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Abstract

Given a fixed simple graph H, a simple graph G is called H-saturated if G is H-free, but

the addition of any edge e ∈ E(G) creates a copy of H. The saturation number of H, denoted

sat(n,H), is the minimum number of edges of an H-saturated graph G on n vertices. If G is

not necessarily H-free, but the addition of any edge e ∈ E(G) creates a new copy of H, then

G is called partially H-saturated. The partial saturation number of H, denoted psat(n,H),

is the minimum size of a partially H-saturated graph on n vertices. In this dissertation,

we explore the relationship between sat(H,n) and psat(n,H) and determine psat(n,H) for

various classes of graphs H.

We first show that psat(n,H) = sat(n,H) for every graph H of order at most 4, with

only one exception. In the case H = C4, we characterize all minimum partially C4-saturated

graphs. For a double star on s + t vertices, with 3 ≤ s < t, we completely determine

psat(n, Ss,t) when n is large enough. We study the partial saturation number of triangle-free

graphs and provide a nearly sharp lower bound. For a path Pk, we establish the exact value of

psat(n, Pk) when n ≥
⌊3k − 3

2

⌋
. We observe that for k ≥ 6, lim

n→∞

sat(n, Pk) − psat(n, Pk)

n
>

0. Finally, we characterize all triangle-free graphs H such that lim
n→∞

psat(n,H)

n
is minimized.
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Chapter 1

Introduction

1.1 Definitions

We will consider only finite graphs that are simple and undirected. Our notation will

be standard, generally following the notation of [19]. Given a graph G, we will use V (G) to

denote the vertex set of G and E(G) to denote the edge set of G. The order of G, written

n(G), is the number vertices in G, and the size of G, written e(G), is the number of edges in

G. We use G to denote the complement of G. For any graph G, we use c(G) to denote the

number of components in G. For two vertex-disjoint graphs G1 and G2, we will use G1 +G2

to represent the union of G1 and G2, and G1 ∨G2 to represent the join of G1 and G2.

Given A,B ⊆ V (G), we write E(A,B) for the set of edges in G having one endpoint in

A and the other in B. Given a vertex v in a graph G, the open neighborhood of v, denoted

NG(v) or N(v), is the set of vertices in G that are adjacent to v. The degree of v in G is

dG(v) = |N(v)|. We will use ∆(G) to denote the maximum degree of G and δ(G) to denote

the minimum degree of G. For any two vertices u and v in G, we use CG(u, v), or C(u, v), to

denote the set of all common neighbors of u and v in G. We also let cG(u, v) = |CG(u, v)|.

Now let S be a set of vertices in G. We define the degree sum of S to be σG(S) =

σ(S) =
∑

v∈S dG(v). We abbreviate σ(V (G)) as σ(G). Note that σ(G) = 2|E(G)|. For any

v ∈ V (G), we write v ∼ S if v is adjacent to at least one vertex in S. We then define the

neighborhood of S to be NG(S) = N(S) = {v ∈ V (G) | v ∼ S}. The neighborhood of v with

respect to S, denoted by NG,S(v), is defined as the set of vertices in S adjacent to v. So

NG,S(v) = NG(v)∩S. Then the degree of v with respect to S is given by dG,S(v) = |NG,S(v)|.

The distance between two vertices u and v, written dG(u, v) or simply d(u, v), is the least
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length of a u, v-path. The eccentricity of v, written ϵG(v) or ϵ(v), is given as maxu∈V (G) d(u, v).

We define the distance between v and S as d(v, S) = min{d(v, x) | x ∈ S}.

A graph G is called partly k-regular if ∆(G) = k and δ(G) ≥ k − 1. A vertex of degree

k − 1 in a partly k-regular graph G is called a minor vertex. A partly k-regular graph with

at most one minor vertex is called almost k-regular. We let Kn denote the complete graph

on n vertices, Pk denote the path on k vertices, and Sk denote the star on k vertices. In a

star Sk with k ≥ 3, the unique vertex of degree k− 1 is called the central vertex of the star.

(If S2 = K2, either vertex can be considered the central vertex). We now define a double

star, denoted Ss,t, to be a graph on s+ t vertices constructed by adding an edge between the

central vertices of a star on s vertices and a star on t vertices. We say that Ss,t is balanced

if s = t and unbalanced if s < t.

A complete l-partite graph is a simple graph whose vertices can be partitioned into

l partite sets so that u ∼ v if and only if u and v belong to different partite sets. The

Turán graph Tn,l is the complete l-partite graph with n vertices whose l-partite sets differ

in order by at most 1. Note that every partite set in Tn,l has order ⌊n/l⌋ or ⌈n/l⌉, and that

n− ⌈n/l⌉ = δ(Tn,l) ≤ ∆(Tn,l) = n− ⌊n/l⌋.

Now let H be a nonempty graph and n ≥ |V (H)|. We say that a graph G on n vertices

is H-saturated if G is H-free, but for any edge e ∈ E(G), G + e contains a copy of H. The

saturation number of H, denoted sat(n,H), is the minimum size of an H-saturated graph

on n vertices. If G is not necessarily H-free, but for any edge e ∈ E(G), G + e contains at

least one new copy of H, then we say that G is partially H-saturated. The partial saturation

number of H, denoted psat(n,H), is the minimum size of a partially H-saturated graph on

n vertices.

The function psat(n,H), in general, is not monotone with respect to n or H. First,

we observe that psat(n, Sk + e) ≤ sat(n, Sk + e) ≤ n − 1, since Sn is (Sk + e)-saturated.

2



So by Theorem 1.2’, we have psat(n, Sk) > psat(n, Sk + e) for k ≥ 5. Thus, the psat-

function is not, in general, monotone with respect to subgraphs. To see that the psat-

function is not, in general, monotone in n, consider H = P4. By Theorem 2.12, we have

psat(2n − 1, P4) = n + 1 > psat(2n, P4) = n for n ≥ 4. For the remainder of this chapter,

we list some known results and briefly introduce a related concept called weak saturation.

In 1972, L.T. Ollman [15] determined that sat(n,C4) =
⌊
3n−5

2

⌋
for n ≥ 5 and also found

all minimum C4-saturated graphs. Later, in 1989, Zsolt Tuza [17] gave a shorter proof.

In Chapter 2, we prove that psat(n,C4) = sat(n,C4) for all n ≥ 5 and characterize all

minimum partially C4-saturated graphs by modifying the techniques used in [17]. We also

show that psat(n,H) = sat(n,H) for every graph H of order at most 4, with the exception

that psat(5, P4) = 3 and sat(5, P4) = 4.

In Chapter 3, we study the partial saturation number of double stars. For a double

star on s + t vertices, with 3 ≤ s < t, we completely determine psat(n, Ss,t) when n is large

enough.

In Chapter 4, we study the partial saturation number of triangle-free graphs and provide

a nearly sharp lower bound. We also give the complete formula for psat(n, Pk) when k ≥ 5

and n ≥
⌊
3k−3
2

⌋
. Finally, we discuss the topic of psat-sharp graphs and characterize all

graphs H such that lim
n→∞

psat(n,H)

n
is minimized.

1.2 Some known results

In 1964, Erdös, Hajnal, and Moon first introduced the concept of partial saturation

numbers (though not using that terminology) and determined the partial saturation number

for complete graphs.

Theorem 1.1 (Erdös, Hajnal, and Moon [8]). If n ≥ k ≥ 2, then

psat(n,Kk) =

(
n

2

)
−
(
n− k + 2

2

)
.

3



In addition, Kk−2 ∨Kn−k+2 is the unique minimum partially Kk-saturated graph of order n.

Since Kk−2 ∨Kn−k+2 is Kk-saturated as well, the following result follows directly.

Theorem 1.1’. If n ≥ k ≥ 2, then

sat(n,Kk) =

(
n

2

)
−
(
n− k + 2

2

)
.

In addition, Kk−2 ∨Kn−k+2 is the unique minimum Kk-saturated graph of order n.

In 1986, Kászonyi and Tuza [13] determined the saturation number for stars in theorem

below.

Theorem 1.2 (Kászonyi and Tuza [13]). Let n ≥ k ≥ 3 and r = min
{⌊

k
2

⌋
, n − k + 1}.

Then

sat(n, Sk) =

⌈
(k − 2)(n− r)

2
+

(
r

2

)⌉
In addition, for every tree T of order k such that T ̸= Sk, we have sat(n, T ) < sat(n, Sk)

when n is large enough.

The proof of the above theorem applies for the partial saturation number as well, and

thus, we have the following theorem.

Theorem 1.2’. Let n ≥ k ≥ 3 and r = min
{⌊

k
2

⌋
, n− k + 1}. Then

psat(n, Sk) =

⌈
(k − 2)(n− r)

2
+

(
r

2

)⌉

In addition, for every tree T of order k such that T ̸= Sk, we have psat(n, T ) < psat(n, Sk)

when n is large enough.

Faudree, Faudree, Gould, and Jacobson [9] studied saturation numbers for trees, includ-

ing the next two results.

4



Lemma 1.3 (Faudree et. al [9]). If there exist trees Tk and T ′
k each of order k such that T ′

k

is Tk-saturated, then k ≥ 4, Tk = S2,k−2, and T ′
k = Sk.

The following result is obtained directly from Lemma 1.3.

Theorem 1.4 (Faudree et. al [9]). For any tree Tk of order k ≥ 5 and any n ≥ k + 2,

sat(n, Tk) ≥ n−
⌊
n + k − 2

k

⌋
.

Moreover, S2,k−2 is the only tree of order k attaining this minimum for all n.

Kászonyi and Tuza [13] found the best known general upper bound on the saturation

number (and thus on the partial saturation number) using the vertex cover number of a

graph, which we define here. A vertex cover of a graph H is a vertex subset of H that

contains at least one endpoint of every edge. The vertex cover number of H, denoted β(H),

is the minimum size of a vertex cover of H.

Theorem 1.5 (Kászonyi and Tuza [13]). Let β be the vertex cover number of H, and define

d = min{ |NH(x) \ C| : x ∈ C,C is a minimum vertex cover of H}. Then,

sat(n,H) ≤ (β − 1)n +
(d− 1)(n− β + 1)

2
−
(
β

2

)
.

We now provide a few examples on how to apply Theorem 1.5. If H = Kk, then

β = k − 1, d = 1, and sat(n,Kk) ≤ (k − 2)n−
(
k−1
2

)
. If H = Sk, then β = 1, d = k − 1, and

sat(n, Sk) ≤ k−2
2
n. If H = Ss,t with s ≤ t, then β = 2, d = s− 1, and sat(n, Ss,t) ≤ s

2
(n− 1).

In 2022, Cameron and Puleo gave a lower bound on sat(n,H) using the concept of the

weight of a graph H, which we introduce here. Let uv be an edge in a nonempty graph H. We

define the weight of the edge uv as wtH(uv) = wt(uv) = |N(u)∩N(v)|+max{dH(u), dH(v)}.

We define the weight of the graph H as wt(H) = minuv∈E(H) wt(uv). Clearly, for every

nonempty graph H, we must have that wt(H) ≥ 1, with equality if and only if H contains

5



K2 as a component. The remark below holds because adding edges to a graph does not

decrease its weight, and wt(Kk) = 2k − 3 for k ≥ 2.

Remark 1.6. For every graph H with |V (H)| ≥ 2, we have wt(H) ≤ 2|V (H)| − 3.

Theorem 1.7 (Cameron and Puleo [3]). Let H be a graph with weight t ≥ 1. Then

sat(n,H) ≥ t− 1

2
n− t2 − 4t + 5

2
.

It turns out that the proof of the above theorem does not make use of the condition

that an H-saturated graph must be H-free. Thus, we conclude that this lower bound also

applies to the partial saturation number. We give an altered version of Cameron and Puleo’s

proof below.

Theorem 1.7’. Let H be a graph with weight t ≥ 1. Then

psat(n,H) ≥ t− 1

2
n− t2 − 4t + 5

2
.

Proof. Let G be a minimum partially H-saturated graph of order n and x∗ be a vertex

of minimum degree in G. Let B = NG(x∗) and B = V (G) \ B. If δ(G) = t − 1, then

psat(n,H) = |E(G)| ≥ (t−1)n
2

, and we are done. So assume dG(x∗) ≤ t− 2.

Let y ∈ B \ {x∗}. Then G + x∗y contains a new copy of H, say H ′. So

t = wt(H) = wt(H ′) ≤ wtH′(x∗y)

= cH′(x∗, y) + max{dH′(x∗), dH′(y)}

≤ cG(x∗, y) + max{dG(x∗) + 1, dG(y) + 1}

= cG(x∗, y) + dG(y) + 1

= dG,B(y) + dG(y) + 1.

