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Abstract

Intersection Sight Distance (ISD) plays a critical role in ensuring roadway safety, partic-

ularly at unsignalized intersections where the lack of adequate visibility can result in severe

accidents. Traditional ISD assessment methods often rely on manual measurements, which

can be time-consuming, costly, and prone to inaccuracies. This study aims to address these

limitations by developing an automated GIS-based tool that leverages LiDAR data to evaluate

ISD at two-way stop-controlled (TWSC) intersections in Alabama. This tool facilitates effi-

cient screening of large road networks, calculates the recommended ISD, and identifies sight

distance obstructions. Furthermore, the study investigates the relationship between ISD and

crash frequency, focusing on the unique traffic conditions in Alabama. Comprehensive LiDAR

data covering 230 intersections were processed, and historical crash data from 2018 to 2022

were analyzed to identify target crashes influenced by sight distance deficiencies. The study

presents the development of ISD assessment tools, application of methodologies for evaluating

ISD impact on intersection safety, and the formulation of region-specific Crash Modification

Factors (CMFs). The findings provide actionable insights for optimizing intersection design to

enhance roadway safety and guide future ISD-related research.
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Chapter 1

Research Introduction

1.1 Research Background

Intersection Sight Distance (ISD) is a critical safety consideration in intersection design. ISD

refers to the unobstructed distance along a driver’s line of sight to a potential point of conflict,

such as an oncoming vehicle or a pedestrian crossing. The adequacy of this sight distance is

essential for drivers to detect hazards in time to react safely, make informed decisions, and

avoid collisions. Insufficient ISD can lead to dangerous situations, such as drivers misjudging

the speed or distance of approaching vehicles, resulting in failure to yield, improper turning

maneuvers, or crashes. ISD is especially important at Two-Way Stop-Controlled (TWSC) in-

tersections, where drivers on the minor road must stop and rely entirely on their ability to see

oncoming traffic from the major road before proceeding. At these intersections, restricted sight

distance has been linked to an increased risk of crashes, making it a crucial factor for ensur-

ing the safety and efficiency of intersection operations. ISD is determined by several factors,

including the height of the driver’s eye, the height of any objects that might block the driver’s

view, and the clear space along the approach lanes and corners of the intersection that must

remain free of obstructions. Additionally, ISD is influenced by factors such as vehicle speed,

how quickly drivers can decelerate, their perception-reaction time (PRT) , and their willingness

to accept gaps in traffic. These variables can differ depending on the specific design of the in-

tersection and the behavior of road users, making it essential to consider them when assessing

ISD for safe intersection performance.

The American Association of State Highway and Transportation Officials (AASHTO) Pol-

icy on Geometric Design of Highways and Streets (Green Book) [1] defines the length of the

1



sight triangle at the conflict leg as the ISD, which represents the area along the intersection

approach legs and across their included corners that must be free of obstructions blocking a

driver’s view of potential conflicts with other vehicles. Additionally, the Green Book provides

calculation methods for determining the recommended ISD for intersections with stop control

on minor roads. Figure 1.1 illustrates the clear sight triangles and ISD at an intersection with

stop control on the minor road, with distance a2 comprising distance a1 plus the width of the

departing lane(s) on the major road to the right, and encompassing any median width on the

major road. Distance b represents the ISD required for observing traffic approaching the minor

road from the left or right. Adhering to these guidelines is essential for improving intersection

safety and ensuring the overall safety of road users.

Figure 1.1: Clear Sight Triangle and Intersection Sight Distance [1]

However, while the theory behind ISD is well understood, practical challenges remain.

Traditional methods for assessing ISD often rely on manual, field-based measurements, which

can be time-consuming, expensive, and prone to inaccuracies, especially across a large network

of intersections. Additionally, these methods are limited in their ability to account for dynamic

traffic conditions and the varying geometry of intersections. This gap between theory and

practical assessment has created a need for more efficient, accurate, and scalable methods for

ISD evaluation.

Recent technological advancements, including the use of Geographic Information Systems

(GIS) and Light Detection and Ranging (LiDAR) data, have shown promise in automating and

2



enhancing ISD assessments. GIS and LiDAR enable the capture of high-resolution spatial data,

allowing for a more precise evaluation of visibility conditions at intersections. These technolo-

gies can provide detailed information about intersection geometry, obstructions, and other fac-

tors that influence sight distance. However, despite these advancements, existing methods still

face several limitations that have created the research gap.

One major limitation of existing ISD assessment methods is the difficulty in efficiently

screening large road networks to calculate both the recommended ISD and the occlusion rate

for each intersection, which refers to the proportion of the sight triangle area that is obstructed

by physical objects such as buildings, vegetation, or parked vehicles. This challenge prevents

transportation agencies from systematically prioritizing intersections based on the severity of

sight obstructions, limiting their ability to allocate resources effectively to critical locations.

Furthermore, inconsistencies in ISD measurement across multiple intersections pose another

challenge, as current methods often fail to align with standardized measurement used by vari-

ous transportation agencies, leading to potential overestimation or underestimation of ISD val-

ues. This inconsistency undermines the reliability of ISD assessments and impedes informed

decision-making for safety improvements. Additionally, ISD measurements are highly sensi-

tive to the positions of the observer (typically the driver) and the target (e.g., oncoming vehicles

or potential obstructions). Small variations in these positions can cause significant discrepan-

cies in measurements, compromising the accuracy of evaluations. Existing methods struggle to

determine these positions precisely, leading to errors that can impact the assessment of inter-

section safety.

Moreover, there is a need to better understand the relationship between ISD and traffic

safety within the specific conditions of Alabama. While the general principles of ISD are

well understood, there has been limited exploration into how ISD affects crash frequency and

severity in varying regional contexts. Alabama’s road network includes a diverse range of

intersection types, spanning rural and urban settings, with differing road geometries and traffic

volumes. Investigating how ISD impacts traffic safety within this context can provide valuable

insights for region-specific safety strategies and support data-driven decisions for intersection

improvements.

3



Addressing these research gaps is crucial for improving the accuracy and effectiveness

of intersection safety assessments, ultimately leading to better roadway safety outcomes. The

current limitations in ISD evaluation methods, including inefficiencies in screening large road

networks and inconsistencies in measurement across multiple intersections, impede the ability

of transportation agencies to accurately prioritize high-risk intersections for targeted safety in-

terventions. Without automated and standardized ISD assessments, agencies may misallocate

resources or overlook intersections where inadequate sight distance significantly contributes to

crash risks. Furthermore, the high sensitivity of ISD to the observer and target positions high-

lights the need for greater precision in these measurements, as inaccuracies can lead to erro-

neous safety evaluations. In addition, the limited exploration of how ISD impacts traffic safety

in specific regional contexts, such as Alabama, suggests that current safety strategies may not

fully consider the distinct characteristics of local road networks. By developing a scalable, au-

tomated tool that ensures consistent and precise ISD evaluations, this research addresses these

critical gaps and enables transportation agencies to make more informed, data-driven decisions

aimed at enhancing safety, reducing crash risks, and improving overall traffic operations.

1.2 Research Objectives

This study aims to develop and validate an automated GIS-based tool that leverages LiDAR

data to assess ISD accurately and efficiently, addressing the limitations of traditional methods.

Additionally, the study seeks to explore the relationship between ISD and crash frequency,

particularly in Alabama, to provide valuable insights into how local traffic and environmental

conditions influence intersection safety.

The first part of the research focuses on the development of a new measurement method

for ISD. The primary objective is to create a GIS-based tool that uses high-resolution LiDAR

data to automate the ISD measurement process. This tool addresses the limitations of tradi-

tional manual methods, which are often inefficient, labor-intensive, and error-prone, especially

when applied to large networks of intersections. The goal is to develop a scalable, efficient, and

accurate solution that can be applied across diverse intersection types. Additionally, the tool

will be designed to incorporate the sensitivity of ISD to the positions of the observer (driver)
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and the target (e.g., oncoming vehicles or obstructions). Accurate determination of these posi-

tions is essential for minimizing measurement errors, ensuring that the ISD evaluations reflect

real-world conditions. Furthermore, the tool will enable transportation agencies to efficiently

screen large road networks by calculating the recommended ISD and occlusion rates for each

intersection. This capability will allow agencies to prioritize high-risk intersections based on

visibility issues, improving resource allocation for safety interventions. The tool will also pro-

vide detailed visual outputs, such as maps and 3D models, to facilitate decision-making by

transportation planners and other stakeholders.

The second part of the research focuses on studying the impact of ISD on traffic safety.

The objective is to analyze the relationship between ISD and crash frequency at unsignalized

intersections, particularly within Alabama’s unique traffic and road conditions. By using his-

torical crash data, the study seeks to determine if inadequate sight distance correlates with an

increased risk of crashes. This analysis aims to establish a clear connection between ISD and

intersection safety, leading to the development of region-specific Crash Modification Factors

(CMFs) that quantify the safety benefits of improving ISD. These CMFs will provide trans-

portation agencies with a valuable tool to estimate the potential reduction in crash frequency

when ISD is enhanced, supporting data-driven decisions for intersection design and safety in-

terventions. Additionally, the study will evaluate how specific intersection design features,

such as left-turn and right-turn lanes, impact ISD and crash risk. This analysis will provide

insights into how certain design elements may contribute to either improving or obstructing

sight distance, guiding future intersection design improvements.

By pursuing these objectives, the study aims to advance both the methodologies for ISD

measurement and the understanding of ISD’s impact on traffic safety, providing actionable tools

and insights for improving intersection safety across large networks.

1.3 Research Tasks

The research tasks for this study are designed to systematically develop an advanced ISD as-

sessment tool and analyze its impact on traffic safety, particularly at TWSC intersections within
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Alabama. These tasks address both the development of the tool and its application in the field

to assess its effect on crash frequency.

The first task is to conduct a comprehensive literature review. This task involves reviewing

current ISD assessment methodologies, including traditional manual methods and more recent

approaches that use GIS and LiDAR data. Additionally, the review examines studies on the re-

lationship between ISD and crash frequency at unsignalized intersections, identifying research

gaps and limitations in existing methods. The insights gathered from the literature guide the

development of an automated ISD measurement tool and the subsequent analysis of its impact

on traffic safety.

The second task is to collect data. This task focuses on gathering high-resolution LiDAR

data for selected intersections across the Alabama State Highway System. The data collection

covers intersections of varying configurations, traffic volumes, and environments, ensuring a

representative sample. In addition to the LiDAR data, historical crash data from the past five

years (2018-2022) is obtained. This crash data focuses on accidents that may be influenced by

inadequate ISD, such as angle collisions and crashes involving vehicles entering from minor

roads. This comprehensive dataset serves as the foundation for tool development and subse-

quent analysis.

The third task is to develop and validate the automated GIS-based ISD measurement tool.

In this task, the primary objective is to create a tool that automates the ISD measurement pro-

cess, using the LiDAR data collected. The tool incorporates customizable parameters for the

observer (driver) and target (oncoming vehicles or obstacles), ensuring flexible and accurate

assessments across different intersection geometries. It also calculates the occlusion rate to

identify intersections where sight distance is compromised by obstructions. The tool is de-

signed to be scalable, allowing for its use across large road networks. Validation testing is

conducted by comparing the tool’s automated ISD measurements with traditional manual mea-

surements at selected intersections. Any discrepancies are analyzed, and adjustments are made

to the tool to enhance its accuracy and reliability. Once validated, the tool provides a scalable,

efficient solution for ISD assessments across a wide network of intersections.
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The fourth task is to apply the validated tool and analyze its impact on traffic safety.

This task involves multiple components. First, the validated tool is applied to measure ISD

at the selected unsignalized intersections across Alabama. The measurements are used to as-

sess whether these intersections meet recommended ISD criteria and to identify those with

sight distance deficiencies. Following this, the relationship between ISD and crash frequency

is analyzed by correlating the ISD data with the historical crash data. This analysis focuses

on ISD-related crashes, such as angle collisions and crashes involving vehicles entering from

minor roads, which are more likely to be influenced by inadequate sight distance. The goal is

to establish a clear connection between ISD deficiencies and higher crash risks.

Additionally, this task involves developing region-specific CMFs based on the ISD and

crash data analysis. The CMFs quantify the safety benefits associated with improving ISD

at unsignalized intersections and are calibrated to reflect Alabama’s traffic conditions. These

CMFs provide transportation agencies with a tool to estimate the potential reduction in crash

frequency resulting from ISD improvements. Finally, this task evaluates the impact of various

intersection design features, such as left-turn lanes, right-turn lanes, and medians, on ISD and

crash risk. Understanding how these features affect visibility and safety provides insights into

optimizing intersection design to improve sight distance and reduce crash risks.

1.4 Organization of the Dissertation

This dissertation begins with the introduction and progresses through a detailed literature re-

view, data collection, methodology, tool application, safety analysis, and finally concludes with

key findings, implications, and recommendations for future research.

The first chapter introduces the importance of ISD in roadway safety, particularly at

unsignalized intersections, where inadequate visibility can lead to severe accidents. It outlines

the research objectives, which focus on developing an automated ISD assessment tool using

high-resolution LiDAR data and exploring the relationship between ISD and crash frequency

in Alabama. Additionally, this chapter presents the research tasks that guide the overall study.

The second chapter presents a comprehensive literature review, summarizing existing re-

search on ISD assessment methods, the integration of GIS and LiDAR in traffic engineering,
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and the influence of ISD on road safety. This chapter identifies gaps in current methods and

highlights the need for more accurate, efficient, and scalable tools for ISD measurement, laying

the foundation for the tool’s development and subsequent analysis.

The third chapter details the data collection process, covering the acquisition of high-

resolution LiDAR data, historical crash data from 2018 to 2022, and intersection-specific in-

formation, such as traffic volumes and geometric configurations. This chapter explains the

selection of intersections to ensure a diverse representation of Alabama’s road conditions, pro-

viding the necessary dataset for ISD measurement and safety analysis.

Chapter 4 outlines the study’s methodology, including the development of the GIS-based

automated ISD assessment tool. It explains the technical steps involved in data processing,

observer and target point generation, visibility analysis, and the verification process. This

chapter also describes the methods used for validating and calibrating the Crash Modification

Factors (CMFs) proposed by the NCHRP, as well as the Empirical Bayes (EB) Before-and-

After Study method employed for developing the CMFs.

Chapter 5 focuses on applying the validated ISD tool to selected intersections in Alabama.

The chapter discusses the statistical analysis conducted to explore the differences in ISD mea-

surements under various conditions, such as observer location and vehicle type. It also assesses

the tool’s accuracy and effectiveness through comparisons with traditional ISD measurement

methods, establishing its reliability for large-scale network screening.

Chapter 6 presents the impact of ISD on intersection safety, analyzing the correlation

between ISD and crash frequency, particularly for target crashes directly influenced by sight

distance deficiencies. The chapter details the calibration of region-specific CMFs based on

Alabama’s traffic conditions and evaluates how intersection design features, such as left-turn

and right-turn lanes, affect ISD and crash risk. These findings offer valuable insights into

optimizing intersection design to improve safety.

The final chapter, Chapter 7, concludes the dissertation by summarizing the key findings

and contributions of the study. It discusses the implications of the research, addresses its limi-

tations, and provides recommendations for future research, including the extension of the ISD

assessment tool to other types of intersections and the incorporation of dynamic factors, such
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as real-time traffic data, in future analyses. This chapter underscores the potential of the de-

veloped tool and methodologies to enhance roadway safety through data-driven intersection

design and safety interventions.
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Chapter 2

Literature Review

This chapter reviews key literature on ISD to identify gaps in current assessment methods and

explore opportunities for improvement, covering foundational principles, traditional and mod-

ern measurement approaches, and the relationship between ISD and traffic safety. It begins by

discussing ISD’s critical role in intersection safety, particularly at unsignalized intersections,

providing a basis for understanding the limitations of traditional methods, such as those out-

lined in the AASHTO guidelines, which are often labor-intensive and inconsistent across large

networks. The review then examines modern ISD measurement approaches, focusing on the

use of GIS and LiDAR technologies, which offer greater precision and scalability. These inno-

vations show significant potential for automating and enhancing ISD assessments, providing a

framework for further research and tool development. The chapter also explores studies linking

ISD with traffic safety, demonstrating that adequate sight distance reduces crash risks, and eval-

uates safety performance metrics like CMFs to quantify ISD improvements in terms of crash

reduction.

2.1 Intersection Sight Distance

In the evolution of intersection design and safety analysis, especially concerning unsignalized

intersections, the literature review reveals a critical trajectory from traditional methodologies

toward more dynamic, evidence-based approaches. This transition is not only a reflection of

advancements in vehicle technology, including autonomous vehicles (AVs) , but also a growing

recognition of the limitations inherent in existing standards and the need for more precise,

real-world reflective measurement tools.
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Easa (1998) provided a foundational critique of the AASHTO model for calculating ISD,

marking the beginning of this shift [3]. By proposing a revised model that incorporates actual

speeds and driver behaviors rather than relying on theoretical or static design speeds, Easa chal-

lenges the adequacy of long-standing guidelines and underscores the potential underestimation

of ISD needs, setting a precedent for future research and development in this field.

Building on this, Harwood et al. (2000) further advocate for models grounded in gap

acceptance and observed driver behaviors, emphasizing a more nuanced understanding of driver

decision-making processes at stop-controlled intersections [4]. This approach aligns with the

proposed GIS tool’s objective to utilize LiDAR data for enhanced ISD measurement, offering

a pathway to integrate these insights into practical applications for road safety improvements.

Layton (2012) discusses the evolution of AASHTO’s ”gap acceptance” models, empha-

sizing the importance of adapting ISD criteria to better reflect real-world driving conditions

and the capabilities of modern vehicles [5]. This evolution highlights the necessity of advanced

measurement techniques, such as the proposed GIS tool, to ensure that ISD calculations con-

tribute effectively to safer road designs and traffic management practices.

The studies by Stančerić et al. (2012) [6] and Pranjicl et al. (2017) [7] expand the discourse

to include the geometric aspects of intersection design and the need for updated standards that

accommodate the changing landscape of vehicle technology and traffic behavior. These insights

underscore the GIS tool’s potential to address the complex dynamics of intersection safety and

design, offering more adaptable and responsive solutions to the challenges of unsignalized

intersections.

Further, Dabbour and Easa (2017, 2021) [8, 9]delve into the specifics of ISD calculation

methodologies, proposing revised approaches that better account for the acceleration capabil-

ities and perceptual judgments of drivers . These contributions are invaluable in refining the

theoretical underpinnings of ISD measurement and enhancing the practical utility of tools like

the GIS application being developed.

Abdulhafedh (2020) provides a comprehensive analysis of Stopping Sight Distance (SSD)

, Decision Sight Distance (DSD) , and Passing Sight Distance (PSD) roles within the broader

context of highway safety, articulating the critical importance of accurate and comprehensive
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sight distance calculations [10]. This analysis not only supports the necessity of the proposed

GIS tool but also highlights its potential to inform more effective road design and traffic man-

agement strategies.

Lastly, Magyari et al. (2021) brings the discussion into the realm of autonomous vehi-

cles, examining how AV technology may alter ISD requirements and offering insights into the

potential for more efficient and safer road use as these vehicles become more common [11].

This perspective is crucial for ensuring that the development of measurement tools and design

guidelines keeps pace with technological advancements, aiming to enhance road safety for all

users.

Incorporating these diverse yet interconnected strands of research, the literature review

underscores the proposed GIS tool’s role in navigating the transition towards more dynamic,

evidence-based approaches to ISD measurement and intersection design. By aligning with the

latest advancements in vehicle technology and road safety research, the tool aims to contribute

significantly to reducing traffic accidents and improving safety at unsignalized intersections,

marking a critical step forward in the ongoing evolution of traffic engineering and road safety

analysis.

