 575 miles of road segments were covered in 2020, with approximately 

75% located in rural areas. In 2021, coverage increased to 1,525 miles, adding 950 miles that were 

measured only that year. Of these additional 950 miles, around 90% were in rural areas. Notably, 

the original dataset lacked area setting information, which was subsequently extracted from 

Topologically Integrated Geographic Encoding and Referencing (TIGER) database using latitude 

and longitude information. This database is created and maintained by the United States Census 

Bureau, offers detailed road networks (highways, local roads, and railroads) along with their 

classifications and area contexts. RL measurements were typically taken every 1/10th mile along 
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most road segments. The datasets and relevant documents did not specify which RL measurement 

method was used. However, previous studies have indicated that LaserLux vans were usually used 

to collect RL data on freeways and four-lane roads, while handheld Retroreflectometer LTL-X 

devices were used on other roads (Smadi et al., 2008; Ozelim and Turochy, 2014). 

The original RL datasets included route identification numbers, mile markers, measured 

RL values, marking line types, measurement direction, date of RL measurements, geocoordinates, 

and subjective ratings. A sample of the original RL datasets is shown in Figure 3.1. In 2020, 

subjective ratings ranged from 1 to 4, whereas in 2021, the scale was expanded to range from 1 to 

5. Within urban road segments, a majority had no RL values on WREL due to the frequent minor 

road interactions. Consequently, this research focuses on only the rural road segments, as they are 

more pertinent to the type of collisions identified in the literature to be associated with RL, such 

as single-vehicle ROR crashes. Figure 3.2 illustrates the rural sites where RL data were collected 

for both years, as well as exclusively for 2021. In the original datasets, RL of each 0.1-mile 

segment was measured in September 2020 and November 2021. 

 

Figure 3.1 A sample of original RL datasets collected from ALDOT 
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Figure 3.2 Rural locations of RL measurement in Montgomery 

3.2  Crash Data 

 

The Critical Analysis Reporting Environment (CARE) system, developed and maintained 

by the Center for Advanced Public Safety (CAPS) at the University of Alabama, serves as a 

comprehensive repository documenting all traffic crashes within Alabama. This system provides 

extensive data, including location, road, environment, driver, and vehicle characteristics, among 

other details. In context of this study, a few key road inventory variables available in the crash 

datasets include posted speed limit, location classification, functional class, road surface type, and 

number of lanes. This research obtained two years of crash records from 2020 to 2021. The 

geocoordinate of locations, route identification numbers, and mile marker information associated 

with crashes are vital for linking crash records to RL data.  
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3.3  Traffic Flow and Road Inventory Data 

 

AADT was obtained from the ALDOT's traffic data website for the entire state of Alabama 

for 2020 and 2021 (ALDOT, 2023). The original dataset included route identification numbers, 

milepoints, and county details, which served as key reference points for accurately assigning 

AADT for each 0.1-mile road segment. Notably, the traffic flow datasets include information on 

the percentage of truck ADT, allowing for the calculation of truck AADT. However, including both 

passenger vehicle AADT and truck AADT as separate predictors may influence the model due to 

their derivation from the same overall AADT variable. This setup often results in truck AADT 

displaying a negative correlation with RL degradation, given that passenger vehicle AADT 

typically shows a strong positive correlation with RL degradation. Consequently, researchers 

usually prefer to incorporate the percentage of trucks rather than percentage of truck in ADT. The 

percentage of trucks indicates the proportion of trucks within the total vehicle count over a specific 

period, while the percentage of trucks in ADT reflects the proportion of trucks within the average 

daily traffic. For these reasons, truck AADT was excluded to avoid multicollinearity. A sample of 

original traffic flow datasets collected from ALDOT's traffic data website is provided in Figure 

3.3. 

 

Figure 3.3 A sample of the original traffic flow datasets 
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Currently, there is no comprehensive documentation of road inventory information for 

Alabama. Relevant horizontal alignment information—such as the presence of curves, curve 

length, and chord length—was extracted from Google Earth Pro using the geocoordinates for each 

0.1-mile road segment. This data was then processed in ArcGIS ‘COGO’ package to obtain 

additional metrics, including curve angle and curve radius. Figure 3.4 illustrates a basic example 

of curve data entry and relevant outputs in ArcGIS. 

 

Figure 3.4 ‘COGO’ package of ArcGIS for obtaining horizonal curve attributes 

The Highway Performance Monitoring System (HPMS) is a nationwide program aimed at 

providing an inventory of all public roads in the U.S. (FHWA, 2023). HPMS encompasses various 

roadway feature data such as number of lanes, functional class, speed limit, lane width, shoulder 

width, vertical alignment, and more. The database includes route identification numbers and mile 

marker information, which served as reference points for extracting the posted speed limits of each 

0.1-mile segment. While assigning speed limits, it was assumed that the same posted speed limit 

was applicable across an entire 1-mile segment unless the AADT varied within that 1-mile 

segment. Posted speed limit data for 25% of the roadway segments was sourced from HPMS, and 

45% was obtained from crash data. This information was further manually verified using Google 
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Earth Pro. The remaining 30% of segments posted speed limit information were manually 

extracted from Google Earth Pro. 

The crash database contains route identification numbers and mile marker information, 

which served as reference points for extracting the location class information for each 0.1-mile 

segment. It is important to mention that the location class were categorized into two groups: open 

country and residential/business/mixed areas. For consistency, it was assumed that the same 

location class was applicable across an entire 1-mile segment unless AADT and posted speed limits 

varied within that segment. Location class data for 60% of the roadway segments was obtained 

from the crash datasets and subsequently cross-verified using Google Earth Pro. The remaining 

40% of location class information was manually extracted from Google Earth Pro. 

Road functional class information was extracted from HPMS and crash data. Given 

HPMS’s comprehensive details on road functional classes, there were very few instances with 

missing information. Additionally, number of lane information was obtained from both HPMS and 

Google Earth Pro. Notably, marking line type can also indicate number of lanes, as two-lane roads 

typically have two marking lines (YCL and WREL), while multilane roads have three (YLEL, 

WLL, WREL). When extracting road surface type information from the crash datasets, it was 

found that over 95% of the segments were associated with asphalt surfaces, indicating that this 

was the predominant surface type. Therefore, road surface type was excluded from further 

analyses. Figure 3.5 illustrates the extracted variables from each of the above-mentioned data 

sources. 
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Figure 3.5 Extracted variables from different data sources 
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Chapter 4  Contributing Factors of RL Degradation  

 

This section aims to investigate the factors contributing to the degradation of pavement 

marking RL in relation to marking line type. Regression models are employed to analyze the 

impact and significance of potential contributing factors on RL degradation. Additionally, the 

influence of curves on RL degradation is examined by utilizing regression functions and 

comparing the degradation proportions between curved and adjacent straight road segments. 

Locations that exhibit a higher proportion of RL degradation than usual, despite having identical 

marking, road, and traffic flow characteristics, are manually reviewed using Google Earth Street 

View to identify any additional factors that may contribute to such degradation. These insights are 

expected to provide a deeper understanding of how influential factors vary regarding marking line 

type, which can provide valuable guidance for maintaining RL in Alabama. 

4.1  Data Preprocessing  

 

Considerable effort has been dedicated to preprocessing the RL data before conducting the 

analysis. As mentioned earlier, this study exclusively focuses on rural roads. The initial step in 

processing the RL dataset obtained from ALDOT involves assigning the appropriate marking line 

type for each measured RL. By manually reviewing lane configurations of each measured RL 

location using Google Earth Pro, the rural roads were categorized into two lane configurations: 

two-lane and multilane. For rural two-lane roads, the markings consist of YCL and WREL, while 

for multilane roads, the markings comprise YLEL, WLL, and WREL. While reviewing the original 

RL data, it was observed that the marking line types were inaccurately reported in a few instances, 

such as the transition from two-lane roads to four-lane roads or vice versa. For example, during a 

transition from two-lane roads to four-lane roads, the measured RL for centerlines was inaccurately 
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reported as YCL when it should have been recorded as YLEL. Similarly, during transitions from 

four-lane roads to two-lane roads, the reverse misclassification was observed, with YLEL being 

reported as YCL. Approximately 15% of 0.1-mile segments contained these inaccuracies, as the 

errors persisted across multiple continuous segments. Such errors were corrected to ensure the 

accuracy of further analysis. 

The proportion of RL degradation was calculated by comparing data from 2020 and 2021. 

The basic equation is: 

Proportion of degradation =  (𝑅𝐿2020 − 𝑅𝐿2021)/𝑅𝐿2020 

Where, 𝑅𝐿2020 represents measured RL in 2020 and 𝑅𝐿2021 represents measured RL in 

2021. If the RL of a 0.1-mile segment for a specific marking line type was lower in 2020 compared 

to 2021, it indicates that the segment was restriped during that period. Consequently, such 

segments were excluded from further analysis. In total, 175 and 112 one-mile segments were 

identified for rural two-lane and multilane respectively where no restriping activities had been 

performed. Adjusted AADT (Adj AADT) was computed for each 0.1-mile road segment based on 

the date of RL measurement. For instance, if RL was measured on September 12, 2020, and 

November 20, 2021, and the AADT for that road segment in 2020 was 2,455 vpd, and in 2021 was 

2,800 vpd, the adj AADT would be calculated as follows: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝐴𝐷𝑇 (𝐴𝑑𝑗 𝐴𝐴𝐷𝑇) =  
110 ∗ 2,455 + 323 ∗ 2,800

110 + 323
= 2,713 𝑣𝑝𝑑 

Where, 110 represents the number of days between September 12, 2020, and December 

31, 2020, while 323 represents the number of days from January 1, 2021, to November 20, 2021. 

Most previous studies have calculated the average RL for each 1-mile segment to develop datasets 

for degradation modeling. However, this approach does not account for potential variations in road 
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and traffic characteristics within a 1-mile segment. Recognizing this gap in data preparation, the 

current study has developed a more refined dataset for RL modeling, ensuring that variations in 

road, traffic flow, location, and marking characteristics are adequately considered. The detailed 

steps followed in preparing the dataset for this study are presented below: 

• Step 1: Identify 0.1-mile road segments with similar road, traffic flow, and location 

characteristics. This includes ensuring consistency in factors such as the number of lanes, 

posted speed limits, location classification, functional classification, horizontal alignment, 

and Adj AADT 

• Step 2: Arrange each group of 0.1-mile segments based on their measured RL values in 

2020. 

• Step 3: Calculate the moving average of the RL degradation proportion for each group of 

0.1-mile segments by measured RL values in 2020 (𝑅𝐿2020), following the qualitative 

states. During this process, it was observed that the degradation proportions exhibited 

considerable fluctuations in a few instances, even with minimal differences in 𝑅𝐿2020. For 

example, within the same group, a particular 0.1-mile segment exhibited RL degradation 

proportion equal to or more than twice, despite having minimal differences in the measured 

𝑅𝐿2020. RL data points showing these unexpected changes were excluded to minimize 

heterogeneity within the final datasets. A threshold of a twofold or greater increase in RL 

degradation proportion was used for exclusion, based on analytical judgments. It is 

important to note that less than 5% of the total 0.1-mile segments belonged to this category. 

The above steps were applied to prepare the datasets for modeling RL degradation for each 

pavement marking line type, and horizontal alignment with a specific focus on curved segments. 

The centrifugal forces experienced by vehicles negotiating curves can cause lateral displacement 
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of vehicles, leading to more frequent contact with the WREL (Ray and Carrigan, 2023). This 

constant contact exacerbates the abrasion and friction experienced by the pavement marking, 

accelerating degradation of RL compared to straight segments. To investigate the influence of 

curves on the RL degradation of WREL, the average RL of WREL on curve segments was 

compared with three different types of straight segments: i) straight segments within the same 1-

mile segment (s) (SS1), (2) preceding 1-mile straight segment (SS2), and (3) subsequent 1-mile 

straight segment (SS3). In this context, SS1 primarily represents the tangent section of the curves. 

For clarity, Figure 4.1 provides an illustrative example of three different types of segmentation. 

The first two examples (from the top) illustrate the segmentation of a curve segment, along with 

SS1, SS2, and SS3, when the curve segment is located within a 1-mile road segment. The third 

example demonstrates the segmentation of a curve segment, SS1, SS2, and SS3, when the curve 

spans two 1-mile road segments. For comparison purposes, the curve segment and the adjacent 

straight segments (SS1, SS2, and SS3) need to satisfy two criteria: i) they share identical road, 

traffic flow, and location characteristics, and ii) measured 𝑅𝐿2020 fall within the same qualitative 

state. It is important to mention that the qualitative state of white pavement markings was selected  

from two prior experimental studies provided in Table 1.1 (Ortiz-García et al., 2006; Porras-

Alvarado et al., 2014). 
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Figure 4.1 Segmentations between curved and adjacent straight road segments 

In the original RL dataset, the degradation proportions of WREL showed an increase of 1.5 

time or more in certain 0.1-mile segments, despite having minimal differences in the 𝑅𝐿2020 values 

and identical road, traffic flow, and location characteristics. These segments were meticulously 

examined using Google Earth Street View to identify any additional factors contributing to the RL 

degradation. 

4.2  Descriptive Statistics  

 

Table 4.1 presents the total number of observations in the final datasets by marking line 

type, along with the count of unique 1-mile road segments. Across all datasets, on average, there 

is more than one observation per 1-mile road segment. This indicates that, in the majority of cases, 

each observation represents a segment smaller than 1 mile. 
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Table 4.1 Observation counts in final datasets for regression analysis 

Marking line type Number of 

observations 

Count of different 1-mile segments 

YCL 209 129 

WREL for rural two-lane 347 167 

YLEL 177 95 

WLL 160 85 

WREL for rural multilane 235 108 

 

The following observations provide insights based on Table 4.2 and Figures 4.2-4.3, 

presenting an overview of variables used in modeling RL degradation proportion: 

• For rural two-lane roads, the mean degradation proportion of WREL is higher than that of 

YCL (0.28 and 0.26). A similar trend is observed on multilane roads for WREL (0.32) 

compared to YLEL (0.30). Among white pavement markings on rural multilane, WREL 

exhibits a higher mean degradation proportion (0.32) compared to WLL (0.25). Following 

the distributions, outliers exist in all marking line types except WLL.  

• In rural two-lane roads, the mean 𝑅𝐿2020 values are higher for WREL (338 mcd/m²/lx) than 

for YCL (224 mcd/m²/lx). This is attributed to the relatively higher installation and 

restriping standards for white pavement markings, resulting in higher RL measurements. 

The same pattern is observed in rural multilane roads, where WREL exhibits a mean RL of 

379 mcd/m²/lx, compared to YLEL at 283 mcd/m²/lx and WLL at 324 mcd/m²/lx. Based 

on the distributions, outliers are present in all marking line types except WLL. 

• The data distribution indicates an expected pattern, with adj AADT being higher on 

multilane roads compared to two-lane roads. 

• In the current version of MUTCD, the minimum RL requirement is based on speed limits 

of either <35 mph or ≥35 mph. The earlier MUTCD version categorized speed limits into 

35-50 mph and ≥55 mph with respect to lane configurations. The RL dataset collected from 



36 

 

ALDOT had a very few segments with a posted speed limit below 35 mph; therefore, for 

this study, posted speed limit was categorized to <55 mph and ≥55 mph for two-lane roads, 

and <65 mph and ≥65 mph for multilane roads. Given that posted speed limit and road 

functional class are highly correlated (FHWA, 2000), only one of these variables was used 

in the regression modeling to satisfy associated assumptions. 

• The diversity of data in areas classified as residential, business, or mixed-use is greater for 

multilane roads (19.41%) compared to two-lane roads (14.57%). Conversely, data diversity 

on curved road segments is higher for two-lane roads (16.19%) compared to multilane 

roads (10.84%). 
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Table 4.2 Overview of variables used in degradation proportion modeling by marking line type 

Variable attribute Rural two-lane Rural multilane 

YCL (209) WREL (347) YLEL (177) WLL (160) WREL (235) 

RL degradation proportion Min: 0.04, Max: 

0.73, Median: 

0.25, Mean: 0.26 

 

Min: 0.03, Max: 

0.74, Median: 

0.25, Mean: 0.28 

 

Min: 0.04, Max: 

0.76, Median: 

0.26, Mean: 0.30 

 

Min: 0.05, Max: 

0.57, Median: 

0.22, Mean: 0.25 

 

Min: 0.06, Max: 

0.78, Median: 

0.31, Mean: 0.32 

𝑅𝐿2020 (mcd/m²/lux) Min: 91, Max: 

451, Median: 216, 

Mean: 224 

Min: 94, Max: 

711, Median: 331, 

Mean: 338 

Min: 49, Max: 

620, Median: 276, 

Mean: 283 

Min: 99, Max: 

639, Median: 301, 

Mean: 324 

Min: 90, Max: 

742, Median: 

375, Mean: 379 

Adj AADT (vpd) Min: 546, Max: 

11,220, Median: 

3,556, Mean: 

3,447 

Min: 546, Max: 

13,560, Median: 

2,874, Mean: 

3,443 

Min: 842, Max: 

72,187, Median: 

16,258, Mean: 

21,899 

Min: 3,610, Max: 

52,638, Median: 

15,624, Mean: 

18,606 

Min: 3,610, 

Max: 85,257, 

Median: 16,258, 

Mean: 22,849 

Posted speed limit      

<55mph 17 (8.13%) 46 (13.26%) ----- ----- ----- 

≥55mph 192 (91.87%) 301 (86.74%) ----- ----- ----- 

<65mph ----- ----- 59 (33.33%) 46 (28.75%) 74 (31.49%) 

≥ 65mph ----- ----- 118 (66.67%) 114 (71.25%) 161 (68.51%) 

Location class      

open country 178 (85.17%) 297 (85.59%) 144 (81.36%) 133 (83.13%) 184 (78.30%) 

residential/business/mixed 31 (14.83%) 50 (14.41%) 

 

33 (18.64%) 27 (16.88%) 51 (21.70%) 

Horizontal alignment      

straight 188 (89.95%) 278 (80.12%) 156 (88.14%) 144 (90%) 210 (89.36%) 

curve 21 (10.05%) 69 (19.88%) 21 (11.86%) 16 (10%) 25 (10.64%) 



 

 

 

Figure 4.2 Distribution of 𝑹𝑳𝟐𝟎𝟐𝟎 by marking line type 

 

Figure 4.3 Distribution of RL degradation proportion by marking line type 

Table 4.3 and Figures 4.4-4.5 provide an overview of variables utilized to model degradation 

proportion of curved sections specifically related to WREL. The total number of observations is 

90. The median 𝑅𝐿2020 and RL degradation proportion of curve segments are higher on multilane 
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roads compared to two-lane roads. The curve angles observed in these segments range from 12.88 

degrees to 77.04 degrees. Most of these segments are associated with two-lane roads (72.22%). It 

is essential to note that during the measurement of curve radius and angle, three segments were 

identified as compound curves. Consequently, these compound curve segments were excluded 

from the dataset to ensure consistency and accuracy in the regression analysis for simple curve 

segments. Since the analysis requires consideration of both two-lane and multilane roads, the road 

functional class has been chosen for further analysis instead of the posted speed limit due to 

multicollinearity. The functional class of curve road segments is categorized into three main 

classifications: major collector (16.67%), arterial (75.56%), and interstate (7.78%).  