6



Thus we have shown that dG,B(y) + dG(y) ≥ t− 1 for every vertex y ∈ B \ {x∗}. Recall that

dG(x∗) ≤ t− 2. It then follows that

σ(G) =
∑
x∈B

dG(x) +
∑
y∈B

dG(y)

≥
∑
x∈B

dG,B(x) +
∑
y∈B

dG(y)

=
∑
y∈B

dG,B(y) +
∑
y∈B

dG(y)

=
∑
y∈B

(dG,B(y) + dG(y))

≥ 2dG(x∗) + (t− 1)(n− 1 − dG(x∗))

= (t− 1)n− [(t− 3)dG(x∗) + t− 1]

≥ (t− 1)n− [(t− 3)(t− 2) + t− 1]

= (t− 1)n− (t2 − 4t + 5).

This proves that psat(n,H) = |E(G)| ≥ t−1
2
n− t2−4t+5

2
, and we are done.

1.3 Weak saturation

We now discuss the related notion of weakly saturated graphs. Let H be a nonempty

graph and n ≥ |V (H)|. A graph G of order n is weakly H-saturated if the missing edges

of G can be added one at a time so that each added edge creates at least one new copy

of H. The weak saturation number of H, denoted wsat(n,H), is the minimum size of a

weakly H-saturated graph on n vertices. Clearly, we have that wsat(n,H) ≥ e(H) − 1. We

refer the reader to [2] and [11] for general bounds on wsat(n,H). We also note here that

wsat(n,H) ≤ psat(n,H) ≤ sat(n,H), since any partially H-saturated graph is also weakly

H-saturated.
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In 1977 Lovász [14] proved the following result, which was earlier conjectured by Bollobás

and verified for 3 ≤ k < 7 in [1].

Theorem 1.8 (Lovász [14]). For integers n and k,

wsat(n,Kk) =

(
n

2

)
−
(
n− k + 2

2

)
.

By Theorem 1.1, the graph Kk−2 ∨ Kn−k+2 is the unique minimum partially Kk-

saturated graph of order n. However, this is not the case for weak saturation. For example,

when k = 3, every tree of order n is weakly K3-saturated.

In 2002, Borowiecki and Sidorowicz [2] considered the weak saturation number of cycles

and proved the following result.

Theorem 1.9 (Borowiecki and Sidorowicz [2]). We have

(i) wsat(n,Ck) = n− 1 when k is odd and n > k.

(ii) wsat(n,Ck) = n when k is even and n ≥ k.

For any tree T of order k, we have

k − 2 ≤ wsat(n, T ) ≤
(
k − 1

2

)
(1.1)

since Kk−1 + Kn−k+1 is weakly T -saturated. Note that the lower bound in (1.1) is sharp

since Pk−1 +Kn−k+1 is weakly Pk-saturated, and thus wsat(n, Pk) = k−2. The upper bound

in (1.1) is sharp as well, due to the following result.

Theorem 1.10 (Borowiecki and Sidorowicz [2]). If n ≥ k ≥ 3, then wsat(n, Sk) =
(
k−1
2

)
.

The precise value of wsat(n,H) was determined in [11] for many families of sparse

graphs, and in particular, for many trees. This includes the result for double stars given

below.
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Theorem 1.11 (Faudree, Gould, and Jacobson [11]). If 2 ≤ s ≤ t and n ≥ 2s + 2t, then

wsat(n, Ss,t) = s + t− 2 +

(
s− 2

2

)
.

It is easy to see that Ss,t−1+Ks−2+Kn−2s−t+3 is weakly Ss,t-saturated when n ≥ 2s+2t.

However, we should point out here that wsat(n, Ss,t) is unknown when n < 2s + 2t.

Faudree, Gould, and Jacobson [11] showed that nearly all trees of order k have weak

saturation number k − 2. On the other hand, Theorem 3.4 shows that for any tree Tk of

order k ≥ 5 and any n ≥ k + 2, psat(n, Tk) ≥ n− ⌊(n+ k− 2)/k⌋. Thus, in general, it is far

from true that wsat(n,H) = psat(n,H).

9



Chapter 2

Graphs of small order

2.1 4-cycles

We first state the following two remarks without proof.

Remark 2.1. Every partially C4-saturated graph is connected and has diameter at most 3.

Remark 2.2. We have psat(4, C4) = sat(4, C4) = 4. In addition, K4 − P3 is the unique

minimum C4-saturated (and partially C4-saturated) graph of order 4.

(a) Type I triangle T (b) Type II triangle T

Figure 2.1: Type I and II triangles

A triangle T = a1a2b in a graph G is said to be of type I if dG(a1) = dG(a2) = 2 and

dG(b) > 2, where b is called the base vertex of T . A triangle T = ab1b2 in a graph G is said

to be of type II if dG(a) = 2, dG(b1) > 2, and dG(b2) > 2, where b1b2 is called the base edge

of T (with base vertices b1 and b2). Both types of triangles are shown in Figure 2.1. In each

case, we say that G is obtained from G0 by attaching T .

Remark 2.3. If a graph G is obtained from G0 by attaching a type I triangle at base vertex

b, then G is partially C4-saturated if and only if G0 is partially C4-saturated and ϵG0(b) ≤ 2.

It is easy to check that each graph Gi in Figure 2.2 is partially C4-saturated, with size⌊
3|V (Gi)|−5

2

⌋
. Our next lemma characterizes all partially C4-saturated graphs of order at least

5 that are unicyclic.

10



Figure 2.2: Partially C4-saturated graphs of small order

Lemma 2.4. Let G be a partially C4-saturated graph of order n ≥ 5.

(i) Let u, v, and w be three vertices in G such that u ∼ v, v ∼ w, and dG(u) = 1. Then

the edge vw must be contained in a triangle.

(ii) If |E(G)| ≤ n, then G = G0, G1, or G2.

Proof. Part (i) can be shown by considering G+uw. This implies that G is not a tree. Now

assume |E(G)| ≤ n. Then |E(G)| = n (i.e., G is unicyclic). If δ(G) ≥ 2, then G = Cn, which

implies that G = G0. Next assume δ(G) = 1. Then by part (i), we have (1) the unique

cycle in G must be a triangle, (2) every vertex in G must be adjacent to some vertex in the

triangle, and (3) every vertex in the triangle must have degree either 2 or 3. Thus, G = G1

or G2.

For each i, where 0 ≤ i ≤ 4, we define Gi to be the collection of all graphs obtained

from Gi in Figure 2.2 by attaching some number of type I triangles based at the solid-

marked vertices only (any two adjacent vertices when i = 0, or the three vertices in the

central triangle when i ̸= 0). Our next remark lists some simple properties of graphs in Gi.

Remark 2.5. Let G be any graph of order n in Gi, where 0 ≤ i ≤ 4. Then

(i) G is partially C4-saturated with |E(G)| =
⌊
3n−5

2

⌋
.

(ii) For any vertex v in G, ϵG(v) = 2 if v is a solid-marked vertex, and ϵG(v) = 3 otherwise.

(iii) G has even order if and only if i = 2.

11



(iv) For every n ≥ 5, there exists a graph of order n in G1 ∪ G2.

(v) G is C4-saturated if and only if 0 ≤ i ≤ 2.

Theorem 2.6. For all n ≥ 5, psat(n,C4) =
⌊3n− 5

2

⌋
. In addition, a graph G is minimum

partially C4-saturated if and only if G ∈ Gi for some i, 0 ≤ i ≤ 4.

Proof. Let n ≥ 5. Then, by Remark 2.5, there exists a partially C4-saturated graph G of

order n in G1 ∪ G2 with |E(G)| =
⌊
3n−5

2

⌋
, which implies that psat(n,C4) ≤

⌊
3n−5

2

⌋
. Our

proof is by contradiction. Suppose there exists a partially C4-saturated graph G of order n

such that |E(G)| ≤
⌊
3n−5

2

⌋
and G /∈ Gi for any i, 0 ≤ i ≤ 4. For convenience, let G be such

a graph with the minimum number of vertices. Since
⌊
3n−5

2

⌋
= n when n = 5 or n = 6, it

follows that n ≥ 7, by Lemma 2.4(ii). Also, since |E(G)| < 3n
2

, we must have that δ(G) ≤ 2.

First we claim that G contains no type I triangle. Suppose to the contrary, that G is

obtained from a graph G0 by attaching a type I triangle at base vertex b. It then follows by

Remark 2.3 that G0 must be partially C4-saturated with size |E(G0)| ≤
⌊
3|V (G0)|−5

2

⌋
. Thus,

G0 ∈ Gi for some i by the minimality of |V (G)|. Note that ϵG0(b) ≤ 2, since diam(G) ≤ 3.

Then b must be a solid-marked vertex in Gi, by Remark 2.5(ii). Therefore, by the definition

of Gi, we have G ∈ Gi as well, which contradicts our choice of G. Thus, we have shown that

G cannot contain a type I triangle. The rest of the proof is divided into three cases.

Case 1: δ(G) = 1.

Let L0 be the set of all degree 1 vertices in G. For 1 ≤ i ≤ 3, define Li = {v ∈ V (G) |

d(v, L0) = i}. Then V (G) = L0 ∪ L1 ∪ L2 ∪ L3, since d(G) ≤ 3. Let li = |Li| for 0 ≤ i ≤ 3.

For i = 2, 3, let Li2 be the set of vertices in Li with at least two neighbors in Li−1, where

li2 = |Li2|. We now list some observations about the structure of G.

(1) For i = 2, 3, |E(Li−1, Li)| ≥ |Li \ Li2| + 2|Li2| = li + li2.

12



(2) Since L0 forms an independent set and G + uv contains a new copy of C4 for any

two vertices u and v in L0, it follows that E(L0, L1) forms a matching of size l0 = l1 and

that L1 forms a clique.

(3) If v2 ∈ L2 \L22 and v1 is the sole neighbor of v2 in L1, then there must exist a vertex

in L2 that is adjacent to both v2 and v1.

To prove (3), we let v0 be the sole neighbor of v1 in L0 and H be a new copy of C4 in

G+ v0v2. Then H must contain the edges v0v1 and v0v2 since dG(v0) = 1. Hence, the fourth

vertex of H, say v′2, must be a common neighbor of both v1 and v2, so we must have v′2 ∈ L2.

It follows from (3) that

|E(⟨L2⟩)| =
σ⟨L2⟩(L2 \ L22) + σ⟨L2⟩(L22)

2
≥

σ⟨L2⟩(L2 \ L22)

2
≥ l2 − l22

2
.

We also note that |E(⟨L3⟩)| ≥ l3−l32
2

since every vertex in L3 \ L32 has degree at least 2 and

thus has at least one neighbor in L3. For i = 2 and 3, we let Ei1 denote the set of vertices in

Li \ Li2 with at least two neighbors in Li, and let Ei2 denote the number of vertices in Li2

with at least one neighbor in Li. We then write ϵi1 = |Ei1| and ϵi2 = |Ei2|. Then we have

the following improved estimate.

(4) For i = 2, 3, |E(⟨Li⟩)| ≥
li − li2 + ϵi1 + ϵi2

2
.

Therefore, by (1), (2), and (4), we have

3n− 5

2
≥ |E(G)| = |E(L0, L1)| + |E(⟨L1⟩)| + |E(L1, L2)| + |E(⟨L2⟩)| + |E(L2, L3)| + |E(⟨L3⟩)|

≥ l0 +

(
l1
2

)
+ (l2 + l22) +

l2 − l22 + ϵ21 + ϵ22
2

+ (l3 + l32) +
l3 − l32 + ϵ31 + ϵ32

2

=
3

2
(l0 + l1 + l2 + l3) +

(
l0
2

)
− 2l0 +

l22 + l32 + ϵ21 + ϵ22 + ϵ31 + ϵ32
2

=
3n

2
+

l0
2 − 5l0

2
+

l22 + l32 + ϵ21 + ϵ22 + ϵ31 + ϵ32
2

=
3n− 6

2
+

(l0 − 2)(l0 − 3)

2
+

l22 + l32 + ϵ21 + ϵ22 + ϵ31 + ϵ32
2

≥ 3n− 6

2
.
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Note that the left and right quantities in the above inequality differ by 1
2

only. Thus, our

next four observations (5) through (8) follow immediately.

(5) l0 = 2 or 3.

(6) By (1), for i = 2, 3, we have |E(Li−1, Li)| = |Li \Li2|+ 2|Li2| = li + li2. In addition,

the unique vertex in Li2, if it exists, has exactly two neighbors in Li−1.

(7) By (4), |E(⟨Li⟩)| =
li − li2

2
or

li − li2 + 1

2
for i = 2, 3.

(8) l22 + l32 + ϵ21 + ϵ22 + ϵ31 + ϵ32 ≤ 1.

(9) ϵ22 = ϵ32 = 0, since ϵi2 ≥ 1 implies that li2 ≥ 1. So |I| ≤ 1, where I = L22 ∪ L32 ∪

E21 ∪ E31.