2.2 Innovative Technology in ISD Measurement

2.2.1 Advanced Computational and Mathematical Models

In early studies, in addition to field measurements, computational and mathematical models

for ISD measurement were proposed and validated. These innovative approaches have revolu-

tionized the way ISD is calculated, especially for roads featuring complex geometries such as

3D alignments. Traditional methods, while useful, often fail to capture the intricate realities of

modern road designs, making the precision offered by these advanced models indispensable.

In this area, Easa and Ali developed mathematical model in 2004 [12] and 2006 [13],

which specifically addresses the limitations inherent in the guidelines provided by the AASHTO.

This model innovatively includes a wide range of variables, such as the presence of horizontal

and vertical curves on the major road and a longitudinal grade and skew on the minor road.
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By also accounting for obstructions both inside and outside the horizontal curve, it offers a

much-needed refinement in ISD calculation, a critical aspect previously unaddressed in earlier

models.

The practical application and efficacy of this model were illustrated through a case study

involving a hypothetical intersection with both major and minor roads being two-lane high-

ways, showcasing the model’s capability to accurately determine necessary sight distances

amidst the complexities of road curves, grades, and obstructions. This example underscored

the significant advantages of utilizing such advanced models, particularly their ability to de-

liver detailed insights into ISD requirements for complex road alignments, a feat unachievable

with traditional methods.

However, the sophistication of these models also presents challenges, particularly the need

for detailed and accurate input data, and a dependence on computational resources, which could

limit accessibility. Despite these challenges, the future of ISD measurement looks promising,

with ongoing technological advancements in data collection methods like LiDAR and GIS

expected to further refine the accuracy and applicability of these models. There is also potential

for future research to explore integrating real-time data, allowing for dynamic adjustments to

ISD calculations in response to changing environmental conditions, thereby advancing road

safety measures.

2.2.2 GIS and LiDAR Data Integration for Sight Distance Measurement

An increasing number of studies highlight the integration of GIS and LiDAR data to conduct

comprehensive ISD analysis, which offer significant advantages over traditional methods of

mathematical analysis models and manual field work.

A study [14] by Castro et al. (2011) leveraged GIS alongside LiDAR data to offer a

nuanced methodology that accounts for detailed terrain models and obstacles, such as trees

and buildings, which traditional methods often overlook. This approach is instrumental for

existing highways lacking design data, employing GPS data to estimate highway alignments—a

methodology that proves both practical and reliable for sight distance analysis. The 2014 study

[15] by Castro et al. further developed a GIS-based system, utilizing a trajectory defined by
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points from a global navigation satellite system (GNSS) receiver, thereby bypassing the need

for project-specific information. This system, equipped with tools for identifying 3D alignment

issues, significantly contributes to the field by offering a streamlined process for sight distance

calculations, with its effectiveness validated through application to a case study.

The transformative potential of employing 3D virtual environments and high-resolution

LiDAR data for ISD analysis was highlighted by Jung et al. [16] in the 2018 study. This

methodology, demonstrated through a case study in Corvallis, Oregon, not only enhances the

precision of sight distance assessments but also introduces adaptability to different vehicle

types and movements, thereby setting a new standard for ISD measurement accuracy and ef-

ficiency. In parallel, the 2021 study [17] by Kilani et al. introduces an automated method for

analyzing ISD in urban environments using mobile LiDAR technology. This novel approach

excels in detecting and visualizing obstructions from a driver’s perspective, offering a signifi-

cant leap in the efficiency and accuracy of ISD evaluations.

Similarly, Gargoum et al. (2021) [18] presents an automated method for assessing sight

distance limitations on highways using mobile LiDAR scanning. This method exemplifies

the integration of advanced technologies in road safety evaluations, showcasing the ability to

automatically identify and classify various obstruction types without manual fieldwork. This

study exemplifies the dissertation’s focus on harnessing GIS and LiDAR technologies to refine

sight distance measurements, aiming to enhance road safety and design.

While previous studies have demonstrated the transformative potential of integrating GIS

and LiDAR for ISD analysis, significant gaps remain that this dissertation aims to address. Past

methodologies often focus on specific applications, such as estimating highway alignments

[14, 15] or detecting obstructions in controlled environments [16, 17], without providing a

comprehensive framework adaptable to diverse intersection types or region-specific conditions.

These studies also lack calibration to local contexts, such as Alabama’s unique traffic patterns

and geometric characteristics, and often overlook critical safety performance metrics, such as

crash frequency. This dissertation advances prior work by developing an automated GIS and

LiDAR-based tool specifically tailored for ISD analysis at TWSC intersections in Alabama.
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The tool incorporates advanced algorithms, such as KD-tree-based visibility analysis, and con-

siders the influence of vehicle types and design features, such as turn lanes and medians, pro-

viding a more comprehensive evaluation of ISD deficiencies. By linking these deficiencies to

crash risks and calibrating the tool with local data, this research offers transportation agencies

an innovative, adaptable, and accurate tool for improving intersection design and enhancing

road safety.

2.2.3 Technological Innovations in Sight Distance Evaluation

Traditional methods, while effective to an extent, often fall short in capturing the compre-

hensive dynamics of modern roadways, particularly in three-dimensional environments. The

advent of advanced computational models, GIS, and LiDAR technologies has opened new av-

enues for precise and comprehensive ISD evaluations, addressing both horizontal and vertical

road curvatures and incorporating detailed models of road surfaces and obstructions. This

review explores several key studies that have contributed innovative methodologies and frame-

works to the field, displaying the evolution of ISD measurement techniques and their implica-

tions for road safety.

The 2006 study [19] by Nehate et al. introduced a groundbreaking model for determining

ISD using GPS data, marking a departure from traditional two-dimensional analyses. By em-

ploying cubic B-splines for road surface and obstruction modeling, this methodology enables

detailed evaluations of ISD on 3D combined horizontal and vertical alignments. Verified across

Kansas highways, including Highway K-177, this approach has been encapsulated in software,

providing a practical tool for transportation departments.

Jha et al.’s 2011 paper [20] presented a novel 3D design methodology for accurately cal-

culating sight distances on highways. This methodology, accounting for the interplay of hor-

izontal and vertical road alignments, overcomes the limitations of existing two-dimensional

approaches. By allowing early design simulations to identify and rectify inconsistencies, this

approach ensures the adequacy of ISD from a comprehensive 3D perspective, aligning with the

objective of developing a GIS tool for ISD measurement using LiDAR data.
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The 2021 study [21] by Agina et al. introduced an automated method for assessing PSD

on rural highways using mobile LiDAR data. This methodology significantly enhances road

safety analysis by precisely identifying passing-allowed zones and proposing enhancements to

extend safe passing zones. Further validated by a safety analysis correlating PSD limitations

with collision data, this approach exemplifies the integration of advanced technologies in com-

prehensive road safety evaluations. Similarly, the 2018 study by Gargoum et al. [22] displays

an innovative approach to sight distance evaluation on highways, utilizing mobile LiDAR data

for a more efficient and accurate assessment. This method automates the process by leveraging

3D point cloud data to calculate stopping and passing sight distances, identifying obstructions

without the need for traditional field measurements. Applied to Alberta, Canada’s highway

segments, the algorithm successfully pinpointed areas failing to meet minimum sight distance

requirements, aligning with collision data and demonstrating the tool’s potential for enhancing

road safety.

The study [23] by Ma et al. (2021) developed a comprehensive framework for detecting

obstacles that restrict 3D highway sight distance using Mobile Laser Scanning (MLS) data.

This research utilized a MATLAB-based framework employing linear index-based segmen-

tation and similarity-and-connectivity-based methods for efficient and reliable obstacle detec-

tion, overcoming challenges like vehicle noise and data gaps. Demonstrated through real-world

highway tests, this framework significantly enhances sight distance evaluations’ efficiency and

accuracy, marking a notable improvement over traditional methods.

Kilani et al. (2021) introduced an innovative automated method [24] for assessing sight

distances at urban intersections, utilizing mobile LiDAR data to identify visibility obstacles

efficiently. This approach correlates limited sight distances with increased collision risks,

providing transportation agencies with a framework to address visibility hazards proactively.

Highlighting the potential of mobile LiDAR for urban road safety, this study aligns with the

dissertation’s objectives to enhance ISD measurements.

The 2022 study by Quan et al. [25] introduced a novel method using Google Earth for

measuring sight distance at unsignalized intersections for median U-turns on multilane divided

highways. By employing Google Earth and Kinovea software, this approach offered a safer
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and more efficient alternative to field measurements. Validated through field comparisons, this

innovative method underscores the potential of leveraging accessible technology for enhancing

the accuracy and practicality of ISD measurements, contributing to safer road designs.

The review of technological innovations in sight distance evaluation highlights advance-

ments in methodologies and frameworks that enhance ISD measurements and road safety eval-

uations. These advancements, driven by advanced computational models, GIS, and LiDAR

technologies, offer precise evaluations in three-dimensional environments. Key methodologies

include automated assessments using mobile LiDAR and MLS data, overcoming traditional

limitations. Additionally, novel approaches, such as utilizing Google Earth for ISD measure-

ments, provide safer and more efficient alternatives. Overall, these innovations provide a foun-

dation for the dissertation’s objective of developing a GIS tool for ISD measurement using

LiDAR data, contributing to more accurate and comprehensive road safety evaluations.

2.3 Impact of ISD on Road Safety

The section is critical for understanding the relationship between ISD and traffic safety. As

the second objective of the proposed dissertation entails employing a developed GIS tool for

ISD measurement at unsignalized intersections and analyzing the correlation between ISD and

crash frequency using historical crash data, this literature review section forms the backbone

for establishing the empirical and theoretical grounds for the study. The purpose here is two-

fold: firstly, to summarize findings from various research studies that link inadequate ISD to

increased crash rates and severity at intersections, thereby highlighting the critical role of ISD in

ensuring road safety. Secondly, to discuss theoretical frameworks that support the study of ISDs

impact on traffic safety, offering a conceptual basis for the research. This introduction aims to

set the stage for a detailed exploration of how ISD directly influences driver behavior, decision-

making processes, and the safety of road users at intersections. By examining empirical studies

and theoretical frameworks, this section seeks to underscore the importance of accurate ISD

measurement and analysis as essential components in the design and implementation of safety

improvements at unsignalized intersections.
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2.3.1 Empirical Evidence Linking ISD to Road Safety

Glennon (1987) provides a critical review emphasizing the vital relationship between ISD and

road safety [26], focusing on SSD and ISD as defined by AASHTO since 1940. Glennon

underscores the significance of adequate sight distance in preventing collisions with unexpected

obstacles, advocating for low-cost improvements such as removing roadside obstructions to

enhance road safety. Despite a scarcity of direct studies linking SSD and ISD with accident

rates, Glennon highlights key research indicating a reduction in accidents with improved SSD,

particularly at crest curves.

Yan et al. (2004) study [27] delves into the geometric models for calculating ISD at

signalized intersections, revealing insights into the relationship between ISD and road safety.

They emphasize how obstructions from opposing left-turn vehicles can impede sight distance,

increasing the risk of accidents and intersection delays. Yan et al. offer geometric models for

ISD analysis and suggest design improvements to enhance sight distance, aligning closely with

the objective of developing a GIS tool for ISD measurement using LiDAR data.

Liu et al. (2010) analyze the impact of ISD on vehicle speed at intersections, demon-

strating how larger static sight distances correlate with higher velocities for turning vehicles

and lower speeds for vehicles proceeding directly through intersections [28]. Their findings

emphasize the importance of adequate ISD in enabling safe maneuvering decisions at intersec-

tions, reinforcing the theoretical framework linking ISD with traffic safety outcomes.

Himes et al. (2016) investigate the correlation between ISD and safety at unsignalized in-

tersections, analyzing data from various states to quantify the impact of ISD on crash frequency

[29]. They find that improving ISD can lead to safer intersections, introducing a CMF for ISD

that provides a quantitative basis for assessing the safety effects of ISD improvements.

These studies collectively provide empirical evidence supporting the critical impact of

ISD on road safety, particularly at intersections. The findings underscore the importance of

adequate ISD in preventing accidents and reducing crash frequencies, aligning closely with the

objective of developing a GIS tool for ISD measurement using LiDAR data.
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2.3.2 Methodological Approaches to ISD Measurement and Analysis

Kilani (2021) thesis focuses on evaluating ISD design in urban road contexts, stressing the

importance of providing adequate ISD for safe intersection operation [30]. Utilizing mobile

LiDAR point cloud data, Kilani develops a fully automated method for assessing visibility

at intersections, identifying obstacles and quantifying their impact on drivers’ visual fields.

His research also explores the relationship between collision occurrences and limited sight

distances through a safety-based assessment using the LiDAR dataset, employing the Empirical

Bayesian technique for analysis.

The study [31] by Himes et al. (2018) provides a detailed examination of the safety im-

pacts associated with ISD at unsignalized intersections. Through data collection across three

states, the research quantifies the relationship between ISD and safety, revealing a nonlinear

relationship where decreasing ISD correlates with an increase in target crashes. The methodol-

ogy employed in this study, leveraging regression models to analyze the ISD-crash frequency

relationship, informs the development of the GIS tool, ensuring its empirical and theoretical

grounding.

Osama et al. (2016) introduce a reliability analysis framework to evaluate the risk asso-

ciated with limited sight distance for permitted left-turn movements at signalized intersections

[32]. Their study focuses on obstructing vehicles’ impact on ISD, utilizing geometric and traffic

video data to assess the probability distributions of input variables for reliability analysis. The

findings highlight the considerable risk of non-compliance with sight distance requirements,

especially when the obstructing vehicle is a bus.

These methodological studies collectively provide empirical and theoretical foundations

for the dissertation’s objectives. Kilani’s automated method for ISD assessment, coupled with

empirical evidence linking ISD to road safety, strengthens the GIS tool’s development and ap-

plication. Insights from Himes, Porter, and Eccles enrich the understanding of ISD’s role in

intersection safety, guiding targeted ISD enhancement strategies. Additionally, Osama, Sayed,

and Easa’s reliability analysis framework offers practical approaches to evaluating and improv-

ing ISD, contributing to a comprehensive approach to intersection safety.
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2.3.3 Design and Safety Improvement Strategies

The study [33] by Ibrahim et al. (2012) introduces a methodology for optimizing highway

cross-sections’ safety, particularly focusing on horizontal curves with restricted sight distance.

Their research utilizes reliability analysis to address uncertainties in design parameters and

measure the risk associated with deviations from standard design practices. By employing an

optimization approach, the study allows designers to proactively manage safety implications,

offering a significant advancement in developing safer road designs.

Schattler et al.’s (2016) study [34] evaluates the effectiveness of modified right-turn lane

designs at intersections in improving sight distance and reducing crash rates. Their research

provides empirical evidence on how geometric modifications, particularly the right-turn lane

approach angle, directly impact road safety by enhancing ISD. Combining crash data analysis

with driver behavior observations, the study offers insights into the correlation between im-

proved sight distance and reduced crash rates, reinforcing theoretical frameworks and empha-

sizing the significance of incorporating advanced technological tools and design modifications

in enhancing traffic safety at intersections.

The study [35] by Xizhen et al. (2021) evaluates the impact of DSD and geometric align-

ment on driver performance at freeway exit diverging areas, emphasizing the role of DSD in

traffic safety. The methodological approach of combining simulated driving data with driver

surveys provides a robust framework for assessing ISD’s impact on traffic safety, supporting

the development of more effective design and safety improvement strategies for unsignalized

intersections.

These studies collectively contribute to understanding and improving ISD measurement

and analysis for traffic safety. They offer empirical evidence, methodological approaches, and

practical insights that can help the research propose a more comprehensive and responsive

approach to sight-restricted intersections.
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2.3.4 Behavioral and Psychological Aspects of ISD

Achtemeier et al. (2019) investigate the effects of restricted sight distances on drivers at simu-

lated rural intersections, offering insights into how ISD impacts driver behavior and road safety

[36]. Using a driving simulator, the study varied sight distances and oncoming vehicle speeds

to observe drivers’ gap acceptance and stress levels. Their findings reveal that shorter sight

distances increased drivers’ stress and led to the acceptance of smaller gaps between vehicles,

potentially increasing accident risks. The study underscores the need for nuanced approaches

to ISD optimization, as simply enlarging sight distances may not always yield safety gains.

Morris et al. (2019) delve into optimal sight distances at rural intersections through a com-

prehensive analysis intertwining driving simulation with subjective driver assessments [37].

Their research evaluates driver performance and psychological responses across varying sight

distances and oncoming traffic speeds at simulated rural intersections. The findings highlight

the significant impact of extended sight distances on improving driver performance and com-

fort, manifesting in enhanced safety outcomes. The study’s methodology, combining quan-

titative performance metrics with qualitative assessments of driver stress and comfort, offers

insights into ISD’s impact on traffic safety and could inform future road design and safety

interventions.

These studies provide valuable insights into the behavioral and psychological aspects of

ISD, enriching the dissertation’s understanding of how ISD influences driver behavior and road

safety. Incorporating insights from these studies enhances the theoretical and empirical foun-

dations of the dissertation, guiding the development of effective road design and safety inter-

ventions aimed at unsignalized intersections.

2.3.5 Innovative Analytical and Predictive Models

The 2018 study [38] by the NCHRP provides a comprehensive examination of the safety im-

pacts of ISD at unsignalized intersections. By analyzing data from numerous intersections

across three states, the study establishes a quantitative relationship between available ISD and

safety, highlighting a nonlinear correlation where decreasing ISD correlates with an increase in
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target crashes. The study underscores the nuanced interplay between ISD and other road and

traffic characteristics, emphasizing the importance of precise ISD measurement and analysis in

traffic safety improvement efforts.

Ramireddy et al. (2023) emphasize the influence of ISD characteristics on the safety of

uncontrolled intersections, leveraging surrogate safety measures [39]. Their research analyzes

ISD variations’ impact on critical conflict rates at six uncontrolled three-legged intersections.

Findings indicate that improved ISD correlates with enhanced safety, suggesting a significant

reduction in the critical conflict rate with increased sight distance. The methodology aligns with

innovative approaches intended for the dissertation, supporting the hypothesis that adequate

ISD is critical for reducing crash rates and severity at intersections.

Godumula et al.’s (2023) study [40] explores the safety evaluation of horizontal curves

on rural two-lane highways using machine learning algorithms. They introduce a priority-

based approach to sight distance improvements and advocate for incorporating uncertainties

using reliability analysis. Their methodology, including classical topography and video graphic

surveys, provides insights into the relationship between sight distance, vehicle speed, and road

safety. The emphasis on stochastic aspects of road design and the application of machine

learning algorithms aligns with the dissertation’s conceptual basis, supporting the need for a

more nuanced and data-driven approach to improving road safety through adequate ISD.

These studies significantly contribute to enhancing the methodological foundation for ISD

analysis in traffic safety research. Incorporating these methodological advancements into the

dissertation enhances its theoretical and practical contributions, guiding the development of

effective road safety interventions based on precise ISD analysis methods.
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Chapter 3

Data collection

This chapter outlines the data collection process essential for analyzing ISD at unsignalized in-

tersections in Alabama, focusing on the acquisition of LiDAR data, crash data, and intersection-

specific details. The LiDAR data, provided by Alabama Department of Transportation (AL-

DOT) using the Velodyne HDL-32E system, covers 366 intersections across 53 counties and

offers high-resolution spatial information to capture road geometry and visibility obstructions.

Additionally, historical crash data from 2018-2022 was obtained through the Critical Analy-

sis Reporting Environment (CARE) software, focusing on intersection-related crashes within

a 250-foot radius and filtered to include ISD-related Target Crashes. Detailed intersection in-

formation, such as lane configurations, turn treatments, and traffic volumes, was also collected

to assess how these features impact ISD and crash risk. This comprehensive data collection

provides the foundation for the analysis and modeling phases of the research.

3.1 Intersection Information

To study the impact of ISD on traffic safety at TWSC intersections, with the support of the

ALDOT Maintenance Office, location information for all stop-controlled intersections within

Alabama’s state highway network was obtained and selected as potential study sites. Both the

major and minor roads at these intersections belong to the Alabama State Highway system.

