The Stone-Čech Compactification and the Number of Pairwise Nonhomeomorphic Subcontinua of β[0,∞)\[0,∞)
| Metadata Field | Value | Language |
|---|---|---|
| dc.contributor.advisor | Smith, Michel | |
| dc.contributor.advisor | Baldwin, Stewart L. | |
| dc.contributor.advisor | Gruenhage, Gary | |
| dc.contributor.advisor | Minc, Piotr | |
| dc.contributor.author | Lipham, David | |
| dc.date.accessioned | 2014-05-02T14:01:27Z | |
| dc.date.available | 2014-05-02T14:01:27Z | |
| dc.date.issued | 2014-05-02 | |
| dc.identifier.uri | http://hdl.handle.net/10415/4110 | |
| dc.description.abstract | An introduction to the Stone-Čech compactification $\beta X$ of a normal topological space $X$ is given. The method of invariantly embedding linear orders into ultrapowers is used to find $2^{\mathfrak{c}}$ pairwise nonhomeomorphic continua in $\beta\mathbb{R}$, under the assumption that the Continuum Hypothesis fails. | en_US |
| dc.rights | EMBARGO_NOT_AUBURN | en_US |
| dc.subject | Mathematics and Statistics | en_US |
| dc.title | The Stone-Čech Compactification and the Number of Pairwise Nonhomeomorphic Subcontinua of β[0,∞)\[0,∞) | en_US |
| dc.type | thesis | en_US |
| dc.embargo.length | NO_RESTRICTION | en_US |
| dc.embargo.status | NOT_EMBARGOED | en_US |