Table 4.3 Overview of variables used to model RL degradation proportion of WREL for 

curved sections 

Variable Data summary / Proportion 

RL degradation proportion Min: 0.06, Max: 0.59, Median: 0.25, Mean: 0.28 

𝑅𝐿2020 (mcd/m²/lux) Min: 96, Max: 711, Median: 338, Mean: 336 

Adj AADT (vpd) Min: 546, Max: 39,595, Median: 3,610, Mean: 8,761 

Curve angle (degree) Min: 12.88, Max: 77.04, Median: 38.02, Mean: 39.08 

Curve radius (ft) Min: 406.10, Max: 7,272.90, Median: 2,767.20, Mean: 

3,045.40 

Number of lanes  

two 65 (72.22%) 

> two 25 (27.78%) 

Functional class  

major collector 15 (16.67%) 

arterial 68 (75.56%) 

interstate 7 (7.78%) 

Location class  

open country 80 (88.89%) 

residential/business/mixed 10 (11.11%) 
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Figure 4.4 Distribution of 𝑹𝑳𝟐𝟎𝟐𝟎 for curve segments 

 

Figure 4.5 Distribution of RL degradation proportion for curve segments 
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Table 4.4 provides an overview of the datasets used to compare RL degradation proportion 

of WREL by horizontal alignments. Three distinct datasets are developed for this comparison: i) 

RL degradation proportion on curve segments compared with the corresponding degradation on 

straight segments within the same 1-mile segment(s) (Curve-SS1), ii) the RL degradation 

proportion on curve segments compared with the corresponding degradation on the preceding 1-

mile straight segment (Curve-SS2), and iii) the RL degradation proportion on curve segments 

compared with the corresponding degradation on the subsequent 1-mile straight segment (Curve-

SS3). In all three datasets, RL degradation observed in the curved sections is consistently higher 

than in the corresponding straight sections. This pattern is further evidenced by the percentage of 

observations in which the RL degradation proportion is greater in the curved sections, with all 

percentages exceeding 60%. The trend is more frequent when comparing the curved sections with 

the preceding and subsequent straight sections, where the percentages were 79.41% and 82.93%, 

respectively. 

Table 4.4 Overview of datasets to compare degradation proportion by horizontal alignment 

Dataset type Horizontal 

alignment 

Summary Percentage of 

observations where 

curved section RL 

degradation 

proportion is higher 

Curve-SS1  curve Min: 0.04, Max: 0.59, Median: 0.26, 

Mean: 0.26 

31 out of 49 (63.27%) 

SS1 Min: 0.03, Max: 0.59, Median: 0.18, 

Mean: 0.23 

Curve-SS2 curve Min: 0.04, Max: 0.59, Median: 0.26, 

Mean: 0.26 

27 out of 34  

(79.41%) 

SS2 Min: 0.01, Max: 0.52, Median: 0.15, 

Mean: 0.18 

Curve-SS3  curve Min: 0.04, Max: 0.55, Median: 0.27, 

Mean: 0.27 

34 out of 41 (82.93%) 

SS3 Min: 0.02, Max: 0.49, Median: 0.18, 

Mean: 0.21 
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4.3  Methodology 

 

This study utilized beta regression to identify the statistically significant factors 

contributing to RL degradation. Furthermore, to determine whether there were statistically 

significant differences in RL degradation between curve and adjacent straight road segments with 

similar road, traffic flow, location, and marking characteristics, Paired t-test and Wilcoxon test 

were conducted based on the RL degradation distribution of road segments.  

4.3.1  Beta Regression 

 

Beta regression is a statistical technique designed to model the probability distribution of 

continuous values within the range of 0 to 1. This makes it particularly well-suited for analyzing 

proportions or rates, where the dependent variable is naturally bounded (Cribari-Neto and Zeileis, 

2010; Ferrari and Cribari-Neto, 2004). In this study, RL degradation proportion was used as the 

dependent variable in the beta regression analysis. The probability density function of beta 

regression is presented below: 

𝑓(𝑦; 𝑐, 𝑑) =
𝛤(𝑐 + 𝑑)

𝛤(𝑐)𝛤(𝑑)
𝑦𝑐−1(1 − 𝑦)𝑏−1 

Where 0< 𝑦 <1 and 𝛤(. ) function is the gamma function. The parameters 𝑐 and 𝑑 are 

positive integer values, influencing the shape of the curve. By defining 𝜇 =
𝑐

𝑐
+ 𝑑 and ∅ = 𝑐 + 𝑑, 

the function transforms into: 

𝑓(𝑦; 𝜇, ∅) =
𝛤(∅)

𝛤(𝜇∅)𝛤((1 − 𝜇)∅)
𝑦𝜇∅−1(1 − 𝑦)(1−𝜇)∅−1 

Where 𝑦~𝛽(𝜇, ∅), 𝜇 is the mean of distribution (0< 𝜇 <1), and ∅ represents the variability 

of distribution. Let 𝑦1, …… , 𝑦𝑛 be a random sample and 𝑦𝑖~𝛽(𝜇𝑖, ∅), 𝑖 = 0, 1, 2, ……, n. If 𝑥𝑖 

represents the independent variable and 𝛽 stands for the unknown parameter, the beta regression 

model is specified with a log link function, as shown below: 
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𝑔(𝜇𝑖) = log(𝜇𝑖) = 𝑥𝑖
𝑇𝛽 = 𝜏𝑖 

𝛽 = (𝛽1, …… . , 𝛽𝑘)
𝑇 

𝑥𝑖 = (𝑥𝑖1, …… . , 𝑥𝑖𝑘)
𝑇 

The coefficients 𝛽 describe the relationship between the independent variables and the logit 

of the mean response 𝜇. A negative coefficient signifies a decrease in the log-odds of 𝜇 while a 

positive coefficient suggests an increase. Odds represent the ratio of the probability of an event 

occurring to the probability of it not occurring. For instance, if the probability of RL degradation 

is 0.2, the odds of RL degradation can be calculated as: 

𝑂𝑑𝑑𝑠 =
0.2

1 − 0.2
= 0.25 

Pseudo 𝑅2 is commonly applied in non-linear models, such as logistic regression, Poisson 

regression, and beta regression, where the dependent variable is not continuous or normally 

distributed (Ferrari and Cribari-Neto, 2004; Hu et al., 2006).  

𝑃𝑠𝑒𝑢𝑑𝑜 𝑅2 = 1 −
ln(𝐿𝑓𝑢𝑙𝑙)

ln( 𝐿𝑛𝑢𝑙𝑙)
 

Where, ln(𝐿𝑓𝑢𝑙𝑙) is the likelihood of the fitted model and ln(𝐿𝑛𝑢𝑙𝑙) is the likelihood of the 

null model. 

4.3.2  Paired t-test 

 

The upper-tail paired sample t-test is a statistical method used to determine whether the 

mean difference between two sets of paired observations is significantly greater than zero (Hsu 

and Lachenbruch, 2014). In this research, the upper-tail paired t-test is suitable for determining 

whether the mean proportion of RL degradation on curve segments is statistically higher than on 

adjacent straight road segments. The paired t-test assumes that the differences between paired 

samples are normally distributed. Therefore, it is essential to conduct the Shapiro-Wilk test 
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beforehand to verify whether the differences follow a normal distribution, ensuring the validity of 

the paired t-test results (Kim, 2018). The hypotheses for an upper-tail paired t-test are defined as: 

Null Hypothesis 𝐻0: 𝜇𝑑 ≤ 0 

Alternative Hypothesis 𝐻1: 𝜇𝑑 > 0 

Where 𝜇𝑑 represents the true mean difference between the paired samples. The test statistic 

𝑡 is calculated as: 

𝑡 =
𝑑̅

𝑠𝑑/√𝑛
 

Where 𝑑̅ = sample mean of differences between paired observation, 𝑠𝑑 = sample standard 

deviation of the differences, and 𝑛 = number of paired samples. The degree of freedom for the 

paired t-test is 𝑛 − 1. 

4.3.2  Wilcoxon Signed-Rank Test 

 

The Wilcoxon Signed-Rank test is a non-parametric test used instead of the paired t-test 

when the assumptions of the paired t-test are not met, particularly the assumption that the 

differences between paired observations are normally distributed. The hypotheses for upper-tail 

Wilcoxon Signed-Rank test are defined as follows: 

Null Hypothesis 𝐻0:𝑀𝑒𝑑𝑖𝑎𝑛 (𝐷) ≤ 0 

Alternative Hypothesis 𝐻1:𝑀𝑒𝑑𝑖𝑎𝑛 (𝐷) > 0 

Where 𝐷 represents the differences between the paired samples. The analytical framework 

of exploring the relationship between two paired samples is provided in Figure 4.6. 
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Figure 4.6 Analytical framework to explore the relationship between curve and adjacent 

straight road segments in terms of RL degradation proportion 

4.4  Results & Discussions  

 

Initially, beta regression models were applied to datasets representing the RL degradation 

proportion of different marking line types on rural two-lane and multilane roads. Moreover, a beta 

regression model was employed to analyze the characteristics of variables on curve road segments. 

Due to the limited sample size, regression modeling on curved sections was not conducted 

separately for two-lane and multilane roads. To explore the influence of curved sections on 

adjacent straight road sections, paired t-test and Wilcoxon test were performed following the 

distribution of datasets. Finally, locations with relatively high RL degradation proportions were 

further reviewed to identify any additional factors that may contribute to the degradation. It is 

important to mention that all regression models were performed at a 95% confidence interval.  

4.4.1  RL Degradation Factors by Marking Line Type  

 

Table 4.5 presents an overview of beta regression results for two different marking line 

types of rural two-lane roads. In beta regression, coefficients are interpreted in terms of odds ratios. 
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For YCL, a one-unit increase in 𝑅𝐿2020 leads to a 0.15% (calculated as 𝑒0.0015) increase in RL 

degradation odds, while for WREL, there is a 0.36% increase. Based on MUTCD guidelines and 

previous studies, yellow markings typically degrade more slowly than white markings, so white 

pavement markings have higher initial RL standards. A 1,000-unit increase in adj AADT results in 

a 3.25% increase in RL degradation odds for YCL and a 4.71% increase for WREL. This 

statistically higher degradation for WREL is consistent with findings from a previous Alabama 

study (Ozelim and Turochy, 2014). Previous studies have consistently identified AADT as a 

significant factor positively correlated with RL degradation (Idris et al., 2024; Migletz et al., 2001; 

Ozelim and Turochy, 2014). Road segments located in residential, business, or mixed-use areas 

show statistically higher RL degradation for YCL, with a 36.60% increase in odds. Frequent 

turning, stopping, accelerating, and higher congestion levels characterize these areas, which can 

contribute to greater wear on pavement markings. For YCL, road segments with a posted speed 

limit of ≥55 mph exhibit lower RL degradation compared to those with a speed limit of <55 mph, 

although this is not statistically significant. According to MUTCD guidelines, RL typically 

degrades more at higher posted speed limits. In the dataset, however, only 8.14% of YCL 

observations fall under the <55 mph category. A larger dataset might better capture the true 

relationship between posted speed limits and RL degradation. 
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Table 4.5 Summary of beta regression model for marking line types of rural two-lane (YCL and WREL) 

 YCL WREL 

Coef. SE z-value p-value Coef. SE z-value p-value 

Intercept -2.2048 0.2259 -9.068 <0.001 -1.5100 0.0180 -8.381 <0.001 

𝑅𝐿2020 (mcd/m²/lux) 0.0015 0.0005 6.414 <0.001 0.0036 0.0004 3.980 <0.001 

Adj AADT (in 1,000 vpd) 0.0320 0.0210 2.697 0.007 0.0460 0.0240 3.223 0.001 

Posted speed limit (ref. <55mph)         

≥55mph -0.1079 0.1076 -1.004 0.316 0.1396 0.1505 0.927 0.354 

Location class (ref. open country)         

residential/business/mixed 0.3119 0.1134 1.994 0.046 0.1024 0.1050 0.975 0.329 

Horizontal alignment (ref. straight)         

curve -0.2354 0.1384 -0.758 0.448 0.0513 0.0892 0.575 0.565 

Pseudo 𝑅2 0.1822 0.0519 
Note: Coefficient (Coef.) and Standard Error (SE) 

 

 



 

 

Tables 4.6-4.7 provide an overview of beta regression models for three different pavement 

markings on rural multilane roads (YLEL, WLL, and WREL). In consistent with rural two-lane 

roads, 𝑅𝐿2020 of YLEL shows statistically lower odds of RL degradation compared to WREL. 

Among white markings, 𝑅𝐿2020 of WREL exhibits statistically higher odds of RL degradation 

compared to WLL, increasing by 0.22% compared to a 0.07% increase for WLL. Adj AADT 

increases the odds of degradation less in YLEL compared to WLL and WREL, aligning with 

previous studies. WLL shows statistically higher RL degradation odds with increasing Adj AADT 

and on rural road segments with higher posted speed limits, likely due to increased lane-changing 

behavior. Segments in residential, business, or mixed-use areas exhibit a 1.59 times higher odds 

of RL degradation for YLEL. This could be due to the greater frequency of U-turns or the use of 

the left lane to access minor roads, may contribute to increased wear on YLEL in these areas. 

Table 4.6 Summary of beta regression model for WREL of rural multilane 
 

Coef. SE z value p-value 

Intercept -1.4340 0.1343 -10.681 <0.001 

𝑅𝐿2020 (mcd/m²/lux) 0.0022 0.0003 4.581 <0.001 

Adj AADT (in 1,000 vpd) 0.0041 0.0027 2.597 0.009 

Posted speed limit (ref. <65mph) 
    

>=65mph 0.0985 0.1498 1.325 0.185 

Location class (ref. open country) 
    

residential/business/mixed 0.1685 0.1074 1.569 0.117 

Horizontal alignment (ref. straight) 
    

curve 0.0921 0.1287 0.716 0.474 

Pseudo 𝑅2 : 0.1192 
Note: Coefficient (Coef.) and Standard Error (SE) 
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Table 4.7 Summary of beta regression model for YLEL and WLL of rural multilane 

 YLEL WLL 

Coef. SE z-value p-value Coef. SE z-value p-value 

Intercept -1.5290 0.2010 -7.609 <0.001 -1.3130 0.1876 -6.998 <0.001 

𝑅𝐿2020 (mcd/m²/lux) 0.0014 0.0005 4.140 <0.001 0.0007 0.0004 1.610 0.101 

Adj AADT (in 1,000 vpd) 0.0022 0.0035 0.590 0.555 0.0081 0.0047 2.296 0.021 

Posted speed limit (ref. <65mph)         

≥65mph 0.0326 0.1489 0.219 0.827 0.0870 0.1325 2.002 0.045 

Location class (ref. open country)         

residential/business/mixed 0.4612 0.1690 2.381 0.017 0.1917 0.1537 1.247 0.212 

Horizontal alignment (ref. straight)         

curve 0.1010 0.1767 0.571 0.568 -0.2504 0.1765 -1.418 0.156 

Pseudo 𝑅2 0.2024 0.1056 
Note: Coefficient (Coef.) and Standard Error (SE) 

 

 



 

 

4.4.2  Contributing Factors of RL Degradation on Curve Segments  

 

Since RL degradation of WREL is more likely to be impacted by vehicle encroachment, 

the analysis focuses specifically on curve segments for WREL. Table 4.8 provides a summary of 

the beta regression model results for these curved segments. However, due to the limited sample 

size (n=90), none of the variables or attributes in the model were found to be statistically 

significant. 

Table 4.8 Summary of beta regression model for WREL on curve segments 
 

Coef. SE z value p-value 

(Intercept) -1.4600 0.4244 -3.440 <0.001 

𝑅𝐿2020 0.0007 0.0007 1.073 0.283 

Adj AADT (in 1,000 vpd) 0.0066 0.0125 0.784 0.433 

Location class (ref. open country) 
    

residential/business/mixed 0.1428 0.2370 0.607 0.543 

Functional class (ref. major collector) 
    

arterial 0.2513 0.2084 1.206 0.227 

interstate 0.1260 0.4248 0.297 0.767 

Number of lanes (ref. >two) 
    

two  -0.0428 0.2355 -0.182 0.855 

curve angle -0.0011 0.0049 -0.221 0.825 

curve radius (in 1,000) 0.0014 0.0430 0.241 0.809 

Pseudo 𝑅2 : 0.0937 
Note: Coefficient (Coef.) and Standard Error (SE) 

4.4.3  RL Degradation by Horizontal Alignment 

 

As discussed in Section 4.2, three datasets were developed to evaluate the impact of curves 

on RL degradation of WREL in comparison to adjacent straight road segments. To begin the 

analysis, the Shapiro-Wilk test was employed to assess whether differences between ‘curve’ and 

‘straight’ measurements were normally distributed. For the datasets 'Curve-SS1' and 'Curve-SS2', 

the null hypothesis was accepted (normally distributed), allowing for the use of the paired t-test to 

determine whether the mean degradation proportion on curve segments was statistically higher 
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than that of the corresponding straight segments: SS1 and SS2 (defined in Sections 4.1 and 4.2). 

For the 'Curve-SS3' dataset, the null hypothesis of normality was rejected; therefore, the Wilcoxon 

test was appropriate to assess whether the median degradation proportion on curve segments was 

statistically higher than that of the corresponding straight segment. Table 4.9 presents the results 

of the paired tests for all three datasets. The findings indicate that the mean/median degradation 

proportion of RL is statistically higher on curve segments compared to SS1, SS2, and SS3. This 

suggests that, when road, traffic flow, location, pavement marking, and RL states remain constant, 

RL of WREL degrades more on curve segments than on adjacent straight segments.  