The distribution of all intersections is shown in Figure 3.1.

Initially, ALDOT provided location data for 366 TWSC intersections within its jurisdic-

tion, which formed the basis for this study. These intersections represent all stop-controlled
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Figure 3.1: Locations of All the Candidate Intersections
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intersections under ALDOT’s management. A GIS database was created from this data and

reviewed using Google Earth and Street View to assess whether they met the study criteria.

The review revealed that 94 of these intersections were either all-way stop-controlled (AWSC)

or had been updated to signal-controlled intersections; these were excluded from the study.

Next, the completeness of the LiDAR point cloud data for the study locations was ana-

lyzed. Since the point cloud data was collected using MLS mounted on survey vehicles, the

coverage directly affected the data completeness. The review found that 25 intersections had

point cloud data that only covered parts of the major road sections, rendering the data incom-

plete. As illustrated in Figure 3.2, the light blue shaded area represents the available LiDAR

data coverage, while the red stop sign marks the TWSC intersection location. This figure high-

lights an example of incomplete data coverage, where the LiDAR data does not fully extend

to the surrounding major road segments. Consequently, such intersections were excluded from

the study.

Figure 3.2: Intersection with incomplete LiDAR data

Additionally, the availability of Average Annual Daily Traffic (AADT) data for the inter-

sections was critically reviewed. Each intersection considered for the analysis required avail-

able AADT data for both the major and minor roads. For four-leg intersections, the AADT

data for the major road and at least one approach of the minor road needed to be available;
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Figure 3.3: Locations of Selected Intersections and Unselected Intersections
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otherwise, the intersection did not meet the study requirements due to unavailable AADT data.

After this screening process, the review indicated that 18 intersections were excluded from the

study (Figure 3.3). The remaining 230 intersections were included in the final analysis. Ta-

ble 3.1 summarizes the reasons for excluding intersections from the study and provides the

corresponding proportions relative to the total number of initially selected intersections.

Reason for Exclusion Number of Intersections Proportion (%)
AWSC or Signalized Update 94 25.68
Incomplete LiDAR Data Coverage 25 6.83
Unavailable AADT Data 18 4.92
Total Excluded Intersections 137 37.43
Total Retained for Analysis 230 62.57

Table 3.1: Summary of Excluded Intersections and Reasons for Exclusion

The selected study intersections exhibit a diverse range of characteristics, including three-

leg (3ST) intersections, four-leg (4ST) intersections, and intersections with skew angles. Al-

though previous studies [41, 42] have indicated that intersections with angles less than 90

degrees can affect safety, this study aims to comprehensively analyze the impact of ISD on

intersection safety under various conditions. Therefore, intersections with skewed or unusual

alignments are included in the study, and these factors will be considered in the safety analysis.

Additionally, the lane configurations of the major roads at the study intersections were

recorded as potential factors influencing traffic safety. This includes the number of through

lanes on the major road, the types of right-turn lanes, the types of left-turn lanes, and the

presence of acceleration lanes for vehicles turning left or right from the minor road [43].

The types of left-turn lanes were categorized into three types (Figure 3.4):

• Left Turn Type 1: No left-turn lanes

• Left Turn Type 2: Left-turn channelization defined by raised (curbed) or depressed

median

• Left Turn Type 3: Painted left-turn channelization (no median or flush median)

Similarly, the types of right-turn lanes were classified into four categories (Figure 3.5):
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• Right Turn Type 1: No right-turn lanes

• Right Turn Type 2: Right-turn roadway created by a channelizing island without an

exclusive right-turn lane upstream of it (i.e., traffic entered the right-turn roadway from a

shared lane used by both through and right-turning traffic)

• Right Turn Type 3: Right-turn roadway created by a channelizing island with an ex-

clusive right-turn lane upstream of it (i.e., traffic entered the right-turn roadway from an

exclusive right-turn lane)

• Right Turn Type 4:Conventional exclusive right-turn lane with no channelizing island.

Figure 3.4: Type of Left-turn Treatment

These detailed lane configurations were documented to ensure a comprehensive analysis of

the various factors that may influence the safety performance of the intersection. In particular,

these configurations were examined to analyze their impact on ISD-related crash frequency.

Obtaining AADT data is essential for for developing a statistical road safety model that

accurately reflects the safety conditions of these roads. This data was obtained from the Al-

abama TDM Public open-source database [44], managed by ALDOT, ensuring both credibility

and relevance. The dataset is derived from three distinct types of traffic count stations:
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Figure 3.5: Type of Right-turn Treatment

• Permanent: Permanent counter sites are the Continuous Count Stations located around

the state. The sites monitor traffic all year round by utilizing a variety of different sensors

(i.e., inductive loops, radar, infrared detection, etc.).

• Portable: Portable counter sites collect short duration vehicle classification and/or vol-

ume counts. The count duration is typically either 48 continuous hours that will incorpo-

rate 2 or 3 days depending on when placed or 168 continuous hours that will incorporate

7-8 days depending on when placed. Every attempt is made to collect traffic data at these

locations on a minimum three-year cycle.

• Virtual: Virtual counter sites do not actually exist. They represent a section of roadway

and contain data collected and transferred from an adjacent site on the route. These

counters typically exist at County lines.

For intersections with two Major Road approaches that have different AADTs, the higher

AADT of the two is used to represent the AADT for the Major Road [45]. Similarly, for

intersections with two Minor Road approaches with different AADTs, the higher AADT is

used for the Minor Road in intersection-level analyses. In approach-direction level analyses,
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the specific AADT for the corresponding Minor Road approach is used. If AADT data for a

particular approach is unavailable, that approach is excluded from the analysis. This approach

helps to avoid interference in the analysis caused by significant differences in AADT between

Minor Road approaches within the same intersection.

Table 3.2 summarizes the data elements of interest used in the study, categorizing them by

their description and corresponding data sources. The data elements include key intersection

characteristics such as location, traffic control type, intersection legs, speed limits, and turn

lane treatments.

Data Element Description Data Source

Location
Geographical coordinates of study the

intersection
ALDOT

Traffic control Type of traffic control (e.g., AWSC, TWSC)
ALDOT; Street

View
Num of Legs Number of intersection legs Street View

Posted Speed Limit Speed limit of Major Rd Street View
Num of through lanes Number of through lanes on Major Rd Street View

Median Width Width of the median at the intersection Arc GIS Pro
Grade of Approach The grade of the approaching roads Proposed Method

Skewed Angle
The angle between the intersecting roads that

deviates from 90 degrees
Proposed Method

Left Turn Treatment Type of left-turn lanes Street View
Right Turn Treatment Type of right-turn lanes Street View

Major Rd AADT
Average Annual Daily Traffic on the major

road
ALDOT

Minor Rd AADT
Average Annual Daily Traffic on the minor

road
ALDOT

Left Available ISD Available Intersection Sight Distance to the left Proposed Method

Right Available ISD
Available Intersection Sight Distance to the

right
Proposed Method

Table 3.2: Data Elements for Intersection Study

3.2 Crash Data

For the second phase of this study, which examines the impact of sight distance on road safety,

obtaining historical crash data for the selected intersections was essential. To facilitate this,

a confidentiality agreement was signed with the ALDOT, granting access to all crash reports

within Alabama for the years 2018 through 2022. This period’s data encompasses a substantial
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volume of records: 160,163 for 2018, 159,125 for 2019, 134,212 for 2020, 151,954 for 2021,

and 144,256 for 2022. The source of this historical crash data is the CARE [46], an advanced

data analysis software engineered by the Center for Advanced Public Safety (CAPS) at the

University of Alabama. CARE is specifically tailored for extracting critical insights within the

traffic safety domain, facilitating the identification of issues and the formulation of effective

countermeasures. Renowned for its speed and analytical prowess, CARE can process and an-

alyze millions of records swiftly, equipped with extensive filtering capabilities to sift through

vast datasets.

Each historical crash record in the CARE database contains 235 described variables en-

capsulating detailed insights into traffic incidents. This dataset is foundational for analyzing

traffic crash dynamics, structured across various levels to provide a holistic view of each crash.

These variables are categorized into several key areas:

• Administrative Details: Include case numbers and basic administrative data essential for

record-keeping and identification purposes.

• Geographical Information: Encompasses precise crash locations (latitude and longitude),

dates, times, counties, and cities, providing a spatial and temporal context to each inci-

dent.

• Unit Descriptions: Differentiates between involved units (vehicles and non-motorists),

detailing vehicle types, commercial vehicle indicators, and specific actions leading up to

the crash.

• Driver and Non-Motorist Data: Covers a wide range of information including demo-

graphics, licensing details, condition at the time of the crash, and involvement in the

incident.

• Vehicle Information: Offers insights into vehicle specifics such as make, model, year,

ownership, registration, usage, and the extent of damage resulting from the crash.

• Crash Dynamics and Circumstances: Investigates the environmental conditions, road

surface types, and a detailed sequence of events that describe the crash dynamics.
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• Environmental and Investigative Factors: Records environmental factors present at the

crash site and details from the crash investigation process, including witness statements

and investigator notes.

The geographical information, driver behaviors, vehicle characteristics, and environmental

conditions allowed for an analysis of how ISD influences road safety. By correlating specific

variables such as crash location, crash type, and severity with ISD measurements, the study

could perform a quantitative analysis of the impact of ISD on crashes.

3.2.1 Intersection Related Crashes

Crashes occurring within a 250-foot radius around the selected intersections are classified as

intersection-related, as supported by previous studies [47, 48]. The choice of a 250-foot cutoff

point is consistent with established research and reflects a reasonable balance between includ-

ing crashes influenced by the intersection and excluding those unrelated to its operation. This

distance accounts for typical vehicle interaction zones where conflicts between vehicles from

major and minor roads are likely to occur. However, the specific range for defining intersection-

related crashes can vary based on the unique characteristics of each intersection and the sur-

rounding roadway environment.

To ensure accuracy in identifying relevant crashes, the Conflict Point for each intersection

is first determined based on the alignment of the Major Road and Minor Road, serving as a

central reference point. Using this Conflict Point, a 250-foot radius impact area is delineated.

Figure 3.6 visually illustrates this process, highlighting the Conflict Point and the corresponding

250-foot radius impact area.

3.2.2 Target Crashes (ISD-related Crashes)

Previous studies analyzing the impact of ISD on intersection safety have not always used all

intersection-related crash data to calculate crash frequency [38]. Instead, some studies have

filtered a specific type of crashes, termed ”Target Crashes,” from the broader set of intersection-

related crashes to focus on those most relevant to ISD. Target Crashes are defined as those
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Figure 3.6: Illustration of Selecting Intersection-related Crash

occurring within the intersection’s impact area and involving vehicles traveling from both the

Major Road and the Minor Road.

To identify Target Crashes, this study first filters out records from the intersection-related

crash data that do not meet the criteria for Target Crashes. The filtering rules are as follows:

• Retain only records where the ”First Harmful Event” attribute is ”Collision with Vehicle

in (or from) Other Roadway” or ”Collision with Vehicle in Traffic,” thereby excluding in-

cidents such as collisions with animals or trees, run-off-road crashes, or overturn/rollover

events.

• Exclude records where the ”Manner of Crash” attribute is ”Rear End (front to rear),”

”Head-On (front to front only),” ”Unknown,” ”Causal Veh Backing: Rear to Rear,” or

”Causal Veh Backing: Rear to Side,” to eliminate crashes that do not involve vehicles

from both the Major Road and the Minor Road.

• Exclude records where the ”Number of Vehicles” attribute is ”1 Vehicle,” as single-

vehicle crashes are not considered Target Crashes.
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• Exclude records where the ”Vehicle Initial Travel Direction” attribute is ”Not on Road,”

as these crashes do not occur within the designated roadway.

• Exclude records where the ”Vehicle Maneuvers” attribute is ”Changing Lanes,” as such

crashes typically involve vehicles traveling on the same road (either the Major Road or

the Minor Road), rather than between the two.

• Exclude records where the ”Trafficway Lanes” attribute is ”Not Applicable (Parking

Lot),” as these crashes occur in parking lots rather than on the Major Road or Minor

Road.

Out of 1,424 intersection-related crashes, a total of 1,034 crashes were removed through the

above filtering rules. After completing the initial filtering based on crash attributes, this study

also involved a manual review of each crash record. During this manual review process, 42

additional crashes were excluded due to inconsistent or unclear data attributes, leaving 348

crashes identified as ISD-related Target Crashes. This step was necessary because reporting

practices may vary between agencies or practitioners, and there could be data entry errors.

Researchers carefully examined multiple attributes and the location of each crash to determine

whether it truly qualifies as a Target Crash. Additionally, the specific approach on the Minor

Road where the vehicle was located, and whether the vehicle on the Major Road was to the left

or right of the Minor Road vehicle, were recorded. This information is crucial for distinguishing

crashes influenced by left-side ISD from those influenced by right-side ISD.

3.3 Light Detection and Ranging data

Light Detection and Ranging (LiDAR) data is the basis of this research, which is being used

to improve ISD measurements and provide accuracy and detail of terrain and obstacles [49].

This technology measures distance by illuminating a target with laser light and analyzing the

reflected pulses with a sensor. Differences in laser return times and wavelengths are then used

to make digital 3D representations of the target. In order to develop GIS tools for assessing ISD

using LiDAR data, understanding key LiDAR parameters is critical for achieving the desired
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outcomes. Each parameter plays a pivotal role in ensuring the data collected is of high quality

and suitable for detailed analysis of road safety at unsignalized intersections [50].

Point density is one of the most significant parameters, as it refers to the number of data

points captured per unit area by the LiDAR system. High point density provides more detailed

information about the environment, which is essential for accurately identifying critical features

such as road edges, obstacles, and other elements that may obstruct the sight distance at an

intersection. In complex intersection environments, a higher point density allows for better

detection of subtle obstructions or minor road details that could impact ISD. However, with

higher point density comes the challenge of managing larger datasets, which requires more

storage and computational resources. Balancing point density to ensure sufficient detail without

overwhelming data processing capabilities is key to effective ISD analysis.

The scan angle is another important parameter, as it determines the extent of the environ-

ment that can be captured in a single scan. A wide scan angle allows the LiDAR system to

cover a broader area, which is particularly beneficial in capturing the full scope of an inter-

section, including peripheral objects that might affect the sight distance. For example, a wider

scan angle can help identify vehicles, pedestrians, or road signs that are located on the outskirts

of the intersection but still influence the driver’s line of sight. However, a broader scan angle

can also result in reduced accuracy at the edges of the scan, where data points may become less

dense and more prone to distortion. Therefore, selecting an appropriate scan angle is essential

to ensure that the data collected is both comprehensive and precise.

For this study, the LiDAR data essential for analyzing ISD were supplied by ALDOT,

which collected LiDAR data across various regions of Alabama. Given the diversity in acqui-

sition parameters across these datasets, a critical aspect of the project is to account for these

differences to ensure that the developed GIS tool remains compatible and adaptable with varied

datasets. The data was gathered using the Velodyne HDL-32E sensor, which maintains high-

resolution capabilities and reliability in demanding real-world conditions[51]. The HDL-32E

features 32 lasers distributed across a 40° vertical field of view, capturing up to 1.4 million

points per second to generate dense point clouds, which are crucial for analyzing road en-

vironments, including subtle elevation changes, road edges, and potential sight obstructions.
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Its range accuracy of less than 20 mm ensures precise measurements, minimizing errors in

ISD calculations, where even minor discrepancies could lead to significant misjudgments. Ad-

ditionally, the HDL-32E’s 360° horizontal field of view enables comprehensive coverage of

intersections in a single pass, capturing critical features like signs, barriers, and vegetation that

might obstruct a driver’s sightline. The sensor’s dual return mode further enhances its ability

to distinguish between various surfaces, making it particularly effective for identifying objects

such as overhanging foliage. With a range of up to 100 meters, the Velodyne HDL-32E is

ideally suited for capturing detailed spatial data across large intersection areas, making it an

excellent choice for ISD assessments in this research.

A total of 366 study intersections, distributed across 53 counties in Alabama, were in-

cluded in the LiDAR data request. The requested data covers an area with a 6-mile radius

centered around each intersection. The locations of the study intersections and the correspond-

ing LiDAR data coverage areas are illustrated in Figure 3.7.
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Figure 3.7: Study Intersection Locations and Requested LiDAR Data in Alabama
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Chapter 4

ISD Assessment Tools Development

This chapter introduces the development and comprehensive application of an automated ISD

assessment tool using LiDAR data for TWSC intersections. The tool is designed to achieve ac-

curate and efficient ISD evaluations through several key processes, including LiDAR data pro-

cessing via voxelization to simplify the point cloud, classification of road features, and noise

removal. As described in Section 4.4, user-defined inputs including speed limits, lane num-

bers, and vehicle trajectories are used to configure intersections for accurate visibility analysis.

Observer and target points are generated to simulate a driver’s view when entering the inter-

section, enabling precise sightline analysis using a KD-tree data structure to detect potential

obstructions. The tool calculates the recommended ISD based on the AASHTO Green Book

guidelines[1], considering factors such as road speed, lane configuration, and vehicle types.

The results are visualized in ArcGIS Pro, offering clear representations of ISD and visibility

blockages to help transportation agencies make data-driven decisions for intersection safety

improvements.

The chapter also presents a comprehensive application of the proposed ISD assessment

method across diverse intersection scenarios, evaluating its adaptability, robustness, and accu-

racy when applied to different measurement standards and vehicle types. It emphasizes the

tool’s ability to compare ISD for passenger cars and trucks, showcasing its capability to han-

dle varying vehicle characteristics. Additionally, the chapter discusses the limitations of the

proposed method, highlighting areas where the tool may require further refinement or where

additional factors may need to be considered in future studies.
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4.1 Methodology

The methodology for developing the ISD Assessment Tool in this study involves a comprehen-

sive process that integrates advanced LiDAR data processing with custom-built algorithms to

ensure accurate and reliable intersection sight distance analysis. The process begins with the

preparation of high-density LiDAR data, followed by a series of steps that include voxeliza-

tion, classification, and noise reduction to refine the dataset. The workflow further involves

generating user-defined observer and target points, constructing lines of sight, and conducting

visibility analysis to calculate recommended ISD and blockage rates. The tool is implemented

in Python and visualized using ArcGIS Pro, with validation against established transportation

standards, including state-specific Department of Transportation guidelines from Alabama and

other states. These guidelines serve as the basis for ensuring the tool’s accuracy and applica-

bility across diverse intersection scenarios. A detailed discussion of these standards and their

role in validation is provided in Section 4.7.1.

4.1.1 Data Sources and Preparation

The ISD Assessment method begins with the collection and preparation of LiDAR data, which

is provided by the ALDOT and collected using the Velodyne HDL-32E laser scanning system.

This high-density point cloud data is essential for capturing detailed spatial information of the

intersection areas under study. The preparation phase involves the extraction of relevant data

points and the reduction of noise to ensure that only stationary objects, which are critical for

sight distance analysis, are retained.

4.1.2 Development Environment

The ISD Assessment method is implemented using Python programming language, with data

processing and visualization carried out in ArcGIS Pro 3.3.0. The use of Python allows for the

automation of various data processing tasks, enhancing efficiency and accuracy in the analysis.

ArcGIS Pro serves as a powerful tool for visualizing the results of the ISD assessment, enabling

detailed maps and models to be created that illustrate visibility conditions at intersections.
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4.1.3 Workflow

The development of the ISD assessment tool involves a comprehensive multi-step methodology

that leverages advanced LiDAR data processing techniques. The workflow used to develop the

ISD assessment tool is visualized in Figure 4.1, providing a detailed representation of the entire

process of developing the tool.

Figure 4.1: Workflow of ISD Assessment Tool

The workflow begins with voxelization of the raw LiDAR point cloud data. This step

breaks the data into a three-dimensional grid of small cubic volumes known as voxels. During

this process, the spatial domain is divided into uniform cubic cells, each representing a fixed

unit of space within the LiDAR data’s coverage area. For this study, the voxel size is set to

0.5 meters, which provides a balance between computational efficiency and spatial resolution.