(10) Assume I = {z∗} when I ̸= Ø. If z∗ ∈ Li2 for i = 2 or 3, then z∗ has exactly two

neighbors in Li−1 by (6) and no neighbor in Li by (9). If z∗ ∈ Ei1 for i = 2 or 3, then z∗

has exactly one neighbor in Li−1 by definition and exactly two neighbors in Li by (7). If z

is any vertex in L2 ∪ L3 other than z∗, then z has exactly one neighbor in Li−1 and exactly

one neighbor in Li by definition.

(11) Let F = ⟨L2⟩ + ⟨L3⟩. Then it follows by (10) that every component in F is a copy

of K2, with exactly one exception when l22 + l32 + ϵ21 + ϵ31 = 1. If li2 = 1 for i = 2 or 3,

then the exceptional component in F is a copy of K1 in ⟨Li2⟩. If ϵi1 = 1 for i = 2 or 3 then

the exceptional component in F is a copy of K1 in ⟨Li \ Li2⟩ = ⟨Li⟩.

(12) If T is a nontrivial component in ⟨L2⟩ (so that V (T ) ⊆ L2 \ L22 and T ∼= K2 or

P3), then all vertices in T have the same neighbor in L1 by (3).

We now consider two subcases.

Case 1.1: L3 = Ø.

Since G contains no type I triangle, then no component in ⟨L2⟩ is isomorphic to K2.

Thus, l2 = 0, 1, or 3. Recall that l0 = 2 or 3, by (5). If l2 = 0, then G = G2 since G ̸= P4. If

l2 = 1, then L2 = L22 = {z∗} and z∗ has exactly two neighbors in L1, by (10). So G = G1 if

l0 = 2, and G = G3 if l0 = 3. If l2 = 3, then ⟨L2⟩ ∼= P3 by (11). In addition, all three vertices

in P3 have the same neighbor in L1 by (12). Then it can be easily checked that l0 ̸= 2, since

14



G is partially C4-saturated. Thus, l0 = 3 and G = G4. However, none of these cases are

possible since G /∈ Gi for any i, 0 ≤ i ≤ 4. Thus, L3 ̸= Ø.

Case 1.2: L3 ̸= Ø.

Let x be an arbitrary vertex in L3. It follows by Remark 2.1 that for every vertex

v0 ∈ L0, there exists a v0x-path of length 3. So there exist at least l0 different paths of

length 3 from x to L0, where l0 = 2 or 3, by (5).

By (9), we have that |L22 ∪ L32| ≤ 1. If z∗ ∈ L22 ∪ L32, then it follows by (6) that z∗

has exactly two neighbors in Li−1. If z ∈ Li \ (L22∪L32), where 1 ≤ i ≤ 3, then z has exactly

one neighbor in Li−1, by (2) and the definition of Li \ Li2. Upon inspection, we see that

there can be at most two different paths of length 3 from x to L0. Thus, from the previous

paragraph, l0 = 2 and there are exactly two different paths of length 3 from x to L0.

Now assume L0 = {u0, v0} and L1 = {u1, v1} so that u0 ̸∼ v1. Then G + u0v1 must

contain a new copy of C4, say H. Clearly, {u0u1, u0v1} ⊆ E(H), which indicates that the

fourth vertex of H, say z∗, must be adjacent to both u1 and v1. Thus, L22 = {z∗}. Then by

(11), every component in ⟨L3⟩ must be a copy of K2.

If x ∈ L3, then x has exactly one neighbor in L2 since L32 =Ø. Recall that there are

exactly two different paths of length 3 from x to L0. Thus, x ∼ z∗. Since x was chosen

arbitrarily, we have L3 ⊆ N(z∗). Now let u3 and v3 be two adjacent vertices in L3. Then

u3v3z
∗ forms a type I triangle in G, which is a contradiction. This proves Case 1.

Case 2: δ(G) = 2, and there exists a vertex v0 of degree 2 in G whose neighbors are

nonadjacent.

Define L0 = {v0}, L1 = N(v0) = {x1, y1}, and L2, L3, L22, L32 as in Case 1. By applying

an argument similar to that in Case 1, we can see that every vertex in L2 \ L22 has at least

one other neighbor in L2. The same holds for vertices in L3 \ L32, by a different argument,

also to be found in Case 1. We now have
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3n− 5

2
≥ |E(G)| ≥ 2 + 0 + (l2 + l22) +

l2 − l22
2

+ (l3 + l32) +
l3 − l32

2

≥ 2 +
3(l2 + l3)

2
+

l22 + l32
2

=
3n− 5

2
+

l22 + l32
2

.

Figure 2.3: δ(G) = 2

This implies that ⟨L2⟩ and ⟨L3⟩ are both 1-regular, and l22 = l32 = 0. In particular,

every vertex in L2 is adjacent to exactly one of x1 and y1. Now let X2 and Y2 be the sets of

neighbors of x1 and y1 in L2, respectively. Then X2 and Y2 are disjoint, nonempty sets. See

Figure 2.3. We claim that L3 = Ø. Suppose, to the contrary, that there exist two adjacent

vertices u and v in L3. Let u′ and v′ be the sole neighbors of u and v in L2, respectively.

Then we must have u′ ̸= v′, since G contains no type I triangles. For convenience, we assume

u′ ∈ X2. We can then easily see that v′ ∈ X2 as well by considering G + u′v. Let z ∈ Y2.

Then z is adjacent to at most one of u′ and v′. So we assume z ̸∼ v′. But then G+uz would

not contain a new copy of C4. This proves our claim that L3 = Ø. So X2 and Y2 are both

independent sets, since G contains no type 1 triangles. Thus, |X2| = |Y2| = 1, by considering

G + uv, where {u, v} ⊆ X2 or {u, v} ⊆ Y2. Therefore, G = C5.

Case 3: δ(G) = 2, and every vertex of degree 2 in G is contained in a type II triangle.

Recall that if T = ab1b2 is a type II triangle in G with dG(a) = 2, then b1b2 is the base

edge of T , and b1, b2 are the base vertices of T . Let G′
0 be the subgraph of G induced by all

the base edges in G, and F ′
1, ..., F

′
r be the components of G′

0. For each i, 1 ≤ i ≤ r, let ti be
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the number of type II triangles in G whose base edge is in F ′
i , and Fi be the subgraph of G

obtained from F ′
i by attaching the ti type II triangles. Then we have ti ≥ e(F ′

i ) ≥ n(F ′
i )− 1

and n(Fi) = ti + n(F ′
i ). Thus,

e(Fi) = 2ti + e(F ′
i ) ≥

3

2

(
ti + e(F ′

i )
)
≥ 3

2

(
ti + n(F ′

i ) − 1
)

=
3

2

(
n(Fi) − 1

)
.

For 1 ≤ i ̸= j ≤ r, there exists at least one edge joining Fi and Fj, by considering G+uv,

where u is a degree 2 vertex in Fi and v is a degree 2 vertex in Fj. Hence, σG(V (Fi)) ≥

2e(Fi) + r − 1 ≥ 3n(Fi) + r − 4. Now let G0 =
⋃r

i=1 Fi and F0 = G − V (G0). Then

σG(V (F0)) ≥ 3n(F0) because dG(v) ≥ 3 for all v ∈ V (F0). So

σ(G) =
r∑

i=0

σG(V (Fi)) ≥ 3
r∑

i=0

n(Fi) + r(r − 4) ≥ 3n− 4,

which is impossible because |E(G)| ≤ 3n−5
2

.

The corollary below follows directly from Remark 2.5 and Theorem 2.6.

Corollary 2.7 (Ollmann [15]). For all n ≥ 5, sat(n,C4) =
⌊3n− 5

2

⌋
. In addition, a graph

G is minimum C4-saturated if and only if G ∈ Gi for some i, 0 ≤ i ≤ 2.

In 1995, Fisher, Fraughnaugh, and Langley [12] gave an upper bound of
⌈
10
7

(n − 1)
⌉

for the graph C5. Later, in [5] and [6], Chen proved that this upper bound serves as the

lower bound as well for all n ≥ 21 and also characterized all minimum C5-saturated graphs

of order n.

2.2 All other graphs of order 4 or less

Remark 2.8. Let H be a graph where every edge is contained in a triangle. Then diam(G) ≤

2 for every partially H-saturated graph G.
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For n ≥ 4, the friendship graph Fn is defined as follows:

Fn =


K1 ∨ n−1

2
K2 if n is odd

K1 ∨ (n−2
2
K2 + K1) if n is even

.

Chen, Faudree, and Gould [4] studied the saturation number of generalized books. In

particular, they showed that sat(n,K4−K2) =
⌈
3n−4

2

⌉
for n ≥ 10. Our next result is obtained

by using a similar proof technique to the one used in [4].

Theorem 2.9. For n ≥ 4, psat(n,K4 −K2) = sat(n,K4 −K2) =
⌈
3n−4

2

⌉
.

Proof. Let H = K4 −K2. It is easily seen that Fn is H-saturated and e(Fn) =
⌈
3n−4

2

⌉
. Now

let G be a partially H-saturated graph of order n. It then suffices to show that σ(G) ≥ 3n−4.

Since every edge in H is contained in a triangle and H is 2-connected, it follows that

diam(G) ≤ 2, G is connected, and G contains at most one vertex of degree 1.

Let A be the set of vertices of degree at most 2 in G, and let a = |A|. Then we have that

σ(A) ≥ 2a−1 since all but at most one vertex in G has degree 2. If there exists a vertex in G

adjacent to every vertex in A, then σ(G) ≥ a+(2a−1)+3(n−a−1) = 3n−4. Thus, we will

assume that no vertex in G is adjacent to every vertex in A. Since diam(G) ≤ 2, G cannot

contain a degree 1 vertex, since the unique neighbor of such a vertex would have degree n−1.

Thus, δ(G) ≥ 2. So if a ≤ 4, then we have σ(G) ≥ 2a + 3(n− a) = 3n− a ≥ 3n− 4.

Thus we shall assume that a ≥ 5. If n ≤ 5, then n = a = 5 and G = C5. However, C5 is

not partially H-saturated, so we must have that n ≥ 6. We now divide the rest of the proof

into two cases.

Case 1. There exist two adjacent vertices in A, say u and v.

Assume u ∼ u′ and v ∼ v′. Since diam(G) ≤ 2, every vertex in V (G)\{u, v, u′, v′} must

be adjacent to both u′ and v′. Recall our earlier assumption that no vertex in G is adjacent

to every vertex in A. So u′ ̸= v′. We then have σ(G) = σ
(
{u′, v′}

)
+ σ

(
V (G) \ {u′, v′}

)
≥

2(n− 3) + 2(n− 2) = 4n− 10 ≥ 3n− 4, since n ≥ 6.
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Case 2. A forms an independent set in G.

Since diam(G) ≤ 2, every pair of vertices in A must have a common neighbor. Let

v1 ∈ A be such that N(v1) = {x2, x3}. Since no vertex in G is adjacent to every vertex in A,

there exist vertices v2, v3 ∈ A such that v2 ̸∼ x2 and v3 ̸∼ x3. Then the common neighbor

of v1 and v2 must be x3 and the common neighbor of v1 and v3 must be x2. Let x1 be a

common neighbor of v2 and v3. Clearly, x1 /∈ {x2, x3}. This situation is depicted in Figure

2.4.

Figure 2.4: Theorem 2.9 Case 2

Now let X = {x1, x2, x3}. It is easily seen that every vertex in A must be adjacent to

exactly two vertices in X. For 1 ≤ i ≤ 3, define Ai = {v ∈ A | N(v) = X \ {xi}}, and let

ai = |Ai|. Then we have a = a1 + a2 + a3, and σ(G) = σ(A) + σ(X) + σ
(
V (G) \ (A∪X)

)
≥

2a + 2(a1 + a2 + a3) + 3(n− a− 3) = 3n + a− 9 ≥ 3n− 4, since a ≥ 5.

Remark 2.10. Let G be a graph with c0 tree components, each of which has at least n0

vertices. Then e(G) ≥ n(G) − c0 ≥ n(G) − n(G)
n0

.

Remark 2.11. Assume H = H ′ + K1 and G has order n ≥ |V (H)|. Then

(i) G is H ′-saturated if and only if G is H-saturated. Thus, sat(n,H) = sat(n,H ′).

(ii) G is partially H ′-saturated if and only if G is partially H-saturated. Thus, psat(n,H) =

psat(n,H ′).

(iii) If psat(n,H ′) = sat(n,H ′), then psat(n,H) = sat(n,H).
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Table 2.1 gives the exact values of sat(n,H) with the corresponding references for every

graph H of order 4 or less with no isolated vertices.