Table 4.9 Summary of paired tests between curve and corresponding straight road segments 

Dataset type Test t-value/V- value p-value 

Curve-SS1 Upper-tail paired t-

test 

2.126 0.019 

Curve-SS2 4.043 <0.001 

Curve-SS3 Upper-tail Wilcoxon 

test 

752 <0.001 

 

4.4.4  Additional Factors Contributing to RL Degradation of WREL 

 

To investigate additional factors contributing to RL degradation of WREL, 0.1-mile road 

segments with similar road, traffic flow, and location characteristics, as well as identical RL 

qualitative states, were manually reviewed. The focus was on segments exhibiting a relatively 

higher RL degradation proportion than expected. To ensure an adequate number of 0.1-mile 

segments meeting these criteria (similar road, traffic flow, and location characteristics with 

identical RL qualitative states), segments with RL degradation at least 1.5 times or more than the 

typical levels were selected, based on engineering judgment. A comprehensive review was 

conducted on 202 locations, each representing a 0.1-mile segment. Additional logical contributing 

factors were identified in 100 of these segments through visual observation, providing further 

insight into the potential influencing factors of increased degradation. In Google Earth Pro, the 
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majority of street view images for the segments were unavailable for 2021, as these segments were 

primarily located in open country areas. As a result, street view images from 2022 were used for 

comparison. Upon reviewing, no significant differences were observed between the 2022 and 2024 

images.  

Out of the 100 segments with higher RL degradation, 10 segments feature an additional 

right-turn lane near intersections or ramps. In these areas, vehicles preparing to turn often encroach 

upon WREL, which can cause increased wear due to tire friction, particularly during braking and 

deceleration. An example of such locations is illustrated in Figure 4.7 (Geocoordinates: 

32.43941667, -87.35586333). 21% of 0.1-mile segments with U-turn and left-turn facilities to 

minor roads exhibit higher RL degradation of WREL. The frequent vehicle maneuvers during lane 

shifts and sharp turns can increase tire contact with WREL, increasing its degradation. Such 

scenarios are more likely to be found on rural multilane roads. An example is provided in Figure 

4.8 (Geocoordinates: 32.4393683, -87.36104333). Of the 100 segments, 11 are associated with 

bridges where noticeable differences in surface materials are evident compared to the surrounding 

asphalt roadways (Figure 4.9 - Geocoordinates: 32.44584, -87.15954333). Concrete surfaces are 

usually smoother and less porous than asphalt, which can result in weaker bonding with pavement 

markings (Romanoschi and Metcalf, 2002). In addition, bridges are exposed to adverse 

environmental conditions such as temperature functions and use of deicing, which can accelerate 

RL degradation of WREL.  
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Figure 4.7 Additional right-turn lane as potential contributor of RL degradation 

 

Figure 4.8 U-turn and left-turn movement as potential contributor of RL degradation 
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Figure 4.9 Bridge as potential contributor of RL degradation 

Out of 100 segments, 2 are associated with the presence of a ramp. It is important to note 

that vehicles from these ramps merge onto multilane roads. The potential reason for the high RL 

degradation proportion of WREL in these areas is likely due to the frequent braking and 

deceleration as vehicles slow down. An example is illustrated in Figure 4.10 (Geocoordinates: 

32.43938167, -87.35928333). 5 out of 100 segments have additional shoulders on the road (Figure 

4.11- Geocoordinates: 32.43011667, -86.94442333). Shoulders are often used by vehicles during 

emergencies, which leads to increased tire contact and physical stress on WREL. 51% of the 

segments are associated with i) residential driveways where vehicles frequently cross the WREL 

and ii) private roads leading to businesses or other properties. An example of such locations is 

shown in Figure 4.12 (Geocoordinates: 32.46460167, -85.59793833). In most of these cases, 

nearby gravel surfaces have been observed, which can significantly accelerate the degradation of 

the WREL. Debris from the gravel is frequently displaced onto the roadway, which can lead to 

additional wear and tear on pavement markings. In similar scenarios where the nearby surface of 
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WREL is paved, a slightly lower degradation of RL has been observed. This suggests that the 

surrounding landscape also influences RL degradation.  

 

Figure 4.10 Presence of ramp as potential contributor of RL degradation 

 

Figure 4.11 Shoulder presence as potential contributor of RL degradation 
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Figure 4.12 Residential driveway as potential contributor of RL degradation 

4.5  Key findings  

 

This section aims to identify the key factors contributing to RL degradation by pavement 

marking line types. In addition to applying regression models to potential contributing factors 

identified in previous studies, this research adopts a comprehensive approach by manually 

reviewing sites and considering the logical impact of vehicle encroachment on curves, particularly 

focusing on WREL. It is crucial to note that WREL can play a significant role in minimizing lane 

departures and reducing ROR crashes, making it a focal point for researchers studying pavement 

markings. As multiple factors and their interactions can influence RL degradation and collecting 

high-volume data over time is a big challenge in pavement marking research, finding a variable 

statistically insignificant does not imply that the factor is unimportant. The key findings from this 

analysis are outlined below: 
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• Consistent with prior research, AADT plays a crucial role in RL degradation on each 

marking line type. For two-lane roads, the statistical correlation between adj AADT and 

RL degradation proportion is higher for WREL than for YCL, aligning with the 

requirement of higher RL installation or restriping standards for white pavement markings. 

A similar pattern is observed on multilane roads, where the effect of adj AADT is 

statistically higher for white markings (WLL and WREL) compared to yellow (YLEL). 

Moreover, on multilane roads, the RL degradation associated with increasing AADT is 

statistically higher for WLL than for WREL. Consistent with Adj AADT, 𝑅𝐿2020 shows 

statistically higher RL degradation proportion for white marking compared to yellow. 

• Pavement markings in residential, business, or mixed-use areas experience statistically 

higher RL degradation only for centerlines, YCL on two-lane roads and YLEL on multilane 

roads. 

• The degradation proportion of WLL is found to be statistically significant on roadways 

with high posted speed limits. On high-speed roads, especially those with multiple lanes, 

drivers often change lanes to pass slower vehicles. 

• RL degradation proportion of WREL is found to be statistically higher on curve segments 

compared to adjacent straight segments. This is observed when the road, traffic flow, and 

location characteristics are similar, and both curve and straight segments had the same RL 

qualitative state in the previous year. 

• Several additional factors that may associated with the RL degradation of WREL include 

the presence of an additional right-turn lane near intersections or ramps, multilane road 

segments with U-turn and left-turn facilities to minor roads, presence of bridge, presence 

of ramps/shoulders/residential driveways, and the surrounding landscape.  
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Chapter 5  Relationship between Subjective Rating and Measured RL   

 

This section provides a detailed understanding of the statistical distribution of measured 

RL values in relation to subjective RL rating scales, considering the marking line types of rural 

two-lane and multilane roads. The analyses explore the statistical relationship between subjective 

ratings and measured RL regarding different marking line types. Moreover, this section examines 

how the distribution of measured RL varies by marking line type for each subjective rating 

category. The objective is to evaluate the extent to which subjective RL ratings reflect the measured 

values, which can provide insights into the reliability of visual evaluations of RL in term of actual 

RL measurements. 

5.1  Data Preprocessing 

 

In Alabama, pavement marking management systems typically conduct daytime visual 

inspections. The rating of these markings can vary based on the perspectives of observers. 

Furthermore, visual inspection results may be influenced by factors such as contrast between 

marking and pavement surface. Since measuring actual RL with specialized equipment can be 

costly, subjective rating offers a simple and affordable method to evaluate pavement markings to 

determine if their RL levels meet adequate standards or require restriping. Traditionally, these 

evaluations involve rating road segments on a scale ranging from 1 to 5, in which 1 indicates poor 

RL and 5 signifies very good RL. 

The original RL dataset comprises both subjective ratings and measured values for each 

marking line type within 1/10th of a mile segments (in majority of cases), spanning 2020 and 2021. 

The number of lanes information for each road segment was extracted, as detailed in Chapter 3. 

While reviewing RL data, it is noted that subjective ratings were scaled from 1 to 4 for 2020, while 
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the scale was expanded to 5 for 2021. However, there is no information explaining why the rating 

scale was modified in 2021. To ensure consistency in the final datasets, only the RL data from 

2021 was included for further analyses. In addition, as discussed in Section 4.1, there were 

instances in the original datasets where marking positions were inaccurately reported, such as 

conversions from two-lane to multilane roads or vice versa. To ensure data accuracy, measured RL 

values and subjective ratings of road segments without these discrepancies were selected for 

further analyses.  

5.2  Descriptive Analysis 

 

The statistical distributions of measured RL were initially explored in relation to subjective 

ratings for each marking line type, both with and without outliers. Table 5.1-5.4 shows the 

summaries of measured RL by subjective rating for four different marking line types. Since a small 

fraction of observations (less than 1%) fall within the outlier category, further analyses focus on 

the calculated statistical distribution of datasets without outliers.  
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Table 5.1 Overview of measured RL (mcd/m²/lux) for YCL by subjective rating  

Parameter Rating 1 Rating 2 Rating 3 Rating 4 Rating 5 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

Number of 

observations 

283 282 2,070 2,060 3,360 3,279 2,686 2,663 399 387 

Minimum 66 66 47 47 58 58 60 60 50 96 

Maximum 612 390 478 385 845 333 543 381 560 291 

1st Quartile 101 101 117 117 135 134 156 156 159 159 

Median 132 132 160 160 173 172 199 199 184 182 

3rd Quartile 219.50 218.75 225.75 224 215 210 246 245 212 210 

Mean 162.31 160.71 173.86 172.65 181.10 175.01 205.07 203.09 189.78 186.07 

Standard deviation 74.47 69.60 71.87 69.87 67.72 54.41 63.09 59.48 49.54 38.10 

 

Table 5.2 Overview of measured RL (mcd/m²/lux) for YLEL by subjective rating 

Parameter Rating 1 Rating 2 Rating 3 Rating 4 Rating 5 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

Number of 

observations 

91 90 1,033 1,023 1,088 1,062 634 588 355 354 

Minimum 43 43 53 53 57 57 79 79 102 102 

Maximum 257 175 917 466 706 339 1299 419 846 555 

1st Quartile 50 50 126 126 152.75 152 195 191.75 235.50 235.25 

Median 81 78.5 175 173 191 189 237.5 232 344 344 

3rd Quartile 114 112.50 262 257.50 227.25 224.75 284.75 272.25 406 405.50 

Mean 86.69 84.80 206.45 203.01 195.60 189.18 264.28 234.69 325.80 324.33 

Standard deviation 41.30 37.353 105.76 99.56 69.31 53.53 142.03 67.64 105.40 101.84 
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Table 5.3 Overview of measured RL (mcd/m²/lux) for WLL by subjective rating 

Parameter Rating 1 Rating 2 Rating 3 Rating 4 Rating 5 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

Number of 

observations 

30 28 960 861 1,733 1,675 426 409 168 166 

Minimum 66 66 72 72 65 65 94 94 199 199 

Maximum 383 291 785 453 789 459 1126 649 1144 733 

1st Quartile 113 111.25 179 172 172 170 227.25 226 327.50 326.50 

Median 149 146 244 234 227 223 301 288 404.50 403.50 

3rd Quartile 186.25 181.75 290.25 273 287 280 401 384 508.50 506 

Mean 164.63 150.25 269.90 229.64 242.17 230.64 337.12 312.41 420.55 413.15 

Standard deviation  74.05 51.48 144.14 79.30 101.28 80.28 168.15 116.12 131.35 112.63 

 

Table 5.4 Overview of measured RL (mcd/m²/lux) for WREL by subjective rating 

Parameter Rating 1 Rating 2 Rating 3 Rating 4 Rating 5 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

With 

outlier 

Without 

outlier 

Number of 

observations 

431 429 1,182 1,149 6,701 6,545 3,116 3,075 501 482 

Minimum 73 73 73 73 63 63 82 82 167 167 

Maximum 524 469 582 440 1037 505 1037 668 992 615 

1st Quartile 139.50 139 167.25 165 193 192 264 263 313 310.25 

Median 206 204 225 222 253 250 328 326 371 366.50 

3rd Quartile 278.50 278 277 269 318 313 429 422 435 427.75 

Mean 217.88 216.51 230.45 222.99 262.88 255.48 352.50 346.72 386.63 373.05 

Standard deviation  92.84 90.85 91.35 80.85 101.18 89.49 122.06 111.37 112.72 87.72 



 

 

In relation to YCL, the mean and median measured RL values follow the expected trend 

for ratings 1-3, increasing with higher subjective ratings (Figure 5.1). However, the mean and 

median measured RL for a subjective rating of 4 (203.09 mcd/m²/lux and 199 mcd/m²/lux, 

respectively) are higher than for a rating of 5 (186.07 mcd/m²/lux and 182 mcd/m²/lux, 

respectively). This discrepancy may be attributed to factors such as small sample size, human error, 

pavement contrast, environmental conditions, and so on. In addition, the lower standard deviations 

of measured RL for YCL in ratings 3-5 compared to ratings 1-2 suggest that YCLs with higher 

perceived quality may have less variability with actual RL measurements. In addition, the range 

of the mean measured RL across different rating scales is relatively small for YCL, varying from 

160.71 mcd/m²/lux to 186.07 mcd/m²/lux. In relation to YLEL, the mean measured RL for a 

subjective rating of 2 (203.01 mcd/m²/lux) is higher than for a subjective rating of 3 (189.18 

mcd/m²/lux) (Figure 5.2). However, the median of measured RL increases as subjective ratings 

improve, following an expected pattern. Moreover, the standard deviations of measured RL do not 

exhibit a consistent pattern regarding ratings; therefore, variability of measured RL for YLEL may 

not correlate with subjective ratings. 

For WLL, the median measured RL for a subjective rating of 2 (234 mcd/m²/lux) is higher 

than for a rating of 3 (223 mcd/m²/lux) (Figure 5.3). However, the mean measured RL follows the 

expected pattern, increasing as subjective ratings improve. Additionally, the standard deviations of 

measured RL increases with subjective ratings. This indicated that although WLLs with higher 

perceived quality tend to have more consistency with higher actual RL measurements, there may 

be greater variability. For WREL, both means and medians of measured RL follow the expected 

trend, increasing with subjective ratings (Figure 5.4). Moreover, the standard deviations of 

measured RL remain relatively consistent across different subjective ratings. 
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Figure 5.1 Key descriptive statistics parameters of measured RL (mcd/m²/lux) for YCL by 

subjective rating 

 

Figure 5.2 Key descriptive statistics parameters of measured RL (mcd/m²/lux) for YLEL by 

subjective rating 
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Figure 5.3 Key descriptive statistics parameters of measured RL (mcd/m²/lux) for WLL by 

subjective rating 

 

Figure 5.4 Key descriptive statistics parameters of measured RL (mcd/m²/lux) for WREL 

by subjective rating 
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5.3  Methodology 

 

Two-sample t-tests were employed to explore the relationship between subjective ratings 

and marking line type in context of the measured RL values. Before performing the two-sample t-

tests, Levene's test was conducted to assess whether the variances of two samples were equal. If 

Levene's test indicated equal variances, a pooled t-test was performed. If the variances were found 

to be unequal, Welch's t-test was used instead.  

5.3.1  Pooled t-test 

 

The pooled t-test is a two-sample t-test in which the variances of the two groups are the 

same. This test pools the variances from both groups and uses the pooled variance to estimate the 

standard error of the mean difference (Land and Chase, 1993). The hypotheses for lower-tail and 

upper-tail polled t-test are defined as: 

Lower-tail: {
𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝐻0): 𝜇1 = 𝜇2  

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝐻1): 𝜇1 < 𝜇2
 

Upper-tail: {
𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝐻0): 𝜇1 = 𝜇2  

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝐻1): 𝜇1 > 𝜇2
 

Where, 𝜇1 and 𝜇2 are the means of two populations. The formula for calculating t-statistics 

is provided in the following: 

𝑡 =
𝑋1̅̅ ̅ − 𝑋2̅̅ ̅

√𝑆𝑝2(
1
𝑛1
+
1
𝑛2
)

 

Where, 𝑋1̅̅ ̅ and 𝑋2̅̅ ̅ are mean of two sample means, 𝑛1 and 𝑛2 are sample sizes, and 𝑆𝑝
2 is 

the pooled variance.  

𝑆𝑝
2 =

(𝑛1 − 1)𝑆1
2 + (𝑛2 − 1)𝑆2

2

𝑛1 + 𝑛2 − 2
 

Where 𝑆1
2 and 𝑆2

2 are the sample variances.  
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5.3.2  Welch's t-test 

 

The Welch’s t-test does not assume equal variances between the two groups. Instead, it 

estimates the standard error using separate variance estimates for each group. Welch’s t-test is 

appropriate when the variances of two groups are different (Land and Chase, 1993). The 

hypotheses for lower-tail and upper-tail Welch’s t-test are defined as: 

Lower-tail: {
𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝐻0): 𝜇1 = 𝜇2  

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝐻1): 𝜇1 < 𝜇2
 

Upper-tail: {
𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝐻0): 𝜇1 = 𝜇2  

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 (𝐻1): 𝜇1 > 𝜇2
 

Where, 𝜇1 and 𝜇2 are the means of two populations. The formula for calculating t-statistics 

is provided in the following: 

𝑡 =
𝑋1̅̅ ̅ − 𝑋2̅̅ ̅

√(
𝑆1
2

𝑛1
+
𝑆2
2

𝑛2
)

 

Where, 𝑋1̅̅ ̅ and 𝑋2̅̅ ̅ are mean of two sample means, 𝑛1 and 𝑛2 are sample sizes, and 𝑆1
2 and 

𝑆2
2 are the sample variances. The analytical framework of this section is provided in Figure 5.5. 

 

Figure 5.5 Analytical framework of exploring relationship between subjective ratings and 

marking line type in context of the measured RL values 
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5.4  Analysis & Discussions 

 

Figure 5.6 shows the results of two-sample t-tests conducted to examine the statistical 

relationship between subjective ratings by pavement marking line types, comparing the measured 

RL values in mcd/m²/lux. It is important to note that the order of sample 1 and sample 2 for 

subjective rating scales can be identified using the two row names. The cell colors indicate the 

statistical relationship between the mean measured RL of population corresponding to samples 

from one rating and the mean measured RL of population corresponding to samples from another 

rating. For instance, for YCL, the first cell (from left) indicates that the mean measured RL for the 

population corresponding to samples with a subjective rating of 1 is statistically lower than that 

for the population corresponding to samples with a subjective rating of 2. The majority of rating 

combinations by marking positions follow the expected pattern, where the mean of measured RL 

statistically decreases as the subjective rating decreases at 90% and 95% confidence intervals. 