Points within each voxel are aggregated, with the centroid or representative point retained for

further processing. By voxelizing the data, the number of points needing processing is sig-

nificantly reduced, which enhances computational efficiency while retaining essential spatial

information necessary for the ISD analysis. This reduction not only speeds up subsequent

steps like classification and visibility analysis but also simplifies handling large-scale datasets

without compromising accuracy.
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Following voxelization, the classification of the point cloud data is performed to extract

meaningful features relevant to the ISD assessment. Machine learning algorithms and heuristic

rules are employed to classify the data, isolating key elements such as the road surface, and

determining its elevation, slope, and orientation. During this stage, noise—such as moving

vehicles or temporary objects captured during scanning—is filtered out, ensuring that only

permanent features are considered in the ISD evaluation. This process significantly enhances

the accuracy of the subsequent visibility analysis.

Next, intersection configuration is defined by incorporating user inputs. Users are prompted

to input critical information about the intersection, including the speed limit of the major road,

the number of lanes, and the width of the median if present. Additionally, users define vehicle

trajectories by creating line features along the major road approaches to represent the expected

vehicle paths. These inputs are vital, as the accuracy of the ISD analysis depends heavily on

the precision of the intersection configuration.

Once the intersection is configured, observer and target points are generated. The observer

points represent the driver’s eye location on the minor road, while the target points simulate the

positions of vehicles or obstacles on the major road that the driver would observe when looking

for gaps to enter the traffic stream. These points are generated by applying specific offsets from

the road edge, lateral positions, and heights, ensuring they conform to standard transportation

measurement practices.

With the observer and target points established, the tool then constructs a Line of Sight

(LOS) between each observer point and its corresponding target points along the vehicle trajec-

tories. Virtual detection points are placed at regular intervals along the LOS, with the interval

size matching the voxel size. A KD-tree (K-dimensional tree) data structure, a binary space-

partitioning algorithm for organizing points in a k-dimensional space, is utilized to perform

efficient nearest neighbor searches within the point cloud data, identifying any obstacles along

the LOS path. In this context, the KD-tree allows the tool to quickly locate and analyze points

within the LiDAR dataset that are spatially close to each detection point, significantly improv-

ing computational efficiency when processing large-scale datasets. If a detection point falls

within an occupied voxel, the LOS is marked as obstructed, indicating a visibility blockage.
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The tool calculates the percentage of visible target points for each location, which is then used

to assess the overall visibility conditions at the intersection.

After the visibility analysis is complete, the tool calculates the recommended ISD based

on the AASHTO guidelines, incorporating factors such as the design speed of the major road,

lane count, and median width. Additionally, the blockage rate, which represents the percentage

of the recommended ISD that is obstructed, is computed. This metric is crucial for identifying

intersections with visibility issues, as a higher blockage rate indicates a greater need for safety

interventions.

Finally, the processed data and analysis results are compiled and visualized using ArcGIS

Pro. The visual outputs include detailed maps and 3D models that display the available ISD,

blockage rates, and identified obstacles for each intersection. These visualizations are essential

for conveying the assessment results to transportation agencies and other stakeholders, allowing

for informed decisions regarding potential safety improvements at problematic intersections.

4.1.4 Tools Application and Validation

Application and validation of the tools used in the ISD Assessment method were conducted

to ensure accuracy and reliability. The validation process included manual reviews and 3D

model comparisons to confirm that the observer positions and visibility assessments accurately

reflected real-world conditions. The results demonstrated the robustness and adaptability of the

method across different intersection types and measurement standards, confirming its effective-

ness in assessing ISD and identifying potential safety issues at intersections.

4.2 LiDAR Data Processing

The processing of LiDAR data in this study includes three primary objectives: voxelizing the

LiDAR point cloud data, classifying the voxelized point cloud data, and removing noise from

on-road vehicles. Each step is designed to enhance the accuracy and efficiency of ISD evalua-

tions.
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Voxelizing the LiDAR point cloud data aims to improve computational efficiency by re-

ducing data complexity. This process involves dividing the point cloud data into a three-

dimensional grid of voxels, with each voxel representing a small cubic volume of the data

space. Aggregating points within each voxel simplifies the dataset, significantly reducing the

number of points that need to be processed [52]. In addition, voxelized point cloud data will

retain the information of the original data and will not negatively affect object recognition and

classification [53, 54, 55]. A critical parameter in the voxelization process is voxel size. Previ-

ous studies [56, 57] have indicated that the voxel size should be larger than the spacing between

the scan lines of the laser scanning system. If the voxel size is too small, it may increase the

computational burden and overlook potential obstructions. Conversely, if the voxel size is too

large, it may result in off-line targets being misidentified as obstructions. Kilani’s 2021 study

[17] tested voxel sizes of 0.1m, 0.15m, and 0.2m for line-of-sight analysis, showing similar

trends with only slight variations in offset distance. Considering the balance between com-

putational efficiency and data accuracy, as well as the marginal differences observed between

0.15m and 0.2m in Kilani’s results, a voxel size of 0.15m was selected for this study.

The second step is the classification of the voxelized point cloud data to extract meaningful

features required for ISD analysis. This classification is typically achieved using machine

learning algorithms or heuristic rules that consider the spatial and spectral characteristics of the

points. By classifying the data, the road surface can be isolated, allowing for the determination

of its elevation, slope, and orientation. Additionally, during the MLS system scanning process,

moving vehicles on the road are often recorded. These vehicles temporarily occupy space and

should not be considered permanent obstructions in the ISD evaluation. Therefore, identifying

and removing these on-road vehicle data is necessary to obtain more accurate ISD assessment

results.

Algorithms for object recognition and classification of point cloud data have been a re-

search hotspot for the past few decades[58]. This study first references several previous studies

[59, 60, 61] on ground classification algorithms to classify and filter ground data from the point

cloud. Che, Erzhuo et al. [59] presents a fast ground filtering method based on Scanline Den-

sity Analysis (SDA) , which efficiently separates ground points from non-ground points by
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analyzing the density variation in scan lines, thus improving filtering speed and accuracy. Pin-

gel et al. [62] introduces an improved simple morphological filter for terrain classification of

airborne LiDAR data. This method enhances the applicability and accuracy of morphological

approaches in complex terrains, making it more effective for processing large-scale airborne

LiDAR data. Zhang, Wuming, et al. [61] proposes an easy-to-use filtering method based on

cloth simulation, which distinguishes ground points from non-ground points by simulating the

process of a cloth covering the terrain. This method requires minimal parameter tuning and is

widely applicable, making it user-friendly for those with little experience.

After filtering out the ground points, this study further utilizes the algorithm proposed

by Yang Ma et al. in 2021 [23], which employs an automatic framework to detect obstacles

restricting highway sight distance using MLS data. This framework automatically generates

boundaries and extracts pavement data from the ground points, as well as identifies and classi-

fies noise data such as vehicles on the road.

The third objective focuses on removing noise from on-road vehicles to ensure more ac-

curate ISD assessment results by eliminating temporary obstructions. Data classified as noise

will be removed to avoid inaccuracies caused by transient objects. After noise removal, linear

interpolation will be applied to fill the gaps in the point cloud data, ensuring the continuity and

completeness of the road surface information.

After processing the LiDAR point cloud data, the elevation information of any point of

interest on the road surface can be accurately obtained. Assuming the 2D coordinates of a

point of interest are (X, Y ), and the collection of points classified as roadway in the point

cloud data is {(xk, yk, zk) | k = 0, 1, 2, . . . , N − 1} , the elevation of the point of interest can

be determined according to the following equations 4.1, 4.2, and 4.3:

dk =
√

(X − xk)2 + (Y − yk)2 (4.1)

k∗ = argmin
k

dk (4.2)
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Z = zk∗ (4.3)

Here, dk represents the Euclidean distance between the point of interest (X, Y ) and each

point (xk, yk, zk) in the roadway data. The index k∗ corresponds to the point with the minimum

distance dk, and zk∗ is the elevation of this nearest point, providing the elevation Z for the point

of interest.

4.3 Intersection Configuration

In this process, users need to input various information about the study intersection, including

the speed limit of the major road, the number of lanes, and the width of the median. These infor-

mation will be used to calculate the recommended ISD according to Green Book. Additionally,

users should create a line feature along the approaches of the major road to represent vehicle

trajectories. This trajectory will be used in later steps to generate target points, representing the

positions of conflicting vehicles that a driver on the minor road would observe when looking for

a acceptable gap to enter the major road. The accuracy of these positions directly impacts the

visibility analysis results. In previous studies, vehicle trajectory extraction has primarily been

conducted using two methods: 1.Utilizing the scan angle information from LiDAR point cloud

data to plot the trajectory of vehicles as they pass through the intersection. [17, 18, 21, 22, 23]

2.Using road surface data from the point cloud to locate the centerline, representing the vehicle

trajectory. [20, 63] While these automated methods can enhance analysis efficiency, they come

with certain limitations. For instance, when using LiDAR point cloud data to extract vehicle

trajectories, the scanning vehicle may only travel through the intersection from one direction

on the major road, failing to travel both directions. Consequently, the vehicle trajectory will

be limited to one approach and exit lane of the main road. However, drivers on the minor road

are concerned with incoming vehicles on both approaches of the main road (for left-turn and

through movements), leading to a mismatch between these trajectories. Similarly, using the

centerline of the road surface as the vehicle trajectory can also result in a deviation from the

actual trajectory. Such inaccuracies are especially significant on multi-lane highways with wide
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medians or major roads with horizontal curves, where the measurement error due to trajectory

deviation is more evident.

This study proposes a method that allows users to customize the vehicle trajectory based

on specific research needs. This flexible approach can adapt to various scenarios, yielding more

accurate assessment results.

Three intersections were selected for this study to compare the impact of vehicle trajec-

tories located at the major road’s approaches, centerline, and exits on visibility assessment

results. These intersections were chosen due to their unique roadway configurations, geomet-

ric features, and varying traffic conditions, providing a diverse basis for analysis. Intersection

A is located in Bear Creek, Alabama, at the intersection of US Highway 172 & US High-

way 241 (34.282036,−87.72099). Intersection B is located in Brilliant, Alabama, at the in-

tersection of US Highway 278 & US Highway 233 (34.100447,−87.690762). Intersection C

is located in Marbury, Alabama, at the intersection of US Highway 31 & US Highway 143

(32.716355,−86.483603). The visualized results of the available ISD for the three types of

trajectories—approach-based, centerline-based, and exit-based—are shown in Figure 4.2, high-

lighting the differences in visibility assessment outcomes for each trajectory type.

Figure 4.2: Available ISD for different vehicle trajectories

Bases on the comparison result from Figure 4.2 and Table 4.1, this study finds that ISD

assessment is highly sensitive to the vehicle trajectory on the major road, with significant er-

rors arising when using the centerline or exit instead of the approach for measurement. The
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Intersection ISD Approach (ft) Centerline (ft) Error Exit (ft) Error
Intersection A Left ISD 236 255 8.05% 277 17.37%

Right ISD 355 390 9.86% 411 15.77%
Intersection B Left ISD 1306 1306 0.00% 1298 0.61%

Right ISD 372 326 12.37% 404 8.60%
Intersection C Left ISD 248 285 14.92% 351 41.53%

Right ISD 1314 1320 0.46% 1318 0.30%

Table 4.1: ISD Measurements and Errors for Different Trajectories

comparison of ISD values for different trajectories at various intersections demonstrates sub-

stantial variations. For instance, at intersection A, the right available ISD increased by 15.77%

when measured at the exit compared to the approach, and at intersection C, the left available

ISD increased by 41.53%. These findings highlight the critical importance of accurately defin-

ing vehicle trajectories for reliable visibility assessments. Therefore, the study recommends

that users manually input trajectory features based on satellite imagery or LiDAR point cloud

data, as this method provides the most accurate ISD assessment. Using the centerline or exit

for such evaluations is not recommended due to the significant measurement inaccuracies they

introduce.

4.4 Observer and Target Points Generation

In this process, observer points at the minor road and target points on the major road are gener-

ated to construct the line of sight for future visibility analysis. The observer position represents

the driver’s eye location when the vehicle stops at the minor road, while the targets represent

the presumed object height on the road.

4.4.1 Generate Observer Point

To ensure the proposed methodology aligns with transportation agencies’ ISD measurements,

this study reviewed a comprehensive 2018 NCHRP study [38] that collected nearly 200 ISD

practice/policy documents from state and local agencies, both in the U.S. and internationally.

The review revealed significant diversity in measurement methods and parameters. Agencies
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use a range of equipment, from basic sighting rods and measuring wheels to advanced measur-

ing devices. Parameters for ISD measurement also vary; some agencies adhere to the AASHTO

standard [1] of 3.5 feet for both driver’s eye height and object height, while others use differ-

ent values. The placement of Decision Points (DP) and Critical Points (CP) also differs, with

some agencies basing these points on the roadway centerline, right-of-way lines, or specific

offsets from the road edge. Additionally, definitions of what constitutes an obstruction within

the sight triangle vary, with agencies setting different maximum heights and widths for objects

considered as obstructions.

This diversity highlights the tailored approaches agencies take to address local conditions

and specific needs. To address the variability in ISD measurement practices, this study proposes

a versatile method for generating observer points. Users create a line feature representing the

stop bar or the edge of the major road and input three offset parameters: the horizontal offset

from the major road edge, the lateral offset from the minor road, and the vertical offset from

the ground to represent the driver’s eye height (Figure 4.3). By defining these offsets, the

method generates consistent and tailored observer points that accurately reflect the positions

from which drivers naturally view potential conflicts at an intersection, accommodating various

measurement standards.

Figure 4.3: Observer Positions in Different Practices

To calculate the three-dimensional coordinates of the observer, the user-defined line fea-

ture (Stop Bar or Edge of Major Road) is assumed to have a starting point A = (x1, y1) and an

endpoint B = (x2, y2). The midpoint of segment AB is calculated and serves as the observer’s
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approximate position. Two perpendicular segments are considered: the first segment aligns

with AB, and the second segment is rotated 90 degrees clockwise from AB, both with a length

of d. The expressions for the coordinates are as follows:

For segment L1 (Equation 4.4):

L1 =

[(
x1 + x2

2
,
y1 + y2

2

)
,

(
x1 + x2

2
,
y1 + y2

2

)
+

d√
(y2 − y1)2 + (x2 − x1)2

· (−(y2 − y1), x2 − x1)

] (4.4)

For segment L2 (Equation 4.5):

L2 =

[(
x1 + x2

2
,
y1 + y2

2

)
,

(
x1 + x2

2
,
y1 + y2

2

)
d√

(y2 − y1)2 + (x2 − x1)2
· ((y2 − y1),−(x2 − x1))

] (4.5)

As shown in Figure 4.4, if d represents the search radius, and if segment L1 intersects with

the Vehicle Trajectory (Figure 4.4.a), the 2D coordinates of the observer are given by (Equation

4.6):

(Xobs, Yobs) =

(
x1 +

OffsetLateral · (x2 − x1)√
(y2 − y1)2 + (x2 − x1)2

+
OffsetHorizontal · (y2 − y1)√

(y2 − y1)2 + (x2 − x1)2
,

y1 +
OffsetLateral · (y2 − y1)√
(y2 − y1)2 + (x2 − x1)2

− OffsetHorizontal · (x2 − x1)√
(y2 − y1)2 + (x2 − x1)2

) (4.6)

The direction of the observer for this configuration is (Equation 4.7):

D⃗ir = (y1 − y2, x2 − x1) (4.7)

If segment L2 intersects with the Vehicle Trajectory (Figure 4.4.b), the 2D coordinates of

the observer are (Equation 8):
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(Xobs, Yobs) =

(
x2 −

OffsetLateral · (x2 − x1)√
(y2 − y1)2 + (x2 − x1)2

− OffsetHorizontal · (y2 − y1)√
(y2 − y1)2 + (x2 − x1)2

,

y2 −
OffsetLateral · (y2 − y1)√
(y2 − y1)2 + (x2 − x1)2

+
OffsetHorizontal · (x2 − x1)√

(y2 − y1)2 + (x2 − x1)2

) (4.8)

The direction of the observer for this configuration is (Equation 4.9):

D⃗ir = (y2 − y1, x1 − x2) (4.9)

Figure 4.4: Different Process of Generating Observer

Based on the observer’s 2D coordinates, the elevation Z of the observer’s position on the

road surface can be obtained using Equation 4.1, 4.2, and 4.3. Thus, the 3D coordinates of the

observer are (Equation 4.10):

(Xobs, Yobs, Zobs) = (Xobs, Yobs, Z + Heighteye) (4.10)

4.4.2 Generate Target Points

Next, target points are automatically generated along the vehicle trajectory, with users able to

customize the step length, recommended at 1 ft. The vertical offset from the ground represents

the target height on the road, with the AASHTO [1] recommended height being 4.25 ft. At each

position along the trajectory, a set of target points is generated at varying heights up to 4.25 ft,
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simulating the driver’s view of objects at different heights (Figure 4.5). This method ensures

a comprehensive visibility assessment by considering multiple heights, representing potential

obstacles that a driver might encounter.

Figure 4.5: Targets Generation

The method involves sampling the vehicle trajectory at regular intervals, generating target

points at multiple heights for each sampled point, calculating visibility from the observer’s

position, and applying a user-defined visibility threshold. By creating multiple target points

vertically, the method reduces the impact of incidental obstructions on the visibility assessment.

For instance, if a location meets or exceeds a visibility threshold of 60%, it is classified as

visible; otherwise, it is classified as non-visible. To generate all target points, a set of 2D points

{Pj | Pj = (Xj, Yj), j = 0, 1, 2, . . . ,m − 1}, will be created along the user-created vehicle

trajectory, where represents the index of the 2D points, and is the total number of 2D points.

Next, for each 2D point Pj , the elevation Zj will be calculated using Equation 4.1, 4.2, and

4.3. Assuming the user-defined target height is OffsetHeight, the number of sub-targets within

the target group is n. The 3D coordinates of the ith sub-target at the jth 2D point are given by

(Equation 4.11):

Pij =

(
Xj, Yj, Zj +

OffsetHeight · i
n

)
(4.11)
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The more sub-targets within a vertical target group, the more accurate the visibility evalua-

tion at the specified location, although it will increase computational complexity. To balance

computational speed and result accuracy, n = 5 is recommended as an optimal configuration.

The proposed method for generating observer and target points offers improvements over

previous ISD assessment methods. Unlike traditional approaches that often consider only a

single height for targets, this algorithm generates multiple target points at varying heights.

This comprehensive approach ensures a more accurate and realistic assessment of visibility,

accounting for partial obstructions like hanging traffic signs or roadside vegetation that might

block visibility at certain heights but not others.

Furthermore, the method’s flexibility allows users to customize parameters such as the

step length and visibility thresholds. This adaptability enables the method to accommodate

diverse measurement practices used by different transportation agencies, ensuring that the vis-

ibility assessments are relevant and applicable to a variety of scenarios. The ability to generate

consistent and tailored observer points based on specific intersection configurations further en-

hances the precision and reliability of the ISD assessment.

4.5 Visibility Analysis

In the processed point cloud data, all data points except for noise are considered potential

obstacles. A set of lines of sight (LOSij) is constructed between the observer point and each

target point (Pij). For each target group (Pj) containing sub-points, LOSij is drawn from the

observer point to each sub-point in the group. Along each LOS path, virtual detection points

are generated at regular intervals, with the interval (step length) equal to the voxel size of the

point cloud data. This ensures optimal spacing for detecting potential obstacles efficiently.