H sat(n,H) Minimum graph G Reference

K2 0 Kn KT[13]

S3

⌊
n
2

⌋
n
2
K2 or n−1

2
K2 + K1 KT[13]

K3 n− 1 Sn EHM[8]

2K2 3 K3 + Kn−3 KT[13]

S4 n− 1 K3 + K1 or Cn−2 + K2 KT[13]

P4
n
2

or n+3
2

n
2
K2 or n−3

2
K2 + K3 KT[13]

K4 − P3 n− 1 Sn FG[10]

C4

⌊
3n−5

2

⌋
for n ≥ 5 G1 ∪ G2 Ollmann[15]

K4 −K2

⌈
3n−4

2

⌉
Fn Thm 2.9

K4 2n− 3 K2 ∨Kn−2 EHM[8]

Table 2.1: Saturation numbers for graphs of order 4 or less

Theorem 2.12. Let H be any nontrivial graph of order 4 or less. Then psat(n,H) =

sat(n,H) for every n ≥ |V (H)|, with the exception that psat(5, P4) = 3 and sat(5, P4) = 4.

Proof. First, we address the case where H = P4 and n = 5. It is known that sat(5, P4) = 4.

We also have that psat(5, P4) = 3, since K1 + P4 is partially P4-saturated, and no graph of

order 5 and size at most 2 can be partially P4-saturated.

Now let G be a partially H-saturated graph of order n ≥ |V (H)|, where n ̸= 5 when

H = P4. It then suffices to show that e(G) ≥ sat(n,H). In addition, by Remark 2.11, we

may assume that H contains no isolated vertices and is thus one of the ten graphs listed in

Table 2.1.

Our result holds when H = K2, K3, or K4 by Theorem 1.1’, when H = S3 or S4 by

Theorem 1.2’, when H = C4 by Theorem 2.6, and when H = K4 −K2 by Theorem 2.9. If
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H = 2K2, then e(G) ≥ 3 = sat(n,H), since no graph of order n and size at most 2 can be

partially 2K2-saturated.

Now assume H = K4 − P3. Then sat(n,H) = n − 1 and wt(H) = 3. Suppose e(G) <

n− 1. Then by Remark 2.10, G contains at least two different tree components, say T1 and

T2. For i ∈ {1, 2}, we select a vertex vi ∈ V (Ti) such that dTi
(vi) = 1. Then G + v1v2

contains a new copy of H, say H∗. However, 2 ≥ wtH∗(v1v2) ≥ wt(H∗) = wt(H) = 3, which

is impossible. Thus, e(G) ≥ n− 1 = sat(n,K4 − P3).

Next assume H = P4. Since G is partially P4-saturated, it follows that G does not

contain P3 as a component. Also, if K1 is a component in G, then every other component

in G has order at least 3. Furthermore, we have σ(G) ≥ n− 1 since G contains at most one

isolated vertex. So e(G) ≥
⌈
n−1
2

⌉
=

⌊
n
2

⌋
, and we are done if n is even. Since the n = 5 case

was already covered at the beginning of this proof, we now assume n is odd and n ≥ 7. We

want to show that e(G) ≥ n+3
2

= sat(n, P4).

Let G0 be an odd component in G with a minimum number of vertices, and let G1 =

G− V (G0). Then δ(G1) ≥ 1 since G contains at most one isolated vertex. Hence,

e(G) = e(G0) + e(G1) ≥ e(G0) +
n− n(G0)

2
.

If n(G0) ≥ 5, then e(G) ≥ (n(G0)− 1) + n−n(G0)
2

= n+n(G0)−2
2

≥ n+3
2

. If n(G0) = 3, then

G0 = K3 since G does not contain P3 as a component. So e(G) ≥ 3 + n−3
2

= n+3
2

. Now

assume n(G0) = 1 so that G contains K1 as a component. Then every other component in

G has order at least 3. If a tree component is of order 3, then some missing edge can be

added to the tree without creating a copy of P4. So every tree component in G1 has order

at least 4. Remark 2.10 then implies that e(G) = e(G1) ≥ n(G1) − n(G1)
4

= 3
4
(n− 1). Thus,

e(G) ≥
⌈3(n−1)

4

⌉
≥ n+3

2
since n ≥ 7 is odd.
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Chapter 3

Double stars

Recall that the double star Ss,t is a graph on s+t vertices, where s ≤ t, and is constructed

by adding an edge between the central vertices of a star on s vertices and a star on t vertices.

We will refer to this added edge as the central edge of the double star. Note that every edge

of Ss,t is incident to at least one central vertex. See Figure 3.1. We say that Ss,t is balanced

if s = t and unbalanced if s < t.

Figure 3.1: S3,4

Remark 3.1. Let u and v be two adjacent vertices in a graph G such that d(u) ≤ d(v).

Then G contains a copy of Ss,t with central edge uv if and only if d(u) ≥ s, d(v) ≥ t, and

c(u, v) ≤ d(u) + d(v) − s− t.

In 2009, Faudree, Faudree, Gould, and Jacobson [9] proved the following result on double

stars.

Theorem 3.2 (Faudree et. al [9]). Let H = Ss,t where 3 ≤ s ≤ t.

(i) If s < t and n ≥ s3, then

(
s− 1

2

)
n ≤ sat(n, Ss,t) ≤

(
s

2

)
n− (s− 1)2 + 8

8
.

(ii) If s = t and n ≥ t3, then

(t− 1)n

2
≤ sat(n, St,t) ≤

(t− 1)n

2
+

(t− 1)(t + 1)

2
.
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3.1 Subdivided stars

In this section, we consider the case H = S2,t, which is referred to as a subdivided star

in [9]. Since P4 is partially P4-saturated, Lemma 1.3 holds for partial saturation only when

k ≥ 5, as given in the result below.

Lemma 3.3. If there exist trees G and Tk each of order k such that G is partially Tk-

saturated, then either k ≤ 4, or G = Sk and Tk = S2,k−2.

Proof. Let G and Tk be trees of order k such that G is partially Tk-saturated. If G is Tk-

saturated, then we are done by Lemma 1.3. So assume G is not Tk-saturated. Then G must

be isomorphic to Tk since G is a tree of order k and contains a copy of Tk. We want to show

that k ≤ 4. Suppose for a contradiction that k ≥ 5.

We first claim that for any (u, x, v)-path of order 3 in G, it must be that either

dG(u) = dG(x) − 1 or that dG(v) = dG(x) − 1. To show this, we consider G + uv.

Without loss of generality, we assume that Tk
∼= G′, where G′ = (G + uv) − ux. Then

G′ ∼= Tk
∼= G. So

(
dG′(u) = dG(u), dG′(x) = dG(x) − 1, dG′(v) = dG(v) + 1

)
is a reordering

of
(
dG(u), dG(x), dG(v)

)
. Thus,

(
dG(x)− 1, dG(v) + 1

)
is a reordering of

(
dG(x), dG(v)

)
. So

we must have dG(v) = dG(x) − 1.

It is easily seen that G ̸= Sk, so diam(G) ≥ 3. Let l = diam(G), and P = (v0, v1, ..., vl)

be a longest path in G. Let S =
(
dG(v0), dG(v1), ..., dG(vl)

)
be the degree sequence of

vertices in P . We claim that there exist positive integers a, b such that a + b = l + 1 and

S = (1, 2, 3, ..., a, b, b−1, ..., 1). For a proof, let i, 0 ≤ i ≤ l−1, be the smallest index such that

dG(vi) ̸= dG(vi+1) − 1. Such an i must exist since dG(v0) = dG(vl) = 1. Now let a = dG(vi)

and b = dG(vi+1) ̸= a + 1. We are done if i = l − 1, in which case S = (1, 2, ..., a, b = 1).

Now assume i ≤ l − 2. By applying the previous claim on (vi, vi+1, vi+2), it follows that

dG(vi+2) = dG(vi+1) − 1 = b − 1. Thus our claim follows by applying the same claim

sequentially on (vj, vj+1, vj+2) for j = i + 1, i + 2, ..., l − 2, ending with dG(vl) = 1.
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Assume a ≥ b for convenience. If l = diam(G) = 3, then the degree sequence of the

path P is S = (1, 2, 2, 1) or (1, 2, 3, 1). Then G = P4 or S2,3, respectively. But k ≥ 5, and

S2,3 is not S2,3-saturated. Thus, we must have that l ≥ 4. Since a ≥ b, we have dG(v0) = 1,

dG(v1) = 2, dG(v2) = 3, and dG(v3) ≥ 2. Now consider G+v0v3. Then there exists an edge e ∈

{v0v1, v1v2, v2v3} such that G1 = (G+ v0v3)− e ∼= G. So
(
dG1(v0), dG1(v1), dG1(v2), dG1(v3)

)
is a reordering of the sequence S =

(
1, 2, 3, dG(v3)

)
. It can then be verified that dG(v3) = 2.

So S = (1, 2, 3, 2, 1), and l = diam(G) = 4. Then G must have the form shown in Figure

3.2. Let u be the unique neighbor of v2 outside of the path P . Then G + v1u contains no

new copy of G. This is impossible, and thus concludes our proof.

Figure 3.2: S = (1, 2, 3, 2, 1)

The following result is obtained directly from Lemma 3.3, parallel to the way Theorem

1.4 follows from Lemma 1.3. Thus, we omit the proof here.

Theorem 3.4. For any tree Tk of order k ≥ 5 and any n ≥ k + 2,

psat(n, Tk) ≥ n−
⌊
n + k − 2

k

⌋
.

Moreover, S2,k−2 is the only tree of order k attaining this minimum for all n.

In the remainder of this chapter, we provide the exact value for psat(n, Ss,t) when

3 ≤ s < t and n is large enough.
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3.2 Constructions

3.2.1 Extended (k, l, n)-graphs

Let X1, X2, ..., Xl be l disjoint sets such that ⌊n/l⌋ = |X1| ≤ |X2| ≤ ... ≤ |Xl| = ⌈n/l⌉,

where n ≥ l ≥ 2. An almost k-regular graph G of order n with vertex set V (G) = X1∪X2∪

... ∪Xl is said to be a (k, l, n)-graph with partition sets X1, X2, ..., Xl if the following two

conditions are satisfied:

(i) Each Xi is an independent set in G, except when l = 2 and n is odd, in which case

each vertex in X2 has at most one neighbor in X2.

(ii) If l divides n and a ∈ {0, 1, 2, ..., n−1}, then there exists a matching M in G such that

G −M is partly k-regular with exactly a or a + 1 minor vertices which are equitably

divided among all partition sets in G.

Note that if l ≥ 3, or l = 2 and n is even, then a (k, l, n)-graph with partition sets

X1, X2, ..., Xl is a spanning subgraph of Tn,l, the Turán graph with partite sets X1, X2, ..., Xl.

Our next remark provides a sufficient condition on the existence of a (k, l, n)-graph.

Remark 3.5. There exists a (k, l, n)-graph whenever l ≥ 2 and n ≥ kl.

Figure 3.3: Extended (k, l, n)-graph

Let G0 be a (k, l, n)-graph with partite sets X1, X2, ..., Xl, and L = {c1, c2, ... cl} be

a set of size l disjoint from V (G0). For each i, 1 ≤ i ≤ l, let Gi be the star with central

vertex ci and vertex set Xi ∪ {ci}. The graph G = G0 ∪
(∑l

i=1 Gi

)
is called an extended
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(k, l, n)-graph with partition sets L;X1, X2, ..., Xl. We shall refer to G0 as the base subgraph

of G. See Figure 3.3, where v0 is the unique minor vertex, if it exists.

For the remainder of Section 3.2, we let s and t be fixed integers so that 3 ≤ s < t.

3.2.2 Ss,t-saturated graphs

Let n = (t + 2)q1 + r1, where 0 ≤ r1 ≤ t + 1. Then

n− q1 = n−
⌊

n

t + 2

⌋
=

⌈
(t + 1)n

t + 2

⌉
=

(t + 1)n + r1
t + 2

. (3.1)

We now present the following upper bound on sat(n, Ss,t).

Theorem 3.6. Assume 3 ≤ s < t and n ≡ r1 (mod t + 2) with 0 ≤ r1 ≤ t + 1. If

n ≥ (t + 2)⌈s/2⌉, then there exists an Ss,t-saturated graph G of order n with δ(G) = s − 1

such that

σ(G) ≤ s

⌈
(t + 1)n

t + 2

⌉
− min{r1, s} + 1.

Proof. Assume n = (t+ 2)q1 + r1, where 0 ≤ r1 ≤ t+ 1 and q1 ≥ ⌈s/2⌉. Let r′ = min{r1, s},

and n0 = n−q1−r′. Then by assumption, we have n0 ≥ n−q1−r1 = (t+1)q1 ≥ (t+1)⌈s/2⌉.