However, as noted in Section 5.2, ratings 4 and 5 for YCL and Ratings 2 and 3 for YLEL show a 

reverse trend where the mean of measured RL statistically increases significantly, despite a lower 

subjective rating. It is important to note that both instances involve yellow markings, suggesting 

that challenges related to evaluating yellow markings may contribute to this. In relation to WLL, 

the mean of measured RL values for ratings 2 and 3 are statistically equal, indicating no significant 

difference between these subjective ratings in terms of measured RL values. 
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Figure 5.6 Statistical relationship between subjective ratings with respect to marking 

positions in terms of measured RL values 

Figure 5.7 presents the results of two-sample t-tests conducted to identify the statistical 

relationship between pavement marking line types by subjective ratings comparing the measured 

RL values in mcd/m²/lux. The organization concept is similar to Figure 5.7, using the same color 

coding for results. For Rating 1, the first cell (from the left) indicates that the mean measured RL 

for the population associated with WREL samples is statistically higher than that for the population 

associated with YCL samples. The findings reveal that the mean of measured RL for white 

markings is statistically higher than for yellow markings in almost all subjective rating scales. This 

aligns with the fact that white pavement markings typically have higher minimum RL standards 

than yellow markings, which is reflected even in the subjective rating standards. Among white 

markings, in the majority of rating scales, WREL shows a statistically higher mean measured RL 

compared to WLL. This indicates higher subjective rating standards for WREL. Among yellow 

markings, the mean measured RL for YLEL is statistically higher than YCL in most of the 

subjective ratings. 
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Figure 5.7 Statistical relationship between marking line types by subjective ratings in terms 

of measured RL values 

5.5  Key Findings  

 

This section examines the statistical relationship between subjective ratings and measured 

RL, considering pavement marking line types. The findings can provide insights into the 

consistency of subjective rating in different marking line types in terms of actual RL measurement. 

One of the purposes of this section is to determine whether the higher RL standards maintained by 

ALDOT based on marking color, are also reflected in the subjective rating scales. Moreover, the 

analyses offer insights into the marking line types where observers may encounter difficulties 

determining subjective rating scales (e.g., 2 or 3), as a range of factors can influence these visual 

assessments. The key findings of this section are outlined below: 

• In the majority of marking line types, the mean measured RL statistically decreases as the 

subjective rating decreases, which reflects consistency between subjective rating and 

measured RL. This pattern is more evident in white markings, such as WREL and WLL. 
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• Yellow markings, such as YCL and YLEL, show an unexpected pattern where the mean 

measured RL statistically increases despite lower subjective ratings. This may be due to 

lower sample size and observers encountering difficulties in rating yellow markings 

accurately because of color contrast. 

• Almost in all subjective rating scales, the mean measured RL for white markings is 

statistically higher than for yellow markings. This reflects a tendency to maintain higher 

rating standards for white markings in terms of actual RL measurement, as they tend to 

degrade more over time. 

• Among white markings, observers apply higher rating standards for WREL in context of 

actual RL measurement across most of the subjective rating scales, while YLEL is found 

to have higher rating standards among yellow markings. 
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Chapter 6  RL Prediction Model 

 

This chapter focuses on developing regression models to predict RL for YCL and WREL. 

Initially, descriptive analyses are conducted to understand the distribution and characteristics of 

the datasets. Before constructing new models, an existing model is fitted to the datasets to evaluate 

its goodness of fit. Subsequently, new regression models are developed separately for YCL and 

WREL, considering different lane configurations. The practical applicability of these new models 

is then assessed, identifying the limitations in their implementation and potential improvements. 

6.1  Descriptive Analysis 

 

The datasets prepared for beta regression modeling in Chapter 4 are utilized in this chapter. 

Prediction models are developed to forecast 𝑅𝐿2021 values based on 𝑅𝐿2020 and other traffic flow 

and location characteristics previously identified as significant in degradation proportion 

modeling. It is important to note that only two RL measurements of each location are available: 

one taken in September 2020 (𝑅𝐿2020) and the other in November 2021 (𝑅𝐿2021), providing a 14-

month interval. It is noted that 𝑅𝐿2020 may be a significant predictor of 𝑅𝐿2021, meaning the 

distribution of 𝑅𝐿2020 can substantially influence model performance. Table 6.1 provides the 

distribution of 𝑅𝐿2020 for both YCL and WREL, with RL categorization based on the qualitative 

standards outlined in Table 1.1. 

Table 6.1 Distribution of datasets by 𝑹𝑳𝟐𝟎𝟐𝟎 

Marking line type Count of observations (Percentage of total observations) 

< 150 mcd/m²/lux 150 - 249 mcd/m²/lux >249 mcd/m²/lux 

WREL for rural two-lane 6 (1.73%) 56 (16.19%) 285 (82.13%) 

WREL for rural multilane 8 (3.40%) 32 (13.62%) 195 (82.98%) 

 < 100 mcd/m²/lux 100 - 199 mcd/m²/lux >199 mcd/m²/lux 

YCL for rural two-lane 5 (2.29%) 84 (40.19%) 120 (57.52%) 

 



72 

 

The distribution reveals that the datasets for YCL and WREL contain very few observations 

where the measured 𝑅𝐿2020 values were low based on the qualitative states. Out of the total 

segments where RL data was collected in 2020, only a small proportion had 𝑅𝐿2020 values below 

150 mcd/m²/lux for WREL and below 100 mcd/m²/lux for YCL. This may be because segments 

are typically restriped before their RL values drop below these thresholds, which several earlier 

studies have identified as the failure point for pavement markings in terms of RL. For WREL, only 

1.73% of observations on two-lane roads and 3.40% on multilane roads fall below 150 mcd/m²/lux. 

Similarly, only 2.29% of YCL observations on two-lane roads are below 100 mcd/m²/lux. 

Compared to WREL, YCL are more evenly distributed with respect to 𝑅𝐿2020 values 100 

mcd/m²/lux and above, with 40.191% of observations ranging between 100 - 199 mcd/m²/lux and 

57.517% above 199 mcd/m²/lux. 

6.2  Methodology 

 

Earlier RL models utilized multiple linear regression (MNL) models as it provided a good 

fit for the datasets. The standard format for the linear prediction model can be stated as follows 

(Marill, 2004): 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛 + 𝜖 

Where, 𝑌 is dependent variable; 𝛽0 means intercept representing the expected value of 𝑌 

when all 𝑋 variables are zero;  𝛽1, 𝛽2, ….., 𝛽𝑛 are the coefficients for each independent variable; 

𝑋1, 𝑋2, …., 𝑋𝑛 are the independent variables; 𝜖 is the error term capturing the variability in 𝑌 not 

explained by the independent variables.  

𝑅2 or coefficient of determination is a measure used to assess the goodness-of-fit of a MNL 

model. It represents the proportion of the variance in the dependent variable that is predictable 

from the independent variables (Quinino et al., 2013). 



73 

 

𝑅2 = 1 − 
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑆𝑆𝑡𝑜𝑡𝑎𝑙

 

Where, 𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is the sum of squared residuals (differences between observed and 

predicted values); 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is the total sum of squares (variance of observed values from the mean). 

An 𝑅2 closer to 1 indicates a better fit, meaning the model explains a larger portion of the variance 

in 𝑌. 

6.3  Results and Discussions 

 

Initially, the MNL models were applied to the existing model by Ozelim and Turochy 

(2014) to evaluate how well the previous developed equation fits to the current dataset. Since 

Section 4.4.1 demonstrates that the contributing factors are significantly influenced by marking 

line type and lane configuration, separate models were developed for WREL on two-lane and 

multilane roads. The transformed equations from the earlier models for predicting 𝑅2021 for white 

and yellow markings are provided below: 

White marking: 𝑇𝑀𝑤 = 𝑅2020 − 71.82 − 0.00699 ∗ (𝐴𝐴𝐷𝑇2021 − 𝐴𝐴𝐷𝑇2020) 

Yellow marking: 𝑇𝑀𝑦 = 𝑅2020 − 69.57 − 0.00217 ∗ (𝐴𝐴𝐷𝑇2021 − 𝐴𝐴𝐷𝑇2020) 

The calibrated model predicts the measured RL in 2021 based on the measured RL in 2020 

and the AADT difference between 2021 and 2020. Subsequently, new models were developed 

specifically for YCL on two-lane segments, WREL on two-lane segments, and WREL on multilane 

segments. It is important to note that, while constructing these prediction models, only variables 

identified as statistically significant for each marking line type in the degradation proportion 

modeling (Chapter 4) were included to ensure relevance to each specific line type. The validity 

and limitations of these models were then discussed using practical examples to illustrate their 

applicability and potential constraints. It is important to note that, since only two RL measurements 
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were available for each 0.1-mile segment, the time interval for the RL prediction models was fixed 

at 14 months. This indicates that the predicted 𝑅2021 represents the RL of 14 months after the 

previous measurement, 𝑅2020. 

6.3.1  RL Prediction Model for YCL 

 

Table 6.2 presents the linear regression results for YCL following the previous RL 

prediction model. The RL prediction model for yellow markings developed by Ozelim and 

Turochy (2014) shows a good fit with the dataset, achieving an 𝑅2 value of 0.6752, which explains 

67.52% of the overall variability.  

Table 6.2 Linear regression results for YCL using the previous RL prediction model 

 Coef. SE t-value p-value 

(intercept) 74.6942 4.6589 16.032 <0.001 

TMy 0.5957 0.0272 20.773 <0.001 

𝑅2 = 0.6752 
Note: Coefficient (Coef.) and Standard Error (SE) 

Table 6.3 presents the MNL results for YCL on rural two-lane roads, aiming to develop a 

new RL prediction model without initial RL and marking age. Including only 𝑅2020 in a simple 

linear regression model accounts for 65.61% of the variability. Consistent with the degradation 

proportion model for YCL (Section 4.4.1), all selected variables are found to be statistically 

significant. A one-unit increase in 𝑅2020 (mcd/m²/lux) leads to a 0.57 mcd/m²/lux increase in 𝑅2021 

when other predictors are constant. Additionally, 1,000 units increase in AADT decreases 𝑅2021 

by 1.20 mcd/m²/lux, indicating a statistically significant correlation between AADT and RL 

degradation. For roads in residential, business, or mixed-use areas, 𝑅2021 decreases by 14.03 

mcd/m²/lux, when all other variables remain constant. It is worth noting that, although 

residential/business/mixed areas are found to be statistically significant in the model, their 
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inclusion marginally improves model performance, as 𝑅2 increases slightly. Following this, the 

final RL prediction model is provided below: 

𝑅2021 = 39.35 + 0.578 ∗ 𝑅2020 − 0.0011 * Adj AADT 

Table 6.3 MNL results for YCL 

 Coef. SE t-value p-value 

(intercept) 44.5800 7.8472 5.680 <0.001 

𝑅2020 (mcd/m²/lux) 0.5684 0.0284 19.578 <0.001 

Adj AADT (vpd) -0.0012 0.0013 -5.401 <0.001 

Location class (ref. open 

country) 

    

residential/business/mixed -14.0312 5.8432 -2.036 0.043 

𝑅2 = 0.6824 

Equation 𝑹𝟐 

𝑅2021 = 44.58 + 0.568 ∗ 𝑅2020 − 0.0012 * Adj AADT – 14.03 * (location class 

@ residential/business/mixed) 

0.6824 

𝑅2021 = 39.35 + 0.578 ∗ 𝑅2020 − 0.0011 * Adj AADT  0.6785 
Note: Coefficient (Coef.) and Standard Error (SE) 

6.3.2  RL Prediction Model for WREL (Rural Two-lane) 

 

Table 6.4 shows the linear regression results for WREL on rural two-lane following the 

previous RL prediction model. The RL prediction model for white markings developed by Ozelim 

and Turochy (2014) shows a good fit with the dataset, explaining 59.34% of the overall variability.  

Table 6.4 Linear regression results for WREL (rural two-lane) using the earlier RL 

prediction model 

 Coef. SE t-value p-value 

(intercept) 83.8771 7.5372 11.131 <0.001 

TMw 0.5640 0.0273 22.446 <0.001 

𝑅2 = 0.5934     
Note: Coefficient (Coef.) and Standard Error (SE) 

Table 6.5 presents the MNL results for WREL on rural two-lane roads, aiming to develop 

a new RL prediction model for WREL without initial RL and marking age. A simple linear 

regression model that includes only 𝑅2020 explains 58.55% of the variability. Both 𝑅2020 and Adj 
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AADT are found to be statistically significant predictors. A one mcd/m²/lux increase in 𝑅2020 

results in a 0.56 mcd/m²/lux increase in 𝑅2021 when other predictors remain constant. Moreover, 

an increase of 1,000 units in AADT decreases 𝑅2021 by 4.90 mcd/m²/lux, indicating a statistically 

significant associations between AADT and RL degradation. Notably, the absolute magnitudes of 

influence regrading 𝑅2020 and Adj AADT are higher for WREL than for YCL. In consistent with 

earlier studies, this highlights that yellow markings experience less RL degradation over time 

compared to white markings. The final RL prediction model for WREL on rural two-lane road 

segments is provided below: 

𝑅2021 = 63.42 + 0.561 ∗ 𝑅2020 − 0.0049 * Adj AADT 

Table 6.5 MNL results for WREL (rural two-lane) 

 Coef. SE t-value p-value 

(intercept) 63.4151 13.7742 5.578 <0.001 

𝑅2020 (mcd/m²/lux) 0.5613 0.0277 21.303 <0.001 

Adj AADT (vpd) -0.0049 0.0016 -4.673 <0.001 

𝑅2 = 0.6153     

Equation  𝑹𝟐 

𝑅2021 = 63.42 + 0.561 ∗ 𝑅2020 − 0.0049 * Adj AADT  0.6153 
Note: Coefficient (Coef.) and Standard Error (SE) 

6.3.3  RL Prediction Model for WREL (Rural Multilane) 

 

Table 6.6 represents the linear regression results for WREL on rural multilane using the 

previous RL prediction model for white marking (Ozelim and Turochy, 2014). The earlier RL 

prediction model shows a good fit with the dataset, explaining 58.92% of the overall variability. 

The 𝑅2 value for multilane roads is slightly lower than that for two-lane roads, likely due to the 

limited number of segments on multilane in the previously developed model. 
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Table 6.6 Linear regression results for WREL (rural multilane) using the previous RL 

prediction model 

 Coef. SE t-value p-value 

(intercept) 88.4553 9.5126 10.035 <0.001 

TMw 0.4782 0.0293 18.149 <0.001 

𝑅2 = 0.5892     
Note: Coefficient (Coef.) and Standard Error (SE) 

Table 6.7 shows the MNL results for WREL on rural multilane roads, aiming to predict RL 

without initial RL and marking age. A simple linear regression model that includes only 𝑅2020 

explains 58.22% of the variability. Both 𝑅2020 and Adj AADT are found to be statistically 

significant predictors. A one mcd/m²/lux increase in 𝑅2020 results in a 0.46 mcd/m²/lux increase in 

𝑅2021 when other predictors remain constant. Moreover, an increase of 1,000 units in AADT 

decreases 𝑅2021 by 0.7 mcd/m²/lux, indicating a statistically significant positive correlation 

between AADT and RL degradation. It is noteworthy that the impact of AADT in RL degradation 

for WREL is lower on rural multilane compared to rural two-lane. This is because, on multilane 

roads, the total vehicle volume is distributed across multiple lanes, which spreads out the wear and 

reduces pressure on individual markings. The final RL prediction model for WREL on rural 

multilane road segments is provided below: 

𝑅2021 = 66.75 + 0.464 ∗ 𝑅2020 − 0.0007 * Adj AADT 

Table 6.7 MNL results for WREL (rural multilane) 

 Coef. SE t-value p-value 

(intercept) 66.7492 13.5372 3.314 0.001 

𝑅2020 (mcd/m²/lux) 0.4642 0.0288 18.383 <0.001 

Adj AADT (vpd) -0.0007 0.0003 -3.455 <0.001 

𝑅2 = 0.6034     

Equation 𝑹𝟐 

𝑅2021 = 66.75 + 0.464 ∗ 𝑅2020 − 0.0007 * Adj AADT  0.6034 
Note: Coefficient (Coef.) and Standard Error (SE) 
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6.3.4  Prediction Models Limitations  

 

Multiple validation steps are required before finalizing the models to enhance their 

practical applicability. An established finding in pavement marking research is that yellow 

markings generally degrade slower compared to white markings. To assess whether the developed 

models align with this basic concept, the following estimations have been conducted. At both high 

and low RL levels, yellow markings exhibit lower degradation compared to white markings, which 

aligns with findings from previous studies. 

i) Assume, measured RL of any given time (𝑅𝐿𝑡) of YCL = 300 mcd/m²/lux, AADT = 

10,000 vpd, and road setting = rural two-lane  

Predicted RL after 14 months (𝑅𝐿𝑡+14) = 39.35 + 0.578 ∗ 300 − 0.0011 ∗ 10,000 =

201.75 ≈ 202 mcd/m²/lux. 

ii) Assume, measured RL of any given time (𝑅𝐿𝑡) of YCL = 100 mcd/m²/lux, AADT = 

10,000 vpd, and road setting = rural two-lane 

Predicted RL after 14 months (𝑅𝐿𝑡+14) = 39.35 + 0.578 ∗ 100 − 0.0011 ∗ 10,000 =

86.15 ≈ 87 mcd/m²/lux. 

iii) Assume, measured RL of any given time (𝑅𝐿𝑡) of WREL = 300 mcd/m²/lux, AADT = 

10,000 vpd, and road setting = rural two-lane 

Predicted RL after 14 months (𝑅𝐿𝑡+14) = 63.42 + 0.561 ∗ 300 − 0.0049 ∗ 10,000 =

182.72 ≈ 183 mcd/m²/lux. 

iv) Assume, measured RL of any given time (𝑅𝐿𝑡) of WREL = 100 mcd/m²/lux, AADT = 

10,000 vpd, and road setting = rural two-lane 

Predicted RL after 14 months (𝑅𝐿𝑡+14) = 63.42 + 0.561 ∗ 100 − 0.0049 ∗ 10,000 =

70.52 ≈ 71 mcd/m²/lux. 
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Figures 6.1-6.3 show the normal QQ plots and residual vs. fitted plots for the three RL 

prediction models: YCL, WREL on two-lane roadways, and WREL on multilane roadways, 

respectively. These plots provide insights into the distribution of residuals and the fit of each 

model, allowing for a visual assessment of model assumptions. In each case, a few outliers are 

present in the datasets. Most residuals (represented by the red lines in the residual plots) are close 

to the dashed line, indicating a high degree of linearity in the prediction model. However, the 

residual variance changes across the range of fitted values, a phenomenon known as 

heteroscedasticity. To evaluate the predictive performance of each model in estimating the service 

life of pavement marking RL, each model was tested across various AADT ranges. 