A KD-tree is constructed from the point cloud data to facilitate efficient nearest neigh-

bor searches. The KD-tree is a space-partitioning data structure that organizes points in a

k-dimensional space, allowing for fast retrieval of the nearest point to a given query point. For

each detection point along the LOS path, the KD-tree is used to find the nearest point in the

point cloud data. The distance between the nearest point found by the KD-tree and the detec-

tion point is then calculated. If this distance is less than or equal to the voxel size, it indicates
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that the LOS path intersects an occupied voxel, meaning the line of sight is obstructed. If the

distance is greater than the voxel size, the detection point is considered unobstructed. This pro-

cess is repeated for all detection points along each LOS path. If all the detection points along

the path are unobstructed, this target point is visible.

If a certain proportion sub-points of Pj are visible, this proportion is taken as the visibility

percentage for Pj . For example, if 60% of the sub-points are visible, the visibility percentage

for Pj would be 60% (Figure 4.6).

Using a KD-tree significantly reduces the computational complexity of nearest neighbor

searches, making the process much faster. KD-trees handle large datasets efficiently, which is

essential for LiDAR point cloud data that often contains millions of points. Additionally, the

KD-tree provides accurate nearest neighbor results, ensuring reliable visibility assessments.

Figure 4.6: Visualization of ISD Assessment

4.6 Recommended ISD

After determining the visibility for each Minor Road Approach, this study incorporates the

AASHTO recommended ISD calculation method. The recommended ISD for each approach
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and maneuver is calculated, and the blockage rate of the vehicle trajectories within the recom-

mended ISD range is analyzed (Equation 4.12). The equation for calculating the recommended

ISD is as follows (Equation 4.13):

Blockage Rate =
Recommended ISD − Available ISD

Recommended ISD
(4.12)

Recommended ISD = 1.47× Vmajor × tg (4.13)

Where Vmajor (mph) is the design speed of the Major Road, and tg (s) is the time gap

required for a minor road vehicle to enter the major road. Factors influencing tg include the

type of maneuver, vehicle type, major road lanes, median width, and grade of minor rd.

For left-turn and crossing maneuver of passenger cars, the base time gaps tg are 7.5 s and

6.5 s, respectively. Each additional major road lane (including turning lanes) increases the time

gap by 0.5 s. The median width should be equivalently treated as the number of lanes. For

every 12 ft increase in median width, tg increases by 0.5 s. For minor road approaches with an

upgrade not exceeding three percent, no additional time gap is required. However, for grades

exceeding three percent, tg is increased by 0.2 s for each percent grade.

For right-turn maneuver of passenger cars, the base time gap tg is 6.5 s. For minor road

approaches with an upgrade not exceeding three percent, no additional time gap is required.

For grades exceeding three percent, tg is increased by 0.1 s for each percent grade.

The major road design speed and median width depend on the user’s input, while the

grade at minor road is computed by the road surface point cloud data within radius 2 ft around

the Observer. To fit a plane using the least squares method and subsequently calculate the

slope (grade) and aspect, a series of systematic steps are undertaken. Initially, the problem

is formulated by representing the plane in the form of the equation z = ax + by + c, where

a, b, and c are the coefficients that need to be determined. Given a set of Road Surface 3D

points (xi, yi, zi), the objective is to minimize the sum of the squared differences between the

observed zi values and the predicted values from the plane equation.
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The next step involves setting up the matrix equation AC = Z. Here, A is a matrix

constructed from the x and y coordinates of the points, augmented with a column of ones to

account for the constant term c. C is a column vector of the coefficients (a, b, c), and Z is a

column vector of the coordinates. The least squares solution is obtained by solving the normal

equations ATAC = ATZ.

Once the plane coefficients a and b are determined, the slope and aspect of the plane can

be calculated. The slope, which represents the grade, is the angle of inclination of the plane

and is computed as θ = tan−1
√
a2 + b2. This angle, expressed in radians, is then converted to

a percentage slope by taking the tangent of the angle and multiplying by 100, s = tan θ× 100.

The aspect, indicating the compass direction of the slope, is calculated using α = tan−1
(
b
a

)
.

To ensure the aspect is within the range of 0 to 360 degrees, any negative values are adjusted by

adding 360 degrees. Considering that the road crown slope may have an impact on the grade,

this study constructed a slope vector v⃗ =

s cosα

s sinα

, and combine with the direction of the

observer D⃗ir calculated above, the final grade can be calculate as Grade = v⃗ · D̂ir.

After calculating the grade, the recommended ISD for different maneuvers can be deter-

mined, and the visibility of the vehicle trajectory within the recommended ISD range can be

statistic. For example, the intersection presented in Figure 4.6 with a major road design speed

of 45 mph, a single lane in each direction, a median width of 0 ft, and a grade of 1.41%. The

recommended ISD for a left-turn maneuver is 496 ft. Visibility analysis indicates that the driver

can see only 163 ft to the left, resulting in a blockage rate of 496−163
496

= 67.14%, For the right

side, the driver can see only 128 ft, the blockage rate is 496−128
496

= 74.19%. For a right-turn

maneuver, the recommended ISD is 430 ft. The driver can see only 163 ft to the left, resulting

in a blockage rate of 430−163
430

= 62.09%.

Calculating the recommended ISD and blockage rate is crucial for transportation agencies

to prioritize and address ISD issues. By accurately determining these metrics, agencies can

identify intersections with severe sight distance obstructions, allowing them to prioritize these

locations for countermeasures. This proactive approach helps in mitigating potential safety haz-

ards before they result in crashes. Transportation agencies can use this information to develop
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targeted interventions, such as trimming roadside vegetation, regrading slopes, or redesigning

intersection layouts to improve sight lines. Furthermore, combining ISD and blockage rate

analysis with historical collision data allows agencies to make data-driven decisions for safety

investments. By identifying intersections with both high blockage rates and historical crashes,

agencies can prioritize these locations for improvements, ensuring that resources are allocated

effectively to areas with the greatest need.

4.7 Application

This section presents the comprehensive application of the proposed ISD assessment method

using LiDAR data for diverse intersection scenarios. The objective is to evaluate the adaptabil-

ity, robustness, and accuracy of the method across different measurement standards and vehicle

types. The section presents an assessment using distinct transportation agency measurement

standards. Additionally, it compares the ISD for passenger cars (PC) and trucks, emphasizing

the method’s capability to handle different vehicle characteristics.

4.7.1 Different Decision Point

Despite ISD being a critical parameter in traffic safety and capacity analysis, different studies

and guidelines have defined varying terms and rules for recommended sight distances and ISD

measurement methods [11, 38]. Notably, significant differences exist in the selection of ob-

server positions, or Decision Points, which can impact ISD measurements. This study includes

a thorough review of the criteria used in past research for selecting Decision Points, high-

lighting the diversity in methodologies and underlying assumptions. Several representative

standards are applied to a sample of 230 TWSC intersections to assess whether these differing

measurement standards significantly influence ISD evaluations.

Several studies have employed various methodologies for ISD measurement. In a study

from Tsai et al. [63] the DP was determined by offsetting 18 feet from the intersection’s Conflict

Point towards the Minor Road approach, in addition to the distance from the curb line to the

center of the closest travel lane in the direction under consideration. This placed the DP at the

center of the Minor Road travel lane.
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Jung [16] proposed an ISD measurement method without specifying a fixed observer po-

sition, allowing users to define it flexibly. Similarly, Kilani et al. [17] allowed users to select

any point along the vehicle trajectory as the observation point. Dabbour et al. [8, 9] reviewed

multiple methods for calculating Departure Sight Distance, assuming drivers stopped at the

stop line or stop sign but did not define specific parameters for generating observer positions.

Harwood et al. [4] assumed vehicles on the Minor Road would stop 10 feet (approximately 3

meters) from the edge of the Major Road. Morris et al. [37] made similar assumptions about

the stopping distance from the Major Road edge. Himes, S. et al. [29, 31], while analyzing

ISD’s impact on traffic safety, used observer positions generated based on the Major Road’s

edge for ISD measurement.

Since ISD evaluation results are highly sensitive to the observer’s position, it is strongly

recommended to generate observer positions based on consistent rules. This approach ensures

accuracy and consistency in ISD evaluations, providing reliable data for subsequent analyses

of ISD’s impact on traffic safety.

Drawing from a review of past studies and ISD practice and policy documents from var-

ious transportation agencies, this study selected two representative measurement methods for

comparative experiments. Figure 4.7 illustrates two methods for determining the DP. In Method

1: Offset from Stop Bar, the DP is set 10 feet back from the stop bar on the Minor Road and

4 feet from the centerline of the Minor Road travel lane. In Method 2: Offset from Edge of

Major Road, the DP is positioned 14.5 feet from the edge of the Major Road and 4 feet from

the centerline of the Minor Road travel lane. The Driver’s eye height is both 3.5 feet. Both

methods evaluate the ISD by applying different reference points to determine where the driver

typically stops and observes traffic before entering the Major Road. These experiments aim to

uncover differences in available ISD under different measurement methods, providing new in-

sights for ISD measurement. This will enable practitioners to conduct more accurate, reliable,

and repeatable ISD measurements tailored to actual conditions.

In this study, paired t-tests were conducted separately for Left Available ISD and Right

Available ISD to compare the assessment results of the two methods (Offset from Stop Bar and

Offset from Edge of Major Road) for 342 DP. The results indicate whether there are significant
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Figure 4.7: Two Different Methods for Determining DP

differences between the methods and the variance of the measurement differences. Figure 4.8

displays the distribution of differences in ISD assessment between two methods for both Left

ISD and Right ISD.

Metrics Difference t-value Df p-value Mean Diff 95% CI Lower 95% CI Upper
Left ISD M2 vs. M1 7.345 287 2.14×10−12 82.12003 60.11417 104.12589

Right ISD M2 vs. M1 3.5848 287 0.0003962 34.7743 15.68138 53.86723

Table 4.2: Statistical comparison between M2 and M1 for Left and Right ISD

The paired t-test (Table 4.2) for both Left and Right Available ISD showed significant

differences between the two measurement methods. For the Left Available ISD, the test yielded

a mean difference of 82.12 ft, with a t-value of 7.345 and a p-value of 2.14× 10−12. The 95%

confidence interval ranged from 60.11 ft to 104.13 ft, indicating a significant difference, with

Method 2 producing longer ISD values than Method 1. Similarly, for the Right Available ISD,

the mean difference was 34.77 ft, with a t-value of 3.585 and a p-value of 0.0003962. The 95%

confidence interval for the mean difference was between 15.68 ft and 53.87 ft, also excluding

zero.

The statistically significant p-values for both Left and Right Available ISD suggest that

the two methods produce significantly different ISD measurements. The significant differences

in ISD assessment between the two methods highlight the importance of selecting a consistent

58



Figure 4.8: Distribution of Differences in Available ISD (Method 2 vs. Method 1)

and appropriate observer position. Researchers referencing previous studies on ISD and safety

should ensure that their ISD assessment or measurement methods consist with those used in

past studies to avoid deviations. In addition, designing intersections based on measurements

from Method 1, which results in lower ISD values, would represent a more conservative design

approach. This conservatism may enhance safety by ensuring more restrictive sight distance

requirements.

4.7.2 Passenger Car and Truck

This study explores the potential differences in obstruction rates between passenger cars (PC)

and trucks at these intersections. By analyzing the impact of these vehicle types on visibility,

new insights are provided for improving intersection design. This comprehensive approach

clarifies the implications of varying Decision Point criteria and contributes to a better under-

standing of how vehicle-specific characteristics affect sight distance and safety at TWSC in-

tersections. The analysis is expected to inform future guidelines and practices, enhancing the

accuracy and reliability of ISD assessments.
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Figure 4.9: Distribution of Differences in Available ISD (Truck vs. PC)

To compare the differences in ISD assessment for different vehicle types, this study ex-

amines the available ISD (Figure 4.9) for PC and trucks and analyzes their blockage rates

(Figure 4.10) within the recommended ISD. Due to their larger size, longer braking distances,

and slower acceleration rates, trucks require longer ISD than PC. These characteristics make it

more challenging for truck drivers to safely navigate intersections, particularly when visibility

is limited. Traditionally, research on the impact of ISD on safety has predominantly focused

on PC, resulting in a lack of comprehensive understanding regarding how trucks are affected

by these design parameters. By addressing these differences, this study underscores the neces-

sity of independently assessing the ISD requirements for trucks to enhance traffic safety. Such

focused evaluations can lead to better-informed design decisions, ensuring that intersections

are safer and more suitable for all vehicle types, ultimately improving traffic flow and reducing

crash frequency.

Metrics Difference t-value Df p-value Mean Diff 95% CI Lower 95% CI Upper
Left ISD Truck vs. PC 6.722 287 9.56×10−11 71.6741 50.68722 92.66093

Right ISD Truck vs. PC 5.4978 287 8.5×10−8 63.2352 40.59649 85.87388
Left Blockage Rate Truck vs. PC 0.41669 585 0.6771 0.19% -0.71% 1.10%

Right Blockage Rate Truck vs. PC 0.9682 404 0.3335 0.57% -0.59% 1.73%

Table 4.3: Comparison of ISD and Blockage Rates between Truck and PC
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Figure 4.10: Distribution of Differences in Blockage Rate (Truck vs. PC)

The statistical results (Table 4.3) indicate that, with a 95% confidence interval, the avail-

able ISD for Trucks is significantly longer than that for PC on both the left side [104.13, 60.11]

feet and the right side [85.87, 40.60] feet. This difference can be attributed to the higher driver

eye height in Trucks, which is approximately 7.6 feet, compared to 3.5 feet in PC, allowing

truck drivers to have a better field of view under most conditions. However, given that the rec-

ommended ISD for Trucks is longer than that for PC, this study also analyzed the differences

in Blockage Rates between the two vehicle types.

The paired t-test results (Table 4.3) for the Blockage Rate show that the 95% confidence

interval for the left side sight triangle is [-0.71%, 1.10%], with a t-value of 0.42 and a p-value of

0.6771. For the right side sight triangle, the 95% confidence interval is [-0.59%, 1.73%], with

a t-value of 0.97 and a p-value of 0.3335. These results indicate that there is no statistically

significant difference in the Blockage Rates between Trucks and PC.

Therefore, although Trucks have a significantly longer available ISD compared to PC,

their Blockage Rates are not significantly higher. This suggests that while trucks benefit from

a better field of view due to their higher driver eye height, the actual obstruction rates within

the view triangles are comparable for both vehicle types. Consequently, it is necessary to

61



conduct independent analyses of ISD for Trucks during sight distance assessment to gain a

more comprehensive understanding of the visibility conditions at study site.

4.8 Limitation of Developed ISD Assessment Method

The application of the proposed ISD assessment method revealed certain limitations. First,

in some cases, currently applied classification algorithms are unable to accurately recognize

the boundary between the vehicle and the road surface (Figure 4.11). This problem can lead

to inaccuracies in recognizing potential obstacles and may affect the overall reliability of the

ISD assessment. Secondly, the method struggles with accurately identifying road surfaces

on bridges and at interchange facility, often requiring manual calibration to ensure accuracy

(Figure 4.12). This need for manual intervention can be time-consuming and may introduce

human error into the process.

Additionally, the method relies on manually created vehicle trajectories and stop bar fea-

tures. While this approach ensures the accuracy of ISD evaluations, it significantly increases

the workload and may result in excessive time consumption when scanning large-scale road

networks. Future efforts to address these limitations could focus on enhancing the automated

classification of vehicles and road surfaces. Developing more advanced algorithms that can

better distinguish between vehicles and road surfaces, even in challenging scenarios, would

improve the method’s reliability and accuracy.

Another direction for future work is to streamline the process of creating vehicle trajec-

tories and stop bars. Automating these tasks through the use of advanced mapping technolo-

gies and artificial intelligence could significantly reduce the time and labor required for ISD

assessments. Implementing these improvements would enhance the method’s efficiency and

scalability, making it more practical for large-scale road network screening.
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Figure 4.11: Vehicle on the Road Classification Error
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Figure 4.12: Ground Classification Error

64



Chapter 5

Impact of ISD on Intersection Safety

Many studies have investigated the impact of ISD on intersection safety, with one of the most

comprehensive being a 2018 study [38] conducted by the National Cooperative Highway Re-

search Program (NCHRP) . This study collected extensive crash, traffic volume, and road-

way geometry data from 832 intersections across North Carolina, Ohio, and Washington. ISD

was recorded using standardized field measurement methods. Through a cross-sectional study

design and count regression models, the study identified a significant nonlinear relationship

between ISD and crash frequency, particularly highlighting that increasing ISD can signifi-

cantly reduce crash rates, especially when ISD is short. Additionally, the study found that the

traffic volume and speed limits on major roads have a moderating effect on the relationship

between ISD and safety outcomes. The research ultimately developed CMFs based on ISD and

translated these into practical guidance charts for use by traffic engineers in designing safer

intersections.

While the NCHRP’s crash prediction models and CMFs, developed using extensive multi-

state data, demonstrate effective predictive capability for the relationship between ISD and

traffic safety, their applicability may vary significantly across different regions. Alabama’s

unique roadway geometric features, traffic patterns, climatic conditions, and driving behaviors

may differ from those of the states included in the NCHRP’s original study. These differences

could affect the accuracy of the model’s predictions in a local context. Without calibration,

the model may fail to fully capture the traffic safety factors specific to Alabama, leading to

predictions that do not align with local realities.
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In this study, the measurement parameters proposed by NCHRP were first adopted , in-

corporating a LiDAR-based ISD assessment method to measure the Available ISD at selected

intersections in Alabama. This approach ensured consistency in data collection methods with

the original NCHRP study. Subsequently, crash data related to ISD, particularly crashes involv-

ing minor road vehicles and major road vehicles, were extracted from historical crash records.

The NCHRP’s target crash prediction model was then applied to predict the crash frequency at

these intersections, and the predicted values were compared with the observed crash frequen-

cies to evaluate the model’s applicability and accuracy in Alabama.

In this study, the measurement parameters proposed by NCHRP were first adopted, in-

corporating a LiDAR-based ISD assessment method to measure the Available ISD at selected

intersections in Alabama. This approach ensured consistency in data collection methods with

the original NCHRP study. Subsequently, crash data related to ISD, particularly crashes involv-

ing minor road vehicles and major road vehicles, were extracted from historical crash records.

The NCHRP’s target crash prediction model was then applied to predict the crash frequency at

these intersections, and the predicted values were compared with the observed crash frequen-

cies to evaluate the model’s applicability and accuracy in Alabama.

Based on preliminary comparative analysis, several model optimization strategies were

proposed aimed at enhancing the predictive performance of the model. These strategies in-

cluded adjusting model parameters and developing prediction models tailored to specific sce-

narios. By comparing the predictive performance of these optimized models, the best-performing

model was selected. Using this optimized model, new CMFs were developed to more accu-

rately assess and predict the crash risks at Alabama intersections under varying sight distance

conditions. The optimized model better reflects Alabama’s specific traffic conditions, providing

a more precise tool for crash risk assessment. This improvement not only aids in optimizing

intersection design and traffic management but also provides a scientific basis for local traffic

authorities to develop more effective safety measures, ultimately contributing to the reduction

of crashes and the enhancement of road safety.
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5.1 Methodology

5.1.1 Impact of ISD on Intersection Safety

The study begins with the collection of ISD data using a LiDAR-based assessment method,

which aligns with recommendations and methodologies outlined in NCHRP reports [38], en-

suring accuracy and consistency. Additionally, historical crash data related to ISD was collected

to establish a foundation for analyzing the relationship between sight distance and crash fre-

quency. This data collection process is essential for understanding how ISD impacts traffic

safety.

The collected ISD and crash data were then applied to the NCHRP target crash prediction

model. Since Alabama’s intersections have unique characteristics, such as rural settings, low

traffic volumes, and varying lane configurations, the model required recalibration to reflect

these local conditions. The recalibration process involved modifying key parameters to account

for localized factors, including sight distance challenges and specific roadway designs. By

aligning the model with Alabama-specific traffic and environmental data, this approach ensures

more accurate predictions of crash frequency and better assessments of intersection safety.