By Remark 3.5, there exists an extended (s − 2, q1, n0)-graph G∗ with base subgraph G0

and partition sets L = {c1, c2, ..., cq1}; X1, X2, ..., Xq1 . Note that for each i, 1 ≤ i ≤ q1, we

have |Xi| ≥ n0/q1 ≥ t + 1. Let Kr′ be the complete graph with vertex set R′ disjoint from

G∗. We now construct the desired Ss,t-saturated graph G of order n from G∗ + Kr′ so that

every vertex in X1 ∪X2 ∪ ... ∪Xq1 ∪R′ has degree s− 1 in G.

Let a = r′(s − r′). Then a ≥ 0. Note that if a > 0, then 0 < r′ = r1 < s, and

|Xi| = n0/q1 = t+ 1 for each i, 1 ≤ i ≤ q1. Also note that a ≤ s2/4 < (t+ 2)⌈s/2⌉ ≤ n0. By

Remark 3.5, there exists a matching M in G0 such that G0 −M is a partly (s− 2)-regular

graph with exactly a or a+ 1 minor vertices which are equitably divided among all partition

sets in G0.
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Figure 3.4: Ss,t-saturated graph of order n = (t + 2)q1 + r1

We now construct the desired graph G of order n from G∗ + Kr′ by adding r′(s − r′)

new edges joining the minor vertices in G0 − M and R′ so that (i) each of the r′(s − r′)

minor vertices in G0 −M is adjacent to exactly one vertex in R′, and (ii) each vertex in R′

is adjacent to exactly s − r′ minor vertices in G0 − M and at most two minor vertices in

each Xi, 1 ≤ i ≤ q1. In addition, when G0 −M has a + 1 minor vertices, we also add one

more edge joining the remaining minor vertex in G0 −M , say v0 ∈ X1, with some vertex in

L \ {c1}, say c2, so that every vertex in V (G0)∪R′ has degree exactly s− 1 in G. See Figure

3.4.

We leave it to the reader to verify that G is an n-vertex Ss,t-saturated graph such that

σ(G) = σ(L) + σ(V (G0) ∪R′)

≤ (n0 + 1) + (s− 1)(n0 + r′)

= s(n− q1) − r′ + 1

= s

⌈
(t + 1)n

t + 2

⌉
− min{r1, s} + 1, by Equation 3.1.

This completes our proof of Theorem 3.6.

3.2.3 Partially Ss,t-saturated graphs

Theorem 3.7. Assume n− ⌈s/2⌉ = (t + 1)q2 + r2, where 1 ≤ r2 ≤ t + 1 and q2 ≥ 2. Then

there exists a partially Ss,t-saturated graph G of order n with δ(G) ≤ s− 2 such that

σ(G) ≤ (st + 1)q2 + r2s + ⌈s/2⌉
(
⌈s/2⌉ − 1

)
+ 1.
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Proof. Let n0 = n−q2−⌈s/2⌉ = tq2+r2. Then by Remark 3.5, there exists an (s−2, q2, n0)-

graph G∗ with base subgraph G0 and partition sets L = {c1, c2, ..., cq2}; X1, X2, ..., Xq2 ,

where |Xi| ≥ n0/q2 ≥ t for each i, 1 ≤ i ≤ q2. Let v0 ∈ X1 be the unique minor vertex of

G0, if it exists. If v0 does exist, we also let u0 be a vertex in Xq2 such that v0 ̸∼ u0 in G0.

Next, we define a graph GL with vertex set L such that

E(GL) =


{c1c2, ..., cq2−1cq2} if q2 is even

{c1c2, ..., cq2−2cq2−1} if q2 is odd and v0 exists

{c1c2, ..., cq2−2cq2−1} ∪ {cq2−1cq2} if q2 is odd and v0 does not exist.

Note that ⌊q2/2⌋ ≤ e(GL) ≤ ⌈q2/2⌉. Finally, we define G =
[
GL∪ (G∗ + v0u0)

]
+K⌈s/2⌉.

See Figure 3.5.

Figure 3.5: Partially Ss,t-saturated graph of order n = (t + 1)q2 + r2 + ⌈s/2⌉

It can then be seen that G is partially Ss,t-saturated with

σ(G) ≤ n0 + q2 + 1 + (s− 1)n0 + ⌈s/2⌉
(
⌈s/2⌉ − 1

)
= s(tq2 + r2) + q2 + 1 + ⌈s/2⌉

(
⌈s/2⌉ − 1

)
= (st + 1)q2 + r2s + ⌈s/2⌉

(
⌈s/2⌉ − 1

)
+ 1.
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3.3 Some properties of partially Ss,t-saturated graphs

In this section, we fix G to be a partially Ss,t-saturated graph of order n. For each i ≥ 0,

we define Di to be the set of vertices of degree i in G and di to be the cardinality of Di. We

also define the following three sets: D+
i =

⋃
k≥iDk, D−

i =
⋃

k≤i Dk, and Dj
i =

⋃
i≤k≤j Dk.

Thus, V (G) = D+
t+1 ∪Dt ∪Dt−1

s ∪Ds−1 ∪D−
s−2. We now proceed to give a detailed partition

of Ds−1, which will lead to a new partition of V (G). For each vertex v in Dt, we define

N∗(v) = {x ∈ Ds−1 | NG,D+
t

(x) = {v}}. In other words, N∗(v) is the set of all vertices in

Ds−1 whose sole neighbor in D+
t is v itself. It can be seen that N∗(v) forms a clique whenever

|N∗(v)| ≥ 2, as G is partially Ss,t-saturated. We then define W =
⋃

|N∗(v)|≥2N
∗(v). See

Figure 3.6. Note that a vertex w in Ds−1 belongs to W if and only if there exists a vertex

v ∈ Dt and another vertex w′ (distinct from w) such that {w,w′} ⊆ N∗(v). In particular,

|W | ≠ 1.

Figure 3.6: Partition of W

Figure 3.7: D-partition of V (G)
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Next, we define the sets X = {v ∈ Ds−1 | v ∼ D+
t+1} and Z = {v ∈ Ds−1|v ̸∼ D+

t }.

Clearly, W ⊆ Ds−1 \ (X ∪ Z) by definition. Now define Y = Ds−1 \ (X ∪ Z ∪W ) = {v ∈

Ds−1 \ W | v ∼ Dt, but v ̸∼ D+
t+1} and Γ = W ∪ Z ∪ D−

s−2. We also write x = |X| and

y = |Y |. Then Ds−1 = X ∪ Y ∪W ∪Z, and V (G) is partitioned into the following four sets:

X ∪D+
t+1, Y ∪Dt, D

t−1
s , and Γ. See Figure 3.7.

Lemma 3.8. Γ forms a clique of size at most s in G.

Proof. Since Γ ⊆ D−
s−1, it suffices to show that Γ is a clique. Suppose, for a contradiction,

that Γ contains two nonadjacent vertices u1 and u2. Then G + u1u2 contains a copy, say H,

of Ss,t. So either u1 or u2 must be a central vertex of H. Without loss of generality, assume

that the central edge of H is u1v, for some v ∈ D+
t . Then clearly, dG(u1) = s − 1. Since

u1 /∈ D−
s−2, and no vertex in Z has a neighbor in D+

t , we must have that u1 ∈ N∗(v) ⊆ W

and v ∈ Dt. Then N∗(v) is a clique of size at least two, as noted before. Let u′
1 be a vertex

in N∗(v) distinct from u1. Then u′
1 is a common neighbor of both u1 and v in G. But then

G + u1u2 would not contain a copy of Ss,t using u1v as the central edge, by Remark 3.1.

Thus, Γ must be a clique in G with |Γ| ≤ s.

In the next two lemmas, we provide upper bounds on the sizes of X and Y .

Lemma 3.9. We have

(i) x ≤ σ(D+
t+1)

(ii) y ≤ (t + 1)(dt/2). In particular, if dt = 1, then y ≤ 1.

Proof. Part (i) follows from counting the number of edges joining X and D+
t+1. To prove

part (ii), we first define Y1 = {v ∈ Y | |N(v) ∩Dt| = 1}. Then |Y1| ≤ dt since Y1 ∩W = Ø.

In particular, if dt = 1, then y = |Y | = |Y1| ≤ 1. By counting the number of edges joining Y

and Dt, we obtain 2y− |Y1| ≤ tdt. This yields 2y ≤ |Y1| + tdt ≤ (t + 1)dt, which proves part

(ii).

Lemma 3.10. If δ(G) ≤ s− 2, then
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(i) every vertex v ∈ D+
t is adjacent to at most d(v) − 1 vertices in Ds−1

(ii) x ≤ σ(D+
t+1) − |D+

t+1|

(iii) y ≤ t(dt/2).

Proof. Let v ∈ D+
t and z ∈ D−

s−2. If v ∼ z, then we are done. So assume v ̸∼ z. Then

G + vz contains a copy H of Ss,t. Since vz ∈ E(H) and dH(z) ≤ dG+vz(z) ≤ s − 1, v must

be a central vertex of H. Let v′ be the other central vertex of H. Then v ∼ v′ in G and

dG(v′) ≥ dH(v′) ≥ s. So v ∼ D+
s , and thus, v is adjacent to at most d(v) − 1 vertices in

Ds−1. This proves (i). Parts (ii) and (iii) follow easily by applying the same argument used

in the proof of Lemma 3.9.

Observe that d(v) in G can be treated as a function from V (G) to Z, called the degree

function of G. In order to give a better estimate of σ(G), we define a new function f , called

the score function of G, based on the degree function of G. First let X∗ be a subset of X of

size |X∗| = min{|X| , σ(D+
t+1) − (t + 1)|D+

t+1|}, D∗
t be a subset of Dt of size ⌊dt/2⌋, and v∗

be a fixed vertex in D∗
t when dt ≥ 3 and dt is odd. For every vertex v in G, we define the

score of v, denoted as f(v), according to the following four cases.

(i) If v ∈ D+
t+1 ∪X, then f(v) =


t + 1 if v ∈ D+

t+1

s if v ∈ X∗

s− 1 if v ∈ X \X∗

(ii) If v ∈ Dt ∪ Y and dt = 1, then f(v) =


t if v ∈ Dt and y = 0

t− 1 if v ∈ Dt and y = 1

s if v ∈ Y

(iii) If v ∈ Dt ∪ Y and dt ≥ 2, then f(v) =


t + 1 if v ∈ Dt \D∗

t

t− 1 if v ∈ D∗
t

s− 1 if v ∈ Y
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with the exception that f(v∗) = t− 2 ≥ s− 1 when dt is odd.

(iv) If v ∈ Dt−1
s ∪ Γ, then f(v) = d(v).

It is easy to see that 0 ≤ f(v) ≤ t + 1 for each vertex v in G. For any A ⊆ V (G),

the total score of A is defined as σ′(A) =
∑

v∈A f(v), and the mean score of A is given by

µ′(A) = σ′(A)
|A| . For each i ≥ 0, let Fi be the set of vertices in G with score i, and let fi = |Fi|.

We also define the sets F ∗
s−1 = Fs−1∩(X∪Y ) = Fs−1\Γ and F t

s = {v ∈ V (G) | s ≤ f(v) ≤ t},

with f ∗
s−1 = |F ∗

s−1| and f t
s = |F t

s |. Then V (G) = Ft+1 ∪ F ∗
s−1 ∪ F t

s ∪ Γ. See Figure 3.8.

Figure 3.8: F -partition of V (G)

Lemma 3.11. We have

(i) σ(G) ≥ σ′(G)

(ii) f ∗
s−1 ≤ (t + 1)ft+1

(iii) If δ(G) ≤ s− 2, then f ∗
s−1 ≤ tft+1.

Proof. Observe that d(v) = f(v) if v ∈ Γ ∪ Dt−1
s ∪ (X \ X∗). We can also easily see that

σ(Dt ∪ Y ) = σ′(Dt ∪ Y ) (in both the case where dt = 1 and the case where dt ≥ 2).

In addition, σ(D+
t+1 ∪ X∗) − σ′(D+

t+1 ∪ X∗) = [σ(D+
t+1) − σ′(D+

t+1)] − [σ′(X∗) − σ(X∗)] =

σ(D+
t+1) − (t + 1)|D+

t+1| − |X∗| ≥ 0. This proves part (i).

To prove (ii), we first observe that
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Ft+1 =


D+

t+1 if dt ≤ 1

D+
t+1 ∪ (Dt \D∗

t ) if dt ≥ 2

and F ∗
s−1 =


X \X∗ if dt ≤ 1

(X \X∗) ∪ Y if dt ≥ 2

with the exception that F ∗
s−1 = (X\X∗)∪Y ∪{v∗} when dt ≥ 3 is odd and t = s+1. Note that

|X\X∗| ≤ (t+1)|D+
t+1| by Lemma 3.9(i), and y ≤ (t+1)dt

2
≤ (t+1)|Dt\D∗

t | by Lemma 3.9(ii).

In addition, if dt ≥ 3 is odd, then y + 1 ≤ (t+ 1)dt
2

+ 1 ≤ (t+ 1)dt+1
2

= (t+ 1)|Dt \D∗
t |. This

yields part (ii). Part (iii) can be proved similarly by applying Lemma 3.10(ii) and (iii).