 

Figure 6.1 QQ and Residual plots for YCL model 
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Figure 6.2 QQ and Residual plots for WREL model (rural two-lane) 

 

Figure 6.3 QQ and Residual plots for WREL model (rural multilane) 

In RL predictive modeling, estimating service life can help to reveal the limitations of 

regression models. Since the MUTCD has lowered the minimum RL requirement to 50 

mcd/m²/lux, it is crucial to have enough RL data observations within the 50-100 mcd/m²/lux range 

across diverse traffic volumes to develop a model capable of better predicting RL below this 

threshold. However, in the RL datasets, very few observations fall below 100 mcd/m²/lux for YCL 

(below 3%) and below 150 mcd/m²/lux for WREL (less than 4%). As a result, it is anticipated that 
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the models developed in this research may not perform well when the 𝑅𝐿𝑡 levels falls within such 

ranges. Ozelim and Turochy (2014) also highlighted such limitations in their study, noting 

unexpected results while calculating service life using the regression equations of earlier studies. 

In this study, Figures 6.4-6.9 illustrate the predicted RL values for YCL and WREL based on 

minimum RL installation standards and diverse AADT ranges. The two primary issues are: i) RL 

degradation becomes zero at a certain point, resulting in no further decline, and ii) percentage of 

degradation is not stable after a certain RL, specifically when 𝑅𝐿𝑡 below 150 mcd/m²/lux for 

WREL and below 100 mcd/m²/lux for YCL. For yellow markings, the 𝑅𝐿𝑡+14 predictions for YCL 

are less reliable when 𝑅𝐿𝑡 values fall below 100 mcd/m²/lux. Similarly, for white markings, the 

𝑅𝐿𝑡+14 predictions for WREL are less reliable when 𝑅𝐿𝑡 values fall below 150 mcd/m²/lux, for 

both two-lane and multilane road segments. One primary reason for such limitations is the scarcity 

of road segments at these low RL levels across a range of traffic volumes, leading to limited data 

distribution. However, this limitation may have minimal practical impact, as segments are often 

restriped before reaching 100 mcd/m²/lux for yellow markings and 150 mcd/m²/lux for white 

markings. With recent changes in the MUTCD, it is increasingly important to develop models that 

can more accurately predict future RL levels below 100 mcd/m²/lux, as the minimum maintained 

RL threshold has been reduced from 100 mcd/m²/lux to 50 mcd/m²/lux for certain road segments.  
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Figure 6.4 Predicted RL of YCL by month (𝑹𝑳𝒕 = 300 mcd/m²/lux and AADT = 10,000 vpd) 

 

Figure 6.5 Predicted RL of YCL by month (𝑹𝑳𝒕 = 300 mcd/m²/lux and AADT = 546 vpd) 
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Figure 6.6 Predicted RL of WREL (rural two-lane) by month (𝑹𝑳𝒕 = 450 mcd/m²/lux and 

AADT = 10,000 vpd) 

 

Figure 6.7 Predicted RL of WREL (rural two-lane) by month (𝑹𝑳𝒕 = 450 mcd/m²/lux and 

AADT = 546 vpd) 
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Figure 6.8 Predicted RL of WREL (rural multilane) by month (𝑹𝑳𝒕 = 450 mcd/m²/lux and 

AADT = 20,000 vpd) 

 

Figure 6.9 Predicted RL of WREL (rural multilane) by month (𝑹𝑳𝒕 = 450 mcd/m²/lux and 

AADT = 3,610 vpd) 
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6.4  Key Findings 

 

This chapter focuses on developing RL prediction models for YCL and WREL without 

requiring initial RL and pavement marking age information. Using a multiple linear regression 

approach, this study addresses a gap in the literature by providing separate regression models for 

WREL on different rural road lane configurations. The newly developed models demonstrate 

improved goodness-of-fit compared to the calibrated models from a previous Alabama study. 

However, a limitation arises due to the limited sample size, particularly in lower RL levels, which 

constrains the accuracy of predicting the service life of pavement markings. The resulting RL 

prediction equations, along with guidance on their application, are presented below: 

YCL (rural two-lane): 𝑅𝐿𝑡+14 = 39.35 + 0.578 ∗ 𝑅𝐿𝑡 − 0.0011 ∗ 𝐴𝐴𝐷𝑇 

WREL (rural two-lane): 𝑅𝐿𝑡+14 = 63.42 + 0.561 ∗ 𝑅𝐿𝑡 − 0.0049 ∗ 𝐴𝐴𝐷𝑇 

WREL (rural multilane): 𝑅𝐿𝑡+14 = 66.75 + 0.464 ∗ 𝑅𝐿𝑡 − 0.0007 ∗ 𝐴𝐴𝐷𝑇 

Where, 𝑅𝐿𝑡 is the measured RL at any given time, 𝑅𝐿𝑡+14 is the predicted RL after 14 

months of t. For better accuracy in RL measurements, it is recommended to use these models when 

𝑅𝐿𝑡 ≥100 mcd/m²/lux for yellow markings and 𝑅𝐿𝑡 ≥150 mcd/m²/lux for white markings. 

Additionally, it is recommended to calculate adj AADT if AADT values vary between years. 
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Chapter 7  Statistical Relationship between RL and Road Safety   

 

This section aims to examine the statistical relationship between RL and specific types of 

crashes, including single-vehicle ROR collisions, crashes occurring in dark conditions, and crashes 

at night with no streetlighting. Since RL measurements for 856 miles of rural road segments were 

only taken in 2021, prediction models for YCL and WREL have been used to estimate RL for 2020. 

Within the majority of 1-mile segments, significant variability in measured RL along with road 

and traffic flow characteristics were observed, highlighting the importance of analyzing shorter 

segments to more accurately assess safety benefits. Consequently, average RL values are 

calculated for each 0.5-mile segment, and crash counts of those segments are compiled over a 

defined period. Finally, regression models are applied to investigate any statistically significant 

relationship between RL and relevant crash types. 

7.1  Data Preprocessing  

 

Investigating the safety implications of pavement marking RL reveals a complexity that 

goes beyond initial assumptions. RL fluctuates notably due to diverse factors such as location and 

environmental conditions, complicating safety assessments. To address these complexities, this 

study focuses specifically on the RL values of WREL and YCL markings on both rural two-lane 

and multilane roads. The objective is to evaluate the statistical correlation between these RL values 

and road crashes, providing a clearer understanding of their impact on road safety. There were 856 

1-mile rural road segments with RL measurements only available in November 2021. To estimate 

RL values for 2020 on these segments, prediction models for WREL on two-lane and multilane 

roads and YCL on two-lane roads, developed in Chapter 6, were utilized. Since road segments are 

more frequently restriped during summer months, and to accurately assess the statistical 
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relationship between crashes and RL without the seasonal effects of winter, this analysis focused 

on a time period between March 2021 and November 2021 (mid spring to late fall). The following 

steps are performed to assign average RL values to the road segments and select the appropriate 

road segments for further analyses.  

• Segments with measured RL data in September 2020 and November 2021: Assuming a 

linear degradation of RL, the RL were calculated for March 2021. Restriped 0.1-mile 

segments were removed while comparing two years of measurements. Each 0.1-mile 

segment was then assigned an average RL value calculated using the following formula: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝐿 =
𝑅𝐿 𝑖𝑛 𝑀𝑎𝑟𝑐ℎ 2021 + 𝑅𝐿 𝑖𝑛 𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟 2021 

2
 

An example is provided to enhance clarity. For instance, consider a specific 0.1-mile 

segment where the measured RL in September 2020 was 240 mcd/m²/lx, and in November 

2021, it was 140 mcd/m²/lx. Using this information, the RL in March 2021, as well as the 

average RL between March 2021 and November 2021, can be calculated as follows: 

𝑅𝐿 𝑖𝑛 𝑀𝑎𝑟𝑐ℎ 2021 = 240 − (
100

14
) ∗ 6 = 197 𝑚𝑐𝑑/𝑚²/𝑙𝑥 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝐿 =
197 + 140 

2
= 169 𝑚𝑐𝑑/𝑚²/𝑙𝑥 

• Segments with measured RL only in November 2021: The developed RL prediction models 

for WREL and YCL were used to estimate the RL values in September 2020 as well as 

March 2021. To ensure exclusion of restriped segments, thresholds were established 

beyond which segments are considered restriped during the summer. In Alabama, the 

minimum RL values required for white and yellow thermoplastic pavement marking for 

installation and restriping are 450 mcd/m²/lx and 300 mcd/m²/lx, respectively. Hence, for 

added precaution, only segments with RL values ≤ 425 mcd/m²/lx for WREL and ≤ 275 
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mcd/m²/lx for YCL in March 2021 were considered for further analyses. Subsequently, 

each segment was assigned an average RL value between March 2021 and November 2021 

using the same methodology outlined in the earlier step. 

For each 0.1-mile segment, relevant data—including AADT, location classification, road 

alignment, functional classification, and posted speed limit—were assigned following the 

procedure outlined in Chapter 3. To address variability in road, traffic flow, and location 

characteristics more accurately, RL values were assigned to shorter segments. Therefore, 0.5-mile 

segments were chosen to improve analytical precision. 0.1-mile segments were compiled into a 

0.5-mile segment, with the calculated average RL. Since a single curve can span across two 0.5-

mile segments, a variable was created to indicate the presence of a curve within each 0.5-mile 

segment. Although RL was measured in one specific direction of traffic flow, both directions were 

assumed to have the same RL value to maximize the number of crashes attributed to each 0.5-mile 

segment. Table 7.1 presents the number of 0.5-mile segments incorporated into the safety analysis 

using RL prediction models. More than three times 0.5-mile segments from rural two-lane roads 

and more than two times 0.5-mile segments from rural multilane roads were included using RL 

prediction models. Figure 7.1 illustrates the distribution of 0.5-mile segments on rural two-lane 

and multilane roads by RL of WREL: < 250 mcd/m²/lux and ≥ 250 mcd/m²/lux. In both road 

settings, a higher percentage of segments fall into the ≥ 250 mcd/m²/lux category, with 65.13% on 

rural two-lane roads and 56.78% on rural multilane roads. 

Table 7.1 Summary of 0.5-mile segments for safety analyses in relation to WREL 

Lane configuration Total segment Segments attained 

from actual RL 

measurements 

Segments attained 

from predictive 

modeling 

Rural two-lane 1,411 288 1,123 

Rural multilane 517 152 365 
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Figure 7.1  Distribution of 0.5-mile segments by RL of WREL 

While extracting crash data, only crashes occurring between March 2021 and November 

2021—covering the Mid Spring to Late Fall seasons—were included. Each measured RL had 

geocoordinate information, so crashes occurring within 250 feet of a specific 0.1-mile segment 

were considered to belong to that segment. Crashes involving alcohol impairment were excluded, 

aligning with previous studies (Donnell et al., 2009; Smadi et al., 2008). Alcohol impairment 

significantly reduces reaction time, judgment, and attentiveness, resulting in crashes more directly 

attributed to human error rather than external visibility factors like RL. Both driver condition and 

primary contributing factors were used to identify and exclude alcohol-impaired crashes. 

Additionally, intersection crashes were excluded due to the variety of complex factors at 

intersections—such as traffic signals, signage, pedestrian crossings, and multidirectional vehicle 

movements—that go beyond pavement marking visibility (Carlson et al., 2013; Masliah et al., 

2007). Furthermore, when assigning intersection crashes to the corresponding 0.1-mile segments, 

misassignments can occur due to the high likelihood of including crashes from minor roads within 
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a 250-foot radius of the RL measurement point on the major road. An example is provided in 

Figure 7.2. 

 

Figure 7.2 Potential complexities of including intersection crashes 

This study focuses specifically on single-vehicle ROR crashes, which are more likely to be 

influenced by low RL of WREL. The criteria for selecting single-vehicle ROR crashes are detailed 

below. 

• Exclude from first/most harmful events: crashes with other vehicles, crashes with parked 

vehicle or pedestrian, crashes with animals, cross-centerline crashes, equipment 

malfunctions, and other crashes that potentially happened on the roadway. 

• Number of vehicle: One (also cross-checked with collision type- single vehicle/non-

collision) 

The combined effect of WREL and YCL might influence nighttime crashes with no 

streetlighting conditions. Therefore, in addition to single-vehicle ROR crashes, crashes occurring 

in dark conditions with no streetlighting were also considered to assess the impact of interactions 

between RL levels of YCL and WREL. In such cases, crashes involving parked vehicles or 
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pedestrians, collisions with animals, and equipment malfunctions were excluded; however, cross-

centerline crashes and collisions with other vehicles were included. In total, five types of crashes 

were considered for further analysis, as listed below: 

• Single vehicle ROR crashes (rural two-lane and multilane separately) 

• Single vehicle ROR crashes on dark, dusk, and dawn conditions (rural two-lane and 

multilane separately) 

• Single vehicle ROR crashes on dark no streetlighting conditions (rural two-lane and 

multilane separately) 

• Crashes on dark no streetlighting conditions (rural two-lane only) 

• Single vehicle ROR crashes on curve segments (merging rural two-lane and multilane) 

Notably, for single-vehicle ROR crashes occurring on curve segments, the average RL and 

crash count for each 0.1-mile segment were analyzed, incorporating curve radius and angle as 

additional covariates. This approach allows for a more comprehensive understanding of the 

combined impact of curve geometry and RL on crash frequency and the likelihood of crashes. 

7.2  Descriptive Analysis 

 

Given the limitations of RL prediction models in estimating lower RL levels, categorizing 

average RL values into multiple groups offers an effective approach for RL safety analysis. On 

rural two-lane roads, a small fraction of 0.5-mile segments had RL of WREL below 150 

mcd/m²/lux. When factoring in the presence of crashes, the number of such segments was even 

smaller. Therefore, for WREL on rural two-lanes, RL values are grouped into two categories: <250 

mcd/m²/lux and ≥250 mcd/m²/lux. For multilane roads, more detailed categorization is feasible 

due to a relatively higher proportion of crashes in segments with lower RL values. Categories for 

multilane roads include <250 mcd/m²/lux and ≥250 mcd/m²/lux, as well as broader categories of 
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<150 mcd/m²/lux, 150-249 mcd/m²/lux, and ≥250 mcd/m²/lux. On rural two-lanes, while analyzing 

crashes at dark with no streetlighting conditions, RL of YCL is categorized as <200 mcd/m²/lux 

and ≥200 mcd/m²/lux. Additionally, a separate analysis considers the interaction between RL of 

WREL and YCL, with the following interaction categories: 

• WREL ≥ 250 mcd/m²/lux and YCL ≥ 200 mcd/m²/lux 

• WREL ≥ 250 mcd/m²/lux and YCL < 200 mcd/m²/lux 

• YCL ≥ 200 mcd/m²/lux and WREL < 250 mcd/m²/lux 

• YCL ≥ 200 mcd/m²/lux and WREL ≥ 250 mcd/m²/lux 

Tables 7.2-7.4 and Figures 7.3-7.7 present an overview of the crash datasets prepared for RL 

safety analysis. Key observations from these datasets are outlined below: 

• The majority of rural two-lane segments are located in open country areas (92.63%) 

and have posted speed limits of 55 mph or higher (90.645%). Compared to segments 

with actual RL measurements, the segments included from predictive modeling contain 

a higher proportion of curves, resulting in a good percentage of curve segments 

(28.99%) in the overall dataset. On rural two-lanes, the total crash counts by all targeted 

crash types are equal to or slightly higher than the number of 0.5-mile segments with 

at least one crash occurrence, indicating that only a few segments experienced multiple 

crashes (0% to 4.79%). Specifically, there are only 71 segments with RL levels below 

150 mcd/m²/lux, and further analysis exhibit that only six crashes occurred within these 

segments. 

• In comparison to rural two-lane roadways, the total crash counts by all targeted crash 

types are considerably higher than the number of 0.5-mile segments with at least one 

crash occurrence on multilane roads (23.88% to 38.81%), indicating a more dispersed 
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crash distribution. The proportion of segments with crashes is also higher on multilane 

roads (12.98% to 32.36%) than on two-lane roads (3.26% to 10.35%), providing a 

relatively sufficient number of segments with RL levels below 150 mcd/m²/lux for 

modeling. Although segments with curves are less common on multilane roads 

compared to two-lane roads, the proportion of curved segments with at least one crash 

occurrence is higher on multilane roadways.  

• Among rural two-lane segments where RL measurements are available for both YCL 

and WREL, a substantial proportion have RL of YCL below 200 mcd/m²/lux (68.26%). 

This may indicate a lower frequency of restriping YCL, potentially due to its slower 

degradation rate compared to WREL. Rural two-lane segments with low RL levels of 

YCL and WREL are particularly susceptible to road crashes. For example, there are 

42.11% of segments with at least one crashes at dark no streetlighting conditions have 

RL of below 200 mcd/m²/lux and below 250 mcd/m²/lux for YCL and WREL, 

respectively. This percentage is disproportionately high compared to the overall 

percentage of 0.5-mile segments with low RL levels of YCL and WREL (31.42%). 