Further refinement of the model is achieved through Bidirectional Stepwise Regression,

which identifies the most significant variables influencing crash risks while eliminating less

impactful factors. Additionally, separate models are developed for different types of facilities,

allowing for more tailored predictions based on specific intersection settings.

The performance of the recalibrated and optimized models is evaluated using statistical

metrics such as McFadden R², Mean Squared Error (MSE), Root Mean Squared Error (RMSE),

and Mean Absolute Error (MAE). These metrics are used to compare the original NCHRP

model with the newly calibrated and optimized versions to identify the most accurate model

for predicting crash risks at intersections in Alabama.

Based on the optimized models, new CMFs are developed. These CMFs offer a more

precise tool for assessing and predicting crash risks associated with varying sight distance con-

ditions, providing transportation agencies in Alabama with a valuable resource for improving

intersection safety.
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5.1.2 Develop CMFs for Countermeasures

This study utilized the Empirical Bayes (EB) Before-and-After study method to analyze the

impact of three types of left turn lanes, four types of right turn lanes, and medians on target

crashes. Through this analysis, corresponding CMFs were developed. The EB Before-and-

After study method is used because it addresses key limitations of simpler before-and-after

studies, particularly the issue of regression-to-the-mean (Figure 5.1). Regression-to-the-mean

occurs when sites with unusually high crash rates are selected for treatment, leading to a natural

decrease in crashes over time, regardless of the treatment’s effectiveness. This can result in an

overestimation of the treatment’s impact. The EB method corrects for this by incorporating

data from similar, untreated reference sites, which helps isolate the effect of the treatment from

other factors that could influence crash rates, such as traffic volume changes and time trends.

Additionally, the EB method provides more accurate and statistically robust estimates by using

a weighted average of observed and predicted crashes, reducing uncertainty and improving the

reliability of the CMFs [64].

Figure 5.1: Regression-To-the-Mean in Crash Frequency[2]

To develop CMFs for countermeasures, the first step involves selecting a reference group

of untreated sites that closely match the treated sites in terms of traffic volume and geometric
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characteristics. The treatments considered in this study include adding different types of left-

turn lanes, right-turn lanes, and wide medians at intersections. This reference group serves as a

baseline for estimating the number of crashes that would have occurred at the treated sites had

the treatments not been implemented. By ensuring the reference group is similar to the treated

sites, a more accurate comparison can be made between treated and untreated conditions.

Next, Safety Performance Functions (SPFs) are developed. These SPFs are statistical

models used to predict the expected number of crashes based on the characteristics of the sites.

The SPFs are created using data from the reference group and are calibrated to accurately reflect

the conditions at the study sites. This step ensures that the predicted crashes at the treated sites

are consistent with real-world conditions prior to the treatment’s implementation.

Once the SPFs are established, the expected number of crashes in the ”before” period at

the treated sites is calculated. This calculation involves a weighted average of observed and

predicted crashes, providing a reliable estimate of crashes before the treatments were applied.

For the ”after” period, the estimated number of crashes is adjusted to account for any changes

in traffic volumes or conditions, which helps to create an accurate comparison of crash rates

before and after the treatment.

Finally, CMFs are calculated by comparing the observed number of crashes in the ”after”

period with the expected number of crashes had the treatment not been implemented. This com-

parison allows researchers to determine the effectiveness of the countermeasure. The statistical

significance of the CMFs is evaluated by calculating the variance and confidence intervals,

ensuring that the findings are robust and reliable. This methodological approach provides a

comprehensive way to quantify the safety impact of the treatments and develop CMFs that can

guide future safety interventions.

5.2 Applicability of NCHRP Models to Alabama

The NCHRP study developed two prediction models aimed at estimating the frequency of tar-

get crashes and target fatal and injury crashes at TWSC intersections, that were designed to

quantify the impact of ISD on intersection safety, incorporating various intersection character-

istics and traffic conditions as key variables. The prediction models developed in the NCHRP
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study assume a log-linear relationship between the expected crash frequency and site charac-

teristics. Generalized Linear Modeling (GLM) techniques were employed to construct these

models, specifically using a negative binomial error structure to account for over-dispersion

in crash data. The prediction model of frequency of total target crashes for the observation is

represented as (Equation 5.1):

λi = exp

(
− 8.147 + 0.244× log(MajAADT) + 0.536× log(MinAADT)− 243.0× LmajAADT

AvailableISD

− 177.8× MmajAADT
AvailableISD

+ 0.334× LT + 0.845× fourleg − 0.016× median

− 0.021× SpeedLimit + 7.194× SpeedLimit
AvailableISD

− 0.061× grd500

)
(5.1)

And the second model is designed to predict the frequency of target fatal and injury

crashes, which is represented as (Equation 5.2):

λi = exp

(
− 8.234 + 0.115× log(MajAADT) + 0.498× log(MinAADT)− 155.5× LMmajAADT

AvailableISD

+ 0.507× LT + 0.953× fourleg + 0.215× median − 0.009× SpeedLimit

+ 6.335× SpeedLimit
AvailableISD

− 0.054× grd500

)
(5.2)

Where:

λi = expected number of target crashes (or target fatal and injury

crashes) for the ith observation, with an observation defined as a

minor road and major road approach combination

MajAADT = major road AADT

MinAADT = minor road AADT

LmajAADT = 1 if the major road AADT is less than or equal to 5,000; other-

wise 0
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MmajAADT = 1 if the major road AADT is greater than 5,000 and less than or

equal to 15,000; otherwise 0

LMmajAADT = 1 if the major road AADT is less than or equal to 15,000; oth-

erwise 0

AvailableISD = left or right available ISD at Minor Rd (ft)

LT = 1 if the Target Crashes involve vehicles from the left side of the

major road; otherwise 0

fourleg = 1 if study intersection is a four leg intersection; otherwise 0

median = 1 if there is a median present on the major road; otherwise 0

SpeedLimit = major road post speed limit (mph)

grd500 = measured vertical grade on the major road approach 500 feet

prior to the intersection

The approach and direction-level dataset used for validating and optimizing the NCHRP

prediction models was derived from a comprehensive collection of intersection data from Al-

abama. This dataset includes detailed information on critical variables that influence crash

frequency, categorized into continuous and categorical variables, as summarized in Table 5.2

and Table 5.3.

Continuous Variables (Table 5.2):

• Observed Total Target Crashes and Observed Fatal and Injury (FI) Target Crashes:

These variables represent the recorded crash counts at the study intersections, with means

of 0.62 and 0.24 crashes per intersection, respectively. The wide range in crash counts (0

to 10 for total target crashes and 0 to 8 for FI crashes) highlights variability in intersection

safety performance.

• Major Road and Minor Road AADT (MajAADT and MinAADT): These variables

reflect average annual daily traffic volumes on the major and minor roads. The significant

variation (e.g., MajAADT ranging from 420 to 21,320) underscores the diversity in traffic

demand at these intersections.
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• Available ISD: This measures the sight distance available at the intersections, with a

mean of 1,052.70 feet and values ranging from 209 to 1,320 feet.

• Speed Limit: The posted speed limits at the intersections range from 30 to 65 mph, with

a mean of 52.10 mph.

• Grade (grd500): This variable captures the grade of the intersection over a 500-foot

segment, ranging from -6.15% to 8.20%, with a mean grade close to zero, indicating

generally flat or gently sloped intersections.

Categorical Variables (Table 5.3):

• AADT Categories (LmajAADT, MmajAADT, LMmajAADT): These variables clas-

sify intersections based on major and minor road AADT thresholds (e.g., ≤ 5, 000,

5, 000–15, 000, and > 15, 000 vehicles). Most intersections fall under lower AADT cat-

egories, reflecting a predominance of rural or low-traffic locations.

• Left-Turn Direction (LT): This variable differentiates intersections based on the direc-

tional analysis unit (left or right), with an even distribution across categories.

• Intersection Type (fourleg): Approximately 67% of the intersections are three-legged,

while 33% are four-legged.

• Median Presence (median): This variable indicates whether a median is present at the

intersection. Most intersections (80.78%) do not have a median, with only 19.22% fea-

turing a median design.

To evaluate the performance of the prediction models developed by researchers under the

NCHRP framework[38] when applied to the Alabama dataset, several statistical metrics were

employed: McFadden R2, Mean Squared Error (MSE) , Root Mean Squared Error (RMSE),

and Mean Absolute Error (MAE). These metrics provide a comprehensive evaluation of the

models’ accuracy and predictive capability, offering insights into how well the models capture

the relationship between intersection characteristics and crash frequency in a different regional

context.
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Variable Obs. Min Max Mean St. Dev
Observed Total Target Crashes 510 0 10 0.62 1.31

Observed FI Target Crashes 510 0 8 0.24 0.76
MajAADT 510 420 21320 5326.90 4548.88
MinAADT 510 83 11422 1879.73 1711.20

AvailableISD 510 209 1320 1052.70 297.97
SpeedLimit 510 30 65 52.10 8.62

grd500 510 -6.15 8.20 0.12 2.12

Table 5.2: Statistics for Continuous Variables for Study Intersections (Approach and Direction
Level)

Variable Category Levels Frequency Percentage
LmajAADT 5,000 < AADT (0) 200 39.22%

0 ≤ AADT ≤ 5,000 (1) 310 60.78%
MmajAADT AADT ≤ 5,000 or AADT > 15,000 (0) 342 67.06%

5,000 < AADT ≤ 15,000 (1) 168 32.94%
LMmajAADT 15,000 < AADT (0) 32 6.27%

AADT ≤ 15,000 (1) 478 93.73%
LT Right-Directional Analysis Unit (0) 255 50.00%

Left-Directional Analysis Unit (1) 255 50.00%
fourleg Three-legged (0) 338 66.27%

Four-legged (1) 172 33.73%
median Not Presented (0) 412 80.78%

Presented (1) 98 19.22%

Table 5.3: Statistics for Categorical Variables for Study Intersections (Approach and Direction
Level)

• McFadden R2

McFadden R2 is a pseudo R-squared measure commonly used in models estimated via max-

imum likelihood, such as logistic regression and count models. It compares the likelihood of

the fitted model with the likelihood of a model that only includes an intercept (i.e., a model that

does not account for any predictors). McFadden R² is calculated as (Equation 5.3):

McFadden R2 = 1− ln(Lfull model)

ln(Lintercept model)
(5.3)

Where ln(Lfull model) is the log-likelihood of the fitted model, and ln(Lintercept model) is the

log-likelihood of the model with only an intercept. McFadden R2 values closer to 1 indicate
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better model fit, with values between 0.2 and 0.4 generally considered indicative of a good

fit for prediction models in social sciences. Unlike traditional R-squared, McFadden R2 is

better suited for the logistic regression models employed here and provides a clear, interpretable

measure of model performance. Reporting this metric enables a standardized comparison of

model fit and helps demonstrate the effectiveness of the calibration and optimization methods

applied in this research.

• Mean Squared Error (MSE)

MSE measures the average of the squares of the errors, that is, the average squared difference

between the observed actual outcomes and the outcomes predicted by the model. MSE is

calculated as (Equation 5.4):

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (5.4)

Where yi represents the observed values, ŷi represents the predicted values, and is the

number of observations. MSE is sensitive to large errors due to the squaring of differences,

making it useful for identifying models that produce occasional large errors. In this study, MSE

is used as one of the primary metrics to evaluate the performance of crash prediction models.

By quantifying the average deviation between predicted and observed crash frequencies, MSE

provides insight into the overall accuracy of the models. This metric is especially valuable

for identifying outlier predictions and assessing the robustness of the model under varying

conditions.

• Root Mean Squared Error (RMSE)

RMSE is the square root of the MSE and provides a measure of the average magnitude of the

prediction errors, expressed in the same units as the observed data. RMSE is calculated as

(Equation 5.5):

RMSE =

√∑n
i=1 (yi − ŷi)

2

n
(5.5)
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Figure 5.2: Comparison of Observed vs Predicted Target Crashes Using NCHRP Models

RMSE provides an interpretable metric to evaluate the average distance between the observed

and predicted values, with lower RMSE values indicating better model performance.

• Mean Absolute Error (MAE)

MAE measures the average magnitude of the errors in a set of predictions, without considering

their direction (positive or negative). It is calculated as (Equation 5.6):

MAE =
1

n

n∑
i=1

|yi − ŷi| (5.6)

MAE is useful for understanding the average error in absolute terms, providing a straightfor-

ward interpretation of model accuracy.

The validation results for the two prediction models, as depicted in the Figure 5.2 and

quantitative metrics Table 5.4, reveal notable differences in their performance. The scatter plots

for both the Total Target Crashes and FI Target Crashes models exhibit a clear pattern where

the majority of data points fall below the ideal reference line. This trend suggests that both

models consistently underestimate the observed crash frequencies. The dispersion of points,

particularly within the lower range of crash frequencies, indicates considerable variability in

the model predictions, with more pronounced discrepancies at lower observed values.

Quantitative analysis further reinforces these observations. The McFadden R2 value for

the Total Target Crashes model is just 0.0227, indicating that the model explains only 2.27%
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Model McFadden R² MSE RMSE MAE
Total Target Crashes 0.02269676 0.06714414 0.2591219 0.1396654

FI Target Crashes 0.07606794 0.6108492 0.7815684 0.2673819

Table 5.4: Prediction Performance of NCHRP Models

of the variance in the data. Similarly, the FI Target Crashes model, while having a slightly

higher McFadden R2 of 0.0761, still accounts for less than 8% of the variance, suggesting

limited predictive power in both models. In terms of error metrics, the Total Target Crashes

model reports an MSE of 0.0671 and an RMSE of 0.2591, which are relatively low. In contrast,

the FI Target Crashes model exhibits a much higher MSE of 0.6108 and an RMSE of 0.7816,

indicating not only greater overall prediction errors but also increased variability in those errors.

Both models face challenges in accurately predicting crash frequencies, especially at the

lower end of the observed spectrum. The scatter plots demonstrate a general tendency for the

models to underestimate actual crash frequencies, accompanied by noticeable variability and

inconsistencies between observed and predicted values. The relatively low McFadden R² val-

ues indicate that the models have limited explanatory power, and the error metrics underscore

significant prediction inaccuracies. These findings highlight the need for further optimization

and refinement of the models to enhance their predictive accuracy and reliability.

5.3 Model Calibration and Optimization

The CMFs related to ISD are derived from Crash Frequency prediction models. To improve the

accuracy of these models and enhance the reliability of CMFs, this study employed three dis-

tinct methods of calibration and optimization, tailored to reflect Alabama’s traffic and roadway

conditions.

• Method 1: Recalibration of NCHRP Model Coefficients

In the first method, the original set of explanatory variables from the NCHRP model was

retained, while the model coefficients were recalibrated using Alabama-specific data. This

approach ensured that the model’s predictions better reflected local traffic conditions, such

as rural road characteristics and varying AADT levels, without altering the structure or logic
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of the original model. By recalibrating the coefficients, the model maintained computational

efficiency and interpretability.

A detailed analysis of Alabama’s crash data revealed that the variable indicating whether

the major road AADT exceeds 15,000 had an insignificant impact on Fatal and Injury (FI)

Target Crashes. Therefore, this variable was excluded from the recalibrated FI Target Crashes

model to simplify its application. Removing this variable reduced data collection requirements

and made the model more practical for use by transportation practitioners. The calibrated

Total Target Crashes prediction model and the FI Target Crashes prediction model according to

Method 1 are presented in Table 5.5 and Table 5.6, respectively.

Variable Coefficient Std. Error Z-Score P-value
Constant -16.14969 3.46688 -4.658 3.19e-06
β1(log(majAADT)) 0.34841 0.33389 1.044 0.29671
β2(log(minAADT)) 0.84130 0.22621 3.719 0.00020
β3(LmajAADT/ISD) 1001.27701 725.06319 1.381 0.16729
β4(MmajAADT/ISD) 8890.55610 562.94118 1.582 0.11366
β5(LT) -0.05557 0.25348 -0.219 0.82646
β6(fourleg) 0.28467 0.28383 2.683 0.00103
β7(median) -0.02967 0.42458 -0.070 0.94429
β8(spdlmt) 0.07892 0.02862 2.787 0.00532
β9(spdlmt/ISD) -13.52462 14.14817 -0.956 0.33911
β10(grd500) 0.02120 0.06642 0.319 0.74957

Table 5.5: Total Target Crashes Prediction Model (Method 1)

• Method 2: Model Optimization via Adjusted Parameters

The second method involved optimizing the prediction model by adjusting key parameters

to better capture the variability in ISD-related crashes under different scenarios. This approach

used Bidirectional Stepwise Regression to refine the model by iteratively adding and removing

variables based on their contribution to the Akaike Information Criterion (AIC). This process

allowed the model to maintain a balance between complexity and predictive performance.

The optimized model demonstrated improved accuracy in predicting crash frequencies at

intersections under varying sight distance conditions. By focusing on significant variables and
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Variable Coefficient Std. Error Z-Score P-value
Constant -15.01772 4.71229 -3.187 0.00144
β1(log(majAADT)) 0.13578 0.44996 0.302 0.76283
β2(log(minAADT)) 0.8434 0.39193 2.152 0.0314
β3(LT) -0.21337 0.42159 -0.506 0.61279
β4(fourleg) 1.37017 0.49813 2.751 0.00595
β5(median) 0.61126 0.77847 0.785 0.43233
β6(spdlmt) 0.06596 0.04607 1.432 0.15219
β7(spdlmt/ISD) 4.96455 9.18132 0.541 0.5887
β8(grd500) 0.07194 0.12261 0.587 0.55736

Table 5.6: FI Target Crashes Prediction Model (Method 1)

removing less impactful ones, this method enhanced the model’s robustness while simplifying

its application. Using this optimized model, new CMFs were developed to provide more reli-

able assessments of crash risks at Alabama intersections. The calibrated Total Target Crashes

prediction model and the FI Target Crashes prediction model according to Method 2 are pre-

sented in Table 5.7 and Table 5.8, respectively.

Variable Coefficient Std. Error Z-Score P-value
Constant -17.4865 3.7128 -4.71 2.48E-06
β1(log(majAADT)) 0.5312 0.3847 1.381 0.167279
β2(log(minAADT)) 0.8186 0.2241 3.653 0.000259
β3(LmajAADT/ log(ISD)) 8.1874 5.5356 1.479 0.139131
β4(MmajAADT/ log(ISD)) 6.0481 3.6906 1.639 0.101252
β5(fourleg) 0.9816 0.2767 3.548 0.000388
β6(spdlmt/ log(ISD)) 0.4394 0.1331 3.302 0.000959

Table 5.7: Total Target Crashes Prediction Model (Method 2)

Variable Coefficient Std. Error Z-Score P-value
Constant -16.966 3.6517 -4.646 3.38E-06
β1(log(minAADT)) 0.9873 0.3378 2.923 0.00347
β2(fourleg) 1.4413 0.4691 3.072 0.00212
β3(spdlmt/ log(ISD)) 0.7539 0.2303 3.273 0.00106

Table 5.8: FI Target Crashes Prediction Model (Method 2)
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• Method 3: Facility-Type Specific Models

In the third method, separate prediction models were developed for four distinct facility

types. This approach recognized that different facility types, such as intersections with varying

geometric features or traffic volumes, exhibit unique crash patterns. By tailoring the models

to each facility type, the study captured the specific factors influencing crash frequency within

each category.

This method provided more accurate and reliable predictions by addressing the unique

characteristics of each facility type, such as lane configurations, traffic control devices, and

sight distance challenges. The calibrated Total Target Crashes prediction model and the FI

Target Crashes prediction model for each facility type are presented in Table 5.9 and Table

5.10, respectively.