3.4 Lower bounds

We first present the following lemma.

Lemma 3.12. Let V ∗ = V (G) \ Γ = Ft+1 ∪ F t
s ∪ F ∗

s−1.

(i) Assume |V ∗| = (t + 2)q + r, where 1 ≤ r ≤ t + 2. Then

σ′(V ∗) ≥ (st + s)q + rs + min{0, t− s + 2 − r}.

(ii) Assume |V ∗| = (t + 1)q + r, where 1 ≤ r ≤ t + 1. If δ(G) ≤ s− 2, then

σ′(V ∗) ≥ (st + 1)q + rs + min{0, t− s + 2 − r}.

Proof. We prove part (i) only. We partition V ∗ into q + 1 subsets A0, A1, ..., Aq such that

|Ai| = t + 2 for 0 ≤ i ≤ q − 1 and |Aq| = r. The additional condition required for each Ai is

dependent upon the following two cases.

Case 1. ft+1 ≥ q + 1.
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In this case, we may assume that for each i, 0 ≤ i ≤ q, Ai contains at least one vertex

in Ft+1. Thus,

σ′(V ∗) =

q−1∑
i=0

σ′(Ai) + σ′(Aq)

≥
[
t + 1 + (t + 1)(s− 1)

]
q + t + 1 + (r − 1)(s− 1)

= (st + s)q + rs + (t− s + 2 − r).

Case 2. ft+1 ≤ q.

We assume |Ai ∩ Ft+1| = 1 for 0 ≤ i ≤ ft+1 − 1 ≤ q − 1. By Lemma 3.11(ii), we may

also assume that for all i ≥ ft+1, every vertex in Ai has score at least s. Thus,

σ′(V ∗) =

ft+1−1∑
i=0

σ′(Ai) +

q−1∑
i=ft+1

σ′(Ai) + σ′(Aq)

≥ (st + s)ft+1 + s(t + 2)(q − ft+1) + rs

≥ (st + s)q + rs.

This concludes the proof of part (i). The proof of part (ii) is similar by applying Lemma

3.11(iii).

3.4.1 Minimum degree at least s− 1

In this section, we assume that δ(G) ≥ s−1 and n = (t+2)q1+r1, where 0 ≤ r1 ≤ t+1.

Then we have

|V ∗| = n− |Γ| = (t + 2)q1 + r1 − |Γ|.

Theorem 3.13. Let G be a partially Ss,t-saturated graph of order n with δ(G) ≥ s−1. Then

σ(G) ≥ s
⌈(t + 1)n

t + 2

⌉
− min{r1, s},

where n ≡ r1 (mod t + 2), with 0 ≤ r1 ≤ t + 1.
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Proof. By Equation 3.1, it suffices to prove that σ(G) ≥ (st+ s)q1 + r1s−min{r1, s}. Recall

that Γ forms a clique of size at most s. We also have Fs−1 = F ∗
s−1 ∪ Γ since δ(G) ≥ s− 1.

Note that σ(G) ≥ σ′(G) by Lemma 3.11(i). We shall obtain our desired lower bound on

σ(G) by applying Lemma 3.12(i). The proof is divided into two cases.

Case 1. |Γ| < r1.

In this case, we have

σ(G) ≥ σ′(G) = σ′(V ∗) + σ′(Γ)

≥ (st + s)q1 + (r1 − |Γ|)s + min{0, t− s + 2 − (r1 − |Γ|)} + |Γ|(s− 1)

= (st + s)q1 + r1s + min{−|Γ|, t− s + 2 − r1}

≥ (st + s)q1 + r1s− min{r1, s}

= s
⌈(t + 1)n

t + 2

⌉
− min{r1, s}.

Case 2. r1 ≤ |Γ| ≤ s.

In this case, we have

n− |Γ| = (t + 2)(q1 − 1) + t + 2 + r1 − |Γ|.

Thus,

σ(G) ≥ (st + s)(q1 − 1) + (t + 2 + r1 − |Γ|)s+

+ min{0, t− s + 2 − (t + 2 + r1 − |Γ|)} + |Γ|(s− 1)

= (st + s)q1 + r1s + min{s− |Γ|, −r1}

= (st + s)q1 + r1s− r1

= s
⌈(t + 1)n

t + 2

⌉
− min{r1, s}.
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3.4.2 Minimum degree at most s− 2

In this section, we will assume that δ(G) ≤ s− 2 and n = (t + 1)q2 + r2 + ⌈s/2⌉, where

1 ≤ r2 ≤ t + 1. Since Γ is a clique, we have

σ(G) ≥ σ′(G) = σ′(V ∗) + σ′(Γ) ≥ σ′(V ∗) + |Γ|(|Γ| − 1).

Now assume that

|V ∗| = (t + 1)q + r, where 1 ≤ r ≤ t + 1.

Then we have

(t + 1)q + r = (t + 1)q2 + r2 + ⌈s/2⌉ − |Γ|. (3.2)

Also, it follows by Lemma 3.12(ii) that

σ(G) ≥ (st + 1)q + rs + min{0, t− s + 2 − r} + |Γ|2 − |Γ|, (3.3)

which is a quadratic function in |Γ|.

Theorem 3.14. Let G be a partially Ss,t-saturated graph of order n with δ(G) ≤ s − 2.

Assume n− ⌈s/2⌉ = (t + 1)q2 + r2, where 1 ≤ r2 ≤ t + 1. Then

σ(G) ≥ (st + 1)q2 + r2s + min{0, t− s + 2 − r2} + ⌈s/2⌉
(
⌈s/2⌉ − 1

)
.

Proof. We divide the proof into three cases.

Case 1. 1 ≤ r2 + ⌈s/2⌉ − |Γ| ≤ t + 1.

By Equation 3.2, we have

q = q2 and r = r2 + ⌈s/2⌉ − |Γ|.
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It then follows by Inequality 3.3 that

σ(G) ≥ (st + 1)q2 + (r2 + ⌈s/2⌉ − |Γ|)s +

+ min{0, t− s + 2 − (r2 + ⌈s/2⌉ − |Γ|)} + |Γ|2 − |Γ|,
(3.4)

which is minimized when |Γ| = ⌈s/2⌉. Hence,

σ(G) ≥ (st + 1)q2 + r2s + min{0, t− s + 2 − r2} + ⌈s/2⌉
(
⌈s/2⌉ − 1

)
.

Case 2. r2 + ⌈s/2⌉ − |Γ| ≤ 0.

By Equation 3.2, we have

q = q2 − 1 and r = r2 + ⌈s/2⌉ − |Γ| + t + 1.

It then follows by Inequality 3.3 that

σ(G) ≥ (st + 1)(q2 − 1) + (r2 + ⌈s/2⌉ − |Γ| + t + 1)s +

+ min{0, t− s + 2 − (r2 + ⌈s/2⌉ − |Γ| + t + 1)} + |Γ|2 − |Γ|,

which is minimized when |Γ| = r2 + ⌈s/2⌉, since |Γ| ≥ r2 + ⌈s/2⌉ ≥ ⌈s/2⌉ + 1. Thus,

σ(G) ≥ (st + 1)(q2 − 1) + (t + 1)s + min{0, 1 − s} +

+ (r2 + ⌈s/2⌉)2 − (r2 + ⌈s/2⌉)

= (st + 1)q2 + (r2 + ⌈s/2⌉)2 − (r2 + ⌈s/2⌉)

≥ (st + 1)q2 + r2s + ⌈s/2⌉2 − ⌈s/2⌉.

Case 3. r2 + ⌈s/2⌉ − |Γ| > t + 1.

By Equation 3.2, we have

q = q2 + 1 and r = r2 + ⌈s/2⌉ − |Γ| − t− 1.
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It then follows by Inequality 3.3 that

σ(G) ≥ (st + 1)(q2 + 1) + (r2 + ⌈s/2⌉ − |Γ| − t− 1)s +

+ min{0, t− s + 2 − (r2 + ⌈s/2⌉ − |Γ| − t− 1)} + |Γ|2 − |Γ|,

which is minimized when |Γ| = r2 + ⌈s/2⌉ − t− 1, since |Γ| ≤ r2 + ⌈s/2⌉ − t− 1 ≤ ⌈s/2⌉.

Thus,

σ(G) ≥ (st + 1)(q2 + 1) + (r2 + ⌈s/2⌉ − t− 1)2 − (r2 + ⌈s/2⌉ − t− 1),

which is exactly the same as Inequality 3.4 when |Γ| = r2 + ⌈s/2⌉ − t− 1. Therefore,

σ(G) ≥ (st + 1)q2 + r2s + min{0, t− s + 2 − r2} + ⌈s/2⌉
(
⌈s/2⌉ − 1

)
.

3.5 Main Results

We define

f1(n) = s
⌈(t + 1)n

t + 2

⌉
− min{r1, s}, (3.5)

where n ≡ r1 (mod t + 2), with 0 ≤ r1 ≤ t + 1.

We also define

f2(n) = (st + 1)q2 + r2s + min{0, t− s + 2 − r2} + ⌈s/2⌉
(
⌈s/2⌉ − 1

)
, (3.6)

where n = (t + 1)q2 + r2 + ⌈s/2⌉, with 1 ≤ r2 ≤ t + 1.

It can be seen that

f2(n) =
(st + 1)n + ⌈s/2⌉(s− 1) + min{r2(s− 1), (t + 1 − r2)(t− s + 2)}

t + 1
−
⌊

(s + 1)2

4

⌋
.
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We state our next remark without proof.

Remark 3.15. We have

(i) f2(n) ≥ (st + 1)n

t + 1
− (s + 1)2

4
.

(ii) f1(n) ≤ f2(n) if n ≥ (t + 1)(t + 2)(s + 1)2

4(t− s + 2)
.

Our next two results follow directly from Theorems 3.6, 3.7, 3.13, and 3.14.

Theorem 3.16. Assume 3 ≤ s < t and n ≥ (t + 2)⌈s/2⌉. If f1(n) ≤ f2(n), then

psat(n, Ss,t) = sat(n, Ss,t) =

⌈
f1(n)

2

⌉
.

Theorem 3.17. Assume 3 ≤ s < t and n ≥ (t + 2)⌈s/2⌉. If n − ⌈s/2⌉ ≡ r2 (mod t + 1),

with 1 ≤ r2 ≤ t− s + 2, then

psat(n, Ss,t) = min

{⌈
f1(n)

2

⌉
,

⌈
f2(n)

2

⌉}
.
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Chapter 4

Triangle-free graphs

4.1 Paths

We first include the following remark concerning the relationship between ceiling and

floor functions.

Remark 4.1. Let a, b ∈ R and m,n ∈ Z.

(i) If a + b = n, then ⌈a⌉ + ⌊b⌋ = n.

(ii)
⌊
m
n

⌋
=

⌈
m−n+1

n

⌉
and

⌈
m
n

⌉
=

⌊
m+n−1

n

⌋
.

For every integer k ≥ 4, we use T ∗
k to denote the perfect binary tree with ⌊k

2
⌋ levels.

The cases for k = 6 and k = 7 are illustrated in Figure 4.1. Note that T ∗
k has a single root

when k is even and double roots when k is odd. It can be easily checked that T ∗
k has order

ak, where

ak =


3 · 2t−1 − 2 if k = 2t

4 · 2t−1 − 2 if k = 2t + 1.

Figure 4.1: T ∗
k when k = 6 and k = 7

In 1986, Kászonyi and Tuza [13] completely determined the saturation number of paths.

Their result is given in the theorem below.
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Theorem 4.2 (Kászonyi and Tuza [13]). (i) For n ≥ 3, sat(n, P3) = ⌊n/2⌋.

(ii) For n ≥ 4, sat(n, P4) =


n/2 if n is even,

(n + 3)/2 if n is odd.

(iii) For n ≥ 6, sat(n, P5) =
⌊
5n+1

6

⌋
.

(iv) Every Pk-saturated tree contains T ∗
k as a subtree.

(v) If n ≥ ak and k ≥ 6, then sat(n, Pk) = n− ⌊ n
ak
⌋.

When k ≥ 6, there exist graphs H of order k such that psat(n,H) ≪ sat(n,H). For

example, if H = P6 and n = 7q + r, where q ≥ 1 and 0 ≤ r ≤ 6, Paul Horn demonstrated

that (q − 1)P7 + P7+r is a partially P6-saturated graph of order n. On the other hand, we

have sat(n, P6) =
⌈
9n
10

⌉
when n ≥ 10 [13].

For the remainder of this section, we let bk = ⌊3k−3
2

⌋.

Remark 4.3. Let k ≥ 5. Then

(i) a5 = b5 = 6, and ak > bk when k ≥ 6.

(ii) bk ≤ 2k − 4.