• When focusing on single-vehicle ROR crashes, the proportion of crashes on curve 

segments is relatively higher than on straight segments, suggesting that single-vehicle 

ROR crashes are strongly associated with curve segments. It is important to note that 

since data for both two-lane and multilane roads have been combined for 0.1-mile 

curved segments, functional class is used as a covariate instead of posted speed limit. 
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Table 7.2 Summary of crash datasets on rural two-lane segments 

Variable  Rural two-lane (Number of 0.5-mile segments = 1,411) 

Single vehicle ROR Single vehicle ROR at 

dark, dusk, and dawn 

Single vehicle ROR at dark 

no streetlighting 

Crash count Min: 0, Max: 2, Median: 0, 

Mean: 0.11 

(Number of crashes = 153) 

Min: 0, Max: 2, Median: 0, 

Mean: 0.04 

(Number of crashes = 60) 

Min: 0, Max: 1, Median: 0, 

Mean: 0.03 

(Number of crashes = 46) 

AADT (vpd) Min: 229, Max: 13,731, Median: 2,323, Mean: 2,822 

Crash occurrence    

yes 146 (10.35%) 58 (4.11%) 46 (3.26%) 

no 1,265 (89.65%) 1,353 (95.89%) 1,365 (96.74%) 

Location class    

open country 1,307 (92.63%) 

residential/business/mixed 104 (7.37%) 

Posted speed limit     

< 55mph 132 (9.36%) 

≥ 55mph 1,279 (90.65%) 

Presence of curve    

no 1,002 (71.01%) 

yes 409 (28.99%) 

RL by category (mcd/m²/lux)    

<250 492 (34.87%) 

≥ 250 919 (65.13%) 
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Table 7.3 Summary of crash datasets on rural multilane segments 

Variable  Rural multilane (Number of 0.5-mile segments = 516) 

Single vehicle ROR Single vehicle ROR at 

dark, dusk, and dawn 

Single vehicle ROR at dark 

no streetlighting 

Crash count Min: 0, Max: 6, Median: 0, 

Mean: 0.52 

(Number of crashes = 267) 

Min: 0, Max: 4, Median: 0, 

Mean: 0.20 

(Number of crashes = 101) 

Min: 0, Max: 4, Median: 0, 

Mean: 0.17 

(Number of crashes = 86) 

AADT (vpd) Min: 3,675, Max: 86,009, Median: 19,075, Mean: 22,886 

Crash occurrence    

yes 167 (32.36%) 80 (15.50%) 67 (12.98%) 

no 349 (67.64%) 436 (84.50%) 449 (87.02%) 

Location class    

open country 464 (89.92%) 

residential/business/mixed 52 (10.08%) 

Posted speed limit     

<65mph 112 (21.71%) 

≥ 65mph 404 (78.29%) 

Presence of curve    

no 443 (85.85%) 

yes 73 (14.15%) 

RL by category (mcd/m²/lux)    

<150 83 (16.09%) 

150-249 140 (27.13%) 

<250 223 (43.22%) 

≥ 250 293 (56.78%) 
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Table 7.4 Summary of crash datasets on curve segments and at dark no streetlighting conditions 

Variable  Dark no streetlighting – rural 

two-lane only (Number of 0.5-

mile segments = 1,235) 

Single-vehicle ROR crashes on curve 

segments (Number of 0.1-mile segments 

= 871) 

Crash count Min: 0, Max: 2, Median: 0, Mean: 

0.09 

(Number of crashes = 106) 

Min: 0, Max: 5, Median: 0, Mean: 0.18 

(Number of crashes = 158) 

AADT (vpd) Min: 229, Max: 13,731, Median: 

2,404, Mean: 2,851 

Min: 229, Max: 140,466, Median: 2,955, 

Mean: 5,256 

Curve angle (degree) ---- Min: 8.96, Max: 84.77, Median: 35.04, 

Mean: 37.19 

Curve radius (ft) ---- Min: 317, Max: 7,968, Median: 2,135, 

Mean: 2,623 

Crash occurrence    

yes 95 (7.69%) 130 (14.93%) 

no 1,140 (92.31%) 741 (85.07%) 

Location class   

open country 1,147 (92.87%) 777 (89.21%) 

residential/business/mixed 88 (7.13%) 94 (10.79%) 

Posted speed limit  ---- 

< 55mph 117 (9.47%) ---- 

≥ 55mph 1,118 (90.53%) ---- 

Presence of curve  ---- 

yes 367 (29.72%) ---- 

no 868 (70.28%) ---- 

Number of lanes   

two ---- 718 (82.43%) 

>two ---- 153 (17.57%) 

RL of WREL by category (mcd/m²/lux)   

<250 447 (36.19%) 326 (37.43%) 

≥ 250 788 (63.81%) 545 (62.57%) 

RL of YCL by category (mcd/m²/lux)  ---- 
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Variable  Dark no streetlighting – rural 

two-lane only (Number of 0.5-

mile segments = 1,235) 

Single-vehicle ROR crashes on curve 

segments (Number of 0.1-mile segments 

= 871) 

<200 843 (68.26%) ---- 

≥ 200 392 (31.74%) ---- 

Interaction of RL ((mcd/m²/lux)  ---- 

YCL<200 and WREL<250 388 (31.42%) ---- 

YCL≥200 and WREL<250 59 (4.78%) ---- 

YCL<200 and WREL≥250 455 (36.84%) ---- 

YCL≥200and WREL≥250 333 (26.96%) ---- 

Functional class   

major collector  ---- 265 (30.43%) 

arterial ---- 591 (67.85%) 

interstate ---- 15 (1.72%) 



 

 

 

Figure 7.3 Distribution of 0.5-mile segments with at least one single vehicle ROR crash 

 

 

Figure 7.4 Distribution of 0.5-mile segments with at least one single vehicle ROR crash at 

dark, dusk, and dawn 
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Figure 7.5 Distribution of 0.5-mile segments with at least one single vehicle ROR crash at 

dark no streetlighting 

 

Figure 7.6 Distribution of 0.5-mile segments with at least one crashes at dark no 

streetlighting (rural two-lane only) 
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Figure 7.7 Distribution of 0.1-mile segments with at least one crashes on curve segments 

7.3  Methodology 

 

In this research, both binary logit regression and negative binomial (NB) regression are 

applied to examine the statistical relationship between RL and road crashes. In the binary logit 

regression model, the dependent variable indicates whether a crash occurred within a segment, 

providing the probability of crash occurrence. In contrast, the NB regression model utilizes crash 

frequency as the dependent variable, allowing for the assessment of the percentage increase or 

decrease in expected crash frequency. 

7.3.1  Binary Logit Regression 

 

Binary logit regression has been employed in traffic safety research to examine the 

association between binary outcome variables and explanatory factors (Rahman et al., 2021). In 

this study, the dichotomous outcome variable 𝑦𝑖𝑛 is defined as: 

𝑦𝑖𝑛 = {
1, 𝑖𝑓 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠

0, 𝑖𝑓 𝑛𝑜 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 
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If the probability of a crash occurring is represented by 𝑃(𝑦𝑖𝑛 = 1), then the logistic 

function can be defined as follows (McFadden, 1981): 

𝑃(𝑦𝑖𝑛 = 1) =
exp (𝛽𝑋𝑖𝑛)

1 + exp (𝛽𝑋𝑖𝑛)
 

In this context, 𝑋𝑖𝑛 refers to the independent variable vector, while β represents the 

estimable coefficient vector. The estimation of the coefficients can be achieved by maximizing the 

following log-likelihood function (Minka, 2001): 

𝐿𝐿(𝛽) =∑ {(𝑦𝑖𝑛ln (𝑃(𝑦𝑖𝑛)
𝑛

𝑖=1
) + (1 − 𝑦𝑖𝑛)ln (1 − 𝑃(𝑦𝑖𝑛)))} 

The Akaike Information Criterion (AIC) is a statistical measure used to evaluate the relative 

quality of regression models. It is rooted in information theory and provides a means of comparing 

multiple models to determine which is the most suitable for explaining the observed data 

(Bozdogan, 1987; Cavanaugh and Neath, 2019). The AIC assesses both the goodness-of-fit and 

the complexity of the model, aiming to strike a balance between them to avoid overfitting or 

underfitting (Petegem and Wegman, 2014). 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿) 

Where, k is the number of parameters in the model and ln(L) is the natural logarithm of the 

likelihood of the model. 

7.3.2  Negative Binomial (NB) Regression  

 

The negative binomial model, also regarded as the Poisson-Gamma model, is an extension 

of the conventional Poisson model to overcome potential over-dispersion in the data. The model 

hypothesizes that the Poisson parameter supports a gamma likelihood distribution (Poch and 

Mannering, 1996). The NB assumes that crash frequencies are independent for an entity for any 

month. The model outcomes in a closed-form equation and the computation to manipulate the 
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association between the mean and the variance is relatively straightforward (Lord and Mannering, 

2010). The equations of NB regression model are specified below: 

𝑃(𝑧𝑖) =
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1
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Where, 𝑃(𝑧𝑖) = the likelihood of segment 𝑖 having 𝑧𝑖 crashes; 𝜇𝑖 = the expectation of 𝑧𝑖 

conditional on 𝑌𝑖; 𝛽 = over-dispersion parameter; 𝑌𝑖 = a vector of explanatory variables; 𝛾 = a 

vector of unknown parameter; 𝐿(. ) = likelihood function; 𝐿𝐿(. ) = logarithm of likelihood function. 

Compared to the Poisson distribution, the NB distribution can allow for over-dispersion. If 𝛽 → 0, 

the NB model converges to the Poisson model as the variance equals the mean (Yang et al., 2021).  

Given that crashes are typically infrequent and occur randomly, the zero-inflated negative 

binomial (ZINB) model can be employed to address segments with zero crashes, which cannot be 

adequately explained by NB model alone. The probability distribution of ZINB for random 

variable 𝑦𝑘 is provided below (Garay et al., 2011): 

𝑃(𝑦𝑘 = 𝑗) = {
𝜋𝑘 + (1 − 𝜋𝑘)𝑔(𝜋𝑘 = 0), 𝑖𝑓 𝑗 = 0

(1 − 𝜋𝑘)𝑔(𝑦𝑘), 𝑖𝑓 𝑗 > 0
 

𝑔(𝑦𝑘) = 𝑃(𝑌 = 𝑦𝑘|𝜇𝑘, 𝛼) =
𝛤(𝑦𝑘 + 𝛼

−1)

𝛤(𝛼−1) 𝛤(𝑦𝑘 +  1)
(

1

1 + 𝛼𝜇𝑘
)𝛼

−1
(
𝛼𝜇𝑘

1 + 𝛼𝜇𝑘
)𝑦𝑘 

𝜋𝑘 =
𝜗𝑘

1 + 𝜗𝑘
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Where, 𝑔(𝑦𝑘) represents the NB distribution and 𝜋𝑘 denotes the logistic link function. 𝜇𝑘 

represents the average crash frequency, 𝛼 denotes the over-dispersion parameter, 𝜗𝑘 represents the 

probability of segment k being completely safe, i.e., the probability of a true absence of crashes at 

segment k. 

7.4  Analysis & Discussions 

 

As discussed, both binary logistic regression and NB regression were applied to crash 

datasets, covering various types of targeted crashes along with the corresponding RL values of 

WREL and YCL for specific length of segments. The analyses were done at a 95% confidence 

interval (𝛼 = 0.05). The results indicate that both AIC and Pseudo 𝑅2 values are higher in binary 

logistic regression compared to NB regression. A high dispersion value was observed in NB 

models, particularly for rural two-lane segments, suggesting significant overdispersion where the 

variance is much greater than the mean. In rural two-lane segments, only a small fraction of 

segments had more than one crash, therefore, ZINB models were also applied. However, these 

models did not yield any significant improvement in performance or changes in coefficient values. 

Comparing logistic and NB regression, the coefficients and variable significance were nearly 

identical, with logistic regression consistently performing better across all crash datasets. In all 

targeted crashes, binary logit model performs well compared to NB and ZINB in terms of AIC and 

Pseudo 𝑅2 values. Previously, several highway safety studies have selected the best model outputs 

by comparing AIC values across multiple regression models (Li et al., 2019; Montella et al., 2008; 

Chen and Jovanis, 2000). Consequently, the results from logistic regression were selected for 

further discussion. It is important to note that the F-statistic is used to determine whether adding 

new predictors significantly enhances a model's explanatory power, rather than to identify the best 

model by comparing multiple regression models.  
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7.4.1  Regression Results for Rural Two-Lane Segments 

 

Tables 7.5-7.9 provide a summary of regression results for rural two-lane segments with 

respect to various targeted crashes, including single-vehicle ROR crashes, single-vehicle ROR 

crashes at dark, dusk, and dawn conditions, single-vehicle ROR crashes at dark not-lighted, and 

crashes at dark with no streetlighting. In all crash types, AADT is found to be a significant factor, 

indicating that higher AADT is associated with increased odds of a crash occurrence. Both single-

vehicle ROR crashes and single-vehicle ROR crashes at dark not-lighted conditions show a 

statistically significant positive correlation  with curve segments at a 95% confidence level, 

aligning with prior studies that highlight a higher likelihood of single-vehicle ROR crashes on 

curves (Duddu et al., 2020), especially in rural roadways (Gong and Fan, 2017). At a 90% 

confidence level (𝛼 = 0.1), the presence of curves is also found to be statistically significant for 

single-vehicle ROR crashes at dark, dusk, and dawn conditions. Interestingly, at a 90% confidence 

level, the odds of crashes on rural two-lane road segments at dark not-lighted conditions decrease 

by 17.66% in residential, business, or mixed-use areas. This reduction may be due to drivers’ 

tendency to lower their speed in these areas because of the increased presence of pedestrians and 

parked vehicles, particularly during nighttime hours. On rural two-lane segments, RL of WREL 

below 250 mcd/m²/lux increases the odds of single-vehicle ROR crashes by 45.21%. In other crash 

types, however, lower RL values of WREL are not found to be statistically significant, though they 

are positively correlated with crash occurrences. This lack of statistical significance could be 

attributed to the limited observations of rural two-lane segments with crashes. When analyzing the 

combined influence of both YCL and WREL on crashes at dark with no streetlighting, neither the 

individual nor the interaction of RL levels is found to be statistically significant. However, lower 

RL levels are positively associated with crashes in dark not-lighted conditions. 
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Table 7.5 Summary of regression results for single-vehicle ROR crashes on rural two-lane 

segments 

Attribute Coef. SE z-value p-value 

(Intercept) -3.102 0.178 -17.461 <0.001 

RL category (ref. ≥250 mcd/m²/lux) 
    

<250 mcd/m²/lux 0.373 0.185 2.021 0.043 

AADT (in 1,000 vpd) 0.211 0.031 6.050 <0.001 

Location class (ref. open country) 
    

residential/business/mixed -0.347 0.359 -0.965 0.335 

Posted speed limit (ref. ≥55mph) 
   

<55mph -0.186 0.314 -0.594 0.553 

Presence of curve (ref. no) 
    

yes 0.477 0.188 2.538 0.011  
AIC: 901.64, Pseudo 𝑅2: 0.052 

Note: Coefficient (Coef.) and Standard Error (SE) 

Table 7.6 Summary of regression results for single-vehicle ROR crashes on rural two-lane 

segments at dark, dusk, and dawn conditions 

Attribute Coef. SE z-value p-value 

(Intercept) -3.938 0.265 -14.883 <0.001 

RL category (ref. ≥250 mcd/m²/lux) 
    

<250 mcd/m²/lux 0.296 0.281 1.051 0.293 

AADT (in 1,000 vpd) 0.173 0.052 3.416 0.001 

Location class (ref. open country) 
    

residential/business/mixed -0.762 0.629 -1.211 0.226 

Posted speed limit (ref. ≥55mph) 
    

<55mph -0.021 0.455 -0.047 0.963 

Presence of curve (ref. no) 
    

yes 0.474 0.282 1.682 0.093  
AIC: 479.79, Pseudo 𝑅2: 0.039 

Note: Coefficient (Coef.) and Standard Error (SE) 

Table 7.7 Summary of regression results for single-vehicle ROR crashes on rural two-lane 

segments at dark not-lighted conditions 

Attribute Coef. SE z-value p-value 

(Intercept) -4.301 0.306 -14.044 <0.001 

RL category (ref. ≥250 mcd/m²/lux) 
    

<250 mcd/m²/lux 0.216 0.317 0.682 0.496 

AADT (in 1,000 vpd) 0.213 0.057 3.762 <0.001 

Location class (ref. open country) 
    

residential/business/mixed -1.734 1.047 -1.646 0.099 
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Attribute Coef. SE z-value p-value 

Posted speed limit (ref. ≥55mph) 
    

<55mph -0.547 0.617 -0.887 0.374 

Presence of curve (ref. no) 
    

yes 0.678 0.311 2.179 0.029  
AIC: 396.71, Pseudo 𝑅2: 0.051 

Note: Coefficient (Coef.) and Standard Error (SE) 

Table 7.8 Summary of regression results for crashes on rural two-lane segments at dark not-

lighted conditions (interaction of line type as a covariate) 

Attribute Coef. SE z-value p-value 

(Intercept) -3.240 0.265 -12.221 <0.001 

RL interaction (ref. YCL≥200 mcd/m²/lux 

and WREL≥250 mcd/m²/lux) 

    

YCL<200 mcd/m²/lux and WREL<250 

mcd/m²/lux 

0.331 0.291 1.137 0.255 

YCL≥200 mcd/m²/lux and WREL<250 

mcd/m²/lux 

-0.409 0.651 -0.629 0.529 

YCL<200 mcd/m²/lux and WREL≥250 

mcd/m²/lux 

0.048 0.295 0.163 0.870 

AADT (in 1,000 vpd) 0. 201 0.040 4.994 <0.001 

Location class (ref. open country) 
    

residential/business/mixed -0.021 0.411 -0.050 0.959 

Posted speed limit (ref. ≥55mph) 
    

<55mph -0.916 0.488 -1.878 0.060 

Presence of curve (ref. no) 
    

yes 0.121 0.238 0.510 0.610  
AIC: 654.40, Pseudo 𝑅2: 0.048 

Note: Coefficient (Coef.) and Standard Error (SE) 

Table 7.9 Summary of regression results for crashes on rural two-lane segments at dark not-

lighted conditions 

Attribute Coef. SE z-value p-value 

(Intercept) -3.325 0.257 -12.917 <0.001 

YCL (ref. ≥200 mcd/m²/lux) 
    

<200 mcd/m²/lux 0.195 0.260 0.749 0.454 

WREL (ref. ≥250 mcd/m²/lux) 
    

<250 mcd/m²/lux 0.177 0.235 0.753 0.452 

AADT (in 1,000 vpd) 0.208 0.040 4.988 <0.001 

Location class (ref. open country) 
    

residential/business/mixed -0.033 0.412 -0.080 0.936 

Posted speed limit (ref. ≥55mph) 
    

<55mph -0.909 0.486 -1.871 0.061 
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Attribute Coef. SE z-value p-value 

Presence of curve (ref. no) 
    

yes 0.114 0.237 0.481 0.630  
AIC: 653.49, Pseudo 𝑅2: 0.045 

Note: Coefficient (Coef.) and Standard Error (SE) 

7.4.2  Regression Results for Rural Multilane Segments 

 

Tables 7.10-7.15 exhibit a summary of regression results for rural multilane segments with 

respect to various targeted crash types, including single-vehicle ROR crashes, single-vehicle ROR 

crashes at dark, dusk, and dawn conditions, and single-vehicle ROR crashes at dark not-lighted, 

categorized by different RL levels of WREL. Consistent with findings for rural two-lane segments, 

AADT shows a statistically significant correlation with crash occurrences in relation to all targeted 

crash types. At a 95% confidence interval, the odds of single-vehicle ROR crashes on rural 

multilane segments decreases by over 30% in residential, business, or mixed-use areas. Similar 

statistically significant correlations are observed for single-vehicle ROR crashes at dark, dusk, and 

dawn conditions at an 85% confidence interval (𝛼 = 0.15), and for single-vehicle ROR crashes at 

dark not-lighted conditions at an 80% confidence interval (𝛼 = 0.2).  