Facility Type Variable Coefficient Std. Error Z-Score P-value
R23ST Constant -19.9783 6.5318 -3.059 0.00222

β1(log(majAADT)) 0.9809 0.7458 1.315 0.18841
β2(log(minAADT)) 0.8338 0.3548 2.350 0.01872
β3(LmajAADT/ log(ISD)) 8.3724 13.305 0.629 0.52903
β4(MmajAADT/ log(ISD)) 8.5022 11.0754 0.768 0.44268
β6(spdlmt/ log(ISD)) 0.2051 0.2169 0.946 0.3442

R24ST Constant -15.395 7.6756 -2.006 0.0449
β1(log(majAADT)) 0.6379 0.6377 1 0.3172
β2(log(minAADT)) 0.4947 0.4225 1.171 0.2417
β3(LmajAADT/ log(ISD)) 11.5621 13.7458 0.841 0.4003
β4(MmajAADT/ log(ISD)) 1.0578 13.6039 0.078 0.9383
β6(spdlmt/ log(ISD)) 0.4309 0.3193 1.43 0.1527

RM3ST Constant 0.4334 11.9052 0.036 0.971
β1(log(majAADT)) -1.0004 1.3156 -0.76 0.447
β2(log(minAADT)) 0.7428 0.6147 1.208 0.227
β3(LmajAADT/ log(ISD)) -129.8055 32894.4 -0.004 0.997
β4(MmajAADT/ log(ISD)) -2.157 6.6239 -0.326 0.745
β6(spdlmt/ log(ISD)) 0.1973 0.3188 0.619 0.536

RM4ST Constant -34.9203 13.4336 -2.599 0.0093
β1(log(majAADT)) 1.1877 1.5308 0.776 0.4375
β2(log(minAADT)) 0.9135 0.8576 1.065 0.287
β3(LmajAADT/ log(ISD)) 52.4078 47.4423 1.105 0.2693
β4(MmajAADT/ log(ISD)) 39.6741 45.5808 0.87 0.38408
β6(spdlmt/ log(ISD)) 1.2254 0.7196 1.703 0.08858

Table 5.9: Total Target Crashes Prediction Model (Method 3)
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Facility Type Variable Coefficient Std. Error Z-Score P-value
R23ST Constant -14.0445 5.8257 -2.411 0.0159

β1(log(minAADT)) 1.1714 0.5452 2.149 0.0317
β2(spdlmt/ log(ISD)) 0.1674 0.126 1.329 0.1849

R24ST Constant -12.7405 7.7994 -1.634 0.102
β1(log(minAADT)) 0.6118 0.7227 0.847 0.397
β2(spdlmt/ log(ISD)) 0.6969 0.5149 1.353 0.176

RM3ST Constant -6.1842 11.3213 -0.546 0.585
β1(log(minAADT)) 0.6214 1.2126 0.512 0.608
β2(spdlmt/ log(ISD)) -0.1686 0.6269 -0.269 0.788

RM4ST Constant -25.0776 12.3962 -2.023 0.0431
β1(log(minAADT)) 1.1768 0.7273 1.618 0.1057
β2(spdlmt/ log(ISD)) 1.6957 1.0074 1.683 0.0923

Table 5.10: FI Target Crashes Prediction Model (Method 3)

The three methods represent complementary approaches to improving prediction model

performance. Method 1 emphasized maintaining the structure of the original national model

while tailoring it to Alabama’s conditions. Method 2 refined the model by focusing on signifi-

cant variables, enhancing both accuracy and usability. Method 3 provided targeted models for

specific facility types, offering the highest level of customization.

By comparing the predictive performance of the models derived from these methods, this

study identified the most effective approach for developing CMFs tailored to Alabama’s unique

traffic environment. These advancements not only improve the precision of crash frequency

predictions but also provide valuable insights for intersection safety improvements and policy

development.

5.4 Validation and Evaluation of Models

The evaluation of different prediction models, as presented in Table 5.11 and Table 5.12,

demonstrates varying levels of performance in predicting total target crashes and FI target

crashes. For the Total Target Crash Prediction model, Method 2 emerges as the most effec-

tive among the recalibrated models. It consistently outperforms Method 1 across all key per-

formance metrics, including McFaddenR2, MSE, RMSE, and MAE. This indicates that the

Bidirectional Stepwise Regression approach used in Method 2 successfully refines the model
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by selecting the most significant variables and optimizing their coefficients. The primary ad-

vantage of Method 2 lies in its ability to strike a balance between model complexity and predic-

tive accuracy. By focusing on the most impactful variables, this model minimizes overfitting

and enhances its generalizability, making it particularly well-suited for predicting total target

crashes across a wide variety of intersection types in Alabama.

For the FI Target Crash Prediction model, Method 1 proves to be the best prediction per-

formance. This model achieves the highest McFaddenR2 and the lowest MSE, RMSE, and

MAE among all models when applied to the entire dataset. These results suggest that the recal-

ibration of coefficients in Method 1 more accurately reflects the local conditions that influence

fatal and injury crashes in Alabama. The strength of Method 1 lies in its ability to enhance

the predictive power of the original NCHRP model while retaining its foundational structure

and logic. This makes Method 1 not only reliable but also interpretable and efficient, provid-

ing a robust tool for forecasting FI crashes without the need for significant alterations to the

established model framework.

While Method 2 and Method 1 perform well overall, Method 3 shows significant potential,

especially in facility-specific contexts, despite not always surpassing the generalized models.

By tailoring prediction models to different facility types, Method 3 aims to capture the unique

factors that affect crash frequency in specific settings. For example, the R23ST model within

Method 3, with its relatively large sample size, exhibits lower error metrics and a higher Mc-

Fadden R² for total target crashes, making it a reliable choice for that facility type. This suggests

that for R23ST facilities, the customized approach of Method 3 is particularly effective. How-

ever, other facility-specific models, such as RM3ST and RM4ST, which had smaller sample

sizes, did not consistently outperform the generalized models, indicating that their predictive

reliability might be limited due to insufficient data. Despite these limitations, the strategy of

developing facility-specific models, as demonstrated by Method 3, holds great promise. With

more comprehensive datasets, it would be possible to refine these models further, leading to

more accurate and reliable predictions across various facility types. This approach could ulti-

mately provide valuable, customized insights that enhance traffic safety management by better

reflecting the distinct characteristics of different intersection types.
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Model Facility Types Sample Size McFadden R² MSE RMSE MAE
NCHRP Model All 510 0.0227 0.0671 0.2591 0.1397
Method 1 All 510 0.1284 0.0569 0.2385 0.1407
Method 2 All 510 0.1297 0.0564 0.2374 0.1403
Method 3 R23ST 272 0.2032 0.0192 0.1385 0.0826

R24ST 126 0.0543 0.0544 0.2333 0.1466
RM3ST 66 0.0526 0.0621 0.2493 0.1741
RM4ST 46 0.2603 0.1117 0.3342 0.2114

Table 5.11: Performance Measures for Different Total Target Crash Prediction Models

Model Facility Types Sample Size McFadden R² MSE RMSE MAE
NCHRP Model All 510 0.0761 0.6108 0.7816 0.2674
Method 1 All 510 0.1656 0.0189 0.1374 0.0674
Method 2 All 510 0.1523 0.0194 0.1393 0.0688
Method 3 R23ST 272 0.104 0.0047 0.0684 0.0333

R24ST 126 0.0497 0.0181 0.1345 0.0741
RM3ST 66 0.0208 0.0189 0.1376 0.0953
RM4ST 46 0.156 0.0887 0.2978 0.1976

Table 5.12: Performance Measures for Different FI Target Crash Prediction Models

5.5 Calibrated CMFs and Case Studies

5.5.1 Calibrated CMFs for Total Target Crash

For the Total Target Crash in the approach direction, Method 2 was selected as the calibrated

prediction model to create the CMFunction. It can be used to calculate the impact on Total

Target Crash after adjusting the ISD in the approach direction. The CMF for Total Target Crash

is calculated using the CM function shown in Equation 5.7 below:

CMFT =
CMFT1

CMFT2

(5.7)

Where:

CMFT = Crash Modification Factor for target crashes for left or right

approach direction

CMFT1 = Target crash CMF for proposed condition

CMFT2 = Target crash CMF for existing condition
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Equation 5.8 can be used to calculate the Target crash CMF under the proposed condition

or existing condition.

CMFTi
=

exp
(
8.1874× LmajAADT

log(ISDi)
+ 6.0481× MmajAADT

log(ISDi)
+ 0.4394× PSL

log(ISDi)

)
exp

(
8.1874× LmajAADT

log(ISDbase)
+ 6.0481× MmajAADT

log(ISDbase)
+ 0.4394× PSL

log(ISDbase)

)
(5.8)

Where:

CMFTi
= Target crash CMF for proposed condition (i=1) or existing con-

dition (i=2)

LmajAADT = 1 if the major road AADT is less than or equal to 5,000; other-

wise 0

MmajAADT = 1 if the major road AADT is greater than 5,000 and less than or

equal to 15,000; otherwise 0

PSL = Posted speed limit (mph)

ISDi = Available ISD for proposed condition (i=1) or existing condition

(i=2) (feet)

ISDbase = Base ISD for an approach direction (feet). For practical appli-

cations, this value is assumed to be 1,320 feet

The CMF charts for ISD under different speed limit conditions were generated using Equa-

tion 5.8, as illustrated in Appendix-A for Total Target crashes. For Medium Traffic Volume and

Low Traffic Volume scenarios, the calibration process generally results in an increase in CMF,

suggesting that the original model may have underestimated the crash risks in these settings,

particularly at shorter ISD values. Conversely, in High Traffic Volume conditions, the cali-

bration process significantly reduces the CMF, especially at shorter ISDs, indicating that the

original model likely overestimated the crash risks for high traffic volumes. This local cali-

bration provides a more accurate and conservative estimate, tailored specifically to Alabama’s

unique traffic conditions. Additionally, the sharper increase in CMF with decreasing ISD un-

der low and medium major road traffic volumes, compared to high traffic volumes, can be

83



attributed to two possible factors. First, on roads with lower traffic volumes, drivers might be

less vigilant or more prone to risky behaviors, assuming they can safely navigate intersections

with limited sight distance due to the infrequent presence of other vehicles. As ISD decreases,

this assumption leads to a more dramatic increase in crash risk, which is reflected in the higher

CMF post-calibration. Second, intersections on low-volume roads often lack advanced safety

features (e.g., Flashing Beacon, warning signs) that are more commonly implemented at high-

volume intersections. The absence of these mitigations makes low-volume intersections more

sensitive to decreases in ISD, resulting in a steeper rise in CMF. In contrast, high-volume roads

benefit from the constant presence of traffic, which encourages more cautious driving and mod-

erates the increase in CMF as ISD decreases.

5.5.2 Calibrated CMFs for FI Target Crash

For the FI Target Crash in the approach direction, Method 1 was selected as the calibrated

prediction model to create the CMFunction. It can be used to calculate the impact on FI Tar-

get Crash after adjusting the ISD in the approach direction. The CMF for FI Target Crash is

calculated using the CM function shown in Equation 5.9:

CMFTFI =
CMFTFI1

CMFTFI2

(5.9)

Where:

CMFTFI = Crash Modification Factor for target fatal and injury crashes for

left or right approach direction

CMFTFI1 = Target fatal and injury crashes CMF for proposed condition

CMFTFI2 = Target fatal and injury crashes CMF for existing condition

Equation 5.10 can be used to calculate the Target fatal and injury crashes CMF under the

proposed condition or existing condition:

CMFTFIi =
exp

(
4.96455× PSL

ISDi

)
exp

(
4.96455× PSL

ISDbase

) (5.10)

84



Where:

CMFTFIi = Target fatal and injury crashes CMF for proposed condition

(i=1) or existing condition (i=2)

PSL = Posted speed limit (mph)

ISDi = Available ISD for proposed condition (i=1) or existing condition

(i=2) (feet)

ISDbase = Base ISD for an approach direction (feet). For practical appli-

cations, this value is assumed to be 1,320 feet

In this study, under the traffic conditions in Alabama, the effect of whether the major road

AADT is greater than 15,000 on FI Target Crashes is not significant, so in order to facilitate

the practitioner’s application, this study develops a generalized CMF for both scenarios where

the main roadway AADT is greater than 15,000 or less than or equal to 15,000. The CMF

charts for ISD under different speed limit conditions were generated using Equation 5.10 and

are presented in Appendix-B. The calibrated CMF charts revealed significant differences from

the original models across various speed limits. Notably, the calibration process generally

resulted in higher CMFs, particularly at shorter ISD values, suggesting that the original models

may have underestimated crash risks in these scenarios. However, at higher available ISDs, the

calibrated CMFs closely align with the original models, indicating that the original estimates

were fairly accurate and required only minor adjustments.

5.5.3 Application Cases

As an example, consider a three-leg intersection with a Major AADT of 4500, a posted speed

limit of 55 mph, and a current left-side available ISD of only 400 ft. A practitioner wants to

know how the Target Crash Frequency changes when the ISD is upgraded from 400 ft to 600

ft. The Target crash CMF for the existing condition CMFT2 can be calculated using Equation

5.11:
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CMFT2 =
exp

(
8.1874× 1

log(400)
+ 6.0481× 0

log(400)
+ 0.4394× 55

log(400)

)
exp

(
8.1874× 1

log(1320)
+ 6.0481× 0

log(1320)
+ 0.4394× 55

log(1320)

) = 2.4529

(5.11)

The Target crash CMF for the proposed condition CMFT1 can be calculated using Equa-

tion 5.12:

CMFT1 =
exp

(
8.1874× 1

log(600)
+ 6.0481× 0

log(600)
+ 0.4394× 55

log(600)

)
exp

(
8.1874× 1

log(1320)
+ 6.0481× 0

log(1320)
+ 0.4394× 55

log(1320)

) = 1.7419

(5.12)

The CMF for upgrading the ISD can then be calculated using Equation 5.13:

CMFT =
1.7419

2.4529
= 0.7101 (5.13)

Similarly, based on the calibrated CMF, the CMF of this upgrade for FI Target Crash can

be calculate to be 0.7965 (Equation 5.14):

CMFTFI =
CMFTFI1

CMFTFI2

=
1.2818

1.6093
= 0.7965 (5.14)

Comparing the post-calibration CMF to the pre-calibration CMF reveals significant dif-

ferences in the estimated safety benefits of improving ISDs in Alabama. When using the post-

calibration CMF, the results indicate an expected reduction of 28.99% in Total Target Crashes

and 20.35% in FI Target Crashes. On the other hand, the pre-calibration CMF suggests a much

lower reduction, with only an 11.95% decrease in Total Target Crashes and a 14.85% decrease

in FI Target Crashes. These results suggest that the original model significantly underestimates

the safety benefits of upgrading ISDs in Alabama.
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5.6 Impact of Intersection Design on ISD-Related Crash

ISD is a critical component of roadway engineering that directly influences traffic safety, par-

ticularly at TWSC intersections. These intersections, which lack the traffic signals that guide

driver behavior, place a heavy reliance on drivers’ ability to make safe decisions based on their

visual assessment of oncoming traffic. Properly designed ISD is essential for reducing the like-

lihood of collisions, especially in scenarios where a minor road intersects a major road without

the benefit of traffic signals.

A substantial research has demonstrated the safety impact of specific intersection design

features, though findings vary depending on the context and configuration. Left-turn lanes sig-

nificantly improve traffic safety by reducing crash frequencies at both signalized and unsignal-

ized intersections. For instance, the study by Harwood et al. [65] showed that these lanes can

lead to crash reductions of up to 44% in rural settings and substantial decreases in urban areas

[66]. These lanes are particularly effective in mitigating rear-end and angle crashes by separat-

ing turning vehicles from through traffic, which is crucial in rural areas where traffic volumes

may be lower but speeds are higher. Additionally, left-turn lanes on rural two-lane highways

are considered a cost-effective safety measure, particularly in areas with higher traffic volumes

[67]. Beyond their direct impact on crash frequency, left-turn lanes also help reduce uncertainty

in crash predictions, further validating their safety benefits at unsignalized intersections[68].

Right-turn lanes also contribute to improved traffic safety by minimizing conflicts between

turning and through vehicles, thereby reducing crash rates. Studies, [67, 69] have shown that

these lanes are effective in both rural and urban settings, contributing to overall crash reduction

and offering a high return on investment as part of safety improvement programs. However,

some research [38] has observed higher crash frequencies at intersections with right-turn lanes,

though it remains uncertain whether this trend is attributable to the presence of the lanes them-

selves or to sampling bias. This suggests that the safety benefits of right-turn lanes might vary

depending on the specific intersection context and the surrounding traffic environment.

Medians play a significant role in enhancing traffic safety by providing physical separa-

tion between opposing traffic flows and offering refuge for vehicle maneuvers, such as left turns
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and U-turns. Studies such as those by Turochy et al. [70] have emphasized the benefits of wide

medians in improving safety by reducing the likelihood of head-on collisions and providing

staging areas for crossing vehicles. Implementing low-cost median treatments or wider medi-

ans has been associated with significant reductions in crash frequency, particularly for severe

crashes[71, 72]. However, the presence of medians does not always guarantee improved safety.

For example, Sushmitha et al.’s study [39] noted that large median openings can increase con-

flicts by creating more complex interaction zones, and at unsignalized intersections, Himes et

al. [31] found that medians were associated with a slight reduction in overall crash frequency

but a significant increase in fatal and injury crashes. This highlights the need for careful median

design to ensure that the benefits outweigh the potential risks.

Despite the clear implications for safety, most studies have aggregated target crashes with

other types of crashes, potentially masking the unique effects of intersection design on this

critical safety measure. By focusing on target crashes, this study aims to provide deeper insights

that can inform the design and improvement of intersections specifically to reduce these types

of crashes.

This study seeks to address the gap in the existing literature by isolating ISD-related

crashes and examining how they are influenced by specific intersection design features. The

hypothesis driving this research is that the design features that improve overall intersection

safety may not have the same impact on target crashes. In fact, certain designs might improve

overall safety metrics while having little effect on or even exacerbating the conditions that lead

to target crashes.

By conducting a detailed analysis of the effects of different left-turn lane types, right-turn

lane types, and median widths on target crash frequency, this study aims to provide actionable

insights for transportation agencies. Understanding these relationships is critical for developing

targeted interventions that enhance safety at intersections, particularly in contexts where drivers

must rely heavily on visual cues to navigate safely.
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5.6.1 Empirical Bayes Before-and-After Study

This study employed the Empirical Bayes Before-and-After study method to rigorously evalu-

ate the impact of three types of left-turn lanes, four types of right-turn lanes, and wide medians

on the frequency of target crashes. The EB method was chosen due to its ability to address the

regression-to-the-mean effect, a common issue in before-and-after studies that can lead to over-

estimation of treatment effects. By incorporating data from similar, untreated reference sites,

the EB method isolates the impact of the treatments and provides more accurate and statistically

robust estimates of CMFs.

The study categorized the left-turn lanes, right-turn lanes, and medians into specific types,

with a reference group identified for each category. Table 5.17 presents the classification of

countermeasures and the corresponding sample sizes used in the analysis.

Countermeasure Type Description Sample Size Reference Group
Left-Turn Lanes Type 1 No left-turn lanes 278 Yes

Type 2 Channelized left-turn lanes with a raised or de-
pressed median

118 No

Type 3 Painted left-turn lanes with no physical median 114 No
Right-Turn Lanes Type 1 No right-turn lanes 210 Yes

Type 2 Right-turn lanes with a channelizing island but
no exclusive lane

138 No

Type 3 Right-turn lanes with a channelizing island and
an exclusive lane

120 No

Type 4 Conventional exclusive right-turn lanes with no
channelizing island

42 No

Medians No Median No or narrow medians (less than 30 feet) 412 Yes
Wide Median Wide medians (greater than 30 feet) 98 No

Table 5.17: Countermeasure Types and Descriptions

• Crash Prediction Model Development

In this study, the SPFs were developed using the Target Crashes predictive model from Table

5.7, rather than the HSM-recommended SPFs. Because the HSM-recommended models are

designed to predict all intersection-related crashes, whereas the primary objective of this study

was to focus solely on target crashes. The Target Crashes model was specifically calibrated to

reflect the conditions and characteristics associated with target crashes at the study sites, mak-

ing it more appropriate for this analysis. By employing a model tailored to the particular types

of crashes under investigation, the study ensured that the predicted crash counts were more
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relevant and precise, providing a better foundation for the subsequent EB analysis. This tar-

geted approach allowed for a more accurate assessment of the impact of the studied intersection

design features on the specific types of crashes that were of primary concern in this research.