(iii) bk ≥ 2k − 6 if and only if k ≤ 9.

Lemma 4.4. Assume k ≥ 5. Let G be a partially Pk-saturated graph and T be a tree

component of G of order at least 3. Then |V (T )| ≥ bk. In addition, we have |V (T )| ≥ 2k−4

if K1 is a component of G, and |V (T )| ≥ 2k − 6 if K2 is a component of G.

Proof. If T is Pk-free, then |V (T )| ≥ ak ≥ bk and we are done, by Theorem 4.2(iv). So

assume T contains a copy of Pk. Let P be a longest path in T with vertex set V (P ) =

{v1, v2, ..., vm}, where m ≥ k. Define i = ⌊k−1
2
⌋ and j = m− ⌈k−1

2
⌉ + 1. Note that the path

P ′ = v1v2...vi−1vivjvj+1...vm in T +vivj has i+(m− j+1) = k−1 vertices, and that T +vivj

has a new copy of Pk, say P ∗
k , containing edge vivj.
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Since P is a longest path in T , it follows that either V (P ∗
k ) ∩ {v1, ..., vi−1} = Ø or

V (P ∗
k ) ∩ {vj+1, ..., vm} = Ø (otherwise, we would have |V (P ∗

k )| ≤ |V (P ′)| = k − 1). So

|V (T )| ≥ |V (P ∗
k )| + ⌊k−3

2
⌋ = k + ⌊k−3

2
⌋ = ⌊3k−3

2
⌋ = bk. The second statement in the lemma

can be proved by considering T + e, where e is an edge joining a central vertex of P and a

vertex in K1 or K2.

A forest F is called linear if every component in F is a path.

Lemma 4.5. Let F be a linear forest. Let k ≥ 5 and ϵ be the order of a smallest component

in F .

(i) If ϵ ≥ 3, then F is partially Pk-saturated if and only if each component of F has order

at least bk.

(ii) If ϵ = 2, then F is partially Pk-saturated if and only if one component of F has order

2 and every other component has order ≥ max{bk, 2k − 6}.

(iii) If ϵ = 1, then F is partially Pk-saturated if and only if one component of F has order

1 and every other component has order ≥ 2k − 4.

Proof. We prove (i) only. The necessary condition follows directly from Lemma 4.4. For

the other direction, it is sufficient to prove that every path Pm of order m ≥ bk is partially

Pk-saturated. Let u and v be nonadjacent vertices in Pm. Then Pm−{u, v} consists of three

disjoint subpaths. Among these three paths, let H0 be the one with the smallest order. Then

V (Pm + uv) \ V (H0) induces a subpath of order m1 in Pm + uv, where

m1 = m− |V (H0)| ≥ m− m− 2

3
=

2m + 2

3
≥ 2bk + 2

3
≥ 3k − 2

3
,

which implies that Pm + uv contains a new copy of Pk.
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Theorem 4.6. Let bk = ⌊3k−3
2

⌋. If k ≥ 5 and n ≥ bk, then psat(n, Pk) = n− f(n, k), where

f(n, k) =



⌈n
6
⌉ if k = 5

⌈n−1
bk

⌉ if 6 ≤ k ≤ 9

⌊ n
bk
⌋ if k ≥ 10 and ⌊ n

bk
⌋ > ⌊ n−2

2k−6
⌋

⌊ n
bk
⌋ + 1 if k ≥ 10 and ⌊ n

bk
⌋ = ⌊ n−2

2k−6
⌋.

Proof. Define

c(n, k) = max
{

1 +
⌊ n− 1

2k − 4

⌋
, 1 +

⌊ n− 2

max{bk, 2k − 6}

⌋
,
⌊ n

bk

⌋}
.

For convenience, we write ck = 2k − 4 and dk = max{bk, 2k − 6}.

First we will show that psat(n, Pk) = n − c(n, k). For the upper bound, we assume

n − 1 = ckq1 + r1 with 0 ≤ r1 < ck, n − 2 = dkq2 + r2 with 0 ≤ r2 < dk, and n = bkq3 + r3

with 0 ≤ r3 < bk. Define F1 = (q1− 1)Pck +Pck+r1 +K1, F2 = (q2− 1)Pdk +Pdk+r2 +K2, and

F3 = (q3 − 1)Pbk + Pbk+r3 . Then each Fi is a partially Pk-saturated linear forest of order n,

by Lemma 4.5. In addition, we have |E(F1)| = n− c(F1) = n− (1 + q1) = n− (1 + ⌊n−1
ck

⌋),

|E(F2)| = n− c(F2) = n− (1 + q2) = n− (1 + ⌊n−2
dk

⌋), and |E(F3)| = n− c(F3) = n− q3 =

n− ⌊ n
bk
⌋. This proves that psat(n, Pk) ≤ min

{
|E(F1)|, |E(F2)|, |E(F3)|

}
= n− c(n, k).

For the lower bound, let G be a minimum partially Pk-saturated graph of order n with

t tree components. By Lemma 4.4, we have

n ≥ min{bkt, 1 + (2k − 4)(t− 1), 2 + (max{bk, 2k − 6})(t− 1)},

which implies that t ≤ c(n, k). Thus, by Remark 2.10,

psat(n, Pk) = |E(G)| ≥ n− t ≥ n− c(n, k).
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Thus we have shown that psat(n, Pk) = n−c(n, k). It remains to prove that c(n, k) = f(n, k).

If k = 5, then

c(n, 5) = 1 +
⌊ n− 1

2k − 4

⌋
=

⌊n + 5

6

⌋
=

⌈n
6

⌉
= f(n, 5).

If 6 ≤ k ≤ 9, then bk ≥ 2k − 6, and it can be verified that

c(n, k) = 1 +
⌊n− 2

bk

⌋
=

⌊n + bk − 2

bk

⌋
=

⌈n− 1

bk

⌉
= f(n, k).

If k ≥ 10, then bk ≤ 2k − 6 and
n

bk
≥ n− 2

2k − 6
≥ n− 1

2k − 4
. This implies that

c(n, k) = max

{
1 +

⌊ n− 2

2k − 6

⌋
,
⌊ n

bk

⌋}
=


⌊ n

bk

⌋
if
⌊ n

bk

⌋
>

⌊ n− 2

2k − 6

⌋
⌊ n

bk

⌋
+ 1 if

⌊ n

bk

⌋
=

⌊ n− 2

2k − 6

⌋
.

This proves that c(n, k) = f(n, k).

Theorem 4.6 states that psat(n, P5) = n − ⌈n
6
⌉ = ⌊5n

6
⌋ when n ≥ 6. For n = 5,

we can easily check that psat(5, P5) ≥ 4. Since K2 + K3 is P5-saturated, we have that

psat(5, P5) = sat(5, P5) = 4. Since sat(5, P5) = 4 by Theorem 4.2, we have psat(5, P5) = 4

as well. Also note that ⌊5n+1
6

⌋ = ⌊5n
6
⌋ if and only if n ̸≡ 1 (mod 6). Thus, the following

corollary holds.

Corollary 4.7. Let n ≥ 5. Then psat(n, P5) = ⌊5n
6
⌋. Furthermore, psat(n, P5) = sat(n, P5)

if and only if n ̸≡ 1 (mod 6).

4.2 Lower bound

Our next result improves upon Theorem 1.7 when H is a triangle-free graph with weight

t, containing neither St+1 nor St,t as a component.
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Theorem 4.8. Let H be a triangle-free graph with weight t which contains neither St+1 nor

St,t as a component. Then psat(n,H) ≥ 1

2
(t− 1 +

1

t2 − t + 1
)n− t2 + 4

8
.

Proof. Note that t ≥ 2 by assumption. Let G be a minimum partially H-saturated graph of

order n. We define the following sets:

S = {v ∈ V (G) | d(v) ≤ t− 2}, M = {v ∈ V (G) | d(v) = t− 1}, L = {v ∈ V (G) | d(v) ≥ t},

M1 = {v ∈ M | d(v, L) = 1}, M2 = {v ∈ M | d(v, L) = 2}, M3 = {v ∈ M | d(v, L) ≥ 3}.

Claim 1. |M1 ∪M2| ≤ (t− 1)σ(L).

Proof. For i = 1, 2, define Ai = {v ∈ V (G) \ L | d(v, L) = i}. Clearly, we have M1 ∪M2 ⊆

A1 ∪ A2, |A1| ≤ σ(L), and |A2| ≤ (t− 2)|A1| by definition. Thus,

|M1 ∪M2| ≤ |A1| + |A2| ≤ σ(L) + (t− 2)σ(L) = (t− 1)σ(L).

Claim 2. M3 forms a clique of size at most t.

Proof. Suppose on the contrary that M3 is not a clique. Then there exist two nonadjacent

vertices u and v in M3. So G + uv contains a new copy of H, say H∗. Let H0 be the

component of H∗ containing uv. Then every edge in H0 is incident with either u or v;

otherwise, H0 would contain an edge with weight at most t − 1 by the definition of M3.

Since wt(H0) ≥ t, dH0(u) ≤ t, and dH0(v) ≤ t, it follows that H0 = St+1 or St,t, which is

impossible.

Claim 3.
∑

v∈L∪M1∪M2

d(v) ≥
(
t− 1 +

1

t2 − t + 1

)∣∣L ∪M1 ∪M2

∣∣.
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Proof. By Claims 1 and 2, we have

∑
v∈L∪M1∪M2

d(v) −
(
t− 1 +

1

t2 − t + 1

)∣∣L ∪M1 ∪M2

∣∣
=

∑
v∈L

d(v) −
(
t− 1 +

1

t2 − t + 1

)∣∣L∣∣− 1

t2 − t + 1

∣∣M1 ∪M2

∣∣
≥ σ(L) −

(
t− 1 +

1

t2 − t + 1

)∣∣L∣∣− t− 1

t2 − t + 1
σ(L)

≥
(

1 − t− 1

t2 − t + 1

)
t
∣∣L∣∣− (

t− 1 +
1

t2 − t + 1

)∣∣L∣∣
= 0.

It is easy to see that S forms a clique in G. So

2 psat(n,H) =
∑

v∈V (G)

d(v)

≥
(
t− 1 +

1

t2 − t + 1

)(
n− |M3| − |S|

)
+ (t− 1)|M3| + |S|

(
|S| − 1

)
=

(
t− 1 +

1

t2 − t + 1

)
n− |M3| + |S|

t2 − t + 1
+ |S|2 − t|S|

≥
(
t− 1 +

1

t2 − t + 1

)
n− 2t− 1

t2 − t + 1
+
(
|S| − t

2

)2 − t2

4

≥
(
t− 1 +

1

t2 − t + 1

)
n− 1 − t2

4
.

Let t ≥ 3 and let S∗
t,t be the graph obtained from St,t by subdividing its central edge.

We shall refer to the unique path of order 3 in S∗
t,t joining two vertices of degree t as the

central path of S∗
t,t. The following proposition shows that the lower bound given in Theorem

4.8 is nearly sharp.

Proposition 4.9. If n ≥ 2(t2 − t + 1), then sat(n, S∗
t,t) ≤

1

2

(
t− 1 +

2

t2 − t + 1

)
n +

3t

2
.

Proof. Assume n = 2(t2 − t + 1)q + r, where q ≥ 1 and 1 ≤ r ≤ 2(t2 − t + 1). Also assume

r = (t − 1)q1 + r1, where q1 ≤ 2t and 1 ≤ r1 ≤ t − 1. Let A,B,C, and D be disjoint sets
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such that |A| = 2q, |B| = 2tq+ q1, |C| = (t−2)(2tq+ q1), and |D| = r1. We can easily check

that |A ∪B ∪ C ∪D| = n. We now define G with vertex set A ∪B ∪ C ∪D so that

(i) G[A] = qK2, one vertex v0 in A is adjacent to t + q1 vertices in B and every vertex in

D, and every other vertex in A is adjacent to exactly t vertices in B,

(ii) every vertex in B is adjacent to one vertex in A and t− 2 vertices in C,

(iii) every vertex in C is adjacent to one vertex in B, and G[C] is almost (t − 2)-regular,

such that the possible vertex u0 of degree t − 3 is also adjacent to v0 in A, with

N(u0) ∩N(v0) = ∅,

(iv) D forms a clique.

Figure 4.2: S∗
t,t-saturated graph G

Thus, we have that (i) every vertex in A has degree at least t + 1, (ii) every vertex in

B ∪ C has degree t− 1, and (iii) every vertex in D has degree r1. The graph G is depicted

in Figure 4.2. So

2|E(G)| ≤ (t− 1)(n− r1) + 4q + q1 + 1 + r1 + r21
= (t− 1)n + 4q + q1 + r21 − (t− 2)r1 + 1

≤ (t− 1)n + 4q + 2t + t

≤
[
(t− 1) +

2

t2 − t + 1

]
n + 3t.