Under dark, dusk, and dawn conditions, rural multilane segments with RL of WREL below 

150 mcd/m²/lux experience a 76.84% increase in the odds of single-vehicle ROR crashes at a 90% 

confidence interval. In similar lighting conditions, if RL values of WREL fall between 150 and 

249 mcd/m²/lux, the odds of single-vehicle ROR crashes increase by 51.77% at an 80% confidence 

interval. When analyzing only two RL categories, ≥250 mcd/m²/lux and <250 mcd/m²/lux, the 

odds of single-vehicle ROR crashes at dark, dusk, and dawn conditions increases by 61.08% for 

segments with RL below 250 mcd/m²/lux at a 90% confidence interval. In dark conditions with no 

streetlighting, rural multilane segments with RL levels below 150 mcd/m²/lux show a 116.19% 

increase in the odds of single-vehicle ROR crashes at a 95% confidence interval. When examining 
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only two RL categories, ≥250 mcd/m²/lux and <250 mcd/m²/lux, the odds of single-vehicle ROR 

crash occurrences at dark not-lighted conditions rise by 77.89% on segments with RL below 250 

mcd/m²/lux at a 90% confidence interval. 

Table 7.10 Summary of regression results for single-vehicle ROR crashes on rural multilane 

segments (RL category 1) 

Attribute Coef. SE z-value p-value 

(Intercept) -1.975 0.258 -7.652 <0.001 

RL category (ref. ≥250 mcd/m²/lux) 
    

<150 mcd/m²/lux 0.226 0.277 0.817 0.414 

150-249 mcd/m²/lux 0.045 0.242 0.187 0.852 

AADT (in 1,000 vpd) 0.051 0.013 6.451 <0.001 

Location class (ref. open country) 
    

residential/business/mixed -1.002 0.445 -2.250 0.025 

 Posted speed limit (ref. ≥65mph) 
    

<65mph -0.087 0.329 -0.265 0.791 

Presence of curve (ref. no) 
    

yes 0.123 0.318 0.386 0.700  
AIC: 593.64, Pseudo 𝑅2: 0.108 

Note: Coefficient (Coef.) and Standard Error (SE) 

Table 7.11 Summary of regression results for single-vehicle ROR crashes on rural multilane 

segments (RL category 2) 

Attribute Coef. SE z-value p-value 

(Intercept) -1.972 0.258 -7.654 <0.001 

RL category (ref. ≥250 mcd/m²/lux) 
    

<250 mcd/m²/lux 0.116 0.212 0.546 0.585 

AADT (in 1,000 vpd) 0.058 0.017 6.455 <0.001 

Location class (ref. open country) 
    

residential/business/mixed -1.006 0.445 -2.261 0.024 

Posted speed limit (ref. ≥65mph) 
    

<65mph -0.089 0.329 -0.272 0.786 

Presence of curve (ref. no) 
    

yes 0.126 0.318 0.395 0.693  
AIC: 592.02, Pseudo 𝑅2: 0.107 

Note: Coefficient (Coef.) and Standard Error (SE) 
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Table 7.12 Summary of regression results for single-vehicle ROR crashes on rural multilane 

segments at dark, dusk, and dawn conditions (RL category 1) 

Attribute Coef. SE z-value p-value 

(Intercept) -2.815 0.342 -8.230 <0.001 

RL category (ref. ≥250 mcd/m²/lux) 
    

<150 mcd/m²/lux 0.570 0.332 1.719 0.086 

150-249 mcd/m²/lux 0.417 0.294 1.417 0.156 

AADT (in 1,000 vpd) 0.043 0.011 4.176 <0.001 

Location class (ref. open country) 
    

residential/business/mixed -0.912 0.609 -1.497 0.135 

 Posted speed limit (ref. ≥65mph) 
    

<65mph -0.182 0.462 -0.394 0.693 

Presence of curve (ref. no) 
    

yes 0.099 0.424 0.234 0.815  
AIC: 425.44, Pseudo 𝑅2: 0.076 

Note: Coefficient (Coef.) and Standard Error (SE) 

Table 7.13 Summary of regression results for single-vehicle ROR crashes on rural multilane 

segments at dark, dusk, and dawn conditions (RL category 2) 

Attribute Coef. SE z-value p-value 

(Intercept) -2.812 0.341 -8.236 <0.001 

RL category (ref. ≥250 mcd/m²/lux) 
    

<250 mcd/m²/lux 0.477 0.261 1.829 0.067 

AADT (in 1,000 vpd) 0.042 0.015 4.175 <0.001 

Location class (ref. open country) 
    

residential/business/mixed -0.918 0.609 -1.507 0.132 

Posted speed limit (ref. ≥65mph) 
    

<65mph -0.185 0.462 -0.399 0.690 

Presence of curve (ref. no) 
    

yes 0.103 0.424 0.242 0.809  
AIC: 423.64, Pseudo 𝑅2: 0.075 

Note: Coefficient (Coef.) and Standard Error (SE) 

Table 7.14 Summary of regression results for single-vehicle ROR crashes on rural multilane 

segments at dark not-lighted conditions (RL category 1) 

Attribute Coef. SE z-value p-value 

(Intercept) -2.941 0.367 -8.016 <0.001 

RL category (ref. ≥250 mcd/m²/lux) 
    

<150 mcd/m²/lux 0.771 0.347 2.223 0.026 

150-249 mcd/m²/lux 0.445 0.319 1.394 0.163 

AADT (in 1,000 vpd) 0.033 0.009 3.484 <0.001 



110 

 

Attribute Coef. SE z-value p-value 

Location class (ref. open country) 
    

residential/business/mixed -0.901 0.679 -1.326 0.185 

 Posted speed limit (ref. ≥65mph) 
    

<65mph -0.288 0.514 -0.559 0.576 

Presence of curve (ref. no) 
    

yes -0.034 0.475 -0.071 0.943  
AIC: 383.22, Pseudo 𝑅2: 0.073 

Note: Coefficient (Coef.) and Standard Error (SE) 

Table 7.15 Summary of regression results for single-vehicle ROR crashes on rural multilane 

segments at dark not-lighted conditions (RL category 2) 

Attribute Coef. SE z-value p-value 

(Intercept) -2.934 0.365 -8.031 <0.001 

RL category (ref. ≥250 mcd/m²/lux) 
    

<250 mcd/m²/lux 0.576 0.280 2.055 0.039 

AADT (in 1,000 vpd) 0.032 0.009 3.478 <0.001 

Location class (ref. open country) 
    

residential/business/mixed -0.918 0.681 -1.349 0.177 

Posted speed limit (ref. ≥65mph) 
    

<65mph -0.292 0.515 -0.566 0.571 

Presence of curve (ref. no) 
    

yes -0.024 0.475 -0.051 0.959  
AIC: 382.05, Pseudo 𝑅2: 0.071 

Note: Coefficient (Coef.) and Standard Error (SE) 

7.4.3  Regression Results for Curve Segments 

 

Table 7.16 summarizes the regression results for curve segments in relation to single-

vehicle ROR crashes. For this analysis, the dataset was prepared using average values for each 

0.1-mile segment, and both two-lane and multilane roads were merged, resulting in the inclusion 

of a ‘number of lanes’ variable. Similar to previous segments, AADT is found to be a significant 

factor. The odds of single-vehicle ROR crashes on curve segments increase with higher road 

functional classifications, rising by 144% for arterial roads and 373.04% for interstates, which may 

be associated with higher posted speed limits. No significant correlation has been observed with 

respect to curve angle and radius. On curve segments, RL values of WREL below 250 mcd/m²/lux 
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are associated with a 59.89% increase in the odds of single-vehicle ROR crashes. Low RL levels 

on curves can reduce drivers' ability to clearly perceive lane boundaries, making it more 

challenging to navigate curves safely, which can increase the risk of vehicles veering off the 

roadway. 

Table 7.16 Summary of regression results for single-vehicle ROR crashes on curve segments 

Attribute Coef. SE z-value p-value 

(Intercept) -3.240 0.573 -5.655 <0.001 

Number of lanes (ref. >two) 
    

two 0.262 0.374 0.703 0.482 

RL category (ref. ≥250 mcd/m²/lux) 
   

<250 mcd/m²/lux 0.469 0.201 2.337 0.019 

AADT (in 1,000 vpd) 0.052 0.023 2.567 0.010 

Location class (ref. open country) 
    

business/residential/mixed -0.037 0.312 -0.118 0.906 

Functional class (ref. major collector) 
   

arterial 0.892 0.282 3.165 0.002 

interstate 1.554 0.779 1.994 0.046 

Curve angle  0.006 0.007 0.920 0.358 

Curve radius (in 1,000) -0.065 0.070 -0.950 0.342  
AIC:703.28, Pseudo 𝑅2: 0.079 

Note: Coefficient (Coef.) and Standard Error (SE) 

7.5  Key Findings 

 

This chapter aims to investigate the statistical relationship between RL and road crashes. 

To expand the dataset, the RL prediction models developed in Chapter 6 were applied to estimate 

RL of WREL and YCL for additional segments, increasing the sample size significantly. Unlike 

previous studies that calculated average RL over 1-mile segments, this study used shorter 

segments, specifically 0.5-mile, for more granular analysis. Practical assumptions were made 

based on the available data and the limitations of the predictive models. Several covariates were 

considered to improve the validity of the model results by considering the effect of other factors, 

such as AADT, posted speed limit, location class, road functional class, and horizontal alignment. 
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Two widely used regression models, binary logit model and NB model, were applied to all 

prepared crash datasets. Binary logit model demonstrated better performance in terms of AIC and 

Pseudo 𝑅2, particularly given the zero-inflated nature of the datasets. The key findings from these 

analyses are summarized below: 

• RL level of WREL below 250 mcd/m²/lux statistically increases the likelihood of single-

vehicle ROR crashes on rural two-lane road segments. 

• On rural multilane segments in dark, dusk, and dawn conditions, both RL levels of WREL 

below 150 mcd/m²/lux and below 250 mcd/m²/lux increase the likelihood of single-vehicle 

ROR crashes. 

• Lower RL of WREL, specifically below 250 mcd/m²/lux, play a significant role in 

increasing the probability of single-vehicle ROR crashes on rural multilane segments at 

dark not-lighted conditions. 

• On curve segments, RL of WREL below 250 mcd/m²/lux are associated with a statistically 

significant increase in the likelihood of single-vehicle ROR crashes. 

 



 

 

Chapter 8  Conclusions 

 

This chapter aims to highlight the contributions of this research by providing in-depth 

aspects of RL degradation factors, subjective ratings of pavement marking, RL prediction 

modeling, and the statistical relationship between RL and crash frequency. The key findings are 

also presented in alignment with the research objectives, contextualizing the contributions of this 

study. This discussion further provides practical implementation ideas and recommendations, 

highlighting the significance of these findings. Additionally, study limitations are addressed, 

offering insights and potential directions for future research. 

8.1  Research Contributions  

 

Based on the literature review, no prior research has examined the factors contributing to 

RL degradation in relation to different pavement marking line types. Furthermore, while some 

studies have considered various factors in RL degradation models, very few have focused on road 

geometry characteristics, such as horizontal alignment. Horizontal alignment may significantly 

contribute to RL degradation due to increased vehicle encroachment on curves, yet its influence 

remains underexplored. Other potential contributors to RL degradation exist, but due to limited 

sample sizes, these variables may not show statistical significance within regression models. 

Consequently, identifying the importance of such variables through alternative approaches beyond 

traditional regression modeling is essential - a gap that still needs to be addressed in the current 

literature. This research examined how the effects of potential contributing factors on RL 

degradation varies by pavement marking line type. For instance, in relation to yellow markings, 

locations such as residential, business, and mixed-use areas were found to be statistically 

significant, exhibiting a high probability of RL degradation. Moreover, WLL markings on 
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roadways with high posted speed limits (65 mph or higher) showed a greater likelihood of RL 

degradation. While curve segments were not found to be statistically significant in the regression 

models, higher RL degradation proportions of WREL were observed on curve segments while 

compared with adjacent straight segments. Further analysis was conducted to identify locations 

with higher RL degradation of WREL than expected, revealing several influential factors. These 

included the presence of additional right-turn lanes near intersections or ramps, multilane segments 

with U-turn and left-turn access to minor roads, presence of bridges/ramps/shoulders/residential 

driveways, and surrounding landscape features (e.g., gravel land). These findings can assist 

ALDOT's pavement management system in identifying locations with high RL degradation, 

enabling more targeted restriping at these specific segments. This targeted strategy could improve 

road safety while reducing maintenance costs by focusing on areas with a greater need for RL 

restoration. 

While the correlation between subjective ratings and measured RL has been previously 

explored, further research is needed to examine this relationship by specific marking line types. 

Analyzing the measured RL distribution across each subjective rating scale can help to address 

challenges often encountered in subjective assessment of markings. This study investigated the 

distribution of measured RL values within each subjective rating scale in relation to different 

marking line types and found evidence supporting the hypothesis that officers may struggle to 

assign accurate ratings, particularly for yellow markings. A prevailing hypothesis suggests that 

darker pavement markings appear brighter than lighter markings, even at similar RL levels. The 

findings of this study provide evidence supporting this hypothesis. Additionally, the study explored 

the subjective rating standards of marking line type in terms of measured RL, demonstrating the 
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practical alignment of rating scales with actual RL measurements. Overall, the study found 

consistency between subjective rating and actual RL measurements.  

Local transportation agencies often do not have initial RL measurements and marking age 

information when assessing the RL of pavement markings on specific segments. This gap creates 

a need for models that can predict RL without relying on initial RL measurements taken after 

installation or restriping and knowing when the markings were installed or restriped. It is crucial 

that prediction models should remain practical and usable, incorporating only the key variables 

that contribute to RL degradation to avoid unnecessary complexity. This study is the first in 

existing literature to take such an approach in developing regression models for predicting RL of 

YCL and WREL, considering lane configurations of rural roads. While the model showed some 

limitations, particularly in predicting future RL at lower levels, it provides valuable contributions. 

The latest MUTCD version lowers the minimum RL standard to 50 mcd/m²/lux, meaning 

transportation agencies need to prioritize collecting more data on segments with RL levels between 

50 and 100 mcd/m²/lux. This data can be vital for developing predictive models that can better 

estimate the service life of marking up to 50 mcd/m²/lux. Despite limitations in predicting RL at 

lower levels, the developed RL prediction models of this research offer agencies a useful tool for 

forecasting RL on segments that previously showed high RL values. A practical application of the 

developed RL prediction models is demonstrated in the Appendix Section (Tables A2 and A3). 

By utilizing one year of RL data, agencies can predict future RL values and rank road segments 

accordingly, from lowest to highest predicted RL. This ranking enables ALDOT to efficiently 

identify and prioritize segments with lower RL levels, ensuring timely restriping and maintaining 

road safety standards. 
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This research demonstrates an effective approach for examining the statistical relationship 

between RL and road crashes by increasing the sample size through predicting RL following a 

single measured RL value. Employing an appropriate statistical modeling approach, which 

accounts for the logarithmic relationship of crashes, and strategic RL categorization have 

strengthened the validity of this research findings. Unlike previous studies that calculated average 

RL over 1-mile or 2-mile segments, this research considered smaller segment sizes, such as 0.5-

mile segments in general and 0.1-mile segments specifically for curves. Moreover, multiple 

covariates such as posted speed limit, AADT, location classification, and curve presence, were 

incorporated to validate the correlations. The results revealed a statistically significant relationship 

between lower RL of WREL and single-vehicle ROR crashes, confirming that this refined 

approach effectively highlights the significance of maintaining RL in terms of road safety. 

Furthermore, the findings highlighted the vulnerability associated with lower RL levels on curve 

segments and low lighting conditions, underscoring their combined impact on road safety. Overall, 

the findings of this research align with one of the core principles of the Safe System Approach: 

‘Making Our Roads Safer’ (FHWA, 2022). 

8.2  Recommendations 

 

This study discusses recommendations from three key perspectives: i) the need for 

additional and expanded datasets to enable more granular analysis, ii) alignment with current 

MUTCD guidelines, and iii) the key findings related to this research objectives. A summary of the 

key recommendations is provided in the following: 

• This study identified that only a limited number of segments had RL levels below 100 

mcd/m²/lux for both rural two-lane and multilane roadways. To develop a more robust and 

comprehensive model capable of accurately predicting the service life of thermoplastic 
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pavement markings, additional RL data from segments with lower RL levels is required. 

This need is especially important given the recent changes to the MUTCD guidelines, 

which have reduced the minimum RL requirement to 50 mcd/m²/lux. Therefore, ALDOT 

needs to implement a more systematic approach to RL data collection. One potential 

strategy is to conduct an initial subjective rating of specific segments, identifying those 

likely to have low RL levels, and then prioritize those segments for precise RL 

measurement. 

• To create a comprehensive RL degradation dataset for modeling, it is essential to include 

detailed road characteristics, such as lane width, shoulder width, and other relevant 

features. These attributes can vary within a one-mile segment, making precise calculation 

through tools like Google Earth Pro difficult. Most states maintain road inventory databases 

that contain such information, particularly for major roadways. It is recommended that 

ALDOT improve accessibility to Alabama road inventory data to ensure that critical road 

characteristics are readily available for further research.  

• While analyzing the measured RL data, it was observed that RL of YCL and YLEL were 

often misassigned when lane transitions occurred, such as when transitioning from a rural 

two-lane to a three-lane configuration or vice versa. To address this issue, closer monitoring 

and quality control are required to ensure the correct assignment of marking line type to 

each of the measured RL. 

• The current version of MUTCD reduces the minimum RL requirement to 50 mcd/m²/lux. 