• Calculation of Expected Crashes

Using the developed target crash prediction models, the expected number of crashes during

the ”before” period at the treated sites was calculated. This involved combining observed crash

data with predictions from the prediction model (Equation 5.15):

Nexpected, T, B = weight ×Npredicted, T, B + (1− weight)×Nobserved, T, B (5.15)

Where:

Npredicted, T, B = predicted number of target crashes in the ”before” period based

on the prediction model

Nobserved, T, B = observed number of target crashes in the ”before” period at the

treated sites

weight = the degree of variability in crash counts and is derived from the

over-dispersion parameter during prediction model calibration

• Adjustment for the After Period

To account for changes in traffic volumes or conditions between the ”before” and ”after” pe-

riods, the expected number of crashes in the ”after” period without treatment was adjusted as

follows (Equation 5.16):

Nexpected, T, A = Nexpected, T, B ×
Npredicted, T, A

Npredicted, T, B
(5.16)

Where:

Npredicted, T, A = predicted number of target crashes in the ”after” period based

on the prediction model
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This adjustment ensures that the comparison between the ”before” and ”after” periods

accurately reflects any changes in traffic conditions.

• Calculation of CMFs, Variance, and Standard Error

The CMF was calculated to determine the impact of intersection treatments on crash fre-

quency. The CMF is defined as the ratio of the observed number of crashes during the after-

treatment period Nobserved, T, A to the expected number of crashes if the treatment had not been

applied Nexpected, T, A. The expected crash count is adjusted to account for any changes in traffic

volumes or other conditions between the before and after periods. The formula for CMF is

Equation 5.17:

CMF =
Nobserved, T, A

Nexpected, T, A
×

(
1 +

Var(Nexpected, T, A)

N2
expected, T, A

)
(5.17)

This adjustment factor accounts for the variance in the expected crash number, ensuring

that the CMF accurately reflects the treatment’s effect while considering uncertainty.

The variance of the expected crashes in the after-treatment period Var(Nexpected, T, A) is

critical for understanding the reliability of the CMF. It is calculated as follows Equation 5.18:

Var(Nexpected, T, A) = Nexpected, T, A ×
Npredicted, T, A

Npredicted, T, B
× (1− weight) (5.18)

Here, the ”weight” is determined by the over-dispersion parameter from the prediction

models, reflecting how much the crash data varies from the predicted values. To assess the

precision of the CMF, the overall variance is computed using Equation 5.19:

Var(CMF) = CMF2 ×

(
1

Nobserved, T, A
+

Var(Nexpected, T, A)

N2
expected, T, A

)
÷

(
1 +

Var(Nexpected, T, A)

N2
expected, T, A

)2

(5.19)

The Standard Error (SE) of the CMF, which is the square root of the variance, provides a

measure of the statistical accuracy of the CMF. This method ensures that the CMF is not only

reflective of the true impact of the treatments but also statistically robust, giving confidence in

the reliability of the conclusion.
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The EB method was applied to calculate the CMFs for Type 2 and Type 3 left-turn lanes,

using Type 1 as the reference group. The SEs were computed to provide confidence intervals,

ensuring the reliability of the CMFs.

The study calculated CMFs for Types 2, 3, and 4 right-turn lanes, with Type 1 as the ref-

erence. Variances and SEs were computed to assess the statistical significance of the findings.

The CMF for wide medians (greater than 30 feet) was calculated against the reference

group of sites with no or narrow medians. The SE provided a measure of the reliability of this

CMF.

This methodology ensures that the effects of regression-to-the-mean are accounted for, and

that the CMFs developed are robust, statistically significant, and reflective of the true impact

of the intersection design features on crash frequency. The results obtained from this rigor-

ous analysis offer valuable insights for improving intersection safety through targeted design

interventions.

5.6.2 Analytical Results and Interpretation

The results of the analysis for different types of left-turn lanes, right-turn lanes, and medians are

presented in the following tables. Each table includes the CMF, SE, and Confidence Intervals

(CIs) at various levels of confidence. These results provide insights into the effectiveness of

each countermeasure in reducing or influencing crash frequency.

• Left-turn Lanes

The results of CMF analysis of different types of left-turn lanes on target crashes are shown in

Table 5.20:

Counter-
measures

Sample
Size CMF SE CI (65%-70%) CI (95%) CI (99.9%)

Type 1 278 Basic Condition (Reference)
Type 2 118 0.4672 0.0913 [0.3759, 0.5586] [0.2846, 0.6498] [0.1932, 0.7413]
Type 3 114 0.5718 0.1716 [0.4002, 0.7434] [0.2286, 0.915] [0.0569, 1.0867]

Table 5.20: Target Crashes CMF for Left-turn Lanes

The CMF of 0.4672 indicates that Type 2 left-turn lanes, which include channelization

with raised or depressed medians, are associated with a 53.28% reduction in target crashes. This
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significant decrease could be attributed to the improved visibility and reduced conflict points

provided by the channelization, which helps to separate left-turning vehicles from through

traffic, allowing drivers on the minor road to better judge gaps in oncoming traffic. The narrow

confidence intervals further support the reliability of this finding.

With a CMF of 0.5718, Type 3 left-turn lanes, which are painted without physical medians,

reduce target crashes by 42.82%. However, the wider confidence intervals suggest more vari-

ability in effectiveness. This reduction may be due to the delineation provided by the painted

lanes, which can help organize traffic flow and reduce confusion at intersections. However,

the absence of a physical barrier may still allow some conflicts to occur, explaining the lesser

reduction in crashes compared to Type 2.

• Right-turn Lanes

The results of CMF analysis of different types of left-turn lanes on target crashes are shown in

Table 5.21:

Counter-
measures

Sample
Size CMF SE CI (65%-70%) CI (95%) CI (99.9%)

Type 1 210 Basic Condition (Reference)
Type 2 138 1.5047 0.3485 [1.1562, 1.8532] [0.8077, 2.2017] [0.4591, 2.5503]
Type 3 120 1.2862 0.2749 [1.0113, 1.5611] [0.7364, 1.836] [0.4615, 2.1109]
Type 4 42 0.927 0.3249 [0.6021, 1.2519] [0.2772, 1.5768] /

Table 5.21: Target Crashes CMF for Right-turn Lanes

The CMF of 1.5047 suggests that Type 2 right-turn lanes, which include a channelizing

island but no exclusive lane, are associated with a 50.47% increase in target crashes. This

increase might be due to the added complexity introduced by the channelizing island, which

could create confusion or reduce visibility for drivers making right turns. The wide confidence

intervals indicate a high level of uncertainty, suggesting that this design may not consistently

perform well across different contexts.

With a CMF of 1.2862, Type 3 right-turn lanes, which feature both a channelizing island

and an exclusive right-turn lane, show a 28.62% increase in target crashes. Although the ad-

dition of an exclusive lane might reduce conflicts with through traffic, the channelizing island
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may still introduce visual obstructions or complicate driver decision-making, leading to more

frequent crashes.

The CMF of 0.9270 for Type 4 right-turn lanes, which are conventional exclusive lanes

without a channelizing island, indicates a slight reduction in crashes but the wide confidence

intervals indicate high variability, making the results less conclusive.

• Wide Median

The results of CMF analysis of different types of left-turn lanes on target crashes are shown in

Table 5.22:

Counter-
measures

Sample
Size CMF SE CI (65%-70%) CI (95%) CI (99.9%)

No Wide
Median

210 Basic Condition (Reference)

Wide Me-
dian

138 1.5047 0.3485 [1.1562, 1.8532] [0.8077, 2.2017] [0.4591, 2.5503]

Table 5.22: Target Crashes CMF for Wide Median

The CMF of 0.8792 indicates that wide medians (greater than 30 feet) are associated with

a 12.08% reduction in target crashes compared to sites with no or narrow medians. The reduc-

tion is likely due to the additional space provided by the median, which can serve as a refuge

for vehicles, allowing drivers to stage their crossings in two phases and better judge oncoming

traffic. However, the confidence intervals are relatively wide, especially at higher confidence

levels, suggesting that the effectiveness of wide medians may vary depending on specific inter-

section characteristics and traffic conditions.
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Chapter 6

Conclusion and Discussion

6.1 Key Findings and Contributions of the Study

This study developed an automated GIS-based tool that leverages high-resolution LiDAR data

for ISD assessments. The tool addresses the limitations of traditional manual ISD measure-

ment methods, offering a scalable, efficient, and accurate solution applicable across various in-

tersection types. The automated process calculates the recommended ISD, assesses occlusion

rates, and provides detailed visual outputs such as maps and 3D models. These capabilities en-

able transportation agencies to screen large road networks and prioritize high-risk intersections

based on visibility issues, ultimately improving resource allocation for safety interventions.

The developed tool overcomes the time-consuming and labor-intensive nature of tradi-

tional field measurements and ensures a more standardized evaluation process. In addition, it

improves upon previous LiDAR-based ISD assessment tools by enhancing accuracy and ef-

ficiency. The study tested several algorithms for generating major road approaches proposed

in earlier research, identified their limitations in measurement accuracy, and recommended a

more precise method for defining target points. To address the occasional obstructions affecting

visibility checks, a more robust evaluation method was introduced, allowing a graded assess-

ment of visibility between observer and target points rather than a simple binary classification

of ”visible” or ”not visible.” Furthermore, the method permits the user to generate observer

positions based on reference lines, ensuring consistency with the field measurement practices

of transportation agencies and maintaining uniform measurement standards across different

intersections.
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The ISD assessment tool was applied to multiple intersections using various practices and

vehicle types, followed by strict manual reviews to validate the tool’s accuracy, stability, and

scalability. By using different measurement methods, the study found that using the stop bar to

define the observer position resulted in significantly shorter available sight distances compared

to using the edge of the major road. Specifically, left-side ISD was shorter by approximately 60

to 104 feet, and right-side ISD was shorter by about 15 to 53 feet. This finding indicates that the

stop bar-based observer method provides a more conservative sight distance evaluation. When

comparing PC and trucks, the study revealed that trucks had a longer available ISD—left-side

ISD by 51 to 93 feet and right-side ISD by 41 to 86 feet. Despite these differences in available

ISD, there was no statistically significant difference in blockage rates between trucks and PC.

The study recommended conducting separate assessments for each vehicle type to ensure a

comprehensive evaluation of intersection sight distance.

The study also explored the relationship between ISD and crash frequency, focusing on

Alabama’s unique traffic and road conditions. The analysis specifically targeted crashes directly

affected by insufficient sight distance at TWSC intersections. By examining historical crash

data from 230 intersections, a strong correlation was established between inadequate ISD and

an increased risk of crashes. The study also calibrated the CMFs proposed by the NCHRP to

better reflect Alabama’s traffic characteristics. The calibration results, presented in Appendix

A and Appendix B, showed that for medium and low traffic volumes, the calibrated CMFs were

higher than the original values, indicating that the original model might have underestimated

crash risks in these scenarios. Conversely, for high traffic volumes, the calibrated CMFs were

lower, suggesting an overestimation of crash risks by the original model. This calibration

process provides a more accurate and reliable estimate of crash risks tailored to Alabama’s

specific conditions, offering an effective tool for improving intersection safety in the region.

Furthermore, the study assessed the impact of specific intersection design features on tar-

get crashes (ISD-related crashes). It found that channelized left-turn lanes with a raised or

depressed median and painted left-turn lanes with no physical median on the major road could

significantly reduce the frequency of target crashes. The research also indicated that construct-

ing wide medians (greater than 30 feet) might lower target crash frequencies; however, the
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large error margins suggested that the effectiveness of wide medians may vary depending on

specific intersection characteristics and traffic conditions. Statistical analysis also showed that

constructing right-turn lanes with a channelizing island, whether with or without an exclusive

lane, tended to increase the frequency of target crashes. This could be due to the channeliz-

ing island introducing visual obstructions or complicating driver decision-making, resulting in

more frequent crashes.

In summary, this study makes several important contributions: the development of an au-

tomated, more accurate, and scalable ISD assessment tool using LiDAR data; an analysis of

the differences in available ISD for passenger cars and trucks; an investigation into the corre-

lation between ISD and crash risk in Alabama; the calibration of CMFs specific to Alabama’s

traffic conditions; and an evaluation of the impact of various intersection design features on

ISD-related crashes. These contributions provide transportation agencies with a comprehen-

sive framework for enhancing intersection safety through targeted interventions and data-driven

decision-making.

6.2 Discussion of Implications

The findings from this research have significant implications for transportation policy and en-

gineering practice, particularly in the areas of intersection safety and roadway design. The

GIS-based ISD assessment tool developed in this study marks a major advancement in inter-

section safety analysis. By automating ISD measurements and integrating LiDAR data, trans-

portation agencies can now evaluate sight distance across a large number of intersections more

efficiently and accurately. This allows for more proactive safety measures, such as identifying

intersections with inadequate ISD and prioritizing them for design improvements or targeted

interventions.

The insights from this study on the relationship between intersection design features, ISD,

and crash frequency offer valuable guidance for future intersection design and upgrades. Ensur-

ing adequate ISD at TWSC intersections, along with other considerations such as turn lanes and

medians, can improve intersection safety. This study emphasizes the need for flexible design
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standards that take into account local traffic conditions, intersection geometry, and the specific

requirements of road users.

Furthermore, the development of CMFs for ISD-related crashes enhances the ability of

transportation agencies to make data-driven decisions regarding intersection safety improve-

ments. The CMFs provide quantitative estimates of the safety benefits associated with in-

creasing ISD, which can be incorporated into broader safety performance models and decision-

making frameworks. This approach can lead to more effective resource allocation for intersec-

tion improvements and crash reduction strategies.

6.3 Limitations of the Study

While the findings of this study are promising, several limitations must be acknowledged.

First, the accuracy of the ISD assessment tool heavily depends on the availability and qual-

ity of LiDAR data. In regions where up-to-date LiDAR data is scarce or unavailable, the tool’s

effectiveness may be significantly reduced. Additionally, inconsistencies in data acquisition

parameters across different LiDAR datasets can introduce variations in the analysis, potentially

impacting the reliability of the ISD assessment. Addressing these data quality issues is crucial

for enhancing the tool’s robustness and consistency.

Another challenge lies in the point cloud classification process used in LiDAR data pro-

cessing. While the current classification algorithm provided sufficient information for ISD

assessments, further refinement is necessary. In some instances, the algorithm struggles to ac-

curately recognize the boundaries between vehicles and road surfaces and classify complex

intersection environments. This limitation can lead to inaccuracies in identifying potential

obstacles, thereby affecting the overall reliability of the ISD assessment. Enhancing the algo-

rithm’s ability to distinguish between various objects, particularly when handling large-scale

datasets, would significantly improve the tool’s accuracy.

The study also relies on user-defined vehicle trajectories and stop bar positions to en-

sure precise ISD measurements. Although these customizations are critical for maintaining

accuracy, they are time-consuming, particularly when applied across large networks of inter-

sections. This poses a considerable challenge for conducting efficient large-scale screenings
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and assessments. Incorporating more automated processes, such as leveraging advanced map-

ping technologies and artificial intelligence, could streamline these tasks and improve the tool’s

scalability for broader applications, making it more practical for use in extensive road network

assessments.

Additionally, the relatively small sample size used in this study restricted the develop-

ment of independent predictive models tailored to different types of traffic facilities. Conse-

quently, the analysis could not produce specific models for various roadway configurations,

potentially overlooking the nuances of how ISD impacts crash frequency across different inter-

section types. Future research involving a larger dataset is necessary to address this limitation

and provide more detailed insights into the relationship between ISD and crash frequency for

diverse intersection configurations.

Finally, this study exclusively focused on the impact of ISD on Target Crashes, leaving

its influence on the crash frequency of all intersection-related incidents unexplored. While

the findings offer valuable insights into crashes specifically influenced by sight distance, the

broader effects of ISD on overall intersection safety remain uncertain. Further investigation

is needed to assess the comprehensive impact of ISD on various types of intersection crashes,

thereby providing a more holistic understanding of its role in intersection safety. Addressing

these limitations in future studies will be key to improving the tool’s accuracy, scalability, and

applicability to diverse intersection safety assessments.

6.4 Recommendations for Future Research

Based on the findings and limitations of this study, several areas for future research are rec-

ommended. One promising direction is the expansion of the ISD assessment tool to include

a variety of intersection types beyond the current focus on TWSC intersections. Exploring its

applicability in signalized intersections, roundabouts, and more complex roadway configura-

tions would not only broaden the scope of the tool but also provide valuable insights into its

effectiveness across different traffic environments. Additionally, adapting the tool for use in

evaluating sight distance along entire highway corridors or ramp systems could significantly

extend its utility, offering a comprehensive approach to assessing roadway safety.
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In addition, future research on the ISD assessment tool could incorporate image recogni-

tion algorithms to automatically extract road features, such as the approach trajectories of the

major road, the stop bar positions of the minor road, and the edges of the major road. Integrat-

ing these advanced image processing techniques would significantly enhance the automation of

the tool, reducing the need for manual intervention. This improvement would not only increase

the accuracy of the ISD assessments but also boost the overall efficiency of large-scale road-

way network scanning, making it more practical and time-effective for transportation agencies

to implement across diverse traffic environments.

Further research should also delve into the effectiveness of targeted safety interventions

aimed at improving ISD at intersections. By evaluating the impact of measures such as the in-

stallation of traffic control devices, geometric design modifications, or visibility enhancements,

future studies could generate empirical data on the success of these interventions in mitigating

ISD-related crashes. This would provide transportation agencies with evidence-based strategies

to enhance intersection safety and prioritize resource allocation for improvements.

Another promising area for future exploration involves the integration of machine learning

models and advanced predictive algorithms into the ISD assessment process. Employing these

models could substantially enhance the accuracy of ISD evaluations and facilitate the develop-

ment of more sophisticated crash prediction models. Utilizing larger datasets and incorporat-

ing more complex variables would enable these models to refine their predictive capabilities,

allowing for a more precise identification of high-risk intersections. This, in turn, could inform

proactive safety interventions tailored to specific intersection conditions.

Finally, future studies should broaden the analysis to investigate the effects of ISD on all

intersection-related crash frequencies, rather than limiting the focus to Target Crashes. Such

a comprehensive approach would provide a deeper understanding of ISD’s overall influence

on intersection safety, offering valuable insights for transportation agencies seeking to develop

more effective crash mitigation strategies. By expanding the scope of ISD-related research,

a more holistic perspective on intersection safety can be achieved, ultimately contributing to

more robust and far-reaching safety improvements.
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Appendix A

Calibrated Total Target Crashes CMF
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Figure A.1: CMF for Target Crashes when Posted Speed Equals 35 mph

Figure A.2: CMF for Target Crashes when Posted Speed Equals 40 mph
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Figure A.3: CMF for Target Crashes when Posted Speed Equals 45 mph

Figure A.4: CMF for Target Crashes when Posted Speed Equals 50 mph
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Figure A.5: CMF for Target Crashes when Posted Speed Equals 55 mph

Figure A.6: CMF for Target Crashes when Posted Speed Equals 60 mph
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Appendix B

Calibrated Fatal and Injury Target Crashes CMF
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Figure B.1: CMF for FI Target Crashes when Posted Speed Equals 35 mph

Figure B.2: CMF for FI Target Crashes when Posted Speed Equals 40 mph
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Figure B.3: CMF for FI Target Crashes when Posted Speed Equals 45 mph

Figure B.4: CMF for FI Target Crashes when Posted Speed Equals 50 mph
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Figure B.5: CMF for FI Target Crashes when Posted Speed Equals 55 mph

Figure B.6: CMF for FI Target Crashes when Posted Speed Equals 60 mph
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