Thus, |E(G)| ≤ 1
2
(t− 1 + 2

t2−t+1
)n + 3t

2
. It now remains to prove that G is S∗

t,t-saturated.
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Note that no two vertices of degree at least t in G have a common neighbor, which

implies that G does not contain a copy of S∗
t,t. Next we consider G + e, where e = uv is an

edge in G. Then, since D is a clique, e must contain a vertex in A ∪B ∪ C, say u.

Case 1. u ∈ A.

If v is adjacent to a vertex u∗ ∈ A \ {u}, then G contains a copy of S∗
t,t with central

path uvu∗. Now assume v ̸∼ A. Let u′ be the unique neighbor of u in A. Then G contains

a copy of S∗
t,t with central path u′uv.

Case 2. u ∈ B and v /∈ A.

Let a be the unique neighbor of u in A and a′ be the unique neighbor of a in A. Then

G contains a copy of S∗
t,t with central path uaa′.

Case 3. u ∈ C and v /∈ A ∪B.

Let b be the unique neighbor of u in B and a be the unique neighbor of b in A. Then

G contains a copy of S∗
t,t with central path uba.

This proves that G is S∗
t,t-saturated. Thus, sat(S∗

t,t, n) ≤ |E(G)| ≤ 1
2
(t−1+ 2

t2−t+1
)n+ 3t

2
,

when n ≥ 2(t2 − t + 1).

4.3 Psat-sharp graphs

From [3], a graph H is called sat-sharp if limn→∞
sat(n,H)

n
= wt(H)−1

2
. We remark that it is

not known, in general, whether the limit limn→∞
sat(n,H)

n
even exists, although the existence

of this limit was stated as a conjecture by Tuza [16]. Similarly, we say H is psat-sharp if

limn→∞
psat(n,H)

n
= wt(H)−1

2
. BY Theorem 1.7’, every sat-sharp graph is psat-sharp. Also note

that a graph H is psat-sharp if for every large n, there exists a partially H-saturated graph

G of order n such that |E(G)| ≤ wt(H)−1
2

n + o(n).

A natural class of sat-sharp graphs is the class of threshold graphs. A simple graph G

with vertex set {v1, ..., vn} is a threshold graph if there exist weights x1, ..., xn ∈ R such that,

for all i ̸= j, we have vivj ∈ E(G) if and only if xi + xj ≥ 0. Threshold graphs were first

introduced by Chvátal and Hammer [7], who proved that a simple graph G is a threshold
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graph if and only if G can be obtained from K1 by iteratively adding a new vertex which

is either an isolated vertex, or is one that dominates all previous vertices. Cameron and

Puleo [3] showed that every threshold graph is sat-sharp. Therefore, every threshold graph

is psat-sharp as well.

A connected graph H with weight t is called special if H contains a cut-edge uv such

that both components of H − uv have at most t vertices.

Remark 4.10. Let H be a special graph with weight t, cut-edge uv, and d(u) ≤ d(v). Then

(i) d(v) = t.

(ii) the component of H − uv containing v has exactly t vertices.

Proposition 4.11. If H is a triangle-free special graph with weight t, then H is either St+1

or St,t.

Proof. Let uv be the cut-edge of H such that s = d(u) ≤ d(v) = t. Note that every vertex

in V (H) \ {u, v} has degree at most t − 1, as both components of H − uv have at most t

vertices. Since H is triangle-free, for any edge xy in H, we have t = wt(H) ≤ wt(xy) =

max{d(x), d(y)} ≤ t. So every vertex in H either has degree t or is adjacent to a vertex

of degree t. This condition is satisfied only when either s = t and H = St,t, or s = 1 and

H = St+1.

Theorem 4.12. Let H be a graph of order k containing a special graph H0 as a component

such that wt(H) = wt(H0) = t ≥ 1. Then H is sat-sharp. More specifically, for n ≥ 2k − 2,

we have

sat(n,H) ≤ t− 1

2
n +

(k − 1)(k − t− 1)

2
.

Proof. Assume |V (H0)| = s + t, where 1 ≤ s ≤ t. Let H1 be the union of all nontrivial

components in H of order at most t, and H2 be the union of all components in H of order at

least t + 1. Define ki = |V (Hi)| for i = 1, 2. Then we have k − k1 ≥ k2 ≥ s + t. By Remark
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1.6, every component in H1 contains at least t+3
2

vertices. Hence, k1 ≥ t+3
2
q1, where q1 is the

number of components in H1.

Now let n = qt + r so that k2 − t ≤ r ≤ k2 − 1. Then q ≥ 1 and r ≥ s. Define

G = qKt + Kr. Then G is H-free, as G contains no copy of H2. We claim that G is

H-saturated.

First assume q = 1. Then we have

k2 + t− 1 ≤ 2k2 − 2 ≤ 2k − 2 ≤ n = t + r ≤ k2 − 1 + t.

Thus, H = H0 has order k = k2 = t + 1. It is then easily seen that G = Kt + Kr is

H-saturated.

Now assume q ≥ 2. Since n ≥ 2k−2, 2k1 ≥ (t+3)q1, r ≤ k2−1, and k2 ≥ |V (H0)| ≥ t+1,

it follows that

(q − 1)t = n− t− r ≥ (2k1 + 2k2 − 2) − t− (k2 − 1) = 2k1 + k2 − t− 1 ≥ 2k1 ≥ (t + 3)q1.

This implies that q1 ≤ q − 2 since q ≥ 2. So (q − 2)Kt contains a copy of H1 and thus, G is

H-saturated. A simple counting yields

sat(n,H) ≤ |E(G)| =
(t− 1)n + r(r − t)

2
≤ t− 1

2
n +

(k − 1)(k − t− 1)

2
.

This completes the proof of Theorem 4.12.

Corollary 4.13. Let H be a graph of order k and weight t, containing either St,t or St+1 as

a component. Then H is sat-sharp. More specifically, for n ≥ 2k − 2,

sat(n,H) ≤ t− 1

2
n +

(k − 1)(k − t− 1)

2
.

The result below follows immediately from Theorem 4.8 and Corollary 4.13.
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Theorem 4.14. Let H be triangle-free graph with weight t ≥ 1. Then the following three

statements are equivalent:

(i) H is sat-sharp.

(ii) H is psat-sharp.

(iii) H contains either St+1 or St,t as a component.
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Chapter 5

Summary and future work

From Chapter 1, we have that wsat(n,H) ≤ psat(n,H) ≤ sat(n,H) for every graph H.

Both of the functions psat(n,H) and sat(n,H) are not, in general, monotone with respect to

H. On the other hand, it is easy to see that wsat(n,H1) ≤ wsat(n,H2) whenever H1 ⊆ H2.

So wsat(n,H) behaves quite differently from the other two functions. The following question

was first raised by Tuza in [18].

Question 5.1 (Tuza [18]). Are there necessary and/or sufficient conditions for wsat(n,H)

to equal sat(n,H)?

Any result on sat(n,H) remains true for psat(n,H) provided that the original proof

does not make use of the condition that an H-saturated graph is H-free. In particular, we

pointed out that Theorem 1.1 on complete graphs, Theorem 1.2 on stars, and Theorem 1.7

on the general lower bound are all true for both sat(n,H) and psat(n,H). Thus, it is natural

to ask the following question.

Question 5.2. Are there succinct necessary and/or sufficient conditions for psat(n,H) to

equal sat(n,H)?

In Chapter 2, we characterize all minimum partially C4-saturated graphs of order n for

all n ≥ 4 (Theorem 2.6). We also showed that psat(n,H) = sat(n,H) for every n ≥ |V (H)|

and every nontrivial graph H of order 4 or less, with the exception that psat(5, P4) = 3 and

sat(5, P4) = 4 (Theorem 2.12).

For the saturation of all graphs of order 5, the cycle C5 has been of particular interest.

In 1995, Fisher, Fraughnaugh, and Langley [12] gave an upper bound of
⌈
10
7

(n− 1)
⌉

for C5.
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Later, in [5] and [6], Chen proved that this upper bound serves as the lower bound as well

for all n ≥ 21, and also characterized all minimum C5-saturated graphs of order n.

Our next step is to consider the following two problems.

Problem 5.3. Characterize all minimum partially C5-saturated graphs of order n for all

n ≥ 5.

Problem 5.4. Determine psat(n,H) for every graph H of order 5.

In 1986, Kászonyi and Tuza [13] showed that the star Sk has the largest saturation

number among all trees of order k (Theorem 1.2). Faudree et al., [9] showed that S2,k−2 has

the smallest saturation number among all trees of order k (Theorem 1.4), and also raised

the following question.

Question 5.5. Among all trees of order k, which is the tree(s) of second highest and the

tree(s) of second lowest saturation number?

We pointed out that Sk has the largest partial saturation number among all trees of

order k (Theorem 1.2’). We also showed that S2,k−2 has the smallest partial saturation

number among all trees of order k (Theorem 3.4). So it is natural to ask the following

question.

Question 5.6. Among all trees of order k, which is the tree(s) of second highest and the

tree(s) of second lowest partial saturation number?

Assume 3 ≤ s < t. Recall from Chapter 3 that

f1(n) = s
⌈(t + 1)n

t + 2

⌉
− min{r1, s},

where n ≡ r1 (mod t + 2), with 0 ≤ r1 ≤ t + 1.

Also, we have

f2(n) = (st + 1)q2 + r2s + min{0, t− s + 2 − r2} + ⌈s/2⌉
(
⌈s/2⌉ − 1

)
,
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where n = (t + 1)q2 + r2 + ⌈s/2⌉, with 1 ≤ r2 ≤ t + 1.

In Theorem 3.16, we showed that psat(n, Ss,t) = sat(n, Ss,t) =

⌈
f1(n)

2

⌉
when n ≥ (t +

2)⌈s/2⌉ and f1(n) ≤ f2(n). In particular, our result holds when n ≥ (t + 1)(t + 2)(s + 1)2

4(t− s + 2)

by Remark 3.15. In Theorem 3.17, we showed that psat(n, Ss,t) = min

{⌈
f1(n)

2

⌉
,

⌈
f2(n)

2

⌉}
when n ≥ (t + 2)⌈s/2⌉ and n− ⌈s/2⌉ ≡ r2 (mod t + 1), with 1 ≤ r2 ≤ t− s + 2.

We believe that the following conjecture is plausible.

Conjecture 5.7. Assume 3 ≤ s < t and n ≥ (t + 2)⌈s/2⌉. If n − ⌈s/2⌉ ≡ r2 (mod t + 1),

with 1 ≤ r2 ≤ t + 1, then

psat(n, Ss,t) = min

{⌈
f1(n)

2

⌉
,

⌈
f2(n)

2

⌉}
.

In Chapter 4, we completely determined psat(n, Pk) for all n ≥
⌊
3k−3
2

⌋
(Theorem 4.6).

For any graph H, we define ϵ(H) = lim sup
n→∞

sat(n,H) − psat(n,H)

n
. We then define ϵ(k)

to be the supremum of ϵ(H) among all graphs H of order k. Clearly, by Theorem 2.12,

we have that ϵ(k) = 0 when k ≤ 4. For k ≥ 5, it follows by Theorems 4.2 and 4.6 that

ϵ(k) ≥ ϵ(Pk) =
1

bk
− 1

ak
.

Problem 5.8. Determine ϵ(k) for k ≥ 5.

Let H be a triangle-free graph with weight t which contains neither St+1 nor St,t as a

component. Then we have shown that psat(n,H) ≥ 1
2
(t−1+ 1

t2−t+1
)n+O(1) (Theorem 4.9).

We also found a triangle-free graph H with weight t that contains neither St+1 nor St,t as a

component such that psat(n,H) ≤ 1
2
(t − 1 + 2

t2−t+1
)n + O(1). This implies that the upper

bound in Theorem 4.9 is nearly sharp. It is then natural to ask the following question.

Question 5.9. Does there exist a triangle-free graph H with weight t which contains neither

St+1 nor St,t as a component such that psat(n,H) ≤ 1
2
(t− 1 + 1

t2−t+1
)n + O(1)?

In 2022, Cameron and Puleo [3] introduced the concept of sat-sharp graphs. We define

psat-sharp graphs in a similar fashion. In Theorem 4.14, we proved that for any triangle-free
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graph H with weight t ≥ 1, the following three statements are equivalent: (i) H is sat-sharp,

(ii) H is psat-sharp, and (iii) H contains either St+1 or St,t as a component.

Cameron and Puleo also conjectured that if H1 and H2 are two disjoint sat-sharp graphs,

then H1 + H2 is sat-sharp as well. We end this dissertation with the following stronger

conjecture.

Conjecture 5.10. Let H1 and H2 be disjoint graphs such that 1 ≤ wt(H1) ≤ wt(H2) and

H1 is sat-sharp (psat-sharp). Then H1 + H2 is sat-sharp (psat-sharp).
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