This research found that lower RL levels, particularly below 250 mcd/m²/lux for WREL, 

significantly increases the likelihood of crash occurrences. Additionally, vehicles equipped 

with ADAS rely on adequate RL levels for optimal sensor performance, and a few studies 
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have concluded that RL levels below 88 mcd/m²/lux can significantly reduce sensor 

accuracy. Therefore, continuous monitoring is essential to ensure that this lower RL 

requirement does not compromise road safety. While high vehicle automation is still in its 

early stages with limited penetration, it is important to balance these considerations without 

overemphasizing automation concerns and benefits.  

• The current MUTCD guidelines for minimum RL standards do not consider low lighting 

conditions. However, higher RL levels are particularly beneficial in nighttime driving, as 

they help guide drivers to stay within the correct travel lane. Given this, developing a 

standardized method for determining RL under adverse and low lighting conditions, such 

as bad weather or dark with no streetlighting, would be more practical. 

• This research identified challenges in assigning subjective rating scales to yellow pavement 

markings. To address this issue, continuous monitoring is needed to determine the 

underlying causes of these difficulties, thereby enhancing the reliability and consistency of 

the rating process through improved rating criteria and training.  

• This study applied a segment-based approach to examine the statistical relationship 

between RL and crashes. However, each crash is associated with a combination of multiple 

factors. As a result, investigating individual crashes with measured RL values, rather than 

focusing solely on segments, could reveal hidden patterns among variables. It is 

recommended that RL values be measured at specific hotspot locations over a period of 

time to enable a more in-depth analysis of the relationship between RL and other crash 

contributing factors. 
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8.3  Study Limitations and Future Scope  

 

This research has several limitations that can be addressed in future studies. The study 

utilized RL data exclusively from the Montgomery region, limiting the sample size. Expanding the 

dataset to include additional regions would increase the sample size, helping to extend the 

minimum thresholds for both marking colors. Typically, RL degrades more rapidly after 

installation until it reaches a certain level, after which it declines at a more stable rate. This 

degradation pattern could be more effectively captured through machine learning algorithms. 

However, due to the limited number of observations, machine learning techniques were not applied 

in this study (Brodley et al., 2012). In the future, machine learning algorithms, such as random 

forests, could be applied to larger datasets to develop more practical RL prediction models. 

Additionally, factors like weather conditions, material composition, and quality of installation may 

influence RL degradation. Future research could explore these variables to better understand their 

impact on the transition of RL between qualitative states. The research findings and conclusions 

derived from rural Alabama roads warrant further investigation to ascertain their applicability to 

other states sharing similar climatic conditions. Future research could delve into more material-

specific modeling to capture the distinct effects of various independent variables on RL 

degradation. Additionally, conducting a human-factors study on the correlation between pavement 

marking RL and speed could shed light on questions such as whether drivers perceive increased 

comfort with higher RL values, potentially leading to higher speeds. In this research, temporal 

variability in AADT was not accounted for in the safety analyses. The findings highlighted 

significant differences in how various factors contribute to RL degradation between WLL and 

WREL. Consequently, further research is needed to explore these variations in greater depth and 

to compare the safety impacts of RL for WLL and WREL.  
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Appendix 

 

Table A1 Used R packages with descriptions 

Package  Description 

betareg Estimating and interpreting regression models designed for beta-

distributed dependent variables. 

tidyverse Streamlining data manipulation, visualization, and analysis for multiple 

linear regression models 

MASS Providing the function for fitting negative binomial regression models 

 

Table A2 Ranking of rural two-lane 0.5-mile road segments with average RL of WREL ≥450 

mcd/m²/lux in November 2021, sorted by predicted RL values for December 2024 (from 

lowest to highest) 

Rank Route 

Identification 

Number 

Starting point of 0.5-mile 

segment 

Direction RL of WREL 

(mcd/m²/lux) 

Latitude Longitude Nov-21 Dec-24 

1 AL0000030000 32.52648167 -86.45536833 SB 496 150 

2 AL0002290000 32.42678167 -85.898285 SB 470 156 

3 AL0002290000 32.523365 -85.89472 SB 535 159 

4 AL0002290000 32.51616667 -85.89552833 SB 544 161 

5 AL0002290000 32.50171667 -85.89380667 SB 485 162 

6 AL0002290000 32.49449 -85.89281667 SB 503 166 

7 AL0002290000 32.465725 -85.890285 SB 509 167 

8 AL0002290000 32.50892 -85.89485167 SB 549 168 

9 AL0000150000 32.73247833 -85.23268667 NB 479 168 

10 AL0002290000 32.48732667 -85.89183833 SB 521 170 

11 AL0002290000 32.480115 -85.89086167 SB 526 172 

12 AL0002290000 32.47289667 -85.88985167 SB 537 174 

13 AL0000030000 32.21785167 -86.348755 SB 465 175 

14 AL0000150000 32.68367833 -85.309975 NB 501 176 

15 AL0002290000 32.45893667 -85.89340833 SB 566 179 

16 AL0002290000 32.58672333 -85.93828333 SB 458 180 

17 AL0000150000 32.67988333 -85.31719167 NB 522 181 

18 AL0000030000 32.51213 -86.45646333 SB 625 182 

19 AL0000210000 32.25147833 -86.52353 SB 450 183 

20 AL0000030000 32.51936833 -86.45704167 SB 631 183 

21 AL0000090000 32.74713667 -86.10081667 NB 470 184 

22 AL0002290000 32.45223667 -85.89656667 SB 621 185 

23 AL0000140000 32.580055 -85.71172167 EB 460 187 

24 AL0000030000 32.505 -86.45648 SB 652 188 
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Rank Route 

Identification 

Number 

Starting point of 0.5-mile 

segment 

Direction RL of WREL 

(mcd/m²/lux) 

Latitude Longitude Nov-21 Dec-24 

25 AL0000140000 32.581775 -85.7199 EB 466 188 

26 AL0000090000 32.71542167 -86.10802833 NB 493 189 

27 AL0000210000 32.22625167 -86.54039333 SB 485 191 

28 AL0000140000 32.55879 -85.79491167 EB 533 192 

29 AL0002290000 32.69239333 -85.96013667 SB 478 194 

30 AL0000210000 32.257995 -86.51976667 SB 498 194 

31 AL0000060000 32.113505 -85.58548333 WB 457 194 

32 AL0002290000 32.60675833 -85.94304333 SB 512 195 

33 AL0000140000 32.57779 -85.69498167 EB 479 195 

34 AL0002290000 32.60089333 -85.93858833 SB 516 196 

35 AL0000090000 32.71076167 -86.10147333 NB 525 196 

36 AL0000090000 32.72896667 -86.112645 NB 523 196 

37 AL0000030000 32.66191833 -86.489725 SB 451 196 

38 AL0000030000 32.67638333 -86.49105333 SB 451 196 

39 AL0000210000 32.23238167 -86.53589833 SB 512 197 

40 AL0000150000 32.17816667 -85.70785333 SB 461 197 

41 AL0000140000 32.58069333 -85.751615 EB 489 198 

42 AL0000060000 32.12004667 -85.58910667 WB 512 199 

43 AL0002290000 32.69623167 -85.96742833 SB 508 200 

44 AL0000210000 32.24493333 -86.52730667 SB 527 200 

45 AL0000090000 32.66703333 -86.10888667 NB 549 200 

46 AL0000030000 32.497845 -86.45509833 SB 684 200 

47 AL0002290000 32.593655 -85.93888333 SB 541 201 

48 AL0002290000 32.660535 -85.94316667 SB 484 201 

49 AL0000150000 32.19936833 -85.70809167 SB 475 201 

50 AL0001650000 32.13932667 -85.06619 NB 450 202 

51 AL0002290000 32.67470333 -85.94450667 SB 485 202 

52 AL0002290000 32.70121667 -85.97352333 SB 517 202 

53 AL0000150000 32.21391667 -85.70868167 SB 481 202 

54 AL0000030000 32.64763 -86.48727167 SB 479 202 

55 AL0001990000 32.47929 -85.72642667 NB 450 203 

56 AL0000030000 32.127095 -86.39189 SB 532 203 

57 AL0002230000 32.07999167 -85.77110167 SB 452 204 

58 AL0000210000 32.06235167 -86.71920667 SB 456 204 

59 AL0000030000 32.66911833 -86.49094333 SB 489 204 

60 AL0001990000 32.486015 -85.73956833 NB 467 206 

61 AL0000970000 32.079415 -86.44395667 NB 460 206 

62 AL0000210000 32.05117 -86.80467667 SB 460 206 

63 AL0000150000 32.206675 -85.70840167 SB 501 206 

64 AL0000140000 32.579535 -85.70320833 EB 528 206 
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Rank Route 

Identification 

Number 

Starting point of 0.5-mile 

segment 

Direction RL of WREL 

(mcd/m²/lux) 

Latitude Longitude Nov-21 Dec-24 

65 AL0002290000 32.44682333 -85.899855 SB 717 207 

66 AL0000210000 32.03850333 -86.824805 SB 459 207 

67 AL0000150000 31.87721833 -85.72134833 SB 455 207 

68 AL0000140000 32.561445 -85.78701167 EB 528 207 

69 AL0000090000 32.72178833 -86.11206333 NB 577 208 

70 AL0000140000 32.57251 -85.68919333 EB 537 208 

71 AL0002290000 32.57318833 -85.93954167 SB 585 209 

72 AL0002230000 32.03085167 -85.77407833 SB 464 209 

73 AL0000030000 32.69084833 -86.49180167 SB 493 209 

74 AL0002930000 32.34752667 -86.06412 SB 455 210 

75 AL0000940000 32.01664167 -86.07472667 EB 457 210 

76 AL0000100000 31.83578833 -86.87680833 EB 468 210 

77 AL0002630000 31.994745 -86.74017 SB 470 211 

78 AL0002630000 32.00597 -86.75097167 SB 469 211 

79 AL0000210000 32.04841833 -86.81227667 SB 474 211 

80 AL0001650000 32.13257 -85.06937667 NB 492 212 

81 AL0002630000 32.01752 -86.761175 SB 474 212 

82 AL0000210000 32.06568 -86.72674667 SB 490 212 

83 AL0002630000 31.90277833 -86.678015 SB 477 213 

84 AL0002630000 31.93408833 -86.69787167 SB 482 213 

85 AL0002630000 31.94739167 -86.70493667 SB 477 213 

86 AL0000210000 32.04345667 -86.81853667 SB 483 213 

87 AL0000140000 32.56959333 -85.77314333 EB 555 213 

88 AL0002930000 32.35417333 -86.06757667 SB 476 214 

89 AL0002230000 31.995945 -85.77464167 SB 480 214 

90 AL0002230000 32.016885 -85.771975 SB 481 214 

91 AL0002630000 31.90784333 -86.68404 SB 488 215 

92 AL0000140000 32.564575 -85.77931667 EB 571 216 

93 AL0002630000 31.94075667 -86.70148 SB 496 217 

94 AL0002630000 31.96145 -86.70880667 SB 494 217 

95 AL0002630000 31.978145 -86.72367333 SB 496 217 

96 AL0000970000 32.06065667 -86.43154667 NB 508 217 

97 AL0002630000 32.040635 -86.79321167 SB 491 217 

98 AL0002290000 32.633485 -85.95402833 SB 553 217 

99 AL0000030000 32.19192 -86.35847833 SB 601 217 

100 AL0002230000 31.98417167 -85.79548667 SB 500 218 

101 AL0002230000 32.009675 -85.77097167 SB 499 218 

102 AL0000210000 32.007515 -86.844435 SB 504 218 

103 AL0002290000 32.6534 -85.944935 SB 563 219 

104 AL0000210000 32.012655 -86.83854833 SB 508 219 
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Rank Route 

Identification 

Number 

Starting point of 0.5-mile 

segment 

Direction RL of WREL 

(mcd/m²/lux) 

Latitude Longitude Nov-21 Dec-24 

105 AL0002630000 32.04435667 -86.80054 SB 505 220 

106 AL0000140000 32.57756167 -85.75897833 EB 585 220 

107 AL0002630000 31.92077 -86.691375 SB 517 221 

108 AL0002630000 31.927585 -86.69438833 SB 514 221 

109 AL0002630000 31.98921167 -86.73471667 SB 515 221 

110 AL0002290000 32.62693833 -85.95028167 SB 572 221 

111 AL0000210000 32.02576167 -86.83122667 SB 519 221 

112 AL0002290000 32.64073833 -85.95324833 SB 575 222 

113 AL0002630000 31.88690833 -86.66061667 SB 550 224 

114 AL0002290000 32.620215 -85.94791167 SB 585 224 

115 AL0000140000 32.57298333 -85.765575 EB 603 224 

116 AL0002630000 32.03321167 -86.77860333 SB 529 225 

117 AL0000210000 32.00430167 -86.85191167 SB 538 225 

118 AL0000210000 32.0192 -86.83486667 SB 538 225 

119 AL0002630000 31.88104833 -86.65593333 SB 564 226 

120 AL0002630000 31.897685 -86.67194667 SB 539 226 

121 AL0002230000 32.00250333 -85.77154833 SB 531 226 

122 AL0000210000 32.03293333 -86.829975 SB 541 226 

123 AL0000150000 32.22115333 -85.709005 SB 601 229 

124 AL0002290000 32.66773833 -85.94238333 SB 614 230 

125 AL0002630000 32.023365 -86.76635333 SB 553 231 

126 AL0002290000 32.64706333 -85.94905167 SB 626 233 

127 AL0002630000 31.913995 -86.68842667 SB 601 240 

128 AL0002630000 32.03690833 -86.78587167 SB 604 243 

129 AL0002630000 31.89262 -86.66593833 SB 645 250 

 

Table A3 Ranking of rural multilane 0.5-mile road segments with average RL of WREL ≥450 

mcd/m²/lux in November 2021, sorted by predicted RL values for December 2024 (from 

lowest to highest) 

Rank Route 

Identification 

Number 

Starting point of 0.5-mile 

segment 

Direction RL of WREL 

(mcd/m²/lux) 

Latitude Longitude Nov-21 Dec-24 

1 IN0000650000 32.39204667 -86.32639667 SB 451 81 

2 IN0000650000 32.37867833 -86.32205667 SB 573 84 

3 IN0000650000 32.407365 -86.34465167 SB 477 84 

4 IN0000650000 32.40229167 -86.33859833 SB 537 93 

5 IN0000650000 32.422925 -86.36274667 SB 467 96 

6 IN0000650000 32.42950833 -86.36844 SB 492 99 

7 IN0000650000 32.461355 -86.388885 SB 498 112 
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Rank Route 

Identification 

Number 

Starting point of 0.5-mile 

segment 

Direction RL of WREL 

(mcd/m²/lux) 

Latitude Longitude Nov-21 Dec-24 

8 IN0000850000 32.37596333 -86.02723167 NB 450 124 

9 IN0000850000 32.71716 -85.30358 NB 469 129 

10 IN0000850000 32.71063667 -85.30725667 NB 485 131 

11 IN0000850000 32.68462667 -85.32244333 NB 530 137 

12 IN0000850000 32.536215 -85.54773167 NB 516 141 

13 IN0000850000 32.532865 -85.55535167 NB 527 143 

14 AL0000380000 32.68786667 -85.49692833 WB 457 156 

15 AL0000030000 32.54097167 -86.45686 SB 452 159 

16 IN0000650000 32.41759333 -86.356855 SB 940 160 

17 AL0000030000 32.53378167 -86.45575167 SB 456 160 

18 AL0000080000 32.26218833 -86.67040667 WB 465 163 

19 AL0000060000 32.29251833 -86.19132 EB 554 165 

20 AL0000080000 32.44389 -87.193655 WB 456 166 

21 AL0000080000 32.43920833 -87.38155 WB 460 168 

22 AL0000080000 32.44105833 -87.38979 WB 463 169 

23 AL0000080000 32.43974667 -87.31307 WB 469 169 

24 AL0000080000 32.44336833 -87.21938167 WB 467 169 

25 AL0000080000 32.44349333 -87.21083667 WB 478 169 

26 AL0000080000 32.44008667 -87.27023667 WB 486 172 

27 AL0000080000 32.44026 -87.25310667 WB 492 173 

28 AL0000090000 32.15447833 -86.27141333 SB 498 173 

29 AL0000080000 32.44466167 -87.40626833 WB 509 175 

30 AL0000080000 32.44344167 -87.39788167 WB 505 175 

31 AL0000080000 32.43984333 -87.29596667 WB 506 175 

32 AL0000080000 32.43991 -87.28734833 WB 508 175 

33 AL0000080000 32.44017667 -87.261675 WB 512 175 

34 AL0000380000 32.68201 -85.49179 WB 610 175 

35 AL0000410000 32.39862833 -86.99261667 SB 543 175 

36 AL0000550000 31.63597833 -86.74899833 NB 527 176 

37 AL0000080000 32.43955667 -87.33867 WB 516 177 

38 AL0000080000 32.43981167 -87.30447167 WB 520 177 

39 AL0000550000 31.62195167 -86.744725 NB 548 179 

40 AL0000550000 31.62896 -86.746885 NB 544 179 

41 AL0000380000 32.67658 -85.48615333 WB 661 180 

42 AL0000080000 32.26221167 -86.67892333 WB 592 181 

43 AL0000550000 31.60821667 -86.739155 NB 575 182 

44 AL0000080000 32.31661 -86.88712167 WB 590 182 

45 AL0000080000 32.26780833 -86.70340333 WB 612 183 

46 AL0000550000 31.64300333 -86.75114667 NB 589 184 

47 AL0000550000 31.61501667 -86.74210667 NB 592 185 
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Rank Route 

Identification 

Number 

Starting point of 0.5-mile 

segment 

Direction RL of WREL 

(mcd/m²/lux) 

Latitude Longitude Nov-21 Dec-24 

48 AL0000080000 32.26454 -86.68701167 WB 635 187 

49 AL0000080000 32.267165 -86.69494 WB 790 208 

 

 

Figure A1 Locations of RL data of WREL collected for 0.1-mile segments (excluding 

restriped marking locations) 
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Figure A2 Locations of RL data of YCL collected for 0.1-mile segments (excluding restriped 

marking locations) 
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Figure A3 Locations of single vehicle ROR crashes (March 2021 to November 2021) 
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Figure A4 A rural two-lane location with multiple single-vehicle ROR crashes occurring 

within a 0.5-mile segment with RL of WREL < 250 mcd/m²/lux 
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Figure A5 A rural multilane location with multiple single-vehicle ROR crashes occurring 

within a 0.5-mile segment with RL of WREL < 250 mcd/m²/lux 


